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Abstract
Machine learning (ML) models are now commonly used as components in

systems. Due to their black-box and data-driven nature, ML components can
produce erroneous outputs (in the form of mispredictions) that may critically
impact the system’s quality of service. Such mispredictions may be caused by
component changes, environment changes, or due to ML components’ inherent
uncertainty and inaccuracy. In the face of these changes, and to cope with mis-
predictions, self-adaptation arises as a natural solution: systems that monitor
and adapt themselves at run time to optimize their system utility.

This thesis provides a repertoire of ML adaptation tactics, and a framework
that generates policies specifying when to apply each tactic to adapt ML com-
ponents such that overall system utility is optimized. The development of this
framework raises two main challenges: (i) estimating the expected costs and
benefits due to the execution of an adaptation tactic; (ii) evaluating the impact
of the improved ML predictions on overall system utility. To address the first
problem we build predictors that learn to estimate the expected benefits of each
adaptation tactic. To solve the second problem we leverage probabilistic model
checking methods and instantiate a formal model of the system, capturing the
key dynamics of ML components and their impact on expected system utility.

The techniques proposed in this thesis are evaluated via two use-cases:
credit card fraud detection and machine translation systems. We show that:
the self-adaptive ML-based systems built leveraging the proposed framework
achieve better system utility than that achievable when employing simpler base-
lines to guide adaptation, such as periodic or reactive adaptation schemes; the
proposed framework is suitable for run-time adaptation in non-critical domains;
the framework can be extended to account for multiple adaptation tactics; and
that it can be leveraged to plan for the long term when to adapt ML models.
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Resumo
Atualmente, modelos de Aprendizagem Automática (AA) são amplamente

utilizados em diversos sistemas. Estes modelos são propícios a erros de previsão
devido à sua dependência dos dados e à sua natureza opaca. Estes erros podem
comprometer a qualidade do serviço oferecido e são causados, por exemplo, por
alterações no próprio componente de AA, nos pedidos recebidos, ou pela in-
certeza inerente ao próprio modelo de AA. Para lidar com estas alterações, e de
forma a prevenir erros, exploramos a ideia de sistemas de AA auto adaptáveis:
sistemas capazes de se auto monitorizar e auto adaptar durante a execução de
maneira a otimizar a qualidade de serviço que oferecem.

Nesta tese propomos um conjunto de táticas para adaptar componentes
de AA e uma abordagem para gerar políticas que determinam quando utilizar
cada tática para otimizar a qualidade de serviço. Há dois desafios principais,
nomeadamente: (i) estimar os custos e benefícios esperados devido à execução
de cada tática; (ii) avaliar o impacto esperado da adaptação na qualidade do
serviço. Para resolver o primeiro desafio, criamos modelos que estimam os
benefícios esperados associados à execução de cada tática. Para o segundo,
usamos métodos de análise formal, criando um modelo formal do sistema de
maneira a capturar as dinâmicas principais associadas ao componente de AA, à
influência que cada tática exerce sobre ele, e ao impacto esperado da adaptação
na qualidade do serviço.

Os métodos propostos são avaliados recorrendo a dois casos de estudo:
sistemas de deteção de fraude e de tradução automática. Mostramos que:
os métodos propostos permitem melhorar a qualidade de serviço, compara-
ndo com estratégias simples, como adaptações periódicas ou aleatórias; o
tempo necessário para decidir como e quando adaptar é propício a adaptar
sistemas não-críticos em tempo real; esta abordagem consegue analisar várias
táticas e planear como adaptar considerando horizontes de planeamento longos.
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Chapter 1

Introduction

Machine learning (ML) based systems, which are systems composed of both ML and
non-ML components, are pervasive nowadays [157]. Examples of ML based systems in-
clude robots [84], medical diagnosis systems [62], autonomous vehicles [18, 40], and fraud
detection systems [21, 64]. These systems’ ML components are inherently subject to make
mistakes – in the form of mispredictions – that may critically impact the quality of the
services they provide. For instance, machine translation systems, which rely on (large)
language models, can mistranslate sentences, for example because of misused punctuation
marks, or lack of pronouns [5]. Such mistranslations may have catastrophic impacts, e.g.,
in social or ethical contexts [89]: a Palestinian man was arrested by Israeli police due to a
mistranslation of a greeting in Arabic into hate speech in Hebrew [161].

Mispredictions may be due to an ML component’s intrinsic (in)accuracy (e.g., when a
linear model is used to predict the behavior of a component that has non-linear dynamics)
or caused by (i) changes to other system components or (ii) environment changes. First,
changes to any system component may ultimately impact an ML component. On the
one hand, the ML component may start receiving new or different inputs. For instance,
suppose a new sensor has been introduced in a system. The values measured by this
sensor may constitute a new input feature to the ML component, which may require an
update to ensure it can deal with the new feature. On the other hand, if downstream
components relative to the ML component influence the data that is later processed by
the ML component (e.g., via feedback loops within the system), then changes to these
downstream components may lead to ML mispredictions.

Second, ML components are usually built based on the assumption that the data seen
in their operational environment will be similar to the data that they were trained on.
However, when this assumption does not hold, or changes over time, and the underlying
environment under which the system operates is different than expected, the ML compo-
nent may mispredict. For example, consider the scenario in which a fraudster devises new
strategies to commit credit card fraud. The fraudulent transactions will thus be charac-
terized by a set of features (e.g., transaction amount, zip-code) that the ML component
cannot recognize as fraudulent. These phenomena are generally referred to as dataset
shift [149].
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In light of such changes, and as a means to cope with mispredictions, self-adaptation [52]
arises as a natural solution: systems that can continuously monitor and adapt themselves
such that their quality (often referred to as system utility) is optimized. Typical self-
adaptive systems rely on a control layer containing a planner that, based on a repertoire
of actions (termed tactics), dynamically computes an adaptation strategy (i.e., sequence
of adaptation actions) to execute such that system utility is optimized [68, 90]. Hence, by
rendering an ML-based system self-adaptive, it would be capable of detecting when ML
components are negatively impacting system utility, for example through mispredictions,
and of optimizing system utility through adaptation. Adaptation could be achieved by ex-
ecuting tactics such as model retrain or fine-tune, or by replacing the offending component
with another component (ML or non-ML) whose performance is sub-par but predictable
for the specific environmental context.

While the self-adaptive systems literature is extensive it has thus far typically targeted
adaptation of non-ML systems [26, 28, 52, 84], or leveraged ML as part (but not as the
target) of the adaptation process [72, 95, 156]. Our work takes a different approach by
instead considering ML components as the target of the adaptation. To extend existing
approaches to cope with adaptation of ML-based systems, the following challenges arise:

• Determining whether the ML component is mispredicting or will do so in the future;
• Understanding the adaptation space for ML-based systems, i.e., the repertoire of

tactics available for the system to adapt itself in response to ML mispredictions;
• Understanding the pre- and post-conditions for each adaptation tactic, including its

expected costs, benefits, and how these and their uncertainty impact systemic prop-
erties of the system (e.g., availability, adaptability, and scalability) and, ultimately,
system utility;

• Synthesizing adaptation strategies for long-term optimization, i.e., for the following
N time periods, such that expected system utility is optimal at the end of that
horizon and reasoning about the periodicity with which those strategies should be
reevaluated, i.e., how often the system should analyze the need for adaptation.

So far, researchers have been mostly concerned with the following problems: (i) under-
standing on which data ML components are more likely to mispredict [47]; (ii) demonstrat-
ing how improved ML components (i.e., retrained ML components [104] or ML components
with optimized hyper-parameters [114, 154, 155]) offer benefits at the ML component level,
such as increased model accuracy or lower training cost; and (iii) leveraging ML techniques
to enhance the adaptive capabilities of non-ML-based systems (e.g., leverage ML to improve
a planner’s capabilities and explore the space of adaptation tactics more efficiently) [72].
In contrast, this thesis focuses on the problem of determining when and how to adapt an
ML-based system in order to optimize system utility. To address this problem, we are
faced with a multitude of challenges associated with predicting the execution trade-offs
of ML adaptation tactics, which are dependent on a number of factors, including: (i)
cost [31, 154, 194], (ii) benefits [154], and (iii) opportunity [114, 115, 154, 155]. The prob-
lem of predicting the costs of executing an ML adaptation tactic has been addressed by
the literature for tactics such as hyper-parameter tuning [31, 155, 194] and transfer learn-
ing [85]. Additionally, the cost of more-complex ML adaptation tactics, such as unlearning,
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can be quantified via their execution latency [35], or via storage costs [20]. This thesis thus
focuses on the problem of estimating the benefits of adaptation.

Regarding predicting the benefits of executing a tactic, and for instance considering
the model retrain tactic, the benefits of its execution will be affected by: (i) the quality
and quantity of the data available for the retrain (e.g., how representative of the new
environment it is); (ii) the duration of the retrain process (e.g., longer retrains are more
costly but may offer better accuracy); (iii) the hyper-parameters of the ML component
and/or its architecture (both the hyper-parameters and/or the model’s architecture can
be updated as part of the retrain process or they may remain the same) [114, 154, 155].

Finally, in terms of opportunity, it is necessary to understand how the ML component’s
performance impacts system utility. Consider a system for which system utility is defined
in terms of the costs incurred (e.g., monetary penalties due to violations of system level
objectives) and the revenue obtained. For such a system, if revenue and cost are directly
affected by ML performance (e.g., the higher the accuracy of the ML component, the
higher the system’s revenue and the lower its costs), determining whether ML adaptation
is necessary and what its impact on system utility is only requires being able to estimate
the costs and benefits of the adaptation. However, when system utility is not directly
dependent on the ML component’s predictive performance, determining whether it should
be adapted requires a more complex system-level analysis, since an increase in accuracy
will not necessarily increase revenue or decrease costs. For example, when system utility
depends on how long the system takes to respond to user requests, if retraining does not
improve an ML component’s latency during inference (i.e., when the ML component is
used online to respond to a user request), then the tactic’s execution will not impact
system utility. Yet, if as part of the retrain process the ML component’s architecture or
hyper-parameters are modified, then the latency during inference might be reduced, thus
improving system utility.

