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Abstract

Software systems are designed and implemented with assumptions about the
environment. However, once a system is deployed, the actual environment may
deviate from its expected behavior, potentially leading to violations of desired
properties. Ideally, a system should be robust to continue establishing its most
critical requirements even in the presence of possible deviations in the envi-
ronment. To enable systematic design of robust systems against environmental
deviations, this work proposes a rigorous behavioral notion of robustness for
software systems. Then, it presents a technique called behavioral robustifica-
tion, which involves two tactics to systematically and rigorously improve the
robustness of a system design against potential deviations.

Specifically, the robustness of a system is defined as the largest set of deviat-
ing environmental behaviors under which the system is capable of guaranteeing
a desired property. Then, we present an approach to compute robustness based
on this definition. On the other hand, the system is not robust against an en-
vironment when the environment exhibits deviations causing a violation of the
desired property. The robustification method finds a redesign that is capable of
satisfying the property under such a deviated environment. In particular, two
tactics, namely robustification-by-control and robustification-by-specification-
weakening, are introduced. The robustification-by-control tactic formulates the
robustification problem as a multi-objective optimization problem with the goal
of guaranteeing the desired property while maximally preserving the existing
functionality and minimizing the cost of changes to the original design. Then,
the specification-weakening tactic is used alongside the control tactic, which
allows weakening the property to generate more feasible redesigns that retain
more functionality or have a lower cost.

The proposed robustness computation and robustification method are im-
plemented in a tool named Fortis. The applicability and efficiency of these
approaches are evaluated through experimental results across five case studies,
including a radiation therapy machine, an electronic voting machine, network
protocols, a transportation fare system, and an infusion pump machine.
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Chapter 1

Introduction

1.1 What is Behavioral Robustness?

A software system is designed and implemented with respect to a specification, which typ-
ically, both explicitly and implicitly, makes assumptions about the operating environment.
When these assumptions are satisfied, the system is expected to ensure particular function-
alities and quality attributes. Nowadays, software systems are applied in diverse domains
such as finance, healthcare, manufacturing, aerospace, autonomous vehicles, and online
services. With the increasing capability of software systems, both the systems and their
operating environments grow in complexity. It is increasingly common that once a system
is deployed, the actual environment may deviate from its expected behavior as described
in the specification. For example, an online web application might experience message loss
or disruption; a user interacting with a medical device might inadvertently perform actions
in the wrong order; or an aircraft might operate in extreme weather conditions, causing
sensors to produce inaccurate observations. In such scenarios, the system may not be able
to continue providing its assured functionalities or maintaining its specified quality, thereby
exposing it to potential risks or failures. From a high level, robustness characterizes the
capability of a system to consistently fulfill its commitments even under unexpected cir-
cumstances. Therefore, the assurance of software robustness becomes increasingly crucial
as system complexity grows, especially for mission-critical or safety-critical systems, such
as financial systems, aircraft, or medical devices [2].

IEEE standards define robustness as the ability of a software system to continue func-
tioning correctly in the presence of invalid inputs or a stressful environment [3]. Avizienis
et al. [4] further characterize robustness as a secondary attribute of dependability, i.e.,
dependability with respect to external faults. However, these definitions are overly abstract
in that they cannot be directly used to help developers analyze the robustness of a system;
and the term “robustness” tends to carry different interpretations in various sub-domains
of software.

We classify software systems into three categories: Conventional software systems,
Machine learning (ML) systems, and Cyber-physical systems (CPS). Here, conventional
systems refer to systems such as operating systems, communication systems, distributed

1



systems, or web services, whose fundamental behavior can be conceptualized through dis-
crete transition systems [5, 6]. ML systems refer to systems with ML components that are
statistical models trained on certain datasets. CPS are systems that closely interact with
the physical world, such as autonomous vehicles. While clear boundaries within this clas-
sification do not exist, it is a widely adopted framework in the literature, and robustness
definition and evaluation techniques vary significantly across these domains.

Based on this classification, the emphasis of this thesis is on the robustness of conven-
tional software systems, particularly robustness with respect to “the correctness of system
behavior”. This form of software robustness has been widely investigated in the literature,
with correct system behavior often characterized as the correctness of the system output
or the absence of system failures.

Behavioral robustness and system-level property. Nevertheless, the term “software
system behavior” is often used vaguely. It generally refers to how a system reacts to and
responds to various inputs or events. To precisely delineate the type of robustness studied
in this thesis, it is necessary for us to define the meaning of software behavior.

• Input-Output Relationships : In this perspective, a software system often corresponds
to a functional procedure, such as a system call in an operating system or an API of
a web service. The system’s behavior is typically characterized by the relationship
between the inputs and the corresponding outputs, with unexpected behavior of
the environment characterized by invalid inputs. Specifically, a developer makes
assumptions about the input values of a function, e.g., a non-negative integer input
for computing a factorial, and an invalid input is an input value that falls outside the
assumed range. Thus, robustness of this kind studies whether the system (program)
would crash, abort abnormally, or produce unexpected outputs (e.g., an irrelevant
error code) given certain inputs that are outside the assumed range [7, 8].

• States and Transitions : In this view of software behavior, a software system is explic-
itly modeled as a discrete transition system. An execution of the system is defined
as a sequence of system states and their transitions, and the system behavior is the
set of all possible executions. Under this definition, two types of properties are often
used to specify the correctness of behavior: safety property and liveness property. A
safety property defines the bad states that a system should avoid, while a liveness
property defines the desirable states that the system should reach [9]. The robust-
ness of this type assesses the ability of the system to maintain the desired property
under unexpected behavior from the environment. Additionally, we specifically focus
on unexpected behavior as sequences of environmental events (transitions) that oc-
cur during actual operation and are not included in the assumed environment when
designing the software.

We use the term behavioral robustness to denote robustness with respect to the behavior of
system states and transitions, and IO robustness to indicate the robustness of input-output
relationships. In this thesis, our focus is on behavioral robustness.
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System, machine, and environment. Another concern is the term “system”. In the
context of system behavior as states and transitions, there is often an explicit distinction
made between the software and its environment, collectively forming a closed system. A
closed system is one that does not interact with other elements in the external world.
However, in the input-output perspective, a system refers to a procedure that takes cer-
tain inputs and produces outputs, with the environment generating the inputs implicitly
defined. To avoid this potential confusion, we will use the term machine to represent the
software and system to denote the composition of a machine and its operating environment.

Therefore, we also make a clear distinction between the properties associated with these
two perspectives on behavior. We use IO property to indicate a property of the input-
output relationships, and system-level property to denote a safety or liveness property at
the level of the system (i.e., machine and environment) as a whole.

Finally, we state that this thesis investigates behavioral robustness, which captures
the ability of a machine to maintain a desired system-level property in the presence of
unexpected sequences of events from its environment.

1.2 Robust-by-Design Software

The objective of this research is to investigate how developers can construct behaviorally
robust software, with a specific emphasis on software design. It is widely acknowledged by
industrial practitioners and academics that the longer an issue lingers in the system, the
more effort it requires to resolve [10]. However, historically, researchers have observed that
the significance of system design is often overlooked in software engineering practices, with
engineers placing greater emphasis on the implementation and testing phases [2]. More
recent research shows that, on average, engineers spend 25% of their discussions on design
topics [11, 12]. However, these design discussions are scattered across commits, issues,
and pull requests [13, 14]. Developers often do not produce specific design artifacts, and
systematic design analysis is still lacking.

The importance of software design can be stated as follows: a good design fosters the
quality of a software system at a time when errors, omissions, and inconsistencies are
relatively cheap and easy to correct [15]. In our context of software robustness, systematic
design analysis allows developers to identify potential robustness vulnerabilities at an early
stage of the development process. Changes made to the design to improve robustness are
generally less expensive than those made during implementation or testing. Moreover,
for safety-critical or mission-critical systems, establishing a “correct” design that ensures
robustness is even more crucial, given that a failure may be deemed unacceptable, and
fixing defects in later phases can become exceedingly costly or, in some cases, unfeasible.
Therefore, this thesis specifically focuses on the systematic analysis of behavioral robustness
in software designs.

We adopt a robust-by-design development process, as illustrated in Figure 1.1. In this
process, developers start with an initial machine design that operates effectively under
normal environmental conditions. Subsequently, they conduct an analysis to evaluate the
robustness of the machine. This analysis may not only reveal invalid inputs or faults
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Figure 1.1: Robust-by-design development process.

that lead to robustness violations but may also quantitatively or qualitatively assess the
degree of robustness. Consequently, with these analysis results, developers then modify
or redesign the machine to enhance its robustness, especially if the initial design does not
meet the specified requirements. Additionally, developers can compute the robustness of
the new design and compare it with the old design, uncovering potential design trade-offs,
such as additional costs or the sacrifice of certain functionalities for ensuring robustness.
This iterative process may be repeated multiple times until a satisfactory level of design
robustness is achieved.

To support this development process, we argue that a methodology with the following
capabilities is crucial. Specifically, it should be able to:

• systematically and rigorously compute the degree of robustness of a machine, compare
the robustness of two machines, and identify robustness vulnerabilities if they exist,

• systematically and rigorously improve machine robustness in response to the identified
robustness vulnerabilities.

While such design and development practices are prevalent in other well-established engi-
neering disciplines, such as aerospace, civil, and manufacturing [16], existing techniques in
software robustness lack sufficient support for this process.

1.3 Robustness Assessment and Improvement

As outlined above, the robust-by-design process comprises two crucial activities: robust-
ness assessment and robustness improvement. According to the surveys by Shahrokni et
al. [17] and Laranjeiro et al. [18], robustness assessment techniques for conventional soft-
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ware are predominantly experimental, with a primary focus on robustness testing against
a software implementation rather than a software design. Furthermore, most of these tech-
niques concentrate on the IO robustness of a machine, which contrasts with the behavioral
robustness that we investigate in this thesis.

For improving software robustness, the prevalent approach involves using wrappers
over existing functions and components to mask and prevent the propagation of errors.
However, these methods also predominantly center around software implementation and
IO robustness. In contrast, the self-adaptive system community [19] and the run-time
assurance community [20] explore how to ensure the run-time correctness of a system,
which aligns more closely with our notion of behavioral robustness.

Robustness assessment techniques. From the surveys [17, 18], existing testing-based
robustness assessment methods typically answer the following questions:

Is the machine (implementation) robust against certain types of invalid inputs
or faults? Will the machine crash, abort abnormally, or return unexpected
outputs?

To address these questions, researchers commonly adopt a testing pattern that involves:
(1) generating and providing invalid inputs or faults to the machine under test; and (2)
assessing whether the machine produces unexpected outputs or exhibits unexpected be-
havior, such as crashes. The most prevalent evaluation methods include fault injection
[21, 22], where developers intentionally introduce specific types of faults to the machine
or its environment, and model-based testing [23], where a formal model is employed to
generate test cases executed on the concrete machine implementation. Additional meth-
ods include fuzzing [24, 25], which automatically and randomly generates extensive inputs,
model-based analysis, which formally models and verifies the robustness of a machine [26],
and mutation testing, which aims to enhance the quality of test cases for detecting more
faults [27, 28, 29].

However, robustness testing methods such as these fail to address our objective, i.e.,
the assessment method should be able to systematically and rigorously compute the degree
of robustness of a machine. In other words, they fail to answer the following question:

What is the set of all invalid inputs or faults that the machine is robust against?

While testing-based methods excel at identifying robustness violations, they often cannot
offer robustness guarantees when no violations are detected. In such instances, it remains
unclear whether we should allocate additional resources to conduct more robustness tests
or if the machine can be confidently deemed robust. Moreover, determining which machine
is more robust than another based solely on testing results is challenging. Additionally, a
large portion of these methods focus on IO robustness, i.e., detecting robustness violations
caused by invalid inputs, while behavioral robustness remains relatively under-explored
[17].
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Robustness improvement techniques. In their survey, Shahrokni et al. [17] conclude
that existing works mostly focus on the use of wrappers and encapsulation of existing
software components to improve robustness. These studies often delve into the source code
of the software, examining how error detection code and explicit exception handlers can
filter out invalid inputs and outputs and prevent the propagation of errors. Similar methods
are also advocated in programming guidelines such as defensive/robust programming [30]
and practitioner-oriented books like [31, 32]. However, these methods also take the view of
input-output relationships. While improving the IO robustness of individual components
can eventually impact the robustness of the machine as a whole, they fail to provide a
rigorous and systematic way of improving the behavioral robustness of the machine.

Moreover, much recent research has shifted from general robustness techniques to more
domain-specific robustness techniques, as different domains often face diverse challenges in
robustness [33], such as robust ML systems [34] and robust CPS [35]. However, they are
outside the scope of our focus on the robustness of conventional software systems.

On the other hand, contributions from the self-adaptive systems community [19] and the
run-time assurance community [20] are closer to our research focus. They present methods
on how to ensure that a machine maintains its functionalities or quality attributes at run
time against uncertainties. Some of these approaches can be seen as ways of improving
the behavioral robustness of a machine, even though the term “robustness” may not be
explicitly mentioned, or they may consider “robustness” with respect to a broader set of
properties other than pure safety and liveness, such as performance or availability [19, 36].
For example, one of their primary interests is studying how to improve a system’s resilience
or recoverability in the face of uncertainties, which can also be seen as a type of robustness.
While these methods can be utilized to improve the behavioral robustness of a machine
and indeed inspire our approach, one significant difference is that we focus on design-time
robustness improvement, whereas they assume run-time adaptation or assurance.

1.4 Thesis Statement

In light of the current state of software robustness research, this thesis explores a method
designed to systematically and rigorously analyze, compute, and improve the behavioral
robustness of a machine design. It addresses the gap in the current research, manifested as
a lack of systematic reasoning and enhancement methods for software design robustness.
Furthermore, this method facilitates a robust-by-design development process for software.

The thesis statement is:

Given a machine and its environment that can be formally modeled
as a state-transition system, we can systematically compute and im-
prove the behavioral robustness of the machine with respect to the
environment and a system-level safety property.

We further elaborate on the thesis statement.
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Behavioral robustness of software design. This thesis focuses on the behavioral ro-
bustness of software designs. Specifically, a system is closed and consists of a machine (i.e.,
the software) and its environment. The system is considered as a state-transition system,
and its behavior is characterized by a set of execution traces, each being a sequence of
states and transitions. A system-level property (specifically, a safety property) defines the
intended behavior of the system. The unexpected behavior from the environment is char-
acterized by sequences of environmental events that occur at run time and are not defined
in the assumed environment. In sum, this thesis investigates the behavioral robustness of
a machine design, which captures its ability to continue satisfying a desired system-level
safety property in the presence of unexpected sequences of events from its actual operating
environment.

Formal reasoning. This thesis leverages formal methods for systematically and rigor-
ously computing and improving robustness. Specifically, a formal state-transition system
serves as a mathematical representation of the behavior of a software system, and each
trace in such a formal model indicates a particular execution scenario. For instance, in
a network protocol, a sequence of events ⟨send, receive, acknowledge, get acknowledge⟩
depicts a normative execution where the client sends a request and receives an acknowl-
edgment from the server. In contrast, an event sequence ⟨send,message lost⟩ illustrates a
faulty scenario where the client’s request is lost during transmission. With such a formal
model, our approach mathematically analyzes the behavioral robustness of a machine as a
set of traces. Moreover, the formal model enables systematic and automated enhancement
of robustness by generating a more robust machine model through model modification and
synthesis.

Safety property vs. Liveness property. This thesis primarily focuses on behavioral
robustness with respect to a safety property. A safety property specifies the bad states
that a system should avoid (e.g., an overdose in a medical device or inconsistent data
records in a distributed system). It is widely studied in the literature and is often used
to express developers’ objectives of preventing bad behavior in a system. We study the
robustness problem of whether a machine can continue to avoid those bad states even un-
der unexpected sequences of events from the environment, which is particularly crucial for
safety-critical and mission-critical systems. Nevertheless, we do not completely disregard
liveness in our approach, especially concerning robustness improvement. Given that a sys-
tem simply losing all its functionalities and entering a termination state is also deemed safe
but practically useless, we recognize the importance of incorporating liveness (or retaining
critical functionalities) as an important dimension when enhancing robustness.

1.5 Contributions Overview

This thesis makes the following contributions: (1) a behavioral notion of robustness for
software designs and its computation method based on labeled transition systems (LTS),
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namely robustness analysis, and (2) an approach for improving the behavioral robustness
of a system design, namely design robustification.

We utilize LTS to model the discrete behavior of a machine and its environment. In
an LTS, we explicitly model the sequences of events that can occur in a system, with the
system states being implicitly defined. A trace in an LTS is a sequence of events, and the
behavior is the set of all traces. Furthermore, we primarily consider safety properties in
terms of LTS—a safety property in LTS is an LTS that describes a set of “good” traces,
and we say a model T satisfies a safety property P when the set of traces of T is a subset
of those defined by P .

1.5.1 Robustness Definition and Analysis

In this thesis, we propose a formal behavioral notion of software robustness based on LTS.
Given a machine M , a normal environment E, and a safety property P , each modeled
as an LTS, we assume that the machine satisfies the safety property under the normal
environment, i.e., M ||E |= P .

Then, in terms of robustness, we say the machine M should continue to satisfy the de-
sired property even under an environment E ′ that deviates from the expected one specified
by E, i.e., M ||E ′ |= P . Specifically, E ′ and E should contain the same set of events but
differ in the set of event traces they prescribe. The distinctions in the sets of traces are
denoted as deviations, represented by δ. Finally, robustness is computed as the maximum
possible set of deviations, denoted by ∆, such that the machine continues to satisfy the
desired property under these deviations. Conceptually, ∆ represents the safe operating
envelope of a machine, i.e., as long as the environmental deviations remain within this
envelope, the machine can guarantee property P . For example, in a network protocol,
the trace ⟨send, receive, acknowledge, get acknowledge⟩ is a normative scenario defined in
E, assuming a perfect communication channel, whereas the trace ⟨send,message lost⟩ is
a deviation that can occur with an imperfect communication channel. Then, if M still
satisfies property P under this deviation trace, it belongs to robustness ∆.

We present an approach to compute robustness ∆ that contains all deviation traces
under which the machine M continues to satisfy property P . The computation process
also facilitates rigorous robustness comparisons, which are challenging to conduct using
testing-based methods. Additionally, in general, robustness ∆ may contain an infinite
number of traces, which are not easily comprehensible by developers. Thus, we present an
approach to partition ∆ into a finite set of equivalence classes and sample representative
traces from them, where each trace represents a group of traces that describe the same
type of deviations. Finally, we use a deviation model to generate explanations for those
representative traces. An explanation describes what environmental faults cause the envi-
ronment to deviate from its expected behavior. The final output from this analysis is a set
of pairs consisting of a representative trace and its corresponding explanation. Chapter 2
describes our approach in more detail. This work has also been published at ESEC/FSE
2020 [37].
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Figure 1.2: Trade-off dimensions of our robustification approach.

1.5.2 Design Robustification

We present an approach to synthesize new machine designs based on an existing design,
a safety property, and a deviated environment. Compared to the assumed environment, a
deviated environment shares the same set of events but contains additional deviation traces
where the old design fails to satisfy the property. The goal of robustification is to find a
new design that is robust against the deviations in the deviated environment. Specifically,
our method considers four trade-off dimensions of robustification: safety, functionality,
controllability and observability, and cost.

As defined in the thesis statement, our primary focus is on robustness with respect to a
safety property. However, ensuring safety may compromise system functionality by losing
certain desired functions. In an extreme case, safety can be trivially achieved by allowing a
machine to enter a termination state and do nothing. Therefore, our robustification method
also considers maintaining the critical functionality of a system as much as possible.

However, there are scenarios where certain safety properties and system functionality
cannot be satisfied simultaneously. One of the issues we consider in this thesis is the lack
of controllability and observability of the machine. Intuitively, a machine that can observe
and control more events in the system can achieve more fine-grained control to better
prevent the propagation of errors and recover from faults. More specifically, a machine
with more controllability and observability can better distinguish between safe and unsafe
executions and prevent the machine from entering unsafe scenarios. However, enhanced
controllability and observability often come at a higher cost. Therefore, our method also
considers balancing improved controllability and observability (for ensuring safety and
retaining more functionality) with implementation costs.

On the other hand, even with sufficient controllability and observability, certain safety
requirements and functional requirements still cannot be satisfied simultaneously due to
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the underlying conflicts in requirements. Such inconsistencies in requirements may arise
from multiple causes, such as conflicts of interests among different stakeholders, require-
ments evolution, or unforeseen technical constraints [38]. Therefore, rather than always
choosing to sacrifice system functionality, we also present an approach to resolve require-
ment conflicts by weakening the safety specifications. With a weaker safety requirement,
we are then able to find a new design that is robust against environmental deviations with
respect to the new safety property while retaining more functionality.

Specifically, our proposed robustification method consists of two components:

• Robustification by control. It improves robustness by monitoring events from the
machine and the environment, disabling specific events to ensure the safety property.
To prevent excessive restrictions on liveness (i.e., system functionality), we allow
the extension of controllability and observability of the new machine; however, this
comes at an additional cost. Therefore, the robustification process is framed as a
multi-objective optimization problem with two quality goals: (1) preserving behavior
from the original design and (2) minimizing the cost of changes, measured by the
extended observing and control abilities. We leverage supervisory control theory [39]
and introduce a novel algorithm and several heuristics to search for optimal redesigns.
Chapter 3 provides a detailed description of this technique. This work has also been
published at ICSE 2023 [40].

• Robustification by specification weakening. The robustification-by-control method
may potentially disable certain critical machine functionalities, even with extended
controllability and observability. We observe that one reason for such situations
is the conflicts between safety requirements and functional requirements. In par-
ticular, we focus on the cases where the desired safety property is exceptionally
strong (restrictive). Therefore, the second method explores specification weakening
as an additional tactic alongside the robustification-by-control tactic. Intuitively,
by employing a weaker safety property, the system should be capable of tolerating
more deviations, as certain deviations would no longer be deemed to cause a safety
violation. Consequently, the new method involves weakening a potentially overly
strong safety property, allowing for improved robustness through the application of
the robustification-by-control method with respect to the weakened safety property,
without disabling critical system functionalities. We leverage our work on constrained
linear temporal logic learning [41, 42] to weaken a safety property. Chapter 4 provides
a detailed description of this technique.

1.5.3 Implementation and Evaluation

We implement all our proposed approaches in a tool named Fortis, which was published
at FMCAD 2023 [43]. The tool includes a simple Graphical User Interface (GUI) for
users to specify system models and properties and run our methods to compute robustness
and robustify a machine. We evaluate the applicability and efficiency of our approaches
through five case studies, which include a radiation therapy machine, an electronic voting
machine, network protocols, a medical infusion pump machine, and a public transportation
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Figure 1.3: Overview of robustness analysis and design robustification process.

fare system.
The evaluation demonstrates the applicability of our robustness computation method

across diverse case studies originating from various software application domains. The
computed results, specifically deviations, correspond to real-world erroneous scenarios that
have been previously investigated in other domains. The evaluation also demonstrates
that our robustification process can successfully find optimal new designs that are robust
against a deviated environment across software applications from different domains. Lastly,
the efficiency of our robustness computation and robustification methods is demonstrated
through experiments on a set of benchmark problems derived from our five case studies.

1.5.4 Summary of Contributions

Figure 1.3 shows an overview of our proposed robustness analysis and design robustifi-
cation process. At the beginning of this process, developers provide the initial machine
design and system requirements (including safety requirements, functional requirements,
controllability and observability, and cost information) to our analysis tool. Our tool can
analyze the robustness of the machine design with respect to the safety specification and
inform the developers about the deviations that the system can or cannot tolerate (i.e.,
is or is not robust against). If the developers are not satisfied with the design, they can
use the robustification-by-control method to robustify the design, which fixes the safety
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requirement and finds a redesign that balances the trade-offs between functionality, con-
trollability and observability, and implementation costs. However, if there are conflicts
between the safety requirements and functionality that cannot be addressed by enhancing
controllability and observability, the developers can choose to weaken the safety require-
ment and redo the robustification-by-control process to find another redesign. This process
can iterate multiple times until a satisfactory design is generated.

The list of contributions of this thesis include:
• Behavioral Notion of Robustness: We present a behavioral notion of robustness
for software systems based on LTS, defining robustness as a set of event traces not
specified in the assumed environment, under which the machine continues to satisfy
a desired safety property.

• Robustness Computation Approach: We provide an approach to compute and
represent the behavioral robustness of a system. Additionally, the computation pro-
cess facilitates robustness comparisons.

• Robustification by Control: We present a method to improve the robustness of
a machine design with respect to a safety property by controlling its actions. The
method also considers the goal of retaining as much functionality as possible and
minimizing the cost of changes.

• Robustification by Specification Weakening: When a robustification-by-control
process cannot find satisfactory redesigns of a machine because the safety property is
excessively strong, we present a method to weaken the safety property to allow more
feasible solutions through robustification-by-control.

• Implementation and Evaluation: We implement the proposed robustness compu-
tation and robustification approaches in an open-source tool named Fortis, evaluating
their applicability and efficiency through five case studies.
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Chapter 2

A Behavioral Notion of Robustness

2.1 Introduction

In this chapter, we present our approach for systematic robustness analysis based on a
mathematically rigorous notion of behavioral robustness for software. In particular, we
say that a software machine is robust with respect to a property and a particular set of
environmental deviations if the machine continues to satisfy the property even when the
environment exhibits those deviations. Furthermore, we define the behavioral robustness
of a software machine as the set of all deviations under which the machine continues to
satisfy the property. Based on these definitions, we then present an analysis technique for
automatically computing the behavioral robustness of a machine.

The goal of a typical verification method is to check the following: Given machine
M , environment E, and property P , does the machine satisfy the property under the
environment (i.e., M ||E |= P )? Our notion of robustness enables the formulation of new
types of analyses beyond this. For instance, we could ask whether a machine is robust
against a particular set of environmental deviations; given two alternative machine designs
(both satisfying property P ), we could rigorously compare them by generating deviations
against which one design is robust but the other is not; and given multiple system properties
(some of them more critical than others), we could compare the environmental deviations
under which the machine can guarantee them.

We demonstrate the application of our approach through five case studies. In particular,
we focus on two of them, featuring two application domains: (1) human-machine inter-
actions, where we adopt well-studied models of human errors from industrial engineering
and human factors research [44, 45] and show how our method can be used to rigorously
evaluate the robustness of safety-critical interfaces against such errors, and (2) computer
networks, where our method is used to rigorously compare the robustness of network pro-
tocols against different types of failures in the underlying network. Furthermore, we build
a set of benchmark problems from these case studies and evaluate the performance of our
approach.

The rest of this chapter is organized as follows:

• Section 2.2 introduces a motivating example of robustness analysis;
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• Section 2.3 introduces the necessary background for our approach;

• Section 2.4 defines our formal notion of robustness for software machines and a set
of analysis problems that evaluate machine designs with respect to their robustness;

• Section 2.5 presents algorithmic techniques for automatically computing the robust-
ness of a machine and generating succinct representations of robustness;

• Section 2.6 presents the implementation of our robustness analysis and the evaluation
on five case studies.

2.2 Motivating Example

This section illustrates how our proposed notion of robustness may be used to support a
new type of design analysis and aid in the systematic development of software machines
that are robust against failures or changes in the environment.

Figure 2.1: Labeled transition systems for a radiation therapy system.

Analysis under the normative environment. As a motivating example, consider the
design of a radiation therapy machine similar to the well-known Therac-25 machine [46].
The state machines in Figure 2.1 describe the three components of the machine1, including
(a) the Treatment Interface (MI), which allows an operator to choose the radiation mode
(Electron or X-ray) and fire the beam; (b) the Beam Setter (MB), which switches the
physical component for the two radiation modes; and (c) the Spreader (MS), which is
inserted during the X-ray mode to attenuate the effect of the high-power X-ray beam and

1For simplicity of illustration, some states and events are omitted from the diagrams.
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Figure 2.2: Labeled transition system for the operator task model (E).

limit possible overdose (as X-ray delivers roughly 100 times higher level of current than
the Electron beam). The overall behavior of the machine is the composition of the three
components, i.e., M =MI ||MB||MS.

The radiation therapy machine is associated with a number of safety requirements, one
of which states: The spreader must be in place when the beam is delivered in the X-ray
mode. Otherwise, the high power of the X-ray will lead to an overdose and cause fatal
injuries to patients [46].

During the normal treatment process, a therapist is expected to perform the following
tasks: Select the correct therapy mode for the current patient by pressing either X or E,
confirm the treatment data by pressing Enter, and then finally initiate the beam delivery to
the patient by pressing B. Figure 2.2 shows the state machine for this normative operator
behavior.

Suppose the designer of the machine wishes to check whether the therapy machine sat-
isfies its safety requirements, assuming that an operator carries out the tasks as expected.
More generally, this can be formulated as the following common type of analysis task:

Does the machine, under an environment that behaves as expected, satisfy a
desired property?

To perform this task, one may apply a verification technique such as model checking [47]
to check whether the composition of the machine and the environment satisfies the desired
property. Performing this analysis confirms that the machine indeed satisfies the safety
property that the spreader is always in place during the X-ray mode.

Analysis of undesirable environmental deviations. In complex systems, the envi-
ronment may not always behave as expected and may possibly undermine the assumptions
that the machine relies on to fulfill its requirements. For instance, in interactive systems,
human operators are far from perfect and inadvertently make mistakes from time to time
while performing a task (e.g., performing a sequence of actions in the wrong order) [45].
In the context of a safety-critical system such as medical devices, some of these operator
errors, if permitted by the interface, may result in a safety violation.

To discover these potential environmental deviations, the designer decides to perform
the following analysis task:
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What are possible ways in which the environment may deviate from its expected
behavior and cause a violation of the property?

Given the therapy machine model M and property P , the designer can use an existing
analysis tool (e.g., a model-checking tool like LTSA [48]) to check whether M |= P . The
analyzer may return a counterexample trace that demonstrates how the operator could
deviate from their normative behavior (as captured by E) and cause a violation of P .

Suppose that one such trace contains the following sequence of operator actions: ⟨X, Up,
E, Enter, B⟩. This trace depicts a scenario in which the operator accidentally selects the
X-ray mode, corrects the mistake by pressing Up and selecting the Electron beam mode,
and then carries on with the rest of the treatment as intended (by confirming the mode and
firing the beam). This sequence of operator actions, however, may lead to a violation of
the safety property P in the following way: When the operator presses B, the beam setter
may still be in the process of mode switching (i.e., in state SwitchToBeam), causing the
beam to be delivered in the X-ray mode while the spreader is out of place. This scenario
corresponds to one type of failure that caused fatal overdoses in the Therac-25 system [46].

Robustness analysis. Having discovered how the operator’s mistake could lead to a
safety violation, the designer (manually) modifies the treatment interface to improve its
robustness against the possible error. In this redesign, shown in Figure 2.3, the operator
can press B to fire the beam only after the mode switching has been carried out by the beam
setter. As the next step, the designer wishes to ensure that the machine, as redesigned, is
robust against the operator’s mistake (i.e., it continues to satisfy the safety property even
under the misbehaving operator).

