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Abstract
The Internet-of-Things (IoT) sensing systems have the potential to revolutionize

our living environments, yet their transformative potential remains largely unreal-
ized. Despite the rapid proliferation of IoT devices and their immense potential for
a range of applications like building maintenance and healthcare monitoring, their
integration into real-world environments faces significant hurdles due to practical
deployment challenges and escalating privacy concerns.

Current IoT sensing systems are typically built with monolithic, purpose-specific
architectures that focus on a limited range of sensing capabilities designed for spe-
cific applications. This results in isolated, vendor-controlled solutions with lim-
ited features to support diverse application requirements for machine learning (ML),
scale, and reliability. As a result, IoT ecosystems become fragmented, which hinders
both widespread adoption and long-term viability.

To address these limitations of current IoT systems, this thesis proposes a shift to-
wards general-purpose sensing systems that support current and future applications,
adapt to evolving stakeholder needs, and provide robust privacy safeguards. This the-
sis introduces several novel system design approaches to achieve this vision. Starting
with Mites, a scalable, general-purpose sensing platform that delivers fine-grained
environmental data and establishes the foundational architecture for extensible and
adaptable IoT deployments across various application scenarios. Building on this,
MLIoT is presented as an end-to-end general-purpose machine learning system de-
signed to transform raw sensor data into high-level inferences, supporting the entire
ML lifecycle for IoT applications. To further enhance the interpretability of these
inferences, TAO, a context recognition framework, is developed to detect semanti-
cally meaningful contexts from the inference, improving understanding and usability
agnostic to the underlying ML inference pipelines. Complementing these advance-
ments, Kirigami showcases a general-purpose edge audio speech filter that removes
human speech segments while preserving other sounds, thereby maintaining high
accuracy for non-speech inferences and balancing privacy with utility. The thesis
demonstrates how comprehensive system support for general-purpose sensing facil-
itates various applications and meets the needs of diverse stakeholders through the
real-world deployment of more than 300 multimodal sensor devices in a fully occu-
pied, five-story university building at Carnegie Mellon University (CMU). Through
these innovative system design approaches, this thesis advocates a transformative
shift towards scalable, privacy-preserving, and general-purpose IoT sensing systems,
unlocking the full potential of smart environments.
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Chapter 1

Introduction

In recent years, we have seen significant growth in Internet of Things (IoT) sensing systems
in our daily lives, particularly in enabling the creation of “smart” buildings. The possibilities
are endless, with these systems demonstrating unprecedented opportunities to revolutionize the
way we live and work. From improving energy efficiency and sustainability [6, 9, 24, 49] to
enhancing personal health, accessibility and overall quality of life, the benefits are undeniable
[119, 147, 227, 241].

Despite the overwhelming potential of ambient IoT sensing systems, the real-world deploy-
ment and adoption of such systems have been limited and challenging. This challenge stems
from a lack of system and architectural support capable of meeting the diverse requirements of
IoT applications. These requirements span a wide range, including varied sensor data types,
privacy safeguards, security measures, machine learning (ML) integration, scalability, and re-
liability. Furthermore, the deployment of such systems has raised significant privacy concerns
[29, 52, 210], as they collect sensitive information through various sensors like audio, video, and
vibration, potentially compromising individual privacy. Consequently, supporting these diverse
applications and stakeholders requires a robust and flexible operating system in the complex and
dynamic physical context of a “living” building, which requires a multifaceted technical solution
that has so far been elusive.

The challenges and concerns associated with ambient IoT sensing systems are primarily due
to their inflexible and monolithic system design. These systems have a limited capability to
sense parameters and tend to focus on specific applications without incorporating adequate fea-
tures for generalizability. Essential privacy-related features such as sensor access control, data
minimization, and transparency are generally an afterthought. For example, several research
efforts have proposed heterogeneous sensing systems in different application domains, such as
energy analysis [198, 235], occupancy modeling [8, 30, 83, 112], thermal control [9, 26], build-
ing modeling [157], safety [182] and maintenance applications [33]. These systems depend
on purpose-built hardware instead of general-purpose designs that only sense a limited set of
parameters, such as presence (using PIR or motion sensors) or energy usage, often specific to a
certain application use case. Such systems often lack accompanying tools for privacy, like device
access control and management features supporting impactful long-term deployment. Moreover,
these systems are typically vertically integrated stacks, offering minimal extensibility to support
diverse application requirements. Such systems only support a subset of building stakeholders,
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such as building managers or administrators, and cannot be easily extended to provide support for
end-users in real-world IoT environments. Consequently, these systems are not widely adopted
and have been deployed at a small scale, only for shorter durations, have limited functionality
for end-users data access, and have limited primitives for privacy and security [16, 95].

To overcome these challenges, in this thesis, I aim to address the question: “How can we
build a general-purpose IoT sensing platform with comprehensive support for privacy and secu-
rity from the ground up?”. General-purpose implies the system support required to enable the
diversity of application and user requirements. This includes support for extensibility to accom-
modate the breadth of sensing, scalability to handle large-scale deployments and increasing data
volumes, and reliability to ensure consistent performance and data integrity over time. Addition-
ally, integrating machine learning (ML) capabilities is essential for processing and interpreting
vast amounts of sensor data, providing actionable insights, and enhancing system intelligence.
The support for privacy implies the tools required to achieve access control, data minimization,
and transparency such that the IoT system doesn’t access or leak private user data either directly
or indirectly without a clearly defined and verifiable purpose being presented to and accepted
by users. The support for security implies the need for system features for IoT systems only to
allow authorized entities, whether computer programs or humans, to access their services. The
vision articulated in this thesis is to create IoT sensing systems that are accessible and beneficial
to end users, scalable to accommodate growing data and user demands, extensible to integrate
new functionalities, reliable to provide consistent performance and secure to protect user privacy.
Without these foundational elements, IoT systems risk being discarded along with many other
technologies that showed promise but were ultimately ignored after deployment.

Thesis Statement: By co-designing general-purpose features alongside robust privacy and se-
curity measures we can build trustworthy IoT sensing systems.

1.1 Overview of this Thesis
This thesis aims to break down the existing monolithic and vertically integrated ambient IoT
sensing platforms and design a novel general-purpose sensing system with a series of architec-
tural optimizations for privacy, security, and scalable data processing that enable diverse ap-
plications and long-term real-world deployments. Specifically, as illustrated in figure 1.1, this
thesis identifies opportunities for integrating architectural support for general-purpose sensing
with comprehensive privacy features, proposing design insights and solutions in the following
areas:

1. Designing a high-fidelity, general-purpose sensing platform.

2. Development of end-to-end machine learning system for IoT.

3. Developing a framework to generate rich contextual insights from ML-based inferences.

4. Implementing a general-purpose audio filter for privacy-preserving ML inferences.

My approach enables privacy support throughout the entire system stack, ensuring that po-
tential privacy risks are minimized at every stage of data flow.
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Figure 1.1: Overview of various components of an IoT system and how my work enables systems
support for general-purpose sensing at different levels of the stack. This thesis aims to enable
system support for general-purpose sensing and privacy at various components of an IoT system
that can enable diverse applications and stakeholder requirements, ultimately fostering scalable
long-term real-world deployments.

This thesis makes the following contributions:

1. Designing a high-fidelity, general-purpose sensing platform (§2): I first investigate the
limitations and challenges of existing IoT sensing systems, particularly why these systems
have been deployed only on a small scale and for shorter durations despite their potential to
support diverse applications. I identify the pervasive challenge of accommodating a variety
of application needs and stakeholder demands within an IoT sensing platform. In particular,
the absence of essential system primitives for privacy, security, and scalability presents a
significant hurdle to real-world deployment. Based on this, I identify the key design goals and
requirements to guide the development of a comprehensive general-purpose sensing system.
I present the design and development of Mites, a general-purpose sensing system that consists
of a new physical sensor board and a backend architecture that supports fine-grained sensing
in large-scale building deployments with a series of architectural optimization for scalable
data processing, privacy, and security. Importantly, the Mites device firmware performs on-
board featurization of the sensor data to obscure Personally Identifiable Information (PII).
This ‘edge’ featurization balances data privacy while providing useful data supporting a di-
verse range of applications. I then present the design of our custom Mites software backend to
handle data streams from hundreds of Mites devices efficiently and securely while supporting
various primitives for data privacy and granular data access control by occupants. I evaluate
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our iterative design decisions through a series of microbenchmarks and show that our system
adapts to real-world network conditions and achieves high data delivery rates (94% of pack-
ets). I deployed and evaluated the Mites system in TCS Hall, a five-floor mixed-use office
building on the Carnegie Mellon University campus.

2. Development of an end-to-end machine learning system for IoT (§3): In addition to the
hardware and system stack for general-purpose sensing, another important challenge in ex-
isting IoT systems is the lack of an ML platform that supports the diverse application re-
quirements. Most existing ML systems today are optimized for specific sensing modalities,
require a dedicated hardware compute environment, and do not adapt to changing resources
and different IoT application requirements. In a general-purpose sensing environment, specif-
ically the Mites system, the ML systems need to have the ability to transform multimodal data
into actionable insights and, importantly, account for model drift over time with real-world
environmental changes, which requires models that need to be retrained and optimized. Ad-
ditionally, as data flows up the ML stack, ensuring users’ awareness and control over model
types, the data being accessed, and local execution capabilities become paramount. Current
ML systems often lack built-in privacy controls for executing computations on edge com-
pute hubs or for isolating ML tasks associated with individual sensor streams. To address
these multifaceted challenges, innovative solutions are required to enhance the adaptability
and efficiency of ML platforms within general-purpose sensing environments.
I propose the design and implementation MLIoT, an end-to-end machine learning system con-
textualized for IoT scenarios. MLIoT provides a flexible policy-driven selection of hardware
platforms, ML models, and various optimizations for closely coupled training and serving
tasks. More importantly, I designed MLIoT to provide user-expressed preferences (for edge
computing, accuracy) and benchmarking device capabilities, providing fine-grained control
in the ML model lifecycle processes. In addition, we incorporate several system optimiza-
tions such that MLIoT adapts to changes to the IoT environment or compute resources by
re-training and updating the served models on the fly while maintaining accuracy and perfor-
mance. Our evaluation across a set of benchmarks shows that MLIoT can handle multiple IoT
tasks, each with individual requirements, while maintaining high accuracy and performance.

3. Framework to generate contextual insights from ML-based inferences. (§4): The initial
chapters of this thesis will center on enhancing the general-purpose sensing of IoT platforms
by enabling the transformation of low-level featurized data into high-level inferences, thereby
bolstering its capability to support a wide array of applications. A key challenge, however,
is that high-level inferences are complex in nature and often require contextual information
about the inference to be useful for downstream applications. For example, a wellness ap-
plication that assesses an individual’s productivity requires contextual information about an
activity. An activity inference such as talking may or may not indicate if the individual is
being productive, depending on whether it is happening in a context denoting office work
or a different context of having a meal. Thus, understanding higher-level and semantically
meaningful contexts of daily activities is crucial to supporting applications such as tracking
productivity or wellness.
To address this, I propose TAO, a context detection system that combines ontological and deep
unsupervised clustering approaches for inferring a rich set of contexts from a wide variety of
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daily activities. The TAO system models the different activity patterns sequential, parallel, or
interleaved activities as context information using the OWL-based ontologies. The temporal
pipeline uses an unsupervised clustering algorithm to detect context from new activity patterns
and automatically extends our ontology based on these patterns. I evaluate the TAO system
on two large-scale real-world activity recognition datasets, ExtraSensory[215], and Casas[57]
and show that TAO system achieves 70−75% accuracy (measured using the Jaccard Similarity
Coefficient(JC)) for context detection of new activity patterns across multiple users. With this
approach, I hope that users have more control over when their activity inferences are accessed
by applications based on the context information of the activity.

4. General-purpose edge audio filter for privacy-preserving ML inferences (§5): So far, this
thesis focuses on designing and developing novel solutions to enable system general-purpose
sensing for IoT systems, particularly addressing the requirements of different applications
and stakeholders. To ensure privacy, one of the key features I developed is on-device edge-
featurization to ensure that raw data never leaves the device. This edge featurization removes
sensitive information before data is sent off the device, thereby helping protect privacy. How-
ever, several approaches for data featurization exist for sensor data, each with varying privacy
risks and utility tradeoffs. In this final part of the thesis, I will systematically characterize
various featurization techniques on audio data, particularly those that extract statistical and
spectral features using Fast Fourier Transforms (FFTs), and evaluate the privacy risks and
utility tradeoffs. I first explore different FFT-based featurization approaches proposed in prior
works that aim to remove sensitive information from raw audio while providing utility to
activity recognition tasks. I will then study the recent advancements in deep learning-based
automatic speech recognition (ASR) and their potential impact on these edge audio featur-
ization techniques. I will also investigate the utility of different featurization approaches in
generating discernible features for machine learning prediction. I then propose Kirigami, a
general-purpose edge audio speech filter that is resilient to various speech recognition or au-
dio reconstruction techniques while being feasible to implement on edge devices with limited
computational power. Our overarching goal is to create a framework that practitioners can
use to systematically evaluate different featurization and filtering approaches to understand
the tradeoff between the level of privacy protections and the utility of being able to make
activity inferences on the featurized data.

1.2 Thesis Outline
This thesis is organized as follows: Chapter 2 details the design and development of a general-
purpose sensing infrastructure for IoT environments, emphasizing scalability and real-world de-
ployment challenges. Chapter 3 delves into implementing an end-to-end machine learning plat-
form for IoT, addressing the lifecycle of model training, serving, retraining, and deployment to
effectively adapt to dynamic IoT environments. Chapter 4 introduces a context-sensing frame-
work designed to elevate the abstraction of activity inferences, enhancing the granularity and
utility of sensing data in diverse applications. Chapter 5 systematically evaluates privacy and
utility trade-offs in feature engineering techniques for IoT sensors, focusing on developing a
general-purpose edge audio filter for privacy-preserving machine learning inferences.
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Chapter 2

Design and Deployment of a
General-Purpose Sensing Infrastructure

The vision of building scale, rich-sensing infrastructure that powers a wide variety of sensing
applications has been a long-standing research goal. Application domains span from infrastruc-
ture utilization (e.g., conference room availability, coffee machine utilization, parking garage
capacity, lounge occupancy, trash receptacle overflows) [14, 49, 166] to occupant wellness and
productivity (e.g., room temperature, noise level, artificial lighting intensity, color temperature,
air circulation, and HVAC performance) [119, 147, 227, 241]. Such data is also vital in making
buildings more sustainable and maintainable.

Supporting these diverse applications and stakeholder needs, as well as robustly and flexibly
operating in the complex and dynamic physical context of a “living” building, requires a multi-
faceted technical solution that has so far been elusive [29, 52, 210]. While existing research has
proposed many building-scale distributed sensing approaches [5, 8, 25, 26, 44, 111, 136, 198,
199, 212, 235], comprehensive and real-world deployments of general-purpose IoT sensors con-
tinue to be relatively rare and challenging [16, 81, 95, 213]. A major limitation is that today’s
building-wide sensing approaches are not built with the necessary primitives for long-term and
stable deployment at scale or with the richness in sensing necessary to support a diverse range
of applications. For example, several research efforts have proposed heterogeneous sensing sys-
tems in different application domains, such as energy analysis [198, 235], occupancy modeling
[8, 30, 83, 112], thermal control [9, 26], building modeling [157], safety [182] and maintenance
applications [33]. These systems depend on purpose-built hardware instead of general-purpose
designs that only sense a limited set of parameters, such as presence (using PIR or motion sen-
sors) or energy usage. Fidelity is typically low, and systems lack accompanying tools, interfaces,
and features to support impactful long-term deployment. Even state-of-the-art commercial build-
ing management systems such as those offered by Johnson Controls [113, 204] sense a limited
set of parameters (e.g., presence, temperature, humidity) consisting of vertically integrated stacks
that are most often single-point, vendor-controlled solutions with little to no extensibility to en-
able other applications. While numerous cloud-based sensor kits offer rapid prototyping capa-
bilities (e.g., Adafruit FeatherBoards [4], Arduino/RaspberryPi + miscellaneous sensor shields
[145, 184]), none of these approaches are integrated with necessary components such as storage,
security, and machine learning components that are critical for practical deployment.
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Several systems [5, 111, 128, 199, 212] have attempted to overcome at least some of these
limitations with cloud-connected, general-purpose sensing infrastructure. Most often, these ef-
forts deploy sensor suites that consist of multiple sensor modules, either as a single device or
a constellation of devices. Although these approaches have shown the promise of high-fidelity
sensing and machine learning, these systems have only been deployed at a small scale, only for
shorter durations, have limited functionality for end-user’s data access, and have limited prim-
itives for privacy and security [16, 95]. In addition, these systems only support a subset of
stakeholders, such as building managers or administrators, are not easily scaled to operate in
real-world IoT environments, and often do not support closely integrated ML tools.

This chapter of the thesis illustrates the key insights in developing a unified, high-fidelity, and
privacy focussed general-purpose sensing system for smart buildings. We first present the key
challenges in developing a general-purpose sensing system and then showcase the widespread
issue of missing system primitives for privacy, security, and scale required for real-world deploy-
ment. We then identify the key design goals and requirements to guide the development of a
privacy focussed general-purpose system.

To achieve our vision, we present the design and development of Mites, a general-purpose
sensing system that consists of a new physical sensor board and a backend architecture that sup-
ports fine-grained sensing in large-scale building deployments with a series of architectural op-
timization for scalable data processing, privacy, security, and machine learning. We first present
the design of a custom Mites hardware device to provide the most comprehensive suite of sensors
to enable general-purpose, high-fidelity sensing. We then present the design of our custom Mites
software backend to handle data streams from hundreds of Mites devices efficiently and securely
while supporting various system primitives for data privacy and granular data access control
by occupants. To showcase the design features of Mites, we developed five proof-of-concept
applications across three application domains (building maintenance, occupancy modeling ap-
plications, and activity modeling applications), targeting different stakeholders.

The rest of this chapter describes Mites at a high level. Additional details on our completed
work in this space are presented in a full paper on this topic [37].

2.1 Challenges
This chapter identifies challenges in enabling a general-purpose sensing system for buildings.

2.1.1 Diverse Application Requirements
Smart building applications have diverse requirements in terms of sensor data, privacy, secu-
rity, support for machine learning, scale, and reliability. For example, environmental modeling
[14, 49], management and maintenance [69, 166], energy apportionment [6] only require data
at a coarse granularity or at a low temporal fidelity (e.g.,, average hourly temperature across
floors, etc.). In addition, these applications may require less privacy-sensitive data (such as
temperature or humidity) and may not need support for machine learning. On the other hand,
applications such as occupancy-based HVAC control [9, 24] and sophisticated fault detection
algorithms [49, 158] need highly fidelity data from multiple sensors, including those denoting
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occupancy. More importantly, emerging use cases such as detecting human activities using ML
[119, 127], or detecting semantically meaningful contexts for occupant productivity or wellness
[119, 147, 241], require rich sensor data from multiple modalities at finer granularities and fi-
delity to be not only effective but also often need data from more privacy-invasive sensors such
as audio or presence/movement. Ultimately, supporting these current and emerging applications
needs support for rich multi-modal sensing, data annotation tools, built-in ML support, and ex-
tensive support for privacy controls.

2.1.2 Diverse Stakeholder Requirements

Buildings consist of diverse stakeholders, including the occupants, building/facility managers,
and administrators, each with their own requirements for privacy, security, and potential uses
of IoT sensor data. These requirements have come to the forefront given high-profile compro-
mises of consumer IoT devices [41, 76, 165, 248], general safety and security issues with them
[237], and consumer concerns about their privacy implications [72]. These requirements are,
however, different across stakeholders. Building managers require the sensing hardware and in-
frastructure to be secure and can access the sensor data from Building Management Systems
(BMSs) to monitor and manage the overall building. In addition, they require the sensing in-
frastructure to support several use cases (e.g., understanding general building occupancy trends
to optimize lighting schedules and maintaining the IoT network) with significantly less granular
data (e.g., averages across the entire floor). On the other hand, building occupants have tradition-
ally not had access to any of the sensor data from the BMS, including even temperature/humidity
trends from their own offices. Furthermore, given the increasing privacy concerns with IoT [72],
occupants will naturally require expressive mechanisms for notice (e.g., what sensor data is being
captured, what apps are using this data) and choice (e.g., turn on/off sensors in their own spaces,
data sharing controls). Most importantly, we must ensure that any collected sensor data cannot
personally identify an individual (no-PII) and that any indirect association risk of an occupant
and the data from their office is also mitigated.

2.1.3 Lack of System Primitives to Support Long-Term Deployments

Supporting existing and emerging smart building applications requires high-fidelity sensing, as
mentioned above. However, the data generated from such IoT devices cannot be transmitted over
low-power, low-bandwidth networks, and cost/practicality necessitates leveraging existing WiFi
infrastructure in buildings. Furthermore, with a scale of hundreds to thousands of these sensors
in a building, the backend design to gather data must dynamically adapt to efficiently manage all
these data streams based on the available compute resources [29, 52]. Finally, to support long-
term deployments lasting many years, the system design must be resilient and fault-tolerant to
handle common failures that are either intermittent (network drops) or more catastrophic (e.g.,
machines crashing or power outages) and be able to recover. Last but not least, these features
need to be supported in a way that makes it easy to manage a network of this scale.
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2.2 Background
This chapter provides background on IoT device software and hardware stacks related to IoT
sensors and IoT cloud platforms.

2.2.1 IoT Sensors
In recent years, both researchers and industry have made strides towards providing hardware
sensing solutions that capture different environmental facets [30, 78, 145, 161, 209, 221]. These
fall broadly into three categories: (1) Prototyping platforms, (2) Special-Purpose, and (3) General-
Purpose. Prototyping platforms often include developer kits that have sensors and actuators for
communities wanting to build quick prototypes and proofs-of-concept (e.g., Phidgets [176], Gad-
geteer [221], Arduino or Adafruit Featherboards [4]). Other Special-Purpose sensing approaches
target a single environmental facet using single or multiple sensors, towards specific special-
purpose applications. For example, Risojevic et al. [197] designed a low-power sensor node with
a microphone to detect ambient sound levels, while ThermoSense [30] used a low-power thermal
sensor array and a PIR sensor to estimate room occupancy. In contrast, general-purpose sens-
ing advocates the use of several sensing modalities to detect multiple events and environmental
facets at the same time. For example, TI’s Sensor Tag [209] integrates numerous sensors on a
small battery-powered device with an accompanying smartphone app to gather data over the BLE
radio. While promising, such approaches generally have small-scale deployments (e.g., homes)
for short durations, focused on sensing technology and specific applications (e.g., activity recog-
nition). For long-term, large-scale building deployments, these approaches fall short in providing
the right primitives, such as security/privacy, scalability, reliability, and integrated ML.

2.2.2 IoT Cloud Platforms
Over the years, several IoT cloud-based platforms (such as Microsoft IoT Core [150], AWS
IoT [20], Arduino Cloud [17], and ThingWorx [180]) have emerged to support the developers
of IoT devices. Although these platforms provide several functionalities relevant to IoT sensor
deployments (e.g., data storage, scalability, reliability), they lack the features and customizability
to enable useful sensing in buildings. These platforms are hardware agnostic and general-purpose
in nature but lack the end-to-end design to support several design requirements of a high-fidelity
sensing infrastructure. Furthermore, the security and privacy support are limited given these are
closed vendor platforms, with the lack of expressive and granular privacy primitives needed for
sensor data (e.g., controlling individual sensor streams) or even where the data is stored and
processed (often no on-premise support). Although these platforms support the use of the other
cloud-based ML systems (e.g., [1, 154]), they are generic in nature and are not meant to be
tailored towards the smart building use cases.

2.2.3 Combined Systems (IoT Sensors + IoT Cloud Platforms)
The most relevant related works are research efforts and commercial systems that consist of IoT
sensing hardware and an accompanying software backend. Within a Living Lab context, Philips
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HomeLab [62], PlaceLab [103] and Georgia Tech’s Aware Home [122] instrumented spaces
with cameras and microphones and other simpler sensors for activity recognition, behavioral
monitoring, etc. Recent research approaches towards creating a Smart Home has focused on
instrumenting real-world homes with sensors for applications such as activity recognition or elder
care. For example, Klakegg et al. [123] proposed a non-intrusive sensing platform by leveraging
proximity and contact switches to recognize activities of the elderly living alone. However, these
approaches are geared towards smaller-scale home setups, and their focus is either on the sensing
technology itself or building an application toward activity recognition. In addition, they provide
limited, if any, support for the building requirements for high-fidelity sensing, scale, security,
privacy, reliability, and management.

Researchers have also proposed smart building deployments for different applications such as
occupancy detection [9, 78], energy management [136], etc. Most of these sensor deployments
were prototypes that lasted for a short duration of the study. Projects such as SmartCampus
[159] and Sensor Andrew [199] deployed IoT devices within buildings with sensors to measure
temperature, humidity, etc., in real-world office environments. Similarly, MakeSense [111] de-
ployed several custom-built sensing devices called IoTEgg to capture occupant activities using
environmental data obtained from the device. These deployments, again are not geared towards
supporting high-fidelity, general-purpose sensing, nor do they address many of the requirements
for long-running deployments to support diverse applications for different stakeholders.

2.2.4 Design Goals

Motivated by the above challenges and background, we define key challenges to enable a practi-
cal general-purpose sensing infrastructure for smart buildings.

• D1: Rich Sensing to Enable Diverse IoT Applications: To support existing and emerg-
ing smart building applications with diverse sensing needs, the underlying sensing infras-
tructure should support capturing a wide variety of physical phenomenon (D1.1: Breadth).
Furthermore, sensor data must be synchronized and sampled at sufficient temporal fidelity
to enable robust capture of subtle (e.g., writing on the whiteboard) and transient signals
(e.g., door closed) in order to be truly general purpose. Additionally, the machine learning
output must be accurate and stable (D1.2: Accuracy).

• D2: Built-in Support for Privacy and Security: Most IoT platforms and deployments do
not provide sufficient security primitives or privacy notice and choice mechanisms [233].
Since these sensors are present in private offices and shared spaces, captured sensor data
should prevent the identification of an individual (D2.1: No PII), including mitigating in-
direct association using metadata about occupants and the sensor location (D2.2: Mitigate
Association Risk). In addition, security primitives are needed to prevent interception of
and tampering with sensor data (D2.3: Data Security) and mitigate potential adversarial
attacks (D2.4: Tamper Resistant). Finally, the occupants should have expressive mecha-
nisms for notice and choice, i.e., to know and control what data is being collected in their
space, how it is used, and who can access it (D2.5: Privacy Controls).

• D3: Scalable, Reliable and Resilient System for Long-Term Deployments: Building-
scale IoT systems need to handle the computational requirements of several thousands of
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sensors efficiently (D3.1: Efficient Compute) by leveraging existing network WiFi infras-
tructure (D3.2: Efficient Network Use), as well as dynamically adapt to available compute
and network resources (D3.3: Adaptable). Finally, the system design should provide reli-
able data collection from a dense sensor deployment and recover from common types of
failures seamlessly (D3.4: Reliable and Resilient).

• D4: Comprehensive Support for System Management and Maintenance: IoT deploy-
ments in buildings, particularly research efforts, are often short-lived and expensive to
maintain beyond a few weeks [79, 108] since they lack features to monitor and manage
devices at scale. Hence, for multi-year operation, the system needs mechanisms for mon-
itoring the health of all components (D4.1: Comprehensive Monitoring), as well as the
ability to remotely manage individual devices (D4.2: Device Management).

• D5: Integrated Machine Learning (ML) Capabilities: The system design should sup-
port the entire lifecycle of ML inferencing on multi-modal IoT sensor data. This includes
user interfaces to allow different building stakeholders to view live sensor data and to pro-
vide training labels for inferences and events they are interested in (D5.1: Data Annotation
and Management). Furthermore, the system must efficiently handle training and inference
requests from hundreds of sensor streams and applications based on available compute
resources (D5.2: Efficient ML).

• D6: Designed for Extensibility: Current IoT-based sensing solutions for buildings tend
to be vertically integrated systems designed for limited purposes, often just one (e.g., oc-
cupancy, motion-triggered lighting), and are not readily extended to support other use
cases [113]. Furthermore, any updates to include new features over time require exten-
sive ground-up redesign. Thus, the system design should use extensible APIs that enable
adding new components and applications (D6.1: Extensible Architecture) supporting dif-
ferent stakeholders (D6.2: Diverse End-Users).