Ideally, a self-adaptive ML-based system should be able to determine when to execute
an adaptation tactic or sequence of tactics such that system utility is improved. To build
such a system, it would be ideal to have access to a framework to guide this development
process. This framework would serve as a model for the implementation of self-adaptive
ML-based systems, and would be: formal – to enable precise and rigorous mathematical
formulations and analyses of the synthesized adaptation strategies; generic – such that
it can be applied to different system contexts (e.g., fraud detection, machine translation)
and types of ML components (e.g., classifiers, regressors); tractable – in the sense that it
is suitable for online adaptation of systems; extensible – as in being able to cater for the
addition of adaptation tactics to its reasoning process as such tactics become available.

1.1 Thesis Statement

In this dissertation, I demonstrate that system utility of ML-based systems can be improved
through adaptation of their ML components, by enabling self-adaptation of ML-based
systems, as expressed in the following thesis statement:
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We can engineer self-adaptive ML-based systems such that they are capable of optimizing
system utility in the presence of environment changes that lead ML components to
mispredict, by (a) reasoning about the tactics available to adapt ML components; and
(b) developing a formal, generic, tractable, and extensible framework to construct self-
adaptive ML-based systems that can plan for long-term adaptations.

As a starting point, this thesis begins by eliciting, from state-of-the-art research on
ML [29, 104, 154, 191], some of the main adaptation tactics available to adapt ML com-
ponents. The repertoire of ML adaptation tactics paves the way for the remainder of this
thesis, which focuses on the development of the framework to determine when to adapt
ML-based systems. The key idea of the proposed framework is to decouple the problems
of (i) estimating the expected ML predictive performance improvement due to adaptations
and (ii) estimating the impact of ML improved predictions on overall system utility. The
first problem is addressed by relying on predictors that learn to estimate the expected
benefits of each adaptation tactic. The second problem is tackled by leveraging model
checking methods that, given a formal model of the system and a system utility definition,
identify an expected optimal adaptation strategy. Despite the fact that model checkers
can intrinsically reason about long-term predictions, the challenge in planning for the long
term lies in incorporating the predictors to estimate the benefits of adaptation tactics into
the formal model of the system. Since existing model checkers are unable to query external,
more complex predictors (e.g., deep random forests) while model checking, the adaptation
benefits predictors need to be simple enough such that they can be integrated in the formal
model of the system in such a way that they still provide accurate estimates of the benefits.

The formality, generality, tractability, and extensibility of the framework developed
in this thesis are evaluated first by instantiating the framework for a credit-card fraud
detection system (a binary classification problem), and then by demonstrating its applica-
bility for a machine translation system (a sequence-to-sequence problem). The quality of
the adaptation strategies determined by the framework are evaluated by comparison with
the adaptation strategies determined by the following commonly used baselines: optimal
adaptation strategy, periodic system adaptation, reactive adaptation (adapt upon system
utility constraint violations), and random adaptation.

Regarding generality, this thesis shows how the framework can be leveraged to instan-
tiate an additional use case, beside fraud detection, namely ML-based machine translation
systems. While the fraud detection system relies on classifier ML components (i.e., their
output is restricted to a predefined set of discrete classes), the machine translation systems
need to solve a sequence-to-sequence task, which is inherently more complex. These two use
cases represent two distinct and prominent types of ML component, and highlight how the
framework can be specialized to better fit the unique characteristics of each. For instance,
while the fraud detection system has to comply with explicit service level agreement, the
machine translation system is instead concerned with maximizing translation quality.

Formality is achieved by leveraging probabilistic model checking methods to synthesize
(expected) optimal adaptation strategies. By relying on formal specifications, the frame-
work provides a separation of concerns, which contributes to the framework’s generality
and extensibility. Further, the rigorous mathematical formulations which underpin formal
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models allow for a stricter analysis of the problem at hand, the system requirements and
assumptions that are accounted for. This analysis is stricter in the sense that it is more
explainable – given that the modeling is governed by precise rules so there is no ambiguity
in what the model is specifying – and certain – in the sense that mathematics is an exact
science. This guarantees that interpretations regarding the model’s tasks and goals are not
subjective, thus making it viewer-independent and ensuring that all stakeholders agree on
what the model is implementing.

The framework’s tractability is evaluated by measuring the latency of the decision mak-
ing process. In online adaptation scenarios, there typically is a window of opportunity
during which the decision making process is allowed to run. This period varies depending
on the domain: for example, real-time safety-critical systems such as autonomous vehicles
require much faster decision making than movie recommender systems. This thesis shows
that the proposed framework is tractable for domains such as recommender systems, en-
terprise systems, and Internet of Things (IoT) systems, but not necessarily for real-time
safety-critical systems.

Finally, to extend a self-adaptive ML-based system and cater for additional tactics,
three main modifications are required: (i) the specification of a tactic-specific module in
the system’s formal model, (ii) the inclusion of an actuator in the system itself to carry
out the tactic’s execution, and (iii) the ability to predict the tactic’s costs and benefits.
Thus, the framework’s extensibility (i.e., how easily the framework allows for additional
adaptation tactics to be accounted for when deciding the optimal adaptation strategy) is
evaluated by: augmenting the set of tactics available for adaptation considered by the self-
adaptive credit card fraud detection system, and testing the machine translation system
with a tactic not applied to the fraud detection system.

1.2 Contributions

This thesis makes the following contributions:
1. Repertoire of ML Adaptation Tactics: A catalogue of existing tactics for adapt-

ing ML components together with guidelines on when they are likely to be of benefit
(Chapter 4);
The relevance of this contribution is reflected in the following publications:

Maria Casimiro, Paolo Romano, David Garlan, Gabriel A. Moreno, Eunsuk
Kang, and Mark Klein. “Self-Adaptation for Machine Learning Based Systems.”
In European Conference on Software Architecture (Companion). 2021.
Maria Casimiro, Paolo Romano, David Garlan, Gabriel A. Moreno, Eunsuk
Kang, and Mark Klein. “Self-adaptive machine learning systems: Research
challenges and opportunities.” In European Conference on Software Architecture,
pp. 133-155. Cham: Springer International Publishing, 2021.

2. Framework to Engineer Self-Adaptive ML-enabled Systems: A generic,
tractable, and extensible framework for adapting ML components of ML-based sys-
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tems (Chapter 5), evaluated on two use cases: fraud detection system (Section 6.2)
and machine translation system (Section 6.3);
The relevance of this contribution is reflected in the following publications:

Maria Casimiro, David Garlan, Javier Cámara, Luís Rodrigues, and Paolo Ro-
mano. “A probabilistic model checking approach to self-adapting machine learn-
ing systems.” In International Conference on Software Engineering and Formal
Methods, pp. 317-332. Cham: Springer International Publishing, 2021
Maria Casimiro, Paolo Romano, David Garlan, and Luís Rodrigues. “Towards
a framework for adapting machine learning components.” In 2022 IEEE In-
ternational Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), pp. 131-140. IEEE, 2022.
Maria Casimiro, Diogo Soares, David Garlan, Luís Rodrigues, and Paolo Ro-
mano. “Self-Adapting Machine Learning-based Systems via a Probabilistic
Model Checking Framework.” ACM Transactions on Autonomous and Adap-
tive Systems (2024).

And by the following manuscript under preparation for submission:
Maria Casimiro, Paolo Romano, José Souza, Amin M Khan, and David Garlan.
“FLEXICO: Sustainable Machine Translation via Self-Adaptation”, 2025

Artifacts:
The source code for the self-adaptive fraud detection system is publicly available, for
replication and re-use by the community, at the following GitHub repository:
https://github.com/cmu-able/ACSOS22-ML-Adaptation-Framework

3. Long-Term Planning of When to Adapt: An approach to enable the framework
to plan for the long term (Section 5.5.1), evaluated on the fraud detection system
use case.
The work associated with this contribution is currently under submission:

Maria Casimiro, Valentim Romão, David Garlan, Luís Rodrigues, and Paolo
Romano. “Ripple: A Long-Sighted Self-Adaptation Approach to Retrain
Machine-Learning-Enabled Systems”, ACM International Conference on the
Foundations of Software Engineering (FSE), 2025

1.3 Outline
The remainder of this document is organized as follows: Chapter 2 provides an overview
of relevant related work and background. It introduces self-adaptive systems, machine-
learning-based systems, and how ML has been recently leveraged in the field of self-adaptive
systems. Additionally, it introduces the concept of data shift and the most common types
of shift that typically affect ML components, possibly leading them to mispredict. Chap-
ter 3 overviews the proposed framework resorting to an illustrative example. Chapter 4
introduces the repertoire of ML adaptation tactics, along with guidelines of when to apply
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each tactic, their cost/benefits, and potential pros and cons. Chapter 5 presents the
framework proposed in this thesis, demonstrating how the framework can be leveraged
to perform long-term planning of when to adapt ML-enabled systems (Section 5.5). The
framework is evaluated in Chapter 6 based on the claims detailed in Section 6.1 and
via two distinct use-cases: fraud detection systems (Section 6.2) and machine translation
systems (Section 6.3). Finally, Chapter 7 provides a discussion on how to incentivize
and facilitate the wide-spread adoption of the proposed framework (Section 7.1), discusses
the limitations of the thesis (Section 7.2), overviews promising avenues for future work
(Section 7.3), and concludes this document (Section 7.4).
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Chapter 2

Background and Related Work

This chapter introduces the areas of the literature most relevant to this thesis. Specifically,
Section 2.1 introduces the concept of self-adaptive system (SAS) and provides background
on probabilistic model checking, a set of techniques typically employed in the self-adaptive
systems literature [26, 28, 98] to generate optimal adaptation strategies. Then, Section 2.2
introduces the notion of machine-learning enabled systems, describing their architecture,
goals, and current research challenges and directions. This section also describes common
issues that may affect the predictions of ML models, thus hindering overall system utility.
Finally, Section 2.3 describes the state-of-the-art regarding self-adaptation of ML systems,
highlighting efforts along the following key dimensions: monitoring and analysis for de-
tection of ML failures, planning of adaptation strategies to cope with ML failures, and
current research efforts towards understanding the repertoire of tactics applicable to ML
components, as well as how to estimate the costs and benefits of these tactics.