The designer could checkM ′ |= P , whereM ′ is the redesign. If no errors are returned, it
means thatM ′ is robust against the mistake and thatM ′ can work under any environment.
However, this is not always the case. More likely, the analyzer may return another trace
representing a new mistake, and it does not necessarily mean that the machine is robust
against the previous one.

Instead, the designer can use our approach to perform the following robustness analysis
task:

What are possible environmental deviations under which the new design satisfies
the property, but the old design does not?

Given the original machine model M , modified model M ′, normative environment E, and
property P , our analysis returns a set of traces (expressed over environmental events).
Each trace describes a scenario where machine M ′ satisfies the property, but M does
not. For example, one of the traces is the sequence of operator actions discussed above:
⟨X, Up, E, Enter, B⟩, confirming that the redesign has correctly addressed the risk of a
possible safety violation due to this particular type of operator mistake.

The steps of analyzing undesirable environmental deviations, improving robustness, and
analyzing robustness can be repeated to identify more potential safety violations due to
other types of operator mistakes, further enhancing the machine’s robustness. We call this
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Figure 2.3: A redesign of the radiation therapy machine. In particular, we show only the
redesigned interface where the operator can fire the beam until the mode switching has
completed. For simplicity of illustration, some states and transitions are omitted.

iterative process a robust-by-design loop. This chapter presents our approach for analyzing
robustness.

2.3 Preliminaries

In this work, we use LTS to model the behavior of machines and environment and define
properties.

An LTS T is a tuple ⟨S, αT,R, s0⟩ where S is a set of states, αT is a set of events called
the alphabet of T , R ⊆ S×αT∪{τ}×S defines the state transitions (where τ is a designated
event that is unobservable to the system’s environment), and s0 ∈ S is the initial state. An
LTS is non-deterministic if ∃(s, a, s′), (s, a, s′′) ∈ R : s′ ̸= s′′ or ∃(s, τ, s′) ∈ R; otherwise,
it is deterministic. An event a ∈ αT is enabled at state s ∈ S if ∃(s, a, s′) ∈ R; otherwise,
a is disabled at s. An LTS is complete if ∀s : S, a : αT : ∃s′ ∈ S : (s, a, s′) ∈ R.

A trace σ ∈ αT ∗ of LTS T is a sequence of observable events from the initial state.
Then, the behavior of T is the set of all the traces generated by T and is denoted beh(T ),
which can also be referred as the language of T . Moreover, the set beh(T ) is prefix-closed
such that for any trace σ ∈ beh(T ) and any prefix u of σ, u is also in beh(T ).
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Operators. For LTS T = ⟨S, αT,R, s0⟩, the projection operator ↾ exposes a subset of
the alphabet of T . Given T ↾A = ⟨S, αT ∩ A,R′, s0⟩, for any (s, a, s′) ∈ R, if a /∈ A, then
(s, τ, s′) ∈ R′; otherwise, (s, a, s′) ∈ R′. The ↾ operator also applies to traces; σ↾A denotes
the trace that results from removing the occurrences of every event a /∈ A from σ.

The parallel composition || is a commutative and associative operator that combines
two LTSs by synchronizing on their common events and interleaving the others [49]. Given
T1 = ⟨S1, αT 1, R1, s10⟩ and T2 = ⟨S2, αT 2, R2, s20⟩, T1||T2 is LTS T = ⟨S, αT,R, s0⟩ where
S = S1 × S2, αT = αT 1 ∪ αT 2, s0 = (s10, s

2
0), and R is defined as: For any (s1, a, s1

′
) ∈ R1

and a /∈ αT 2, we have ((s1, s2), a, (s1
′
, s2)) ∈ R; for any (s2, a, s2

′
) ∈ R2 and a /∈ αT 1,

we have ((s1, s2), a, (s1, s2
′
)) ∈ R; and for (s1, a, s1

′
) ∈ R1 and (s2, a, s2

′
) ∈ R2, we have

((s1, s2), a, (s1
′
, s2

′
)) ∈ R.

Properties. In this work, we consider a class of properties called safety properties [9],
which define the acceptable behaviors of a system. A safety property P can be represented
as a deterministic LTS, and we say that an LTS T satisfies P if and only if beh(T ↾αP ) ⊆
beh(P ).

We check whether an LTS T satisfies a safety property P = ⟨S, αP,R, s0⟩ by automat-
ically deriving an error LTS Perr = ⟨S ∪{π}, αP,Rerr, s0⟩ where π denotes the error state,
and Rerr = R ∪ {(s, a, π)|a ∈ αP∧ ̸ ∃s′ ∈ S : (s, a, s′) ∈ R}. Thus, Perr is a complete LTS.
With this Perr LTS, we test whether the error state π is reachable in T ||Perr. If π is not
reachable, then we can conclude that T |= P .

2.4 Robustness Analysis

2.4.1 Robustness Definition

LetM be the LTS of a machine, E be the LTS of the environment, and αEM = αM∩αE be
the common actions between the machine and the environment. Then, we say beh(M↾αEM)
represents the set of all environmental behaviors that are permitted by the machine M .
MachineM is said to be robust against a set of traces δ ⊆ αEM

∗ if and only if the machine
satisfies a desired property under a new environment E ′ that is capable of additional
behaviors in δ compared to the original environment E. Formally, we have:

Definition 2.1. Machine M is robust against a set of traces δ ⊆ αEM
∗ with respect to the

environment E and property P if and only if M ||E |= P , δ ∩ beh(E↾αEM) = ∅, and for
every E ′ such that beh(E ′↾αEM) = beh(E↾αEM) ∪ δ, M ||E ′ |= P .

The set of traces in δ are also called deviations of E ′ from E over αEM . The robustness
of a machine is then defined as the largest set of environmental deviations under which the
system continues to satisfy the desired property:

Definition 2.2. The robustness of machine M with respect to environment E and property
P , denoted by ∆(M,E, P ), is the set of traces δ such thatM is robust against δ with respect
to E and P , and there exists no δ′ such that δ ⊂ δ′ and M is also robust against δ′.

In addition, although this definition is general enough for both safety and liveness
properties, this work particularly focuses on safety properties.

18



Figure 2.4: Illustration of behavioral relationships between machine M , environment E,
and robustness ∆(M,E, P ).

Figure 2.4 illustrates the relationships between the behaviors of the machine, the envi-
ronment, and robustness. For simplicity, we assume that all behaviors share the same
alphabet αA. The outermost box represents the set of all possible finite traces over
αA. Within this, beh(M) represents all behaviors permitted by the machine, and beh(E)
represents the normative environment’s behaviors. For ease of illustration, we assume
that the normative environment’s behaviors are a subset of the machine’s behaviors, i.e.,
beh(E) ⊆ beh(M).

Given a safety property P , the behaviors of the machine M can be classified into two
sets: beh(Msafe), the set of all behaviors that are permitted by machineM and under which
the machine satisfies P , and the rest of the unsafe behaviors (i.e., beh(M) \ beh(Msafe))
that lead to a violation (red area). Therefore, for δ1 = beh(Msafe) \ beh(E), it represents
the set of all deviations that the machine accepts and is robust against. Meanwhile,
δ2 = αA∗ \ beh(M) is the set of all deviations that the machine does not accept, or
in other words, disables.2 Thus, given Definition 2.1, we say machine M is also robust
against δ2. Hence, the robustness of the machine should consist of both δ1 and δ2, i.e.,
∆(M,E, P ) = δ1 ∪ δ2, the union of the two green areas.

Example. In the radiation therapy machine, trace ⟨X, Enter, Up, Enter, B⟩ is a deviation
that is accepted by the machine and under which the machine satisfies the property, which
belongs to the deviation set δ1. On the other hand, ⟨X, B⟩ is a deviation disabled by
the machine and under which the machine also satisfies the property, which belongs to
the deviation set δ2. Both of these deviations should be included in the robustness set
∆(M,E, P ).

2There isn’t a unified interpretation of these “unaccepted” behaviors in LTS. It could be interpreted as
“undefined” or “disabled”. In this work, we assume the “disabled” interpretation.
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2.4.2 Analysis Problems

Given our robustness definition, we can answer the following analysis problems with respect
to robustness. First of all, we can compute the robustness as defined in 2.2:

Problem 2.1. Given a machine M , an environment E, and a safety property P , compute
the robustness ∆(M,E, P ).

Moreover, we can answer robustness comparison questions as follows:

Problem 2.2. Given machines M1 and M2, an environment E, and a safety property P
such that αM1 ∩ αE = αM2 ∩ αE, compute set X = ∆(M2, E, P )−∆(M1, E, P ).

This analysis allows us to compare a pair of machine designs on their robustness given
the same environment and property. M2, for example, may be an evolution ofM1, and thus
the result of this analysis indicates precisely howM2 is robust against some deviations that
M1 is not. On the other hand, ∆(M2, E, P ) may not necessarily subsume ∆(M1, E, P ),
indicating that being robust against certain deviations may lead to violations under other
deviations, which reflects design trade-offs.

Another similar type of analysis is to compare the robustness of a single machine under
different properties:

Problem 2.3. Give a machine M , an environment E, and safety properties P1 and P2,
compute set X = ∆(M,E, P2)−∆(M,E, P1).

For instance, suppose that P1 is a stronger safety property stating that “the radiation
machine should always deliver the correct amount of dose to each patient”, while P2 is
weaker stating that “the machine never overdoses patients by delivering X-ray while the
spreader is out of place”. The result of this analysis can tell us, for example, that the
machine is capable of guaranteeing P2 (weaker but arguably more critical of the two) even
under certain operator mistakes, while P1 may be violated under similar deviations. It
indicates the design trade-offs between safety and robustness and may be useful in the
context of requirements weakening [50, 38, 51, 52]. In other words, since, in general,
improving robustness might introduce additional complexity to a machine, it may be more
cost-effective to design a machine to be robust against the most critical requirements [53].

2.5 Robustness Computation

2.5.1 Overview

Figure 2.5 shows the overall process for the robustness computation. Given the LTS of the
machine M , the environment E, and the safety property P , we first compute the weakest
assumption of M with respect to E and P , which is then used to compute the model of
the robustness ∆. In general, ∆ may be infinite and not in a form that can be easily
comprehended by the user. Thus, we generate a succinct representation of it. Specifically,
we partition ∆ into a finite set of equivalence classes, each of which contains traces that
describe the same type of deviations, and then sample representative traces from those
classes. Finally, we take a deviation model D as input to generate explanations that
describe how the environment could deviate from the normative behavior in a particular
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Figure 2.5: Overview of the robustness computation process.

way. The final output of the process is a set of pairs of a representative trace and its
explanation.

2.5.2 Weakest Assumption

In assume-guarantee style of reasoning [54, 55], a machine is considered capable of estab-
lishing a property under some assumption about the behavior of the environment. The
weakest assumption is the largest set of possible environmental behaviors under which the
machine satisfies the property. More formally:

Definition 2.3. The weakest assumption W (M,E, P ) ⊆ αEM
∗ of a machine M with

respect to environment E and property P defines the largest set of environmental behaviors
under which M satisfies P , i.e.,

M ||W (M,E, P ) |= P ∧ ∀E ′ : E ′||M |= P ⇔ E ′ |= W (M,E, P )

If stated otherwise, we will simply use W to mean W (M,E, P ). Therefore, given this
definition, the weakest assumption W should include all behaviors in beh(Msafe) plus the
behaviors in δ2 = αA∗ \ beh(M), according to the illustration in Figure 2.4. Then, the
robustness of a machine can be computed by its weakest assumption minus the behaviors
of the normative environment:

∆(M,E, P ) = beh(W ) \ beh(E↾αEM) (2.1)

= {σ ∈ beh(W ) | σ /∈ beh(E↾αEM)}

We use the approach by Giannakopoulou et al. [56] to generate the weakest assumption
given that P is a safety property. We briefly summarize their approach: Given the LTS of
machine M , environment E, and safety property P ,

1. Compose machine M with the error LTS of the safety property P , i.e., M ||Perr.
2. Hide the internal events of M with respect to E from M ||Perr, and propagate the

error state over τ transitions (unobservable transitions). That is, if a state can reach
the error state via one or more consecutive τ transitions, then that state should also
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be an error state. The rationale is that the environment cannot prevent the machine
from violating the property when the machine is in a state that can reach the error
state with some internal actions.

3. Determinize the resulting LTS from step 2 by applying τ elimination and subset
construction [57].

4. Add a sink state θ to make the LTS obtained from step 3 complete, i.e., all events
should be enabled on every state. This is achieved by adding a transition to θ if an
event is disabled on a state. Finally, remove the error state and all of its incoming
transitions to obtain the LTS representing the weakest assumption.

From a high level, any trace that eventually reaches the error state is a trace that is
accepted by the machine and violates the safety property, which is eventually removed
from the model. The introduction of the sink state adds the traces that are not accepted
by the machine. Therefore, this process computes the weakest assumption of machine M
with respect to environment E and safety property P .

2.5.3 Representation of Robustness

In general, the set of environmental traces that represent robustness in Equation 2.1 may
be infinite. Since simply enumerating this set may not be an effective way to present this
information to system designers, we propose a succinct, finite representation of robustness.
The key idea behind our approach is that many of the traces in ∆(M,E, P ) capture a
similar type of deviation (e.g., a human operator erroneously skipping an action) and can
be grouped into the same equivalence class with a single representative trace that describes
the deviations. Based on this idea, we describe a method for automatically converting ∆
into a finite number of such equivalence classes, and thus, a finite set of representative
traces.

Representative model of robustness. Recall from Equation 2.1 that ∆ contains traces
that are in the weakest assumptionW but not in the original environment E. To construct
an LTS that represents ∆, we take advantage of the method to check safety properties in
LTS (described in Section 2.3). In particular, we treat the original environment E projected
over αEM

∗ as a safety property and compute the traces in W that lead to a violation of
this property; any such trace represents a prefix of the traces in ∆(M,E, P ).

To illustrate our approach, consider a simple example in Figure 2.6, where W is the
weakest assumption generated from some machine M and E is the original environment.
To compute the representation of ∆(M,E, P ), we first test whetherW |= (E↾αEM), which
is equivalent to testing whether the error state is reachable in W ||(E↾αEM)err, as shown
in Figure 2.6(c). We say W ||(E↾αEM)err is the representative model of ∆(M,E, P ), and
let Π(W,E) be the set of all error traces in it. Then, we have:

∆(M,E, P ) = {σ ∈ beh(W ) | ∃σ′ ∈ Π(W,E) : prefix(σ′, σ)} (2.2)

where prefix(σ1, σ2) means σ1 is a prefix of σ2. Thus, a trace in Π(W,E) can represent a
set of traces in ∆(M,E, P ) that share this prefix. For this example, trace ⟨a, c⟩ in Π(W,E)
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Figure 2.6: LTSs for a simple example illustrating the construction of robustness, where
state 0 is the initial state.

can represent, e.g., ⟨a, c, a, b, . . .⟩ and ⟨a, c, a, c, . . .⟩ in ∆(M,E, P ).

Representative traces of robustness. Nevertheless, Π(W,E) may also be infinite due
to possible cycles in the representative model. For instance, in Figure 2.6(c), ⟨a, b, b, . . . , a⟩
would result in an infinite number of error traces. Therefore, we further divide the traces
into equivalence classes:

Let TW,E = ⟨SW,E, αEM , RW,E, s0⟩ be the composition W ||(E↾αEM)err. Then,

Π(W,E) =
⋃

s∈SW,E

a∈αEM

Πs,a(W,E) where (s, a, π) ∈ RW,E

i.e., Πs,a(W,E) denotes a subset of traces in Π(W,E) that all end with transition (s, a, π).
Then, we have:

∆(M,E, P ) = {σ ∈ beh(W ) | ∃Πs,a(W,E), σ
′ ∈ Πs,a(W,E) : prefix(σ

′, σ)} (2.3)

We say that Πs,a(W,E) is an equivalence class of Π(W,E). In our example, we have two
equivalence classes: Π1,c(W, E) and Π2,a(W,E). Traces like ⟨a, c⟩ and ⟨a, b, c, a, c⟩ all belong
to class Π1,c(W,E), and traces like ⟨a, b, a⟩ and ⟨a, b, b, b, a⟩ all belong to class Π2,a(W,E).

This equivalence class extraction process is adopted from the counterexample generation
process in model checking, where a prefix trace serves as a counterexample indicating how
a deviation would occur. The rationale is that state s is the last state when following the
normative behavior of the original environment, and event a is the first deviated event.
Thus, Πs,a(W,E) describes a class of traces that deviate from the original environment
starting from the same normative state s and by the same event a. Since SW,E and
αEM are finite, we have a finite number of equivalence classes. We can generate them by
enumerating all the transitions leading to the error state. Then, we pick one of the traces
in each equivalence class to represent ∆(M,E, P ). Because we may not be interested in
how the environment reaches the last normative state, we choose the shortest trace in each
equivalence class. Finally, we have:
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Definition 2.4. The representation of ∆(M,E, P ), denoted by ∆rep(M,E, P ), is a finite
set of traces such that each trace in it is the shortest trace of one of the equivalence classes
of Π(W,E).

Therefore, for our conceptual example, ∆(M,E, P ) can be represented by Π1,c(W,E) :
⟨a, c⟩, and Π2,a(W,E) : ⟨a, b, a⟩.

2.5.4 Explanation of Robustness

By definition, a representative trace in ∆rep(M,E, P ) contains only actions from αEM .
While this trace describes how the environment deviates from its expected behavior as
observed by the machine, it does not capture how the internal behavior of the environment
could have caused this deviation. To provide such an explanation for an environmental
deviation, we propose a method for augmenting the representative traces with additional
domain-specific information (called faulty events) about the underlying root cause of the
deviation. In this approach, the normative environment model is augmented with addi-
tional transitions for these faulty events (which are internal to the environment), and an
automated method is used to extract a minimal explanation for a particular representative
trace.

Explanations from a deviation model. In order to build explanations for representa-
tive traces, our approach takes a deviation model as input, which contains both normative
and deviated behaviors, and maps each representative trace to a trace in the deviation
model.

Definition 2.5. A deviation model D of environment E is an LTS T = ⟨S, αD,R, s0⟩
where αD = αE ∪ {f1, f2, . . . , fn}, fi is a fault in the environment, beh(E) ⊆ beh(D↾αE),
and beh(D↾αEM) ∩∆(M,E, P ) ̸= ∅.

Our approach makes no assumptions on how to generate such a deviation model. It
can be built manually or derived from existing fault models in other fields (e.g., an existing
human error behavior model). The model may not necessarily cover all the traces in
∆(M,E, P ); however, we say a deviation model is complete with respect to ∆(M,E, P ) if
and only if ∆(M,E, P ) ⊆ beh(D↾αEM).

Then, an explanation of a representative trace is a trace in the deviation model.

Definition 2.6. For any trace σ ∈ ∆rep(M,E, P ) and σ′ ∈ beh(D), if σ′ ↾ αEM = σ, then
we say σ′ is an explanation of σ.

Consider a deviation model for our simple example in Figure 2.7. Then, we have: for
the representative trace ⟨a, c⟩, we can build explanations ⟨a, f1, c⟩ and ⟨a, f3, f4, c⟩; and for
the representative trace ⟨a, b, a⟩, we can build an explanation ⟨a, b, f2, a⟩.

The minimal explanation. In general, there could be an infinite number of explana-
tions for a representative trace. However, similar to software testing, where we are often
interested in the smallest test cases against certain errors, here we are also interested in
the explanation of σ that contains the minimal number of faults.
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Figure 2.7: Deviation model for the simple example, where state 0 is the initial state.

Definition 2.7. The minimal explanation for σ = ⟨a0, . . . , an−1, an⟩ in ∆rep(M,E, P )
under deviation model D is the shortest trace σ′ ∈ beh(D) where σ′ ↾ αEM = σ and faulty
events only exist between an−1 and an.

A minimal explanation describes: 1) how the environment can reach the last normative
state without any faults; and 2) what minimal sequence of faults has caused the environ-
ment to deviate from the normative behavior.

To compute the minimal explanation for σ ∈ ∆rep(M,E, P ), let Tσ = ⟨S, αEM , R, s0⟩
be the LTS where σ and its prefixes are the only traces in it. Additionally, we make the last
event in σ lead to π to denote the end state, i.e., (s, an, π) ∈ R. Then, we use a breadth-first
search (BFS) to find the minimal explanation in D||Tσ, as shown in Algorithm 1.

Lines 1 to 3 define an empty queue to store the remaining search states and an empty
set to store the visited states, and add the initial state to the queue. The algorithm loops
until the queue is empty (line 4). If the current visiting state is π, then it returns the
current trace as the explanation (lines 7 to 8); otherwise, it adds the next states to the
queue. Specifically, if the current trace does not match the prefix of σ, i.e., ⟨a0, . . . , an−1⟩,
then it only adds states with non-faulty transitions (lines 12 to 16). Since BFS returns
on the first result, it is guaranteed to find the minimal explanation. For example, our
algorithm returns ⟨a, f1, c⟩ as the minimal explanation for ⟨a, c⟩ instead of ⟨a, f3, f4, c⟩ in
the deviation model in Figure 2.7(b).

2.5.5 Robustness Comparison

We then show how to compare robustness between a pair of machine designs (Problem 2.2)
or a machine against a pair of properties (Problem 2.3). According to Equation 2.1, to
solve Problem 2.2, we have:

X = ∆(M2, E, P )−∆(M1, E, P )

= {σ ∈ beh(WM2) | σ /∈ beh(E↾αEM) ∧ σ /∈ beh(WM1)}
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Algorithm 1: Minimal explanation search

Data: A trace σ ∈ ∆rep(M,E, P ) and the LTS of D||Tσ
Result: The minimal explanation σ′ ∈ beh(D) for σ

1 q := empty queue ; // remaining search states
2 v := empty set of states ; // visited states
3 enqueue(q, (s0, ⟨⟩));
4 while ¬isEmpty(q) do
5 s, t := dequeue(q); // s the current state, t the current

trace
6 if s /∈ v then
7 if s = π then
8 return t ;
9 else

10 v := v ∪ {s};
11 for (s, a, s′) ∈ R do
12 if t ↾ αEM = subTrace(σ, 0, n− 1) then
13 enqueue(q, (s′, t ⌢ a)); // ⌢ for sequence

concatenation
14 else if a is not a fault then
15 enqueue(q, (s′, t ⌢ a))
16 end

17 end

18 end

19 end

20 end

According to Definition 2.1, M ||E |= P , thus we have beh(E↾αEM) ⊆ beh(WM1). Then,
we can simplify this equation to:

X = ∆(M2, E, P )−∆(M1, E, P ) = {σ ∈ beh(WM2) | σ /∈ beh(WM1)}

Then, we can use the same method described in Section 2.5.3 to generate its representation.
By computing WM2 ||(WM1)err, we obtain Π(WM2 ,WM1), which represents all the prefixes
of X . Similarly, we divide it into equivalence classes, i.e., Πs,a(WM2 ,WM1), where (s, a)
leads to the error state. Then, we have:

X = ∆(M2, E, P )−∆(M1, E, P )

= {σ ∈ beh(WM2) | ∃Πs,a(WM2 ,WM1), σ
′ ∈ Πs,a(WM2 ,WM1) : prefix(σ

′, σ)}
(2.4)

Finally, the representation of X = ∆(M2, E, P ) − ∆(M1, E, P ) is a finite set of shortest
traces of Πs,a(WM2 ,WM1).

We apply the same process to X = ∆(M,E, P2)−∆(M,E, P1). With beh(E↾αEM) ⊆
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beh(WP1) and by computing Π(WP2 , WP1) and its equivalence classes, we have:

X = ∆(M,E, P2)−∆(M,E, P1)

= {σ ∈ beh(WP2) | ∃Πs,a(WP2 ,WP1), σ
′ ∈ Πs,a(WP2 ,WP1) : prefix(σ

′, σ)}
(2.5)

Then, the representation of X = ∆(M,E, P2)−∆(M,E, P1) is a finite set of shortest traces
of Πs,a(WP2 ,WP1).

2.6 Evaluation

2.6.1 Research Questions

Our evaluation focus on two research questions:
• RQ1 (Applicability): Is our robustness analysis technique applicable to software
systems from different domains? Particularly, do the deviations generated from our
analysis correspond to real-world erroneous scenarios that have been previously in-
vestigated in other domains?

• RQ2 (Scalability): How well does our robustness computation method scale?

To answer these research questions, we evaluated our approach on five case studies, in-
cluding the radiation therapy machine (described in Section 2.2), an electronic voting
machine, network protocols, a medical infusion pump, and a public transportation fare
system. Specifically, to answer RQ1, we focused on the network protocol example, which
features the robustness of distributed systems against different types of network failures,
and the radiation therapy example, which features the robustness of safety-critical inter-
faces against human errors. To answer RQ2, we built a set of benchmark problems from
the five case studies. Then, we evaluated the scalability of our robustness computation
approach by measuring the time to solve all these benchmark problems.

2.6.2 Implementation

We implemented our robustness analysis techniques in a tool named Fortis [43]. It is
implemented as a Kotlin program (a JVM-based language) with an optional web-based
user interface developed in Vue.js3. It leverages Automatalib [58] and LTSA [48] for model
specification and manipulation. It supports commonly used specification languages such as
AUT and FSM (through Automatalib) and FSP (the language used by LTSA) to specify
and output system models. The source code of the implementation is available on GitHub
at https://github.com/cmu-soda/fortis-core.

Figure 2.8 shows the web interface of Fortis for robustness analysis. On the left, a
user can manage all their model specifications. There is also an Editor tab with basic
specification editing support. On the right panel, the user can input the models for the
machine, environment, and safety property, respectively. The user can also provide an

3https://vuejs.org/
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Figure 2.8: Screenshot of Fortis for robustness analysis.

optional deviation model for explanations. Finally, by clicking the Compute button, the
Fortis back-end is invoked to compute the robustness.

Fortis also provides a command-line interface. A user can interact with Fortis through
command-line arguments or a JSON configuration file, and the tool produces results in
command-line outputs. We leveraged the command-line interface to conduct our evalu-
ation. All experiments were conducted on a Windows machine with an Intel i9-12900H
processor and 32GB memory.

2.6.3 Network Protocol Design

This section describes a case study on rigorously evaluating the robustness of network
protocol designs. In particular, we focus on two protocols: a naive protocol that assumes
a perfectly reliable communication channel, and the Alternate Bit Protocol (ABP) [59],
which is specifically designed to guarantee the integrity of messages over a potentially
unreliable communication channel. By computing and comparing the robustness of the
two, we formally show that the ABP is indeed more robust than the naive protocol.

Figure 2.9a shows the LTS of the environment. Here, the environment E corre-
sponds to a communication channel over which messages are transmitted (with αE =
{send[0..1], rec[0..1], ack[0..1], getack[0..1]}, where send[0..1] represents a set of actions
{send[0], send[1]}). Under normal circumstances, we expect that the channel reliably de-
livers messages to the intended receiver (i.e., it does not lose, duplicate, or corrupt mes-
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Figure 2.9: Models of the perfect network channel and the naive protocol.
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Figure 2.10: Model of the Alternate Bit Protocol (MABP ) adopted from [1].
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sages). Figure 2.9b shows the LTS of the naive protocol MN : The sender sends user input
data with either 0 or 1, and waits on the acknowledgment; the receiver waits for messages,
output the message data, and acknowledges to the sender with either 0 or 1.

Figure 2.10 shows the model of ABP, which is adopted from the model used in [1]. The
sender first sends a message with 0, and it continues sending the message until it receives
an acknowledgment with 0. Then, it alternates the bit to send a message with 1. The
receiver first waits for a message with 0, and it continues sending acknowledgments with 0
until it receives a new message with 1. Then, it acknowledges with 1 and waits for a new
message with 0.

Computing robustness and explanations. We define safety property P as “the input
and output should alternate”. The LTS of this property can be specified in the FSP
language as:

property P = (input -> output -> P).

This property ensures that the sender sends a new message only after it receives the
receiver’s acknowledgment that the previously sent message was successfully delivered.
We used our tool to compute the robustness of the two protocols, i.e., ∆(MN , E, P ) and
∆(MABP , E, P ). Then, we generated their corresponding representations, i.e., ∆rep(MN , E,
P ), which contains 4 representative traces from 4 equivalence classes, and ∆rep(MABP , E,
P ), which contains 107 traces corresponding to 107 equivalence classes. Finally, we built a
deviation model D, which contains message loss, duplication, and corruption of bits (only
the bit parameter 0 and 1, but not the message content) to provide explanations for these
representative traces. Figure 2.11 shows its specification.

Send Lost

send[x]

lose

Receive

send[x]

rec[x]

Duplicated
rec[x]

duplicate

Corrupted

corruptrec[1-x]

Figure 2.11: Deviation model that describes the faulty transmission channel. The faulty
acknowledge channel is similarly structured and omitted here.

Analysis. All 4 traces in ∆rep(MN , E, P ) correspond to bit corruption errors. For ex-
ample, the explanation for ⟨send[0], rec[1]⟩ is ⟨input, send[0], corrupt, rec[1]⟩. We were
surprised to find that the naive protocol is robust against such errors (our expectation was
that the naive protocol would not be robust against any kind of environmental deviations
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Table 2.1: Summary of ∆rep for ABP. “trans” refers to errors during transmission, and
“ack” refers to errors during acknowledgements.

Fault types Number of Traces Fault types Number of Traces

trans.lose 23 ack.duplicate 14

trans.duplicate 18 trans.{duplicate,corrupt} 4

trans.corrupt 8 ack.{duplicate,corrupt} 2

ack.lose 22 unexplained 8

ack.corrupt 8 Total 107

at all). This is because property P is under-specified in the sense that: It requires only that
the input and output actions alternate and does not say anything about the bit parameters
in the sent and corresponding received messages.

For the 107 traces in ∆rep(MABP , E, P ), our tool finds the minimal explanations for 99 of
them. For example, the explanation for ⟨send[0], send[0]⟩ is ⟨input, send[0], lose, send[0]⟩,
corresponding to message loss during transmission; the explanation for ⟨send[0], rec[0],
rec[0]⟩ is ⟨input, send[0], rec[0], output, duplicate, rec[0]⟩, corresponding to message dupli-
cation during transmission; and the explanation for ⟨send[0], rec[0], ack[0], getack[1]⟩ is
⟨input, send[0], rec[0], output, ack[0], corrupt, getack[1]⟩, corresponding to the bit corrup-
tion error during acknowledgment.

We further grouped the representative traces by the type of fault in their explana-
tions, as shown in Table 2.1. For example, trans.{duplicate, corrupt} represents a set
of deviations in which the transmitted message is duplicated and then corrupted (e.g.,
⟨. . . , rec[0], duplicate, corrupt, rec[1]⟩). There may be multiple representative traces of the
same fault type, since the fault may occur at different points during an expected sequence
of environmental actions.

Our analysis shows that the ABP is more robust than the naive protocol in handling
message loss and duplication, as intended by the protocol design [59]. In addition, the
8 unexplained traces also gave us insight into a type of error that ABP was previously
unknown to be robust against; namely, that the sender may receive acknowledgments even
when the receiver does not send them. This type of deviation may occur, for example,
when a malicious channel generates a dubious acknowledgment to deceive the sender into
believing that a message has been delivered.