2.3 Mites System Architecture
We describe the architecture of our Mites system, highlighting how we achieve our key design
goals from Section 2.2.4. We describe each of the underlying components (as shown in Figure
2.1) in further detail, namely, the Mites hardware sensor package (Section 2.3.1) and the firmware
(Section 2.3.2) and our Mites software backend (Section 2.3.3).

2.3.1 Mites Sensor Board
The lowest foundation layer of our stack comprises our Mites hardware package. Our goal is
to provide high-fidelity sensing of various ambient environmental facets in physical spaces in
a building, ultimately enabling a diverse set of IoT applications. These applications include
existing ones such as energy apportionment [7], managing HVAC systems [9, 23, 24], improving
occupant comfort [26, 30, 54], occupancy analytics [54, 218], automatic fault diagnosis [158]. In
addition, numerous new applications can be built based on the rich set of ML-powered inferences,
such as detecting the context of office occupants, improving occupant productivity, detecting
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Figure 2.1: Overview of the Mites system and deployment. Each room has a Mites device on the
wall and in the ceiling, with larger rooms and shared areas having multiple devices in the ceiling.
Each device sends an encrypted stream of featurized data for 12 sensor dimensions to our Mites
software backend, which provides several key features supporting large-scale data collection and
APIs for application development.
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Figure 2.2: Design of Mites sensor board (a–e) shows the multiple design iterations of our Mites
device. Our final design (e) consists of nine discrete sensors with twelve unique sensor dimen-
sions (vibration, thermal infrared, air pressure, magnetic field, light color, temperature, motion,
Bluetooth devices, sound, WiFi signal strength, humidity, and light intensity).

resource waste, and improving facility management. Since our Mites deployment was in a brand
new university building, we had the opportunity to work closely with the architects in the building
design phase itself. We had contractors install PoE switches in network closets and run Ethernet
cables to all Mites locations in walls and ceilings. However, in existing buildings, Mites devices
will have to be incrementally deployed, and hence we also have a second version of our device
which uses a standard wall-powered 5V USB adapter. In addition, we decided to use WiFi (2.4
GHz) for data transfer in both versions, as WiFi is ubiquitous in almost all buildings and does
not require additional PoE switches and infrastructure.
Designing the Mites Device to Capture a Diverse Set of Physical Attributes: While there are
several multi-modal sensors [111, 128, 209], our goal was to create a device with the union of
numerous sensor modalities to capture a wide variety of environmental facets (D1.1: Breadth).
In addition, the multi-modal sensors used in prior approaches were custom prototypes for small-
scale studies, and their hardware or software was not available for us to modify. More impor-
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tantly, building our own hardware device allows us to choose specific sensors and control all
aspects of the firmware, including signal processing and computation performed on edge. Fig-
ure 2.2 illustrates the multi-year iterative hardware design process [160] which was crucial in
identifying hardware problems early, improving sensing fidelity, helping with sensor selection,
and managing hardware revision costs. The first set of revisions, shown in Figure 2.2(a-d), was
important for us to explore different sensors, accuracy, range, fidelity, space/volume, and cost
tradeoffs. We explored alternatives, for example, using a geophone [151] vs. various 6-axis
IMUs for measuring ambient vibrations. In our latest design, shown in Figure 2.2(e), we set-
tled on the TDK InvenSense MPU-6500 [208] as it provided a good trade-off with respect to
its footprint and sensitivity. We also incorporated a Bluetooth Low Energy (BLE) module, the
MDBT40 [188], which enables each Mites device to advertise its presence and services using our
custom implementation of the beaconing mode (iBeacon or Eddystone protocols). Altogether,
we believe our design offers the most comprehensive set of sensors in a single package to date
(D1.1 - Breadth).

2.3.2 Mites Firmware
Edge Featurization to Denature Sensor Data: We featurize and denature the raw sensor data
on-board to ensure that raw privacy-sensitive data does not leave our Mites device. For example,
the microphone data is converted into a low-fidelity spectral representation alongside basic sta-
tistical features (min, max, median, variance, etc.) to prevent reconstruction of the source audio
or to decipher speech or detect the speaker’s identity. We have two high-frequency sensors: A
microphone (16 kHz) and an accelerometer (X, Y, and Z at 4 kHz). Furthermore, we have nine
low-frequency sensors (sampled at 10 Hz): temperature, humidity, air pressure, light color, light
intensity, WiFi RSSI, motion, magnetometer (X, Y, and Z), and the GridEYE sensor [169].

For our high-frequency sensors, such as the microphone, we maintain a rolling 256-point
buffer for each sensor channel’s time-series data. We then calculate a Fast Fourier Transform
(FFT) for time-series data on the device. Specifically, every 100 ms, we take the first 256 values
out of 1600 values (as data is sampled at 16 kHz), discarding the rest of the data (13440 of 16000
samples per second). We then calculate a low-resolution FFT that produces 128 frequency bins
to further denature the data. We only keep the magnitude information from the FFTs and discard
phase information, further preventing reconstruction of the original signal. In addition, note that
the send rate of the sensor can be further reduced by building managers or end users from 10 Hz
to 2 Hz (2 FFTs), 1 Hz (1 FFT), etc.

For our low-frequency sensors, we keep a rolling ten-sample buffer that stores approximately
one second of data. Before data transmission, we compute the same seven statistical features
used above: min, max, range, average, sum, standard deviation, and centroid. This level of
featurization ensures that the raw sensor data is denatured before being sent out, unable to be
reconstructed, and substantially safeguards against PII from being collected (D2.1: No PII).

We selected the features (FFT and statistical values) based on prior literature to ensure that
the featurized data from these sensors can detect multiple environmental facets with varying tem-
poral characteristics. For instance, activity recognition applications [32, 49, 55, 127] that need
to identify subsecond- to seconds- scale events (e.g., door knock to brewing coffee) have been
supported by FFT data from high-frequency sensors (e.g., Accelerometer, Microphone). Simi-
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larly, applications [14, 69] that need to track hour-, day- to week-long events such as day light
patterns, lighting usages can be characterized by the statistical data such as average, standard de-
viation from the low-frequency and slow varying sensors (e.g., temperature, humidity, color, and
illumination). Thus, we use a combination of FFT and statistical features (min, max, standard
deviation, etc.) for our high and low sample sensors to enable a good tradeoff between privacy
and generalizability to different applications.

Sensor Control: Given the wide variety of physical sensors (particularly a microphone) on the
Mites device, and its ubiquitous deployment across public/shared spaces and private offices, a
key requirement is that authenticated users, or designated administrators, can enable/disable one
or more specific sensor streams on each Mites device. This feature is essential for privacy (D2.5:
Privacy Controls), as it gives users visibility and control of what is being sensed in their private
offices/spaces.

Secure Data Communication: To set up an end-to-end secure channel between each Mites
device and our backend, the system firmware on our devices combines standard asymmetric key
cryptography to bootstrap a symmetric session key that is unique per connected device. Each
Mites device creates an asymmetric key pair, and during initial commissioning, its public key
is sent to the Mites gateway, and the gateway’s hostname is added to each Mites device’s flash
storage. Thus, each Mites device and the Mites backend can mutually authenticate each other.
After the initial handshake, the backend creates an AES 128-bit symmetric session key for each
session with a particular Mites device, rotated periodically. With these safeguards, we prevent
the possibility that an adversary takes over a Mites device remotely by changing the hostname-
to-IP-address mapping, as the Mites devices will not be able to complete a successful handshake
and will not send any sensor data. In addition, a tampered device that does not communicate with
our backend will raise a flag and generate a notification to administrators (D2.3: Data Security
& D2.4: Tamper Resistant).

2.3.3 Mites Software Backend: Architecture and Design
We designed a custom backend with capabilities to efficiently handle all encrypted data streams
from hundreds of Mites devices in a typical building deployment (Sections 2.3.3 and 2.3.3). We
also introduce a novel mechanism for privacy-aware data collection (Section 2.3.3). We now
review these components in greater detail.

Adapting the Device Packet Rate based on Real-World Network Conditions: At first glance,
the maximum data rate of 20 KB/s per Mites device does not seem high even with hundreds of
devices, and we assumed that enterprise WiFi networks would easily handle it. For example, our
building deployment with 314 deployed Mites devices, translate into a mere total bandwidth of
6.5 MB/s. Our real-world empirical measurements, however, showed that our devices could not
maintain this 10 Hz send rate reliably due to device reboots and packet loss (as shown in Figure
2.6(a)). There are numerous reasons for this, including only three non-overlapping channels in
2.4 GHz leading to co-channel interference, channel contention caused due to relatively small
packets [219] sent by hundreds of Mites devices, and other WiFi devices on the same network.
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To address this challenge, we designed a simple adaptive packet rate scheme where each
Mites device adapts its send rate to the underlying network conditions (D3.1: Efficient Compute
& D3.2: Efficient Network Use). Our scheme increases the packet rate of a device whenever
they send reliable data within each hour (additive increase) and approximately halves the send
rate in case of observed packet drops (multiplicative decrease) to discrete levels 1 Hz, 5 Hz, or
10 Hz. Our scheme leads to individual Mites devices with different send rates based on their
observed network conditions, and our evaluations show that it significantly improves the overall
packet rates as compared to a statically configured send rate. A key lesson based on our experi-
ence is that while WiFi networks are pervasive and attractive for IoT deployments, using them
for building-scale, high-fidelity general-purpose sensing requires comprehensive mechanisms to
adapt to existing network conditions dynamically.

Opportunistic Data Sending: The total amount of data sent by each Mites device over a day
translates to 1.65 GB at 10 Hz. However, only a fraction of these sensor data is actually useful
and likely to reveal interesting events given long periods of inoccupancy and no human activ-
ity, including nights and weekends. Ultimately, this leads to redundant WiFi data transmission,
computational costs to process the data, storage for the backend databases, and unnecessary
computation from our ML service. Instead, in Mites, we propose an opportunistic data sending
approach by adding edge intelligence on the Mites device. We implemented an anomaly detec-
tion algorithm using Euclidean distance as a metric in the Mites firmware with two classes: (a)
the “Ambient Background”; and (b) all the other classes of interest. (D3.3: Adaptable) As a
heuristic, we capture this ambient background profile for each Mites device late at night when
we observe no movement. Then, we use this adaptive background model for each sensor channel
(rolling mean and standard deviation). We store the “Ambient Background” values on each Mites
device itself and calculate a normalized Euclidean distance metric with actual featurized data.

As part of a microbenchmark, we collected data for 12 different real events (e.g., activities
such as talking, and knocking) for a Mites device in an example office. We experimented with
a number of different non-ML-based methods such as sending data when motion is detected
using the PIR sensor, or distance-based anomaly detection algorithms such as Euclidean, Dy-
namic Time Warping (DTW) and DTW-windowed. In addition, also explored several ML-based
methods (Linear Outlier, KNN, LR) for anomaly detection and measured their accuracy, missed
events (false negatives), latency and model size. The comparisons are shown in our paper [37]
in more detail. We ruled out using ML-based methods due to the model sizes and/or their com-
putational complexity. Ultimately, we found that the Euclidean distance metric worked best. In
the firmware of each Mites device, we calculate the Euclidean distance between two arrays: the
current featurized data and the data from its own “background” profile. Each device only sends
the data if it is greater than a threshold (set conservatively). In addition, each device still sends
periodic keep-alive packets at a configurable interval (set at ∼5 mins) regardless to our backend.

Architectural Design for Privacy-Aware Data Collection: Given that some of the Mites de-
vices are located in offices with a single or a limited set of shared occupants (2 - 4 people) there
is a risk of indirectly associating (with some probability) the sensor data in those spaces with
the behavior of one or more of those individuals. For example, while the PIR data in an office
indicates someone’s presence, it is more likely to be due to the actual office occupant(s).
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Figure 2.3: Overview of our privacy-preserving data collection architecture. We show the three
distinct DataStores with their metadata information. “Internal Data Store” keeps the entire map-
ping of actual locations and users and is kept separate. The actual location and the real owners
are only added to the database with sensor data, “External Data Store”, after the user’s consent
and are manually verified by a trusted Admin. The “Telemetry Data Store” stores the telemetry
data for Mites devices to monitor the status of devices.

In our threat model, we assume that researchers and building managers managing the system
are trusted. We consider outside attackers who may try to gain access to sensor data and associate
it with individuals who may not have yet consented to data collection. In addition, we assume
that developers of apps (e.g., administrators and community members) may try to access more
data than they need (over-privileged apps). We also assume that authenticated occupants may be
honest but curious and may try and access data they don’t have access to (e.g., from someone’s
office) or turn on/off sensors in their own spaces without the knowledge of their co-occupants.

Given this potential association risk, we explored a novel design to enable privacy-aware data
collection from individual/shared offices by removing the precise location of the Mites device by
default (D2.2: Mitigate Association Risk). Our approach works as follows. A Mites device in
an office is initially tagged with an obfuscated location ID that corresponds to a group of offices
on a floor instead of its actual location/room. For example, a Mites device will have location
metadata as Corridor:300; Cardinality: East; Room #Random Hash instead
of its actual location in Room:301, Floor 3, indicating that it could be in any one of the
several offices in that corridor (e.g., there are 10 offices in corridor 300, on the East facing side
of our building).

Notably, we choose these obfuscated location IDs to ensure the grouping of a minimum set
of offices (e.g., 7), thus breaking the association of a Mites device and any data from it with
an exact location (i.e., an office). Subsequently, if an occupant wants to interact with the Mites
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device in their office, we collect their informed consent to associate the actual location of the
Mites device with its data, since for most applications (e.g., HVAC control, viewing sensor data
in your office) the actual location is necessary. For shared offices, we require consent from all
occupants before we can associate the Mites device data with its actual location. However, there
are corner cases where our approach needed further refinement. For example, consider the case
when after a number of office occupants have consented (i.e., real locations associated with their
Mites devices), only a few offices in a corridor remain unconsented (i.e., the Mites devices using
obfuscated location IDs). In this scenario, it is feasible for an adversary to indirectly infer the real
location of an obfuscated location ID by observing which locations are missing from a corridor
(i.e., only Rooms 301 and 302 are missing from Corridor:300). To address this, when the number
of non-consented offices in a particular corridor and cardinality (e.g., C300 East) drops below
a threshold (7 offices), we automatically obfuscate the remaining anonymous location IDs to
be completely random e.g., “Corridor:Unknown;Cardinality:Unknown; Room#Random Hash”.
Furthermore, to ensure at least seven random IDs, we designate a random set of Mites devices
location IDs to also have anonymous location IDs.

Our privacy-aware data collection architecture is shown in Figure 2.3, which includes three
separate Data Store instances. The “Internal Data Store” stores all metadata, such as device
name, device identifiers, and the actual locations (e.g., Floor, Room, Building) of the Mites
devices along with occupant information. This information is kept separate, with limited access,
and is not used during regular operation. “Telemetry Data Store” stores the telemetry data for
Mites devices such as reboots, packet rates, and overall uptime, as well as logs for backend
status monitoring. The “External Data Store” stores all sensor data from the Mites devices, using
obfuscated locations for sensor data for spaces with unconsented occupants. The actual location
and the owners are only added to the “External Data Store” after the user’s opt-in consent and
are manually verified by a trusted administrator. Note that sensor data with obfuscated locations
are still useful for certain applications and aggregate statistics, e.g., the average temperature for
rooms in a corridor or coarse occupancy patterns at the floor level, without any privacy risks.
This approach prevents the indirect association of the non-consented individuals with the Mites
sensor data collected in their offices.

Data Model to Create Views of Sensor Data for Privacy: Applications may need data from one
or more sensors on a Mites device (e.g. occupancy detection may need PIR and thermal GridEYE
data). Similarly, occupants may want to share data from a subset of their sensors with other users.
Thus, having fine-grained mechanisms to enable/disable access to specific sensor(s) from a Mites
device, as well as specifying the level of access (read, write, change permissions) is necessary
to prevent overprivileged apps. Our data model uses a notion of a ‘parent’ sensor to which we
post all the data from a Mites device and then implement ‘data views’ which can be created
on demand to grant/revoke read or write access to each sensor as needed. While the solution to
grant permissions to each of the 13 sensors individually may seem ideal, it leads to a management
burden for the user and results in system inefficiency to post data to our backend (e.g., 130 POST
REST API calls, rather than just 10 per second). This design prevents overprivileged apps or
shared sensor views from violating the occupant’s privacy (D2.5: Privacy Controls) while also
being efficient regarding data ingestion, storage, and its use for ML-based inferences.
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(a) App onboarding, login & device claiming process (b) Privacy controls (c) Data viewer & ML (d) Applet installation

Figure 2.4: Screenshots of the Mites mobile application. Our app provides occupants with con-
trols for Mites devices in their office and the ability to view sensor data from the devices acces-
sible to them. (a) The onboarding process for the Mites device, which includes a login to our
system and claiming a Mites device to their account, and gathering user consent. (b) Various
privacy controls. (c) Live data viewer allows a user to view sensor data and annotate different
events for training ML models. (d) Different “Applets” that they can install, which use the sensor
data from their Mites devices, some of which can have their own consent screens.

Mites Mobile Application for User Control: Ultimately, we designed the Mites system to
support various stakeholders, including the occupants, the building managers, administrators,
and researchers. This usability is important to ensure longer-term community participation. We
considered a number of requirements and key functionalities when designing the Mites mobile
app, which is the main interface used by these stakeholders. First, many users will be interacting
with the Mites multimodal sensing device for the first time and will need to be onboarded with its
purpose and capabilities and give their informed consent. Second, the app needs to authenticate
users and allow them to search for Mites devices by name/location or by proximity. Once the
occupant can identify their Mites device, e.g., in their office, they need to “claim” the device and
go through the onboarding process as shown in Figure 2.4(a). Note that all claiming requests
must be manually validated by a trusted admin who checks the building directory for office
occupants with the person trying to claim a device. For visibility on the data collection and to
enable/disable any sensors in their spaces and respond to any permission requests to share their
sensor data, we provide users with granular controls as shown in Figure 2.4(b). Users can also
view the sensor data from the sensors they own and have claimed, including annotating different
events and specifying labels, which are then used to train ML models to provide inferences, as
shown in Figure 2.4(c). In the future, users can also install “applets” that would use the sensor
data on their Mites devices after they grant explicit permission to the granularity of the individual
sensor, as illustrated in Figure 2.4(d).

2.4 Evaluation

We now briefly summarize the results of our evaluation. A more detailed evaluation is available
in our full paper [37].
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2.4.1 Experimental Setup
We deployed Mites devices in TCS Hall on the Carnegie Mellon campus, a medium-sized uni-
versity building (90,000 square feet, five floors) comprising offices, shared spaces, research labs,
and classrooms. While our deployment consists of 334 Mites devices, several occupants re-
quested the devices in their offices to be turned off using our privacy controls. As a result, we
evaluate and report data for 314 Mites that have been in operation for the duration of our experi-
ment. During the deployment, while several devices required manually updating the firmware of
the devices to enable bug fixes, none of the deployed final version of Mites devices experienced
a hardware failure that required replacement, which is a testament to our iterative hardware de-
sign process. On the contrary, a significant portion of our earlier Mites prototypes experienced
hardware failures.

2.4.2 System Microbenchmarks
We first evaluate the different components of the Mites system that support our design goals,
namely, features that enable rich sensing (D1) and make our system scalable, reliable, and re-
silient (D3). The features to enable privacy and security (D2) and system monitoring (D4) goals
have been elaborated upon in their own sections, and hence we do not evaluate them here further.

System Scalability and Reliability: Figure 2.5 illustrates a trace of our load balancing and fault
tolerance design across a three-DML node deployment. In this experiment, we start by handing

21sec
t1 t2 t3 t4 t5

18sec 21sec 31sec

Figure 2.5: Benchmarking Load balancing and Fault tolerance of Mites system with three Device
Management Layer (DML) nodes (DML-1, DML-2, DML-3) that handle a total of 314 Mites
devices. The area plot shows that all devices stream data to DML-1 initially. As DML-2 and
DML-3 are instantiated at time instances t1 and t2, we see the Mites devices reboot and are load-
balanced across the available DML nodes 2 and 3. Similarly, when the DML nodes go offline
(At t4, DML3 is offline, and at t5, DML2 is offline), the remaining devices reboot and connect to
the available DML nodes showing fault tolerance and recovery. We also see that the time taken
for all devices to recover is very short, ranging from 18 – 31 seconds.

all 314 Mites on a single DML node (DML-1). We then incrementally add a second node (DML-
2) and a third node (DML-3). As the timeline shows, the sensors are load balanced across all
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Figure 2.6: Efficacy of our adaptive packet rate scheme. On the left graph, we see that the
number of reboots is much lower for lower send rates (1 Hz or 5 Hz) compared to sending data
at the full 10 Hz. On the right graph, we show a histogram of the number of sensors binned into
different packet rates. As seen in the histogram, our adaptive scheme has a much higher fraction
of sensors in the 6 - 8 Hz and 8 - 10 Hz bins as compared to the 10 Hz static configuration while
also observing significantly fewer reboots overall (not shown in the figure). The overall send rate
for our adaptive scheme is 8.77 Hz (on average) compared to 7.16 Hz and 4.21 Hz for static 10
Hz and 5 Hz settings.

three nodes (at t=60 seconds / t3). To illustrate our fault tolerance design, we see that when
DML3 is offline (at t=57 seconds / t3) and when DML2 is offline (at t=83 seconds / t4), all the
Mites devices fail over to the only remaining node, DML1, in a short period (15 seconds).

System Resiliency – Adapting the Device Packet Rate to Network Conditions: We compare
the efficacy of our adaptive send rate technique vs. statically configured packet rates (1 Hz, 5
Hz, and 10 Hz) in Figures 2.6(a) and Figure 2.6(b). Figure 2.6(a) shows that at higher send rates
(10 Hz or 5 Hz), there are many more devices with a significantly higher number of reboots than
at 1 Hz. Reboots are caused by the hardware watchdog resetting the device when a Mites device
cannot send data for a period of time (60 seconds).

In contrast, we showcase the efficacy of our adaptive packet rate scheme in Figure 2.6(b). For
this figure, we collected data for 12 days for different packet rate configurations. We collected
data for each static configuration at packet send rates (1 Hz, 5 Hz, and 10 Hz) for 3 days each and
another 3 days by enabling our adaptive packet rate scheme. Figure 2.6(b) shows a histogram
of the number of devices in different bins of packet send rates for each configuration. We can
see that our adaptive packet rate scheme performs the best with the highest fraction of sensors in
the 6 - 8 Hz and 8 - 10 Hz bins and overall has the highest average packet send rate of 8.8 Hz
compared to various static send rates demonstrating its effectiveness.
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2.4.3 Overall System Evaluation
We evaluate the performance of our end-to-end system compared to various system optimizations
mentioned in the previous chapters.
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Figure 2.7: Comparison of Mites system performance with various system optimizations en-
abled as shown by the average % of packets delivered/minute and average reboots per day across
all 314 Mites devices in our deployment, gathered over 12 days. We observe that the adaptive
packet rate optimization (Days 4 - 6) results in more packets delivered compared (and lower
reboots ∼25 across the deployment) to a statically configured rate of 10 Hz for all devices (base-
line, Days 1 - 3). When we enable the opportunistic data send optimization (Days 7 - 9), we see
that both the number of packets delivered and average reboots are lower since data is only sent
from the Mites devices during periods of significant change from the ‘Ambient Background.’
Finally, when we enable both optimizations (Days 10 - 12), the average % packets delivered
(reboots comparable) is generally higher and depends on the activities happening.

Figure 2.7 plots the percentage of packets delivered/minute and the average reboots/day from
the 314 Mites devices to show the efficacy of our adaptive packet rate scheme (Section 2.3.3)
and opportunistic data sending (Section 2.3.3) optimizations. We performed this evaluation for
12 days, ensuring no other external factors (network reboot, user requests, etc.) affected the data
collection. From Day 1 to Day 3, we configured all devices to send packets at 10 Hz (baseline).
Given this is a real-world deployment, we limited our data collection to 12 days primarily to pre-
vent any service interruptions to real-world users. From Day 4 to Day 6, we enabled the adaptive
packet rate scheme. From Day 7 to Day 9, we enable opportunistic data sending. Finally, from
Day 10 to Day 12, both adaptive packet rate and opportunistic data sending are enabled. We ob-
serve that enabling adaptive packet rate increases the percentage of packets delivered per minute
(mean: 94% packets/min, standard deviation (SD): 1) while reducing the average reboots/day
(∼27) compared to the baseline of sending data at 10 Hz (mean: 83% packets/min, SD: 2) and
300 average reboots/day. Since the Mites system adaptively switched packet rates to maximize
packet delivery rates, we can achieve higher packet rates. Similarly, only enabling opportunistic
data sends results in a lower percentage of packets (mean: 43% packets/min, SD: 4.16). This
is because devices send data (at 10 Hz) only when a likely event is detected by comparing the
sensor data to the ambient background. Finally, when we enable both optimizations, we see a
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higher packet delivery rate (mean: 56% packets/min, SD: 10.58) whenever an event occurs. This
shows that devices send data without packet loss whenever an activity happens.

Overall, our results demonstrate the efficacy of different design optimizations (adaptive packet
rate and opportunistic data send) to obtain featurized sensor data at a high rate reliably from our
entire network of Mites devices while ensuring that our end-to-end system consumes fewer re-
sources.

2.5 Conclusion
Real-world deployment of a large-scale sensing system is challenging due to the lack of design
and architectural support for high-fidelity sensing. In addition, existing sensing systems are
limited as they are geared toward specific, vertically integrated applications. Such methods are
unreliable, have limited functionality for users, and have few, if any, primitives for privacy and
security. We have presented Mites, a scalable end–to–end hardware-software stack for supporting
and managing high-fidelity distributed general-purpose sensing in buildings. Specifically, the
goals of the Mites system are to support ubiquitous large-scale management and operation of
infrastructure in a way that is extensible, easy to use, and provides security while maintaining
occupant privacy. We deployed and evaluated our Mites system in TCS Hall, a five-floor mixed-
use office building on the Carnegie Mellon University campus. We share our key insights and
sincerely believe they will impact future researchers and practitioners attempting to design and
deploy a similar general-purpose sensing system for buildings.
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Chapter 3

End-to-End General Purpose Machine
Learning System for Smart Buildings

The previous chapter showed the design and deployment of the hardware-software stack of the
general-purpose sensing system with key system design primitives to support privacy controls.
In addition to the hardware and system stack, a core component of the general-purpose sensing
system is to support Machine Learning (ML) tasks to enable diverse IoT application use cases
such as Activities of Daily Living (ADLs) [43, 64] or Context-driven Applications [8, 24]. For
example, detecting activities and events in smart environments requires machine learning on
various IoT sensor data sources. However, there are ongoing concerns about the potential privacy
implications of ML tasks on the breadth of the data collected by such ubiquitous IoT device
deployment [45, 124, 223].

The holy grail today for ML systems is to “train” a generalized ML model once and then
“serve” or deploy it to make predictions. In fact, several general-purpose ML serving-only sys-
tems exist, [1, 19, 59, 230, 232] including those for IoT-relevant audio data [131] or image
sources.Other approaches propose Programming by Demonstration (PbD) [130, 152] to enable
users to train personalized models ‘in-situ’ in a specific IoT environment. One common pitfall
of such system approaches is that they primarily focus on system optimization strategies to re-
duce latency or improve accuracy during the ML lifecycle and fail to take into consideration the
primitives required for IoT settings. First, these systems are optimized for specific and often
dedicated hardware resources and do not provide the privacy controls to run their ML computa-
tion on edge compute hub nor isolate the ML computation for sensor streams based on different
users. Second, each IoT deployment/environment is different, requiring ‘in-situ’ (re-)training
based on the sensors and events in that setting. For example, multi-modal sensor [130, 152] or
audio-based context recognition [73, 131] is affected by the physical space characteristics and
changes to the ambient environment. Third, accurate pre-trained models, such as ImageNet or
YoLo, need a significant amount of labeled training data and computation resources, which is
atypical in IoT scenarios. Finally, these systems are optimized for specific and often dedicated
hardware resources and do not adapt to changes in resource availability, for example, an edge
compute hub (for privacy) as compared to a server on the cloud.