2.1 Self-Adaptive Systems
Self-adaptive systems (SASs) are systems capable of reacting to unpredictable changes in
the environment in which they are operating and of adjusting themselves to their new
environment [42, 52]. Adaptation can assume different forms, but the most common is re-
active adaptation [96]. This corresponds to settings in which there are constraint/threshold
violations that trigger adaption. Other types of adaptation correspond to proactive adap-
tation [125, 126] and homeostatic adaptation [70]. While the former triggers adaptation
whenever the system expects something bad will happen, the latter triggers adaptation
whenever system utility improvements from such adaptation are expected, to maintain
stability and functionality in changing environments.

To self-adapt, these systems usually rely on a framework known as the MAPE-K control
loop [90] that is divided into five components: Monitor, Analyze, Plan and Execute over a
knowledge base K, as shown in Figure 2.1. Each of these components performs a critical
task: Monitor is responsible for collecting relevant data from the managed system. One
way for the Monitor to collect this data is through the use of sensors. Analyze is in charge
of determining whether the system is behaving as desired or whether it needs to adapt to
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Figure 2.1: MAPE-K loop over an ML-enabled system.

improve its quality. Plan is responsible for determining what is the best course of action
for the system to improve its utility, i.e., its quality. To do this, Plan has a set of actions
that the system can enact to improve, and which are called tactics. Plan then reasons
about the costs and benefits of each tactic and chooses an optimal adaptation strategy
to execute. Execute is then in charge of carrying out the selected tactic and changing
the managed system. Knowledge reflects what is known about the environment as well as
about the managed system, i.e., what is monitored and actuated on. In practice, to build
SASs and to generate optimal adaptation strategies, a common approach extensively used
in the literature [26, 28, 98] is to use probabilistic model checking techniques.

Probabilistic model checking. Probabilistic model checking is a set of methods for
reasoning about and analyzing systems that exhibit probabilistic and uncertain behavior.
In order for probabilistic model checking tools to generate (optimal) adaptation strategies,
it is necessary to instantiate a formal model of the system under adaptation, and to spec-
ify an adaptation goal in the form of a property (written as a temporal logic formula),
which the model checker can verify. The result of the verification process is intrinsically
dependent on the property, which can be of different types. The following are examples of
types of properties that can be specified: verify whether some event occurs (e.g., whether
there are deadlocks in a model); compute probabilities (exact, maximum, and minimum)
of occurrence of an event (e.g., probability of message loss); estimate minimum/maximum
(i.e., optimal) rewards of paths of a model. These techniques are a natural fit for plan-
ning adaptations in self-adaptive systems since they support proactive adaptation schemes
such as look-ahead [125, 126]. This consists of having the model checker, via the formal
model of the system, simulate the possible future states of the environment and of the
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system to synthesize an adaptation strategy (sequence of adaptation tactics to execute)
that maximizes system utility in the long term.

To specify the properties that the model checker verifies for optimality, one may resort
to different logics, such as probabilistic computation tree logic (PCTL) [78], which is an
extension of computation tree logic (CTL) [48]. CTL formulas are used by model checkers
to verify system properties, typically expressed in terms of liveness and/or safety. PCTL
extends CTL allowing the definition of formulas that account for probabilities associated
with state transitions. By exploiting the fact that it is possible to associate rewards with
specific states or state transitions in the formal model, and by specifying reward-based
properties as a function of constraints of the system (e.g., system level objectives), the
model checker generates optimal strategies that are expected to lead the system to a state
that complies with the constraints.

This thesis leverages the PRISM model checker [99], which is a popular probabilistic
model checker [28, 98, 127]. We define the formal models as markov decision processs
(MDPs) [147], which model systems’ dynamics through a set of states with probabilistic
transitions and in discrete time-steps. More formally, a MDP is defined by a 4-tuple
(S,A, Pa, Ra), where S is the set of states, A is the set of actions, Pa is the probability
matrix that gives the probability of transitioning to state s′ from state s by executing
action a at time t. Ra is the reward associated with this transition. Typically, there
is a state in which the actions that the MDP can execute are the tactics available for
adaptation. These tactics all have the same probability of executing but will lead the
system to different states. It is the job of the model checker to test all possible paths,
and hence all adaptation tactics, when verifying a given property (for example maximizing
system utility). This entails that the model checker will output an execution trace that
specifies the sequence of adaptation tactics that verify the property. We can thus extract
the expected optimal adaptation tactic to execute from the sequence of adaptation tactics
output by the model checker.

2.2 Machine-Learning-Enabled Systems
As defined by Lewis et al., an ML-enabled system is a “software system that relies on one or
more ML software components to provide required capabilities” [105]. These systems lever-
age ML to adapt to changes, make predictions, or provide customized outcomes without
the need for hard-coded rules. Differently, the behavior of traditional software components
is explicitly defined via rules or algorithms. Thus, ML components are influenced both by
the data available for their training and by their environment of operation. In fact, the
environment has a significant impact in the ML component, as the ML model’s predictive
quality is influenced by the data it receives during inference (i.e., when it is queried in a
production environment).

Additionally, the methods employed by the framework to enable ML adaptation bor-
row ideas from lifelong learning (LL), also known as continual learning (CL) in the Deep
Learning community [109]. LL has been defined by Chen and Liu [41] as: “At any time
point, the learner has learned a sequence of N tasks, T1, T2, ..., TN . When faced with the
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(N+1)th task TN+1, the learner can leverage the knowledge in the knowledge base (KB) to
help learn TN+1. KB maintains and accumulates the knowledge learned from the previous
N tasks. Once TN+1 has been learned, KB is updated with the knowledge gathered during
the learning process.” For instance, open-world learning1 can be considered a form of life-
long learning. Ideally, in this setting, a learner would be able not only to learn continuously
while it is operating in the environment, such that it can improve its performance on the
tasks it has already learnt, but also recognize new tasks as they emerge and learn them.

Similarly, when leveraging the proposed framework to self-adapt ML-based systems,
they become capable of continuously learning and modifying themselves according with
the environment in which they are operating.

This section introduces and discusses environmental changes that lead ML models to
mispredict, as well as typical sources for these changes.

2.2.1 Causes of Machine Learning Component Misprediction
ML approaches rely on a dataset composed of multi-dimensional input data and, in the
case of (semi-)supervised models, labels. Since this dataset is used for training the ML
model, the environment from which these data points are collected is usually known as
the training environment. Then, once the ML model has been trained, it can be used
by the system to make predictions2 at run-time. This is typically considered the testing
environment3 as the model has never seen the current data points. We will use these
notions of training and testing environments throughout this section to introduce typical
causes of degradation of ML components.

It is generally assumed that the joint probability distribution P (y,x) of labels y and
multi-dimensional input data x (used to train the model) does not change between training
and testing environments. Yet, when this assumption does not hold, and hence the prior
distribution P (x), the posterior distribution P (y), or any of the conditional distributions
P (y|x) or P (x|y) changes, one may be in the presence of a problem commonly known as
dataset shift (also known as data shift) [65, 149, 201]. We discuss the differences between
these types of shift in more detail below.

Research efforts on detecting dataset shift [65, 135, 149, 150, 195, 201] are orthogonal
to the problem we aim to solve, which focuses on determining when to adapt an ML
component through the estimation of the costs and benefits of different ML adaptation
tactics. However, the techniques to detect the different types of shift proposed by these
works [65, 135, 142, 149, 150, 201] are valuable to our research as they can inform the
decision process carried out by our adaptation framework. Specifically, we can use the

1When the data with which the ML model is trained is not available all at once, prior to deployment, and
is instead made available continuously during run-time, online learning approaches are able to incorporate
this new data into the ML model.

2We consider a prediction to be the output of an ML model. For example, for classification tasks, ML
predictions are the probabilities of the input sample belonging to each possible class.

3This should not be confused with the testing environment in software engineering contexts: environ-
ment that replicates the production system and that is used to test the system before deploying it to
production.
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outputs of these methods, which monitor and detect changes in the ML components, as
inputs to our decision process. These might constitute valuable features for deciding when
to adapt an ML component since if these tools detect that the ML model’s behavior has
changed according to what they perceive to be “normal” behavior, then this might indicate
a change in the underlying environment that calls for adaptation.

The following sections describe the most common types of data shift, and introduce
typical sources of drift. These correspond to the typical causes of ML misprediction we are
targeting with the proposed framework for ML adaptation.

Types of Data Shifts

The literature on ML has investigated several types of dataset shifts that have different
characteristics. These different characteristics influence the impact that each type of shift
has on a system, and also how easy it is to deal with/detect the shift. Specifically, problems
such as anomaly detection, novelty detection, open set recognition, out of distribution
detection, and outlier detection [195] are specific instances of the most common types of
shift. We argue that the different types of shift described below are general enough to be
representative of most of the issues addressed by the existing ML literature.

Co-variate shift. When the distribution of the inputs to a model changes, such that it
becomes substantially different from the distribution on which the model was trained, we
find ourselves in the presence of a problem commonly known as co-variate shift. That is,
the distribution P (x) changes but the conditional distribution P (y|x) remains the same.
More formally, P (x)train 6= P (x)test and P (y|x)train = P (y|x)test [129]. This type of shift is
usually analyzed to evaluate how a model generalizes and how robust it is when the feature
space is altered at test time, i.e. while the system is executing.

Prior probability shift (label shift). Differently, when we are in the presence of prior
probability shift, also known as label shift, the distribution P (y) of the labels/outputs has
changed, i.e., in a classification task the class proportions differ between training and test.
More formally, P (y)train 6= P (y)test and P (x|y)train = P (x|y)test [129]. This can be seen
as the inverse of co-variate shift in the sense that the distribution of the labels changes,
while the conditional distribution of x given y remains unchanged. Dealing with this type
of shift is particularly challenging when the new distribution P (y)test is unknown.