2.6.4 Radiation Therapy Machine

The second case study focuses on the radiation therapy machine introduced in Section 2.2.
Specifically, we compare the robustness of the two designs (i.e., the original design as shown
in Figure 2.1 and the redesign involving an additional check to ensure the completion of
the mode switching before beam delivery, as shown in Figure 2.3). Then, we show that
the redesign is indeed more robust against potential human errors. In particular, to model
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Figure 2.12: The EOFM model of the Beam Selection Task of the therapy machine. A
rounded box defines an activity, a rectangular box defines an atomic action, and a rounded
box in gray includes all the sub-activities/actions of a parent activity. The labels on
the directed arrows are decomposition operators. The triangle in yellow defines the pre-
conditions of an activity, and the triangle in red defines the completion conditions.

normative and erroneous human behavior, we adopt the Enhanced Operator Function
Model (EOFM) [60], a formal notation for modeling tasks performed over human-machine
interfaces. Human behavior modeling has been studied by researchers in human factors
and cognitive science [45, 61], and we reuse their results in this case study to demonstrate
that our approach can be combined with existing behavior models in fields other than
network protocols.

EOFM and deviation model. The Enhanced Operator Function Model (EOFM) [60]
is a formal description language for human task analysis, a well-established sub-field of
human factors that focuses on the design of human operator tasks and related factors (e.g.,
training, working conditions, and error prevention) [62]. An EOFM describes the task to be
performed by an operator over a machine interface as a hierarchical set of activities. Each
activity includes a set of conditions that describe (1) when the activity can be undertaken
(pre-conditions) and (2) when it is considered complete (completion conditions). Each
activity is decomposed into lower-level sub-activities and, finally, into atomic interface
actions. Decomposition operators are used to specify the temporal relationships between
the sub-activities or actions. The EOFM language is based on XML, and it also supports
a tree-like visual notation.

Figure 2.12 shows a fragment of the EOFM model of the operator’s tasks for the
radiation therapy machine (adopted from [63]). It defines the Beam Selection Task, which
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can be performed only if the interface is in the Editing state; the operator can select either
the X-ray or Electron beam by pressing X or E, respectively; and the activity is completed
only if the interface leaves the editing state.

To generate explanations for robustness that involve human errors, we adopted a
method for automatically augmenting a model of a normative operator task (specified
in EOFM) with additional behaviors that correspond to human errors [64]. In particu-
lar, this approach leverages a catalog of human errors called genotypes [45]. For example,
one type of genotype errors, named commission, describes errors where the operator acci-
dentally performs an activity under the wrong condition. Other genotype errors include
omission (skipping an activity) and repetition.

Figure 2.13: A partial deviation model of the operator task for the therapy machine gen-
erated from an EOFM.

Figure 2.13 shows a simplified version of the deviation model that was generated from
the EOFM model of the therapist’s task. This model captures the operator making a
potential commission error; i.e., deviating from the expected task by pressing Up. For
simplicity, we only show one faulty transition here; the complete deviation model is con-
siderably more complex, as commission, omission, or repetition errors can occur at any
state in the normative operator model.

Comparing robustness of M and MR. We compared the robustness of the two de-
signs by computing X = ∆(MR, E, P ) − ∆(M,E, P ) using Equation 2.4, where MR =
M ′

I ||MB||MS is the redesign ofM as illustrated in Figure 2.3, and generated representative
traces that illustrate differences in their robustness. Specifically, X contains one equiva-
lence class with a representative trace ⟨X, Up, E, Enter, B⟩. This shows that the redesign is
indeed robust against the operator error involving the mode switch from X-ray to Electron
beam. Moreover, we used the deviation model described above to generate the following
minimal explanation for this deviation: ⟨X, Commission, Up, E, Enter, B⟩, corresponding to
the operator making a commission error by unexpectedly pressing Up during the task.

In addition, computing ∆(M,E, P )−∆(MR, E, P ) yielded an empty set, demonstrating
that the redesign of the machine is strictly more robust than the original design.
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Comparing robustness under two properties. Recall that the safety property P
for this therapy machine example states that the machine should not fire X-ray when the
spreader is out of place. It may also be desirable to ensure that the machine does not
fire the Electron beam when the spreader is in place (for instance, resulting in under-dose,
which, while not as life-threatening as overdose, is still considered a critical error). Let
P ′ be a property stating that the system must prevent both overdose as well as under-
dose by ensuring the right mode of beam depending on the configuration of the spreader.
Intuitively, P ′ is a stronger property than P .

To compare the robustness of the system against these two properties, we computed
X = ∆(M,E, P )−∆(M,E, P ′) using Equation 2.5. Our tool returned one representative
trace ⟨E, Up, X, Enter, B⟩. Since this class of deviations is allowed in ∆(M,E, P ) but not
in ∆(M,E, P ′), we can conclude from this analysis that the machine (as expected) is less
robust in establishing the stronger property P ′ under potential human errors.

2.6.5 Other Case Studies

We have demonstrated the applicability of our approach (RQ1) to compute and compare
robustness through two case studies: one from the distributed systems domain and the
other from the human-machine interface domain. We then introduce three additional case
studies to further demonstrate the applicability of our approach and to build a set of
benchmark problems for scalability evaluation.

Voting machine. We consider a simplified design of an electronic voting machine (called
ES&S iVotronic, described in more detail in [65]), which was used in several state-wide
elections in the U.S. and was involved in an election fraud [66]. In a normal scenario, a
voter is expected to first enter a password to verify their identity, select and vote for the
candidate they want, and finally confirm their choice. During the election, the machine
was exploited by malicious actors who were able to commit voter fraud by modifying the
vote selection made by other voters. To identify potential voter fraud in the design, we
define the following integrity requirement: For each voter, the voting machine must record
the vote that was selected by that voter. More details can be found in Appendix A.1.3.

Oyster transportation fare system. We consider the Oyster card fare collection pro-
tocol used in public transportation in London, UK (described in [67]). In this system,
the user taps their Oyster transportation card on the entry gate at the beginning of their
journey and on the exit gate at the end. The protocol also allows the user to pay their fare
through other means such as credit cards and mobile payments. In the normative case,
the user chooses the appropriate method of payment and taps in and out with the same
method. We specify the safety property of interest to be avoiding card collision, i.e., two
different methods of payment are used in the same journey. More details can be found in
Appendix A.1.4.
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Table 2.2: Evaluation results of robustness computation.

Problem |M ||P | Number of Transitions Time (s)

Therapy 35 66 0.098

Naive Protocol 41 134 0.102

ABP 23 80 0.177

Voting-1-1 69 283 0.150

Voting-2-2 373 2,301 0.178

Voting-3-3 1,109 9,087 0.230

Voting-4-4 2,469 25,201 0.296

Oyster-1 289 1,800 0.203

Oyster-3 961 8,040 0.31

Oyster-5 2,017 21,000 0.522

Pump-1 163 730 0.141

Pump-2 1,679 9,946 0.263

Pump-3 19,435 144,652 1.097

Infusion pump. The goal of this case study is to evaluate our approach on a system
that is considerably more complex than the other examples. We consider an infusion
pump machine for dispensing medication to patients through tube lines [68]. The machine
also includes a built-in battery that activates when the power cable is unplugged and
an alarm that turns on when the battery is low. Normally, the operator plugs in the
device, configures the medication dose, and starts the dispensation. However, if the cable
is accidentally unplugged and the battery runs out during dispensation, this may cause
serious medical accidents, such as overdose. Thus, the safety property is to guarantee that
the machine should immediately stop any ongoing dispensation if the machine loses power.
More details can be found in Appendix A.1.5.

2.6.6 Experimental Results

To evaluate the scalability of our approach (RQ2), we built a set of benchmark problems
based on the five case studies. Specifically, we scaled up: the voting machine problem by
increasing the number of voters and election officials, denoted by Voting-N-M where N is
the number of voters and M is the number of officials; the Oyster problem by increasing
the upper bound of the balance, denoted by Oyster-N where N is the balance bound; and
the infusion pump problem by increasing the number of tube lines, denoted by Pump-N
where N is the number of lines. Then, Table 2.2 shows the evaluation results.

The complexity of the robustness computation process is exponential to the size of
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the composition of the machine M and property P , i.e., O(2|M ||P |), due to the subset
construction process in the weakest assumption generation. However, the table shows that
our implementation can efficiently compute robustness even for a very large model like
Pump-3 with 19,435 states and 144,652 transitions in 1.097 seconds.

2.7 Summary

Strengths of our robustness analysis. In our envisioned robust-by-design develop-
ment process, a developer begins by constructing a candidate design that satisfies a desired
property under a normative environment (i.e., one without any erroneous behaviors). Then,
the robustness computed over this initial design reveals the deviations that the machine is
robust against. The process can also be adjusted to find deviations that the machine cannot
tolerate. Based on this information, the machine can be redesigned with an improvement
process and analyzed again to compute its new robustness. This chapter presents a method
to systematically and rigorously compute robustness.

Our robustness notion provides information about (1) what additional environmental
behaviors the machine can handle compared to the ideal environment or an alternative de-
sign, and (2) what errors in the environment these additional behaviors represent. For (1),
we compute the differences between the weakest assumption of a machine and the norma-
tive environment to denote its robustness, and we compare the robustness of two designs
by computing the differences in their weakest assumptions. Since robustness, in general,
is an infinite trace set, our approach provides a technique for categorizing robustness in
terms of a finite number of representative traces.

For (2), a deviation model is used to generate an explanation that describes a deviation
in terms of designated faulty events. As we demonstrated on the radiation therapy machine,
these models can be constructed automatically from domain knowledge that captures a
set of common deviations in an application domain (e.g., human errors). In general, a
deviation model might not contain enough faulty events to produce an explanation for a
particular representative trace, identified as an unexplained deviation. However, we believe
that this can also be considered a strength of our analysis, since these unexplained traces
reveal the unexpected side effects (may or may not be good) of a design decision and can
provide domain experts with insights about previously unknown types of deviations (e.g.,
ABP being robust against an injection of a dubious acknowledgment, as shown in our
evaluation).

Role of robustness in software development. Other than the robust-by-design pro-
cess, our analysis may also be used to reveal that a design is over-engineered in that it
is robust against deviations that are unlikely to occur (this situation may arise, for ex-
ample, when a machine is deployed in a more constrained environment than originally
anticipated). Over-engineering has its cost, often in the form of additional complexity, and
thus, the developer may wish to simplify the design to reduce its robustness to a desired
level (e.g., by removing unnecessary failure-handling mechanisms).
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Our analysis approach could also support the development of mixed-criticality systems
[69], where some of the system requirements are considered more critical than others (e.g.,
in certain distributed systems, preventing network message corruption may be more im-
portant than ensuring timely delivery). Such a system should be designed to satisfy its
critical properties even under a faulty environment, while it might be considered accept-
able for other, non-critical properties to be violated under the same situation. By applying
the property comparison analysis as stated in Problem 2.3, the developer can rigorously
check whether a given design achieves appropriate levels of robustness for properties with
different levels of criticality.
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Chapter 3

Robustification of Designs by Control

3.1 Introduction

In Chapter 2, we present our robustness analysis approach that computes robustness as a
set of deviation traces under which a machine continues to satisfy a desired safety property.
In contrast, design robustification addresses the opposite case, i.e., given deviations under
which the machine is unsafe, how to find a new design such that it can satisfy the desired
property under those deviations. To distinguish these deviations from the deviations that
the machine is robust against, we call them intolerable deviations, denoted by δ̄.

In this chapter, we present our technique called robustification-by-control as an approach
to systematically improving the robustness of a software machine at the design stage. In
particular, given models of a machineM and its environment E specified in LTS, along with
a set of intolerable deviations δ̄, our approach robustifies M into a new design, M ′, such
that M ′ is capable of satisfying the desired safety property P even under those deviations.
For instance, given the model of the radiation therapy machine M , the expected operator
behavior E, and a set of intolerable human errors δ̄, the robustification-by-control method
constructs a redesign M ′ that prevents a safety failure (e.g., patient overdose) even when
the operator commits one of those errors.

There are a number of technical challenges to overcome in developing an effective ro-
bustification method. First, the space of possible candidate redesignsM ′ can be enormous,
so an effective method must be able to efficiently search this space. Second, not all of these
redesigns may be desirable; there are trade-offs between different redesigns.

Specifically, we consider four trade-off dimensions of robustification: safety, functional-
ity, controllability and observability, and cost. The goal of robustification is to find a new
design satisfying a desired safety property under a set of intolerable deviations. Safety
can be achieved by disabling actions of the machine, which, however, may hurt the func-
tionality of the machine. In an extreme case, a machine entering a termination state and
doing nothing is deemed to be robust based on our robustness definition (Definition 2.2).
Therefore, we would expect our redesign to maintain as much functionality as possible.

When the desired safety property and certain functionality cannot be satisfied simul-
taneously, one reason may be the lack of controllability and observability of the machine.
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For example, if the interface of the therapy machine cannot observe and synchronize on
the mode switching events, then it may not be able to prevent the user from firing the
wrong beam. However, enhanced controllability and observability often come at a higher
cost. Therefore, the robustification method would also need to balance the cost.

To capture these trade-offs of a candidate new design, we introduce two types of quality
metrics: (1) the amount of common behavior with respect to the original design M to
capture the retained functionality, and (2) the cost of change, which is reflected by the
amount of controllability and observability of the new design. The robustification process
then becomes a multi-objective optimization problem [70], where the goal is to find a
redesign M ′ that preserves as much of the existing behavior as possible while minimizing
the cost of changes incurred. We present a novel robustification method that leverages
techniques from supervisory control theory [39] to automatically generate a set of optimal
candidate redesigns.

The rest of this chapter is organized as follows:
• Section 3.2 introduces a motivating example of robustification;

• Section 3.3 introduces the necessary background on supervisory control theory;

• Section 3.4 formally defines a robustification-by-control problem and a formulation of
it as a multi-objective optimization problem over two quality metrics for robustified
designs;

• Section 3.5 presents a novel approach to the robustification-by-control problem that
leverages supervisory control theory;

• Section 3.6 presents a set of heuristics for efficiently generating optimal redesigns;

• Section 3.7 presents the implementation of our approach and the evaluation on a set
of case studies.

3.2 Motivating Example

We continue using the radiation therapy machine to illustrate the idea of robustification-
by-control. Consider a deviated environment model E ′ in Figure 3.1. The model contains
a deviation trace ⟨X, Commission, Up, E, Enter, B⟩ where Commission represents a type of
human error of committing unexpected actions. We can check that the therapy machine is
not robust against it through techniques like model checking. Specifically, this intolerable
deviation depicts a scenario where the user mistakenly selects the X-ray mode and uses
Up to correct the selection and then fire the beam. However, the beam mode may still be
in the transition from X-ray to Electron beam while the spreader is out of place, which
causes a safety violation.

Therefore, the robustification-by-control problem defines the process of finding a new
therapy machine design M ′ such that M ′ is robust against the deviated environment by
“controlling” (modifying) the old design M . More precisely, the robustification-by-control
task is defined as follows:
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Figure 3.1: A deviated environment model E ′ with commission errors for the radiation
therapy machine, under which the original design M is not robust.

Given machine design M , environment E, intolerable deviations δ̄, and safety
property P such that M ||E ′ ̸|= P for deviated environment E ′ where beh(E ′) =
beh(E) ∪ δ̄, construct a new design M ′ such that M ′||E ′ |= P .

Not every solution to this problem, however, may be desirable to the developer. For
example, one possible way is to remove all of the Up transitions from the interface; this way,
the therapy machine would be prevented from changing the beam mode, thus ensuring that
the new design satisfies the safety requirement. However, this design is also less desirable,
in that it also removes the ability for the user to change between different modes before
firing.

To enable the generation of more “desirable” solutions, we consider two quality metrics
for candidate redesigns: (1) the solution should retain the behavior of the original design as
much as possible, which reflects the maintained functionality, and (2) the solution should
incur minimal cost of change, corresponding to the amount of controllability and observ-
ability of the solution. Then, the above task can be rephrased as the following optimization
problem:

Given machine design M , environment E, intolerable deviation δ̄, and safety
property P , for E ′ where beh(E ′) = beh(E)∪δ̄, constructM ′ such thatM ′||E ′ |=
P , and M ′ maximizes common behavior with M and minimizes the cost of
change.

In the following sections, we formally define the robustification-by-control problem and a
notion of optimal redesigns in terms of the above quality metrics. We then present our
method to generate optimal redesigns, which leverages supervisory control theory [39].
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3.3 Preliminaries

Our proposed robustification approach leverages techniques from an area of control theory
called supervisory control [39]. In the context of supervisory control, it assumes an “un-
controlled” system (also called plant), which in our context would be the composition of a
machine and its environment (M ||E), for which a desired property needs to be enforced.
The premise is that the plant may not satisfy the property on its own, and it needs to be
“controlled” by restricting its behavior to a subset of its original behavior. The control or
restriction is done by a component named supervisory controller, which can observe certain
events in the plant and disable some events from occurring.

Given a deterministic LTS G as the model of a plant that needs to be controlled, a
controller C for G is a function that maps any trace in beh(G) to a subset of events in αG,
i.e., C : beh(G) → 2αG. Then, given a trace σ ∈ beh(G), C(σ) defines the set of events
that G is allowed to perform after σ.

A typical controller C has limited actuation and sensing capabilities. These limited ca-
pabilities are described by the pair of partitions of αG: (1) αGc and αGuc, which represent
the sets of controllable and uncontrollable events; and (2) αGo and αGuo, which repre-
sent the sets of observable and unobservable events. Intuitively, a controller only perceives
events in αGo and can only disable events in αGc. Therefore, we can formally define a
controller as follows:

Definition 3.1. A supervisory controller is a function

C : beh(G↾αGo)→ 2αG s.t. ∀σ ∈ beh(G↾αGo) : αGuc ⊆ C(σ)

From this definition, the control enforced by a controller can change only after some
observable event occurs. Also, in our work, we assume that every controllable event is
observable, i.e., αGc ⊆ αGo.

A controller C can also be represented as a deterministic LTS, where, given trace
σ ∈ beh(G), only events in C(σ) are enabled at the state reached after executing σ. In
the following sections, unless explicitly specified, C refers to the LTS representation of a
controller. Then, the behavior defined by applying a controller C to G (i.e., plant under
control) can be represented by beh(C||G).

Finally, the goal of supervisory controller synthesis is to find a controller C over plant
G to achieve property P :

Definition 3.2. Given plant G with controllable events αGc and observable events αGo,
αGc ⊆ αGo, and property P , a controller synthesis problem C(G,P, αGc, αGo) searches for
a minimally restrictive controller C such that C||G |= P .

The synthesis should generate a controller that is minimally restrictive, i.e., it should
disable only the necessary transitions that would eventually result in a property violation
and retain as much behavior as possible of the original plant. Supervisory control theory
provides algorithmic techniques for computing such a controller; more details can be found
in [39].
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3.4 Robustification Problems

3.4.1 Basic Robustification Problem

Robustification deals with intolerable deviations under which the machine may violate the
property. However, the intolerable deviations δ̄ could represent a potentially infinite set
of traces. Therefore, to practically compute the deviated environment E ′ with respect
to deviations δ̄, we introduce the concepts of a deviation augmentation model and the
augmentation operator ⊕. A deviation augmentation model describes how the environment
may deviate from its original behavior, in terms of additional transitions, states, or events:

Definition 3.3. Given an LTS T = ⟨S, αT,R, s0⟩ and a deviation augmentation model d =
⟨Sd, αd, Rd⟩, where S ⊆ Sd, αT ⊆ αd, and Rd ⊆ Sd × αd× Sd, the augmentation operator
⊕ augments T by adding states and transitions to it, i.e., T ⊕ d = ⟨Sd, αd, R∪Rd, s0⟩, and
beh(T ) ⊆ beh(T ⊕ d).

For example, in Figure 3.1, to model the deviation from the expected operator behav-
ior, the original environment model is augmented with an additional state GoBack and
additional transitions (ConfirmMode, Commission, GoBack) and (GoBack, Up, SelectMode).

Then, the task of robustifying a design is defined as follows:

Definition 3.4. Given machine M , environment E, deviation augmentation model d, and
property P such that M ||E |= P , the goal of robustification-by-control, R(M,E, d, P ), is
to find an LTS M ′ such that for E ′ = E ⊕ d, M ′||E ′ |= P .

3.4.2 Constraints on Robustified Designs

In this work, we specifically focus on robustification against safety properties. A safety
property defines the unsafe behavior that should be avoided. However, it is possible to have
an overly restrictive M ′ that satisfies the safety property but does nothing “meaningful”.
For instance, in the radiation therapy machine, one could disable all B events, but this
solution would also prevent users from being able to fire the beam. Therefore, to avoid
such “useless” solutions, we introduce another class of properties named progress properties.

For an LTS T , a progress property Pg ⊆ αT defines a set of events such that the system
T must eventually be able to execute a ∈ Pg along all paths.1 It is a restricted subset of
liveness properties [9]. Thus, in the therapy machine example, we can specify a progress
property requiring that event B can eventually occur along all traces. Through this way,
we can constrain a robustification-by-control problem to find solutions that at least satisfy
certain functionalities.

1Note that our definition of progress is slightly different from the one used in LTSA [48], where they
require an event to occur infinitely often in an infinite trace. However, we only require the event to occur at
least once in a finite trace. This is primarily due to the limitations of the underlying supervisory controller
synthesis method we use, which does not support the “infinitely often” semantics [39].
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3.4.3 Quality Metrics for Robustified Designs

In general, there may be a large number of possible solutions to a robustification problem,
but some of them may be considered more desirable than others, even if they may all satisfy
certain progress constraints. Therefore, we consider two desirable qualities of a robustified
design: (1) the redesign should retain as much of the important functionality from the
original design as possible, and (2) the cost of modifying M to M ′ should be small.

Common behavior. To capture the amount of common behavior or, in other words, the
retained functionality, we introduce the notion of preferred behavior. A preferred behavior
b is an execution trace and represents an operational scenario that the developer wishes
for an LTS T to contain, i.e., b ∈ beh(T ↾αb), where αb ⊆ αT refers to the events of trace
b. We denote it as T |= b when a preferred behavior b is satisfied by the LTS T . Then,
maximizing the common behavior between the original design M and the new design M ′

can be formulated as maximizing the number of b’s such that M ||E ′ |= b and M ′||E ′ |= b.
Formally, we define:

Definition 3.5. Given a set of preferred behaviors B = {b1, b2, . . . , bn}, we state T |= B
for some LTS T if and only if

∧
bi∈B T |= bi.

Moreover, the developer may associate each scenario bi with a different importance
value. Then, we can quantitatively measure the amount of common behavior achieved by
M ′ in terms of the total importance value of the subset of preferred behaviors B′ ⊆ B that
is retained by M ′||E ′.

Cost of change. The second quality metric that we introduce is the cost of change
between the original and new design. One way to measure the cost would be in terms
of syntactic differences between M and M ′, e.g., the number of changes to states and
transitions in the model. However, these syntactic-based changes in LTS do not necessarily
reflect the actual cost of redesign effort.

Instead of syntactic changes to an LTS, our intuition is that the cost of redesign can
be better approximated by reflecting the set of environment and machine events that are
observed or controlled by the machine for the purpose of robustification. Intuitively, to
make the machine more robust, one may need to place an additional sensor or detector
to observe a part of the environment or some internal event of the machine (e.g., add a
synchronization sensor for the mode switching in the therapy machine example) or modify
an existing actuator to disable a particular event under certain situations (e.g., block
the firing button B when the mode switching has not been completed). These types of
changes in the sensing and actuating capability of the machine may better reflect the cost
of implementation than just counting the syntactic changes of the model.

More precisely, the developer can designate a pair of event sets, A = (Ac, Ao), where
Ac, Ao ⊆ αE ∪ αM , that are controllable and observable, respectively, for the purpose of
robustification. Furthermore, each event in A can be associated with a cost measure to
reflect the effort of implementing an actuator or sensor to control or observe (respectively)
that event in the real world. This, in turn, allows us to measure the total cost of changes as
the sum of the individual costs of the events in A that are used to robustify the machine.
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Figure 3.2: Alternative ways to robustify the radiation therapy machine.

Example. In the radiation therapy machine example, one can define preferred behaviors:

b1 : ⟨X, Up, E, Enter, B⟩ and b2 : ⟨E, Up, X, Enter, B⟩

to specify the desire that the user should be able to switch between the X-ray mode and
the Electron beam mode using the Up button. Then, one can assign a moderate cost to
events SetXray and SetEBeam for observability to reflect the cost to implement the sensing
capability in the interface to synchronize mode switching. They can also assign a cheap
cost to events Up and B for controllability to reflect the cost of (1) disabling Up to stop
the user from mode switching and (2) controlling B accordingly to avoid accidentally firing
the wrong beam.

Then, Figure 3.2 shows two alternative ways to robustify the radiation therapy machine.
In solution (a), we remove all the Up transitions from the interface model; alternatively, in
(b), we let the interface synchronize on the SetXray and SetEBeam events from the beam
setter and control the B button to prevent firing a beam before the mode has been properly
set.

Consider the progress property Pg = {B} that requires B to eventually occur. Both
solutions satisfy this constraint; but in terms of preserving behaviors of the original design,
it is easy to see that solution (a) does not satisfy the preferred behaviors (b1 and b2) while
(b) does. However, in terms of the cost of changes, solution (a) involves removing all Up
actions (e.g., removing the corresponding button) from the interface, which is considered to
have a cheap cost based on our assumed setting. On the other hand, solution (b) requires
extending the interface with additional detectors and controlling the firing button (B) to
determine when the beam mode has been successfully set and is safe to fire, which has a
higher cost than disabling only Up in our setting.

45



3.4.4 Optimal Robustification Problem

Given a robustification problemR(M,E, d, P ), a progress property Pg, preferred behaviors

B, and modifiable events A, let R⃗ = ⟨M ′, B′, A′⟩ be a solution such that it satisfies the
progress property Pg and a subset of preferred behaviors B′ ⊆ B using a subset of events
A′ = (A′

c, A
′
o) where A

′
c ⊆ Ac and A

′
o ⊆ Ao. We define the following objective function:

U⃗(R⃗) = ⟨UB(R⃗), UA(R⃗)⟩

where
• UB(R⃗) =

∑
bi∈B′

ub(bi) is the amount of utility gained from fulfilling the preferred

behaviors, and

• UA(R⃗) =
∑
ac∈A′

c

uc(ac) +
∑
ao∈A′

o

uo(ao) is the total cost of events used to redesign M .

The objective function U⃗ requires a set of utility functions u = (ub, uc, uo) to assign dif-
ferent degrees of importance to preferred behaviors and implementation costs to events.
Specifically, ub(bi) returns a positive integer whereas uc(ac) and uo(ao) are non-positive, to
reflect the positive and negative impact of preferred behavior and cost, respectively.

Intuitively, using a larger set of events to modify M (i.e., increasing controllability and
observability) allows for a more fine-grained control over the behavior of the machine, which

can help maximize the preferred behaviors, i.e., a larger UB(R⃗). However, modifying more

events also leads to a higher cost, i.e., a larger negative value of UA(R⃗). Thus, the problem
becomes a multi-objective optimization problem that attempts to generate a solution that
maximizes these two conflicting objectives [70]. Formally, this (constrained) optimization

problem, denoted O(Rb, Pg,B,A, U⃗), is defined as follows:

Definition 3.6. Given a robustification-by-control problem Rb = R(M,E, d, P ), a progress
property Pg, a set of preferred behaviors B (where M ||E ′ |= B), and a set of avail-
able events for robustification A = (Ac, Ao), the goal of optimal robustification-by-control

O(Rb, Pg,B,A, U⃗) is to find one or more solutions R⃗ = ⟨M ′, B′, A′⟩ such that M ′ is a

solution to problem Rb, M ′ satisfies Pg, M ′||E ′ |= B′, and R⃗ maximizes the objective

function U⃗ .

As illustrated in Figure 3.2, there are trade-offs between the amount of preferred be-
havior retained and the cost of change. Solution (b) retains more behavior than solution
(a) does but also incurs a higher implementation cost in our assumed problem setting. In
general, the developer may need to examine and consider multiple such design alternatives
before selecting the final robustified design. Additionally, the importance value of pre-
serving a particular preferred behavior and the cost associated with a certain modification
event highly depend on the development and business context. For example, removing the
Up button from the interface could also be costly if its physical part was outsourced to
another company.

To compare different robustified designs, for an optimal robustification-by-control prob-
lem, we consider the Pareto order of its solution space [71]. Specifically, a solution R⃗ to
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the problem is Pareto optimal if and only if there does not exist another solution R⃗′ that
dominates it, i.e.,

UB(R⃗
′) ≥ UB(R⃗) ∧ UA(R⃗

′) ≥ UA(R⃗) and

UB(R⃗
′) > UB(R⃗) ∨ UA(R⃗

′) > UA(R⃗).

Next, we describe an algorithm that leverages supervisory control synthesis to generate a
set of alternative Pareto-optimal redesigns [72].

3.5 Optimal Robustification by Control

3.5.1 Basic Robustification as Supervisory Control

The task of robustifying a machine by control can be reduced to a supervisory controller
synthesis problem as follows:

Theorem 3.1. Given a basic robustification-by-control problem R(M,E, d, P ), let C be a
solution to the controller synthesis problem C(G,P, αGc, αGo), where G = M ||E ′, E ′ =
E ⊕ d, and αGc ⊆ αGo ⊆ αG. Then, M ′ = C||M is a solution to the robustification-by-
control problem where αM ′ = αM ∪ αGc ∪ αGo.

Proof. Given a robustification-by-control problem, we have M ||E ′ ̸|= P . Therefore, the
composition G =M ||E ′ can be treated as a plant that behaves undesirably (i.e., violates P )
and thus needs to be controlled. The resulting controller C describes how the interactions
between M and E ′ should be restricted to ensure P . Thus, composing M and C amounts
to augmenting M with the additional control logic in C to ensure P under the deviations.
Formally, since C||G |= P , then we have C||(M ||E ′) |= P . Hence, M ′||E ′ |= P when
M ′ = C||M .

Then, given the characteristics of supervisory control synthesis, by default, it generates
the minimally restrictive controller (Definition 3.2), which aligns with our goal of retaining
as much behavior from the original design as possible. Additionally, the use of controllable
and observable events to synthesize a controller aligns with our goal of using controllability
and observability to measure the cost. Therefore, we have the following theorem:

Theorem 3.2. Given an optimal robustification-by-control problem O(Rb, Pg,B,A, U⃗)
and a corresponding controller synthesis problem C(G,P ′, αGc, αGo) where P

′ is the prop-
erty that combines the safety property P and the progress property Pg, supervisory con-
troller synthesis generates a controller C such that M ′ = C||M satisfies the progress prop-
erty Pg and the maximal possible B′ ⊆ B for A′ = (αGc, αGo).

Proof. The correctness of the theorem is guaranteed by the definition of supervisory con-
troller synthesis (Definition 3.2). Specifically, given progress property Pg, we convert
safety property P into a non-prefix-closed property P ′ and leverage the supervisory con-
troller synthesis process for non-prefix-closed language [39]. Details about this conversion
are described below.

Therefore, we can formulate an algorithm to solve the optimal robustification-by-control
problem by using supervisory controller synthesis as a searching primitive.
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Figure 3.3: The DFA conversion of progress property Pg = {a}.