In this chapter of the thesis, we describe our work on designing and implementing a MLIoT,
an end-to-end machine learning system tailored for IoT use cases, supporting the entire lifecycle
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of initial training, serving, and retraining processes. MLIoT adapts to (heterogeneous) compute
resources by performing device selection based on user-expressed preferences (policies for edge
computing, accuracy) and benchmarking device capabilities. MLIoT adapts to different data
sources and tasks by automatically training, optimizing, and serving models based on expressive
preferences (policies). MLIoT adapts to changes to the IoT environment or compute resources
by re-training, and updating the served models on the fly, while maintaining accuracy and perfor-
mance. MLIoT performs these adaptations dynamically for multiple tasks, each with their own
training-serving pipelines and requirements.

The rest of this chapter describes MLIoT at a high level. Additional details on our completed
work in this space is presented in a full paper on this topic [36].

3.1 Challenges
To motivate the challenges unique to IoT settings, we present several examples of IoT appli-
cations and their data sources. We then identify the unique challenges for ML systems in IoT
settings, which existing general purpose training [63, 207, 230] and serving [1, 59] systems fall
short on.

3.1.1 IoT Application Workloads
Activity Recognition using Multi-Modal sensors: There is a rich history of activity and event
detection in IoT-enabled environments, using non-intrusive ambient sensors [98, 120, 130, 152],
or direct instrumentation [40, 224], and even in-direct sensing [56, 94, 201]. These systems
use labeled data from sensors such as Accelerometers, Gyroscopes, Microphones, Temperature,
and Humidity to explicitly train ML models for specific events and test their accuracy on live
data. Recent systems[130, 152] incorporate as many as 13 different hardware sensors, extracting
over 2,000 features on a single package. They propose a Programming-by-Demonstration (PbD)
approach to train a single ML model to predict the occurrence of various events. Their interface
allows end users to add more training data and retrain the ML model if desired. Given the
diversity of IoT-relevant hardware sensors present on this platform, we collect and use multiple
datasets from the Mites to evaluate MLIoT, as well as compare our accuracy and performance to
this state-of-the-art system.

Audio Based Activity Recognition: Given that many activities have an audio signature (e.g.,
appliances running, faucets being turned on), Ubicoustics proposes using audio only for activity
detection, particularly by building a generalized a pre-trained deep model [131]. Their system
collects audio, processes it into VGG-16 network with 6144 features, and then trains a large
DNN. We collect a set of audio benchmarks and compare MLIoT with Ubicoustics.

Object Recognition using Image Data: Several emerging IoT applications apply computer
vision algorithms on images, to detect objects, adding labels and bounding boxes[190, 191]. To
evaluate MLIoT for image data, we use the popular MNIST dataset which has labelled images
for handwritten digits [134].
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3.1.2 Challenges for ML systems in IoT settings
Motivated by the above IoT application and workloads, we identify key challenges for ML Sys-
tems geared towards them.

Adapting to Different IoT Application requirements: IoT applications requirements can differ
substantially. Deep learning based computer vision applications often need hardware accelera-
tors with significant memory[190]. Activity recognition, using classical models, often need to
run on edge gateways such as a Rasbperry PI [185] or a SmartThings Hub, [202] with modest
compute resources for faster latency and to alleviate privacy concerns. Developers of these ap-
plications themselves may have different requirements such as accuracy, latency, cost (cloud vs
local inferences), models to use, and even different priorities between their different IoT tasks.
MLIoT provides expressive policy-driven mechanisms to balance user requirements with the
available resources.

Adapting to Device Capabilities and Resource Availability: The inherent heterogeneity in
individual device capabilities (CPU complexity, number of cores, memory, bandwidth, accel-
erators) affect the performance (training and serving) of ML algorithms. It is essential to thus
estimate the comparative performance of the devices available, which MLIoT achieves by bench-
marking devices in different conditions and using that information for device selection. Further-
more, the resources available on individual devices also change as different IoT ML tasks run on
them, each with their own requirements. MLIoT provides load balancing and various dynamic
adaptation mechanisms such as changing the models served, to meet these requirements.

Adapting to Changes in Environmental Context: Existing ML systems [1, 19, 59, 230, 232]
often rely on generalized ML models, which are infeasible in IoT settings since each environ-
ment is unique and models need to be contextualized to that environment. IoT systems are also
affected by changes in the ambient environment, both temporary and permanent (e.g., changes
to the layout of a home affect audio-based sensing). MLIoT enables both the initial training and
retraining and re-optimizations of the models based on user-driven corrective feedback.

3.2 Background

3.2.1 Large-scale ML Serving Systems
There are several general-purpose predictions serving systems from the industry and academia
which aim to facilitate model deployment [1, 59, 60, 131, 225, 232]. These systems place the
trained models in containers and optimize model inference requests. Clipper [59] aims to deploy
pre-trained ML models in containers and optimize serving performance using request batching
and caching to reduce latency. It also employs user feedback to select and combine the output
of one or more deployed models to improve accuracy. Inferline [60] provisions and executes
prediction pipelines subject to latency constraints, leveraging adaptive batching and autoscaling
to reduce latency. TensorFlow Serving [1], a commercial grade serving system, is designed to
deploy models as TensorFlow pipelines [86] which are executed in black box containers. Other
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serving systems have focused on applications content recommendation systems [232], speech
recognition [135] and activity recognition [131] all of which have highly customized, application
specific models. Several commercial systems targeted towards IoT also exist such as Amazon
AWS IoT greengrass [19], Google Cloud Vision AI [88], Amazon Rekognition [15] or Azure IoT
[149]. Some of them leverage edge and cloud resources to serve models with low latency, and to
save costs. These commercial systems are vertically integrated, focusing on serving predictions
from a single model or framework, or specific hardware only. These systems fail to address
one or more key requirements for IoT scenarios: focus on serving static pre-trained models, no
adaptation to environmental changes, do not support heterogeneous devices, or have limited, if
any, support for policies.

3.2.2 Large-scale ML Training Systems

Most of the training focused systems [51, 63, 207, 230] optimize for deep neural network mod-
els with many hyperparameters, which is very resource and time intensive. Project Adam [51]
investigates distributed training based on available resources while Helix [230] and KeystoneML
[207] use various techniques to optimizes the ML training workflow. Commercial systems such
as Google Vizier [84], similarly optimize DNNs, focusing on a variety of techniques to ‘tune’
the network parameters to improve accuracy and performance. Google AutoML [87] views
learning to build a network itself as a machine learning problem, applying techniques such as re-
inforcement learning for the task. These systems are geared towards producing high-quality and
complex deep networks for domains such as object recognition, and translation. These training
only systems assume large corpus of training data for an expensive, infrequent, training tasks and
optimize for efficient distributed model training. In contrast, in IoT scenarios the available data is
sparse to train complex models, the trained models need to be specific to the sensor sources, en-
vironmental context, application requirements and thus need more closely coupled (re-)training
and serving systems.

3.2.3 ML Training/Serving Hybrid Systems

Several recent efforts aim to simplify ML development through a general-purpose machine learn-
ing system with both training and serving of models [12, 19, 28, 58, 60, 88, 109, 110, 138, 239,
240]. Some of these systems that share similar goals of MLIoT are the end-to-end “ML Plat-
forms” that run at commercial settings. Systems such as Uber’s Michelangelo ML [110] and
Facebook’s FBLearner Flow [109] serve as ML-as-a-service platform which is optimized for
their internal use cases. Uber’s Michelangelo ML is optimized for their real-time requirements,
allowing production models to use features extracted from streams of live data. FBLearner Flow
allows reusable ML workflow that allows ML models to be modified and reused in different
products. On the other hand, Google’s TFX [28], provides Tensorflow-based [86] toolkits for
data preparation, and periodic model evaluation to improve performance and reliability and ex-
tends TensorFlow Serving [1] to serve the models with TensorFlow-based learners. Such systems
generally run on the cloud incurring a higher cost for better workload environments and restrict
users to a specific set of algorithms or libraries, so users are on their own when they step outside
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these boundaries. They are not designed to adapt to unpredictable operational environments.
Ultimately, many of these systems do not address the challenges specific to IoT applications.

3.3 System Design and Architecture
The overall architecture of MLIoT is illustrated in Figure 3.1. It comprises two logical compo-
nents: the Device Selection Layer (DSL) and the Training-Serving Layer (TSL).

Figure 3.1: Overall System Architecture of MLIoT. The system consists of two components: the
Device Selection Layer (DSL), managing devices and scheduling ML tasks, and the Training-
Serving Layer (TSL), which instantiates workers for each ML task.

The DSL has several key roles. It serves as the central authority that manages all the devices
or compute resources available to it for scheduling ML tasks. It is also responsible for handling
any new request for ML tasks and based on the policy specified by the IoT application, selecting
the appropriate resource to serve that task. The DSL also maintains configuration data for each
training-serving task, which includes the application training data, the trained ML models, and
several other parameters for serving those models. This functionality is important since the same
task can be interrupted or restarted and can resume serving from where it left off using the state
available at the DSL, including running on a different device.

The Training-Serving Layer (TSL), is responsible for instantiating the Training-Serving Work-
ers (TSW) for each ML task sent to it. The TSL is also responsible for allocating and managing
resources (CPU and memory limits) to individual TSWs. The training-serving workers are re-
sponsible for training models, optimizing them, and selecting the set of models for serving based
on the specified policies. TSWs are also responsible for keeping track of performance and adapt-
ing the models to changes to the resource availability on the device they are running on, or on
receiving corrective feedback. Individual TSWs report back metrics like model performance,
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CPU and memory usage, etc to the DSL which has a holistic view of all the tasks it is managing
and the devices they run on. We describe the TSL and the functionality provided by the TSWs
in further detail in §3.3.2.

3.3.1 Device Selection Layer (DSL)
IoT application tasks comprise of training and serving ML models. How well these tasks run
depends on the device capabilities such as the number of cores available for parallel execution,
the amount of memory available, the relative performance of the cores (x86 vs ARM vs an ac-
celerator), etc. Furthermore, IoT applications themselves may have different requirements. For
example, an application that senses audio at home may need the ML predictions to be done
locally on an in-home hub like a Raspberry-PI or a Samsung Hub. An intrusion detection ap-
plication [71] may require low latency predictions, while an application that detects falls for the
elderly requires high accuracy predictions to reduce false positives. Activity detection scenarios
[130, 131] similarly need to be responsive, implying fast training times, to reduce user annoyance
of having to wait. Ultimately, the DSL needs to holistically manage and monitor the compute
resources at its disposal and schedule IoT tasks on different devices.

Benchmarking Device Performance: There are numerous devices and platforms that MLIoT
can run on, often with different characteristics. These include inexpensive platforms like a Rasp-
berry Pi, or Hardware accelerators for ML such as Google EdgeTPU [89], Nvidia Jetson [162]
(or) Intel Neural compute [102]. Alternatively, MLIoT can also run on traditional VMs in the
cloud on Google’s Cloud Platform [88], or Amazon AWS [15]. To characterize their relative per-
formance, MLIoT needs to benchmark each device. Since the IoT application workloads are not
known apriori, we collect and use three different representative IoT datasets described in Section
§3.1.1 - audio based activity recognition, a multi-modal sensor based activity recognition, and an
image recognition application. Our insight is that the relative performance of devices on these
representative datasets can be used for device selection of new IoT tasks. For these benchmarks,
we train and serve a set of classical ML models as well as deep learning models (as applicable),
on each device measuring several key metrics:

• CPU and Memory Utilization: We collect the average CPU and memory utilization over
the entire benchmark execution and normalize the values between 0 and 1.

• Prediction Latency: We measure the average time taken by a training serving worker
running on a device to receive a prediction request and respond to it for each benchmark.

• Training Time and Accuracy: We measure the training time and accuracy for a set of
models, for each benchmark.

Notably, we collect these metrics when instantiating a Training-Serving Layer on each de-
vice. The overhead of collecting this data for device selection is low and to ensure that it does
interfere with any other tasks, we reserve a fraction of the compute resources (10%) for bench-
marking only.

Device Selection Policy: The DSL considers several aspects while scheduling tasks on devices.
It uses the benchmark metrics from devices as mentioned above, as well as device metadata such
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as the number of cores, memory, as well as the presence of accelerators. Since the available
resources on a device change based on other co-located tasks on it, the DSL captures run time
metrics periodically such as the CPU load (C), Memory (M) and Load Average (LA). This infor-
mation is provided by the TSL running on each device, to the DSL periodically (every 1s). For
these metrics, we calculate an Exponential Weighted Moving Average (EWMA) for a window
size of 10 samples to reduce transient noise. Based on the benchmark metrics, the runtime met-
rics, and the device metadata the DSL exposes several policies for IoT developers to specify their
application requirement. These policies are either Static, based on static values such as CPU core
count etc., or Dynamic based on metrics that change such as the CPU load.

• Static Policies:
GPU-CPU: Use a machine with GPU (or) a CPU.

Max-Min: Select devices with the maximum or minimum of number of CPU cores,
Memory or Load.

Locality: Select devices based on locality, such as an trusted edge device for privacy
concerns or optimizing latency.

And-Or: Select devices based on a logical combination of different metrics men-
tioned above.

• Dynamic Policies:
Threshold: Select devices based on specifying Atleast, Atmost or Equal threshold
conditions. e.g. Latency Atmost 40ms.

Best Effort: When no application requirements are specified, the best effort policy
chooses the device with the most available resources across the runtime and bench-
marking metrics.

The DSL compares the metrics it collects from different devices, with the policy requirements
of each IoT application, evaluating them in order of arrival. If the application policy can be
satisfied, the appropriate device is selected. However, in case the available resources cannot
meet the policy requirements of an IoT application, the DSL sends a negative response back to
the application.

Load balancing Training and Serving workers: In many cases, the DSL may be able to choose
from multiple devices to meet individual IoT application requirements. In these scenarios, es-
pecially with an increasing number of concurrent applications, it is important to efficiently load
balance tasks across devices. The DSL uses real-time metrics (e.g. CPU and Memory usage,
and Load) as inputs to a dynamic load balancing algorithm based on resource weights [205] to
address this challenge.

More formally our load balancing algorithm works as follows. Let’s assume there are ‘n’
devices in a MLIoT deployment. The TSL on each of these ‘n’ devices reports its current system
performance metrics periodically (1s). We calculate the load state using the following formula:

Li = wcpui × cpu usagei + wmemi ×memory usagei

+wloadAvgi × loadAvgi
(3.1)
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Figure 3.2: Overall architecture of the Training Worker (TW) and Serving Worker (SW). The
TW is responsible for training models in parallel and optimizing hyperparameters using the input
training data. Based on different policies, an ensemble of models is selected and sent to the SW.
The SW uses the ensemble to make predictions using certainty estimation while aggregating
serving side data for feedback from the user.

• Li is the Load state of ith Training and Serving Layer.
• cpu usagei, wcpui is the percentage CPU utilization with its corresponding weight.
• memory usagei, wmemi is the percentage Memory utilization with its corresponding weight.
• loadAvgi, wloadAvgi is the system average load with its corresponding weight.

We calculate the weight dynamically at each fixed cycle to calculate load state precisely. To get
the weights we find the minimum value of the metric and divide it by the metric value of the
current machine as below:

wcpui =
min(cpu usage1, cpu usage2, ....cpu usagen)

cpu usagei
(3.2)

The DSL then selects the device with the least load for the particular IoT application.

3.3.2 Training-Serving Layer (TSL)
The Training-Serving Layer (TSL) runs on each device in a MLIoT deployment. The TSL
spawns a separate manager process to create, monitor and manage a pair of Training Workers
(TWs) and Serving Workers (SWs) for each IoT application as shown in Figure 3.2. The TSL
uses Linux CGroups (control groups) [42] to allocate and enforce the resource usage for each
Training and Serving worker. The Training Worker is responsible for the initial model training
using labeled data, as well as retraining models when corrective feedback is provided by users to
improve accuracy. The Serving Worker obtains the trained models from the TW, creates a model
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ensemble and performs online predictions. The SW also collects user feedback on the ensemble-
based predictions and forwards them to the TW. This close coupling of the TW and the SW for
each IoT application is critical to improve accuracy and performance over time, and adapt to
dynamic IoT environments. We discuss the Training Worker in §3.3.2 and Serving Worker in
§3.3.2.

Training Worker (TW) A key goal of a TW is to streamline model training to provide high-
quality ML models that are tailored to the specific IoT task. The TW uses generic ML model
definitions to enable extensibility and allow use of multiple common ML frameworks and their
algorithms. The TW selects models and applies various optimizations (discussed below) based
on the device resources for faster training, and low latency serving.

TW Model Selection: Similar to Device Selection policies in Section§3.3.1 the training worker
selects models based on application policy specification around metrics such as model accuracy
and latency, as well as performance metrics such as CPU and memory usage. The goal with
TW model selection is to create an ensemble of models to send to the Serving Worker. An
example policy can choose three models with the lowest latency, to send to a SW. The TW
handles all training related tasks, performing model selection and training, and then continuous
model adaptation over time.

Serving Worker (SW) The Serving Worker performs online predictions using models received
from the Training Worker, under the IoT application’s policy constraints. The SW also provides
a certainty estimate for each prediction based on the models included in the ensemble, for higher
accuracy. It also supports a two-stage serving system that is specifically optimized for IoT envi-
ronments, to improve accuracy due to environmental noise and reduce latency. The SW is also
responsible for collecting corrective feedback to send to the TW for model adaptation.

Two-Stage Serving: Most continuous serving IoT scenarios are dominated by periods where no
interesting events happens. For example, for activity detection, for 8 hours a day an occupant is
likely asleep and in a specific room. In these cases, the IoT ML pipelines are essentially detecting
ambient “background”. Current IoT systems[130, 152] thus explicitly train for large amounts of
background as one of the classes. Furthermore, transient “noise” in the sensor data, is also often
misclassified as one of the trained events. Ultimately, this leads to higher latency since all models
are evaluated for background and noise events, and lower accuracy when there is noise.

In MLIoT we propose a two-stage serving system. The First Stage is a binary classifier with
two classes, namely the “Background” and all the other classes of interest for the IoT application.
We empirically evaluate several ML models for the first stage and report results for different IoT
workloads. We show that Logistic Regression (LR) [146] works best as the first state binary clas-
sifier, balancing accuracy and latency. The Second Stage uses the model ensemble obtained from
the Training Worker and uses it for serving predictions. MLIoT’s Two-Stage Serving reduces
overall latency when events like background or noise occur.

Ensemble Based Model Prediction: After model selection, the SW uses the final set of models
for weighted ensemble prediction, determining model weights based on validation accuracy.
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Let the final list of models selected be m1,m2, ..mn. We calculate the final ensemble based
prediction as:

Prediction = argmaxc(
n∑

i=1

wi(if f(x)mi
= c)) (3.3)

where f(x)mi
is the prediction made by model mi for input x and wi is the weight for mi. The

static weights w1, w2, ..wn for the models m1,m2, ..mn are calculated as:

wi = exi(
n∑

j=1

exj)−1 (3.4)

where x1, ..xn is the validation accuracy of model m1, ..mn.

Prediction Certainty Estimation: In several IoT use cases, especially those that actuate devices
or send notifications based on ML predictions, knowing the confidence of the predictions can
be very useful. To support this, MLIoT provides ensemble-based certainty estimates for each
predictionby taking the weighted average of the probability of each class for each model.

certainties = (
n∑

i=1

wifmi,c1(x),
n∑

i=1

wifmi,c2(x), ...,
n∑

i=1

wifmi,cm(x)) (3.5)

where fmi,c1(x) is the probability that the model mi predicts for the class cj on the input x. The
estimates are calculated by taking the square magnitude.

Model Adaptation: IoT environments are subject to changes in the ambient environment that af-
fect model accuracy. In addition, users may want to update models with additional training data,
including adding a new class or give corrective feedback for an incorrect prediction. MLIoT, per-
forms model adaptation by sending this data to the Training Worker to retrain models. However,
naively re-training all models with HPO and DR is expensive and potentially time-consuming.
To overcome this challenge, we re-tune each of the models in the ensemble with new data. This
significantly reduces the training time and is computationally less expensive. This feedback-
based model adaptation allows us to account for changes to the environment and provide better
results than using static models.

3.4 Evaluation
We now briefly summarize the results of our evaluation. A more detailed evaluation is available
in our full paper [36].

3.4.1 Experimental Setup
Machine Learning Models: We choose several popular ML algorithms and frameworks to show
that MLIoT is extensible to use a variety of models. To evaluate MLIoT we select five traditional
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models (KNN, Ridge Regression, RandomForest, SVM-Linear, SVM-RBF) and two Neural Net-
works (MLP & XGboost). We integrated the implementations of these algorithms from SKLearn
[173], TensorFlow [2], and PyTorch [172] into MLIoT.

IoT Benchmarks: We chose MNIST, a popular image-based object recognition dataset for the
first benchmark[134]. For activity recognition based on rich multi-modal sensors, we collected
data using the Mites devices [37] platform with 13 hardware sensors for a set of 16 common
residential activities (classes). We use the same features proposed in Ubicoustics[131] wherein
audio data from non-overlapping frames (960ms each) is converted to a spectral representation
to provide log-Mel spectrogram patches of 96× 64 bins that form the input to all classifiers [97].

Table 3.1: Hardware platforms used in our experiments
Device Type Processors Memory Average

RTT
Local /Cloud

M1 Raspberry-Pi 4 4 x ARM A72 4GB ˜3ms Local
M2 Intel NUC 4 x i5-5250U 8GB ˜14ms Local
M3 Virtual Machine 2 core 4GB ˜128ms Cloud
M4 Virtual Machine 8 core 16GB ˜64ms Cloud
M5 Virtual Machine 16 core 32GB ˜84ms Cloud

Testbed Hardware Platforms: To evaluate MLIoT we set up a five machine testbed (M1-M5
in Table 3.1) with different hardware configurations, resources, and network latencies (Average
RTTs) representing both local (edge) and cloud compute resources. M1 is an inexpensive Rasp-
berry Pi4 (RPI4) [185] with 4 Cores, 4GB RAM, and 3ms RTT, augmented with the Google’s
Coral Hardware Accelerator[89] for testing our Device Selection Layer (Section §3.3.1). M2
is an Intel NUC desktop with 4 cores, 8GB RAM, and a 14ms RTT . Notably, M1and M2are
“local” devices since they are in the same LAN as the client, behind a NAT. M3, M4, M5 are
Virtual Machines (VMs) running on different physical servers. M3 has 2 Cores, 4GB RAM and
129 ms RTT, M4 has 8 Cores, 16GB RAM and 64ms RTT and M5 has 16 Cores, 32GB RAM
and 84ms RTT. Our test client machine, which executes all IoT Application traces is a Mac with
a dual-core i7 processor and 16 GB RAM.

3.4.2 System Adaptation and Scaling
To assess the overall performance and adaptability of MLIoT, we evaluate MLIoT with different
IoT application workloads and policy requirements Section §3.4.2. We then compare MLIoT
with other academic and commercial ML systems.

System Adaptation: An overarching goal of MLIoT is to effectively schedule different IoT
applications, that are concurrent, on different devices given their individual policy requirements.
We categorize three typical application policy requirements: (a) strictly latency bound, with
specified thresholds; (b) those that require “edge” devices in their local network for low latency
and for privacy (e.g. speech recognition or activity recognition); and (c) those with more complex
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Figure 3.3: Timeline of the six application traces (Ts) where all the traces have diverse policy
requirements. Traces have policy constraints on latency, resource and best effort.

requirements as a function of latency, and resource usages and accuracy. For this evaluation, we
create a set of machine learning tasks using the six IoT application workload traces described
in Section §3.4.1 , each with different representative policies attached (as discussed in Section
3.3.1). We use four devices (M1, M2, M4, M5) with different RTT values and configurations
emulating an example MLIoT deployment (details in Table 3.1).

Figure 3.3 shows application traces with further diverse policy requirements based on on lo-
cality, compute resources, and latency metrics. These policy requirements include select devices
with available CPU percentage (e.g. > 50%) or a device with maximum available memory. At
1 , we see that MLIoT selects M2 over M1 for T1:P1 to satisfy the locality constraint without a

latency requirement. T4:P4 is executed on M4 as the load average for M4 was less than 20 and
similarly, T5:P5 is run on M4 as the available CPU resources was more than 50. This is indi-
cated by the rank list for T4:P4 as R = [M4,M5 and M2] and T5:P5 as R = [M4>M5>M1>M2].
In the 2nd iteration 2 , we see that T11:P5 is run on M5 instead of M4 based on the avail-
able resources. Traces (T6:P6, T12:P6, T18:P6) with policy of picking a device with maximum
available memory is always executed on M5 given its 32GB RAM configuration.

3.5 Conclusion
We design and implement MLIoT, an end-to-end Machine Learning System tailored towards sup-
porting the entire lifecycle of IoT applications from training, and efficient serving to re-training
based on user feedback. MLIoT integrates multiple distributed components and optimization
techniques making our system adaptive, and handling the diversity of IoT use cases. MLIoT
provides a flexible policy-driven selection of hardware platforms, ML models, and various opti-
mizations for training and serving tasks. Our evaluations of MLIoT on several hardware devices,
and for a set of expressive IoT benchmarks, show that MLIoT is able to service different policy
objectives, balancing load across devices while maintaining accuracy and latency.
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Chapter 4

Raising the Abstraction for Activity
Inferences using Context Sensing
Framework

Thus far, this proposal has focused on addressing the privacy risks associated with a general-
purpose sensing platform by enabling features for data minimization, such as on-device edge-
featurization of raw data, enabling the conversion of the low-level featurized data to high-level
inferences. The Mites system showed the development of robust sensing hardware with fea-
tures to enable edge processing all on the Mites device such that there is no way for raw data to
ever leave the device, in addition to features for sensor control and metadata obfuscation. With
MLIoT, we generate virtual sensors, converting the featurized data to high-level activity infer-
ences using predictions from ML models. Overall, the ML models could use the featurized data
from sensors on the Mites devices, such as an accelerometer and microphone, to train and pre-
dict activities such as typing, talking, or mouse click, converting the low-level featurized data to
high-level inferences.

While these high-level activity inferences provide valuable insights for various applications,
such as productivity or health monitoring, they can also be privacy-invasive as the application can
collect sensitive inferences about individuals without their knowledge or consent. For example,
in a productivity tracking application, if an ML model can infer with high accuracy individ-
ual activities such as typing or talking, this information could be used to infer other sensitive
information, such as their work schedule or when they are likely to be away from home. In
such cases, understanding the context of activity inferences can help to improve privacy for such
applications. For example, if the productivity tracking application considers contextual informa-
tion, like if the activities typing or talking is sent to the application only while the individual is
in the context of OfficeWork. This approach makes the activity inference more accurate while
protecting the individual’s privacy. Furthermore, the contextual information provides the users
with more control over their activity inferences by allowing them to specify which contextual
information they are comfortable sharing based on the application.

A key challenge, however, is that human activity patterns are complex in nature and often
require contextual information about the activity to be useful for downstream applications. For
example, a wellness application that assesses an individual’s productivity requires contextual in-
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formation about an activity. An activity such as talking may or may not indicate if the individual
is being productive, depending on whether it is happening in a context denoting office work or
a different context of having a meal. Moreover, current HAR-based approaches primarily focus
on using the sensor data from smart devices (such as phones, watches, or ambient sensors) to
accurately infer human activities over timescales in the order of seconds (such as Activity (A):
talking, A: typing, A: jumping, etc.), rather than extracting more semantically meaningful con-
texts (such as Context (C): OfficeWork or C: Exercising). Thus, understanding higher-level and
semantically meaningful contexts of daily activities are crucial to support applications such as
tracking productivity or wellness.

In this chapter of the thesis, we aim to further raise the abstraction for activity inferences.
We propose TAO, a hybrid system that leverages OWL-based ontologies [90] and a temporal
autoencoder-based clustering algorithm to detect semantically meaningful and richer contexts
from complex real-world activity patterns (e.g., sequential and parallel). We design and build
our custom ontology based on prior work [148, 220] and extend it to model various real-world
activity patterns as complex activity relationships used to infer a wide range of contexts. To
enable an extensible design, we model our ontology using SPARQL queries[200], allowing us
to easily represent complex activity relationships and infer them to context definitions. We build
a custom unsupervised clustering algorithm to model temporal contexts to identify recurring
activity patterns and label these patterns using our ontology. TAO’s hybrid approach handles
sequential and parallel activities, accurately converting them into a rich set of contexts.