Concept shift. Finally, concept shift corresponds to a change in the relationship be-
tween input and output distributions, although both distributions remains the same.
More formally, when this type of shift occurs, we can have P (y|x)train 6= P (y|x)test and
P (x)train = P (x)test or P (x|y)train 6= P (x|y)test and P (y)train = P (y)test [129].

Although these are the most common types of shift, it is also possible that other types
of shift occur, for instance when both the conditional distribution and the features/labels
distribution changes. Formally, this would correspond to P (y|x)train 6= P (y|x)test and
P (x)train 6= P (x)test or P (x|y)train 6= P (x|y)test and P (y)train 6= P (y)test [129]. These types
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of shift are typically less investigated in the literature since they are not so common in real
world applications and also because they are extremely difficult to detect and deal with.

Sources of Data Shift

During regular system operation, shift in the data can occur due to: the passing of time,
incorrect data or sample selection bias. Next, we provide details on these sources of shift.

Natural drift due to time. An effect of the natural passing of time is that people’s
tastes and behaviors change [19, 111]. For example, due to the passing of time a user may
become interested in books/shows/music they were not interested in before. A static ML
model, which is never adapted and does not account for these changes, will gradually start
producing worse predictions. In such a scenario, we will be in the presence of concept shift.

Incorrect data. This problem arises when there are samples in the model’s training set
that are incorrectly labeled [189] or when test data is tampered with, thus leading the
model to mispredict for inputs with specific characteristics. The former can happen for
instance when unsupervised techniques are used to label examples in order to bootstrap
the training set of a second supervised model [189]. Incorrect data can also make their way
into a model’s training set due to attackers that intentionally pollute it (e.g., by maliciously
altering some of the input features) so as to cause the ML component to incorrectly predict
outputs for certain inputs [74, 81]. Finally, noise and uncertainty, due to sensor errors or
due to errors from upstream components, may also change the input data to a ML model,
possibly causing label shift and mispredictions.

Sample selection bias. This occurs when selecting data points for a training set or
when performing data cleaning4. When selecting data points, there may be environmental
factors that cause some inputs or labels to be sampled more often. For example, when
selecting participants for a survey, steps must be taken to ensure that the population of
interest is accurately represented. Similarly, when performing data cleaning, for instance
for a digit recognition task, less clear digits may be thrown away. However, this may prevent
the model from learning that some digits are intrinsically harder to write than others [149].
During these, arguably critical, phases of model construction, sample selection bias will
cause the training distribution to follow a different distribution than the test distribution,
leading to data shift and to potential drops in ML predictive quality. Sample selection bias
leads to co-variate shift [149].

2.3 Self-Adaptive Systems and Machine-Learning
This section presents existing work on the areas of machine learning and self-adaptation.
We start by introducing works that call for the need to bridge the gap between these two

4In ML, data cleaning corresponds to the process of identifying and correcting errors in a dataset that
may negatively impact a predictive model.

14



areas of research (Section 2.3.1), for example by evaluating how the variations in the ac-
curacy of an ML model affect overall system utility [181]. Then, we introduce research
efforts tackling the problems of monitoring ML models, detecting shifts and mispredictions
(Section 2.3.2), followed by a discussion of works that test different ML adaptation tac-
tics, such as retrain, and hyper-parameter tuning (Section 2.3.3). Section 2.3.4 overviews
state-of-the-art approaches most closely related to our work. Finally, we conclude with a
discussion of recent efforts in the area of sustainability (Section 2.3.5).

2.3.1 Bridging the Gap Between Self-Adaptive Systems and ML
For the past decade, researchers on ML and SAS have been arguing for the need to bridge
the gap between these two research areas. For instance, Wagstaff [181] discusses how contri-
butions in the ML field should be evaluated differently, so that real impact in the world can
be measured. Specifically, they argue for the need to evaluate new approaches/algorithms
in their real target domain of application, accounting for domain specific characteristics,
and also that the evaluations should measure the approach’s/algorithm’s impact in terms
of metrics such as lives saved, money spent/saved. In fact, the work by Bernardi et al. [14]
is a great example of how system utility is affected by ML performance and how practi-
tioners in a real setting go about evaluating their ML models. This is aligned with our
definition of system utility and with our goal of adapting ML to optimize it.

Similar in spirit to Wagstaff, Bures argues for a new self-adaptation paradigm in which
self-adaptation and artificial intelligence (AI) benefit from and enable one-another [24].
This is aligned with the vision for continual AutoML [56], which advocates for archi-
tectures that can manage ML systems and adapt them in the face of adversities (e.g.,
uncertainty, dataset shift, outliers). Finally, on-the-job learning [109] is another paradigm
that is characterized by three main tasks, namely having an agent (e.g., ML-based system):
discovering new tasks, gathering new data, and incorporating that data into its knowledge
base and actions without interrupting the application.

Differently from ML research, which does not seem to be taking advantage of SAS
research, the latter has been steadily taking advantage of ML techniques to improve the
self-adaptation capabilities of systems [72, 84, 148, 156, 185, 186, 197]. Specifically, ML
has been used in the adaptation manager to improve the Analyze and Plan components
of the MAPE-K loop and to: update adaptation policies, predict resource usage, update
run-time models, reduce adaptation spaces, predict anomalies, and collect knowledge [72].
The field of AIOps can be seen as an application of self-adaptation principles to improve
systems in run-time, automating IT operations and systems [54]. These works demonstrate
the relevance of our work on self-adaptive ML, and the need to bring together the ML and
SAS research areas.

2.3.2 Monitoring Machine Learning Models
Regarding monitoring of ML models, below we overview related work along two key dimen-
sions: research efforts targeting the problem of detecting data drifts, which may lead to
ML mispredictions; and work that addresses the problem of performance estimation with
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unlabeled samples (i.e., computing the predictive performance of an ML model without
access to ground-truth labels).

Monitoring for drifts. Recently, a significant number of research efforts address the
challenge of monitoring ML models, to detect data drifts and ML mispredictions. For
instance, Zhou et al. [199] propose a framework to monitor ML models via data shift
detection for data streams by leveraging information theory approaches to compare the
distributions of key ML model features over weeks. Similarly, Pinto et al. [142] also propose
an information theory-based method to detect shift in data streams, showing that it can
accurately detect when an input signal has changed. In fact, detecting different types of
shift is an active area of research in the ML domain [150, 195]. For instance, Rabanser et
al. [150] evaluate the efficiency of different dimensionality reduction techniques along with
different techniques for statistical hypothesis testing to evaluate the best combination to
detect different types of data shift. These statistical and information theory based features
form an initial set of informative features that can be leveraged both to detect the need
for adaptation and to characterize the benefits of adaptation.

Recent work that also brings together ML and self-adaptation has: looked at moni-
toring deep neural networks (NNs) [192]; proposed a domain meta-model that instanti-
ates the components required for monitoring supervised ML models and drift [95]; pre-
sented a framework that enables the creation of behavior oracles for learning enabled sys-
tems (LESs)5, such that these oracles can then be used at runtime to predict an expected
behavior category (e.g., correct prediction, misprediction) for a LES [102]; proposed a
framework to monitor learning enabled components (LECs) of LES [103] by leveraging the
LES behavior oracles [102]. This monitoring process allows LESs to reason about whether
an LEC is expected to comply with the functional requirements. Ultimately, this allows
stakeholders to understand how the system is expected to perform under varying environ-
mental conditions. Recent work has also explored and proposed approaches to debug ML
models and characterize the type of data for which they are expected to mispredict [47].

These works can thus be leveraged to detect when ML models are mispredicting, or
are expected to mispredict in the near future, such that adaptation can be triggered. Our
work goes beyond detecting mispredictions given that we aim to reason on which adaptation
tactic to execute, and when, such that system utility is optimized.

Monitoring for real time predictive performance. Another relevant aspect of mon-
itoring ML models is being able to compute the ML model’s real time predictive perfor-
mance. This may not be as straightforward, particularly in contexts for which ground
truth labels may take a non-negligible time to become available. Without these labels, we
only have access to a set of unlabeled samples, model predictions, and delayed (outdated)
labeled samples, thus rendering it challenging to estimate a model’s predictive quality in
real-time. To address this challenge, the ML literature has proposed numerous approaches
to estimate the quality of models’ predictions [34, 67, 88]. Existing methods can be coarsely

5Learning enabled systems (LESs) rely on learning enabled components (LECs) to perform specific tasks
– e.g., an object detector trained by camera images. LESs can thus be seen as our ML-based systems.
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classified according to the type of ML models that they target (e.g., deep neural networks
vs generic ML predictors) and to their ability to estimate aggregate quality on an entire
(unlabeled) test set [76] vs identify misclassified test inputs [67].

These approaches typically leverage the probability distribution that a model outputs6

to gain insights into the level of uncertainty associated with each prediction. This un-
certainty thus constitutes a meaningful proxy to estimate model performance/error. For
instance, the approach by Jiang et al. [88] targets deep neural networks and estimates the
error on unlabeled test sets by measuring the disagreement rate of instances of the same
network trained with a different run of Stochastic Gradient Descent (SGD). Another ap-
proach is to develop self-trained ensembles of deep networks that predict which inputs will
be misclassified by the classifier based on (known) errors in the training dataset [34]. Other
works, like average thresholded confidence (ATC) [67], take a model-agnostic approach and
can estimate the correctness of individual model predictions — and then use the point-wise
predicted labels to compute aggregate estimates of a model’s predictive quality (e.g., class
error rate) as well as of ground truth class probabilities.

By leveraging such techniques the framework proposed in this thesis can be applied to
a wide range of domains without requiring assumptions on ground truth label availability,
increasing its applicability and generalizability. In fact, Section 5.4 presents an extension
of ATC [67], called CB-ATC, which is integrated in the framework and evaluated, along
with ATC, in Section 6.2.2. Yet, the framework’s accuracy is ultimately dependent on the
accuracy of both (i) the predictors for estimating the benefits of executing each adaptation
tactic and (ii) the approaches employed to estimate the current quality of the ML model.