Progress property conversion. Given a robustification problem O(Rb, Pg,B,A, U⃗),
where Rb = R(M,E, d, P ), we combine the safety property P with the progress property
Pg to generate a new non-prefix-closed safety property P ′, which allows us to solve the
problem by leveraging supervisory controller synthesis for non-prefix-closed properties. The
idea is as follows: Typically, a safety property P describes a prefix-closed set of traces, and
thus, for example, an empty trace is also considered safe. Supervisory controller synthesis
allows us to specify the safety property as non-prefix-closed (e.g., making an empty trace
unacceptable). Through this way, for an event in a progress property, we can make traces
where the event does not occur unacceptable to find a controller satisfying the progress
property. However, it does not support the “infinitely often” semantics.

Specifically, supervisory controller synthesis considers properties defined in determin-
istic finite automata (DFA). A DFA is a tuple T = ⟨S, αT,R, s0, F ⟩ where S is a finite set
of states, αT is the set of events of T , R ⊆ S ×αT × S is the transition function, s0 is the
initial state, and F ⊆ S is the set of accepting states. A DFA only accepts a trace that
ends in a state in F . For a safety property P defined in an LTS, we can convert it to a
DFA by letting all states in S be acceptable, i.e., S = F .

Then, consider a progress property Pg = {a}. We can combine it into a safety property
P by converting it to a DFA, as shown in Figure 3.3. In the figure, a double-solid circle
indicates an accepting state of the DFA, and ∗ represents all the events of the safety
property P . Thus, this DFA only accepts traces where event a occurs at least once.
We can then generate the non-prefix-closed safety property P ′ by computing the parallel
composition of P with the corresponding DFA of the progress property.

3.5.2 Priority-Based Utility Function

Before diving deep into our algorithm, we introduce a concrete implementation of the set of
utility functions u = (ub, uc, uo) for the objective function U⃗ of an optimal robustification-
by-control problem. We present one definition that assigns utility values based on prior-
ities among preferred behaviors and modifiable events: Given the optimization problem
O
(
Rb, Pg,B,A = (Ac, Ao)

)
, the developer assigns priorities to the elements of B, Ac, and

Ao. We provide a default set of priority categories as shown in Table 3.1; in general, the
priorities can be configured with other user-defined categories.

In Table 3.1, (1) a preferred behavior with a higher priority indicates that it is more
critical to the machine (i.e., has greater utility), and (2) a controllable or observable event
with a higher priority means that it is more costly to implement (i.e., has a greater cost).
Formally, let x be a preferred behavior, controllable event, or observable event, we use hx
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Table 3.1: The priority categories for preferred behaviors and events. Priority 0 is used for
events with no cost and does not apply to preferred behaviors.

0 1 2 3

Preferred Behavior - Minor Important Essential

Event No Cost Cheap Moderate Costly

to represent its priority value (from 0, 1, 2, and 3). Then, we use Hk (where k ∈ {0, 1, 2, 3})
to represent the set of all preferred behaviors and events with priority k. Then, the set of
utility functions u = (ub, uc, uo) are defined as follows:

ub(b) =W(hb), uc(a) = −W(ha), uo(a) = −W(ha), and

W(i) = 1 +
i−1∑
k=0

W(k) · |Hk|

where |Hk| is the total number of preferred behaviors and events with priority k, W is a
weight computation function taking a priority i as input, and W(0) = 0. Therefore, for a
priority i,W(i) returns a weight value that is larger than the total sum of absolute weights
of preferred behaviors and events with lower priorities. Also note that an event a being
controllable and observable is considered as two events when counting |Hk|.

This approach to defining utility is called the lexicographic method [70]. With these
rules, the cost of making some event controllable or observable is assigned the negative
utility value of fulfilling a preferred behavior in the same priority bracket. Additionally,
these rules prioritize saving a cost or fulfilling a preferred behavior in a particular priority
bracket over incurring any costs or gaining any utilities with a lower priority. This enables
our algorithm to search in the order of higher-to-lower priorities, as discussed later.

Example 1. Consider a set of preferred behaviors B = {b1, b2} where b1 is Essential and
b2 is Important, a set of controllable events Ac = {a} where a has a Moderate cost for
controllability, and a set of observable events Ao = {a, b, c} where a, b has a Cheap cost for
observability and c has No Cost. Also note that, b and c are not in the controllable set
and are thus always uncontrollable. Then, our utility functions would assign utility values
and costs as follows:

ub(b1) = 9, ub(b2) = 3,

uc(a) = −3,
uo(a) = −1, uo(b) = −1, uo(c) = 0

where b1 has the highest priority and thus its weight value is larger than the sum of the
absolute weight values of all the other preferred behaviors and events. Similarly, b2 and
the cost for controlling a have the same absolute weight value, and the value is larger than
the sum of the absolute weights of preferred behaviors and events with lower priorities.
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Figure 3.4: The overall process for solving optimal robustification-by-control problems.

Example 2. In the radiation therapy machine example, we could define the scenarios
⟨X, Up, E, Enter, B⟩ and ⟨E, Up, X, Enter, B⟩ as Essential preferred behaviors, as it is cru-
cial to ensure the user can switch between beam modes. Satisfying one of these will earn
a utility value greater than the total utility of all preferred behaviors with a lower prior-
ity (e.g., scenario ⟨X, Enter, Up, Enter, B⟩ could be Minor). Similarly, if we assign events
SetXray and SetEBeam with a Moderate cost, using any of these in robustification will incur
a cost higher than the total cost of all Cheap events (e.g., if we assign events Up and B
with a Cheap cost).

3.5.3 Algorithm for Multi-Objective Optimization

Figure 3.4 illustrates the overall process of our approach. At a high level, a design optimizer
generates the next searching target ⟨B′, A′⟩. Subsequently, we solve a supervisory control
synthesis problem with the given A′ and then verify if the preferred behaviors in B′ are
satisfied by the candidate solution. If so, the design optimizer stores this candidate solution
M ′ and iteratively generates the next search target.

Algorithm 2 describes a naive design for finding Pareto-optimal solutions, calledNaive-
Pareto. It employs a top-down, enumerative search approach, where it (1) searches for
a solution that fulfills a subset of preferred behaviors B′ ⊆ B at the lowest cost possible
for B′, and (2) iteratively reduces B′ to find other Pareto-optimal solutions.

Specifically, on lines 1-2, NaivePareto starts by generating the deviated environment
E ′ and the new property P ′ combining P and Pg, and synthesizing a controller (Cmax)
that has access to all of the user-specified controllable and observable events (Ac and Ao).
Then, on line 3, it checks whether Cmax||M ||E ′ satisfies each preferred behavior b ∈ B.
Since this is the most “powerful” controller, based on Theorem 3.2, it fulfills the maximal
subset of the user-specified preferred behaviors (Bmax), while also being the most costly
solution.

In the iteration from lines 5 to 19, NaivePareto incrementally removes elements
from Bmax in the order of utility values to find solutions with a lower cost. On line 6, it
generates multiple sets of preferred behaviors to remove for an iteration i, which have the
same total utility value. For example, consider Bmax = {b1, b2, b3} where ub(b1) = ub(b2)
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Algorithm 2: NaivePareto — A naive algorithm for optimal robustification-
by-control.

Input : M,E, d, P, Pg,B,A = (Ac, Ao), U⃗
Output: solutions, a set of solutions to robustification-by-control

1 E ′ ← E ⊕ d, P ′ ← constructProp(P, Pg);
2 Cmax ← C(M ||E ′, P ′, Ac, Ao) ; // Solve a controller synthesis

problem
3 Bmax ← checkPreferred(Cmax||M ||E ′, B) ;
4 solutions← ∅, i← 0 ;
5 while true do
6 Bi ← nextToRemove(Bmax, i) ; // Bi ⊆ 2Bmax

7 if Bi = ∅ then
8 return solutions ;
9 end

10 for Brm ∈ Bi do
11 B′ ← Bmax \Brm ;

12 candidates← minimizeCost(M ||E ′, P, B′, Ac, Ao, U⃗) ;

13 for R⃗ = ⟨M ′, B′, A′⟩ ∈ candidates do

14 v ← U⃗(R⃗) ;
// Maintain the set of Pareto-optimal solutions.

15 solutions← updateSols(solutions, R⃗, v);
16 end

17 end
18 i← i+ 1;

19 end

and ub(b1) + ub(b2) < ub(b3):

1. At iteration i = 0, it generates B0 = { ∅ } to remove from Bmax;

2. At iteration i = 1, B1 =
{
{b1}, {b2}

}
, where {b1} and {b2} have the same total

utility value;

3. At iteration i = 2, B2 =
{
{b1, b2}

}
, etc.

Thus, in each iteration, the preferred behavior sets to remove all have the same total utility
value; and the value increases with the increasing of iterations. This process continues until
Bi is empty, i.e., we have explored all subsets of Bmax to remove (lines 7 to 9).

Then, from lines 10 to 17, at iteration i with, e.g., Bi = {B1, B2} where B1, B2 ⊂ Bmax,
we remove B1 and B2 from Bmax (line 11), respectively, and try to find solutions with a
lower cost given the new preferred behavior sets. In particular, on line 12, given a new
preferred behavior set B′, NaivePareto enumerates all combinations of controllable and
observable events except those where Ac ̸⊆ Ao (which violates our assumption in Theorem
3.1) and attempts to synthesize a controller for each combination. Algorithm 3 describes
this process in detail. The goal is to find a controller (if one exists) that fulfills B′ at
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Algorithm 3: minimizeCost for NaivePareto

Input : M ||E ′, P ′, B′, Ac, Ao, U⃗
Output: candidates, a set of candidate solutions satisfying B′ with the lowest

cost.
1 candidates← ∅;
2 for A′ = (A′

c, A
′
o) ∈ 2Ac × 2Ao do

3 if A′
c ⊆ A′

o then
4 C ← C(M ||E ′, P ′, A′

c, A
′
o);

5 Bsat ← checkPreferred(C||M ||E ′, B′);
6 if Bsat = B′ then

7 R⃗← ⟨C||M ||E ′, B′, A′⟩;
8 v ← U⃗(R⃗);

// Maintain the set of solutions with the lowest
cost.

9 candidates← updateBest(candidates, R⃗, v);
10 end

11 end

12 end
13 return candidates ;

the lowest possible cost. If such a solution exists and is not dominated by any existing
solutions, it is stored as one of the Pareto-optimal solutions to be returned as the final
output (lines 13 to 16).

Complexity. The complexity of NaivePareto comes from two tasks: (1) searching all
possible combinations of preferred behaviors and events, and (2) controller synthesis. For
(1), the complexity is O(2|B|+|A>0|), where A>0 is the subset of A with a non-zero cost. For
each combination, the algorithm solves a controller synthesis problem, which is in general
a hard problem (NP-hard) [73, 74]. Thus, the worst-case complexity can be approximated
as O(2|B|+|A>0|+N), where N is the number of states of the plant, M ||E ′.

3.6 Heuristic for Multi-Objective Search

3.6.1 SmartPareto: Searching with Pruning Strategies

Given the inherent complexity and the brute-force nature of the algorithm, NaivePareto
is unlikely to scale to larger models. This section introduces SmartPareto, which em-
ploys three heuristics to improve the efficiency of finding Pareto-optimal solutions.

(1) Removing unnecessary events. By analyzing Cmax, we can extract αGu and αGun,
which indicates the set of controlled or observed events and unused events, respectively.
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Figure 3.5: Illustration of the heuristics in SmartPareto.

For any event a ∈ αGun, we can remove it from future searches if its cost is greater than
the total cost of events in αGu. Since we know that αGu can form a valid solution, any
solution with event a would always have a higher cost and, thus, there is no need to search
for such solutions. Therefore, after generating Cmax (line 2 in Algorithm 2) and before
entering the main iteration loop (lines 5 to 18), we can remove the unnecessary events
from A and use only the remaining events to minimize cost (line 12). A similar reduction
of a controller can be found in [75], but without the consideration of cost.

(2) Minimizing cost in the order of event priority. Since we employ a priority-

based utility function for U⃗ , which follows a strict ordering property of the lexicographic
method, we can always remove high-priority events before low-priority ones. For a com-
bination of controllable and observable events, if removing a high-priority event generates
a valid solution, then removing a lower-priority event from that combination instead can-
not generate a solution with a lower cost. Thus, removing high-priority events first can
potentially avoid searching certain combinations, which prunes the search space.

(3) Pruning invalid combinations. When a combination of controllable and observ-
able events produces no controller (i.e., cannot find a controller satisfying the property)
or violates some given preferred behavior set B′, we can stop minimizing from this combi-
nation. This is because removing events from such a combination would further limit the
behavior of the controller, which would certainly result in an invalid solution.

Example. For instance, in Figure 3.5, SmartPareto first generates Cmax with all
events {a, b, c, d}. By analyzing Cmax, we know that {a, b, c} forms a valid solution and
{d} is not used. Since d’s cost is higher than the total cost of {a, b, c}, we don’t need to
search for any combinations containing d (Heuristic 1). Then, to minimize {a, b, c}, it first
removes event b and c, respectively, before a, because if {a, b} or {a, c} generate a valid
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Algorithm 4: minimizeCost for LocalSearch

Input : M ||E ′, P, B′, Ac, Ao, U⃗
Output: candidate, a local-optimal solution satisfying B′.
// A sorted sequence of controllable events by priority.

1 Aordc ← sortByPriority(Ac);
// A sorted sequence of observable events by priority.

2 Aordo ← sortByPriority(Ao);
3 A′

c ← Ac, A
′
o ← Ao;

/* ⌢ for sequence concatenation */
4 for a ∈ Aordc ⌢ Aordo do
5 if a ∈ Ac ∧ |A′

c| > 1 then // Need at least one controllable
events.

6 A′
c ← A′

c \ {a};
7 else if a ∈ Ao ∧ a ̸∈ A′

c then// Need to maintain A′
c ⊆ A′

o.
8 A′

o ← A′
o \ {a};

9 else
10 continue;
11 end
12 C ← C(M ||E ′, P, A′

c, A
′
o);

13 Bsat ← checkPreferred(C||M ||E ′, B′);
14 if Bsat = B′ then

/* Update the best solution as removing occurs and B′

is satisfied. */

15 R⃗← ⟨C||M ||E ′, B′, A′ = (A′
c, A

′
o)⟩;

16 end

17 end

18 return R⃗;

solution, then we don’t need to search from {b, c} as we cannot find a lower cost solution
from it (Heuristic 2). Finally, if {a, c} is an invalid solution, its followed set {a} and {c}
are also invalid; thus, they do not need to be searched (Heuristic 3).

In our evaluation, we demonstrate that these heuristics improve the performance of
the search by significantly reducing the number of controller synthesis calls while still
guaranteeing Pareto-optimality.

3.6.2 LocalSearch: Finding Locally Optimal Solutions

As a further improvement to SmartPareto, we present another algorithm called Lo-
calSearch that trades off Pareto-optimality for improved performance.

LocalSearch is similar to NaivePareto but replaces the minimizing process, i.e.,
the minimizeCost function on line 12 of Algorithm 2. Algorithm 4 shows the process of
the new minimizeCost function for LocalSearch. At iteration i with preferred behavior
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set B′, instead of enumerating every possible combination of controllable and observable
events (or using heuristics), it incrementally removes one event at a time (high-priority
events before low-priority events, controllable events before observable events) from the
given event set if removing that event would still generate a controller and retain B′.

Specifically, lines 1 to 2 generate the ordered sequences of controllable and observable
events based on their priorities. Then, in the loop from lines 4 to 17, it first attempts
to remove a controllable event from the combination and then attempts to remove an
observable events (lines 5 to 11). It also guarantees there is at least one controllable event
and maintains the assumption A′

c ⊆ A′
o. On lines 12 to 16, it synthesizes a new controller

(if it exists), and if the candidate solution continues to satisfy the preferred behavior set
B′, it updates the best solution so far. The result is a local-optimal solution w.r.t. B′ such
that removing any event from it would produce no controller or violate B′. However, it
does not guarantee the cost to be the minimal and thus is not necessarily Pareto-optimal.

For example, consider events {a, b, c, d} where u(a) = u(b) = u(c) < u(d). Lo-
calSearch first removes event d and checks whether a valid solution exists. Then, it
arbitrarily selects one of a, b, or c to be removed since they have the same cost. Suppose
it removes c and finds that removing either a or b would result in an invalid solution;
then, LocalSearch returns {a, b} as the optimal solution. This is locally optimal but
not necessarily Pareto-optimal, since {c} might also allow a valid solution and has a lower
cost than {a, b}.

Complexity. The complexity of LocalSearch is O(|A>0| · 2|B|+N). Compared to
NaivePareto and SmartPareto, it requires much fewer synthesis instances and thus
is more efficient. Although it finds only local-optimal solutions, our evaluation suggests
that these solutions are often good enough compared to Pareto-optimal solutions.

3.7 Evaluation

3.7.1 Research Questions

The evaluation of our robustification approach focuses on two research questions:
• RQ1 (Scalability): How well do our robustification algorithms scale? Do the heuris-
tics in SmartPareto improve the performance of NaivePareto? How does Lo-
calSearch compare against the two?

• RQ2 (Quality of robustification solutions): How does our robustification ap-
proach compare to other existing methods in terms of the quality of the generated
solutions?

To answer these research questions, we evaluated our approach on the five case studies
defined in Section 2.6. Specifically, to answer RQ1, we utilized the benchmark problems
derived from the case studies and compared the performance of NaivePareto, Smart-
Pareto, and LocalSearch in terms of their solving time. Then, to answer RQ2, we
compared our approach against two baseline methods: Vanilla supervisory control and
OASIS (a technique aiming to revise a machine to fulfill a security requirement). In
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Figure 3.6: Screenshot of Fortis for robustification-by-control.

particular, we used the following metrics: (1) the ability to find a solution that retains
behaviors from the old design, (2) the number of controllable and observable events used
for robustification, and (3) the solving time to compare the quality of their solutions.

3.7.2 Implementation

We implemented the robustification-by-control approach in our tool Fortis. It uses Suprem-
ica [76], a state-of-the-art supervisory controller synthesis tool, to perform controller syn-
thesis as part of the robustification-by-control algorithm. The source code of the implemen-
tation is available on GitHub at https://github.com/cmu-soda/fortis-core.

Figure 3.6 shows the web interface of Fortis for robustification-by-control. Similar to
robustness analysis, a user specifies all parameters of a robustification-by-control problem
(such as model specifications, preferred behaviors, controllable and observable events) on
the right panel. Then, by clicking Compute, the Fortis back-end will be invoked to compute
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solutions for a robustification-by-control problem.

Fortis also supports a command-line interface for robustification. A user can provide
a JSON configuration file with all problem parameters to Fortis, and the tool produces
the solutions on disk in a user-specified specification format such as FSP. We leveraged
the command-line interface to conduct our evaluation. All experiments were done on a
Windows machine with an Intel i9-12900H processor and 32GB memory.

3.7.3 Case Studies

We first present the settings for all our case study problems and the results found by our
approach. We did not apply robustification to the network protocol case study because both
the naive protocol and ABP satisfy the safety property under the deviated environment
with message loss.

Radiation therapy machine. Consider the radiation therapy machine described in
Section 2.2 and the deviated environment described in Section 3.2. We have the safety
property that the spreader must be in place when the beam is fired in X-ray. Specifically,
an unsafe scenario occurs given the deviation ⟨X, Up, E, Enter, B⟩, where the beam is fired
in X-ray with the spread out of place during the transition from the X-ray mode to the
Electron beam mode.

Then, we define a progress property that FireXray and FireEBeam should eventually
occur to ensure that the machine will still be capable of carrying out treatments even after
robustification. We also define the following preferred behaviors:

• b1, b2 (Essential): The user can select X/E and then use Up to change the mode and
fire the beam.

• b3, b4 (Important): The user can perform ⟨Up, Up⟩ after having pressed Enter to
change the mode and fire.

b1 and b2 state that it is Essential to allow the user to switch the beam in case the wrong
one was accidentally selected. Since it is less likely for the user to select the wrong beam
and then press Enter without noticing the mistake, b3 and b4 are assigned a lower priority
of Important.

Finally, we assigned NoCost to observing the events of the therapy machine, which
are: X, E, Enter, Up, B, FireXray, FireEBeam, SetXray, and SetEBeam. Then, we assigned
NoCost to control FireXray, FireEBeam, SetXray, and SetEBeam, but Cheap to control X,
E, Enter, Up, and B to reflect the cost of upgrading the user interface for controllability
(e.g., by disabling those buttons contextually).

Running Fortis with SmartPareto generated two Pareto-optimal solutions. One
solution involves: (1) disabling B when the system is in the X-ray mode and the spreader
is out of place, and (2) re-enabling B when the mode switching is completed by observing
SetXray and SetEBeam. This solution is similar to the redesign we manually devised in
Section 2.2. In addition, LocalSearch finds the other Pareto-optimal solution, which
disables Enter instead of B.
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Voting machine. Consider the voting machine example, where a voter enters a password
to verify their identify, selects and votes for a candidate, and finally confirms their vote.
The voting machine is placed inside a voting booth, and only one person can occupy the
booth at a time. The safety property aims to ensure vote integrity, that the machine must
record the vote that was selected by a voter. More details of the problem can be found in
Appendix A.1.3.

A deviation of the environment may occur when a voter is not familiar with the e-voting
interface and inadvertently commits errors such as omitting to confirm the vote selection
before leaving the voting booth. This may lead to a counterexample scenario: After
pressing vote to vote for a candidate, the voter exits the voting booth without confirming;
a malicious election official then enters the booth, presses back to return to the selection
screen, selects the candidate for their own interest, and completes the rest of the voting
process—resulting in a possibly incorrect vote being recorded for that voter. This scenario
depicts the actual voter fraud that was committed by election officials during an election
in Kentucky [66].

To robustify this machine, we define a progress property that the event confirm can
eventually take place, indicating that the voter should be able to confirm their vote. We
also define the following preferred behavior:

• b1 (Essential): The voter should be able to change their vote by performing ⟨select,
back, select, vote, confirm⟩.

We assigned NoCost for observing all the internal events of the machine, including password,
select, vote, confirm, reset, and back, but Cheap cost for controlling them. We also specified
that making {v, eo}.enter and {v, eo}.exit (i.e., a voter or an official enters or exits the
voting booth) observable has Moderate cost and making them controllable is Costly. In
practice, these costs might manifest as adding an ID scanner to determine who is entering
or exiting (for observability) or a more costly security mechanism (e.g., an enclose booth
with a machine-controlled door) to control entry into the booth (for controllability).

With SmartPareto, Fortis returns 6 Pareto-optimal solutions. As an example, one
of them requires observing v.exit and controlling confirm. It observes the voter leaving the
voting booth, and disables confirm until the election official reset the voting machine. In
addition, the LocalSearch method returns one of the Pareto-optimal solutions.

Oyster transportation fare system. Consider the Oyster fare collection system, where
a user either taps their Oyster transportation card or uses another payment method such as
a credit card when entering the gate, and uses the same method to complete the payment
when leaving the gate. The safety property states that the user should use the same
payment method in the same journey. More details can be found in Appendix A.1.4. A
deviation of the environment occurs when a user forgets which method they used on the
entry gate and uses another method at the exit gate, leading to a safety violation.

To robustify the machine design, we define a progress property with events indicating
that the user should be able to eventually complete their payment and exit the gate. Then,
we define the following preferred behaviors:

• b1, b2 (Essential): The user can use their Oyster transportation card (or a credit
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card) to enter and exit the gate in the same journey.

b1 and b2 state the most essential functionality of the machine to allow the user to use one
of the supported payment methods to enter and exit the gate. Then, we assigned NoCost
to observe and control all the machine-initiated events such as acknowledging the use of
the Oyster card or a credit card and acknowledging that the payment is completed. We
assigned NoCost to observe the user-initiated events such as tapping the Oyster card or
using a credit card when entering or exiting the gate, but Costly to control them. In the
implementation, controlling these events may require additional mechanism to disable or
reject the user input through the interface.

Running SmartPareto, Fortis returns one Pareto-optimal solution. The redesign
rejects acknowledging the completion of the payment if the user uses a different payment
method when exiting the gate. It waits until the user remembers the correct method they
used when entering. In addition, the LocalSearch returns the same Pareto-optimal
solution.

Infusion pump. Consider the infusion pump machine that is used to dispense a certain
dose of medication through tube lines connected to a patient. The machine is connected to
a power system with an alarm and a built-in battery that charges when the power cable is
plugged in. When the cable is unplugged during operation, the power system automatically
switches to battery mode; and when the battery runs low, it rings the alarm to notify the
nurse. More details about the model can be found in Appendix A.1.5.

A deviation may occur in the workflow of a nurse. Normally, the nurse plugs in the cable
and starts the machine; then, the nurse sets up the medication rate, starts the dispensation,
and waits for its completion. However, a deviation is that the user accidentally unplugs the
cable while the pump machine is still dispensing the medication. In one possible scenario,
the battery runs low and the user fails to notice the alarm; then, the machine continues
dispensing even when the power fails. This might cause serious medical accidents, such as
overdose. Therefore, we consider a safety property that if the machine loses power during
medicine dispensation, it should discontinue the dispensation and a progress property that
the dispensation must be able to eventually complete.

To robustify the machine, we define the following two preferred behaviors:
• b1 (Essential): The user should be able to turn on the machine, start it, and wait for
the completion of a dispensation, and then turn it off.

• b2 (Essential): The user should be able to resume a dispensation after a power failure.

We define all the machine events to incur NoCost to observe. Environmental events like
plug in and battery charge are Costly to observe, except for power failure, which is made
unobservable. All the machine events are free to control, except events like turn on and
turn off, which are assigned Moderate as they might require modifying the user inter-
face. Environmental events like plug in are Costly to control, and physical events like
battery spent and power failure are uncontrollable. More details about the problem config-
uration can be found in our source code repository.

Running SmartPareto generated one Pareto-optimal solution. This solution disables
the dispensation when the machine is unplugged; it then re-enables it after the machine

59



is plugged in and the battery is charged. LocalSearch found the same Pareto-optimal
solution.

3.7.4 Experimental Results

RQ1 (Scalability). Table 3.2 summarizes the performance of NaivePareto (with suf-
fix -N), SmartPareto (with suffix -S), and LocalSearch (with suffix -L) over the set
of benchmark problems. For scalability evaluation, we also tested them on larger variants
of Voting-N-M (where N and M are the number of voters and officials), Oyster-N (where N
is the bound on the card balance), and Pump-N (where N is the number of dispensation
lines).

It can be seen that NaivePareto requires a large number of synthesis calls and times
out on the Voting-2-2, 3-3, 4-4, and Pump-2,3 problems. In comparison, our heuristics
for pruning the search space in SmartPareto are effective in reducing the number of
synthesis calls, resulting in a significant performance improvement over NaivePareto.
The LocalSearch method further improves on the performance by giving up on the
Pareto-optimality of the generated solutions. It solves all problems, and the solving time
is significantly smaller even than SmartPareto. In addition, we will later show that
LocalSearch often finds a solution that is the same as or close to Pareto-optimal solu-
tions, and thus we believe that this is an acceptable compromise between performance and
qualities of the redesigns.

We also observe that controller synthesis is the key bottleneck. The time to solve one
synthesis instance and the size of the solution space grow quickly with the increasing size
of the plant (M ||E ′). Moreover, the synthesis problem becomes harder to solve when fewer
controllable and observable events are provided (when minimizing the cost). Thus, our tool
timed out on some Voting problems, which have a relatively small plant size but a large
number of events to minimize. In contrast, it solved the Oyster problems more efficiently,
which have a larger plant size but a much smaller set of events.

RQ2 (Quality of robustification solutions). We compared the quality of redesigns
generated by Fortis to those by other approaches for robustifying behavioral models. Specif-
ically, we considered two baseline methods:

• OASIS: As far as we know, our definitions of robustification-by-control problems and
related qualities are new, and there is no existing tool that is directly comparable.
However, one existing work that is close to ours is OASIS by Tun et al. [65]. Although
they do not explicitly mention robustness, their goal is similar, in that it aims to revise
a machine to fulfill a security requirement in an environment where some of the users
might deviate from their expected behavior.

Like our approach, OASIS also leverages controller synthesis to generate designs that
satisfy a property. However, OASIS and Fortis differ in the way they generate and
explore alternative designs: OASIS uses an abstraction-based technique that allows
changing the sequencing of actions in the machine to generate alternative designs,
while Fortis allows additional events to be observed or controlled by the redesigned
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Table 3.2: Evaluation results of Fortis generating an optimal solution. All run have a
10-minutes timeout.

Problem |B| |A>0| |M ||E ′| Num of Trans. Num of Synth. Time (s)

Therapy-N

4 5 38 72

32 1.032

Therapy-S 32 0.929

Therapy-L 6 0.369

Voting-1-1-N

3 14 12 30

5,168 15.717

Voting-1-1-S 140 1.248

Voting-1-1-L 10 0.416

Voting-2-2-N

3 24 33 76

- T/O

Voting-2-2-S 466 15.414

Voting-2-2-L 17 1.609

Voting-3-3-N

3 33 47 114

- T/O

Voting-3-3-S - T/O

Voting-3-3-L 22 8.820

Voting-4-4-N

3 42 61 152

- T/O

Voting-4-4-S - T/O

Voting-4-4-L 27 95.488

Oyster-1-N

2 4 144 426

16 0.732

Oyster-1-S 1 0.317

Oyster-1-L 1 0.32

Oyster-3-N

2 4 488 2,360

16 1.028

Oyster-3-S 1 0.494

Oyster-3-L 1 0.492

Oyster-5-N

2 4 1,032 6,998

16 1.483

Oyster-5-S 1 0.699

Oyster-5-L 1 0.691

Pump-1-N

2 12 104 484

2,304 47.786

Pump-1-S 99 3.798

Pump-1-L 13 0.937

Pump-2-N

4 16 760 4,794

- T/O

Pump-2-S 1,059 517.525

Pump-2-L 17 8.706

Pump-3-N

6 20 6,248 49,854

- T/O

Pump-3-S - T/O

Pump-3-L 21 346.211
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Table 3.3: Evaluation results of comparing quality of robustification solutions. All run
have a 10-minutes timeout.

Problem Vanilla OASIS SmartPareto LocalSearch

Sol.∗ |Au|†Time (s) Sol. |Au| Time (s) Sol. |Au| Time (s) Sol. |Au| Time (s)

Therapy ✓ (9, 9) 0.253 ✓ (9, 9) 0.245 ✓ (5, 9) 0.929 ✓ (5, 9) 0.369

Voting-1-1 × (6, 6) 0.231 ⊘ (6, 6) 0.322 ✓ (1, 7) 1.248 ✓ (1, 7) 0.416

Voting-2-2 × (8, 8) 0.378 × (8, 8) 7.846 ✓ (1, 10) 15.414 ✓ (1, 10) 1.609

Voting-3-3 × (9, 9) 0.973 × (9, 9) 152.846 × - T/O ✓ (1, 12) 8.820

Voting-4-4 × (10, 10) 2.864 × (10, 10) T/O × - T/O ✓ (1, 14) 95.488

Oyster-1 ✓ (10, 11) 0.31 ✓ (10, 11) 0.305 ✓ (6, 11) 0.317 ✓ (6, 11) 0.32

Oyster-3 ✓ (14, 15) 0.417 ✓ (14, 15) 0.472 ✓ (10, 15) 0.494 ✓ (10, 15) 0.492

Oyster-5 ✓ (18, 19) 0.592 ✓ (18, 19) 0.668 ✓ (14, 19) 0.699 ✓ (14, 19) 0.691

Pump-1 × (13, 13) 0.269 ⊘ (13, 13) 0.765 ✓ (7, 14) 3.798 ✓ (7, 14) 0.937

Pump-2 × (24, 24) 0.689 ⊘ (24, 24) 5.083 ✓ (14, 25) 517.525 ✓ (14, 25) 8.706

Pump-3 × (35, 35) 4.329 ⊘ (35, 35) 222.528 × - T/O ✓ (21, 36) 346.211

∗ ✓: it finds one or more solutions and satisfies all the user-defined preferred behavior; ⊘: it finds
solutions but does not retain all the preferred behavior; ×: it fails to find a solution.