The rest of this chapter describes TAO at a high level. Additional details on our completed
work in this space are presented in a full paper on this topic.

4.1 Challenges
Our overarching goal for TAO is to accurately translate fine-grained human activity patterns ob-
tained from different activity recognition systems to meaningful contextual information that al-
lows us to understand the user’s behavior better. This contextual information can support various
downstream applications in domains such as health, wellness, and human-computer interaction,
including those that aid individuals in improving their quality of life, particularly those with cog-
nitive or physical impairments. We motivate several potential use cases to illustrate the benefits
of an accurate context-detection system.

4.1.1 Healthcare-based Applications
Context recognition in the healthcare domain can be used to monitor and support individuals
with chronic conditions. For example, a system based on context recognition can help interpret a
person’s activities of daily living by looking at specific sequences of activities, such as A: opening
a medication box followed by A: drinking water to detect adherence to medication. Similarly,
inferring that an Alzheimer’s patient left the kitchen to answer an incoming call (A: phone ring)
but failed to resume lunch (A: eating) while in the context (C: Eating a Meal) afterward can
help with memory augmentation tools. Such contextual information could provide reminders or
prompts to help the person maintain a healthy routine and alert caregivers if they are not engaging
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in activities necessary for their well-being while reducing the number of false alarms. Similarly,
wearable fitness trackers and medical devices monitor a person’s current activity and vital signs,
such as heart rate and blood pressure. These vital signs can vary depending on the patient’s
activity level and other factors. With context recognition, a system can understand the context in
which the vital signs were measured (e.g., C: Exercising or C: OfficeWork), allowing for more
accurate attribution and possible notifications and interventions. For example, a change in the
vital signs in one context may be acceptable while being a sign of stress in another. We believe
that understanding such contexts would be very useful in providing more targeted and actionable
interventions for addressing mental health issues [50].

4.1.2 Smart Building Applications
In smart building scenarios, a potential application of context recognition is to improve produc-
tivity and reduce stress. For example, suggesting tasks or actions based on the person’s current
context, providing reminders and prompts to help them stay on track, and automatically adjust-
ing the environment to create a more conducive work environment. For example, if the system
detects that an office occupant is in the same context for long hours, such as C: OfficeWork, while
engaging in multiple activities, such as A: talking or A: typing, it can nudge the user to take a
break to improve their productivity. Moreover, such a system in office buildings could improve
energy efficiency and comfort for building occupants by changing environmental parameters
based on context. For example, if the context is identified as C: In a meeting, the HVAC system
of the room can be configured to allow more airflow into the office. Similarly, when the occu-
pant is in the context of C: Working for some time, denoting focused work, their status can be set
to busy automatically on software such as Slack to prevent interruptions. In contrast, when the
context detected is C: Taking a Break, they can be marked as available to allow for impromptu
social interactions. Note that a user in each of the example contexts above could be doing a wide
variety of low-level interleaved activities (e.g., A: talking, A: using the PC, A: pacing, A: typing,
etc.).

4.2 Background
Several prior works have proposed different modeling approaches for context reasoning architec-
tures with a primary focus on activity recognition. Existing research in this space falls into three
broad categories: (a) knowledge-driven approaches that focus solely on ontological reasoning;
(b) data-driven approaches that rely on modeling temporal activity patterns, and; (c) approaches
that combine knowledge and data-driven approaches. We refer the reader to [31, 175, 179] for
an extensive survey on this topic and also compare and contrast prior works with our TAO system.

Ontology-driven Approaches: Researchers have proposed numerous ontology-driven approaches
to model the semantics of low-level activity information and recognize user context [10, 11, 47,
48, 147, 148, 220]. Most ontological approaches use knowledge representation languages such
as OWL [90] to define generic vocabularies for individual domains using low-level activity def-
initions. In such approaches, the context is represented as a set of axioms about entities and
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resources that are further associated through properties and relationships, providing a uniform
way of representing data. For instance, approaches in a smart home [47, 48, 220], contexts cor-
respond to OWL individuals, and realization is used to determine into which context concepts a
specific situation individual falls into. In addition to using an ontology, other approaches such
as Context Aggregation and REasoning (CARE) middleware also use statistical reasoning for
context inference (e.g., business meeting) based on the location or environment (e.g., office) and
with at least two actors (e.g., employees) [10]. Other approaches extend their ontology such
that their OWL 2 reasoning module incorporates temporal correlations of complex activities us-
ing rules and well-defined SPARQL queries that are essential in context recognition [147, 148].
While this approach to modeling complex relations between activities as context is useful, the
definition of numerous activity patterns is often static and highly structured. In contrast, the TAO
system allows us to model and reason over intricate, simple temporal dependencies between ac-
tivities that indicate activity patterns that are sequential and parallel.

Temporal Clustering Approaches: Prior research has also proposed data-driven methods, such
as using temporal clustering algorithms to identify patterns in multivariate timeseries data. These
approaches focus on identifying sensor data patterns from multimodal sensors to detect activi-
ties in the space [115, 118, 137, 217]. Other approaches, on the other hand, focus on directly
modeling individual behavior patterns (such as movement and activity routines) using sensor
data from mobile and/or ambient sensors [3, 105, 114, 140, 187, 214, 245]. Other temporal
clustering methods aim to identify a complex relationship between simple activity sequences
when demonstrating a procedure such as “how to change a tire”[70, 82, 125, 231]. Their pri-
mary focus is to extract procedural knowledge about a particular kind of long-term activity (i.e.,
cooking, building models, etc.) to enable skills for AI agents[53, 247] or to understand hu-
man psychology[93, 141]. Other approaches use probabilistic and statistical methods to model
temporal activity patterns and identify abnormal human behaviors [18, 139, 195]. While these
data-driven pipelines identify activity patterns, they are limited to applications such as identify-
ing anomalies and do not focus on capturing the semantic context of these activity patterns.

More recent approaches have proposed ML-based methods that use fine-grained sensor data
to measure wellness indicators such as mood instability [156], productivity, and stress [13, 117]
without requiring the need for context detection. However, such approaches rely on fine-grained
data from several input sources, such as cameras, wearables, and smartphones. As a result,
these approaches are susceptible to sensitive and noisy sensor data. More importantly, these
approaches require manual user input to self-report productivity or stress every hour, which can
be cumbersome. In comparison, TAO proposes an ontology-based approach to predict contexts
accurately and automatically which can then be used to calculate wellness metrics.

Hybrid Approaches: Several recent efforts aim to combine both knowledge-driven and data-
driven approaches to derive semantic relationships between activities for context inference [96,
119, 164, 192, 194, 196, 236]. COSAR [192] uses a statistical classifier that recognizes an ac-
tivity which is then used to obtain context information using the ontological reasoner from the
ActivO ontology models [193]. In other approaches [96, 164, 236], the sensor data is segmented
based on activity relationships inferred from ontology, and a clustering model is trained to cap-
ture temporal patterns related to a context. These hybrid approaches are closely related to the
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TAO system, showing the promise of data-driven pre-processing for activity inference in com-
bination with ontology to improve context recognition. Such approaches, however, are easily
affected by the noisy nature of sensor data streams and events, resulting in inaccurate context
recognition. In addition, such an approach fails to identify complex activity patterns that can be
used to define richer contexts.

4.3 TAO: System Architecture
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Meeting

Office 
Work

Having 
Meal

Labeled 
temporal 
context

Activities 
Inferences

Drinking

Typing

Phone 
Ring

Talking

Writing

Ontological Pipeline

Context 
Ontology

Owl 
Reasoner

Temporal Pipeline

Activity Patterns

Context

Productivity

Mental 
Health

WellnessOur Approach

Unlabeled 
clusters

Labelling

Sensor 
sources

Figure 4.1: Overview of the TAO’s system architecture. TAO leverages OWL-based ontologies
and temporal clustering approaches to identify context from the stream of activities obtained
from Human Activity Recognition(HAR) systems. The contexts detected by TAO are then sent
to our example Wellness application which then infers productivity and stress.

4.3.1 Overview
Figure 4.1 shows the system architecture of TAO highlighting two key components namely the
ontology pipeline (§4.3.2) and the temporal pipeline (§4.3.3). Our ontological pipeline is re-
sponsible for providing a standard vocabulary for modeling activity-related information, such as
domain activity classes, actors, etc., and for formally describing the complex relationships be-
tween the activities (activity patterns) as Contexts (§4.3.2). In addition, it also provides a method
to derive contexts from complex activity patterns using the OWL 2 reasoning paradigm and the
execution of SPARQL CONSTRUCT queries (§4.3.2). Our temporal pipeline (§4.3.3) is respon-
sible for learning context representations based on the complex activity patterns that happen over
a period of time (e.g. 5mins, 10mins, 30mins, 1hr). To enable this, our temporal pipeline uses a
novel featurization technique to model activity relations and a deep-learning-based unsupervised
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Figure 4.2: Overview of our ontological pipeline within TAO.

learning approach to model activity patterns. The unlabelled clusters in our temporal pipeline
utilize the ontological pipeline to label these representations to infer existing and new contexts.
Overall, our TAO system uses the activity inference from human activity recognition pipelines
which are then fed into TAO, specifically the ontological and the temporal pipelines, to assess the
activity patterns and generate semantically meaningful and richer contexts that can be used for
applications such as indicating wellness such Productivity or Stress. We describe each of these
components in further detail.

4.3.2 Ontological Pipeline
The architecture of our ontological pipeline is shown in Figure 4.2. It comprises a Representation
Layer and a Reasoning Layer. We designed our representation layer such that it consists of a
dense representation of complex activity patterns which we see in daily life and can be interpreted
into contexts. In addition, we wanted to ensure that we modeled the context information that is
accessible using simple queries of activity relationships. This is primarily useful in cases where
we are performing we want to interpret a context based on a complex activity relationship that
consists of several constraints, such as time duration or order of important activities. To enable
this, we built our custom ontology framework based on the prior work[148, 220] to provide a
dense vocabulary for formally describing the context as complex relations among activities. We
describe the representation layer further in §4.3.2. We design our reasoning layer such that we
can derive contexts by interpreting the relationships between the defined activities in our custom
ontology. The reasoning layer uses an OWL 2 reasoner [90] to model complex activity patterns,
e.g., class subsumption, sub-properties, inverse properties, etc., while the context inference is
realized by custom-defined SPARQL queries [200].

Representation Layer: The goal for the representation layer is to design an ontology to pro-
vide a standard definition of vocabularies that models contexts as relationships between complex
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activity patterns that happen in our daily life. These contexts include (1) contexts based on se-
quential activity patterns, (2) contexts based on parallel activity patterns, and (3) contexts based
on a variation in the duration of activity. For example, for a context C: OnAPhoneCall which re-
quires the A: phone ring activity to be sequentially followed by the A: talking activity. Similarly,
often multiple activities may occur simultaneously, such as A: typing, A: talking, or A: chewing,
which indicates that multiple contexts are happening at the same time, such as C: OfficeWork,
C: HavingMeal and C: InAMeeting. Moreover, context inference also varies based on the dura-
tion of activities. For example, both contexts C: OnAZoomCall and C: OnAPhoneCall require
the activity patterns to be sequential (A: phone ring to A: talking); however, the duration of the
activity A: talking (5mins vs 30mins) differentiates these contexts. Thus, to model these com-
plex activity patterns as contexts, we designed the representation layer with a custom ontology
framework that incorporates the concepts proposed in the Meeting Minds Ontology [220] and the
lightweight Domain Activity Ontology [148]. Specifically, we leverage the vocabularies defined
by the Meeting Minds behavioral scientists [220] for contexts as activity combinations and the
definition concepts from Domain Activity Ontology [148] to enable capturing of time duration
information of activities. Combining these approaches allowed us to model a wider range of
context as an intersection of multiple activities and relationships beyond what was possible by
these individual approaches.

The activities of daily life are represented as instances of the Activity class and they are linked
to ranges of time through the use of the hasStartTime and hasEndTime datatype properties. The
instances of the Contexts class models the relationship between the instances of the Activity
class using the object properties hasActivity along with intersectionOf, some, only, union object
definitions. For example, the context C: OfficeWork is an instance of the class Context and
models the relationship between instances of the Activity class such as A: typing and A: writing
using intersectionOf object properties.

Reasoning Layer: Our reasoning layer derives context by meaningfully interpreting the relation-
ship between the primitive activities specific to the context using a combination of standard OWL
reasoners and SPARQL queries. The OWL reasoners determine whether or not the ontology is
consistent and identify subsumption relationships between classes, such as Context or Activities.
The SPARQL query language then allows customized queries to interpret Context. We used this
combined approach to design our reasoning layer primarily because an OWL reasoner by itself
cannot support query-like operations that are required to interpret contexts. Combining both the
reasoner and SPARQL queries, on the other hand, can render the context of an activity or mul-
tiple activities easily. Thus, TAO uses the OWL 2 reasoner to formulate the context and activity
relationships, and we then use the SPARQL queries to query the combined pieces of information
(intersections). More specifically, the semantics of the ontology, e.g., property restrictions, sub-
properties, inverse properties, etc., are handled by the OWL 2 reasoner, whereas domain-specific
SPARQL queries realize the context recognition.

SPARQL context interpretation queries: The SPARQL query language enables ease for query-
ing graph patterns along with their conjunctions and disjunctions. The SPARQL in the TAO
system is defined in terms of a CONSTRUCT and a WHERE clause: the CONSTRUCT clause
defines the graph patterns, i.e., the set of information that should be returned to upon the success-
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CONSTRUCT {
?x a :OfficeWork .

:hasActivity ?x;
:hasActivity ?y;

}
WHERE{

?x a typing;
?y a talking;
BIND((URI(?x, ?y) as ?new) .
NOT EXISTS (?new a [] .)

}

Figure 4.3: Query to infer A: typing

CONSTRUCT {
?x a :OnAPhoneCall .
}
WHERE{

?x a phoneRing;
:hasStartTime ?st;
:hasEndTime ?et.

?t a talking;
:hasStartTime ?st1;
:hasEndTime ?et1.

FILTER (contains(?st, ?et))
FILTER (before(?st1, ?et1))

}

Figure 4.4: Query to infer C: On a phone call

ful pattern matching of the graph in the WHERE clause. We show two simple examples for the
graphs-based SPARQL queries in Listings 4.3 and 4.4. The first listing 4.3 shows how we query
handles the composition semantics of C: OfficeWork context, using the classes A: typing and A:
talking as its sub-activities. Similarly, listing 4.4 shows modeling of C: OnAPhoneCall context
using the A: phoneRing and A: talking as sub-activities with time duration information of how
long each activity would be performed. These queries can be updated to infer context based on
complex dependencies of underlying activity relationships.

4.3.3 Temporal Clustering Pipeline

Ontological approaches work well to detect instantaneous contexts based on short sequential
patterns or parallel occurrences of activities. However, in real life, we regularly switch between
contexts. At one time, we can be in multiple contexts, i.e., reading and having a meal at the same
time or listening to music while vacuuming, etc. These settings with multiple contexts provide
an opportunity to derive richer context information by capturing repetition across interleaved
sequential and parallel activity patterns. We present a temporal clustering-based approach to
detect such interleaved and recurring patterns. We define activity detection pipeline as a set of
(one or more) models that utilized raw data from any sensor sources (see Figure 2.1) and outputs
instantaneous activity inference(s) for a given timestamp (i.e., typing, talking, drinking, etc.).
These outputs are combined into a single activity stream which consists of timestamp-activity
inference pairs. This activity stream is an input for our context prediction model. Further, we
parameterize the input activity stream with two parameters, (a) stacking window, and (b) lag
window (see Figure 4.5). We define the stacking window as the time interval to wait for receiving
activity inferences. Typical time intervals for a stacking window are from a few seconds (1
second, 5 seconds, etc.) to a few minutes (1 minute, 5 minutes, etc.) based on the output rate
of the activity detection pipeline. Activities received in one stacking window are considered
to happen in parallel . i.e., in a sample activity stream shown in Figure 4.5, we see that we
receive one activity inference between 0-2 minutes (A: eating), no activity inferences between
4-6 minutes, and multiple activity inferences between 8-10 minutes (A: drinking and A: writing).
To capture patterns over the sequence of activities, we observe the incoming activities for a time
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Figure 4.5: An example of context representation (five activities only) for 2 min stacking win-
dow(t) and 10 min lag window(T).

interval (defined as the lag window), which is longer than the stacking window. Typically, a lag
parameter is set to a multiplier (5x, 10x, 30x, etc.) of the stacking window.

The sequence of (a set of parallel) activities happening in a lag window is used for context
prediction at the end of the lag window. Figure 4.5 shows how we encode activities in a stacking
window(t) as a binary encoding At of size N , where N is a set of all possible activities, with
each positional argument being 1/0 based on whether that activity is detected. Next, we stack
these binary vectors horizontally for a lag window (T) to create a sparse representation of activity
patterns XT seen in the lag window. This is the final input to our temporal clustering (See Figure
4.7), which consists of three components, (i) Representation Trainer which learns meaningful
embeddings from context representation XT , (ii) Cluster Trainer which clusters these embed-
dings into distinct context clusters, and (iii) Context Labeler which derives labels for prominent
context clusters using the ontology reasoning layer.

Representation Trainer: A naive way to identify recurring temporal patterns is to cluster these
sparse representations directly. However, positional dependence of activities leads to signifi-
cantly different representations for similar contexts. i.e., A: jumping followed by A: jogging
would be quite different from A: jogging followed by A: jumping. One way to reduce this bias
is to featurize context representations to encode sequential and parallel patterns explicitly. Find-
ing a fixed approach for such featurization is not generalizable as the importance of such highly
localized patterns can differ for different user sets. Rather, we built a Representation Trainer,
which learns to featurize our input context representation XT (see Figure 4.5). It utilizes an
autoencoder-based approach, an unsupervised neural network that learns how to compress and
encode data efficiently and then how to reconstruct the data from the reduced encoded represen-
tation to a representation as close to the original input as possible [242]. The encoded data, i.e.,
dense context embedding ZT , is further used as initial input for our Cluster Trainer. A basic
autoencoder [222] maps input to a denser latent representation but does not guarantee to encode
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sequential or parallel patterns. Another baseline approach is to use Long Short Term Memory
(LSTM) for modeling sequential patterns [100]. However, based on our initial experiments when
designing the temporal pipeline, we found that LSTM-based autoencoders failed to learn context
representation effectively for our use case. One major reason is that LSTMs need dense input
data and longer sequences to learn meaningful representations. Thus, they fail to model temporal
patterns effectively from sparse context representation.

Based on our findings from baseline approaches, we used a specialized network architecture,
Temporal AutoEncoder (TAE) [142], that creates dense embeddings, encoding temporal informa-
tion over sequences of activity stream in XT . TAE can effectively capture temporal relationships
in multivariate time series data. Figure 4.6 shows an architecture for the TAE encoder and de-
coder. The first level of network architecture consists of a 1D convolutional layer, which extracts
short-term features (waveforms), followed by a max pooling layer. This casts time series into a
more compact representation while retaining the most relevant information. This step helps learn
local patterns in the sparse context representation, thus modeling information from activities hap-
pening in parallel. These compact representations are then fed into the second layer, consisting
of two bi-LSTM cells, to learn temporal changes in both time directions. The Bi-LSTM layers
help in capturing sequential patterns of activities in final embedding. Finally, reconstruction is
done by an upsampling layer followed by deconvolution later to obtain a reconstructed signal.
This architecture has been tested with time series information across various domains in litera-
ture [142]. Our Representation Trainer pre-trains a TAE architecture with a binary cross entropy
[61] loss function to learn context embeddings Zt. These context embeddings are provided as an
initial representation to derive optimal cluster count and later cluster a variety of activity patterns
into context clusters with our Cluster Trainer.

Cluster Trainer: A direct approach to derive contexts from embeddings ZT is to use parti-
tion or hierarchical clustering approaches to derive prominent contexts based on cluster centers.
However, these approaches do not utilize data-specific patterns in activity streams (XT ) to en-
hance separability in centroids for better clustering. Existing literature in clustering methods has
shown superior performance by jointly training autoencoder for latent representation and clus-
tering error[243]. Our Cluster Trainer uses a similar, combined training approach for cluster
assignment, which is inspired by Deep Temporal Clustering (DTC) [142] and Deep Embedded
Clustering (DEC) methods [229]. In this approach, we iteratively update cluster centroids to
optimize for the separability of clusters and fine tunes weights in the Representation Trainer to
ensure that learned context embeddings are best suited to separate context representations XT

into given categories.
One of the challenges of using such a combined training method is to figure out an optimum

number of clusters. As the number of recurring activity patterns is different for different set-
tings, we need a method to figure out cluster count based on given context representations XT .
Spectral clustering methods (i.e. DBSCAN, OPTICS, HDBSCAN, etc.) provide a natural way
to figure out optimal cluster count based on other parameters like distance threshold for neigh-
boring points, minimum clusters in a sample, etc. However, we observed that spectral clustering
methods are sensitive to the subspace of embeddings ZT and their hyperparameters. For different
kinds of activity streams and length of context representation, underlying subspace ZT varies sig-
nificantly, thus leading to a wide range for the number of optimal clusters, whereas the number
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of meaningful interleaved patterns for a given set of activity streams is finite. Thus, we used a
simpler method using silhouette scores[238] with K-Means clustering over context embeddings
ZT . One caveat of using this method is that partition-based clustering assumes convex cluster
boundaries, which is alleviated by fine-tuning cluster membership of context representations XT

based on the deep clustering method in the next step.
Next, we initialize centroids with K-Means clustering with optimal cluster count over learned

context embeddings ZT , followed by iterative training with an unsupervised method that alter-
nates between two steps till it ends. First, we compute qij , which is the probability of assignment
of input Xi belonging to cluster j based on the distance of context embedding Zi and centroid
wj . The closeness is evaluated using complexity invariant distance (CID) [27], thus allowing a
generalizable distance metric across various complex activity streams. It is based on a Euclidean
distance (ED), corrected by the complexity factor (CF ) of two representations (Zi and wj)

dist(Zi, wj) = CF (Zi, wj) ∗ ED(Zi, wj)

CF (Zi, wj) =
max(CE(Zi), CE(wj)

min(CE(Zi), CE(wj))

CE(x) =

√√√√N−1∑
t=1

(xt+1 − xt)2
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where CE(x) is the complexity estimate of a sequence x. We normalize these distances dist(Zi, wj)
into probability assignments qij using a Student’s t distribution kernel with a single degree of
freedom [216].

qij =
(1 + dist(Zi, wj))

−1∑k
j=1(1 + dist(Zi, wj))−1

Second, we train the Cluster Trainer iteratively by minimizing KL divergence loss between
qij and target distribution pij to strengthen high confidence predictions and normalize the losses
to prevent distortion of context embeddings, which is

pij =
q2ij/fj∑k
j=i q

2
ij/fj

where fj =
∑n

i=1 qij , which is derived empirically [99, 229]. Finally, we compute KL divergence
loss:

L =
n∑

i=1

k∑
j=1

pijlog
pij
qij

We use a weighted combination of KL divergence loss and Representation Trainer loss to
optimize centroids and fine-tune the embedding encoder weights. This provides us the final
cluster centroids w

∗(z)
j in the subspace of context embedding ZT , which are fed back into the

Representation Trainer to reconstruct w∗(x)
j , a representation of cluster centroids in the subspace

of sparse context representations(XT ’s).

Context Labeler: Finally, w∗(x)
j is the context representation for each cluster and defines the

context for all XT belonging to cluster j. However, when converted into timestamped activities
A∗

t , these representations can be unnecessarily long and interleaved with activities from multiple
contexts. A simple example can be a cluster representation shown in Figure 4.5 between 4-14
minutes, i.e., A: typing ¿ A: drinking+A: writing ¿ A: typing ¿ A: talking. We use a heuristic
method to break this sequence of activities and run multiple queries through our ontology to
detect semantically meaningful contexts.

A naive approach is to query our ontology to provide context for all possible subsets of
sequential, parallel, and single activities. It will provide multiple contexts (i.e., for our example
C: In a meeting, C: Having meal, C: Office work, etc., whereas the actual context is only C:
Office work). To reduce inaccurate contexts, we use two heuristics that work well in practice.
First, we only find contexts from all sequential and then parallel activity patterns of two activities.
i.e., in our example, an ontology query for (a) A: typing, (b) A: drinking+A: writing, and (c) A:
typing ¿ A: talking will return C: Office work. If we do not find any meaningful contexts, we
find contexts based on single activities in the set of interleaved activities. Second, we use our
ontology to find the subset of activities that identify to a particular context (i.e., only A: typing
would indicate the C: Office work context, in contrast to only A: talking could indicate multiple
contexts like C: Having meal, C: Office work, etc.). We attempt to find context labels based on
interleaved sequences of these subsets of activities first. If we do not find meaningful contexts,
we combine the contexts from all possible subsets of sequential, parallel, and single activities.
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If new activities are found in activity streams not modeled in the ontology, the ontology
cannot provide contextual information even with the entire subset of relations. In such cases,
we can ask users to label the context based on their understanding manually. These patterns and
provided contexts can be used to update the ontology to capture a richer set of contexts over time.
We keep this as a future extension of our work and scope our current work to a set of activities
modeled by our extended ontology.

4.3.4 Putting it All Together: The TAO System

We combine context predictions from the ontology and temporal pipeline to give final context
predictions. A simplistic way to combine contexts from both pipelines is to take the union of
unique contexts predicted for a given time period. However, this method leads to an overesti-
mation of the context for activities. One primary reason for overestimation is the presence of
ambiguous activities(i.e., activities that span across multiple contexts like A: Sitting or A: talk-
ing), which leads ontology to predict all the possible contexts, i.e., C: Office work, C: Amusement
and C: Having meal, etc. To alleviate this issue, we opportunistically select output from one of
the pipelines based on a simple metric, the number of contexts predicted by each pipeline for
a given time period. An ontology is deterministic in nature as it consists of pre-defined rules
for mapping activities to contexts. Thus, the ontology pipeline provides more reliable context
detection than the temporal pipeline for scenarios where we only see a single activity in the
activity stream or a well-defined sequential set of activities. On the other hand, the temporal
pipeline is more reliable in a multi-context setting, as it predicts multiple contexts only when
corresponding activity patterns are recurring in activity streams. In comparison, the ontology
provides multiple context predictions due to the presence of ambiguous activities (like A: Sitting
or A: talking). Thus, we choose an output from the temporal pipeline when there are multiple
context predictions from either of the pipelines.

4.4 Evaluation

In this section, we evaluate the TAO’s ability to accurately identify context from different activity
patterns using representative HAR datasets as well as a real-world study. Our evaluation aims to
answer the following questions:

• TAO’s goal is to accurately detect contexts from different activity patterns. RQ1: How well
do the components of TAO, namely the ontological and temporal pipelines, detect contexts
from daily activities? How well does TAO’s hybrid approach that combines both pipelines
detect contexts?

• TAO is also robust in detecting contexts in real-world settings. RQ2: How well does TAO
perform in a real-world deployment, and how does the accuracy of an underlying activity
detection pipeline impact TAO’s performance?

We now briefly summarize the results of our evaluation. A more detailed evaluation is avail-
able in our full paper [38].
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4.4.1 Evaluation Setup
To evaluate our TAO framework, we benchmark it on two human activity datasets (Extrasensory
[215] and Casas [57]) and on a real-world activity detection pipeline. The dataset based evalu-
ation allows us to evaluate performance of TAO on continuous activity streams across multiple
days (longitudinal study), and compare TAO with other approaches that have also been evaluated
on the same datasets. The Extrasensory dataset consists of activity and location labels of smart-
phone sensor data from 60 participants across several days (about 7-14 days per participant).
The activity labels per participant are at 1 minute intervals, and there are 34 unique activity la-
bels across all participants. The Casas dataset collects data at 1 second granularity from ambient
sensors deployed in 30 different smart homes across 1.5 months. This data is manually labeled
by researchers, and entire dataset consist of 42 unique activity labels.

Ground-Truth Context Annotation: Most public datasets have activity annotations on various
sensor data. A few public datasets have context annotations from sensor data. But, none of
these datasets have an activity for context mapping. Thus, we created our own context labels
using annotated activities from these datasets. We used the activity labels to create timestamped
activity traces (at a participant level in Extrasensory and at a home level in Casas). We identified
14 different contexts from these activity labels, and two researchers independently annotated 90
days(randomly sampled) of activity data across both datasets. We annotated a total of 1300 hours
of data across 1800 annotated instances of contexts.