2.3.3 Machine Learning Adaptation Tactics
The ML literature offers a plethora of work presenting approaches that can be regarded as
ML adaptation tactics. Specifically, there have been works studying the effect of hyper-
parameter tuning on ML models and trying to estimate whether specific models in a given
system should be tuned given the expected benefits of doing so [114, 115, 154, 155, 176].
However, these works do not look into the problem of continuous adaptation, and are
instead concerned only with determining whether a single, initial execution of hyper-
parameter tuning is worthy given the expected improvement in ML accuracy. These
approaches rely on classifiers that output a binary decision: perform or do not perform
hyper-parameter tuning. However, to determine whether tuning is worthy, it is necessary
to evaluate its impacts on overall system metrics, such as duration of the whole process.
Some of these works discuss these trade-offs but do not decide to tune or not tune the
models based on a general notion of system utility.

Research on ML has also proposed approaches to retrain7 ML models [191] and research
on SASs has also investigated the impact of retraining and incrementally training ML

6The model predicts a probability of each class being the correct class for the sample.
7Different flavors of ML model retrain can be considered, ranging from simply training the model from

scratch with new data (this is what we typically consider as model retrain throughout this document), or
more complex approaches that account for model architecture and hyper-parameter updates. All these
variants yield different benefits to the system and have different costs.
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models on training accuracy and training time [36]. This type of study has also been
performed for the specific case of fraud detection systems [12, 104]. Finally, work on
transfer learning [85, 137, 184] and machine unlearning [20, 29, 35] can also be leveraged
as adaptation tactics for ML models.

However, differently from the work on hyper-parameter tuning and as far as we know,
there are no approaches to estimate the benefits of tactics such as retraining, incremental
learning, transfer learning, unlearning, or replacing the ML component by a non-ML com-
ponent (e.g., rule-based model, geometric-based model for object detection). Indeed, to
enable self-adaptation of ML models it is crucial to develop ways to estimate the benefits
of the different tactics. In this work, we take a first step in this direction by estimating
the benefits of retraining ML models.

2.3.4 Self-Adaptive Machine Learning
In the domain of self-adaptive systems, pioneering work by Chen explored the impact of
retraining and incrementally training ML models via an empirical study, testing: methods
under distinct domains, key performance indicators, and ML algorithms [36]. A particular
relevant finding was that no method (retrain vs incremental train) was strictly better than
the other. This highlights the need for the work developed in this thesis, in particular the
need for approaches capable of estimating the benefits of different ML adaptation tactics.

Chen also presented a framework, LiDOS, for performing lifelong planning [37]. The
base idea of this work is that the adaptation manager is continuously generating new
adaptation plans that are tested on a twin of the real system. This twin is assumed to
be an exact replica of the real system operating in the production environment, that is
subject to the same (real) operational environment. Whenever there is an environmental
change, the twin is notified and re-configures itself. By comparing the configurations of
both the real and twin systems, it is possible to tell which configuration is most suitable
for the current operational environment. The twin will keep re-configuring itself until a
pre-defined number of alternative configurations has been tested. When this threshold
is reached, the real system will be re-configured with the best configuration found. This
approach seems to be applicable to ML-based systems despite only being evaluated with
non-ML-based systems. Yet, having a replica of the deployed system and continuously
testing different adaptation options before actually adapting the real system introduces
costs and overheads, both computational and monetary, that may simply be too large to be
acceptable in realistic settings. Should the cost be bearable in practice, this approach could
provide benefits since the outcomes of the adaptation will be fully known (no uncertainty),
thus leading to optimal adaptation decisions.

A similar research effort by Gheibi et al. [71] proposed a lifelong-learning architecture
for SASs whose managing component relies on ML. The overall idea is to have a lifelong
learning loop act as a meta-manager of the managing component. The meta-manager
monitors and updates the ML component of the self-adaptation manager, preparing it to
cope with concept shift. Throughout the lifelong learning loop, the ML components of
the self-adaptation manager are updated whenever a new task is discovered. This work
focuses on how to learn new tasks efficiently, by leveraging knowledge of previously learnt
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tasks. Differently, we focus on the problem of learning when to adapt an ML model
trained for a given task, that may be negatively impacting system utility due to data-shift.
Theoretically, the framework proposed in this thesis could be leveraged to improve the
lifelong-learning architecture of Gheibi et al. [71], thus only updating the self-adaptation
manager’s ML components when our framework deemed it beneficial.

More recently, researchers have proposed approaches that deal with adapting ML
components of ML-enabled systems via model switching [97, 116], and explored how
large language models can be incorporated into the adaptation loop, re-imagining self-
adaptation [58]. However, most relevant to the work developed in this thesis are the works
of Kulkarni et al. [97] and Marda et al. [116] that propose and instantiate, respectively,
AdaMLS, an ML load balancer that dynamically switches the ML model being utilized,
as a way to maximize system utility. Specifically, they assume the existence of a pool of
ML models that have been analyzed offline, such that they can be grouped into clusters of
similar performance. Then, whenever the monitored key performance indicators decrease
below the desired values, the analyzer and plan stages search in the repository for new ML
models that can bring the key performance indicators back to the desired levels. These
works represent a step towards engineering self-adaptive ML enabled systems and consti-
tute evidence of the success of ML adaptation. The work of this thesis complements these
works by engineering self-adaptive ML-enabled systems for other domains and applications
(fraud detection and machine translation), with different adaptation tactics (model retrain
and model fine-tune). More importantly, this thesis proposes a generic and extensible
framework that enables the creation of self-adaptive ML-enabled systems.

2.3.5 Sustainable Machine Learning

With the increased application and usage of ML-enabled systems, and especially since the
advent of generative AI, we have seen a growing concern regarding the sustainability of AI
approaches. Thus, research on sustainable AI has gained traction recently, highlighting the
role that ML plays in global warming and calling for more accountability and transparency
in reporting the environmental costs of model training [7, 13, 79, 86, 100, 165, 170, 179,
180]. Towards this end, research has focused on: understanding how to decrease AI’s
footprint by increasing its efficiency [180], studying the energy consumption associated
with training/fine-tuning ML models [13, 165, 180], creating tools for self-reporting and
evaluating the energy consumption and carbon emissions of training ML models [7, 79, 100]
researching green AI adaptation tactics [86], creating systems that account for the trade-
offs in ML model energy consumption when selecting which ML model to use [170], and
adapting MLOps pipelines [15] with the goal of increasing their sustainability.

The work developed in this thesis complements these efforts since the proposed adap-
tation framework aims to prevent unnecessary adaptations of ML models via, for instance,
model retrain or fine-tune by trading off the expected benefits of ML adaptation with its
costs. Furthermore, we believe the proposed framework can be complemented by these
works since it can be extended not only to leverage such green AI adaptation tactics [86]
but also to consider sustainability-oriented system utility definitions [170].
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2.4 Summary
This chapter presented related work along two main research areas, namely self-adaptive
system (SAS) and machine learning (ML)-based systems. Specifically, we introduced the
concept of SAS and probabilistic model checking, a technique commonly employed in
state-of-the-art SAS systems to generate optimal adaptation plans. We then presented
ML-enabled systems, discussing typical causes of ML misprediction, the most common
types of data-shift, and providing examples of typical sources of data-shift.

We also overviewed existing work that calls for the need to bridge the gap between
self-adaptive systems and ML such that both research areas benefit and leverage one an-
other, provided background on existing efforts to monitor ML models and to improve them.
These two research areas are valuable for the work done in this thesis as the techniques
proposed can be employed to improve the adaptation loop by enabling more timely adap-
tations. Then, we discussed existing work that bridges the gap between SAS and ML.
This discussion highlighted a gap in the literature: currently there is no work that ana-
lyzes the benefits and costs of ML adaptation tactics to decide whether adaptation of ML
components is worth it. This literature gap, along with increasing concern regarding ML
sustainability, inspired this thesis work.

The following chapter overviews the proposed framework for engineering self-adaptive
ML-based systems, highlighting how it enables ML adaptation, leading to an optimization
of system utility, and how it decides when and how to adapt the ML component.
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Chapter 3

An Overview of Self-Adaptation for
ML-based Systems

This thesis leverages formal methods to instantiate the problem of reasoning about the
need for adaptation at a general architectural level. This section provides an overview of
the framework proposed in this thesis (Chapter 5) to decide when and how to adapt ML
components of ML-enabled systems. Specifically, the framework leverages (i) probabilistic
model checking methods to generate optimal adaptation strategies and (ii) predictors to
estimate the expected benefits of executing each tactic available to adapt the ML compo-
nent. We start by introducing a simple use case to demonstrate the intended functionality
of the framework, and then describe the modules that are instantiated in the formal model
required by the model checker.

Running Example. Consider a system that receives jobs and has to select a platform
for them to execute. As it is often the case in practice, we assume that the execution time
of a job on a given platform depends on the job’s characteristics, i.e., it may execute faster
on a platform than on another [6, 31]. Each time a job completes, the system receives a
fixed reward. As such, in a given period, the system will strive to complete as many jobs
as possible by selecting the platform that can execute each incoming job in the shortest
amount of time, so as to accrue the maximum benefits possible. For example, the system
could receive different data analytic jobs with diverse characteristics (e.g. neural network
(NN) training, data stream processing) [6, 31]. The distribution of jobs in the environment
thus has an intrinsic uncertainty that the ML scheduler needs to navigate.

The system then relies on an ML component to decide the best platform for a specific
job to execute in. For instance, the training of a neural network can be offloaded to GPUs
or CPUs. While both platforms allow the system to complete its task (i.e., execute the job)
one platform may be more efficient (lower latency) than the other, thus allowing the system
to complete more jobs in a given horizon. We are interested in scenarios in which the type
of job generated by the environment is altered, for example due to dataset shift [149], thus
leading the ML model to offer worse predictive quality [94].
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Figure 3.1: Self-adaptive scheduler system. Different job types are represented by the black
and gray messages/envelopes.