† |Au| = (|A′
c|, |A′

o|) is the number of controllable and observable events used in the solution.

machine.

We also note that OASIS is not designed to optimize for the two quality goals. Our
comparison is not intended to show that Fortis is superior, but rather that if these
quality goals are importance to the developers, our tool may be the preferred method.

• Vanilla supervisory control: We also compare Fortis to a vanilla approach that
utilizes supervisory controller synthesis to generate robustified designs without con-
sidering the two quality goals (i.e., it solves the basic robustification-by-control prob-
lem).

Since no tool for OASIS is publicly available, we implemented their algorithm with
Supremica [76] as the underlying controller synthesis engine. For Vanilla supervisory con-
trol and OASIS, the controller synthesis procedure was given access to all the machine
events as controllable and observable. Table 3.3 shows the evaluation results of comparing
these different methods.

From the table, it can be seen that Fortis is able to generate solutions that satisfy all the
preferred behaviors (except for some timed-out cases). On the other hand, Vanilla cannot
solve the Voting and Pump problems; OASIS solves the Therapy, Voting-1-1, Oyster, and
Pump problems but does not satisfy all the preferred behaviors in Voting-1-1 and Pump.
The Vanilla and OASIS approaches assume all machine events are available for generating
new designs. By comparison, Fortis is capable of finding solutions that make use of fewer
events (and thus, at a lower cost) in Therapy and Oyster. In addition, it finds solutions with
fewer controllable events but more observable events in the Voting and Pump problems,
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while the other two approaches either find no solutions or fail to retain the preferred
behaviors. Also, in our evaluation, LocalSearch can always find the Pareto-optimal
solutions that SmartPareto does.

On the other hand, Fortis sometimes takes longer to generate a solution, since, for
optimality, it typically solves a larger number of synthesis instances than Vanilla and
OASIS do. We believe that this is an acceptable trade-off between performance and the
quality of the solutions.

3.7.5 Discussion

Our experiment shows that Fortis is able to generate a robustified design that (1) retains
user-specified preferred behaviors and (2) minimizes the cost of change, with performance
comparable to OASIS. In addition, unlike the other two other approaches, Fortis can
generate the set of all Pareto-optimal solutions, which allows the developer to explore the
trade-offs between the two qualities.

Vanilla can only restrict, but not extend, the machine behavior; thus, its ability to
generate an optimal robustification is limited. Fortis can extend the behavior by increas-
ing the controllability and observability of environmental events (e.g., observing officials
entering and exiting in the voting machine example). OASIS does so by abstracting and
changing the sequence of events. However, such reordering may prevent it from preserv-
ing the behavior of the original design (e.g., Voting-1-1 and Pump) or sometimes result in
an unusual design (e.g., in Pump, “starts dispensing” after the system “turns off”). On
the other hand, by abstracting the machine and changing its event sequencing, OASIS
can produce alternative designs that are not in the solution space of Fortis. It would be
an interesting direction to combine the event-based searching method of Fortis with the
abstraction-based method of OASIS, which may enable a more powerful robustification
process.

3.8 Summary

This chapter presents an approach, named robustification-by-control, to improve the ro-
bustness of a machine design against certain environmental deviations through supervisory
control. It enables automatic robustification in our envisioned robust-by-design develop-
ment process. A developer can first use our robustness analysis technique to identify both
the deviations that a machine is robust against and the deviations that the machine cannot
tolerate. Then, the developer can use our robustification-by-control approach to robustify
the design against those intolerable deviations. Our approach also supports design deci-
sions based on trade-offs between the developer’s preferences (i.e., what behavior the new
design should retain and whether it is cost-effective).

Our approach assumes deviations that augment additional behaviors to the environ-
ment. One might also consider deviations that involve removing behaviors from the envi-
ronment (e.g., by removing transitions or states from the environment model). However, we
focus on adding behaviors only, as we believe that this already captures a large and inter-
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esting class of deviations where the environment exhibits behaviors beyond those captured
in its original model (e.g., security attacks, human errors, etc.).

We leverage supervisory control theory to robustify a design by controlling (disabling)
events in the machine and environment given a set of controllable and observable events.
According to our robustness definition in Chapter 2, it improves robustness by increasing
the disabled behaviors of a machine. However, our approach also allows for extending the
machine’s behavior by expanding its controllability (controllable events) and observability
(observable events) (e.g., observing an event in the environment). Nevertheless, this ex-
tending ability is limited by the behavior of the controlled plant, i.e., M ||E ′. It cannot
introduce additional behaviors that are not present in the plant (e.g., adding retries to a
network protocol).
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Chapter 4

Robustification of Designs by
Specification Weakening

4.1 Introduction

In Chapter 3, we present how to robustify a machine against certain intolerable deviations
by synthesizing a controller. Specifically, the robustification process considers balancing the
trade-offs among functionality, controllability and observability, and cost; and it assumes
the desired safety property to be unchanged. However, in the cases with a strong safety
property, we may not be able to find such a redesign; the redesign M ′ may become overly
restrictive, losing certain critical system functionality; or to maintain as much functionality
as possible, the redesign may demand additional controllability and observability, leading
to potentially unacceptable implementation costs.

For instance, in the radiation therapy machine example, the safety requirement that
“the spreader should always be in place when the machine is in the X-ray mode” is stronger
than the requirement that “the spreader should be in place when the machine delivers the
beam in X-ray”. Given the design of the therapy machine, shown in Figure 2.1 in Chapter
2, to ensure the stronger safety under deviations (e.g., ⟨X, Up, E, Enter, B⟩), we must give
up the mode-switching capability. However, this new design may not be desirable to the
developers. In other words, the goal of ensuring the strong safety property and being
robust is conflicting with the goal of being functional. Such conflicts are often the result
of the acquisition, specification, and evolution of requirements from multiple stakeholders,
and they may also indicate the need for further elicitation of the requirements [38].

To address these challenges caused by the requirement conflicts, this chapter introduces
another robustification method called specification weakening, which is used alongside the
robustification-by-control method to allow generating more feasible redesigns. Specifically,
given a machine M , its environment E, a property P , and intolerable deviations δ̄, assume
that the robustification-by-control method cannot find a desirable redesign M ′. Then, the
goal of specification weakening is to identify a weaker property P ′ where P ⇒ P ′ and we
can find another redesign M ′′ through robustification-by-control such that M ′′||E ′ |= P ′

and M ′′ is more desirable (e.g., retaining more functionality or having a lower cost).
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In particular, we focus on the conflicts between safety requirements and system func-
tionality. When a safety property is overly restrictive, causing certain functionality to be
unfulfilled during robustification, we present a weakening method that can find a weaker
safety property under which the robustification-by-control process can find another redesign
that satisfies the weaker property while still retaining that functionality. The method con-
siders safety properties specified in Fluent Linear Temporal Logic (FLTL) [77] and leverages
Linear Temporal Logic (LTL) learning techniques [78, 41] to synthesize weakened formulas.
Specifically, we focus on a particular type of safety property in the form of G(ϕ ⇒ ψ),
where ϕ and ψ are propositional formulas. Then, our approach finds weakened properties
that are close to the original safety property by formulating the problem as an instance of
LTL learning.

The rest of this chapter is organized as follows:
• Section 4.2 introduces a motivating example of specification weakening;

• Section 4.3 introduces the necessary background for our approach;

• Section 4.4 presents a formal definition of the specification weakening problem for
robustification based on FLTL;

• Section 4.5 presents a novel approach to specification weakening that leverages LTL
learning;

• Section 4.6 presents the implementation of the approach and the evaluation against
a set of case studies.

4.2 Motivating Example

Let’s revisit the radiation therapy machine example. Consider a strong safety property P
of the machine, that the spreader should always be in place when the machine is in the
X-ray mode. This can be represented in LTL as:

G(Xray ⇒ InP lace)

whereXray is a proposition indicating that the machine is in the X-ray mode, and InP lace
is a proposition indicating that the spreader is in place. We can use techniques like model
checking to assert that the machine, as presented in Figure 2.1 in Chapter 2, satisfies this
property when given the normative operator model in Figure 2.2.

Then, consider the deviated environment model E ′, as shown in Figure 3.1 in Chapter
3, which contains a deviation trace ⟨X, Commission, Up, E, Enter, B⟩. The original machine
design is not robust against this deviation, and we can use the (optimal) robustification-
by-control method to robustify the design. For simplicity, let all events be controllable
and observable, and trace ⟨X, Up, E, Enter, B⟩ be a preferred behavior. However, solving
this robustification-by-control problem fails to generate a redesign that can preserve this
preferred behavior even with all available controllable and observable events. The reason is
that the beam setter (MB) will enter the SwitchToEBeam state during the mode switching
from X-ray to Electron beam, where the beam mode is still in X-ray but the spreader is
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out of place, leading to a safety property violation. Thus, the redesign needs to disable
mode switching from X-ray to Electron beam to ensure the safety property.

While the robustification-by-control process can find a redesign, it sacrifices the criti-
cal system functionality for mode switching as defined by the preferred behavior ⟨X, Up,
E, Enter, B⟩. This result is arguably not desirable, despite the fact that all events have
been set to be controllable and observable, and the optimal robustification-by-control pro-
cess has attempted to retain as much functionality as possible. On the other hand, the
safety property may be considered too restrictive, as ensuring it under the deviation would
conflict with the goal of fulfilling certain important functionality. Therefore, we could
then weaken the safety property so that the new property still guarantees the most critical
safety requirement (e.g., avoiding overdoses) while allowing the generation of a robust re-
design that can maintain certain functionality. Thus, in this case, the goal of specification
weakening in robustification can be stated as:

Given a robustification-by-control problem for machine M , deviated environ-
ment E ′, and safety property P , construct a weakened property P ′ of P such
that, under the new robustification-by-control problem with respect to P ′, it can
find a redesign that retains more functionality that could not be retained before.

In our example, a solution to such a weakening problem is that the spreader should be
in place when the beam is delivered in the X-ray mode. Formally, it can be represented in
LTL as:

G(Xray ∧ Fired⇒ InP lace)

where Fired is a proposition indicating that the beam is fired. This property is weaker
because it allows a temporary mismatch between the X-ray mode and the spreader’s posi-
tion, while still guaranteeing the most critical safety requirement of avoiding overdoses. In
fact, this is the same safety property that we used in Chapter 2 and 3, where we demon-
strated that the robustification-by-control process can find a redesign with respect to this
weakened property that tolerates the deviation ⟨X, Up, E, Enter, B⟩. In the following sec-
tions, we formally define the specification weakening problem and present our method for
synthesizing weakened safety properties by leveraging LTL learning techniques.

4.3 Preliminaries

4.3.1 Linear Temporal Logic

LTL [79] is an extension of propositional logic with temporal operators. Its syntax is as
follows:

ϕ := p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ |
Gϕ | Fϕ | Xϕ | ϕUψ

where p ∈ AP is an atomic proposition of a finite set of propositions AP . An LTL formula
is interpreted over an infinite trace σ ∈ (2AP )ω. Specifically, the temporal operators are
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interpreted as:
• σ, i |= Gϕ if and only if ∀j : i ≤ j ⇒ σ, j |= ϕ.

• σ, i |= Fϕ if and only if ∃j : i ≤ j ∧ σ, j |= ϕ.

• σ, i |= Xϕ if and only if σ, i+ 1 |= ϕ.

• σ, i |= ϕUψ if and only if ∃j : i ≤ j ∧ σ, j |= ψ and ∀k : i ≤ k < j ⇒ σ, k |= ϕ.

In addition, we use Lω(P ) ⊆ (2AP )ω to denote the language of an LTL property P , which
is a set of infinite traces of propositions.

4.3.2 Linear Temporal Logic over Finite Traces

However, in this work, we target finite traces (based on the semantics of LTS in Section
2.3). Thus, we consider the variant of LTL over finite traces, namely LTLf [80]. LTLf uses
the same syntax as LTL but is interpreted over a finite trace σ ∈ (2AP )∗. Specifically, the
semantics of the temporal operators for LTLf are defined as follows:

• σ, i |= Gϕ if and only if ∀j : i ≤ j < |σ| ⇒ σ, j |= ϕ.

• σ, i |= Fϕ if and only if ∃j : i ≤ j < |σ| ∧ σ, j |= ϕ.

• σ, i |= Xϕ if and only if i+ 1 < |σ| and σ, i+ 1 |= ϕ.

• σ, i |= ϕUψ if and only if ∃j : i ≤ j < |σ| ∧ σ, j |= ψ and ∀k : i ≤ k < j ⇒ σ, k |= ϕ.

Thus, the major difference between LTL and LTLf is that the interpretation of LTLf
depends on the length of a finite trace, denoted by |σ|. Similarly, we use L(P ) ⊆ (2AP )∗ to
denote the language of an LTLf property P , which is a set of finite traces of propositions.

4.3.3 Fluent Linear Temporal Logic

In LTL, atomic propositions are predicates over state variables of a system. However, for
event-based models such as LTS, the behavior of a system is represented by events (actions),
and states are not characterized by state variables. Thus, FLTL [77] is an extension to LTL
that bridges the gap between state-based models and event-based models, where formulas
are built from atomic propositions that are predicates on the occurrence of events, named
fluents. A fluent represents a proposition that holds after an event occurs and becomes
false when terminated by another event.

Given an LTS T = ⟨S, αT,R, s0⟩, a fluent of it is a tuple F = ⟨IF , TF , InitF ⟩ where
IF , TF ⊂ αT are the initiating actions and terminating actions, respectively, IF ∩ TF = ∅,
and InitF is a Boolean value indicating the fluent F may initially be true or false at time
zero. For simplicity, when InitF is not specified, it is assigned to be false by default.

A fluent F corresponds to an atomic proposition pF when being evaluated against an
event trace. For an infinite event trace σ = ⟨a0, a1, a2, . . .⟩, we have its corresponding
sequence of proposition valuations σF = ⟨s0, s1, s2, . . .⟩, where the fluent proposition pF is
true at si if and only if either of the following conditions holds:

• InitF ∧ ∀k ∈ N : 0 ≤ k ≤ i⇒ ak /∈ TF
• ∃j ∈ N : j ≤ i ∧ aj ∈ IF ∧ ∀k ∈ N : j < k ≤ i⇒ ak /∈ TF
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In other words, a fluent F holds at a time i instantly if and only if it holds initially or an
initiating action a ∈ IF has occurred; and in both conditions, no terminating actions in TF
have yet occurred. Also, an action has an immediate effect on the state values, i.e., each
state value si corresponds to the immediate result of action ai at time i.

FLTL introduces a way for converting a trace of events to a trace of state propositions.
Then, given a set of fluents F , we can use the same syntax as LTL to define properties
over F , and F corresponds to the set of atomic propositions AP .

FLTL over finite traces. Since we focus on finite traces in this work, we can naturally
define FLTL over finite traces, namely FLTLf . Formally speaking, given a set of fluents
F , we have a translation function γ : αF∗ → (2F)∗ that maps an event trace to a trace of
propositions, where αF =

⋃
F∈F(IF ∪ TF ). Then, for an event trace σ ∈ αF∗, σ, i |= P if

and only if γ(σ), i |= P ′ where P is an FLTLf property and P ′ is its LTLf counterpart.

An FLTLf property P defines a set of event traces, beh(P ) ⊆ αF∗. Then, we can also
define its relation to the language of its LTLf counterpart as follows:

Definition 4.1. Given a set of fluents F and an FLTLf property P , let γ : αF∗ → (2F)∗

be its translation function, then we have beh(P ) =
⋃
γ−1(σF) for all σF ∈ L(P ′), where P ′

is the LTLf counterpart of P and γ−1 : (2F)∗ → 2αF
∗
is the inverse function of γ.

4.3.4 LTL Learning from Examples

In a typical setting, LTL learning defines the problem of inferring an LTL formula from
positive and negative example traces [78]: Given a set of atomic propositions AP , let
P ,N ⊂ (2AP )ω be two (potentially empty) disjoint sets of infinite traces, where P are
positive examples and N are negative examples. We call S = (P ,N ) a sample. Then, the
task of LTL learning is to find a formula ϕ such that ∀σ ∈ P : the trace σ satisfies formula
ϕ, σ |= ϕ, and ∀σ̄ ∈ N : the trace σ̄ does not satisfy formula ϕ, σ̄ ̸|= ϕ. There exists
a trivial solution to separate P and N in the form

∨
a∈P

∧
b∈N φa,b, where φa,b separates

each example pair (a, b). However, this solution is obviously overfitting and less helpful in
practice. Thus, we are often interested in finding an LTL formula of minimal size.

Moreover, in this work, we leverage a more specific LTL learning problem, called con-
strained LTL learning described in [41]. A constrained LTL learning problem is defined as a
tuple ⟨AP,S,Φ,Ψ⟩, where AP is a finite set of atomic propositions, S = (P ,N ) is a sample,
Φ is a first-order predicate that constrains the syntactic structure of the learned formula,
and Ψ is an optimization objective over the syntactic structure of the formula. The goal
of the problem is to find an LTL formula ϕ such that ∀σ ∈ P : σ |= ϕ, ∀σ̄ ∈ N : σ̄ ̸|= ϕ,
Φ
(
syntax(ϕ)

)
holds, and syntax(ϕ) optimizes Ψ, where syntax(ϕ) represents the syntactic

structure of ϕ. Thus, with this technique, we can learn a formula satisfying a particular
pattern (e.g., a specification weakening pattern) instead of learning any arbitrary small
formula.
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4.4 Robustification by Specification Weakening

4.4.1 Basic Weakening for Robustification

In general, for a safety property P , the problem of specification weakening is to find a
new safety property P ′ such that P ⇒ P ′. Thus, weakening a safety specification means
making more behavior acceptable. There are various use scenarios for weakening to resolve
requirement conflicts [38]. In the context of design robustification, weakening can be used
to, for example, allow for retaining more functionality or reducing implementation costs.
In this thesis, we specifically focus on one scenario—when the robustification-by-control
process cannot find a solution that satisfies certain functionality defined in a preferred
behavior, the goal of weakening is to find a weakened safety property P ′ such that there is
a solution to the new robustification-by-control problem where that preferred behavior is
satisfied. The task of this specific use case of weakening is defined as follows:

Definition 4.2. Given a robustification-by-control problem Rb = R(M,E, d, P ) and its

corresponding optimal robustification problem O(Rb, Pg,B,A, U⃗) such that there exists
a preferred behavior b̄ ∈ B that cannot be satisfied, the goal of the weakening problem
W(Rb, b̄) is to find P ′ such that P ⇒ P ′ and there exists a solution to the new problem

O(Rb′, Pg, B,A, U⃗) that satisfies b̄, where Rb′ = R(M,E, d, P ′).

Specification weakening may also be used to reduce implementation costs in robustifica-
tion. This can be achieved by a user manually removing certain controllable or observable
events from the problem configuration, which causes some preferred behaviors to become
unsatisfied, and then solving a weakening problem with respect to the unsatisfied pre-
ferred behaviors. Thus, we argue that weakening for retaining more preferred behaviors is
more challenging than weakening for reducing cost and, therefore, requires more research
attention.

In addition, a weakened safety property is not guaranteed to enable robustification-
by-control to generate solutions that satisfy more preferred behaviors. It also depends on
the available controllable and observable events. In our problem setting, we assume that
the user has provided sufficient controllable and observable events such that the originally
unsatisfied preferred behavior b̄ can be satisfied by a weakened property.

After we perform specification weakening and re-run the robustification-by-control pro-
cess, we will find a re-design M ′ such that M ′||E ′ |= P ′ where E ′ is the deviated environ-
ment and P ′ is the weaker property. It is also worth noting that the re-design also ensures
the original, restrictive property under the normal environment, i.e., M ′||E |= P . This is
useful as the re-design (based on a weaker property) does not affect the machine working
under the environment that does not deviate.

Theorem 4.1. Given a robustification-by-control problem Rb = R(M,E, d, P ) and a corre-
sponding weakening problem of it W(Rb, b̄), let P ′ be a solution to the weakening problem,
then for the new problem Rb′ = R(M,E, d, P ′), we can find a re-design M ′ such that
M ′||E ′ |= P ′ where E ′ = E ⊕ d and M ′||E |= P .

Proof. According to the definition of robustification-by-control (Definition 3.4), we have
M ||E |= P , i.e., beh(M ||E) ⊆ beh(P ). Given the definition of a supervisory controller
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(Definition 3.1), a controller C can only restrict the behavior of the controlled plant.
Thus, for a re-design M ′ = M ||C generated from our robustification-by-control process,
we have beh(M ′) = beh(M ||C) ⊆ beh(M). Hence, beh(M ′||E) ⊆ beh(M ||E) ⊆ beh(P ),
and M ′||E |= P . In other words, M ′ can only be more restrictive than M , no matter what
the safety property is.

Also note that this is still valid even when the controller expands the alphabet of
the re-design, i.e., αM ⊂ αC ⊆ (αM ∪ αE). We can expand the alphabet of M by
adding a self-loop for every additional event in αC on every state of M . In other words,
the expanded machine Mexpand synchronizes on those additional events but does nothing.
Thus, we have Mexpand||E |= P ; and given a controller C, we still have M ′||E |= P where
M ′ =Mexpand||C.

4.4.2 FLTLf-Based Specification Weakening

It is unclear and challenging how a safety property modeled as an LTS can be weakened
in general. One potential way is to add or remove states and transitions from the model,
but the resulting property would likely be hard to understand. Thus, we instead focus
on safety properties specified in FLTLf . We can then leverage existing LTL weakening
methods to weaken a safety property. Specifically, given a set of fluents F , we address the
weakening problem for a safety property defined in the form of

G(ϕ⇒ ψ)

where ϕ and ψ are propositional formulas without any temporal operators. This is a
commonly used pattern in LTL to specify safety invariants, e.g., in GR(1) synthesis [51, 81],
and it also provides us the advantage to “minimally” weaken a safety property.

Syntax-based “minimal” weakening. There may be multiple solutions to a specifi-
cation weakening problem. However, not every weakened safety property is desirable. For
example, it should not be too weak, e.g., becoming P ′ = true, which accepts any behav-
ior as safe. Ideally, we want to minimally weaken a safety property in the sense that the
weakened property accepts only the “minimal” set of additional traces compared to the old
one, which allows us to find a new solution satisfying those originally unsatisfied preferred
behaviors.

While ensuring such semantic-based minimal weakening is challenging, the safety in-
variant pattern G(ϕ ⇒ ψ) provides a way to gradually weaken a safety property through
syntactic patterns [51]. Intuitively, the pattern G(ϕ⇒ ψ) can be interpreted as: anytime
assumption ϕ holds, the system should guarantee ψ. Thus, we can append conjunctions to
the antecedent ϕ to weaken the assumption of this invariant, or append disjunctions to the
consequent ψ to allow more guarantees to be acceptable.

In general, for a safety property inG(ϕ⇒ ψ), where ϕ and ψ are propositional formulas
without any temporal operators, ϕ is in conjunction normal form (CNF), and ψ is in
disjunction normal form (DNF), the property can be weakened by:

• appending conjunctions to the antecedent ϕ, i.e., ϕ ∧
∧∨

[¬]pi, or
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• appending disjunctions to the consequent ψ, i.e., ψ ∨
∨∧

[¬]pj,
where pi and pj are atomic propositions. Moreover, by appending more conjunctions to
the antecedent or disjunctions to the consequent, the new property P ′ is guaranteed to
be weaker or equal to the original property P , i.e., P ⇒ P ′. This can be proved by the
following theorems:

Theorem 4.2. ⊢ G(p⇒ q)⇒ G(p ∧ r ⇒ q)

Proof. Since p, q, r are all propositional formulas, this can be reduced to proving ⊢ (p ⇒
q) ⇒ (p ∧ r ⇒ q). By assuming p ⇒ q is true, we need to show p ∧ r ⇒ q. Then, by
assuming p ∧ r is true, both p and r are true (∧-elimination). Thus, from assumption
p⇒ q, q is true (⇒ -elimination). Then, we have p∧ r ⇒ q (⇒ -introduction). Finally, we
conclude that (p⇒ q)⇒ (p ∧ r ⇒ q) (⇒ -introduction).

Theorem 4.3. ⊢ G(p⇒ q)⇒ G(p⇒ q ∨ r)

Proof. Since p, q, r are all propositional formulas, this can be reduced to proving ⊢ (p ⇒
q) ⇒ (p ⇒ q ∨ r). By assuming p ⇒ q is true, we need to show p ⇒ q ∨ r. Then, by
assuming p is true, q is true (⇒ -elimination). Thus, q ∨ r is true (∨-introduction). Then,
we have p ⇒ q ∨ r (⇒ -introduction). Finally, we conclude that (p ⇒ q) ⇒ (p ⇒ q ∨ r)
(⇒ -introduction).

Therefore, given these properties of the pattern G(ϕ⇒ ψ), to minimally weaken such a
safety property, we aim to find a solution with aminimal number of additional conjunctions
and disjunctions to ϕ and ψ, respectively. In addition, generally speaking, any safety
invariant in Gφ, where φ is a propositional formula, can be transformed into G(ϕ ⇒ ψ)
by converting φ into DNF and letting the antecedent be true, i.e., ⊤ ⇒ φ. Furthermore, we
constrain the antecedent ϕ to be in CNF and the consequent ψ to be in DNF for improved
readability, where a general transformation process exists. Thus, this pattern can cover a
wide range of safety properties in practice.

FLTLf -based weakening problem. Therefore, we can define the specification weak-
ening problem with respect to a safety property in FLTLf as follows:

Definition 4.3. Given a specification weakening problem W(Rb, b̄) where the safety prop-
erty P is an FLTLf property with fluents F and is in the form of G(ϕ⇒ ψ) such that ϕ and
ψ are propositional formulas, ϕ is in CNF, and ψ is in DNF, the goal of the FLTLf -based
weakening problem WF(Rb, b̄,F) is to find P ′ such that P ′ is a solution to W(Rb, b̄), P ′

is in the form of G((ϕ ∧
∧∨

[¬]pi)⇒ (ψ ∨
∨∧

[¬]pj)) where pi, pj ∈ F , and the syntactic
size of formula P ′ is minimized.1

1Note that, in theory, to ensure minimal weakening, we want to add a minimal number of additional
conjunctions to ϕ, and the number of atomic propositions in each conjunction should be maximized (similar
for the additional disjunctions to ψ). However, in practice, this makes the solution hard to understand
with redundant conjunctions and disjunctions. Thus, we choose to only minimize the total size of the
solution.
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Example. In the motivating example, consider the safety property G(Xray ⇒ InP lace)
of the radiation therapy machine, and another fluent Fired indicating whether the beam
is fired or not. Then, we can weaken the safety property by adding another conjunction to
the assumption (antecedent):

G(Xray ∧ Fired⇒ InP lace)

This property is weaker in the sense that the spreader should only be in place when the
X-ray beam is fired, while allowing it not to be in place when switching from the X-ray
mode to the Electron beam mode.

4.4.3 Safety FLTLf and Safety LTS

In our robustness analysis and robustification-by-control methods, we consider safety prop-
erties defined in LTSs. Therefore, before discussing how we can solve an FLTLf -based
weakening problem, we also need to show that a safety property in FLTLf shares the same
semantics as a safety property in LTS, such that it is consistent with our existing tech-
niques. Specifically, according to the definition in Section 2.3, a safety property P in LTS
describes a prefix-closed set of traces, such that the behavior of a satisfying system should
be within this set. Thus, we need to show that an FLTLf safety property also defines such
a set.

We first define safety properties in LTLf [82]:

Definition 4.4. Given an LTLf property P with atomic propositions AP , let L(P ) ⊆
(2AP )∗ be its accepted language, P is a safety property if, for any trace σ /∈ L(P ), there is
a prefix u of σ such that for any v ∈ (2AP )∗, the trace uv /∈ L(P ). u is a bad prefix of P .

A property in Gϕ, where ϕ is a propositional formula, is a safety property [80]. Given
this definition, the language of an LTLf safety property is prefix-closed.

Theorem 4.4. For an LTLf safety property P , its language L(P ) ⊆ (2AP )∗ is prefix-closed.

Proof. For an LTLf safety property P , consider a trace σ ∈ L(P ). Let u be a prefix of σ.
If u /∈ L(P ), then by definition, for any v ∈ (2AP )∗, uv /∈ L(P ). Thus, σ should not be in
L(P ). Hence, the theorem is proved by contradiction.

The language of an LTLf property is defined based on a set of atomic propositions.
We then show that an FLTLf safety property is also prefix-closed with respect to a set of
events.

Theorem 4.5. For a set of fluents F and an FLTLf safety property P , its language
beh(P ) ⊆ αF∗ is prefix-closed.

Proof. According to Definition 4.1, let γ : αF∗ → (2F)∗ be the translation function and
γ−1 : (2F)∗ → 2αF

∗
be its inverse function. Then, beh(P ) =

⋃
γ−1(σF) for all σF ∈ L(P ′),

where P ′ is the LTLf counterpart of P . For a trace σ ∈ beh(P ), σF = γ(σ) and σF ∈ L(P ′).
Consider u as a prefix of σ, and uF = γ(u). According to the definition of fluents, for any
state si of σF , its valuation only depends on states sj such that j ≤ i. Thus, uF is also a
prefix of σF . Since σF ∈ L(P ′), we have uF ∈ L(P ′). Hence, u ∈ beh(P ), and thus beh(P )
is also prefix-closed.
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Finally, we define the satisfaction of an FLTLf safety property as follows:

Definition 4.5. For a system T in LTS, a set of fluents F , and an FLTLf safety property
P , T |= P if and only if beh(T ↾αF) ⊆ beh(P ).

This definition is necessary because there are no well-established definitions for the
satisfaction of LTLf and FLTLf . In [82], they propose a definition for non-terminating
transition systems (e.g., an LTS is a non-terminating transition system that has no des-
ignated accepting states): T |= P if and only if for any trace σ of T , there exists a finite
prefix u of σ such that u |= P . However, this definition is problematic for safety properties
such as Gϕ in that we can always construct a system T such that all its traces have a
shared non-empty prefix u where u |= Gϕ. Thus, T is deemed to satisfy Gϕ even when
there is a trace σ′ that has a state violating ϕ after that prefix u.