Performance Metrics: To evaluate the accuracy performance of TAO, we use two metrics:
(1)Jaccard similarity coefficient (JC) [106] and (2)Precision and Recall. The Jaccard similarity
Coefficient (JC) computes the degree of set overlap between the annotated ground truth context
and the detected context. If ContextDet is the set of contexts detected, and ContextGT is set of
contexts present in ground truth for a given timestamp, JC is given by:

JC(ContextDet, ContextGT ) =
|ContextDet ∩ ContextGT |
|ContextDet ∪ ContextGT |

The JC ranges from 0-1, i.e., 0 when there is no overlap between ground truth and detected
contexts and 1 if ground truth and detected context(s) are identical. Further, JC penalizes methods
that detect contexts that are not present in the ground truth (larger value of union of sets) and for
not detecting some contexts present in the ground truth (smaller value for the intersection of
sets). Precision and Recall is calculated based on True Positives (TPs), False Positives (FPs),
True Negatives (TNs) and False Negatives (FNs) at a context level. A specific detection for a
context (say C: OfficeWork) is considered as TP if it is both detected and present in the ground
truth, an FP if it is detected but not present in the ground truth, and an FN if it is not detected
but present in the ground truth. The Precision and Recall metrics at the context level are then
calculated as P = TP/(TP + FP ) and R = TP/(TP + FN). For overall accuracy, we use
an average of Jaccard Similarity Coefficient (JC) across all detection events and the weighted
average of Precision and Recall at context level, weighted by a number of times a particular
context that appears in the ground truth. In addition, we calculate the F1 score metric to compare
our system with prior approaches.
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4.4.2 Evaluation of TAO’s Ontological, Temporal and Hybrid Pipelines
We evaluate the components of TAO, the ontology, and the temporal pipeline to measure their
accuracy performance in isolation. For this evaluation, we use the two HAR datasets and our
ground truth labeled contexts. Specifically, we highlight the differences in terms of accuracy
(JC), precision, and recall of context prediction, as applicable, when we use the TAO system
with other datasets.

Ontological Pipeline: We evaluate the TAO system’s ontological pipeline in terms of accuracy
and richness in capturing contexts present in the two HAR datasets with rich activity patterns. We
then compare our ontological approach with prior ontological approaches, such as the Meeting
Minds (MM) context ontology [220], which models context as the relationship between activi-
ties. For a fair comparison, we update the activity labels from the datasets to be consistent with
the activity instance definitions in the respective ontologies such that all the activities and their
corresponding timestamps can be used for querying the ontology. Then, these activity labels
are posed to the respective reasoners, and the corresponding contexts are inferred. Table 4.1
compares the accuracy (measured by the Jaccard Similarity Coefficient (JC)) and the contexts
detected by each approach, categorized into sequential and parallel contacts. We observe that for
both datasets, our approach detects contexts at a higher accuracy (Extrasensory - 53.94%, Casas
- 72.8%) when compared to the MM approach (Extrasensory - 0.03%, Casas - 11.03%). We fur-
ther observe that in the Extrasensory dataset, the low accuracy of the MM approach is primarily
due to its inability of ontology to infer contexts from activity patterns that are parallel (e.g., A:
talking, A: eating, A: tv at the same time). In comparison, our approach can detect such contexts
with high accuracy(60%). In addition, we observe that in the CASAS dataset, which consists of
sequential activity patterns, our approach still outperforms MM (TAO 72.08% vs MM – 11.03%).
This is because our approach consists of a denser vocabulary of activity relationships and con-
texts compared with prior work. Overall, we show that our ontological approach performs much
better than prior approaches to detect an accurate and richer set of contexts.

Table 4.1: Comparing the accuracy (JC) and the total contexts detected by TAO’s ontological
pipeline only with prior work on two HAR datasets. Our approach detects different contexts
(sequential and parallel) at a higher accuracy (72.8% – Casas and 53.9% – ExtraSensory).

Dataset Ontological Approaches Sequential Contexts Parallel Contexts Total Contexts
Acc(JC) Count Acc(JC) Count Acc(JC) Count

ExtraSensory
[215]

MeetingMinds [220] 20.3% 976/4585 − −/17265 0.03% 976/21850

TAO (Ontology only) 24.6% 1138/4585 59% 10648/17265 53.94% 11786/21850
CASAS [57] MeetingMinds [220] 11.03% 38949 NA NA 11.03% 38949/182604

TAO (Ontology only) 72.80% 153022/182604 NA NA 72.80% 153022/182604

Temporal Pipeline: We evaluate the performance of TAO’s temporal pipeline across two key
metrics, (1) lag window, which is the duration of the activity stream used for creating a sparse
context representation(XT ), and (2) the amount of training data used for learning context clusters.

Optimizing the Lag Parameter: Figure 4.8 shows the different performance metrics of models
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Figure 4.8: Comparing the accuracy (JC), precision, and recall of context detection for TAO’s
temporal pipeline for different duration of Lag Window, across the Casas and the Extrasensory
dataset. Our approach has high accuracy(65%-75%) for short (5 and 10 minutes) Lag Window in
comparison to long (30 and 60 minutes) Lag Window. We also observed for both datasets, recall
of context detection is consistently higher than the precision of context detection.
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Figure 4.9: Comparing the accuracy (JC), precision, and recall of context detection for TAO’s
temporal pipeline as the data (in days) available for training for a single user increases. For the
Casas dataset, our approach shows a consistent increase in accuracy, precision, and recall values
as the training data increases. For the Extrasensory dataset, our approach shows high accuracy
within two days of training data.

trained on the ExtraSensory and the Casas datasets for different lag parameters: 5 min, 10
min, 30 min, and 60 min respectively. We see that accuracy (JC) decreases across both datasets
as we increase the lag parameter. This shows that a lag parameter of 5 minutes is sufficient
to capture various activity patterns happening across multiple contexts. Larger values (10min,
30min, 60mins) miss shorter duration contexts (i.e., C: Using bathroom between C: Office work)
or overestimate context presence across a larger window (i.e., C: Office work and C: Having meal
lasting for the entire 60-min window). We see more dips in precision than recall, highlighting
that shorter duration contexts are overestimated with larger lag values rather than shorter duration
contexts being missed. We set the lag parameter to 5 mins based on our findings to provide the
most accurate contexts for all subsequent evaluations.

Accuracy with Incremental Data: Figure 4.9 shows how the performance measures of our
temporal pipeline change as the data used for training is increased, expressed as the number of
days. To show this, we use data from two users chosen randomly , one from each dataset. The
user from the Casas dataset has 45 days of ground truth data. Thus we trained different models

50



Com
ing i

n

Goin
g o

ut

Havi
ng m

eal

Hou
se 

work

Offic
e w

ork

On a p
hon

e c
all

Prep
ari

ng m
eal

Rela
xin

g

Sle
epi

ng

Usin
g b

ath
roo

m

Context

0

25

50

75

To
ta

l C
on

te
xt

s (
%) Days Count

1 7 14 30

(a) Casas Dataset Context Distribution

Amusem
en

t

Com
ing i

n

Com
mutin

g

Havi
ng m

eal

Hou
se 

work

In a m
eet

ing

Offic
e w

ork

Prep
ari

ng m
eal

Rela
xin

g

Sle
epi

ng

Usin
g b

ath
roo

m

Context

0

20

40

60

To
ta

l C
on

te
xt

s (
%) Days Count

1 2 4 6

(b) Extrasensory Dataset Context Distribution

Figure 4.10: Comparing the distribution of predicted contexts learned over 45 days (1/7/14/30/45
days) for Casas and six days (1/2/4/6 days) for Extrasensory. In Casas, we see that with 30 days
of training data, our pipeline can detect a wide range of contexts more accurately (72% JC). For
the Extrasensory dataset, our approach shows that it can detect several contexts within two days
of training data

with 1-day, 7 days, 14 days, and 30 days of training data. All trained models are then tested on the
same one week of data to maintain consistency across users, which is not included in any training
data. We use a similar protocol for the data from the user in the ExtraSensory dataset, except
we trained different models with 1 day, 2 days, 4 days, and 6 days, and tested it on the same
remaining two days in the end. We observe that for the Casas dataset user, we see a consistent
increase in recall of context detection as training data increases. We get a good recall for contexts
for a single day of training. However, the precision of context detection is low. For the user from
the ExtraSensory dataset, we observe that precision and recall improve as we go from 1 to 2 days
of training and then remain around the same as additional training data are used. The small dip
in performance is an artifact of relatively less testing data. Figure 4.10 shows the distribution of
contexts detected from the activity patterns. We see that in Casas, which predominantly consists
of sequential activity patterns, with 30 days of training data, our pipeline can detect a wide range
of contexts more accurately (72% JC). The context that is majorly detected is C: Sleeping since
this activity happens A: laying down, A: sleeping on bed for a major period of the day. For the
Extrasensory dataset, our approach can detect several contexts within two days of training data
ranging from Amusement to Office Work.

4.4.3 Evaluation of TAO’s Performance

We evaluate the components of TAO, the ontology, and the temporal pipeline together to measure
their accuracy performance.

Overall performance: Figure 4.11 shows the overall performance of our ontological approach
and the temporal approach in isolation and then TAO’s hybrid approach that combines them.
For this evaluation, we split users into separate training and testing sets, and we trained one
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Figure 4.11: Comparing the Accuracy (JC), Precision, and Recall of context detection on the two
datasets.

model per dataset. For the Casas dataset, we trained on data from 28 out of 30 users, and then
evaluated the remaining 2 users. For the ExtraSensory dataset, we used 53 out of 60 users for
training and tested on remaining 7 users. We observe that the temporal pipeline by itself has
around 75% accuracy (JC) across both datasets. However, the ontological approach by itself
has significantly higher accuracy for the Casas dataset as compared to the ExtraSensory dataset.
This is attributable to the different types of activity patterns in the two datasets. In Casas, most
of the activities happen sequentially (i.e A: toilet>A: eating>A: washing dishes), which leads
to simpler mappings to context (i.e C: UsingBathroom>C: HavingMeal>C: HouseWork etc.).
However, in the ExtraSensory dataset, most activity patterns are interleaved for a long period of
time (i.e A: walking>A: with friends+A: talking>A: talking) and users are in multiple contexts
simultaneously (i.e Commuting, Amusement etc.). Due to this, our ontological only approach
could not detect these contexts accurately. However, TAO’s temporal pipeline tries to learn
recurring patterns in the datasets instead of using a static mapping, thus can reason well about
these patterns. TAO’s hybrid approach performs better in terms of its accuracy (JC), which
is slightly better than average. It has a lower precision and a higher recall across individual
components. This shows that our combined approach is detecting all contexts present in the
ground truth, but it is overestimating individual contexts.

4.5 Conclusion
We present TAO, a context detection system that combines ontological and deep unsupervised
clustering approaches for inferring a rich set of contexts from a wide variety of daily activities.
The TAO system models the different activity patterns sequential, parallel, or interleaved activ-
ities as context information using the OWL-based ontologies. The temporal pipeline uses an
unsupervised clustering algorithm to detect context from new activity patterns and automatically
extends our ontology based on new activity patterns. Our system is agnostic to underlying activ-
ity detection mechanism and set of activities detected, making it usable across various sensing
systems to derive semantically richer information from activity streams. We showed that the
TAO system performs well across multiple settings we explored using two well-known public
datasets and our real-world study.
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Chapter 5

General-Purpose Edge Audio Filter for
Privacy-Preserving Activity Recognition

Throughout this thesis, the focus has been on devising innovative approaches to support general-
purpose sensing systems, catering to diverse application needs and stakeholder requirements.
As we delve deeper into enhancing the capabilities of IoT sensing frameworks, a critical as-
pect emerges the need for privacy-preserving solutions, particularly in the context of sensors
such as audio that may capture privacy-sensitive information. Audio-based ambient sensing
approaches are increasingly prevalent in various application domains, such as personal health
monitoring [119, 133, 167], ambient environmental sensing [22, 37, 104, 155] and energy ef-
ficiency optimization [49, 211] showcasing its growing significance in enhancing our overall
quality of life. However, the increased reliance on audio data in these applications has raised
substantial privacy concerns, especially considering the inherently sensitive nature of audio data
and its potential to capture human speech. To address these concerns, a common strategy is to
apply a combination of audio data featurization and speech filtering approaches, preferably at the
edge, to reduce privacy concerns while still ensuring the utility [49, 129, 133, 143, 155]. These
methods aim to process raw audio signals locally, extracting useful information while preventing
speech-related data from leaving the device. However, with the emergence of deep-learning-
based Automatic Speech Recognition (ASR) models [21, 92, 181], new privacy challenges have
arisen. While featurized audio files may not be intelligible to humans, ASR models trained on
such data can potentially reconstruct speech content.

In this chapter of the thesis, we systematically evaluate the privacy risks and utility trade-offs
associated with Fast Fourier Transform (FFT) techniques applied to audio sensor data in general-
purpose sensing systems. Audio sensors are particularly valuable for activity modeling but also
pose privacy risks by potentially revealing sensitive information such as conversations. FFTs
are commonly used in audio processing to transform raw data into frequency domain features
suitable for machine learning applications [133]. While these techniques have demonstrated
effectiveness in protecting audio privacy, modern ASR models like Wav2Vec [21] and Whisper
[181] challenge the assumption of privacy. Our analysis of existing privacy-focused filtering
approaches [104, 129, 133, 155] reveals residual speech information that fine-tuned ASR models
can still recognize, highlighting ongoing privacy risks despite filtering efforts.

To overcome these challenges, we present Kirigami, a lightweight edge-compatible speech
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Figure 5.1: An architecture of an audio-based activity recognition approach that takes featurized
audio as inputs for applications such as cough recognition or event detection

filter that effectively removes probable speech content while preserving non-speech content to
maintain high utility value for activity recognition applications. Unlike existing solutions that
may still reveal residual speech information, Kirigami takes a more conservative approach of
completely discarding likely audio content on the edge. For this reason, we believe that Kirigami
will remain effective even as ASR models become increasingly sophisticated in the future. Fur-
thermore, we demonstrate Kirigami’s effective adaptation to real-world environments through
an innovative background masking method, enhancing its ability to filter ambient sounds before
processing speech events. Moreover, Kirigami allows adaptability through custom post-filter fea-
turization methods, allowing users to users to customize the filter for specific application needs
using techniques like Log-Mel Spectrogram and Mel-Frequency Cepstral Coefficients. This flex-
ibility enhances Kirigami’s applicability across a range of scenarios. Our results demonstrate that
Kirigami is highly effective in suppressing human speech inference even when using fine-tuned
ASR models. Kirigami can run on low memory, is computationally efficient, and has been tested
and verified on embedded hardware platforms, making it a viable solution for real-world IoT use
cases.

The rest of this chapter describes the preliminary background exploration of previous works
that enhance privacy in the audio sense, recent progress in speech recognition, and our initial
approach to addressing the systematic characterization of privacy and utility tradeoffs.

5.1 Challenges

In this section, we introduce common audio-based ambient sensing solutions and discuss their
architecture, focusing on their feature engineering approaches to denature the audio data.

5.1.1 Microphone for Activity Recognition

Microphones are widely used in ambient sensing to support various applications surrounding
Human Activity Recognition(HAR), such as health monitoring [133, 144, 234, 244], monitoring
the number of people present in a building, and identification of room occupancy and activities of
people [49, 132, 206]. In addition, audio capture can be utilized for assistive services, particularly
for populations with hearing disabilities, where it can be used for audio scene analysis, audible
event alerts, and new wearable devices that work in conjunction with microphones inside smart
buildings [174]. In such applications, the collected ambient audio data is often denatured to
ensure sensitive information, such as speech, is not collected or sent to the cloud.
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A typical ambient sensing solution with a microphone consists of three main sub-components:
audio sub-sampling, audio featurization, and data filters, as illustrated in Figure 5.1. The au-
dio sub-sampling component records the time domain ambient audio at different configurable
sampling rates based on the application. This raw audio data is then passed through an audio
featurization algorithm to convert them into frequency domain signals to reduce the data dimen-
sionality and in some cases to denature the data. In general, Fast Fourier Transforms (FFTs) are
used to convert the raw audio signal into a frequency domain representation critical for extracting
useful information from the audio signal. Next, various data filtering approaches, including low
pass filters, can be employed to eliminate mid to low-frequency bands containing speech infor-
mation or background noise from the processed signals. The filtered FFT data is then subject
to further feature extraction using various audio processing techniques such as Mel Frequency
Cepstral Coefficients (MFCCs), filter banks, or spectral features. These extracted features are
then used by ML models to classify and recognize audio based events or activities.

Privacy v.s. Utility Tradeoffs for Speech Filters: While featurized data can be sent to a
cloud backend, where speech can then be filtered, it is generally considered better to do this on
the edge [35] for privacy to prevent speech data from being sent in the first place. In addition,
any filtering approach needs to balance privacy (i.e. detecting actual speech segments) and utility
(i.e. avoiding filtering non-speech segments) to be useful for real-world activity recognition. In
general, audio-based speech filtering approaches can be categorized into four types: time domain
based, frequency domain based, feature-based, and model-based.

Time domain-based filtering involves techniques such as reducing the audio signal’s sam-
pling rate or calculating statistical values such as minimum, maximum, and std-dev for a time
period of values. While doing so may be effective at protecting speech privacy, it reduces the
utility for downstream HAR applications since sub-sampling can remove important features of
the audio signal (e.g. high frequency signals) and not provide enough information to detect ac-
tivities. Feature-based filtering, extracts specific speech features to speech, such as a spectral
envelope or harmonic structure, and use them to remove speech segments. This approach can
still affect utility, as it may filter out non-speech sounds. Alternatively, a model-based approach
uses ML models to recognize and filter speech. This approach can be highly effective but is
computationally expensive, and not available on edge devices with limited computational power
and storage.

5.1.2 Phonemes in Audio
A phoneme is a perceptually distinct unit of sound, that can distinguish one word from another
in a specified language. When speaking, various phonemes can be produced by adjusting the air
passage in the vocal tract. Consonant sounds result from restricting the airflow, such as using
different lip, tongue, or teeth positions, whereas vowel sounds occur when the airflow is less re-
stricted and the mouth is more open [163]. Understanding the phoneme structure of a language is
crucial in various areas, such as linguistics, speech recognition, and natural language processing.
Typically, the English language is composed of 44 phonemes, including 24 consonants and 20
vowels [34].

The 39-phoneme set illustrated in Figure 3, derived from the Carnegie Mellon Pronouncing
Dictionary (CMUdict) [10], is widely employed in various ASR and NLP applications. Figure
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Figure 5.2: The 39-phoneme table of CMUdict [66]
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Figure 5.3: The phoneme and grapheme of an example word ”pizzerias”.Phonemes are the indi-
vidual speech sounds composing words, while graphemes are the corresponding letters or letter
groups representing those sounds.

5.3 shows the unique frequency spectrum signature that indicates the corresponding phoneme.
For example, the frequency spectrum for the sound z shows that almost all of the frequency spec-
trum values are activated in comparison to the other phoneme information. Overall, phonemes
as features play an important role in speech recognition tasks.

5.1.3 Deep-learning-based Automatic Speech Recognition Models

Recently, there have been significant strides in Automatic Speech Recognition (ASR) models
making them even more accurate. Deep learning models, such as recurrent neural networks
(RNNs), convolutional neural networks (CNNs), and transformer models, have been trained on
large speech corpora and have demonstrated state-of-the-art performance on a variety of bench-
mark datasets [80, 170]. More recently, large ASR models such as Wav2Vec [21] have been
trained on several hundred thousand hours of multilingual speech data, increasing their robust-
ness to different accents, background noise, and diverse languages. Leveraging the advantage of
pretraining, these models can quickly learn general representations of speech patterns and pho-
netic features (see Fig 5.3), even with low-fidelity or denatured data, as well as handle variations
in speaker accent and speech rate. For example, Whisper [181] combines an encoder-decoder
model with a context network to improve the modeling of long-term dependencies in speech.
Wav2Vec uses contrastive learning to train a model to distinguish between a correctly aligned
speech segment and a randomly sampled corrupted segment [21]. Similarly, other transformer-
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based models such as BERT [65] and GPT models [77] can also be fine-tuned to achieve impres-
sive results for many down-stream tasks, including ASR [101, 246]. These advancements pose a
significant challenge to edge speech featurization, and filtering approaches as modern ASR sys-
tems can be fine-tuned to potentially identify speech content even from transformed audio data,
as we show in this paper.

5.1.4 Threat Model
Based on our review of the relevant literature on audio privacy techniques used in several activity
recognition applications [37, 104, 155, 234], we consider a sophisticated adversary (following
the Dolev-Yao model [67]) who has full knowledge of the audio featurization methods used by
the device or application. We also assume the adversary wants to extract speech from the fea-
turized and transformed data sent by a device that senses audio. We assume that the adversary
does not have direct access to compromise the device itself (i.e., it cannot change its firmware).
We also assume that the adversary has the knowledge to replicate the same audio transformation
on the speech datasets to use as training data. The adversary can also try to invert any trans-
formation using approximation techniques, for example, using inverse Fourier Transforms or in-
verse Principal Component Analysis (PCA). The adversary has access to public speech datasets,
such as TIMIT [80] and Librispeech [170], to public ASR models [186], and can even fine-tune
these models. Finally, we assume that the adversary has access to featurized/filtered audio. In
a real-world scenario, an adversary capable of launching such an attack can be, for example,
an application that uses audio data to identify activities such as cough, an honest-but-curious
audio-to-HAR cloud API service provider, or an external hacker. Based on these assumptions,
we consider three potential adversarial scenarios:

S1 - Scenario requiring low effort: An adversary downloads a pre-trained ASR model (no
fine-tuning). Then, they try and reverse-engineer the featurized and filtered audio data using
an inverse PCA or inverse FFT. The resulting data is in a format that the various ASR models
expect, and the adversary passes the data to them to infer speech segments.

S2 - Scenario requiring moderate effort: An adversary downloads a pre-trained ASR model.
They fine-tune the ASR model by replicating the same audio featurization techniques used on
an annotated speech dataset to create a training set. The adversary also creates a pipeline to
transform the featurized audio data into the same shape as the ASR model requires. During
training, the adversary re-trains a small subset of the layers on the ASR model with pre-trained
weights loaded while freezing the gradients of the rest of the model. Finally, the adversary
processes the target audio data into the same shape dimensions as the original ASR model to
infer speech.

S3 - Scenario requiring high effort: An adversary downloads a pre-trained ASR model. To fine-
tune the ASR model, the adversary replicates the audio featurization techniques on an annotated
speech dataset to create a training set. The adversary also creates a pipeline that can transform
the featurized audio data into the same shape as the ASR model requires. The adversary trains all
the layers on the ASR model with pre-trained weights loaded. Finally, the adversary processed
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the target audio file into the same shape dimensions as what the original network was trained on.

5.2 Background
Prior works that use audio for activity recognition have proposed different methods to protect
audio privacy while preserving the utility of detecting activities.

Table 5.1: Summary of evaluated speech filtering approaches
Filtering Approach Fourier Transform Configuration Filter Type Filter SummaryWindow-Size Stride-Size
CoughSense [133] 512 256 Feature STFT concatenation (150ms), PCA (10 components)

Synthetic Sensors [129] 256 128 Frequency Domain Reduced FFT (10 windows/s)
PrivacyMic [104] 256 128 Frequency Domain Low Pass Filter (<300 Hz)
SAMoSA [155] 600 30 Time Domain Subsampling (1kHz)

5.2.1 Audio Privacy Filters for Activity Recognition
Researchers have proposed various audio filtering methods to remove speech information from
audio, including data degradation techniques to sample FFTs at a lower rate or completely drop
FFT data from a certain frequency band. These approaches aim to protect user speech data
while allowing other audio data that are useful for activity recognition, but their efficacy varies
significantly, and their limitations must be considered. Table 5.1 shows the summary of different
speech filtering approaches presented in the prior work.

Coughsense [133] is one of the earliest works to propose a cough detection system that uti-
lizes a low-cost microphone to detect coughs accurately in real-time. They reduced speech intel-
ligibility by aggressively aggregating 150ms of sound and extracting ten principal components
from principal component analysis on cough sounds. They showed that their system could clas-
sify coughs with high accuracy. Iravantchi et al. [104] proposed a daily activity recognition
system that utilizes inaudible frequencies in the audio signals to preserve privacy. Such an ap-
proach requires special microphone sensors that capture ultrasonic and infrasonic sounds and
the usual microphone that collects sounds in the audible range. Filters can be implemented on
microphone hardware to filter out frequencies from 300 Hz to 8kHz.

Another line of work focuses on more generic transformations to hide speech in audio. Chen
et al. [46] suggested a method to filter speech from audio by replacing the vocal tract transfer
function of vowel regions in audio with the transfer function from prerecorded vowels. Sound-
Shredding [126] proposed a privacy-preserving audio transformation in which the order of frames
from MFCC features is randomized. The commonly used method of evaluation in these ap-
proaches includes recruiting participants to listen to the processed audio clips and examine if
any speech content can be picked or to rate the extent of clarity of the audio clips. Another ap-
proach is to pass through an existing speech-to-text service such as Google Speech Recognition.
While the ability to recognize speech was shown to be limited after using these transformations
was evaluated under human listening experiment [46, 104, 133, 155] or passing through exist-
ing speech-to-text API [104, 155], the threat from recent powerful machine-learning-based ASR
models was not considered.
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5.3 Feasibility of Inferring Speech From Filtered Audio

Two reasons to evaluate the feasibility of ASR models to infer speech from featurized audio
are: (a) our observation of the residual phoneme information available in the output filtered
data from prior approaches, and (b) the ability of the deep learning-based ASR models to be
fine-tuned and learn from featurized data. In prior approaches, a speech filter such as a time or
frequency-domain filter is applied to an audio signal. These approaches often remove certain
frequency components associated with human speech. However, not all phoneme information
is removed, and some residual information may remain in the filtered signal. Figure 5.4 shows
the spectrogram of the data after prior filtering approaches are applied. This residual phoneme
information can be seen in the form of different acoustic characteristics, such as spectral shapes
specific to spoken words or phonemes. For example, the FFT output after applying the Cough-
Sense filter [133], for the phoneme ”iy” has unique spectral patterns still present around the
1 kHz frequency range. Similarly, for PrivacyMic [104], we can see that unique spectral patterns
are present around the 250 Hz frequency range for the same ”iy” phoneme. An adversary can
exploit this residual phoneme information by using ASR models. An ASR model trained on raw
audio can still be fine-tuned for featurized audio and does not need to be trained from scratch.
These models can learn complex patterns and representations from data through training over a
large speech data set such as TIMIT [80].

Synthetic Sensors [25]

SAMoSA [29]

Original FFT

CoughSense [29]

PrivacyMic [27]

Figure 5.4: FFT Spectrogram of several privacy filters proposed by prior work.
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Next, we describe all ASR models that we evaluated and detail the procedure to mimic speech
inference attacks. We tested two kinds of models based on the type of inferences the models
made: phoneme and word. We summarize the ASR models in Table 5.2.

Table 5.2: The list of evaluated ASR models against audio privacy filters.
Attack Model Inference Type Pre-Training (Hours) Fine-Tuning (Hours) # Parameters Metric

CRDNN Phoneme 5 (labeled) 5 (labeled) 10M PER
Wav2Vec Transducer Phoneme 53.2k (unlabeled) + 960(labeled) 5 (labeled) 318M PER

Whisper AI (pretrained) Word 680k (labeled) 0 769M WER
Whisper AI Word 680k (labeled) 5 (labeled) 769M WER

5.3.1 Fine-Tuning Phoneme-based Speech Inference Models
Phoneme prediction models can be utilized to infer phonemes from featurized audio data. As
opposed to word-level speech recognition, phoneme recognition offers the benefit of having con-
siderably fewer prediction targets (e.g. 39 phonemes in CMU-Dict [66]), alleviating the concerns
about the size of the vocabulary [39]. Moreover, we speculate that if only part of a word can be
inferred, phoneme-based models might provide a chance for the human attacker to infer the
complete word based on the context with only the predicted parts.