Machine Learning Adaptation. To equip the system with adaptation capabilities, so
that it can deal with environment changes and accuracy fluctuations of the ML model,
for instance due to unknown jobs (e.g., unseen neural network topology), we consider that
each time a new job arrives, the adaptation manager can decide between simply querying
the current ML model (i.e., no adaptation – tactic nop) or adapting it (e.g., via tactic
retrain) to increase its predictive quality and maximize the likelihood of executing the job
in the preferred platform. Figure 3.1 provides a visual representation of the self-adaptive
scheduler system. The retrain tactic is one example of ML adaptation tactics that can be
considered (Section 4.1 presents a repertoire of tactics for ML adaptation) and consists
of incorporating additional training data in a new version of the model [190]. However,
the execution of this tactic has non-negligible latency (its effects in the system are not
immediate), and it has a monetary cost (e.g., if retrain is performed in the cloud) [6, 31].
As such, for this use-case, we consider system utility as the sum of the benefits of completing
jobs minus the cost of executing a tactic (tactic nop has no cost).

Formally Modeling the ML-based system
To decide how to adapt the ML model, the proposed framework leverages probabilistic
model checking methods to decide which adaptation tactic will optimize system utility the
most. By employing probabilistic model checking methods, we can not only account for
the intrinsic uncertainties in the system’s environment of operation, and in the prediction
of the expected benefits of each adaptation tactic, but also reason at a general architectural
level about the expected impact of ML predictions on overall system utility.

However, the model checker needs a formal model of the system being verified, so we
first need to create its formal model. Then, we need a logic property that encodes the
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goal of the system, i.e., its system utility definition. The model checker then verifies which
execution paths lead the system to optimize the property (i.e., system utility). This process
will ultimately lead to finding the adaptation tactic that optimizes system utility.

Creating the formal model requires thinking about the properties of the system that
impact system utility. For instance, the jobs that are generated by the environment and
are sent to the system will influence system utility. Thus, this has to be modeled. Similarly,
since the framework adapts ML components, and that the predictive quality of the ML
model influences the platform where the jobs are executed, this will also have to be modeled.
Finally, the job execution also needs to be modeled because we need to simulate that a job
has finished executing to collect the benefits of its execution. Below, we briefly describe
how we model each of these components.

Environment. We model the environment as generating two types of job (J1 and J2)
according to probability pJob1 (or pJob2=1-pJob1). Although it could be trivially extended
to generate more job types, having only two is enough for the purpose of illustrating
reasoning about whether to adapt the ML component.

Adaptation manager. The adaptation manager (i.e., the managing system, cf. Sec-
tion 2.1) is responsible for triggering adaptations. In this simple running example, two
tactics are available: nop (no operation) and retrain. When the system receives a new job
generated by the environment, the pre-condition for the tactics’ execution becomes true.
At this point, the model checker, when asked to synthesize optimal adaptation strategies,
decides between retrain and nop and triggers the corresponding tactic in the ML com-
ponent. The latency of the retrain tactic is accounted for by the ML component during
tactic execution. The tactic’s cost is subtracted from the system’s rewards when the job
completes its execution.

Non-Machine-Learning component. A non-ML component is responsible for simu-
lating the execution of the jobs. When the environment generates a new job, and after
the adaptation manager has selected the adaptation tactic to execute and adaptation has
taken place, the executor will deploy the job on the selected platform. To simulate the job’s
execution, the non-ML component which has two platforms at its disposal (GPU or CPU),
needs to know the latency of the job. As there is intrinsic uncertainty in determining job
execution latency, we assume the existence of historical data which can be used to con-
struct distributions of possible execution latencies. These distributions can be discretized
(as shown in Table 3.1) and encoded in PRISM so that model checking is tractable and
this uncertainty is explicitly modeled. Whenever a job completes, the utility of the system
is updated by adding the job completion reward and subtracting the tactic execution cost.

Machine Learning component. In this use case, since there are two possible execution
platforms and two input job types, we represent the predictive quality of the ML model
via two binary confusion matrices: one for each type of job. Additionally, to account for
the new data that the ML model is continuously gathering (e.g., after a job completes,
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Table 3.1: Discretized distribution of job latency for each job type, in each platform, and
corresponding likelihood. Each cell in each matrix has the probability of the corresponding
PRISM transition. That is, in Table 3.1a with probability 18% the predicted latency for
a job is 3 on platform 1 (P1) and 8 on platform 2 (P2). If, for this situation, the ML
component is very accurate, it will select platform 1 to deploy the job, since P1 has the
lowest latency. Note that the ML model has different predictive quality for each job type.

(a) Job latency depends on the platform
in which it is executed. Thus, in this case,
ML accuracy has an impact on system
utility.

P1
P2 lat. 6 8 10

lat. prob. 20% 30% 50%
3 60% 12% 18% 30%

5 30% 6% 9% 15%

7 10% 2% 3% 5%

(b) The diagonal accounts for more than half of the
probability, thus a job’s latency will likely be the same
regardless of the execution platform. Hence, ML ac-
curacy should have little impact on system utility.

P1
P2 lat. 3 5 7

lat. prob. 15% 70% 15%
3 15% 2.25% 10.5% 2.25%

5 70% 10.50% 49.0% 10.50%

7 15% 2.25% 10.5% 2.25%

the ML model has an extra sample from which it can learn), we count the inputs of each
job type that are received and use this count as a proxy for the amount of information
encoded in these new inputs. This count is increased whenever a new job arrives and reset
whenever the retrain tactic is executed. This information then contributes to the impact
of the retrain adaptation tactic on the ML component.

Specifically, we consider a simple model that aims to capture the changes to the con-
fusion matrix upon the execution of a retrain tactic. The intuition behind this model
is that the larger the number of new samples seen since the last training (i.e., new
data), the larger should be the expected reduction in the misclassification rate. The
confusion matrix should be updated as follows. The diagonal is incremented by a fac-
tor δ = (100− cellii) ∗ new_data ∗ impact_factor that is proportional to the model’s loss
and to the amount of new data (e.g., number of new samples). The impact_factor adds
flexibility to the update model to account for different types of retrain (e.g., when the
hyper-parameters of the model are also updated, the benefits may be higher). The remain-
ing cells in the same row should then be updated as cellij = cellij − δcellij/(1− cellii). The
non-diagonal cells (which correspond to scenarios of mispredictions of the ML component)
are thus reduced proportionally to δ while ensuring that no cell gets a value lower than
0, and that the total reduction on non-diagonal cells is equal to δ. Table 3.2 provides an
example of a confusion matrix being updated.

Optimizing system utility. Since the system receives a fixed reward whenever it com-
pletes a job, its goal is to maximize the number of jobs completed in a given time period,
while simultaneously minimizing the costs spent on retraining. This requires seeking an
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Table 3.2: Visualization of an update to a confusion matrix (CM). We assume new_data =
6 and impactFactor= 0.1 which yields δ = (100− 95)× 6× 0.1 = 3. P1 and P2 stand for
Platform 1 and Platform 2, respectively.

Pred.
Real P1 P2

P1 95 5

P2 5 95
(a) Initial CM.

P
R P1 P2

P1 95 + 3 5 - 3×5
(100−95)

P2 5 - 3×5
(100−95)

95 + 3
(b) CM update.

P
R P1 P2

P1 98 2

P2 2 98
(c) Final CM.
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Figure 3.2: Utility gains achievable due to ML adaptation when the system operates in an
execution context in which ML accuracy impacts system utility.

adequate trade-off between investing time and resources to retrain the model and reasoning
about the expected impact of the current accuracy on system utility. To do so, we encode
in the model checker a logic property that ensures that system utility is maximized (in
expectation) when the state “end” is reached, i.e., when the time period expires.

Below we analyze the system utility improvements obtained with the proposed framework
via two research questions:
RQ1. What are the estimated utility gains achievable through ML adaptation?
RQ2. Under what conditions does the framework determine that ML adaptation improves
overall system utility?

Experimental settings. For the experiments we vary the: (i) retrain cost; (ii) retrain
latency (1, 5, 10); and (iii) the probability (from 0 to 1 with 0.1 increments) of the environ-
ment generating each job type. Our goal is to model how the system reacts to environment
changes, so we assume that the ML model has better predictive quality for one type of job
than for the other: 95% accuracy for type 1 jobs and 50% accuracy for type 2 jobs (these
are symmetric confusion matrices). Thus, when the environment generated jobs change,
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Figure 3.3: Areas of the space in which ML adaptation improves overall system utility.
Black squares correspond to configurations in which it is worth adapting. White squares
correspond to configurations in which having the option to adapt does not improve utility.
The top row corresponds to the execution context of Table 3.1a and the bottom row to
the execution context of Table 3.1b.

the system is affected. The impact factor is set to 0.1 for both job types. Job latency and
uncertainty in each platform are set according to Table 3.1.

Results. Figure 3.2 shows the utility gains achievable due to ML adaptation, for an
execution context in which ML accuracy affects system utility. Each sub-plot considers
a different latency for executing the retrain tactic. The results show that for the retrain
latency values considered, there are always system utility gains to be accrued due to ML
adaptation. Next, we show how the framework can distinguish when to execute each
adaptation tactic, seeing as determining when to adapt is a critical aspect of the framework.

The plots in Figure 3.3 consider different execution contexts and retrain latency, and
show the conditions under which ML adaptation improves overall system utility. We now
focus on Figure 3.3a and analyze the impact of the retrain cost and job probability variables.
As expected, when retrain cost is low, the framework determines that adaptation is always
worth it. Yet, as the cost increases, if the environment is more likely to generate jobs of
type 1, retrain is no longer the optimal action. This is due to the fact that the ML model
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has a good predictive quality for jobs of type 1. Thus, retrain costs outweigh the benefits.
Differently, when the environment generates more jobs of type 2 (prob. Job 1 < 50%),
the tolerated cost of the model retrain increases. As tactic latency increases (Figures 3.3b
and 3.3c), we see that model retrain is worth it only for lower adaptation costs.