Therefore, in this work, we define the semantics of T |= P for T in LTS and P being
an FLTLf safety property as: T |= P if and only if for any trace σ of T and any prefix
u of it, u |= P . Thus, we have shown that the semantics of the satisfaction of an FLTLf
safety property is equivalent to the semantics of a safety property in LTS.

Converting a safety FLTLf to an LTS. We then show how to convert an FLTLf
safety property to an LTS so it can be seamlessly utilized in our existing robustness analysis
and robustification-by-control techniques. Our translation method is a modification of the
process proposed by Giannakopoulou et al. [77]. Given a set of fluents F , converting an
FLTLf property P consists of the following steps:

1. Construct a deterministic finite automaton (DFA) D¬P for ¬P , where the alphabet
of this automaton is the power set of the fluent propositions 2F . This process can be
adopted from an existing LTL to Büchi translation, such as [83, 84, 85].

2. Construct automata TF for all the fluents F ∈ F , where the transitions indicate the
valuation changes of a fluent according to its initiating and terminating events.

3. Construct a synchronizing automaton Sync to synchronize on the changes of the
fluent values.

4. Compute the parallel composition of D¬P , all the fluent automata TF , and the syn-
chronizing automaton Sync.

5. Finally, hide the fluent proposition labels (2F) from the composition result.

Specifically, for an FLTLf formula inGϕ, where ϕ does not contain any temporal operators,
the final automaton should have only one accepting state, and no transitions can leave that
state. Any trace reaching that state satisfies ¬Gϕ. Thus, we can replace that accepting
state with an error state π, and the resulting automaton is the LTS representation for the
safety property.

Example. Consider the following fluents for the radiation therapy machine:
• Xray = ⟨{SetXray}, {SetEBeam,B}, false⟩
• InP lace = ⟨{X}, {E}, true⟩

where fluent Xray indicates whether the machine is in the X-ray mode, and fluent InP lace
indicates whether the spreader is in-place. Then, to translate the following safety property
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P = G(Xray ⇒ InP lace), we first construct the DFA for ¬P , as shown in Figure 4.1.
Label true is an abbreviation for all propositions in 2F .

Figure 4.1: The DFA for property ¬G(Xray ⇒ InP lace). The double solid circle indicates
the accepting state of a DFA.

Secondly, we construct the automata for the two fluents shown in Figure 4.2. In the
automaton for fluent Xray, the label Xray is an abbreviation for the labels {Xray ∧
InP lace,Xray∧¬InP lace}, and the label ¬Xray is an abbreviation for the labels {¬Xray
∧InP lace,¬Xray∧¬InP lace}. Similarly, in the automaton for fluent InP lace, the labels
InP lace and ¬InP lace are also abbreviations.

Figure 4.2: The automata for fluents Xray and InP lace.

Thirdly, we construct the synchronizing automaton shown in Figure 4.3. Specifically, it
forces the final composition to alternate between the system events and the fluent propo-
sition labels so that the DFA for ¬P can update its current state according to an event
that has just occurred.

Figure 4.3: The synchronizing automaton for fluents Xray and InP lace, which forces the
DFA to synchronize on an fluent proposition label after an event.

Finally, we compute the parallel composition of the DFA, the fluent automata, and
the synchronizing automaton. After hiding the fluent proposition labels and replacing
the accepting state with an error state, we obtain a safety LTS as shown in Figure 4.4.
Therefore, by converting an FLTLf safety property in the form of Gϕ to a safety LTS,
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we can utilize our existing methods to analyze its robustness and apply robustification-by-
control.

Figure 4.4: The final safety LTS for property G(Xray ⇒ InP lace) where π is the error
state.

4.5 Specification Weakening by LTL Learning

4.5.1 Overview

Our specification weakening problem addresses the situation where a preferred behavior
cannot be satisfied during the robustification of a machine with respect to a safety prop-
erty. Given that a preferred behavior b is satisfied when b ∈ beh(T ↾b) where αb ⊆ αT ,
thus preferred behavior b, in fact, represents an abstract scenario of the expected system
behaviors. During the design and implementation phase, the abstract design is refined into
a more concrete design with the introduction of new, detailed events, and a preferred be-
havior would map to a set of system executions in the concrete system design. Thus, in the
context of robustification, when a preferred behavior cannot be satisfied, it indicates that
all of its concrete executions are considered unsafe, even though some may be acceptable.
This leads to the conflict between safety and functionality.

For example, in the radiation therapy machine, the preferred behavior ⟨X, Up, E, Enter,
B⟩ cannot be satisfied given the safety property G(Xray ⇒ InP lace). This conflict arises
because it describes an abstract scenario where a user wishes to switch from X-ray to
Electron beam. However, it maps to a set of concrete executions, which can be classified
into two categories. One category is that the beam correctly fires in the Electron beam
mode, and the other is that the beam fires in the X-ray mode without the spreader.
Developers may decide that the first execution is acceptable, but the latter one is not, as
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Figure 4.5: Learning examples generation for the radiation therapy machine w.r.t. pre-
ferred behavior ⟨X, Up, E, Enter, B⟩.

shown in Figure 4.5. The original safety property is too restrictive, as it does not allow the
first situation. Therefore, a resolution to this conflict could be accepting a weaker safety
property G(Xray∧Fired⇒ InP lace). Also note that we assume the machine has enough
observability to distinguish these two executions and enough controllability to prevent the
machine from entering the unsafe executions.

In requirements engineering, such inconsistencies between different requirements might
be desirable to allow further elicitation of the requirements [38]. As shown in Figure 4.6,
requirements often come from different stakeholders, which may potentially conflict, as
stakeholders view the system from different perspectives (e.g., safety vs. functionality).
Some conflicts may occur during the design or implementation of the machine, due to, for
example, unforeseen implementation challenges or requirements evolution. It then becomes
necessary for stakeholders and developers to analyze the concrete scenarios affecting how
these conflicts arise and resolve them by producing a new set of requirements. Specifically,

Figure 4.6: A process to resolve the conflicts in the requirements.
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Figure 4.7: Overview of the specification weakening process.

in our use case, we consider the resolution of conflicts by weakening unnecessarily restrictive
safety requirements.

For instance, the aforementioned conflict in the radiation therapy machine may occur
due to the unforeseen implementation challenge that the mode switching between X-ray
and Electron beam requires more time to complete than the switching of the spreader.
Conflicts may also emerge due to requirements evolution. For example, in the Oyster fare
collection system, the original, strict safety property requires a user to enter and exit the
gate with the same payment method. However, the requirement could evolve to allow a
user to enter the gate with their Oyster card but leave with a credit card if their Oyster
card is out of balance. This would improve the system’s usability but also conflict with
the original safety property, which could then be weakened.

We propose a semi-automated workflow to weaken a safety property, as shown in Fig-
ure 4.7. Given a specification weakening problem WF(Rb, b̄,F), the process begins by
automatically generating example traces E from the machine M under the deviated en-
vironment E ′ with respect to the unsatisfied preferred behavior b̄. These example traces
represent concrete system executions that all violate the original safety property P . Next,
stakeholders and developers review the traces, marking acceptable examples as positive,
while the remaining traces are deemed unacceptable (i.e., negative traces). Finally, the
process leverages LTL learning to automatically synthesize a weakened safety property
based on the examples and the atomic propositions defined by fluents F .

4.5.2 Learning Examples Generation

The first step of our proposed method is to generate example system executions from the
unsatisfied preferred behavior. Under the original, restrictive safety property, all concrete
executions of an unsatisfied preferred behavior b̄ are considered unsafe. In order to weaken
the safety property, the user should be able to identify at least one positive trace from
the generated examples. However, since the algorithm does not know what that positive
trace would look like, it may need to cover all possible concrete executions of the preferred
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behavior. On the other hand, from a usability perspective, the user may want to start
with a small set of example traces and gradually increase this set until a positive trace
is found. However, this set should not be too small; otherwise, the user may miss a
negative example, which can cause the new property to be too weak to identify the most
crucial safety requirement. In sum, the generation algorithm should satisfy the following
requirements:

• Maximal-coverage requirement: If requested by the user, it should be able to cover as
many as possible concrete executions (potentially all of them) that can be generated
from a preferred behavior.

• Minimal-coverage requirement: It may return only a small number of executions but
should cover an enough set of examples to avoid missing a potential unsafe scenario.

For example, in the therapy machine example, the algorithm should at least cover the
two representative scenarios: ⟨X, Up, E, SetEBeam, Enter, B⟩, which is considered safe so
that the property can be weakened, and ⟨X, Up, E, Enter, B⟩, which is unsafe and can
prevent the new property being too weak. On the other hand, it may be optional to return
the example ⟨X, Up, E, Enter, SetEBeam, B⟩, which is semantically equal to the first one
with only SetEBeam and Enter switching their order. Next, Algorithm 5 describes a process
that satisfies the above requirements.

Specifically, it defines a depth-first search (DFS) process. The inputs to the algorithm
include the machine modelM , the deviated environment E ′, unsatisfied preferred behavior
b̄, and an integer n controlling the number of additional examples to include after finding
a minimal set of required examples. On line 1, it computes the parallel composition
T = M ||E ′||b̄, which represents the model of all concrete executions with respect to b̄.
On line 2, it initializes two example sets, covered and extra. The covered set consists of
the minimal set of examples that satisfy the minimal-coverage requirement; and together
with the extra set, they contain all possible examples given the preferred behavior b̄. On
line 3, it initializes a partial function visited : S ↛ 2αT

∗
that tracks all the visited states

such that visited(s) stores all the traces from state s that can form a valid example trace.
Finally, on line 4, it initializes a stack for tracking the DFS, where a node (s, σ) contains
the current state s and trace σ to search.

In the while loop, for the current searching state s and trace σ (line 6), the algorithm
enumerates all events of M ||E ′||b̄ (line 8). For the state s and an event a, if there exists a
successor state s′ (line 9), then there are three cases:

1. Lines 11 to 12, if s′ has been visited by the current trace σ, which forms a cycle,
trace σ is added to the example set covered.

2. Lines 13 to 16, if s′ does not form a cycle but has been visited by other traces before,
the visited set should contain all valid suffixes that can form a valid example from
state s′. Thus, we can generate a set Σ of example traces by appending the suffixes
in visited(s′) to the next searching trace σ′. The algorithm first randomly picks one
and add the trace to the covered set. Then, it adds the rest to the extra set.

3. Lines 17 to 19, if s′ has not been visited in any manner, the algorithm pushes a new
search node to the stack.
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Algorithm 5: Learning examples generation w.r.t. preferred behavior b̄

Input : M,E ′, b̄, and n optional number of additional examples
Output: A set of example traces.

1 T = ⟨S, αT,R, s0⟩ ←M ||E ′||b̄; // Model of executing preferred
behavior b̄.

2 covered← ⟨⟩, extra← ⟨⟩; // Two sets for storing example traces.
3 visited← ∅; // Visited states, a partial function S ↛ 2αT

∗

4 stack ← ⟨(s0, ϵ)⟩;
5 while stack is not empty do
6 (s, σ)← stackPop(stack); // Current state s and the trace σ

to s.
7 add state s to visited set;
8 for event a ∈ αT do
9 if there is a successor state s′ then

10 σ′ ← σ ⌢ ⟨(s, a, s′)⟩; // The next searching trace for
state s′.

11 if s′ is in the current trace σ then
12 add trace σ to covered set;
13 else if s′ is in the visited set then

// Add suffixes in visited(s′) to σ′ to form new
examples.

14 Σ← {σ′ ⌢ σsuffix | σsuffix ∈ visited(s′)};
15 add a random trace in Σ to covered set;
16 add the rest in Σ to extra set;

17 else
18 stackPush(stack, (s′, σ′));
19 end

20 end

21 end
22 if s is a deadlock state then
23 add trace σ to covered set;
24 end

25 end
26 return covered ⌢ extra[0..n];

In addition, on lines 22 to 24, if state s is a deadlock state, i.e., it has no outgoing tran-
sitions, then the trace σ is also added to the covered set. Also note that when adding a
trace to an example set, the algorithm updates the visited set accordingly.

The algorithm terminates when the stack is empty, indicating all states in M ||E ′||b̄
have been visited. Then, it returns the examples in the covered set with an additional n
number of examples in the extra set.

Theorem 4.6. Algorithm 5 will eventually terminate. It will at least return the set of
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example traces that cover all states in M ||E ′||b̄. When n is big enough, it will return all
finite, acyclic traces that project to b̄.

Proof. The termination of the algorithm is guaranteed by the nature of the DFS. Specif-
ically, there are two possible cases when encountering a visited state s: (1) The trace σ
forms a cycle, and if it can project onto b̄, then we add the trace to the result set covered.
Also, we update the visited function such that, for any state s′ in σ, we store a new suffix
trace that can form a valid example from s′. (2) State s does not form a cycle but has been
visited before. Then, the sub-graph whose root is s has been traversed, and visited(s)
contains all valid suffixes that can form a valid example from s. Thus, we don’t need to
search the sub-graph again. We can pick any stored suffix trace in visited(s) to form a
new example trace and add it to covered. The rest will be added to extra.

Thus, the algorithm terminates when all states have been visited; no states will be
searched more than once. The covered set contains traces that just cover all states in
M ||E ′||b̄, and with the extra set, they contain all finite, acyclic traces that project to
b̄.

Given Theorem 4.6, the algorithm provides us the following guarantees that satisfy our
maximal-coverage and minimal-coverage requirements:

• Maximal-coverage: Since it will eventually find all traces that can project onto b̄ in
M ||E ′||b̄, the user should be able to identify at least one positive trace so that the
property can be weakened if there exists one.

• Minimal-coverage: Since the learning target P ′ is a safety invariant in Gϕ, where ϕ
is a propositional formula, if there are violations of P ′ in M ||E ′||b̄, then there should
exist a state where ϕ does not hold. Since the algorithm will at least returns a set of
example traces (i.e., the covered set) that cover all states inM ||E ′||b̄, it is guaranteed
to find such a violating trace if it exists.

In practice, the user could start with n = 0 to generate a small number of examples
that just cover all states in M ||E ′||b̄. The goal is to identify at least one positive trace
from the returned examples. If there are no such traces, the user could gradually increase
n to generate more example traces until finding one positive trace.

4.5.3 Weakening by Learning from Examples

After generating the learning examples, the user is responsible for classifying them into
positive and negative sets and building the learning sample S = (P ,N ). Then, we leverage
LTL learning techniques to synthesize a weakened formula. Specifically, we utilize ATLAS
[41], a general constrained LTL learning tool based on AlloyMax [42]. The reason is that
other LTL learning tools, such as [78, 86], do not have enough express power to encode
our weakening constraints, whereas ATLAS allows us to define syntactic constraints in
first-order logic (FOL) and specify custom optimization goals for the learned formulas.

In ATLAS, the constraints are defined over the syntax of the learned formula. For an
LTL formula ϕ, its syntax is modeled as a tree and is represented by a tuple syntax(ϕ) =
⟨L,R, root⟩ where L,R ⊆ N ×N are the left and right child relations, respectively; N is

81



the set of nodes in the syntax tree, and root is the root node of the tree. In particular,
N =

⋃
op∈N Nop where N = {G,F,U,X,∧,∨,⇒,¬, AP} and Nop is the set of nodes of a

particular operator type or atomic propositions. Then, we can define constraints in FOL
over syntax(ϕ). Moreover, other than the typical logic constructs in FOL and set theory,
ATLAS provides an extended list of operators and functions for improved expressiveness.
Here, we briefly introduce the operators and functions used in our weakening encoding:

• l(n) returns the left child of a node n.

• r(n) returns the right child of a node n.

• desc(n) returns all the descendent nodes of a node n.

• subNodes(n) returns all the descendent nodes of a node n, including n itself.

• subTree(n) returns the sub-tree from a node n.

• min(s) that minimizes the number of elements in a set s.

Then, to solve our specification weakening problem WF(Rb, b̄,F), given the sample
S = (P ,N ) and the original property P , we define the following constraints in ATLAS.

Encoding safety invariant pattern G(ϕ⇒ ψ). The following constraints let ATLAS
return formulas satisfying the pattern of G(ϕ ⇒ ψ) where ϕ and ψ are propositional
formulas, ϕ is in CNF, and ψ is in DNF.

nG ∈ NG ∧ n⇒ ∈ N⇒ (4.1)

root = nG ∧ l(root) = n⇒ (4.2)

∀n ∈ desc(n⇒) : n ∈ N{∧,∨,¬,AP} (4.3)

∀n ∈ desc(n⇒) : n ∈ N¬ ⇒ l(n) ∈ NAP (4.4)

∀n ∈ subNodes
(
l(n⇒)

)
∩N∨ : desc(n) ∩N∧ = ∅ (4.5)

∀n ∈ subNodes
(
r(n⇒)

)
∩N∧ : desc(n) ∩N∨ = ∅ (4.6)

Line (4.1) instantiates a G-operator node and a⇒-operator node, and line (4.2) defines
that the root node is the G-node and its child is the ⇒-node. Line (4.3) defines that all
the descendant nodes of n⇒ are in ∧,∨,¬, and AP as formulas ϕ and ψ in our invariant
pattern should be propositional formulas. Line (4.4) defines that ϕ and ψ are in negation
normal form (NNF). Finally, line (4.5) defines ϕ is in CNF, i.e., for any ∨-node in ϕ, no
∧-nodes should be its descendants; and line (4.6) defines ψ is in DNF, i.e., for any ∧-node
in ψ, no ∨-nodes should be its descendants.

Encoding original property P . Then, we define the constraints for the original safety
property P = G(ϕ ⇒ ψ), which should be weakened. Let syntax(ϕ) = ⟨Lϕ,Rϕ, rootϕ⟩ be
the syntax tree of formula ϕ, and syntax(ψ) = ⟨Lψ,Rψ, rootψ⟩ be the syntax tree of ψ.
Then, we have:
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l(n⇒) = rootϕ ∨
(
l(n⇒) ∈ N∧ ∧ l

(
l(n⇒)

)
= rootϕ

)
(4.7)

Lϕ ∪Rϕ ⊆ subTree
(
l(n⇒)

)
(4.8)

r(n⇒) = rootψ ∨
(
r(n⇒) ∈ N∨ ∧ l

(
r(n⇒)

)
= rootψ

)
(4.9)

Lψ ∪Rψ ⊆ subTree
(
r(n⇒)

)
(4.10)

Lines (4.7) and (4.8) define that the left sub-tree of the ⇒-node is either the original
ϕ or ϕ ∧

∧∨
[¬]x. Similarly, lines (4.9) and (4.10) define that the right sub-tree of the

⇒-node is either the original ψ or ψ
∨∧

[¬]x. Therefore, from lines (4.1) to (4.10), we have
specified the constraints for finding a solution satisfying our “gradual” weakening pattern
as described in Section 4.4.2.

For instance, the safety property G(Xray ⇒ InP lace) will be converted to the follow-
ing constraints:

l(n⇒) = nXray ∨
(
l(n⇒) ∈ N∧ ∧ l

(
l(n⇒)

)
= nXray

)
r(n⇒) = nInP lace ∨

(
r(n⇒) ∈ N∨ ∧ l

(
r(n⇒)

)
= nInP lace

)
where nXray, nInP lace ∈ NAP are the nodes representing the atomic propositions in the
formula.

Encoding minimization goal and additional constraints. Then, we add the opti-
mization goal

min(L ∪R), (4.11)

which minimizes the formula size of the final solution by minimizing the number of edges
in the syntax tree. In addition, we add syntactic constraints to prevent some unhelpful
expressions such as tautologies (e.g., p ∨ ¬p and p⇒ p) and idempotent expressions (e.g.,
p ∧ p and p ∨ p).

Converting to AlloyMax expressions Finally, we convert these constraints into AlloyMax

expressions. Consider the safety property G(Xray ⇒ InP lace) in the therapy machine
example. We have:

1 one sig Xray, InPlace extends Literal {}
2 one sig G0 extends G {}
3 one sig Imply0 extends Imply {}
4 fact {
5 root = G0 and root.l = Imply0
6 all n: desc[Imply0] | n in (Literal + And + Or + Neg)
7 // & stands for intersection.
8 all n: desc[Imply0] & Neg | n.l in Literal
9 // no stands for empty set
10 all n: subNodes[Imply0.l] & Or | no desc[n] & And
11 all n: subNodes[Imply0.r] & And | no desc[n] & Or
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12 }
13 fact {
14 Imply0.l = Xray or (Imply0.l in And and Imply0.l.l = Xray)
15 Imply0.r = InPlace or (Imply0.r in Or and Imply0.r.l = InPlace)
16 }
17 fact {
18 minsome l + r
19 all n: And + Or + Imply | n.l != n.r
20 all n: Or | (n.l in Neg implies n.l.l != n.r) and
21 (n.r in Neg implies n.r.l != n.l)
22 all imply: Imply |
23 no ((imply.l - And) + (subNodes[imply.l] & And).(l + r)) &
24 ((imply.r - Or) + (subNodes[imply.r] & Or).(l + r))
25 }

Lines 1 to 3 declare the nodes used in the original formula. Lines 4 to 12 correspond
to the constraints from equation lines (4.2) to (4.6), which specify the invariant pattern.
Lines 13 to 16 correspond to the constraints from equation lines (4.7) to (4.10) that encode
the original formula. Finally, line 18 corresponds to the minimization goal, and lines 19 to
24 are the additional syntactic constraints to prevent unhelpful expressions including tau-
tologies and idempotent expressions. With the above constraints, ATLAS can synthesize
solutions to the specification weakening problem WF(Rb, b̄,F).

4.6 Evaluation

4.6.1 Research Questions

The evaluation of our weakening approach focuses on two research questions:
• RQ1 (Applicability): Is our specification weakening approach applicable to soft-
ware systems from different domains? Is it able to find weakened safety prop-
erties that allow retaining preferred behaviors that cannot be retained with only
robustification-by-control?

• RQ2 (Scalability): How much additional performance overhead would the weaken-
ing process introduce compared to robustification-by-control? How well does it scale,
particularly the LTL learning process?

To answer RQ1, we evaluated our approach on the five case studies that we used in our ro-
bustness computation and robustification-by-control evaluation. We define a strong FLTLf
safety property in G(ϕ ⇒ ψ) for each problem. Each property describes a similar safety
requirement to the one we used in previous evaluations. For each problem, we considered a
preferred behavior that cannot be satisfied when performing only robustification-by-control
with respect to the strong safety property. We then applied our weakening approach to
show that it can find a weaker safety property; and with this new property, re-running the
robustification-by-control process can find a redesign that retains the preferred behavior.

To answer RQ2, we first compared the time between robustification-by-control and
specification weakening in our case studies. Specifically, a robustification process with
both robustification-by-control and specification weakening involves at least four steps:
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Figure 4.8: Screenshot of Fortis for robustification-by-weakening

(1) the user first runs robustification-by-control and finds that certain preferred behavior
cannot be satisfied; (2) they run the example generation and analyze the returned concrete
scenarios; (3) the tool learns one or more candidate solutions from the examples; (4)
the user reruns the robustification-by-control process with respect to the new property.
Therefore, for each problem, we recorded the computation time of the first robustification-
by-control process, the example generation process, the LTL learning process, and the
second robustification-by-control process. However, we do not consider the time for the
user to identify the positive examples.

Moreover, the complexity of our example generation process is linear to the size of the
system model, whereas the LTL learning process requires solving a MaxSAT problem [87],
which is NP-hard. Thus, we also built a set of random weakening problems to evaluate the
scalability of ATLAS in solving this particular type of LTL learning problem to understand
how it may affect the scalability of our weakening approach. However, a more general and
comprehensive performance analysis of ATLAS can be found in [41].

4.6.2 Implementation

We implemented the weakening approach in our tool Fortis. It uses ATLAS to perform
the constrained LTL learning process. The source code of the implementation is available
on GitHub at https://github.com/cmu-soda/fortis-core.

Figure 4.8 shows the web interface of Fortis for weakening. Similar to robustness anal-
ysis and robustification-by-control, a user specifies all parameters of a weakening problem
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on the right panel, including the model specifications, the safety property to weaken, and
the unsatisfied preferred behavior. Then, by clicking Generate Example Traces, the Fortis
back-end will be invoked to generate a list of example traces. The user can click the Positive
checkbox at the end of each trace to mark it as a positive example; otherwise, the trace
is considered negative. Finally, the user clicks the General Weaken button to let Fortis
synthesize a weaker safety property. The user can also click the Next button to enumerate
the solutions.

We used the web interface to conduct the experiments for RQ1. Then, we used a
program to generate random weakening problems to evaluate the scalability by directly
invoking the Fortis back-end. All experiments were done on a Windows machine with an
Intel i9-12900H processor and 32GB memory.

4.6.3 Case Studies

We first present the experiment settings for all our case study problems and their results.
We did not apply weakening to the network protocol problem because both the naive
protocol and ABP satisfy the safety property under the deviated environment with message
loss. In addition, its safety property, that the input and output events should alternate,
cannot be expressed in the LTL pattern of G(ϕ ⇒ ψ). It is challenging to express this
property in LTL whereas it is straightforward in process algebra (e.g., by using FSP [48]).

Radiation therapy machine. Consider the robustification of the radiation therapy
machine. To build the FLTLf property, we defined the following set of fluents:

• Xray = ⟨{SetXray}, {SetEBeam, Reset}, false⟩
• EBeam = ⟨{SetEBeam}, {SetXray, Reset}, false⟩
• InP lace = ⟨{X}, {E}, true⟩
• Fired = ⟨{FireXray, FireEBeam}, {Reset}, false⟩

Then, we defined a strong safety property that the spreader must be in place when the beam
is in X-ray :

Ps = G(Xray ⇒ InP lace)

For the robustification-by-control process, we defined the progress property that the ma-
chine should eventually be able to fire the beam. Then, we assigned NoCost for observing
all the events of the machine and NoCost for controlling FireXray, FireEBeam, SetXray, and
SetEBeam. We assigned a Cheap cost to control events X, E, Enter, Up, and B. More details
can be found in the problem setting described in Section 3.7.

We considered the preferred behavior b̄ = ⟨X, Up, E, Enter, B⟩, which cannot be satis-
fied under the strong safety property Ps when performing only robustification-by-control.
Therefore, we invoked our weakening process against this preferred behavior, and the ex-
ample generation process returned two example traces:

• e1 : ⟨X, SetXray, Up, E, SetEBeam, Enter, B, FireEBeam, Reset⟩
• e2 : ⟨X, SetXray, Up, E, Enter, B, FireXray, Reset⟩
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We marked e1 as positive because the beam is correctly fired in Electron beam mode, while
we marked e2 as negative because the beam is fired in X-ray with the spreader out of place.
The LTL learning process returned

G(Xray ∧ Fired⇒ InP lace)

as the first solution, which indicates a weaker safety requirement that the spreader must be
in place when the beam is fired in X-ray. As we have shown in previous sections, re-running
the robustification-by-control process found a redesign that retains the preferred behavior
b̄.

Voting machine. Consider the robustification of the voting machine example. We de-
fined the following set of fluents:

• InV oting = ⟨{password}, {complete, reset}, false⟩ 2

• V oterIn = ⟨{v.enter}, {v.exit}, false⟩
• OfficialIn = ⟨{eo.enter}, {eo.exit}, false⟩
• CriticalOp = ⟨{select, vote, confirm}, ∗, false⟩

where ∗ stands for all the other events in the alphabet of the system except those in the
initiating set of CriticalOp. Specifically, InV oting indicates whether a voter has entered
their password and started a voting process, and CriticalOp indicates whether a critical
operation (including select, vote, and confirm) has been performed by any user. To identify
potential voter fraud and ensure vote integrity, we defined a strong safety property that
the election official should not enter the voting booth when the voting is in progress :

Ps = G(OfficialIn⇒ ¬InV oting)

For the robustification-by-control process, we defined the progress property that the voter
should eventually be able to confirm their vote. We assigned NoCost for observing all the
internal events of the machine and a Cheap cost to control them. We assigned a Moderate
cost for observing {v, eo}.enter and {v, eo}.exit but Costly for controlling them. More
details are described in Section 3.7.

We considered a preferred behavior b̄ = ⟨v.enter, password, select, vote, v.exit, eo.enter,
reset, eo.exit⟩, which describes a scenario where the voter has voted for a candidate and
leaves the voting booth before confirming, while the election official enters the booth and
resets the machine to close this uncompleted session. However, this preferred behavior
cannot be satisfied as the strong property forbids the official from entering the booth
before a voting session is complete. We then invoked the weakening process, and the
example generation returned one example trace:

⟨v.enter, password, select, vote, v.exit, eo.enter, back, back, reset, eo.exit⟩

We marked this example as positive because the election official only resets the machine
and does not change the vote made by the voter. The LTL learning process returned

G(OfficialIn ∧ V oterIn⇒ ¬InV oting)
2We introduce a helper event complete to track the voting process.
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as the first solution. However, since OfficialIn∧V oterIn is always false given our system
design, this property always evaluates to true, which is unsatisfactory. We then had the
learner enumerate the next solutions, it returned

G(OfficialIn ∧ CriticalOp⇒ ¬InV oting) and

G(OfficialIn⇒ ¬InV oting ∨ ¬CriticalOp)
These two formulas are semantically equal, but the latter one is more readable. It represents
a weaker safety requirement: the official can enter the booth while the voting is in progress
as long as they do not perform those critical actions. By re-running the robustification-by-
control process, we found a redesign that can retain the preferred behavior b̄ by disabling
those critical operations when detecting an election official entering the booth and enabling
them after a reset.

Oyster transportation fare system. Consider the robustification of the Oyster fare
collection system. We defined the following set of fluents:

• UseCard = ⟨{rcv.card.gin}, {rcv.card.fin}, false⟩
• UseOyster = ⟨{rcv.oyster.gin}, {rcv.oyster.fin}, false⟩
• CardOut = ⟨{rcv.card.fin}, {snd.card, snd.oyster}, false⟩
• OysterOut = ⟨{rcv.oyster.fin}, {snd.card, snd.oyster}, false⟩
• NoOysterBal = ⟨{no oyster bal}, {rld.oyster}, false⟩

where UseCard and UseOyster indicate that the user uses a credit card or an Oyster
card to enter the gate, respectively, CardOut and OysterOut indicate that the user uses
a certain method to exit the gate, and NoOysterBal indicates that the user’s Oyster card
balance is empty. To ensure no card collision in the system, we defined a strong safety
property that the user should use the same payment method in the same journey :

Ps = G(CardOut⇒ ¬UseOyster) ∧G(OysterOut⇒ ¬UseCard)

For the robustification-by-control process, we defined the progress property that the user
should be able to exit the gate with a payment method. We assigned NoCost to observe
and control all the machine-initiated events (e.g., acknowledge a payment request). We
also assigned NoCost to observe the user-initiated events (e.g., send a payment request)
but Costly to control them. More details are described in Section 3.7.

We considered a preferred behavior b̄ that describes a relaxation of the payment re-
quirement—a user enters the gate with their Oyster transportation card and leaves the
gate with a credit card when their Oyster card balance is empty. This may be a result of
requirement evolution, as allowing a user to leave with their credit card when their Oyster
card balance is empty can improve the usability of the system. However, this preferred
behavior cannot be satisfied under the strong safety property Ps. We then invoked the
weakening process, and the example generation returned one example trace, which is the
same as the above-described scenario. Thus, we marked it as positive, and the LTL learning
process returned

G(CardOut⇒ ¬UseOyster ∨NoOysterBal) ∧G(OysterOut⇒ ¬UseCard)
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as the first solution. It is a weaker version of the original safety property by adding another
accepting condition (i.e., NoOyster) to CardOut (i.e., leaving with a credit card). Finally,
re-running the robustification-by-control process found a redesign satisfying the preferred
behavior b̄.