Convolution Recurrent Deep Neural Network (CRDNN): The CRDNN model combines Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Multi-Layer Per-
ceptrons (MLPs). The CNN layers extract features from spectrograms of raw audio, while the
RNN layers allow the network to find sequential information for phoneme prediction. Connec-
tionist Temporal Classification (CTC) [92] is integrated into the architecture, allowing the model
to handle varying lengths of input and output sequences without requiring explicit alignment.

We adopted the CRDNN model to infer phonemes from filtered speech data based on imple-
mentation from SpeechBrain [186]. We convert the audio features obtained from different audio
filtering techniques, through rescaling and cropping, into spectrogram-shaped representations
with 40 features at each time window.

Table 5.3: Example inference results and Phoneme Error Rate (PER) from the CRDNN model.
Original Segmented Phonemes Privacy Filters Predicted Segmented Phonemes PER

pizzerias are convenient for quick lunch
p-iy s-er-iy-er-z er-k-n v-iy-n-y-ih f-aa-r-k-w-ih k-l ah-n-ch

CoughSense [133] p-iy-t-ih-ay iy ih-z-ih-k-m b-ih-n-y-ih f r-ay-k-w-ih m-ah-n-s 44.12%
Synthetic Sensors [129] s-t-ih-r-iy ih-z-k-ah-m p-iy-n f-aa-r-k-w-ih-l-ah-n s 50.00%

PrivacyMic [104] p-iy p er-r-iy-ih-z-ih k-m-b-ih-l-ah f-aa-r-t-r-ae n-ah-jh 52.94%
SAMoSA [155] dh-ah-p-r-aa p-er-d-ih-s p-l-ih-n t-ih-k ih-n-d-ih-s t-r-ey dh-ah-p-r-aa p-er 97.05%

december and january are nice months to spend in miami
d-ih-s-eh-m b-er-ng-jh-y-ae-n y-uw-er ih-n ay-s-m-ah-n-th s-t-ih-s p-eh-n-ih-n m-ay-ae m-iy

CoughSense [133] d-ih-s-ih-m-er-z eh-n-iy er m-aa-s m-ah-n s-d-ih-s p-ah n-ih-m aa-ih n-iy 45.45%
Synthetic Sensors [129] dh-ih-s-ih m b-er-ih-z eh m r-eh r-ih-n-ay-s m-ah-n t s p-r-ih-n-ih m-ay-ih-n m-iy 43.18%

PrivacyMic [104] dh-ah s-ih-ng-g-er-n jh-eh-n-er-l-iy ih-m-ay-s m-ih-n-s t-ih-s-p-ih-n-ih-ng l-ay-b-l-iy 45.45%
SAMoSA [155] dh-ih-s-p-aa-r k-ih-n-t-ih k-s-p-er d-ih-s-t-r-ey dh-ih-s-p-eh-r-ih k-ih-n-t-ih k-ih-n 77.72%

basketball-can-be-an-entertaining-sport
b-ae-s-k-ih b-aa-l-k-ih-n b-iy ih-n eh-n-t-er ch-ey-n-ih-ng s-p-aa-r

CoughSense [133] b-r s-t-ih b-r-k-ih-n b-iy-ih-n t-ih k-ey-m-ih n-s p-r-ay 32.43%
Synthetic Sensors [129] dh-ae-f-ih-l-aa k-ih-n m-ey-n er s t-ey n-ih-ng-z b-aa r 48.65%

PrivacyMic [104] dh-eh-s-t-ih b-ae-k-ih-n w-ah-n ih-n-t-er t-uw ih-n-iy s-t-r-ey s 54.05%
SAMoSA [155] dh-ih-s-p-aa-r t-ih s-p-l-ih-n t-r-iy-k ih-n-d-ih-s t r-iy-k-ih-n 72.97%

Transducer with Pretrained Wav2Vec 2.0: Transducer models, also known as RNN-T (Recur-
rent Neural Network Transducer) models, are a type of end-to-end ASR system that directly map
input speech features to target text without requiring any explicit alignment between them [91].
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These models consist of an encoder, a decoder, and a joint network, which together predict
the output sequence in an autoregressive manner. Wav2vec 2.0 is a self-supervised pretraining
method that learns powerful speech representations from raw audio waveforms by exploiting the
temporal structure of the data [21]. Studies have shown that a pre-trained Wav2vec model leads
to better performance than using handcrafted features, such as the Mel-frequency cepstral coef-
ficients (MFCCs) or filter banks, as the ASR models can benefit from the rich and expressive
features that wav2vec learns from large amounts of unlabeled audio data [75, 186, 226].

We used an implementation of the Transducer model from SpeechBrain [186] and fine-tuned
the model starting from an existing checkpoint trained using the TIMIT dataset [80]. We used
the Wav2Vec2-Large-LV60 to extract features from audio inputs, which contains 317M param-
eters and is pre-trained on 53.2k hours of unlabeled audio data and 960 hours of speech data
[21]. While the resulting filtered audio from many audio privacy-focused featurization tech-
niques transforms audio into the frequency domain, with the Wav2Vec 2.0 encoder, the Trans-
ducer model takes waveforms as inputs. To make the model compatible with the spectrogram-
like shape resulting from different featurization approaches, we applied the Inverse Fast Fourier
Transform (IFFT) to obtain a waveform representation from the spectrogram-shaped representa-
tions. All weights of the model are fine-tuned using the TIMIT dataset.

Phoneme Post-Processing: Directly interpreting the phoneme outputs might still be challenging
for inexperienced adversaries. To enhance the speech inference practicality and to better under-
stand the privacy implications of the tested audio filtering techniques, we perform the following
post-processing on the phonemes output. Our first step is to segment the phoneme predictions
into groups, in which each group of phonemes likely represents a word. We trained a bidirec-
tional LSTM sequence tagging model to segment the phonemes using the ground truth TIMIT
phonemes and words, which achieved 98.6% per-tag accuracy. In addition, we used a heuristic-
based approach that breaks at ’sil’ (silence) phonemes unless there are less than four consecutive
predicted non-silence phonemes in prior, which is likely due to prediction error. After seg-
menting the entire phoneme sequence prediction, we used Pincelate [178], an open-source tool
that performs phoneme-to-grapheme and grapheme-to-phoneme conversion, to spell the prob-
able word for each segment of phonemes. Although the spelling of the sentence is imperfect
due to the phoneme inference errors, it still provides hints to infer the speech content. Table 5.3
shows the inferred segmented phonemes using the CRDNN model. In some cases, even after
filtering, the inferred phonemes can sound very similar to the original sentences. For example,
when using the CoughSense [133] filtering approach, the CRDNN model was still able to cap-
ture p-iy-t-ih-ay iy ih-z, which is very close to the pronunciation of the word pizzerias. When the
PER value increases, transcribing the words is not as straightforward as one needs to spell the
words and consider which phonemes might be incorrect predictions. The output dh-ah s-ih-ng-
g-er-n for PrivacyMic [143], for instance, still sounds similar to the word December, but directly
identifying the word without knowing the original sentence can be challenging.

5.3.2 Fine-Tuning Word-based Speech Inference Models
Whisper is a Transformer-based encoder-decoder model, more commonly known as a sequence-
to-sequence model [181]. Unlike Wav2Vec, which was primarily trained on unlabelled data in
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Table 5.4: Sample speech inference results and Word Error Rate (WER) from the Whisper model
Original sentence Privacy Filters Whisper (Fine-tuned) WER

pizzerias are convenient for quick lunch

CoughSense [133] pitcheeers are convenient for a quick lunch 33.3%
Synthetic Sensors [129] his barriers continued to overlap 100%
Privacy Mic [104] peculiar is a conveyor for a quick lunch 83.3%
SAMoSA [155] people often go for in quick evening 83.3%

december and january are nice months to spend in miami

CoughSense [133] decembers are nice mountains to spend in miami 40%
Synthetic Sensors [129] december and jan are make sure you save money to visit my website 90%
Privacy Mic [104] the figure here may attach to the spring and water 100%
SAMoSA [155] decide and jan are moving to the may 70%

basketball can be an entertaining sport

CoughSense [133] basket bowl can be an immediate sport 50%
Synthetic Sensors [129] basketball can be found in video game 83.3%
Privacy Mic [104] bask be an enter 66.7%
SAMoSA [155] ballers are on an extreme sport 66.7%

an unsupervised manner, Whisper was trained on 680k hours of labeled speech data, such as
LibriSpeech [170] using extensive supervision with 769M parameters. We used the pre-trained
Whisper medium checkpoint and then fine-tuned the model to the different types of audio fea-
tures obtained from the prior filtering techniques discussed in the previous section. Since the
Whisper model expects log-Mel spectrogram as input, we convert the audio features obtained
from different audio filtering techniques to log-Mel spectrograms. We then use this information
to fine-tune the model. During the fine-tuning step, Whisper’s parameters are updated to match
the specific characteristics of the target word prediction, such as its phonetic spectral properties.

Table 5.4 shows examples of sentence predictions from Whisper pre-trained and fine-tuned
ML models when we apply different filtering techniques. In certain cases, the predicted sentences
are similar to the original sentences. For example, in certain instances, even after applying the
CoughSense [133] filtering approach, the fine-tuned whisper model successfully predicted all
the words except for ”pitcheeers” in the example ”pizzerias are convenient for quick lunch.”
Furthermore, it is observed that as the WER value increases, the distinction between WER values
becomes less clear in terms of what information they may reveal. For instance, although an
example sentence prediction from PrivacyMic has 90% WER, the prediction from Synthetic
Sensors with the same WER still reveals some of the original speech information (such as words
like ”december” and ”jan”). In addition, we found WER may appear high for short sentences,
due to the number of words normalizing it, and thus predicting only a few incorrect words will
be enough to raise WER to a high value.

5.3.3 Need for PER and WER contextualization

Notably, as the above results show PER and WER values by themselves are only part of the story
in terms of understanding the potential privacy concerns with the parts of the original speech that
may still be reconstructed using ASR approaches. In addition, all the words in a sentence are not
the same in terms of what they reveal about the conversation and different sentences with similar
WER/PER values may lead to less (or more) privacy concerns. Finally, the data and examples
for different featurization approaches mentioned in this section are merely illustrative to show
what is possible by re-tuning some of the ASR models. In Section 5.5.2 we provide a detailed
evaluation of Kirigami as compared with various prior approaches on a larger corpus of speech
data in terms of average PER and WER values. Furthermore, to contextualize different PER and
WER ranges in terms of what they can still reveal, we performed a separate user study, the results
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of which are reported in Section 5.5.4.

5.4 Kirigami: Lightweight Speech Filter
As shown in the previous section, prior approaches on preserving user privacy are susceptible
to inferring speech with the latest state-of-art fine-tuned ASR models. A key reason for this
is that these approaches focused on degrading data or utilizing feature-reduction strategies to
filter potential speech segments. However, modern ASR models such as Whisper [181] are
trained on a broad spectrum of acoustic features and linguistic contexts that can take advantage
of any residual speech information, such as phonemes, making them less susceptible to conven-
tional privacy-preserving techniques. More importantly, as the development and optimization of
ASR models progress in the future, their reliance on any residual speech segments to enhance
ASR performance increases, highlighting the necessity for new strategies in preserving privacy.
Consequently, our approach focuses on the detection and removal of data segments containing
speech-related information, including phonemes. This ensures a more robust mechanism to safe-
guard user privacy within the evolving realm of ASR technology. Our design of Kirigami is
based on a set of key insights. First, the detection of speech information (phonemes) can be
modeled as a binary classification task, for which shallow machine learning models may suf-
fice in terms of reasonable accuracy. Second, these shallow ML models can be deployed on a
wide variety of hardware as they are memory and computationally efficient. Third, the Kirigami
filter can promptly discard detected speech segments at the edge to safeguard speech privacy,
allowing full-featured FFT data to pass through when non-speech segments are detected, thereby
optimizing utility performance.

5.4.1 Machine Learning-based Kirigami Speech Filter

Our proposed solution of a speech filter on the edge involves constructing a lightweight yet
efficient real-time speech detector. The overall objective of the speech detector is to classify
each time frame of the Short-Time Fourier-transformed (STFT) audio data as either speech or
non-speech. Formally, let X ∈ Rd be a d-dimensional vector representing a time frame of STFT
data. For example, d = 128 when the window size of the STFT is 256. The task of the speech
detector is to learn a mapping f : Rd → 0, 1, where f(X) = 1 indicates speech and f(X) = 0
indicates non-speech. Once a time frame is identified as likely speech (i.e., f(X) = 1), that
particular time frame is discarded.

In Kirigami, we use a Logistic Regression (LR) model for real-time speech detection. Lo-
gistic Regression is a well-established shallow ML model typically used for binary classification
tasks and is also resource-efficient. To build an LR model, we first normalize the STFT features
using the L-1 norm across all frequency components for each time frame. The normalization
step ensures that the influences of volume variation from the audio signal are reduced.

Thus we formally represent the Logistic Regression model used for binary speech detection
as follows:

g(X) = σ(W · X

||X||1
+ β0) (5.1)
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, where ||X||1 =
∑d

i=1 |xi| is the L-1 norm of X , W and β0 are the weight coefficients and
intercept learned from the training data, and σ is the logit function:

σ(z) =
1

1 + e−z
(5.2)

The decision f(X) of whether a time frame should be removed is based on comparing the model
prediction against a threshold value τ , which can be represented as:

f(X) =

{
1 if g(X) ≥ τ

0 if g(X) < τ
(5.3)

In our training process, the LR model was developed using the TIMIT [80] dataset for speech
data and the ESC50 [177] environmental sound dataset for non-speech data. We opted for the
TIMIT dataset for speech data due to its inclusion of multiple hours of phonetically transcribed
sentences, enabling in-depth analysis and modeling of speech sounds. Additionally, we opted
for the ESC50 dataset for non-speech data, aligning with our objective of recognizing events and
activities. The sound samples from ESC50 provide valuable training data for the LR model to
effectively distinguish and preserve sounds associated with various activities. To enhance the
diversity of our dataset, we created an additional speech dataset where we overlay sounds from
ESC50 on top of the TIMIT speech audio. This augmentation aims to enrich the training data,
enabling the LR model to better generalize and perform effectively across a range of real-world
scenarios. We apply STFT to the audio samples from these sources to transform them into the
frequency domain (FFTs). Subsequently, we label each time frame as positive (i.e., speech) or
negative (i.e., non-speech) depending on the source. We balanced the dataset to have an equal
number of speech and non-speech samples. In total, our dataset comprises 20000 samples, which
are randomly split into three subsets: 80% for training, 10% for validation, and 10% for testing.
Through supervised training, the LR model learns to classify each time frame as speech or non-
speech, thereby removing the time frames that are likely speech. Overall, our Kirigami LR model
(using τ = 0.5) achieved a speech recognition accuracy of 76.44%, indicating the effectiveness
of our method in accurately identifying and classifying speech segments. It’s important to note
that we are not aiming for perfect classification accuracy, and our goal was to make the model
configurable to balance privacy or utility requirements, depending on the use case. This adapt-
ability allows for a nuanced and tailored approach, where the balance between accuracy and the
desired outcome can be fine-tuned to align with the overarching goals of the application or sys-
tem. We elaborate further in Section 5.4.2 on how the Kirigami LR model can offer sufficient
privacy protection with appropriate threshold values while preserving adequate utility value.

5.4.2 Configuring Privacy vs. Utility Tradeoffs

Figure 5.5 provides an illustration of the trade-off between privacy and utility as we configure
the Kirigami filter to have different values for τ . In the figure, the first part contains pure speech
(t = 0s to t = 1.86s), speech data overlaid with a vacuum cleaner sound (t = 1.86s to t = 3.72s),
and a vacuum cleaner sound (t = 3.72s to t = 5.6s).
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Figure 5.5: Illustration of Kirigami’s Logistic Regression model for phoneme prediction. The
LR Pred line graph shows the predictions from 0 to 1, while LR0.5 to LR0.1 shows predictions at
threshold values indicating speech (1) or non-speech (0). The original and filtered spectrogram
demonstrate a balance between privacy (speech filtering) and utility (activity recognition).

The value of the threshold τ , configurable to be between 0 and 1, plays a crucial role in deter-
mining the model’s inclination towards either preserving privacy or maintaining utility. A value
closer to 0.5 leans toward balancing both. Given that the Kirigami filter is an ML model, there
are instances where it is incorrect, which leads to either some speech data being leaked or some
audio event data being filtered. For example, for the LR0.5 configuration, some frames with
the word “quick” are mistakenly classified as non-speech (a false-negative). As the threshold
changes from 0.5 to 0.1, the model becomes more conservative and prioritizes privacy protec-
tion. For example, for the LR0.1 configuration, all the segments with the word “quick” are now
detected correctly as speech, but towards the end, numerous segments with the vacuum cleaner
sound alone are incorrectly filtered out as speech (false positives), which can affect the utility
of activity detection. The optimal threshold depends on the specific use case and the applica-
tion requirement. In situations where privacy is crucial, such as if the sensor is installed in a
private office, a lower threshold would be more suitable. Conversely, in less sensitive contexts
(e.g., shared spaces) or where the accuracy of activity detection is more important (HAR for fall
detection scenario), a threshold closer to 0.5 may be more appropriate. We further quantify the
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impact of different thresholds on privacy vs utility and discuss its implications as compared to
various prior approaches in Section 5.5.3 and 5.5.4.

5.4.3 Kirigami Speech Filter on the Edge
A key goal in developing the Kirigami filter was to ensure its feasibility of deployment on edge,
which typically implies operating in resource-constrained environments. For instance, popu-
lar ARM Cortex M class microcontrollers commonly found in IoT devices have around 128KB
RAM 100-150MHz CPUs, and thus cannot run deep learning-based ASR models such as Whis-
per to filter speech. With all its configurable threshold parameters, this meant that the Kirigami
filter needed to be implemented in environments with frugal memory resources and limited com-
puting capabilities.

We quantized the Kirigami LR model to reduce its memory footprint, ensuring more ef-
ficient storage and processing on resource-constrained devices. This involved converting the
model’s floating-point parameters to integers, a process that conserves memory and contributes
to improved computational efficiency. Overall, our Kirigami approach requires the storage of
129 weight values, including the intercept, and the computation of one normalization, one dot
product, and one logit function. We implemented the Kirigami LR model on the popular edge
microcontroller ARM Cortex-M4F with 256 KB RAM and 1 MB flash and measured the mem-
ory consumption and latency. Our measured memory footprint of the quantized Kirigami model
coefficients was 518 bytes (< 1 KB) and a total of 2.1 KB (< 3 KB) for the entire Kirigami
filter, including the model intermediate weight calculations. The end-to-end latency for predic-
tion of an FFT sample is approximately 0.71 ms, demonstrating that the Kirigami filter is not
only resource-efficient in terms of memory consumption but also exhibits low latency, making it
well-suited for deployment in real-time applications on edge devices with limited computational
resources. We implemented the Kirigami LR model in both C and Python to ensure comprehen-
sive compatibility of the Kirigami filter across different device environments and run efficiently
on devices with limited computational power and memory. We further evaluate the real-world
accuracy performance of our edge Kirigami filter in Section 5.5.6.

5.4.4 Adapting the Kirigami Speech Filter for Real-World Environments
A key design goal of the Kirigami filter is to robustly filter out speech in real-world environ-
ments. Our initial hypothesis to achieve this was to train the Kirigami filter on a custom dataset
where activities of interest are overlaid with speech events. We formed this dataset by augment-
ing environmental sounds from ESC50 dataset of activities and ambient sound with the TIMIT
speech audio, using this dataset to train the Kirigami model. This approach allowed us to simu-
late real-world conditions where people speak with other activities and events happening in the
background. The Kirigami speech filter, while effective in controlled environments, faced sev-
eral challenges in these real-world situations, primarily due to the presence of background noise,
diverse acoustic landscapes, and variability in ambient noise levels.

Thus, we aimed to identify background or ambient sounds in the environment and filter those
out before identifying and filtering speech events. However, real-world environments exhibit a
dynamic spectrum of ambient noise, with levels that fluctuate based on factors such as location,

66



Audio FFT

Yes

No

Is it 
Background?
(LR model)

Background
 Masked

FFT 

Apply Background
Mask to Audio FFT Keep FFT

Yes

Is this
Speech?

Background Mask Buffer

T1 T2 T5 T8
FFT 1 FFT 2 FFT 5 FFT 8

Yes
Buffer

similarity using
Euclidean
distance

update mask
heuristics

Recalibrate
Background
Heuristics

Yes

No

Discard FFT Kirigami LR Filter

Are the
 FFT frame
continuous?

Background Identification

Background
 heuristics

buffer

No No

Skip Reset buffer Reset buffer

Full Frame
FFT

Figure 5.6: Flowchart depicts the adaptive background masking process in conjunction with
Kirigami’s speech filter. The process involves background detection, buffer comparison, heuristic
calculation, and the generation of a background mask to filter out background frequencies. The
resulting background-filtered FFT enhances Kirigami’s speech filter for improved accuracy by
eliminating background noise.

time of day, and environmental conditions. For example, workshop environments may feature
machinery traffic sounds, while quieter office spaces may still have variable noise from air condi-
tioners, HVAC, or occasional people chatting in the surroundings. Moreover, background noises,
which may be constant or intermittent, span a wide spectrum of frequencies and intensities.

To overcome these challenges, we present an adaptive background masking process com-
bined with Kirigami’s speech filter. We continuously collect background noise profiles from the
environment, estimate a mask for these background noises, and apply this mask to filter out the
noise. As shown in figure 5.6, our approach consists of the following steps: (1) background
identification, (2) creating a background mask buffer, and (3) background mask generation and
filtering. Once the noise is filtered, the data is sent to our Kirigami LR model for speech filtering.
The background identification step uses a Logistic Regression model to predict whether the input
FFT represents background noise versus foreground speech or activity of interest. This model is
trained on datasets containing a mixture of background noises of typical environments from Mi-
crosoft Scalable Noisy Speech Dataset (MS-SNSD) [189] and foreground activities and speech
from TIMIT [80] and ESC-50 [177]. We attempted to further increase the real-world fidelity
of noise mixtures by overlaying the foreground speech and activities with background noise at
various signal-to-noise ratios and various pitches of background noises. Second, these predicted
FFT data are added to the background noise mask buffer, which maintains multiple buffers of
continuous background FFT data. This buffer imposes conditions on the temporal continuity of
background FFT samples, ensuring that the FFT frames within the buffer are contiguous. Once
multiple of these buffers are filled up, the similarity across different buffers is gauged using
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the Euclidean distance metric. If the buffers are similar, the process generates a background
mask. This process ensures the reliability and accuracy of the captured background profile, en-
abling adaptation to diverse environmental settings. The background mask generation process
relies on a method called spectral gating [121]. This technique involves estimating a background
threshold (or gate) for each frequency band within the collected background profile, calculated
using the mean and standard deviation over frequency. This threshold is then used to compute a
mask, which gates noise below the frequency-varying threshold. During the background mask-
ing phase, we initiate the process by establishing a gain control for each frequency band. If a
frequency surpasses the previously determined threshold, the gain is set to 0 dB; otherwise, the
gain is reduced (e.g., to -18 dB) to mitigate background noise. Following this, we use frequency
smoothing to ensure that individual frequencies are neither excessively suppressed nor boosted
in isolation. We then direct the background-masked FFT to the Kirigami speech filter, which
is now potentially less susceptible to the influence of background noise. By incorporating an
adaptive algorithm that responds to fluctuations in ambient noise, we enhance the Kirigami fil-
ter’s versatility in handling variable acoustic environments, ensuring reliable speech recognition
performance across diverse real-world scenarios. We evaluate the robustness of our approach in
the real world in Section 5.5.6.

5.5 Evaluation
This section evaluates the effectiveness of state-of-the-art speech recognition systems in recover-
ing speech text from the prior privacy-focused featurization approaches. In addition, we evaluate
Kirigami’s ability to identify phonemes from audio data. Overall, our evaluation aims to answer
the following questions:

• RQ1: How accurately do modern ASR-based systems identify speech contents from audio
featurized using prior approaches?

• RQ2: How robust is Kirigami ’s filter to ASR-based attacks, and how does Kirigami’s
filtering approach affect the utility?

• RQ3: How accurately does Kirigami’s filter perform in real-world environments?

5.5.1 Evaluation Setup
Dataset: We utilize the TIMIT [80] dataset to evaluate the feasibility of inferring speech from
featurized data, fine-tuning the ASR-based models, and building the Kirigami filter. The TIMIT
dataset contains a total of 5 hours of English speech with 4,620 phonetically transcribed sen-
tences, with approximately ten sentences per speaker. Each sentence is segmented into pho-
netic units, such as phonemes and words, allowing for detailed analysis and modeling of speech
sounds. To evaluate the utility of Kirigami filter and the prior filtering approaches, we use
the ESC-50 [177] dataset. The dataset contains 2000 environmental sound recordings from 50
classes involving various sound types, including animal sounds, natural sounds, human non-
speech sounds, etc. To match the scope and difficulty of the application scenarios in prior audio
privacy filtering approaches, we selected ten classes: toilet flush, sneezing, clapping, breathing,
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coughing, footsteps, laughing, brushing teeth, snoring, drinking, door knock, washing machine,
vacuum cleaner, clock alarm, and clock tick. Finally, we also created an overlay of the TIMIT
dataset with the ESC-50 dataset to evaluate privacy and utility performance in a noisy environ-
ment. For speech inference evaluation, the overlaid data is produced by overlaying a random
sound file from ESC-50 on top of each speech audio file from TIMIT. The resulting audio file
contains the same speech content and length as the original. Similarly, for utility evaluation, we
overlaid a random speech audio file from TIMIT on each sound file from ESC-50. We match the
loudness of two different audio files based on the loudness level in decibels relative to full scale
(dBFS).

Speech Inference Evaluation: To examine the extent to which modern ASR models can infer
speech content information from prior audio privacy filter approaches, we implemented each
privacy filter approach and evaluated the speech inference performance. The approaches that we
included in our evaluation are CoughSense [133], Synthetic Sensors [129], PrivacyMic [143],
and SAMoSA [155] as all these works indicate privacy as a primary factor in their filter design
process. We applied each of these privacy filter approaches to obtain a dataset of filtered audio
samples. We used four different configurations of ASR models: CRDNN, Wav2VecTransducer,
Whisper Pre-Trained, and Whisper Fine-Tuned. The training set of filtered audio samples is
used to fine-tune the model weights, which facilitates the ASR model to adapt to filtered audio
samples and learn suitable new feature extraction and prediction mechanisms. The models are
trained to start from existing checkpoints for optimal speech inference performance.

Privacy Performance Measures: The performance of speech inference is measured in Phoneme
Error Rate (PER) and Word Error Rate (WER). PER and WER are defined as the number of
insertions, deletions, and substitutions normalized by the length of the target sentence. PER
measures the number of incorrect phoneme predictions produced by the ASR model, while WER
measures the rate at which words are predicted incorrectly. The evaluation of speech inference
measured in PER and WER is conducted on both TIMIT as the pure speech dataset and overlaid
dataset, although we adopt the PER and WER on pure speech data as the primary measure of
privacy protection.

Utility Performance Measures: Utility, often emerging as an opposing goal to privacy, also
needs to be assessed to understand the effectiveness of a privacy filter. An effective filter ideally
shall achieve high PER and WER while having minimal loss in the utility performance compared
to non-filtered audio. We adopted the Audio Spectrogram Transformer (AST) [85], a state-of-
the-art audio classifier and one of the best performers on the ESC50 dataset, to evaluate the
accuracy of inferences as the utility performance. We used a 5-fold cross-validation standard
to the ESC50 dataset and calculated the classification accuracy of the 10 classes selected from
the ESC50 dataset on, both, the pure environmental sound and the sound overlaid with speech.
Unlike speech inference where the privacy leakage on pure speech is the primary concern, the
classification accuracy on both pure and noisy data is crucial for consistent performance across
different environmental conditions. Taking all these measures together allows us to assess the
trade-off between privacy protection and utility preservation for each filtering approach.
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5.5.2 RQ1: Feasibility of Speech Inference from Prior Filtering Approaches
We fine-tune the ASR models by applying each audio featurization approach to the training
set of the TIMIT dataset. The ASR models learn to infer speech from these featurized audio
samples through fine-tuning. Finally, the performance of speech inference from all ASR models
is evaluated using the PER and WER metrics on the pure speech Timit dataset and Timit speech
data overlaid ESC-50 activity data.
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Figure 5.7: Results of (a) phoneme-based speech inference, (b) word-based speech inference,
and (c) activity classification accuracy on prior filtering approaches.