The difference between the figures in the top row (Figures 3.3a, 3.3b,3.3c) and the
figures in the bottom row (Figures 3.3d, 3.3e,3.3f) is the execution context of the system,
that is, the latencies of the jobs in each platform and their probabilities (which are set
according to Table 3.1). For the bottom row it is more likely that a job has the same
latency regardless of the platform (Table 3.1b). In such a situation, having an inaccurate
ML model has little impact on system utility. The comparison between top and bottom
rows demonstrates this effect: for the bottom row plots, adaptation pays off only in very
few scenarios and only when tactic cost is low. In fact, we see that when latency is high
(Figure 3.3f), the cost of retrain has to be close to zero for adaptation to provide benefits.

Overall, these results confirm that ML adaptation improves overall system utility (RQ1)
and that the proposed framework distinguishes when and how to adapt the ML model,
trading-off the expected costs and benefits of each adaptation tactic (RQ2).

3.1 Summary
This chapter provided an overview of our approach to self-adaptation for ML-based sys-
tems, along with preliminary evidence showcasing the benefits in terms of system utility
that may be expected by leveraging informed adaptation strategies.

Although the simple running example considered in this chapter used a simplistic linear
model to predict the effects of retrain, which ignores the characteristics of the data available
to execute each tactic and only looks at how much new data is available for retrain,
Chapter 5 will present more complex predictors which are later evaluated in Chapter 6.

However, before delving into complex predictors, we focus on a key building block
for enabling self-adaptation of ML-based systems: how to adapt. Thus, the following
chapter presents: (i) a non-exhaustive repertoire of adaptation tactics for ML models;
(ii) a description of each tactic along with examples of when each can be applied and
a brief discussion of their advantages and disadvantages; and (iii) a discussion of the
research challenges and opportunities that arise in each of the MAPE-K loop stages when
engineering self-adaptive ML-enabled systems.
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Chapter 4

Self-Adaptation for Machine
Learning-based Systems

In recent years, machine-learning-based systems (MLSs) have become ubiquitous in do-
mains such as enterprise and cyber-physical systems. MLSs are composed of one or more
machine-learning components (MLCs) whose behavior is derived from training data [103].
MLCs are then embedded into a larger system containing traditional computational en-
tities such as web services, databases, and operator interfaces. Examples include: fraud
detection, which uses a classifier to detect fraudulent transactions [21]; medical diagno-
sis, which relies on ML for classifying types of diseases of patients [62]; self-driving cars,
which use ML to determine whether they should brake to avoid collision with moving ob-
jects (e.g., cars, pedestrians) [10, 113]; robots, which rely on ML models to predict the
amount of remaining battery power [84]; targeted advertisement services, which rely on
recommender systems to show users items that they may find interesting [43]; and smart
homes/buildings, that rely on MLCs for tasks such as face and voice recognition [77, 166]
or occupancy prediction for proactive heating/cooling [63, 82].

Despite their widespread use, and similarly to non-ML components, MLCs can fail to
perform as expected [47, 103, 193], thus reducing system utility. For example, changes in
a system’s operating environment can introduce drifts in the input data of the MLCs, or
attacks may attempt to subvert the intended functionality of the MLC [74].

While the literature offers no immediate solution to guarantee the behavior of MLCs
under changing environments [103], the large body of works on self-adaptive systems (SASs)
has already investigated a number of methods to tackle analogous problems for non-ML
enabled systems. The work developed in this thesis aims to bridge this gap by using self-
adaptation to deal with environment changes and faults in the context of Machine-Learning
Enabled Systems and machine-learning components.

In fact, there is a large number of emerging techniques that have been developed by
the ML community for improving and correcting supervised ML models and that could
be used as adaptation tactics in a SAS. These range from off-line, full model retraining
and replacement, at one extreme, to incremental approaches performed in-situ, at the
other [29, 81, 122, 142, 150, 190].
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Unfortunately, determining when and how to take advantage of such tactics to perform
adaptation is not trivial. First, there is a myriad of possible adaptation tactics that could
potentially be applied to an ML component, but not all approaches work with all forms
of ML models. For example, when a new family is moving into a new smart home, all
the MLCs used by the smart home system should be fine-tuned to work as expected for
that family [19]. Transfer learning [136] could be leveraged in this setting to speed up the
process of fine-tuning these models. Yet, this tactic would yield the expected benefits only
if the families are similar [130].

Second, the value of investing in improving the accuracy of a ML component is strongly
context-dependent –– often depending both on domain and timing considerations. For
example, while a medical diagnosis system may support model retraining at run time, the
latency of this tactic may make it infeasible for self-driving cars, which might rely instead on
swifter tactics (such as replacing the ML component entirely) to match real-time response
requirements. In a different mode of operation, however, both types of tactics may be
available, e.g., if the self-driving car is stopped (parked mode of operation), it may be
feasible to retrain an under-performing model without compromising safety.

Third, calculating the costs and benefits of these tactics is difficult, particularly in a
whole-system context, where improving a specific component’s performance may or may
not improve overall system utility. Costs include time, resources (processing, memory,
power), and service disruption. Benefits derive for instance from increased accuracy or
fairness of the ML component, which can in turn lead to better performing down-stream
components and support overall business goals (e.g., by improving advertisement revenue).
Yet, both costs [31, 118] and benefits [36] can be hard to quantify, thus making it challenging
to reason about whether executing an ML adaptation tactic will improve system utility.

We argue that to harness the potential of the rich space of ML adaptation mechanisms,
it is necessary to: i) investigate what tactics are available to adapt MLCs and ii) develop
methods to: i) identify which tactics, among the ones available to adapt a MLC, are the
most effective in a given context to maximize system utility, and ii) integrate them into
modern self-adaptive systems architectures. Note that the repertoire of ML adaptation
tactics grows as new ML methods are developed and ML models can be modified and im-
proved with alternative approaches and targeting different quality attributes (e.g., fairness,
sustainability).

Thus, in this chapter we start by investigating what tactics are available to adapt
ML components that are deteriorating system utility (Section 4.1). Then, in Section 4.2,
with the aid of a use case from the fraud detection systems’ domain, we provide examples
of the different causes of system utility degradation presented in Section 2.2.1 and the
applicability of the tactics introduced in Section 4.1. Finally, in Section 4.3, we discuss
which changes/updates to the popular MAPE-K loop must be enacted in order to engineer
self-adaptive ML-based systems.
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Table 4.1: Examples of general adaptation tactics for ML-based systems with their
strengths (‘+’) and weaknesses (‘–’).

Tactic Description Properties

Component
Replacement

+ Fast and inexpensive, when possible
Replace an under-performing – Alternative components may not
component by one that better be available in all scenarios
matches the current environment – Alternative estimators, when available,

may be more robust but less precise

Human-based
Labeling [122]

Rely on a human to classify incoming
samples or to correct the labeling
of samples in the training set

+ Accuracy of human-based labels
expected to be high
– Expert knowledge may be expensive
to obtain and/or introduce
unacceptable latency

Transfer
Learning [136]

Reuse knowledge gathered previously
on different tasks/problems to
accelerate the learning of new tasks

+ Less data-hungry than plain retrain
– Effectiveness dependent on the
similarities between old and new tasks/data
– Computationally intensive process

Unlearning [29]

Remove samples that are + Fast when ratio between data to
no longer representative forget and data-set size is small
from the training set – Cost/latency for identifying examples to
and from the model unlearn can be large and context-dependent

Retrain [190]
Retrain with new data and maybe
choose new values for the
ML model’s hyper-parameters

+ Generic and robust method
– Computationally intensive process
– Accuracy and latency of the retrain
process may vary significantly
– Effective only once a relatively large
number of instances of the new data
are available

4.1 Adaptation Tactics
Inspired by the machine learning (ML) literature [29, 122, 136, 163, 190], in this section we
provide a non-exhaustive list of ML techniques that can be leveraged as adaptation tactics
when engineering self-adaptive ML-enabled systems. Specifically, Table 4.1 contains a
collection of tactics that can be used to deal with under-performing ML-based components.
These performance issues can be caused by the different types of shift previously introduced
(see Section 2.2.1). Next, we provide a high-level description of the tactics presented in
the table, discussing their costs and benefits, and motivating them in Section 4.2.

Component replacement. This tactic assumes the existence of a repository of com-
ponents and respective meta-data that can be analyzed to determine if there exists a
component that is better suited for the current system state, i.e., that is expected to lead
to a higher system utility. If such a component exists, this tactic will replace the under-
performing component by the one that is expected to be better. A benefit of this tactic,
whenever it is available, is to enable a swift reaction to dataset shifts. Its main cost depends
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on the latency and resources used for the analysis of the candidate components available
in the repository. Additionally, alternative components may not always be available and,
when they do exist, they may be less precise albeit more robust.

Human-based labeling. Humans are often able to recognize patterns, problems, and
objects more accurately than ML models [122]. Thus, depending on the domain, humans
may play a role in correcting these components or giving them correct samples [122, 183].
For example, when an ML component is highly uncertain about a specific input, it may
rely on a human to provide a label. Similarly, if incorrect data is found on a model’s
dataset, a human may be asked to correct those samples. While this tactic may provide
high benefit if the human is an expert, it also has a high cost, since humans are expensive.
Additionally, if there is a significant amount of samples to label, the latency of the process
may be unacceptable. It is also possible to rely on the actual system users (e.g., drivers of
self-driving cars, or holders of credit cards), prompting them for an answer in particular
situations (similar in spirit to captchas). However, this burdens the users who may become
frustrated at the system and become less willing to use it.

Transfer learning. transfer learning (TL) techniques leverage knowledge obtained when
performing previous tasks that are similar to the current one so that learning the current
task becomes easier [110, 136]. For this tactic to be applicable, it is necessary to evaluate the
similarity between the source and target tasks/domains. Transferring knowledge between
dissimilar tasks will likely not provide benefits. In order to compute this similarity, metrics
such as LEEP [130] can be used. The advantages of this tactic are that it requires less
data than is needed to (re-)train a model from scratch, thus allowing for a quicker model
initialization phase. However, the process of TL, similarly to a model (re-)train, is also
computationally intensive.