Infusion pump. Finally, consider the robustification of the infusion pump machine. We
defined the following set of fluents:

• Dispensing = ⟨{line.dispense}, ∗, false⟩
• PowerFailed = ⟨{power failure}, {battery charge}, false⟩
• Plugged = ⟨{plug in}, {unplug}, false⟩

where Dispensing indicates whether the machine is dispensing medicine to a patient,
PowerFailed indicates whether the machine encounters a power failure, and Plugged
indicates whether the power cable is plugged in. Specifically, ∗ stands for all the other
events in the alphabet of the system except those in the initiating set of Dispensing. To
ensure safe dispensing, we defined a strong safety property that the power cable should be
plugged in when the machine is dispensing medicine:

Ps = G(Dispensing ⇒ Plugged)

Then, we used the same cost assignment of events for robustification-by-control as described
in Section 3.7.

The above safety property may be considered too restrictive, as it does not allow the
machine to take advantage of its battery mode to continue dispensing when the power
cable is unplugged, as long as the battery does not run out. This can be demonstrated
through a preferred behavior b̄—the power cable is unplugged during a dispensation, and
the dispensation continues in battery mode; then, the power cable is reconnected before a
power failure occurs; finally, the machine correctly completes the dispensation. However,
this preferred behavior cannot be satisfied under the original safety property. Running
the weakening process, the example generation process returned one example trace, which
describes the above scenario. We marked the trace as positive, and the LTL learning
process returned

G(Dispensing ∧ PowerFailed⇒ Plugged)

as the first solution. This formula is, in fact, a valid weakening because a power failure
cannot occur when the power cable is plugged in, so the machine should ensure the an-
tecedent (Dispensing ∧ PowerFailed) never happens. However, it may be difficult for a
human developer to understand. We then searched for the next solutions, and the third
solution returned by the tool was more preferable:

G(Dispensing ⇒ Plugged ∨ ¬PowerFailed)

Finally, re-running the robustification-by-control process found a redesign satisfying the
preferred behavior b̄.
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Table 4.1: The computation time (in seconds) for robustification-by-control and specifica-
tion weakening in case studies.

Problem 1st-Robustify Example Gen. LTL Learn. Num of Tries 2nd-Robustify

Therapy 0.059 0.023 0.131 1 0.084

Voting 0.116 0.038 0.221 3 0.176

Oyster 0.154 0.129 0.385 1 0.277

Pump 0.408 0.179 0.993 3 0.691

4.6.4 Experimental Results

Table 4.1 shows the computation time for each step during the robustification of a case
study problem. From the table, the weakening process, including example generation
and LTL learning, does not introduce significant performance overhead compared to the
robustification-by-control process. All the computations were completed in less than a
second. There are situations where the learning process does not return a satisfactory
weakening as the first solution (often due to a true antecedent or lack of formula readability)
and requires enumeration of solutions. However, it does not require a large number of
enumerations and does not significantly impact the total learning time either.

Different from the robustification-by-control process, whose complexity grows exponen-
tially with respect to the model size of a system, the complexity of example generation is
linear to the model size, and the complexity of LTL learning is associated with the size
of fluents and examples [78, 41]. Thus, scaling up the case studies does not necessarily
scale up the problem size of weakening, and we hypothesize that the LTL learning process
would be the bottleneck. To further evaluate the scalability of our weakening approach
and understand its limitation, we generate 234 random weakening problems following two
commonly observed weakening patterns:

weakening G(a⇒ b) to G(a∧c⇒ b), and weakening G(a⇒ b) to G(a⇒ b∨c).

We scaled these weakening problems in three dimensions: the number of atomic propo-
sitions (i.e., the number of fluents), the number of total examples, and the length of
examples. We set a 3-minute timeout for all problems and used OpenWBO [88] as the
back-end MaxSAT solver. Figure 4.9 shows the experiment results.

Figure 4.9a shows the results of how the solving time grows with the increasing number
of examples. Specifically, each trace has a length of 5, and the results are grouped into
three lines based on the number of atomic propositions (3, 7, and 11). From the figure, the
solving time grows almost linearly with the increasing number of examples, and increasing
the number of atomic propositions does not significantly affect the solving time. However,
the slope (i.e., the rate of increase in solving time) is steeper with more atomic propositions.
The maximum solving time is around 9 seconds given our benchmark problems.

Figure 4.9b shows the results of how the solving time grows with the increasing length
of traces. Specifically, each problem has 5 positive traces and 5 negative traces, and the
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(a) Increasing number of examples. (b) Increasing length of traces.

Figure 4.9: Evaluation results of Fortis synthesizing weakened safety properties using AT-
LAS. All problems have a 3-minutes timeout.

results are also grouped by the number of atomic propositions. From the figure, although
the number of propositions still does not significantly affect the performance, the solving
time grows extremely fast with the increasing number of trace length. At around a trace
length of 60, all the problems in our benchmark timed out. The length of trace has a larger
impact on the scalability of the LTL learning process.

These results imply that, when facing a more complex system, a functional require-
ment that requires a longer preferred behavior description has a greater impact on the
performance overhead when applying our specification weakening technique.

4.7 Summary

This chapter presents an approach to robustify a machine design through specification
weakening, alongside our robustification-by-control method. The idea is that when the
given safety property is too restrictive to satisfy during robustification, leading to the loss
of certain critical functionality, the approach can weaken the safety property to allow more
feasible robustification solutions. Specifically, we consider a situation where a preferred
behavior cannot be satisfied by any solution during a robustification-by-control process.
In such cases, the developer can use our weakening approach to synthesize a weaker safety
property, so that the preferred behavior can be satisfied under a weakened property during
robustification.

We focus on a particular class of safety properties, which are defined in FLTLf and
follow the pattern of G(ϕ ⇒ ψ), where ϕ and ψ are propositional formulas. We believe
this pattern can already capture a large and interesting set of safety invariants, as we
demonstrated in our case studies. However, we do observe that certain safety properties,
which can be easily defined in LTS, cannot be presented in this pattern, such as the
alternating inputs and outputs property for the network protocol example.
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We leverage ATLAS, a tool for constrained LTL learning, to synthesize weakened safety
properties. Specifically, we utilize its syntactic constraint capabilities to learn formulas that
satisfy a syntactic weakening pattern (G((ϕ ∧

∧∨
[¬]pi) ⇒ (ψ ∨

∨∧
[¬]pj))). However,

this pattern only provides a syntactic approximation of minimal weakening and does not
guarantee that the weakened property is semantically minimally weakened. Additionally,
our evaluation shows that although ATLAS is a state-of-the-art tool that allows us to define
the constraints of our weakening pattern and effectively solve the weakening problems in
our case studies, it suffers from increased solving times with the growing length of example
traces, as demonstrated in our scalability evaluation.
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Chapter 5

Related Work

5.1 Robustness Definition and Measurement

According to the survey by Shahrokni et al. [17] and Laranjeiro et al. [18], most of the prior
work on robustness for conventional software systems focuses on testing. Popular methods
such as fault injection [21, 22], model-based testing [23], and fuzzing [24, 25] are designed
to evaluate the robustness of a system by identifying invalid inputs or environmental faults
that cause undesirable system behavior, often measured by crashes or failures. An exemplar
work is by Koopman et al. [7]. The approach generates invalid inputs for a set of identified
system calls in an operating system and uses a five-scale categorization, named CRASH,
to categorize the severity of failures. The survey conducted by Laranjeiro et al. in 2021
[18] provides a more comprehensive and up-to-date review of the current state of research
in software robustness assessment.

In contrast, we compute robustness as an intrinsic characteristic of the software, i.e.,
we systematically compute all the deviations that a machine can tolerate. In addition, we
believe our robustness metric (i.e., a set of deviation traces) can potentially be used to
complement existing robustness testing approaches. For instance, we could generate test
scenarios based on traces in robustness ∆ to verify that the implementation of the machine
is robust against certain types of environmental deviations.

Our formal robustness definition assumes discrete transition systems. Various formal
definitions of robustness for discrete systems have been investigated [89, 90, 91, 92]. One
common characteristic of these prior definitions is that they are all quantitative in nature,
in that they all define some kind of function to measure the distance between traces and
system behavior. For example, Bloem et al. [92] propose a notion of robustness that defines,
for a robust system, that the ratio of the degree of incorrect machine outputs to the degree
of incorrect inputs should be small, where the degree is measured by a function that maps
every possible trace to a value indicating how “close” the behavior is to a correct behavior.
Similarly, Tabuada et al. [89] propose a notion that assigns costs to certain input and
output traces (e.g., a trace that deviates significantly from the expected behavior should
have a high cost) and stipulates that an input trace with a small cost should only result
in an output trace with a proportionally small cost. Henzinger et al. [90, 91] adopt the
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notion of Lipschitz continuity from control theory to define robustness, where a system is
K-(Lipschitz) robust if the deviation (measured by a similarity function) in its output is
at most K times the deviation in its input.

In comparison, our notion of robustness is qualitative in that it captures the (possibly
infinite) set of environmental deviations under which the machine guarantees a desired
property. These two types of metrics are complementary and have their own potential use
cases. While a quantitative metric may directly enable ordering of design alternatives, our
robustness metric contains additional information about the types of the environmental
deviations that could be used to improve robustness.

Tabuada and Neider propose an extension of LTL called robust linear temporal logic
(rLTL) [93]; similarly, Nayak et al. propose robust computation tree logic (rCTL) [94]. Both
use a multi-valued semantics to capture the different levels of satisfaction of a property;
e.g., given an expected property Gϕ, i.e., ϕ should always be true, then FGϕ is considered
a weaker version of it, i.e., eventually ϕ should always be true. Therefore, robustness can
be measured as follows: a “small” violation of the environment assumption must cause
only a “small” violation of the property satisfaction degree. In our work, we say a machine
is robust against a deviation when the desired property continues to be satisfied, following
a binary criterion. Thus, our notion of robustness could potentially be extended with rLTL
or rCTL to compute robustness as an ordered set of deviations.

In safety engineering and risk management, operating envelope or safety envelope has
been used to represent the boundary of environmental conditions under which the system
is capable of maintaining safety [95]. This concept has been adopted in a number of
engineering domains such as aviation, robotics, and manufacturing, but, as far as we know,
it has not been rigorously defined in the context of software engineering. Therefore, our
notion of robustness can be considered one possible definition of the safety envelope for
software systems.

There exist alternative notions of software robustness that significantly differ from both
IO robustness and behavioral robustness. Schulte et al. [28] propose software mutational
robustness, where robustness is measured by the fraction of random mutations to program
code that leave a program’s behavior unchanged. They focus on deviations (mutations)
that occur in the code, whereas we focus on deviations as sequences of events from the
environment. Petke et al. [96] argue that a robust program should be able to stop the
propagation of failures; and according to information theory, they propose that robustness
might be captured as entropy loss in the code region succeeding the code region where the
faults occur. The higher the entropy loss, the higher the likelihood that the propagation
of the failure could be prevented.

5.2 Design Robustification

Robustification by control. Research on robustness for discrete systems in control
theory has not only provided formal definitions of robustness but has also introduced
methods for synthesizing a robust controller [92, 89, 90, 97, 98]. These works rely on a
quantitative notion of robustness, involving numerical measures of deviations. In contrast,
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our approach relies on a qualitative definition of robustness that centers around deviations
as discrete events, aligning more closely with the nature of software systems. However,
the foundational technique for our robustification-by-control method, namely supervisory
control synthesis [39], also originates from a sub-field of control theory dedicated to discrete
event systems.

Similar concepts of control have also been applied in the context of self-adaptive sys-
tems [19] and run-time assurance [99, 20, 100] to dynamically enforce system requirements.
For instance, in the self-adaptive systems community, the MAPE-K adaptation framework
[19, 101], including tools like Rainbow [102] and MORPH [103], also employs a monitoring
and actuation control loop to ensure that a system continues to satisfy certain properties
against environmental uncertainties at run time. Traditionally, these run-time approaches
assume fixed sensing and actuating capabilities, which then limit their adaptation capabil-
ity. By comparison, our work focuses on robustifying a machine at design time, providing
developers with more flexibility to extend the sensing and actuating abilities by introducing
additional observable and controllable events.

Moreover, recent work in self-adaptive systems has also considered adaptive monitoring,
which allows for dynamically changing a system’s sensing ability to, for example, improve
resource utilization, monitor only as needed, or adapt to changes in operational context
(e.g., requirements, objectives, and architecture) [104, 105, 106, 107]. However, these ap-
proaches still assume a pre-defined, total set of monitors and compute a subset to enable
based on the operational context, or they consider deploying new sensors for known types
of events during adaptation. In contrast, design time robustification offers greater flexi-
bility to address unknown events such that monitoring or controlling them may demand
the development and deployment of new physical or software components, which is often
infeasible at run time. In other words, run-time adaptation capabilities are typically lim-
ited by the developers’ (known) knowledge at the time of design and deployment, whereas
at design time, developers have more resources to create design solutions for previously
unknown uncertainties.

Our robustification-by-control approach solves the problem of synthesizing a new ma-
chine model that satisfies a desired property. Thus, it shares similarities with model repair.
Model repair addresses the problem where, given a system S and a property P such that
S ̸|= P , a new system S ′ is generated such that S ′ |= P . Buccafurri et al. [108] propose
a formal definition of model repair for Computation Tree Logic (CTL) and present an
approach to finding repairs using abductive reasoning. Similarly, Menezes et al. [109],
Chatzieleftheriou et al. [110], and Ding et al. [111] present repair approaches for CTL,
α-CTL (which considers actions behind transitions), Kripke Modal Structure (which con-
tains must-transitions and may-transitions), and LTL, respectively. Our robustification-
by-control approach can be considered a kind of model repair. However, it addresses how to
enhance the machine M to tolerate deviations in the environment E, whereas prior model
repair work does not distinguish between the machine and the environment of a system.
Moreover, existing works do not consider the cost of a repair or consider the cost based only
on the syntactic changes of the model, e.g., adding or removing states or transitions. In
contrast, our approach considers multiple semantic-based quality metrics of repairs, such
as the value of preserved behavior and the cost of events for observing or controlling the
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machine and the environment.

We leverage supervisory control synthesis to generate new machine designs, where the
closest work is presented by Tun et al. [65], which also uses controller synthesis to generate
new designs that satisfy a desired property. Although their work does not explicitly aim
at improving the robustness of a software system, they have a similar goal of revising a
machine M to fulfill a security requirement P in an environment E where users might
deviate from the expected behavior, causing security violations. Our robustification-by-
control approach and OASIS differ in the way they explore and generate new designs:
OASIS uses an abstraction-based technique to allow changing the sequence of events in
a machine to generate new designs that satisfy a certain property, while our approach
allows adding events to be observed or controlled by the new designs. OASIS’s approach
could potentially be a complementary exploration method for us to search for optimal
robustification solutions. In addition, OASIS does not consider optimizing designs for the
two quality goals, i.e., minimizing the cost of changes and preserving behavior from the
old design.

Robustification by specification weakening The idea of weakening in the context of
requirements engineering [38, 50] is rooted in the recognition that environmental conditions
may change over time and space. As a result, original requirements might become inad-
equate or inconsistent with the new environment, necessitating adaptation or weakening.
This concept has been further explored in self-adaptive systems [112, 51, 52].

In the work by Alrajeh et al. [50], their focus is on adapting system requirements to
address environmental deviations during the requirement elicitation phase. The authors
propose an approach that utilizes a learning technique to automatically adapt system
requirements specified in a goal model [113] with Metric Temporal Logic (MTL) to changes
in the environment. However, their work focuses purely on requirements and does not focus
on the system realization (i.e., system design or implementation), whereas we consider
resolving conflicts in requirements by specification weakening during the process of making
a machine design more robust.

Chu et al. [52] explore the weakening idea in the context of CPS with Signal Temporal
Logic (STL). They focus on the problem of feature interactions in a system at run time,
where conflicting control actions may be generated as two system features both try to lead
the system to satisfy their specific requirements. To resolve the conflicts, they introduce
an extension to STL called weakened STL, where the time bounds of temporal operators
can be weakened to make a formula easier to satisfy. Then, at run time, when a conflict
occurs, they try to minimally weaken the conflicting requirements by finding new time
bounds such that they can synthesize a new control action that satisfies the weakened
specifications. Compared to our weakening work, one significant difference is that they
weaken the specifications by changing the time bounds of temporal operators but keep-
ing the original propositions, whereas our approach achieves weakening by changing the
propositions.

Moreover, Buckworth et al. [51] present a run-time adaptation technique involving the
weakening of LTL. In their work, they consider a scenario where, at run time, a self-adaptive
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system cannot continue providing its guarantees due to the changes in the environment.
Then, they learn a weakened specification that aligns with the current environmental con-
ditions and synthesize a new controller based on this adjusted specification. Our work
shares similarity with this method in that we both consider weakening the specification
in the presence of environmental deviations and synthesizing a controller given the weak-
ened specification. However, the goal of weakening is different. They consider more general
weakening scenarios where both system functionality and safety requirements can be weak-
ened. They do not explicitly define which sub-specification should be weakened, as long
as a controller can be synthesized. By comparison, we focus on a specific case of weaken-
ing. We distinguish between safety and functionality and focus on the weakening of safety
requirements only so that the system can retain more functionality during robustification.

D’Ippolito et al. [114] also adopt the weakening concept and propose a multi-tier con-
trol approach for self-adaptation, where the developer provides a hierarchy of environment
models (E ′, E ′′, . . .) that embody different levels of uncertainty, and synthesizes different
machines (M ′,M ′′, . . .) to satisfy gradually weakened system goals (P ′, P ′′, . . .). Then, at
run time, the system dynamically switches between different controllers that best corre-
spond to the current environment. However, in the context of robustification, they do
not specifically consider the relationship between switchable machines (e.g., M ′ and M ′′)
with respect to quality metrics (e.g., modification cost or behavioral similarity). Moreover,
they focus on the theoretical foundations of this multi-tier adaptive framework, assuming
that the different levels of requirements are provided, whereas we focus on how to derive a
weaker specification given a requirement conflict.

Our approach to specification weakening also shares similarity with graceful degrada-
tion—where a system displays degraded behavior in response to the changes in the envi-
ronment [115]. We both study the problem of how a system specification can be gradually
and minimally weakened when it cannot be fulfilled given the deviated environment. How-
ever, the problem context and goals are slightly different. Typically, graceful degradation
considers how the functionality of a system should degrade at run time, in the presence of
environmental changes, to guarantee the satisfaction of critical safety or security require-
ments. In contrast, we consider weakening an unnecessarily restrictive safety requirement
to fulfill certain functionality in the presence of environmental deviations at design time.
In other words, our goal of weakening is to retain system behaviors by sacrificing safety.
On the other hand, our robustification-by-control approach allows for sacrificing system
functionality (i.e., preferred behaviors) to ensure a fixed safety property, which is closer to
the conventional concept of graceful degradation.
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Chapter 6

Discussion and Conclusion

6.1 Robustness Analysis

We present a formal notion of behavioral robustness for software based on LTS. Given a
software machine, our notion defines robustness as a set of environmental traces that are
not defined in the original, expected environment and that would not cause a violation
of a desired safety property. We leverage the computation of the weakest assumption
to compute robustness, and then robustness is the set of traces that are in the weakest
assumption of a machine with respect to a safety property but are not in the expected
environment. In general, robustness may contain an infinite number of traces. Then, we
present a way to partition it into a finite set of equivalence classes, each of which contains
traces that describe the same type of deviation, and sample representative traces from
those classes. Finally, we use a deviation model to generate explanations that describe
how the environment may deviate from its expected behavior in a particular way.

Representation and explanation. One limitation of our approach is that our current
method of defining equivalence classes for robustness may sometimes result in a classifi-
cation that is too fine-grained. For example, in the ABP case study (Section 2.6), traces
like ⟨send[0], send[0]⟩ and ⟨send[1], send[1]⟩ refer to the same type of fault (i.e., message
loss during sending) and could be grouped into the same class, which, however, are treated
as two equivalence classes. Future work could explore different strategies for generating
equivalence classes, leveraging abstraction-based methods to produce higher-level repre-
sentations of deviations (e.g., ⟨send[x], send[x]⟩ for some event parameter x).

Another limitation is how we pick the representative traces. Currently, for each equiv-
alence class, we choose the shortest normative prefix plus the first deviated action as the
representative trace of this class. However, it may “mistakenly” represent an intolerable
deviation that has the same prefix. For instance, in the radiation therapy machine, the old
(unrobust) design has a class with a representative trace ⟨X, Up⟩. Although the machine is
robust against deviations such as ⟨X, Up, E, Enter⟩, it is not robust against the deviation
⟨X, Up, E, Enter, B⟩ even though they have the same prefix. A mitigation strategy is to
generate the longest, acyclic traces to represent an equivalence class. For example, we can
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use ⟨X, Up, E, Enter⟩ to represent this class; and since it is the longest, acyclic trace, it also
indicates that ⟨X, Up, E, Enter, B⟩ is not a deviation in this class. However, there may be
more than one such representative traces, which increases the difficulty in understanding
the robustness.

Therefore, in the short term, we could improve our current way of representing ro-
bustness. However, in the long term, future work could also explore other representation
methods that are unambiguous and more comprehensible to the user (e.g., a visual repre-
sentation).

Controllability and observability. Another limitation aspect is the notion of control-
lability and observability. Currently, it is mainly used in the robustification process to
decide which events can be and should be disabled to ensure the safety property and is
also used to reflect the robustification cost. However, it is not considered in our robust-
ness computation process. Different from some other formalisms for discrete systems, the
controllability and observability of events is not modeled in LTS as an intrinsic character-
istic, which may cause some semantic difficulties (e.g., disabled vs. undefined behavior as
discussed later).

To incorporate this concept, one idea is to leverage IO automata [116] or interface
automata [117]. They are extensions of LTS, which explicitly distinguish between input
and output events, where a machine is able to control and observe its output events but
can only observe its input events. Based on this notion, we may extend our robustness
definition and computation method to also consider the controllability and observability
of events [118]. In the long term, we could also extend our robustness notion to CSP
(Communicating Sequential Processes) [119], which also explicitly distinguishes between
input and output events. However, these formalisms assume that the controllability and
observability of the events are fixed, whereas our robustification process allows changes in
controllability and observability. Thus, it is also unclear how these changes would affect
the underlying formalism and the way we compute robustness.

Disabled vs. undefined behavior. It is also worth noting that distinguishing between
input and output events can also help us distinguish between disabled and undefined events.
In LTS, there isn’t a unified interpretation of the semantics for unspecified transitions in
a model. An event being unspecified at a state can be interpreted either as: the machine
disables that event, which implies controllability; or the transition is undefined, which
may lead to an unknown system state and may be considered unsafe. When computing
robustness, in the first interpretation, the unspecified transitions are deemed safe (as they
are disabled) and thus should be included in the robustness set; whereas in the latter
interpretation, they are considered unsafe and unrobust. In this thesis, we choose the dis-
abling interpretation when defining robustness, and thus, in the robustification-by-control
method, removing (disabling) a transition from the model can improve robustness. This
interpretation also aligns with the weakest assumption computation method we used in
this thesis, proposed by Giannakopoulou et al. [56]. However, by extending our robustness
notion to IO automata, interface automata, or CSP, it may offer a clear distinction between
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disabled and undefined behavior. In addition, modal transition systems might also be used
to define a hierarchy of behaviors (i.e., through must, may, and absent transitions) to help
distinguish disabled and undefined behaviors [120].

Type of uncertainties. This thesis investigates a specific type of robustness, termed
behavioral robustness. In our framework, deviations (a.k.a. uncertainties) are defined
as sequences of environmental events that are not specified by the assumed environment.
Specifically, these deviated sequences should only differ in their order of events when com-
pared to the behavior in the assumed environment, while the set of events (i.e., the al-
phabet) should remain unchanged. However, we did not address the type of uncertainties
that are caused by unknown events from the environment. We argue that we handle the
type of uncertainties that can be classified as known unknowns, i.e., the set of events that
the machine and the environment can interact with is known and fixed, but the order in
which these events may occur is unknown. On the other hand, uncertainties caused by
unknown events would be classified unknown unknowns, which we currently cannot han-
dle. Additionally, we also do not consider the probability associated with the occurrence of
deviations, even though, in practice, some deviations may be extremely unlikely to occur,
making it not cost-effective to be robust against them. However, extending our robustness
notion to account for this, e.g., through probabilistic model checking [121], would require
a long-term effort.

6.2 Robustification by Control

To robustify a machine (i.e., improve the robustness of a machine), we first present a
method called robustification-by-control. The user specifies a set of intolerable deviations,
which are then used to transform the normative environment into a deviated environment.
Optionally, the user can also specify the preferred behaviors (i.e., execution traces) expected
to be retained in the new design and the costs to control and observe the events of the
machine and environment, in order to generate repairs that are optimal with respect to
these two metrics. Internally, it leverages supervisory control theory to synthesize new
designs, and we propose a novel algorithm and a set of heuristics to efficiently find optimal
solutions for robustification.

Type of deviations. Our current method focuses on a deviated environment with ad-
ditional behaviors compared to the expected environment, as we believe that it already
captures a large and interesting class of deviations, where the environment exhibits be-
haviors beyond those captured in the assumed environment model (e.g., security attacks,
human errors, etc.). Also, since our focus is on safety properties, which specify the upper
bound of the expected behavior, a deviated environment with removed behaviors is guar-
anteed to not cause a safety violation. Future work could explore robustifying against a
deviated environment that integrates both adding and removing behaviors. Additionally,
we argue that removing behavior has a large impact on the satisfaction of liveness prop-
erties, as they often require certain good states to be reached, whereas removing behavior
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may cause some states to be unreachable. More discussion about liveness properties is
provided later.

Synthesis of redesigns. We leverage supervisory control theory to synthesize robus-
tified redesigns. In the future, we could also explore alternative synthesis techniques for
robustification, such as GR(1) reactive synthesis [81, 74, 122]. However, reactive synthesis
considers properties defined in LTL, which interprets over infinite traces, whereas we con-
sider safety properties in LTS, which consider a set of finite traces. Thus, our robustness
definition and robustification method require theoretical extensions to handle this sub-
tle semantic difference. It is also unclear how we can incorporate our two quality goals
(i.e., retaining behavior and minimizing cost) into the synthesis process. Thus, we expect
there would be a long-term effort to integrate GR(1) reactive synthesis into our current
robustification process.

Additionally, active automata learning [123, 58] is also a potential method to synthesize
redesigns. Active learning is originally used to learn a model whose behavior is equivalent
to a teacher model whose behavior is a black box. We may also leverage this method
to learn a new design by “teaching” it the good behavior (e.g., the behavior that needs
to be retained) and the bad behavior (e.g., the behavior leading to a safety violation).
One potential advantage of this approach is that it can return an intermediate candidate
solution when a problem is hard to solve (i.e., requires too many iterations), even though
the solution may not be optimal (e.g., retaining the most preferred behaviors). However,
we still need to address the challenge of integrating our two quality goals into the learning
process.

Extending behaviors. Our robustification-by-control method allows extending the ma-
chine’s behavior by adding more controllable and observable events to the machine. How-
ever, this extending ability is limited. It cannot introduce new behaviors that are not
present in the machine and the deviated environment (i.e., M ||E ′). An approach that
combines our event-based approach with the abstraction-based strategy of OASIS [65]
may enable a more powerful robustification process and find more feasible redesigns (with
behaviors not in M ||E ′). However, we may also need to add more constraints to the ro-
bustification problem as it may result in unreasonable designs (e.g., in a voting machine,
requiring a voter to “confirm” before “voting”). Also, we argue this limitation in extend-
ing behavior has a larger impact on the goal of retaining behaviors or, more generally,
maintaining liveness properties, which are discussed later.

Multi-agent robustification. Another future direction is to consider the robustifica-
tion of individual components of a machine. Our current method treats the machine as one
entity. However, in practice, the machine could consist of multiple components, and we
have local specifications for each of these components. The idea is that, instead of synthe-
sizing a new design for the entire machine, we can identify the robustness vulnerabilities
of individual components and synthesize new designs for these components. The challenge
is that the synthesized new (local) designs should not only satisfy their local specifications
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but would also need to interact with other new or unchanged components to ensure the
global specifications of the entire system. One idea is to leverage the decentralized control
synthesis techniques from supervisory control [39]. Another idea is to leverage techniques
of multi-agent controller synthesis such as [124]. Given the increased complexity of the
problem, we expect that a long-term effort would be necessary to explore this direction.

6.3 Robustification by Specification Weakening.

The robustification-by-control method considers robustifying with respect to a fixed safety
property. However, when the property is too strong, the robustified design may not be
able to retain certain behaviors, causing the loss of some critical functionalities. To miti-
gate this issue, we present the robustification-by-specification method. Specifically, given
a robustification problem and an unsatisfied preferred behavior, our approach can find a
weakened safety property under which the preferred behavior can be satisfied by a robus-
tified redesign. It considers a particular type of safety properties defined in FLTL (i.e.,
G(ϕ⇒ ψ)) and leverages an LTL learning technique to synthesize a new property.

Weakening patterns. Future work can explore more patterns of safety properties. How-
ever, the challenge is how we decide when a property is weakened (i.e., P ⇒ P ′) and
whether there’s a way to enable syntactic or semantic gradually weakening. Other than
the weakening pattern we used in this thesis, Tabuada et al. [93, 125] propose a notion
named Robust Linear Temporal Logic (rLTL), where they define an ordering of the satis-
faction level of LTL formulas, which can potentially be used for weakening (e.g., a weaker
version for Gϕ is FGϕ). However, this notion may convert a safety property into a liveness
property, which our current robustification method does not support.

Another limitation is that, currently, we assume a fixed set of atomic propositions (i.e.,
the fluents) when synthesizing a weakened safety property. In future work, we could also
consider extending this proposition set. For example, similar to the LTSA tool [48], we
could implicitly create a fluent for each event in the system, which becomes true when the
event occurs and becomes false when another event occurs. However, this may dramatically
increase the search space, hurting performance, even though our evaluation shows that
increasing the number of atomic propositions has a relatively small impact on performance.
Therefore, more effort is needed to be done to balance between the search space and the
performance of weakening.

Quality of weakening. Although we have added syntactic constraints to avoid unhelpful
expressions such as tautologies and idempotent expressions, the LTL learning process may
still generate unsatisfactory solutions. For example, when all the examples are identified
as positive, then P ′ = true becomes a valid solution, which can be achieved by making
the antecedent false (e.g., p ∧ ¬p ⇒ q). One way to mitigate this issue is to add more
syntactic constraints to avoid them. On the other hand, we could also explore a feedback
loop for providing negative examples to the learner to avoid weakening the property too
much. However, unlike the weakening loop presented in [51] where over-weakening can be
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automatically witnessed by a counterexample, over-weakening in our use case cannot be
automatically detected (as a weaker safety property would be easier to satisfy). Thus, it
still relies on developers’ domain knowledge to provide or identify the negative examples.