Phoneme-based Speech Inference: Fig. 5.7(a) summarized the experiment results of speech
inference on featurized audio data using four prior approaches to audio speech filtering using
the CRDNN and Wav2VecTransducer models. Overall, these results demonstrated a concerning
level of privacy risks in audio privacy filtering techniques. CoughSense [133], Synthetic Sen-
sors [129], and PrivacyMic [143] showed PER of 27.14%, 39.05%, and 26.70% respectively on
pure speech sounds, proving the feasibility in inferring phonemes from the filtered speech data.
Wav2VecTransducer outperforms CRDNN in inferring phonemes on these three approaches ex-
cept on SAMoSA. SAMoSA [155], with simple downsampling and a large FFT window size
approach, exhibits adequate protection on speech. We conjectured that this protection might be
due to the length of FFT windows measured in time (600ms) far exceeding the time to speak a
phoneme in most cases. To help assess the audio filtering effectiveness in comparison to com-
plete audio data, we included our baseline approaches using FFT data from 256/128 windows
and step sizes without any filtering, achieved PER of 16.28% and 10.12% using CRDNN and
Wav2VecTransducer models, respectively. In Figure 5.7 (a) and (b), this baseline is shown as
dashed lines.

Word-based Speech Inference: We also compare the Word Error Rates (WER) of the prior
audio filtering techniques using fine-tuned and pre-trained Whisper models to assess the efficacy
of the word-based speech inference models. Figure 5.7(b) shows the WER of fine-tuned whisper
for prior filter approaches. CoughSense, Synthetic Sensors, PrivacyMic, and SAMoSA, showed
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Figure 5.8: Results of (a) phoneme-based speech inference, (b) word-based speech inference,
and (c) activity classification accuracy on Kirigami filtering approaches.

WER of 29.31%, 32.10%, 48.21%, and 68.11%, respectively, on pure speech sounds showing
that fine-tuned whisper models can recognize speech content even after the data is filtered by the
prior approaches. In addition, we also see that using an off-the-shelf pre-trained Whisper model
has higher WER, which means the prior filter approaches are still resilient to the pre-trained
Whisper model. The weakest filter among the four is CoughSense [133] as it has the lower WER
scores (29.31%), meaning the inference obtained from the fine-tuned model provides enough
information about the original speech content. As a point of comparison, our baseline approaches
using FFT data with 256/128 windows and step sizes without any filtering yielded WER of
3.01% and 6.78% with fine-tuned and pre-trained Whisper models, respectively. Overall, these
results demonstrate the potential of fine-tuning the ASR model to effectively infer speech content
from filtered audio, highlighting its capability to overcome the prior speech filter approaches and
provide accurate word-based speech recognition.

Utility Impact: Figure 5.7(c) shows the audio classification accuracy on 10 activity classes on
the ESC50 dataset [177] over the four prior approaches. The baseline configuration (no filter)
achieved 95.25% and 86.25%. Out of the four prior approaches, the best performer is SAMoSA
[155], which achieved 79.50% accuracy in classifying pure activity sounds. The classification
performance for the other three approaches is significantly lower than the baseline configura-
tion. Notably, all four approaches showed significant performance drops on overlaid sounds. We
hypothesized that this performance drop might be caused by the always-on manner of these filter-
ing approaches, which degrades the expressivity of the audio data and makes activity and speech
sound less distinguishable when overlayed. The drop is especially pronounced for SAMOSA (a
drop of 46.25%). We posit this drop to SAMOSA’s very low default sampling rate (1 kHz). This
approach works well when the signal is clean, but the performance plummets significantly when
the speech and ambient sounds are overlaid.
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5.5.3 RQ2 : Performance of Kirigami filters

Fig. 5.8 summarizes the performance of the Kirigami filter with different configurations of
threshold values. Overall, Kirigami filters showed superior protection for speech privacy com-
pared to the prior approaches, especially for configurations that lean towards privacy, such as
LR0.1 and LR0.2.

Phoneme-based Speech Inference: As shown in Fig 5.8 (a), the CRDNN model produces al-
most complete noise, with PER values above 100%, for any of the 5 Kirigami filter configu-
rations. For the Wav2VecTransducer model, as the threshold value moves from 0.5 to 0.1, the
difficulty of inferring phonemes, as measured by the PER produced by the Wav2VecTransducer
model, increased as expected.

Word-based Speech Inference: We also see similar trends in word-based models (Fig. 5.8 (b)).
When the Kirigami filters are applied to the Whisper pre-trained models, we see that they have
a higher WER score of more than 90%. For fine-tuned models, LR0.3, LR0.2, and LR0.1 all
achieved above 80% WER. In addition, we see that as we change the threshold configuration
of Kirigami from being privacy-preserving (threshold = 0.1) to providing higher utility (thresh-
old = 0.5), the WER values decrease from 89.48% to 68.72% for fine-tuned whisper model. Even
the lowest WER 68.72%, which is produced by LR0.5 that leans more towards utility, is already
higher than the WER for SAMoSA [155], the best-performing privacy filtering technique out of
the four prior filters.

Utility Impact: Out of the five configurations, LR0.5 achieved the best classification accuracy
at 82.00% for pure activity sounds and 70.50% for overlaid sounds, which also outperforms all
4 prior filtering approaches that we evaluated. As the Kirigami filter is configured to be more
privacy-sensitive, the classification accuracy slightly drops. Even at LR0.2, the accuracy for both
pure and overlaid sounds is still above 60%. Another notable difference from prior approaches
is that for all Kirigami filters, the negative impacts from overlaid sound are very moderate, at
most 11.50% for LR0.5. This advantage of Kirigami, as we hypothesized, is because Kirigami
keeps the complete FFT values at the pauses of speech in the overlaid sound, which provides
adequate information for the activity recognition. This highlights another advantage of Kirigami
filters as to not only protect speech privacy but also maintain utility value even when activities
are performed when speech is present.

5.5.4 PER v.s WER Contextualization

While Phoneme Error Rate (PER) and Word Error Rate (WER) are widely used in speech recog-
nition literature, it is difficult to contextualize their privacy implications. For instance, one could
ask at what level of PER or WER is an audio featurization technique safe or risky. In addition,
it remains a question of what information can be inferred at different PER and WER values. To
understand the practical implications of speech inference, we conducted a IRB-approved user
study to contextualize how much information can users decipher from the inferred phonemes
and words.
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Questionnaire Design: We randomly selected ten sentences from the TIMIT dataset [80] that
independently convey a complete meaning. For instance, the sentence pizzerias are convenient
for quick lunch conveys a statement about pizzerias and lunch. Each sentence was subjected
to speech inference predictions through various privacy filters, and the PER and WER were
measured for each. For each one of the ten selected sentences, we randomly picked five different
predictions that fall into five ranges of PER or WER values. Using these sentences, we created
a pool of 50 scenarios, half of which are phoneme-based speech inferences, and the other half
are from word-based models. In each scenario, we ask the participants five questions, including
transcribing the sentence, identifying words from the original audio, choosing the most likely
speech topic, choosing the most likely speech content, and rating the similarity of the prediction
to the original sentence. In phoneme scenarios, we presented the segmented phonemes (e.g.,
p-iy-ch-er-r-iy-z ih-k-n-v-iy-n y-ih f-aa-r-ah k-w-ih-l-aa ch), spelling prediction (e.g., peceruries
enchant ye fara Quilla ch), as well as a reference phoneme pronunciation table. For word model
predictions, we only show the sentence prediction (e.g., combine play them grams a large bowl).

Study Procedure: In total, we recruited 10 participants (seven females and three males) from
the university with an average age of 24.7, ranging between 22 and 28 years. Out of the ten
participants, two participants self-identified themselves as having linguistic backgrounds. Before
the study began, we introduced participants to phonemes and speech inferences. Then, we went
over two example scenarios, one from a phoneme model and the other from a word model. We
guided participants through the process of answering five questions for the phoneme scenario
and five questions for the word scenario. We demonstrated how to transcribe the words and
infer speech content based on the phonemes and word predictions that contain errors, as well
as addressed any confusion that participants may have had regarding our study. Once the study
began, each participant was randomly assigned ten scenarios, one for each sentence. The ten
scenarios that a participant answers all have distinct PER and WER ranges.
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Figure 5.9: Results of user transcribing sentence (a), recognizing words (b), and inferring speech
topic (c) at various PER from ASR models.
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Figure 5.10: Results of user transcribing sentence (a), recognizing words (b), and inferring
speech topic (c) at various WER from ASR models.

Study Results: We summarized the results of the user study in Fig. 5.9 and 5.10. Figure 5.9 sug-
gests a steady increase in the difficulty of recognizing words from phonemes as PER increases.
Participants, on average, recognize around 40% of the words when phoneme prediction PER is
around 10 ∼ 20%. The majority of participants (50 ∼ 80%) are able to infer the topic of the
sentence from its phoneme prediction until 60% PER, especially when the user has some prior
knowledge of the context or has relevant options shown to them. Although on 80% PER, 40% of
participants selected the correct topic, we believe the participants answered the topics correctly
by chance after we manually examined the questions and phoneme predictions that these par-
ticipants received. Therefore, we consider 60% as a suggested threshold of PER, above which
minimal information can be obtained from the model inference. For WER, the difficulty in tran-
scribing and recogizing words increases as WER increases. Figure 5.10 shows sharp turning
point at 80∼100%, after which it becomes very challenging for participants to recognize any
words or topics. Therefore, we suggest an 80% WER threshold as the point at which the model
inference can provide only limited information. However, it is recommended to consider both
PER and WER together for better privacy assurance. This study provides useful insights into the
performance evaluation of ASR systems and can guide future research in this field.

5.5.5 Comparison of Kirigami and Prior Speech Filtering Approaches
Figures 5.11 (a) and (b) show the comparison of the privacy and utility tradeoffs of prior and
Kirigami speech-filtering approaches based on two benchmark datasets, pure Timit speech data
for speech inference (to assess privacy risks), ESC50 activity recognition dataset (to assess utility
benefits for activity recognition) and Timit speech overlaid on ESC50 dataset (to assess utility
benefits for activity recognition in noisy data) for phoneme and word based ASR models. Using
the scatter plot we can assess the effectiveness of the prior approaches and the Kirigami filters
in preserving privacy while preserving the utility for activity recognition. In the scatter plot, the
x-axis represents the level of privacy achieved by each approach, with greater distances from
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Figure 5.11: Scatter Plot of Privacy and Utility Trade-Off of Different Audio Featurization Tech-
niques. The vertical dashed lines represent the drop in accuracy for the utility measure in the
presence of simultaneous speech and ambient sounds (overlaid sounds). Informed by our user
study, we consider regions more than 60% PER and 80%WER as safe zones as little informa-
tion from speech can be inferred. The ideal region is the top-right corner as it maximizes error
in reproducing the spoken content and accuracy for the end goal task. For both plots, several
Kirigami configurations are near that corner. In (a), SAMoSA [155] is close to the corner too,
but the drop off in utility due to the presence of overlaid sounds is substantial. In comparison,
Kirigami filters are more immune to noisy environments.

the base indicating higher privacy protection. The y-axis represents the level of utility achieved,
indicating the effectiveness or performance of the activity recognition tasks. The privacy metrics
PER and WER values for the filtering approaches, picking the lowest PER values and lowest
WER values (most privacy-invasive) among the ASR models. Based on user study results, a
threshold of 60% for PER and 80% for WER is established as the point at which the filtering
approach is deemed safe. The utility metric is picked based on this high accuracy achieved after
the filtering technique using the ESC50 dataset. Ideally, the desired positioning of the filtering
approaches on the scatter plot is in the top right quadrant. This indicates achieving the highest
utility while simultaneously providing the highest privacy guarantees.

Figure 5.11(a) shows the most privacy-preserving filter for phoneme-based ASR models is
the Kirigami’s LR 0.2, while the least privacy-preserving filter apart from the baseline (WS256,
WS400) is CoughSense [133] and Synthetic sensors [129]. While other approaches, such as
SAMoSA [155], have high utility accuracy(76%) for pure ESC50 dataset, and their approach is
in the PER safe zone, their utility accuracy (26%) drops for activity recognition when noise data
is present (Timit speech overlay on ESC50). Based on this, the most ideal approach is Kirigami’s
LR 0.2 primarily due to higher PER numbers and better utility accuracy for both pure ESC 50
and Timit speech overlay on ESC50 datasets. Figure 5.11(b) shows the most privacy-preserving
filter word-based ASR models have both Kirigami’s LR 0.2 and Kirigami’s LR 0.1, least privacy-
preserving is CoughSense [133]. We also see that most of the prior speech-filtering approaches
are in the unsafe zone, including SAMoSA and PrivacyMic, indicating that these approaches are
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ineffective in preserving privacy. Considering both privacy and utility aspects, Kirigami’s LR
0.2 filter emerges as the most suitable choice due to its higher PER numbers and better utility
accuracy for both the pure ESC50 and Timit speech overlay on ESC50 datasets. It strikes a bal-
ance between privacy preservation and utility enhancement. Our Kirigami’s LR 0.2 filter offers
a compelling solution, providing a high level of privacy preservation while maintaining satisfac-
tory utility accuracy. However, as we delve into the extensive real-world study, the story takes an
unexpected turn. Contrary to our initial expectations, the effectiveness of the Kirigami’s LR 0.2
filter, while effective in controlled environments, was significantly impacted by the presence of
real dynamic background noise, diverse acoustic landscapes, and fluctuations in ambient noise
levels. To overcome this, we present an adaptive background masking process combined with
Kirigami’s speech filter as mentioned in Section 5.4.4 and evaluate Kirigami’s effectiveness in
discarding speech.

5.5.6 RQ3: Evaluation of Kirigami filter in the Real World
We conducted a user study to evaluate the robustness of our Kirigami filters for speech recog-
nition in real-world environments beyond using audio datasets. In addition, we evaluate speech
recognition accuracy in different locations with varying background noises and characterize the
Kirigami filter’s performance.

Scenarios Definition: We define three scenarios to characterize distinct speech and activity pat-
terns in real-world settings. In scenario 1, to showcase the Kirigami’s robustness to the duration
of speech, participants are given a script containing randomly selected short and longer-duration
sentences from the TIMIT dataset [80], each independently conveying complete meanings. They
are asked to speak three short sentences, averaging 15 to 20 seconds each, and three longer
sentences, taking approximately 1 minute, repeating each sentence three times. In scenario 2,
participants are tasked with speaking short sentences at varying distances (1, 2, and 3 feet) from
the source microphone. In Scenario 3, evaluating Kirigami’s utility preservation, participants en-
gage in diverse activities, including sporadic actions like clapping or typing, continuous actions
like vacuum running, and human voice-based activities such as coughing or laughing. Each of
these scenarios is repeated in three locations: a lab, a makerspace, and a conference room. We
chose these locations to include a diverse range of background noise profiles.

Study Procedure: For this study, we recruited 7 participants (4 Females, 3 Males) ranging from
22 to 28 years old (Average = 24.7 years). We capture audio data from two input sources:(1) raw
audio data from the Laptop (Macbook) microphone and (2) featurized FFT data from a micro-
phone connected to a microcontroller (ARM Cortex-M4F with 256 KB RAM and 1 MB flash).
Each participant is provided with a script and a set of sentences. To emulate a real-world setting,
we only put constraints on the entire scenario’s speech start and end time. However, participants
can speak the sentences in any manner they see fit. For each scenario, we evaluate Kirigami’s LR
filter with and without a background mask, denoted as Kirigami w/ BM and Kirigami w/o BM
and calculate speech and activity recognition accuracy.

Study Metrics: To measure the real-world performance of Kirigami filters to detect speech in the
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Figure 5.12: Comparing the performance of Kirigami LR filter with and without background
mask from Microcontroller and Laptop. The figure shows the percentage of (a) speech-filtered
and (b) activity data retained and overall activity recognition accuracy.

real world accurately, we use recall – percentage of speech removed when speech happens and
specificity – percentage data available for utility-based models. We selected these two metrics
due to their ability to evaluate filter performance independent of the composition ratio between
speech and non-speech durations in real-world scenarios. Depending on the application, the
ratio of speech and non-speech data can be different from the ratio in our user study or dataset.
For this reason, using accuracy as the metric in our case would be strongly affected by the
composition ratio of speech in our user study and might not be an informative indicator of real-
world performance. To measure the activity recognition performance, similar to before, we use
an AST-based model and calculate the classification accuracy in the real world. We further fine-
tuned the global model by taking partial activity data as training samples from the user study to
show an increase in classification accuracy.

Overall User Study Results: Figure 5.12 shows the performance comparison between the
Kirigami filter with and without the background mask when the filter runs on a Microcontroller
or Laptop. This result was obtained after the study was conducted among diverse participants
and conducted in different locations in the building (L1, L2, L3) with varying background noise.

In Figure 5.12 (a), we see that the Kirigami filter with the background mask (BM) consistently
outperforms its counterpart without BM, both on micro-controller and laptop platforms. The fil-
tered speech data percentage is notably higher with BM (Micro: 74.31%, Laptop: 71.02%) com-
pared to without BM (Micro: 22.89%, Laptop: 58.30%). Similarly, the presence of BM results
in a greater retention of activity data (Micro: 40.25%, Laptop: 57.50%) compared to without BM
(Micro: 34.64%, Laptop: 37.85%), as depicted in Figure 5.12 (b). This observation suggests that
the speech recognition performance of the Kirigami LR without BM is significantly impacted by
the diverse array of background noises present in real-world scenarios. Furthermore, our analy-
sis indicates that Kirigami with BM achieves higher activity recognition scores, particularly for
the laptop (without fine-tuning: 60.32%, with in-situ fine-tuning: 80.15%), surpassing the scores
obtained without BM (without fine-tuning: 48.41%, with in-situ fine-tuning: 60.32%). A similar
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Figure 5.13: Comparing the performance of Kirigami LR filter on Laptop with and without
background mask at various locations: L1-Lab, L2-Makerspace, L3-Conference Room.

trend is observed for the microcontroller, where Kirigami with BM (without fine-tuning: 28.97%,
with in-situ fine-tuning: 72.22%) consistently outperforms Kirigami without BM (without fine-
tuning: 26.19%, with in-situ fine-tuning: 48.41%). In summary, our findings demonstrate the
consistent and robust performance of the Kirigami filter with the background mask in speech fil-
tering across diverse environments. In contrast, the Kirigami filter without the background mask
experiences significant performance variations.

Evaluating Kirigami’s Performance Across Different Environments: To examine the re-
siliency of Kirigami LR filter to various background profiles in real-world scenarios, we con-
ducted the user study in three distinct locations characterized by diverse background settings in
our campus building. Location L1 represented a laboratory setting, a shared space with multiple
individuals, featuring a moderate-level background noise generated by continuous HVAC run-
ning and occasional conversations in the surroundings. Location L2, a maker space, exhibited a
background profile dominated by low-frequency noise from machinery. In contrast, Location L3,
a conference room with an open window, presented an external noise profile, including vehicle
honks and birds chirping. Location L3 was the noisiest background environment, while L2 was
deemed the least noisiest.

Figure 5.13 shows the comparison of Kirigami filter performance with and without BM in
different locations. In general, the Kirigami filter without BM exhibits less accurate speech re-
moval and demonstrates inconsistency across diverse locations. For instance, in location L1,
a laboratory environment, the percentage of filtered speech decreases to 33.86% without BM,
while the Kirigami filter with BM removes 66.43% of speech data. But in location L2, which is
the quieter environment, we see that both Kirigami filter with and w/o filters filter have compa-
rable speech percentage filtered showcasing Kirigami w/o BM performance changes in different
locations. However, in comparison, Kirigami w/ BM speech filtering accuracy is consistent in
different locations (L1: 66.43%, L2: 75.99%, and L3: 70.66%) while ensuring the utility of the
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Figure 5.14: Results of (a) phoneme-based speech inference, (b) word-based speech inference,
and (c) classification accuracy on prior filtering approaches on the clean and noisy dataset.

data preserved is also high across different locations.

Evaluating Speech Inference and Activity Recognition using Kirigami with BM: Speech
inference models often experience a decline in recognition accuracy when operating in noisy
environments. Similarly, Kirigami filters, operating in a detect-and-remove manner, might also
have to face challenges in filtering out speech in noisy environments. Therefore, we conducted
empirical tests to confirm that Kirigami w/ BM maintains its robustness under ASR models
when exposed to a noisy dataset. This investigation aims to assess the net impact of noisy data
on speech inference and activity recognition.

In this evaluation, we use the TIMIT dataset and the same 10 classes ESC50 and various
background environmental noises (TIMIT + Background) and (ESC50 + Background)/ The
constructed dataset retains the same structure as the original TIMIT and ESC50 datasets, ex-
cept various background noises are overlaid. As before, we fine-tuned the CRDNN model,
Wav2VecTransducer, and Whisper AI models to infer speech after filtering using Kirigami w/o
BM and Kirigami w/ BM. We fine-tuned AST models for activity recognition using the filtered
audio. In addition, we include the baseline model using an FFT of 256/128 windows and step
sizes, without Kirigami filters, to gauge the impact of background noise on the ASR model alone.

Fig. 5.14 summarizes the performance of the Kirigami filter with and without BM under
clean and noisy audio data. We include the summary of evaluation results for space limitation
from only the strongest performers: Wav2VecTransducer and Fine-Tuned Whisper AI models.
Overall, Kirigami w/ BM showed superior protection for speech privacy and preserved more
utility values for activity recognition models than Kirigami w/o BM. As seen in Fig. 5.14 (a) and
(b), Kirigami w/ BM remain high PER and WER across clean and noisy datasets, demonstrating
its reliable privacy protection under noisy environments, while Kirigami w/o BM suffers from a
degradation in PER. As seen in Fig. 5.14 (c) showed that Kirigami w/ BM outperforms Kirigami
w/o BM on both the original ESC50 and noisy datasets. The superior performance of Kirigami
w/ BM, even for the clean case, is possibly due to its capability to suppress intrinsic background
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noise in the original ESC50 dataset.

5.6 Discussion and Limitations

Evaluation or Privacy Filtering Models: Replicating and testing each proposed technique indi-
vidually is time-consuming and expensive in terms of cloud computing credits needed, especially
with model re-tuning or re-training. To address this, we carefully selected at least one prior work
representing each type of privacy filtering that we identified. While this selection provides valu-
able insights into the performance of different filtering approaches, it may not encompass the
entire spectrum of privacy filtering techniques available. Future research could explore a broader
range of filtering techniques to gain an even more comprehensive understanding of their effec-
tiveness and trade-offs. We believe that Kirigami’s edge filtering approach to detect and filter
speech-like segments will still remain superior to other approaches in terms of privacy.

Alternative ML Model for Filtering: We focused on using LR as the primary ML model used
by our Kirigami filter rather than exploring other alternatives. While our results show that our
LR-based Kirigami filter is quite effective, other ML models specifically designed for edge de-
vices, such as TinyML or lightweight recurrent neural network (RNN) models, could offer addi-
tional benefits and trade-offs. Our goal was to use a resource-frugal shallow model that could run
on a wide range of IoT devices, but we leave the investigation of these alternative ML models as
a future exploration.

User Study Validity: We acknowledge the smaller size of our participant pool for the user study
as a limitation.A larger and more diverse sample size would further enhance the validity and
generalizability of the study results. A larger sample would also provide a broader representation
of user preferences, behaviors, and perceptions, leading to more robust conclusions.

Additional Metrics for Speech Privacy: Our study highlights an important consideration re-
garding the use of Phoneme Error Rate (PER) and Word Error Rate (WER) as metrics for eval-
uating speech privacy. While PER and WER are commonly used metrics for assessing the per-
formance of automatic speech recognition (ASR) systems, they are not specifically designed for
privacy evaluation. Although we measured and reported the “safe zones” based on our user study,
indicating areas where privacy is preserved, it is important to note that these safe zones are not
guaranteed to be completely safe from privacy risks. Our findings suggest that while PER and
WER are useful in determining the privacy characteristics of audio featurization, they should
be complemented with additional privacy evaluation measures to provide a more comprehensive
assessment of speech privacy. Further research into specialized metrics or evaluation methodolo-
gies for speech privacy would contribute to the development of more reliable and robust privacy
evaluation frameworks.
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5.7 Conclusion
Deep learning-based automatic speech recognition (ASR) has posed new challenges to privacy-
focused audio featurization techniques. Such a risk exists primarily because modern ASR sys-
tems can be tuned to recognize speech content specifically to these audio featurization tech-
niques. We aim to systematically characterize various featurization techniques on audio data, par-
ticularly those that extract statistical and spectral features using Fast Fourier Transforms (FFTs),
and evaluate the privacy risks and utility tradeoffs. We first explore different FFT-based featur-
ization approaches proposed in prior works that aim to remove sensitive information from raw
audio while providing utility to activity recognition tasks. We then study the recent advance-
ments in deep learning-based automatic speech recognition (ASR) and their potential impact on
these edge audio featurization techniques. We also investigate the utility of different featurization
approaches in generating discernible features for machine learning prediction. We then propose
Kirigami, a general-purpose edge audio speech filter resilient to various speech recognition or
audio reconstruction techniques while being feasible to implement on edge devices with lim-
ited computational power. We plan to open-source our Kirigami codebase for researchers and
practitioners to use and build upon.
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Chapter 6

Real-World Applications Enabled by our
General-Purpose Sensing System

The Internet of Things (IoT) stands poised to revolutionize our living environments, yet its trans-
formative potential remains largely unrealized due to privacy concerns and practical deployment
challenges, as discussed in earlier chapters. To address this, in the preceding chapters, we intro-
duced the concept of general-purpose sensing systems and presented novel approaches to address
the challenges of privacy, extensibility, and practical deployability in IoT environments. We dis-
cussed the design and implementation of Mites, a scalable general-purpose sensing platform,
MLIoT for seamless machine learning integration, TAO for context recognition, and Kirigami
for privacy-preserving audio processing. While these technical solutions lay the groundwork for
overcoming many of the limitations of traditional purpose-built IoT systems, the ultimate success
of general-purpose sensing systems depends on their ability to enable researchers and developers
to build a wide variety of compelling IoT applications.

By leveraging the versatile and comprehensive sensing capabilities of the system support fea-
tures, I demonstrate how a variety of applications can be rapidly prototyped and deployed across
different domains, including building management and maintenance, occupancy modeling, and
activity recognition. These applications showcase the potential of a general-purpose sensing
system to serve various stakeholders within a building environment, such as occupants, build-
ing managers, and facility operators. Each application highlights different design primitives of
the system, illustrating how the modular and scalable architecture of a general-purpose sensing
system can be adapted to meet the specific needs and challenges of diverse use cases.

In the following sections, we present five exemplary applications, each highlighting the power
and flexibility of a general-purpose system in a unique context. By doing so, we aim to demon-
strate the system’s capability to not only address current challenges in smart building environ-
ments but also to pave the way for future innovations.

This section presents five exemplary applications in different domains: building management
and maintenance (Section 6.1), occupancy modeling (Section 6.2) and activity modeling (Sec-
tion 6.3). The goal is to demonstrate how the general-purpose system can be used to rapidly pro-
totype new applications. In addition, these applications are geared towards different stakeholders
of the building (occupants, building managers, etc.) and leverage different design primitives of
our system.
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6.1 Management and Maintenance
Prior efforts have prototyped applications for building managers such as building environmental
modeling [14, 49], fault diagnosis and detection (FDD) [107, 158, 183], and management and
maintenance [69, 166]. Such applications can help with obtaining building rating certifications
around Well Building standards [227] that assess the sustainability of the building and the health
and well-being of the building occupants. These applications benefit from the Mites system as
it provides necessary primitives such as rich multi-modal sensing at scale while ensuring the
essential privacy features needed for the building occupants (e.g., providing data only at the
granularity the applications need). We present two applications we built on top of the Mites
system for monitoring the building environment and the health of the sensor deployment.

6.1.1 Spatial Environment Monitoring Application
To provide a comprehensive view of the environment within a building (e.g., hot spots in the
building), we implemented a spatio-temporal viewer application that stakeholders such as build-
ing managers and occupants can use to dynamically visualize current and historical sensor data
captured from Mites devices. Figure 6.1(a) illustrates the temperature data from Mites de-
vices in different physical spaces of the building as a heatmap (red=warm, yellow=less warm,
blue=colder). We see that certain rooms and corridors in the building are warmer than others,
indicating higher setpoints or potentially higher occupancy. Importantly, to ensure the privacy
of the occupants of location-obfuscated rooms, the Mites system ensures that sensor data from
these locations are random and grouped together into a set of rooms (Section 2.3.3). Building
Managers can use this application to detect HVAC system faults and diagnose whether they are
localized or systemic. In addition, when other environmental sensor data is overlayed on the
same floorplan, it can be used for environmental modeling applications [49]. Building managers
can also see how daylight varies across spaces (using the color and the illumination sensor) or
isolate noise issues when occupants complain about adding additional insulation to walls.

6.1.2 Device Health Monitoring Application
The Mites system gathers numerous health metrics from each Mites device, e.g., the status (on-
line/offline), the number of reboots, and signal strength. While building managers can merely
view these data as a time series plot, it is often challenging to diagnose faults and find the pri-
mary cause without contexts such as the physical location or how devices in close proximity are
performing (i.e., “is WiFi poor in a particular area?”). Figure 6.1(b) shows our spatio-temporal
interface showing the reboots experienced by the Mites devices on one floor of our building.
Individual circles show the location of the Mites device, and the color gradients denote the num-
ber of reboots (dark green indicates low reboots per day, while light green and yellow denote
higher reboots). Our interface allows the selection of the desired time range (e.g., January 1st
to 31st, 2022) and the replay of the data during that period. This interface has been an invalu-
able debugging tool during our deployment of 314 Mites devices on our building testbed to find
transient and/or persistent issues. Our campus network team worked closely with us throughout
the process and has repeatedly mentioned that the Mites deployment in the building and this
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Figure 6.1: Management and Maintenance applications built on the Mites system. Figures (a)
and (b) showcase the spatio-temporal view of the temperature data of each office on a specific
floor, captured from the Mites. The color-scaled temperature values that indicate the variation of
warmth in rooms are less accurate for location-obfuscated data. (b) The location of individual
Mites devices anchored on the floor plan. The color for each circle is filled with a corresponding
scaled RGB value based on the number of reboots of that device – an important metric to assess
the devices’ health spatially.

specific interface were incredibly useful to them in finding and fixing problems with the WiFi
network. Specifically, the Mites devices that were having trouble connecting to WiFi, and their
locations, formed a distributed WiFi client ‘observatory’ of sorts and helped identify WiFi dead
spots, incorrect WiFi AP TX power configurations, and an intermittent issue with authentication
credentials not being cached. In particular, this was the case, even though we have an enterprise-
grade WiFi infrastructure.
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6.2 Occupancy Modeling
Applications in the domain of occupancy modeling, such as occupancy detection [83, 203], oc-
cupant identification [74, 168], and occupancy-based control [9, 24, 30, 116] benefit from sensor
deployment such as Mites. These applications primarily model the occupancy of a space or en-
able occupancy-based equipment control (e.g., HVAC). Such applications are valuable for build-
ing managers for energy-efficient building operations and for occupants who want comfortable
workspaces. Supporting such applications requires several features of the Mites system such as
rich sensing, privacy support, scale, and ML. We present two such applications that we have built
for the availability of conference rooms and quiet spaces to work in the building.

(a) Conference Room Availability App (b) Find a Quiet Space App

Figure 6.2: Occupancy modeling applications built on top of Mites platform. Figure (a) show-
cases an occupancy application that detects the availability of conference rooms using PIR sensor
data. Figure (b) shows an application that identifies quiet spaces in the building using acoustic
features from multiple Mites devices (wall and ceiling) in the same location.

6.2.1 Availability of Conference Rooms
Building managers and occupants often struggle to find meeting rooms and other common spaces.
For example, conference rooms that are previously booked for meetings remain unused if the
meetings are canceled or finished earlier. To address this, we built an app on top of the Mites
system to identify rooms in the building as shown in Figure 6.2(a). This application connects
to the Mites platform, identifies public resources such as conference rooms, accesses the sensor
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data (PIR) from the Mites devices located on the ceiling, and predicts the occupancy (green-
available, red-occupied) of the space. The application also uses the ML features (Section 3) in
our system to train an ML-based binary classifier model to distinguish between occupancy and
non-occupancy. Building managers can use this coarse usage data and correlate it with environ-
mental parameters like the temperature, humidity, daylight, glare, and noise from surrounding
spaces to determine and ultimately fix issues that lead to some conference rooms being used less
over others.

6.2.2 Find a Quiet Space

Similar to the previous application, identifying quiet or noisy locations in the building is crucial.
Sound within an enclosed space from HVAC equipment, appliances, and other people, have
shown to hinder productivity, focus, and memory retention in students and office employees
[227]. We built a Find Quiet space in the building app that utilizes sensor data (microphone)
from multiple Mites devices in an office/shared space (ceiling and wall) to accurately obtain
the noise level in the space. Specifically, for larger rooms or halls, combining audio data from
different locations is important to (a) accurately predict noise levels and (b) localize the area
with higher noise levels in the room. The application leverages the Mites system’s scalable
stream processing capability (Section 2) to obtain real-time sensor data from multiple devices
in the room. The application then converts the obtained FFT features from the audio sensors to
individual decibel values [68]. We then use the WELL building standards [228] to calculate the
Sound Pressure Level (SPL) and compare it with the threshold provided to identify quiet spaces
over noisy ones.

Music Playing

PredictionTraining

Model Configurations

Give examples of activity data Fine tuning data labels

(a) Tools for Machine Learning

Activity Tracking App
Below are the Activities happening.
Last updated 1 mins ago

Floor 1, Kitchen

Activity: 
Making coffee

Floor 2, Kitchen

Activity: 
Unknown

Floor 3, Kitchen

Activity: 
Unknown

Floor 2, Makerspace

Activity: 
Vacuum cleaning

(b) Activity Tracking App

Figure 6.3: Activity modeling applications built on top of Mites and MLIoT platforms. Figure
(b) shows the end-to-end ML toolchain illustrating data collection, annotation, model selection,
training and inference. Figure (b) shows an activity recognition application that can detect activ-
ities in a kitchenette such as making coffee and heating food utilizing several sensor channels.
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6.3 Human Activity Modeling Applications
Applications in the domain of human activity modeling will also benefit from the Mites sys-
tem [55, 127, 128]. The occupants of the building can use this information to understand their
activities in their personal spaces and assess their wellness (e.g., productivity or stress). These
applications are geared towards detecting activities and their patterns and require several capabil-
ities offered by Mites, namely, rich sensing modalities, data annotation tools for in-situ training
of activity labels, scalable ML, and support for privacy controls. We built an activity recogni-
tion application to identify common activities performed in public locations, such as kitchenettes
and our maker space. Figure 6.3(a) illustrates the scalable ML tools to annotate activities of
interest, train an ensemble of models, and deploy them for prediction. It begins with the data
collection phase, where raw multimodal sensor data is gathered from various sources, such as
environmental sensors and wearable devices. This is followed by the annotation process, where
the raw data is labeled with meaningful tags, providing context for supervised learning tasks.
Model selection comes next, where appropriate ML models are chosen based on the application
requirements, sensor data, and computational constraints. Finally, the training phase fine-tunes
the models using the annotated data to generate accurate inferences, transforming the raw data
into actionable insights while supporting scalable and adaptive IoT deployments. This holistic
process ensures seamless integration of machine learning with general-purpose sensing systems.

Figure 6.3(b) shows the activity recognition application for kitchenettes predicting activities
such as making coffee, heating food, using the sink, or toasting bread using the sensor data
from the Mites devices located in the space (particularly the accelerometer and microphone).
Notably, these applications demonstrate a complex activity recognition running simultaneously
over multiple public spaces, predicting activities it was trained to recognize, which would not be
possible without the features outlined in this thesis.

6.4 Extensible Design for Rapid Prototyping Applications
The Mites system exposes a set of REST APIs and PubSub interfaces to its backend to access
the sensor data from the Mites devices or the metrics data that allow the developers to prototype
IoT applications rapidly. Our REST APIs support individual and batch queries of time-series
data for configurable time ranges. To support real-time low latency streaming of both sensor data
and inferred events, we incorporated a real-time PubSub broker service (RabbitMQ) that uses
the Advanced Message Queuing Protocol (AMQP) protocol. This service enables event-based
asynchronous communication to deliver real-time data to different subscribers (applications) at
scale, allowing many-to-many communication patterns. Notably, both our REST API and the
PubSub interface use the same underlying permission mechanisms for enforcing access control
to specific sensors from each Mites device for security and privacy. Using these interfaces, new
applications and services can be easily integrated with the underlying Mites system, with less
than 40 lines of code.
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Chapter 7

Conclusions and Future Directions

This thesis has presented a comprehensive approach to addressing the challenges of privacy, ex-
tensibility, and practical deployability in IoT environments through the development of general-
purpose sensing systems. My work spans five key areas, each contributing to the overarching
goal of creating safe, secure, and user-friendly IoT infrastructures.

First, I introduced Mites, a high-fidelity, general-purpose sensing platform that incorporates
onboard featurization to balance data privacy with utility. Through architectural optimizations
and rigorous evaluation, I demonstrated Mites’ ability to support diverse applications while main-
taining high data delivery rates in real-world deployments.

Second, I developed MLIoT, an end-to-end machine learning system that supports the en-
tire lifecycle of IoT applications, from training and efficient service to re-training based on user
feedback. MLIoT integrates multiple distributed components and optimization techniques, mak-
ing our system adaptive, dynamic, and well-suited to handle the diversity of IoT use cases. In
addition, this system addresses the critical need for privacy controls throughout the ML model
lifecycle, providing users with fine-grained control over model training, serving, and deploy-
ment. MLIoT’s flexibility and scalability make it well-suited for the diverse requirements of IoT
applications.

Third, I presented TAO, which introduces a context-sensing framework designed to elevate
the abstraction of ML inferences, enhancing their utility in diverse applications. Using OWL-
based ontologies, the TAO system models the different activity patterns as sequential, parallel,
or interleaved activities as context information. The temporal pipeline uses an unsupervised
clustering algorithm to detect context from new activity patterns and automatically extends our
ontology based on new activity patterns.

Fourth, I proposed Kirigami, a general-purpose edge audio speech filter that balances privacy
protection with utility for activity recognition tasks. Through systematic characterization of
various featurization techniques, I developed a framework for evaluating the trade-offs between
privacy and utility in audio data processing.

Finally, I conducted a longitudinal user study to examine the real-world impact and user
adoption of our general-purpose sensing systems. This study provided crucial insights into user
behavior, privacy preferences, and data-sharing patterns over time. By investigating the relevance
of existing privacy primitives, the impact of perceived application utility on privacy choices, and
the nature of data sharing between user groups, I validated the effectiveness of our technical
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Figure 7.1: Overall timeline of the different projects outlined in this thesis. I highlight key
events at the top and the features we worked on for different parts of our stack. The timeline
shows the iterative design process, including multiple revisions to the Mites device, backend,
and integration with services such as ML.

solutions and identified areas for further improvement.
Collectively, these contributions represent a significant step forward in realizing the full po-

tential of IoT in transforming our living environments. By addressing key challenges in privacy,
extensibility, and practical deployment, my work lays the foundation for the widespread adop-
tion of general-purpose sensing systems. The longitudinal study, in particular, bridges the gap
between theoretical capabilities and practical acceptance, providing a holistic view of how our
proposed solutions perform in real-world settings. My work has been deployed to the real world
at TCS Hall, a five-floor mixed-use office building on the Carnegie Mellon University campus
used today by more than 200+ occupants. I sincerely hope my work will impact future re-
searchers and practitioners attempting to design and deploy a similar general-purpose sensing
system for buildings.

7.1 Lessons Learnt

We have been working towards our vision of a general-purpose ubiquitous sensing infrastructure
to enable smart building applications for more than five years. Figure 7.1 illustrates a timeline
view of various key events in our iterative process of design, implementation, deployment, and
refinement with real-world stakeholders, including building architects, the facility design group,
contractors, and building occupants in the loop. While IoT devices are being deployed world-
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Campus Wi-Fi Network 
Maintenance

Server Restart

Figure 7.2: Overall packet rate performance (0 - 100%) of the each Mites device over a four-
month period. From Oct 2021 - Jan 2022, we see the trend that the packet rate of devices changes
from worse (dark blue) to better (light blue), while some of them continue to remain worse due
to WiFi receptivity issues after several upgrades to the campus WiFi network maintenance (e.g.,
software updates to APs) over time.

wide, including buildings, requirements such as security, user privacy, maintenance, and ML
integration are often not first-class design constraints (Section 4.2). We believe that our insights
into the design, development, and deployment of our building-scale sensing infrastructure based
on our stated set of goals will be useful to researchers and practitioners doing similar deploy-
ments in the future, helping them achieve systems that are likely to succeed in the real world. We
have organized our takeaways into five categories:

7.1.1 Iterative Hardware Design: Don’t Reinvent the Wheel, but You May
Have to Build Your Own

Before embarking on building our own multi-modal sensor package, we attempted to leverage
existing designs such as the TI Sensor tag or Rasberry PIs with sensor “HATs”. Ultimately, they
were all inadequate for several reasons, such as lack of sensing capabilities, inextensible design,
cost, poor programming support, lack of flexibility, etc. Ultimately, we decided to build our own
prototype and leverage the sensors chosen by other researchers. Therefore, our first prototype
was a ‘Lo-Fi’ breadboard version with ten different sensors (Figure 2.2(a)). After multiple itera-
tions, we finally came up with a custom PCB design optimized for size, cost, and layout (Figure
2.2(b-c)). Notably, testing these prototypes in the real world was crucial. However, our first
design worked (as shown in figure 7.3 and figure 7.1 as I1: Mites Rev1 Design), we decided
to eliminate some sensors (e.g., non-contact infrared temperature sensor) since they were super-
seded by others (e.g., PIR - Passive Infrared) or were capturing similar information at higher
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costs (e.g., a geophone is expensive compared to a MEMS IMU) [128].

Figure 7.3: The set of images showcases the development journey of the Mites hardware pro-
totype, from initial design to full-scale deployment. The first five images highlight early-stage
prototype designs. The next two images transition to the factory setting, where batches of Mites
devices are assembled on production lines, showing the systematic process of building the hard-
ware at scale. Next, a hands-on moment is captured where we manually flash firmware onto
over 350 devices, ensuring each unit is correctly programmed. The final four images depict the
deployment phase, showing the Mites devices installed on the walls and ceilings of a building at
Carnegie Mellon University, ready to collect data and power real-world applications.

Moreover, during the initial design of the Mites hardware, after much exploration, we de-
cided to build our Mites device around the Particle’s P0 module [171]. It provided us with the
base prototyping functionalities in their system firmware (open source DeviceOS) and provided
complete flexibility for building and customizing our application firmware. This saved us signif-
icant time in the development process but also created a dependency on Particle’s P0 hardware
module, their DeviceOS, and any limitations (limited memory, older microcontroller, limited
support, etc.).

7.1.2 Known Unknowns and Unknown Unknowns for Sensor Deployments
During our initial deployment of devices in the real world, we encountered some unexpected
hardware and software problems. For example, we implemented hardware and software watch-
dog timers (Section 2.3.2) to force devices to reboot when they go into different error states,
believing that it would clear all expected faults (e.g., known unknowns). Indeed, these recovery
mechanisms worked for a small scale of sensors (10 - 50 sensors) for a few months, but when we
deployed all 314 sensors in our building, multiple devices would periodically stop sending data,
and the watchdog timers did not help recovery (e.g., unknown unknowns). After several weeks
of debugging our hardware (August 2021, as shown in Figure 7.2), our backend, and numer-
ous discussions with the campus networking team, we found that the enterprise WiFi controllers
installed in the building randomly moved some of the Mites devices to an unregistered mode,
allowing WiFi association but dismissing connection to our backend and hence not triggering the
watchdog. This issue was resolved by manually clearing the state of the Aruba WiFi controllers,
and a bug was filed with the vendor.
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7.1.3 Real-world Conditions are Chaotic and Unpredictable

Each Mites device sends 2 KB packets at a maximum rate of 10 Hz (that is, 20 KB/s) over tradi-
tional enterprise 2.4 GHz WiFi networks. During our initial deployment at different locations on
campus, we did not identify any problems with packet rate drop or connectivity issues of the de-
vices. Additionally, we assumed that sending data at 20 KB/s from 300+ devices would be easily
handled by enterprise WiFi networks. However, as mentioned in Section 2.3.3, achieving reliable
packet delivery at 10 Hz was nontrivial even for enterprise WiFi networks (Figure 2.6(a)). The
potential reasons for this include limited non-overlapping channels in 2.4 GHz, co-channel inter-
ference, and contention between Mites devices sending packets. To overcome this, we developed
the adaptive packet rate mechanism based on real-world network conditions (Section 2.3.3). A
key lesson based on our experience building-scale, high-fidelity general-purpose sensing requires
comprehensive mechanisms to dynamically adapt to existing network conditions.

7.1.4 Deployability is the Key to Reducing Costs

We optimized the design of the Mites system for deployability, which helped us reduce the
overall cost of device deployment and labor costs to install them. For example, our Mites de-
vices, running 110 V AC drop, are prohibitively expensive in buildings due to code requirements.
Hence, to overcome this, we chose low-voltage Power-over-Ethernet (PoE) and plenum-rated
Ethernet cables, which are substantially cheaper to run. In addition, to simplify this deployment
process, especially for contractors who deployed the Mites devices, we programmed the Mites
devices to have a “SoftAP” mode, which we extended to the application firmware. Therefore,
during the deployment, to connect the Mites to the WiFi, the contractor would pull a Mites device
from a box, connect it to the POE cable inside the 1-gang work box, and use SoftAP mode to
connect it to the designated WiFi network. After the device successfully connected to our back-
end, denoted by its LEDs, using a simple interface, the contractor marked the device (indicated
by its ID) with its physical location. End-to-end, our contractors reported that they took between
15 - 20 minutes per device installation at a labor cost of $100 / hour. This led to an estimated cost
of $25 - 35 per device. Note that this did not include the cost of running the Ethernet cables to all
locations, adding 1-gang wall boxes, and connecting the cables to network switches in the clos-
ets. Overall, to run the additional POE cables to the network equipment closet and single-gang
workboxes, for around 350 total PoE Ethernet drops, our contractors charged us around $120K
USD, including the installation of the actual sensors (resulting in approximately $340 per Mites
device installation). Without these features, retrofitting the devices in an existing building would
lead to higher costs. Our key insight here is that POE drops should be opportunistically added to
convenient locations when a new building is being built to future-proof it for making it smart by
simply adding Mites-like sensors.

We designed two versions, both of which are powered by a standard USB-A male plug.
Furthermore, to support ad-hoc deployments of Mites sensor nodes, especially when 110 V AC
wall power is available, we design our device to be powered by a standard USB power adapter.
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7.1.5 Community Sense of Privacy is the Key to Building Trust

We designed and implemented numerous privacy mechanisms on the Mites device itself (e.g.,
edge featurization and denaturing of sensitive sensor data), as well as expressive transparency
primitives and controls enabled by our Mites system and application. We built these privacy
controls in anticipation of building occupant privacy requests. All TCS Hall occupants were
informed of the Mites deployment (August 2020), explaining the sensor boards, our plan to
submit a study design to the IRB and begin collecting sensor data, and ways to contact the
research team. Notably, this was before occupants moved in since COVID restrictions were
still in place. Then, after our IRB protocol was approved (March 2021) and occupants had
started to occupy the new building, we held various town halls (the first of which was in April
2021, with the last held in July 2021). In these meetings, we discussed the Mites deployment
and answered any questions or concerns. Throughout this community feedback period, we also
provided mechanisms for community members to provide anonymous feedback. However, as
with any new technology, there was skepticism and pushback from some members of our TCS
Hall community. This feedback from our community members and occupants of the building
was extremely helpful and led us to redesign some aspects of our data model (Sections 2.3.3),
such as reducing the indirect association risk. Importantly, this improvement period happened
before any sensor data was collected. We also allowed building occupants to request unplugging
the Mites device in addition to the POE-based power-off mechanisms we had designed from the
start of the project. We also point readers to our 20-page Mites FAQ document [153], describing
our security primitives as well as the various notice and choice mechanisms we implemented for
occupant privacy. Although this feedback cycle took time, it was critical for us to incorporate
feedback, improve the system, and gain community trust. As of the time of writing, after more
than four years of deployment, nine offices (out of approximately 110) have opted out.

7.2 Future Directions

Building on the foundational work of designing high-fidelity, general-purpose sensing platforms,
developing end-to-end machine learning systems for IoT, establishing frameworks for generating
rich contextual insights, and implementing privacy-preserving audio filters, several promising
future research directions can be pursued. These directions aim to address emerging challenges
and leverage new opportunities in the IoT landscape.

7.2.1 Improving Support for Privacy

Dynamic and Adaptive Privacy Controls: My thesis demonstrates the importance of providing
privacy controls in sensing systems. However, a critical next step is to develop dynamic privacy
controls that adjust based on the context of data collection and usage. These controls should
recognize different scenarios and apply appropriate privacy measures. For instance, privacy set-
tings in a private home environment should differ significantly from those in a public space like
a office building or a gym.
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Future research should focus on adaptive privacy mechanisms that learn from user interac-
tions and preferences to provide a tailored privacy experience. These mechanisms could use
machine learning to predict and enforce privacy settings dynamically, ensuring that user privacy
is maintained without compromising the functionality and utility of the sensing systems.

Privacy in Shared Spaces: Privacy management is a significant concern with sensing systems,
especially in shared user spaces. While my thesis addresses some of these concerns by using
privacy-by-design techniques to featurize raw data and provide users with control over who gets
access to their information, these measures do not fully mitigate all privacy issues a user may
encounter. The limited control users have over sensors that capture sensitive information in a
shared environment leads to privacy concerns, as these systems often apply the same privacy
policy to everyone in the space. Future research should explore methods to enable individualized
privacy control for each user. For example, if Alice does not want to be tracked through the
building, she should be able to opt out, whereas if Bob wants to be tracked to receive personalized
recommendations, he should be able to opt in within the same shared space. This approach
would allow for more nuanced and user-specific privacy management, enhancing user trust and
acceptance of IoT systems.

Privacy, Utility, and Data Sharing in General-Purpose Sensing Systems: The Internet of
Things (IoT) has the potential to transform our living environments, but its widespread adoption
remains hindered by privacy concerns and deployment challenges, as outlined in previous chap-
ters. While this thesis introduced novel approaches—such as the Mites platform for scalable,
general-purpose sensing, MLIoT for machine learning integration, TAO for context recognition,
and Kirigami for privacy-preserving audio processing—these technical solutions alone are not
sufficient for driving adoption.

Future work should focus on addressing the real-world user acceptance and long-term sus-
tainability of these systems. This includes conducting longitudinal studies to evaluate how users
interact with general-purpose sensing systems in their daily lives, how privacy concerns evolve
over time, and how well these systems adapt to changing stakeholder needs. Specifically, a
month-long user study could be conducted to understand the interaction between users and
general-purpose sensing platforms like Mites. This would provide valuable insights into the
practical utility of the system and the user perceptions of privacy controls and system trans-
parency. Additionally, future research should explore how these systems can continue to evolve,
improving upon key areas like extensibility, privacy management, and deployment scalability,
while fostering a more robust ecosystem of real-world applications. Long-term user feedback
and practical deployment studies will be essential in bridging the gap between the theoretical
capabilities of general-purpose sensing and their successful integration into everyday environ-
ments.

7.2.2 Real-world Activity Recogntion
Improving Data Labeling Techniques For Building Deployable Systems: Real-world activ-
ity recognition presents unique challenges, primarily due to the variability in background noise,
sensor placement, user behavior, and the difficulty in capturing accurate label data. My the-
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sis addresses some aspects of this by using clustering techniques and labeling tools to capture
accurate label data; there is more work to do here. Future research should build upon this by
exploring advanced clustering algorithms and semi-supervised learning techniques to minimize
user involvement further while maintaining high accuracy.

Foundation models for Activity Recognition: The building of foundation models for sensor
data holds promise for improving activity recognition. Foundation models, pre-trained on large
and diverse datasets collected from real-world TCS deployment, can provide robust feature rep-
resentations that generalize well to various real-world smart-building scenarios. Future research
should focus on adapting these models to sensor data, optimizing them for the specific char-
acteristics and constraints of IoT environments. This approach can significantly enhance the
performance and adaptability of activity recognition systems, making them more practical.

Multimodal Machine Learning Approaches to Improve Accuracy: My thesis highlights the
integration of various sensing modalities and the need for a dedicated ML platform to handle the
resulting data. Future work should focus on developing multimodal machine learning algorithms
that can integrate and analyze diverse data sources such as audio, environmental, and motion
sensors. These algorithms can provide richer and more accurate insights while ensuring that
the privacy of each data type is adequately protected. Future research should also aim to create
robust and scalable multimodal models that can adapt to varying data quality and availability.
These models should be capable of handling real-time data streams and making inferences that
respect user privacy across different contexts and applications.

7.2.3 Synthetic Data Generation
My thesis shows the potential of using data from IoT systems to train machine learning models.
As IoT systems generate vast amounts of data, synthetic data generation can play a critical role in
augmenting training datasets, especially when real-world data is scarce, sensitive, or expensive
to obtain. Future research can focus on developing sophisticated generative models that create
high-quality synthetic data while preserving the properties and privacy of the original datasets.

Selective Data Obfuscation for Privacy: A critical area for future research is selective obfus-
cation techniques within synthetic data generation. These techniques aim to preserve the utility
of data for model training while selectively obfuscating sensitive information to protect user pri-
vacy. Selective obfuscation involves masking or altering sensitive attributes in synthetic datasets
while retaining the statistical characteristics and utility required for effective model training. This
approach ensures that synthetic data maintains privacy guarantees, preventing unauthorized dis-
closure of sensitive information. Research can explore advanced methods, such as differential
privacy mechanisms tailored for synthetic data generation, which provide rigorous privacy guar-
antees without compromising the utility of the data. Furthermore, investigating the application
of selective obfuscation across different sensing modalities—such as audio, environmental, and
motion data—can expand its utility and effectiveness in diverse IoT applications. Developing
scalable algorithms and frameworks for selective obfuscation will be crucial to supporting large-
scale deployments of IoT systems while complying with stringent privacy regulations and user
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expectations.

7.2.4 Robust Edge Computing
My thesis illustrates the importance of edge computing in reducing latency and improving pri-
vacy by processing data locally. To further enhance edge computing capabilities, future research
should focus on developing lightweight and efficient algorithms that can run on edge devices
with limited computational resources. Another important direction is the development of robust
frameworks for edge-cloud collaboration. Such frameworks should allow seamless data process-
ing and analytics across edge and cloud environments, optimizing performance while maintain-
ing privacy and security. This approach would enable more efficient and secure IoT systems that
can adapt to changing conditions and user requirements.

7.2.5 App Store for General-Purpose Sensing Systems
An innovative avenue for future research involves the development of an app store tailored specif-
ically for general-purpose sensing systems in IoT environments. This app store would serve as
a centralized platform where developers can publish, distribute, and manage applications that
leverage sensor data for diverse use cases.

Access Control Mechanisms: One crucial aspect to explore is the implementation of robust
access control mechanisms within the app store framework. This includes defining policies
and protocols that govern how applications access and utilize sensor data. Privacy-enhancing
technologies, such as differential privacy and encryption, can be integrated to protect sensitive
information while enabling meaningful data utilization.

App-to-App and App-to-User Privacy Controls: Future work could delve into enhancing pri-
vacy controls within the app store ecosystem. This involves enabling users to define granular
permissions for each application, specifying what data can be accessed and how it can be used.
Additionally, mechanisms for managing interactions between different applications (app-to-app)
and between applications and users (app-to-user) should be explored to maintain privacy and
security across the ecosystem.

Sensor Views and Data Governance: To empower users with greater control over their data, re-
search can focus on developing intuitive sensor views within the app store interface. These views
would provide transparent insights into which sensors are active, what data is being collected,
and how it is being utilized by installed applications. Advanced data governance frameworks can
also be explored to enable users to modify data-sharing settings dynamically based on changing
preferences and contexts.

Community and Developer Engagement: Lastly, fostering a vibrant community of developers
and stakeholders is essential for the success of the general-purpose sensing ecosystem. Initiatives
could include providing comprehensive developer tools, APIs, and documentation to streamline
app development and deployment.
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