Semantic-based weakening. We consider only a syntactic weakening pattern and use
ATLAS [41], a constrained LTL learning tool that we built, to synthesize new safety proper-
ties. In the future, we could also explore semantic-based weakening patterns. In general, it
is challenging to decide whether a weakened property is semantically minimally weakened.
One idea is to encode semantic-based weakening patterns as constraints in the learning tool.
However, this is much more challenging because it is unclear what semantic constraints
should be provided to guide the search and, as far as we are aware, there does not exist a
learning tool that supports defining semantic constraints. A potential way is to leverage
a weakness measure of LTL and develop a heuristic search based on it (as described in
the work by Cavezza et al. [126], for example). Another idea is to consider limited pat-
terns of formulas. For instance, in this thesis, we consider only safety invariants. Since
the valuation of such a property depends solely on individual system states, to guarantee
semantically minimal weakening, we could maximize the number of unsafe states so that
only a few executions are considered acceptable, leading to a safety property that would
not be too weak.

Full-automation of weakening. Our current weakening technique is a semi-automated
approach. Given an unsatisfied preferred behavior, we automatically generate a set of
example executions and assume that the stakeholders are responsible for manually deciding
which examples are acceptable or not. Future work could also explore automating the
example identification process. One potential direction is that, given a set of examples, the
algorithm could attempt to separate the set into two subsets: one with positive examples
and one with negative examples. Since we consider only safety invariants, all visited states
in the positive set should be safe states, and there should exist one or more unsafe states
in the negative set. Additionally, the guessing heuristic could try to maximize the number
of unsafe states to incorporate semantic-based gradually weakening into the process. This
guessing process could be repeated multiple times until a satisfactory property is found.

6.4 Liveness Properties

Our robustness computation and improvement method mainly considers safety properties,
and only two weak classes of liveness properties are considered in robustification (i.e.,
progress properties and preferred behaviors). We envision that a comprehensive support
for robustness analysis and improvement of liveness properties would require non-trivial
theoretical extensions to the existing framework.

For example, the first challenge is the underlying formalism. In this thesis, we focus on
safety properties defined in LTS, which describes a set of finite traces. However, liveness
properties often cannot be represented in LTS, and we may need to extend the formalism
to LTL and consider infinite traces. Moreover, liveness properties make more sense with
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infinite traces since they often describe the desire that certain events would eventually
occur in the (unbounded) future.

Then, another challenge is how we compute robustness with respect to a liveness prop-
erty. We could continue leveraging the computation of the weakest assumption. For
example, Farzan et al. [127] present a method to compute weakest assumption for liveness
properties based on ω-regular language. Another idea is to leverage the concept of checking
liveness as safety [128] or consider bounded-time liveness, such as [129, 130]. With these
techniques, we may reuse our existing robustness computation method for safety to handle
liveness.

Finally, it is also challenging to improve robustness with respect to liveness properties.
Our current robustification approach primarily employs the idea of disabling actions to
enhance robustness. However, addressing liveness properties may require the addition of
new behavior to the machine. Although our approach can extend the machine’s behavior
by adding new controllable and observable events, it cannot add event traces outside the
machine and the deviated environment (M ||E ′). For example, it cannot add retries of
message sending in a network protocol. One idea is to integrate the abstract-based approach
presented in OASIS [65], which supports adding new event traces to the redesign, but
additional constraints may be needed to avoid unusual designs. Furthermore, both of
these methods consider a fixed set of events for the machine and environment, but new
events may need to be introduced to robustify against a liveness property.

In sum, given the significant differences in computing and improving robustness against
liveness properties, we expect at least one or two additional years of effort to extend our
existing robustness techniques to support liveness.

6.5 ML and CPS Robustness

In this thesis, we classify software systems into three categories: conventional software
systems, ML systems, and CPS. We focus on the systematic analysis and improvement
of the behavioral robustness of conventional software systems. Specifically, we consider
conventional software systems as systems that can be modeled in discrete transition systems
and thus use LTS to model their behavior. Although we are also interested in the behavioral
robustness of ML systems and CPS, it is outside the scope of this thesis.

ML systems typically involve statistical models trained and optimized against certain
datasets. Their concrete behavior is hard to explain, and these models are often treated as
black boxes, especially for complex models like Deep Neural Networks (DNN) [131]. Also,
CPS interact closely with the physical world, such as aircraft or autonomous vehicles, which
often involve modeling, controlling, and manipulating physical processes. These processes
often need to be characterized by differential equations or hybrid logic [132].1 Therefore,
ML systems and CPS require significantly different behavior modeling approaches where
LTS cannot be directly applied.

1In literature, CPS covers a wide range of systems including some of our case studies such as the infusion
pump or the voting machine. However, we use the term CPS to specifically refer to those systems that
require modeling of the physical world in continuous models.

105



There would need non-trivial theoretical extensions to our current robustness notion
to analyze and reason about the behavioral robustness of ML systems and CPS. It may
need to incorporate probabilistic modeling and properties [121] or leverage statistical model
checking techniques [133]. For instance, in our work [134], we present a robustness analysis
framework for CPS with reinforcement learning controllers. It employs Signal Temporal
Logic (STL) [135] to specify the expected behavior of a CPS and assumes that the system
under test and the controller are black boxes. Then, it uses an optimization-based method
to find robustness violations, instead of computing the robustness. Therefore, given the
significant differences in the underlying problems, robustness analysis and improvement of
ML systems and CPS are out of the scope of this thesis.

6.6 Transition into Practice

Our approach leverages formal methods to systematically and rigorously compute and
improve the behavioral robustness of a machine design. Thus, it also shares the common
limitations of formal methods such as challenges in modeling, specification, and scalability
[136, 137, 138]. This work does not intend to address all these challenges, but we have
taken engineering efforts to make it more applicable as advocated by Gleirscher et al. in
their manifesto [139]. For example, we have built a web interface for Fortis to make it easier
for users to define problems. We have also proposed an approach to extract representations
and explanations for robustness computation.

In the future, more work could be done to further improve the applicability and usability
of our approach with a specific focus on its representation and explainability. Our tool takes
LTS as inputs, which could be extracted from code using a tool like Java PathFinder [140].
However, not all the information is necessary for robustness analysis, and a too detailed
model may also harm performance. In addition, developers also need to map the analysis
results back to the implementation. In practice, proper abstraction and refinement are
often required, which could be challenging even for experts in formal methods. Therefore,
a better way of presenting and explaining the analysis and robustification results could
help the abstraction and refinement process. For example, when computing robustness, we
could highlight the tolerable/intolerable deviations on the model diagrams or in the code
fragments. Moreover, when robustifying the design, we could visualize the differences and
highlight the changed transitions. These extensions may not only require engineering efforts
but also theoretical research, and thus we leave them as future exploration directions.
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Appendix A

Appendix

A.1 Models of Case Studies

A.1.1 Radiation Therapy Machine

The following code snippets show the FSP specifications of the radiation therapy machine:

Machine.
INTERFACE = (x -> CONFIRM | e -> CONFIRM),
CONFIRM = (up -> INTERFACE | enter -> FIRE),
FIRE = (up -> CONFIRM | b -> enter -> INTERFACE).

const NotSet = 0
const Xray = 1
const EBeam = 2
range BeamState = NotSet .. EBeam

const ToXray = 3
const ToEBeam = 4
range BeamSwitch = ToXray .. ToEBeam

BEAM = BEAM[NotSet],
BEAM[mode:BeamState] = (

when (mode == NotSet) x -> set_xray -> BEAM[Xray]
|
when (mode == NotSet) e -> set_ebeam -> BEAM[EBeam]
|
// Xray mode
when (mode == Xray) x -> BEAM[Xray]
|
when (mode == Xray) e -> BEAM_SWITCH[ToEBeam]
|
when (mode == Xray) b -> fire_xray -> reset -> BEAM
|
// EBeam mode
when (mode == EBeam) e -> BEAM[EBeam]
|
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when (mode == EBeam) x -> BEAM_SWITCH[ToXray]
|
when (mode == EBeam) b -> fire_ebeam -> reset -> BEAM

),
BEAM_SWITCH[switch:BeamSwitch] = (

// EBeam to Xray
when (switch == ToXray) x -> BEAM_SWITCH[ToXray]
|
when (switch == ToXray) e -> BEAM[EBeam]
|
when (switch == ToXray) b -> fire_ebeam -> reset -> BEAM
|
when (switch == ToXray) set_xray -> BEAM[Xray]
|
// Xray to EBeam
when (switch == ToEBeam) e -> BEAM_SWITCH[ToEBeam]
|
when (switch == ToEBeam) x -> BEAM[Xray]
|
when (switch == ToEBeam) b -> fire_xray -> reset -> BEAM
|
when (switch == ToEBeam) set_ebeam -> BEAM[EBeam]

).

SPREADER = (e -> OUTPLACE | x -> SPREADER),
OUTPLACE = (e -> OUTPLACE | x -> SPREADER).

||SYS = (INTERFACE || BEAM || SPREADER).

Normative environment.
ENV = (x -> ENV_1 | e -> ENV_1),
ENV_1 = (enter -> ENV_2),
ENV_2 = (b -> enter -> ENV)+{up}.

Deviated environment.
ENV = (x -> ENV_1 | e -> ENV_1),
ENV_1 = (enter -> ENV_2 | up -> ENV),
ENV_2 = (b -> enter -> ENV | up -> ENV_1).

Safety property in LTS.
const True = 1
const False = 0
range Bool = False .. True

P = P[False][True],
P[isXray:Bool][isInPlace:Bool] = (

set_xray -> P[True][isInPlace]
|
set_ebeam -> P[False][isInPlace] | reset -> P[False][isInPlace]
|
x -> P[isXray][True]
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|
e -> P[isXray][False]
|
when (isXray == False || isInPlace == True) b -> P[isXray][isInPlace]

).

Weak safety property in FLTL.
fluent Xray = <set_xray, {set_ebeam, reset}>
fluent EBeam = <set_ebeam, {set_xray, reset}>
fluent InPlace = <x, e> initially 1
fluent Fired = <{fire_xray, fire_ebeam}, reset>

assert OVER_DOSE = [](Xray && Fired -> InPlace)

Strong safety property in FLTL.
fluent Xray = <set_xray, {set_ebeam, reset}>
fluent EBeam = <set_ebeam, {set_xray, reset}>
fluent InPlace = <x, e> initially 1
fluent Fired = <{fire_xray, fire_ebeam}, reset>

assert OVER_DOSE = [](Xray -> InPlace)

A.1.2 Network Protocols

The following code snippets show the FSP specifications of the network protocols:

Naive protocol.
range B= 0..1

SENDER = (input -> send[B] -> getack[B] -> SENDER).
RECEIVER = (rec[B] -> output -> ack[B] -> RECEIVER).
||SYS = (SENDER || RECEIVER).

ABP.
range B= 0..1

INPUT = (input -> SENDING[0]),
SENDING[b:B] = (send[b] -> SENDING[b]

| getack[b] -> input -> SENDING[!b]
| getack[!b] -> SENDING[b]).

OUTPUT = (rec[0] -> output -> ACKING[0]),
ACKING[b:B] = (ack[b] -> ACKING[b]

| rec[b] -> ACKING[b]
| rec[!b] -> output -> ACKING[!b]).

||SYS = (INPUT || OUTPUT).
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Normative environment.
range E_B = 0 .. 1

CHANNEL = (in[b:E_B] -> out[b] -> CHANNEL).

||ENV = (trans:CHANNEL || ack:CHANNEL)
/ {send/trans.in, rec/trans.out, ack/ack.in, getack/ack.out}.

Deviated environment.
range E_B = 0 .. 1

menu ERR_ACTS = {lose, duplicate, corrupt}

CHANNEL = (in[b:E_B] -> TRANSIT[b]),
TRANSIT[b:E_B] = (out[b] -> CHANNEL | lose -> CHANNEL).

||ENV = (trans:CHANNEL || ack:CHANNEL)
/ {send/trans.in, rec/trans.out, ack/ack.in, getack/ack.out}.

Safety property in LTS.
P = (input -> output -> P).

A.1.3 Voting Machine

Figure A.1 shows a simplified model of the voting machine. In a typical scenario, a voter
is expected to interact with the machine by carrying out the following actions: (1) Enter
password to verify their identify (password); (2) Select the candidate of their choice (select);
(3) Proceed to the next step by pressing vote (vote) or return to the previous step by
pressing back (back); (4) Complete the vote by confirming the selection (confirm) or return
to the previous step by pressing back (back). The voting machine is placed inside a voting
booth, and a nearby election official is responsible for guiding voters to and away from
the booth. We assume that the voting booth can be occupied by at most one person at a
time. The election official cannot enter the password to vote but can perform all the other
actions. In addition, the election official can reset the machine to the initial state even if
the voting process is not completed (reset). Figure A.2 shows the LTS for this normative
environment behavior.

The following code snippets show the FSP specifications of the voting machine:

Machine.
EM = (password -> P1),
P1 = (select -> P2 | reset -> EM),
P2 = (vote -> P3 | back -> P1 | reset -> EM),
P3 = (confirm -> EM | back -> P2 | reset -> EM).

Normative environment.
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Figure A.1: Voting machine model.

Figure A.2: Normative operator model of the voting machine.

ENV = (v.enter -> VOTER | eo.enter -> EO),
VOTER = (password -> VOTER1),
VOTER1 = (select -> VOTER2),
VOTER2 = (vote -> VOTER3 | back -> VOTER1),
VOTER3 = (confirm -> v.exit -> ENV | back -> VOTER2),
EO = (select -> EO | vote -> EO | confirm -> EO | back -> EO

| reset -> EO | eo.exit -> ENV).

Deviated environment.
ENV = (v.enter -> VOTER | eo.enter -> EO),
VOTER = (password -> VOTER | select -> VOTER | vote -> VOTER

| confirm -> VOTER | back -> VOTER | v.exit -> ENV),
EO = (select -> EO | vote -> EO | confirm -> EO | back -> EO

| reset -> EO | eo.exit -> ENV).

Safety property in LTS.
const NoBody = 0
const Voter = 1
const EO = 2
range WHO = NoBody..EO
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P = VOTE[NoBody][NoBody][NoBody],
VOTE[in:WHO][sel:WHO][v:WHO] = (

v.enter -> VOTE[Voter][sel][v] | eo.enter -> VOTE[EO][sel][v]
| password -> VOTE[in][sel][in]
| select -> VOTE[in][in][v]
| when (sel == v) confirm -> VOTE[in][NoBody][NoBody]

).

Weak safety property in FLTL.
fluent InVoting= <password, {confirm, reset}>
fluent VoterIn = <v.enter, v.exit>
fluent OfficialIn = <eo.enter, eo.exit>
fluent CriticalOp = <

{select, vote, confirm},
{password, back, reset, eo.enter, eo.exit, v.enter, v.exit}

>

assert VOTE_INTEGRITY = [](OfficialIn -> (!InVoting || !CriticalOp))

Strong safety property in FLTL.
fluent InVoting= <password, {confirm, reset}>
fluent VoterIn = <v.enter, v.exit>
fluent OfficialIn = <eo.enter, eo.exit>
fluent CriticalOp = <

{select, vote, confirm},
{password, back, reset, eo.enter, eo.exit, v.enter, v.exit}

>

assert VOTE_INTEGRITY = [](OfficialIn -> !InVoting)

A.1.4 Oyster Transportation Fare System

Figure A.3 and A.4 show the LTS’s of the Oyster system and Figure A.4c shows the
LTS of the behavior of the user. Specifically, when entering the gate (Menter), the user
either taps their Oyster transportation card (snd.oyster) or uses another payment such as
a credit card (snd.card); and the machine acknowledges with a rcv.oyster.gin or rcv.card.gin
event, respectively. Then, when exiting the gate (Mexit), the user uses the same method
to complete the payment, which sends a snd.oyster.gin or snd.card.gin event, respectively.
Finally, the machine acknowledges with a rcv.oyster.fin or rcv.card.fin event indicating the
completion of the payment. In addition,Moyster andMcard model the balance of the Oyster
transportation card and the credit card; and when there’s no balance, the user has to reload
the balance (rld.oyster and rld.card).

The following code snippets show the FSP specifications of the Oyster system:

Machine.
GATE_IN = (snd.oyster -> OYSTER | snd.card -> CARD),
OYSTER = (rcv.oyster.gin -> GATE_IN | snd.oyster -> OYSTER

| snd.card -> ANY),
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(a) Gate entering control Menter.

(b) Gate exiting control Mexit.

Figure A.3: Models of the gate control of the Oyster transportation system.

CARD = (rcv.card.gin -> GATE_IN | snd.card -> CARD | snd.oyster -> ANY),
ANY = (rcv.oyster.gin -> OYSTER | rcv.card.gin -> CARD

| snd.card -> ANY | snd.oyster -> ANY).

GATE_OUT = (snd.oyster.gin -> OYSTER | snd.card.gin -> CARD),
OYSTER = (rcv.oyster.fin -> GATE_OUT

| snd.oyster.gin -> OYSTER | snd.card.gin -> ANY),
CARD = (rcv.card.fin -> GATE_OUT

| snd.card.gin -> CARD | snd.oyster.gin -> ANY),
ANY = (rcv.oyster.fin -> OYSTER | rcv.card.fin -> CARD

| snd.card.gin -> ANY | snd.oyster.gin -> ANY).

const MAX_BAL = 5
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(a) Oyster card balance Moyster. (b) Credit card balance Mcard.

(c) Normative behavior model of the Oyster’s user.

Figure A.4: Models of the fare management of the Oyster transportation system.

OYSTER_BAL = OYSTER_BAL[MAX_BAL],
OYSTER_BAL[b:0..MAX_BAL] = (

when (b < MAX_BAL) rld.oyster[c:1..(MAX_BAL-b)] -> OYSTER_BAL[b+c]
|
when (b > 0) rcv.oyster.fin -> OYSTER_BAL[b-1]
|
when (b == 0) snd.oyster.gin -> no_oyster_bal -> OYSTER_BAL[b]
|
when (b > 0) snd.oyster.gin -> OYSTER_BAL[b]

).

CARD_BAL = CARD_BAL[MAX_BAL],
CARD_BAL[b:0..MAX_BAL] = (

when (b < MAX_BAL) rld.card[c:1..(MAX_BAL-b)] -> CARD_BAL[b+c]
|
when (b > 0) rcv.card.fin -> CARD_BAL[b-1]

).

Normative environment.

E = (snd.oyster -> rcv.oyster.gin -> E1 | snd.card -> rcv.card.gin -> E2),
E1 = (snd.oyster.gin -> E1 | rcv.oyster.fin -> E),
E2 = (snd.card.gin -> E2 | rcv.card.fin -> E).
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Deviated environment.
E = (snd.oyster -> rcv.oyster.gin -> E1 | snd.card -> rcv.card.gin -> E2),
E1 = (snd.oyster.gin -> E1 | rcv.oyster.fin -> E | fg -> E3),
E3 = (snd.card.gin -> E3 | rcv.card.fin -> E | rmb -> E1),
E2 = (snd.card.gin -> E2 | rcv.card.fin -> E | fg -> E4),
E4 = (snd.oyster.gin -> E4 | rcv.oyster.fin -> E | rmb -> E2).

Safety property in LTS.
P = (rcv.oyster.gin -> rcv.oyster.fin -> P

| rcv.card.gin -> rcv.card.fin -> P).

Weak safety property in FLTL.
fluent UseCard = <rcv.card.gin, rcv.card.fin>
fluent UseOyster = <rcv.oyster.gin, rcv.oyster.fin>
fluent CardOut = <rcv.card.fin, {snd.card, snd.oyster}>
fluent OysterOut = <rcv.oyster.fin, {snd.card, snd.oyster}>
fluent NoOysterBal = <no_oyster_bal, rld.oyster[1]>

assert NO_COLLISION = [](CardOut -> !UseOyster || NoOysterBal)
&& [](OysterOut -> !UseCard)

Strong safety property in FLTL.
fluent UseCard = <rcv.card.gin, rcv.card.fin>
fluent UseOyster = <rcv.oyster.gin, rcv.oyster.fin>
fluent CardOut = <rcv.card.fin, {snd.card, snd.oyster}>
fluent OysterOut = <rcv.oyster.fin, {snd.card, snd.oyster}>
fluent NoOysterBal = <no_oyster_bal, rld.oyster[1]>

assert NO_COLLISION = [](CardOut -> !UseOyster)
&& [](OysterOut -> !UseCard)

A.1.5 Infusion Pump

The following code snippets show the FSP specifications of the infusion pump:

Machine.
//======================
// Constants and Ranges
//======================

//
// States of the pump alarm
//
const AlarmSilenced = 0
const AlarmSounds = 1

range AlarmState = AlarmSilenced .. AlarmSounds

//
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// States of the pump settings
//
const ParamsNotSet = 2 // pump parameters not set yet
const ParamsSet = 3 // pump parameters already set

range ParamsStateT = ParamsNotSet .. ParamsSet

//
// Locked/unlocked states of a line with respect to a pump channel
//
const LineUnlocked = 4 // line not locked into a pump channel
const LineLocked = 5 // line locked into a pump channel

range LineLockStateT = LineUnlocked .. LineLocked

//
// Locked/unlocked states of the pump unit
//
const UnitUnlocked = 6 // the keypad of the pump is not locked
const UnitLocked = 7 // the keypad of the pump is locked

range UnitLockStateT = UnitUnlocked .. UnitLocked

//
// Plugged/unplugged states of the pump unit
//

const Unplugged = 8 //the pump is not plugged in
const Plugged = 9 //the pump is plugged in

range PluggedState = Unplugged .. Plugged

//
// Battery states of the pump unit
//

const BatteryCharge = 12 //the battery has charge
const BatteryLow = 11
const BatteryEmpty = 10 //battery has no charge

range BatteryState = BatteryEmpty .. BatteryCharge

//
// System State
//

const SystemOff = 13
const SystemOn = 14

range SystemState = SystemOff .. SystemOn

//=====================
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// Alarm Definitions
//=====================

ALARM = ALARM[AlarmSilenced],
ALARM[alarm_state:AlarmState] =
(

when (alarm_state == AlarmSounds)
alarm_rings -> ALARM[alarm_state]

|
when (alarm_state == AlarmSounds)

alarm_silence -> ALARM[AlarmSilenced]
|
enable_alarm -> ALARM[AlarmSounds]
|
power_failure -> ALARM

).

//=====================
// Process Definitions
//=====================

// Initial Pump State
PUMP_POWER = POWERED[Unplugged][BatteryEmpty],

// Pump has power but not on -- keep track of whether
// there is any battery and plug state
POWERED[plug_state:PluggedState][battery_state:BatteryState] =
(

when (plug_state == Unplugged)
plug_in -> POWERED[Plugged][battery_state]

|
when (plug_state == Plugged)

unplug -> POWERED[Unplugged][battery_state]
|
when (battery_state != BatteryEmpty)

turn_on -> POWER_ON[plug_state][battery_state]
|
when (plug_state == Plugged && battery_state != BatteryCharge)

battery_charge -> POWERED[plug_state][battery_state+1]
),

// Pump is on
POWER_ON[plug_state:PluggedState][battery_state:BatteryState] =
(

when (plug_state == Plugged)
unplug -> POWER_ON[Unplugged][battery_state]

|
when (plug_state == Unplugged)

plug_in -> POWER_ON[Plugged][battery_state]
|
turn_off -> POWERED[plug_state][battery_state]
|
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when (plug_state == Unplugged && battery_state == BatteryCharge)
battery_spent -> POWER_ON[plug_state][BatteryLow]

|
when (plug_state == Unplugged && battery_state == BatteryLow)

power_failure -> POWERED[Unplugged][BatteryEmpty]
|
when (plug_state == Plugged && battery_state != BatteryCharge)

battery_charge -> POWER_ON[plug_state][battery_state+1]
|
when (plug_state == Unplugged && battery_state == BatteryLow)

enable_alarm -> POWER_ON[plug_state][battery_state]
).

//
// Dispense complete
//

const Dispensing = 15
const DispenseDone = 16

range DispenseState = Dispensing .. DispenseDone

//=====================
// Process Definitions
//=====================
range NUM_LINE = 1..1

LINE = LINE[LineUnlocked],

LINE[lineLock:LineLockStateT] = (
turn_on -> LINESETUP[ParamsNotSet][lineLock]

),

//
// Setupmode for the line

LINESETUP[params:ParamsStateT][lineLock:LineLockStateT] =
(

turn_off -> LINE[lineLock]
|
power_failure -> LINE[lineLock]
|
when (params == ParamsNotSet && lineLock == LineUnlocked)

set_rate -> LINESETUP[ParamsSet][lineLock]
|
when (params == ParamsSet && lineLock == LineUnlocked)

clear_rate -> LINESETUP[ParamsNotSet][lineLock]
|
when (params == ParamsSet && lineLock == LineUnlocked)

lock_line -> LINESETUP[params][LineLocked]
|
when (lineLock == LineLocked)
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erase_and_unlock_line -> LINESETUP[params][LineUnlocked]
|
when (params == ParamsSet && lineLock == LineLocked)

confirm_settings -> LINEINFUSION[UnitUnlocked]
),

//
// Pump in infusion mode:
// - Always be able to turn the unit off, even if locked
// - Allow the user to lock/unlock the unit
// - Errors could occur with the pump (e.g., line became pinched or plugged)
//
LINEINFUSION[unitLock:UnitLockStateT] =
(

turn_off -> LINE[LineLocked]
|
power_failure -> LINE[LineLocked]
|
when (unitLock == UnitUnlocked)

change_settings -> LINESETUP[ParamsSet][LineLocked]
|
when (unitLock == UnitUnlocked)

lock_unit -> LINEINFUSION[UnitLocked]
|
when (unitLock == UnitLocked)

unlock_unit -> LINEINFUSION[UnitUnlocked]
|
when (unitLock == UnitLocked)

start_dispense -> DISPENSE[SystemOn][Dispensing]
),

DISPENSE[system_state:SystemState][dispense:DispenseState] =
(

dispense_main_med_flow -> DISPENSE[system_state][DispenseDone]
|
when (system_state == SystemOn && dispense == DispenseDone)

flow_complete -> unlock_unit -> LINESETUP[ParamsNotSet][LineLocked]
|
power_failure -> DISPENSE[SystemOff][Dispensing]
|
when (system_state == SystemOff)

turn_on -> LINESETUP[ParamsNotSet][LineLocked]
|
when (system_state == SystemOn)

turn_off -> LINE[LineLocked]
).

||LINES = (line[NUM_LINE]:LINE)/{
turn_on/line[NUM_LINE].turn_on,
turn_off/line[NUM_LINE].turn_off,
power_failure/line[NUM_LINE].power_failure}.
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||SYS = (PUMP_POWER || ALARM || LINES).

Normative environment.
range LINES = 1..1

//
// Set of actions that the user of the LTSA tool can control in an
// animation of this model.
//
menu UserControlMenu = {

alarm_silence,

line[LINES].change_settings,
line[LINES].clear_rate,
line[LINES].confirm_settings,
line[LINES].erase_and_unlock_line,
line[LINES].lock_line,
line[LINES].lock_unit,
line[LINES].set_rate,
line[LINES].unlock_unit,

plug_in,
turn_off,
turn_on,
unplug

}

ENV = (plug_in -> turn_on -> CHOOSE),
CHOOSE = (line[i:LINES].set_rate -> RUN[i] | turn_off -> unplug -> ENV),
RUN[i:LINES] = (

line[i].lock_line -> line[i].confirm_settings -> line[i].lock_unit ->
line[i].start_dispense -> line[i].unlock_unit ->
line[i].erase_and_unlock_line -> CHOOSE

)+{line[LINES].clear_rate, line[LINES].change_settings}.

Deviated environment.
range LINES = 1..1

//
// Set of actions that the user of the LTSA tool can control in
// an animation of this model.
//
menu UserControlMenu = {

alarm_silence,

line[LINES].change_settings,
line[LINES].clear_rate,
line[LINES].confirm_settings,
line[LINES].erase_and_unlock_line,
line[LINES].lock_line,
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line[LINES].lock_unit,
line[LINES].set_rate,
line[LINES].unlock_unit,

plug_in,
turn_off,
turn_on,
unplug

}

ENV = (
alarm_silence -> ENV |

line[LINES].change_settings -> ENV |
line[LINES].clear_rate -> ENV |
line[LINES].confirm_settings -> ENV |
line[LINES].erase_and_unlock_line -> ENV |
line[LINES].lock_line -> ENV |
line[LINES].lock_unit -> ENV |
line[LINES].set_rate -> ENV |
line[LINES].unlock_unit -> ENV |

plug_in -> ENV |
turn_off -> ENV |
turn_on -> ENV |
unplug -> ENV

)+{unplug}.

Safety property in LTS.
P = (line[1].set_rate -> RATE_SET | power_failure -> P),
RATE_SET = (line[1].set_rate -> RATE_SET | power_failure -> P

| line[1].dispense_main_med_flow -> DISPENSE),
DISPENSE = (line[1].dispense_main_med_flow -> DISPENSE | power_failure -> P

| line[1].flow_complete -> P).

Weak safety property in FLTL.
fluent Dispensing = <

line[1].dispense_main_med_flow,
{alarm_rings, alarm_silence, battery_charge, battery_spent, enable_alarm,
line[1].change_settings, line[1].clear_rate, line[1].confirm_settings,
line[1].erase_and_unlock_line, line[1].flow_complete, line[1].lock_line,
line[1].lock_unit, line[1].set_rate, line[1].start_dispense,
line[1].unlock_unit, plug_in, power_failure, turn_off, turn_on, unplug}

>
fluent PowerFailed = <power_failure, battery_charge>
fluent Plugged = <plug_in, unplug>

assert SAFE_DISPENSE = [](Dispensing -> Plugged || !PowerFailed)

Strong safety property in FLTL.
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Figure A.5: Architecture of Fortis.

fluent Dispensing = <
line[1].dispense_main_med_flow,
{alarm_rings, alarm_silence, battery_charge, battery_spent, enable_alarm,
line[1].change_settings, line[1].clear_rate, line[1].confirm_settings,
line[1].erase_and_unlock_line, line[1].flow_complete, line[1].lock_line,
line[1].lock_unit, line[1].set_rate, line[1].start_dispense,
line[1].unlock_unit, plug_in, power_failure, turn_off, turn_on, unplug}

>
fluent PowerFailed = <power_failure, battery_charge>
fluent Plugged = <plug_in, unplug>

assert SAFE_DISPENSE = [](Dispensing -> Plugged)

A.2 Usage of Fortis

Architecture. Figure A.5 describes the architecture of Fortis. Due to technical con-
straints, it employs a 3-tier architecture. The user accesses Fortis through a web-based
user interface. The web-interface then invokes the server through HTTP. Finally, the server
invokes the actual implementation of Fortis through Java RMI APIs. In addition, we use
socket to send back the logging messages from the core implementation to the server and
use web-socket to send back them to the web interface.

Features. Then, the following screenshots demonstrate the usage for the main features
of Fortis.
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Figure A.6: The sidebar for managing specifications of a problem.

Figure A.7: The steps for computing robustness with Fortis.
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Figure A.8: The steps for conducting robustification-by-control with Fortis.

Figure A.9: The steps for conducting specification-weakening with Fortis.
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