Unlearning. This tactic corresponds to unlearning data that no longer reflects the cur-
rent environment/state of the system and its lineage, thus eliminating the effect of that
data on current predictions [29], while avoiding a full model retrain. A key problem that
stands in the way of the execution of this tactic is the identification of incorrect labels.
In scenarios in which the identification of incorrect samples is not readily available, one
may leverage automatic techniques, such as the one described in [30], which are faster but
typically less accurate than relying on humans. As such, the cost and complexity of this
adaptation tactic vary depending on the context. Then, after identifying the incorrect
samples, the model must be updated to accurately reflect the correct data. The advantage
of unlearning techniques with respect to a typical full model retrain is the time savings (up
to several orders of magnitude [29]) that can be achieved.

Retrain and/or hyper-parameter optimization. This is a general tactic that in-
volves retraining the model with new data reflecting recent dataset shifts. There are many
types of retraining, ranging from a simple model refresh (incorporate new data using old
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hyper-parameters), to a full retrain (including hyper-parameter optimization, possibly en-
compassing the search for different model types/architectures [60]). These imply different
computational costs and lead to different benefits in terms of model accuracy improve-
ments. In the presence of dataset shifts, when there is new data that already incorporates
the new input distribution, this tactic often represents a simple, yet possibly expensive,
approach to deal with this problem. Yet, this tactic usually requires a substantial amount
of data to yield highly accurate models and is computationally intensive. Its benefits are
dependent on the type of retrain process and on the quality of the new data. As for its
cost, if retraining is performed on the cloud, it can be directly converted to the economic
cost of the virtual machines. Several techniques exist to predict such costs [6, 31, 118, 194].

4.2 Adaptation of ML-based Enterprise Systems
We now motivate the need for self-adaptive machine-learning enabled systems through an
example from the enterprise systems domain. We provide examples of situations in which
each type of shift can occur and of scenarios in which each repair tactic can be applied.

4.2.1 Fraud Detection System Use Case

Consider a fraud detection system that relies on ML models to determine whether cred-
it/debit card transactions are legitimate or fraudulent. These ML models typically at-
tribute a score to each transaction, which corresponds to the likelihood of the transaction
being fraudulent [142]. The score attributed by the ML model is then used by a rule-
based model to decide whether transactions are legitimate or fraudulent. Typical clients of
companies that provide fraud detection services are banks and merchants. In this setting,
system utility is typically defined based on attributes such as the cost of losing clients due
to incorrectly declined transactions, fairness (no user sees their transactions declined more
often than others) [50] and the overall cost of service level agreement (SLA) violations
(these systems have strict SLAs to process transactions in real time, e.g., at most 200ms
on the 99.999th percentile of the latencies’ distribution [21]).

While cost and revenue are directly affected by the ML model’s mispredictions, response
time is affected by model complexity, i.e., more complex ML models may introduce higher
prediction latencies that compromise SLAs. Thus, when adapting an ML component in this
domain, it may be necessary to account for the impact of increased ML model complexity
on the fulfillment of the SLAs. Further, the impact of ML component mispredictions varies
not only from client to client, with whom different SLAs may have been agreed upon, but
also in time, since during specific periods, e.g., Black Friday, the volume of transactions
substantially increases [111]. During busy days such as these, since there is an increase in
the number of legitimate transactions and the spending patterns are altered, it is crucial
that ML models are less strict and reduce false alarms. At the same time, having less strict
models may lead to more fraudulent transactions being accepted. Hence, mispredictions
come at huge penalties and a delicate trade-off is required to ensure an acceptable system
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utility. Finally, these systems are subject to constantly evolving fraud patterns, to which
the ML components must adapt [8].

4.2.2 Causes of Degradation of ML Components’ Accuracy
This section illustrates each type of data-shift with examples based on the fraud detection
system use case.

Co-variate shift. In a fraud detection system, co-variate shift occurs when patterns of
legitimate transactions change, for instance due to busy shopping days like Black Friday
and Christmas [8]. Although the actual features used for classification may not change,
their distribution does. For example, suppose a user usually purchases items online from
shop A. The distribution of fraud given the feature online shop is 10% for shop A. The
user then discovers that shop B sells the same items but at a cheaper price, so they start
purchasing from shop B. Additionally, the distribution of fraud given feature online shop
is also 10% for shop B. In this scenario, the distribution of the feature online shop, given
by P (x) is altered, but the distribution of fraud given the feature, P (y|x), remains the
same, i.e., the amount of fraud in shops A and B is the same regardless of where the user
buys. In a case such as this, the fraud detection system may suspect the change in the
user’s behavior to be fraud because it learned that the user typically buys from shop A.

Prior probability shift (label shift). In the context of fraud detection systems, this
type of shift occurs for example when the proportion of fraudulent transactions in the
training set is different than for the test set [111], i.e., P (y)train 6= P (y)test. This type of
shift requires assuming that the distribution of input data given fraud, P (x|y), does not
change between training and testing environments. This corresponds to a mathematical
abstraction over the power of an adversary that is capable of generating fraudulent transac-
tions that follow the same pattern as legitimate transactions. Since the model has learned
the typical distribution of fraud, it’s predictions will follow that distribution, which is no
longer representative of the system’s environment.

Concept shift. This is the most common type of dataset shift in the fraud detection
domain and occurs when fraudsters adapt their strategies and new fraud patterns emerge,
such that the ML model is no longer able to effectively distinguish fraudulent from legit-
imate transactions [111]. In this case, the distribution of fraud given input data P (y|x)
changes while the distribution of input data P (x) remains the same.

4.2.3 Repair Tactics
This section motivates the applicability of each repair tactic by providing examples of their
usage when different causes of degradation have affected the system’s ML component.
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Component replacement. When the volume of transactions changes, for instance dur-
ing special days such as Black Friday, ML models may consider the increased frequency of
transactions as an indicator of fraud and erroneously flag legitimate transactions as fraud-
ulent. Such mispredictions can lead to significant financial losses [21], thus requiring timely
fixes that render the use of high latency tactics infeasible (note that in this context trans-
actions need to be accepted/rejected within a few hundreds milliseconds [21]). As such,
only low latency tactics can be applied. An example is to replace the under-performing
models with rule-based models, e.g., developed by experts for specific situations, and/or to
switch to previously trained models that are known to perform well in similar conditions.

Human-based labeling. Whenever the ML component suspects a transaction of being
fraudulent it can automatically block that transaction. Then, the user can be informed
of the decision and asked whether the transaction should be authorized or declined in the
future. Another possibility is to add humans to the loop when adding samples to the ML
component’s training set. In this scenario, an expert can be asked to review the most
uncertain classifications so as to improve the quality of the training samples.

In the former scenario, the benefits are easily quantifiable, since the risk of accepting
a possibly fraudulent transaction can be measured via its economic value. However, users
may get annoyed if their transactions are canceled too often, to the extent that they
may stop purchasing using that credit card provider. As for relying on experts to review
uncertain classifications, having an on-demand expert performing this task is expensive
and the latency of the manual labeling process may be unacceptable1.

Transfer learning. Suppose that: (i) a fraud detection company has a set of clients (such
as banks), (ii) the company has a unique ML model for each client, so that it complies with
data privacy regulations, and (iii) one of its clients is affected by a new attack pattern,
which is eventually learned by that client’s model. In this scenario, TL techniques can be
used to improve other clients’ models so that they can react to the same attack pattern.
In fact, since privacy is paramount in this domain, there are techniques that can be used
to deal with the problem of ensuring data confidentiality and anonymity in information
transfer between clients [66, 110] instead of typical TL techniques that do not provide this
assurance [136]. Estimating the benefits of executing this tactic for a given client boils down
to estimating the likelihood that this client may be targeted by the same attack, which
comes at an added cost and time. Yet, the execution of this tactic typically implies high
computational costs (e.g., if cloud resources are used) and non-negligible latency, which
may render this tactic economically unfavorable, or even inadequate, e.g., if the attack on
a different client is imminent and the TL process is slow.

Unlearning. In the domain of fraud detection, if after a specific amount of time (e.g., 1
month) the fraud detection system does not receive complaints about a set of transactions,
these will be labeled as legitimate. However, since users typically take a long time to

1Fraud detection systems normally rely on a fixed set of humans at any given time. This determines a
maximum load of transactions that can be processed with a human in the loop.
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review their statements and to complain when they do not recognize some transactions, it
is possible that there are incorrectly labeled transactions in the dataset. In this scenario,
and if a model has been trained with incorrect samples, it is possible to leverage this tactic
to remove the incorrect samples from the model without requiring a full model retrain.

Retrain and/or hyper-parameter optimization. Full model retraining can be lever-
aged for example when there is a new fraud pattern for which there is already enough data
for the model to learn from. By retraining the model with this data, the model will likely
detect an increased amount of fraudulent transactions, thus also increasing system utility.
However, as this is a slow tactic, throughout its execution system utility is likely to either
drop or remain as unsatisfactory as it was prior to the execution of the tactic. To prevent
such situations, hybrid planning approaches can be leveraged [138] to execute a swift tactic
that slightly improves system utility while the slow tactic is executing.

4.3 MAPE-K Loop for ML-based Systems
In SAS, the MAPE-K loop typically actuates over a system composed of traditional compo-
nents, i.e., non-ML components. However, as illustrated in Figure 2.1, ML-enabled systems
generally encompass both non-ML and ML components. We argue that the MAPE-K loop
should be revised in order to cope with the unique issues described in Section 2.2.1 that
affect MLCs by effectively leveraging the adaptation tactics presented previously. In the
following, we discuss the research challenges and opportunities that arise in each of the
MAPE-K loop stages when engineering self-adaptive ML-based systems.

Monitor
The Monitor stage has to keep track of the inputs received by the ML components because
shifts of the input distributions may affect the predictions. For instance, the detection
of out-of-distribution inputs may mean that there has been a change in the environment
and thus the model used by some ML component may no longer be representative of the
current environment. The challenge here is not only detecting the occurrence of shifts in a
timely and reliable fashion, but also how to effectively characterize them — since different
types of shifts require different reaction methods.

As in other SAS, attributes that contribute to the system’s utility (e.g., latency,
throughput) or the satisfaction of required system properties must be monitored. In ad-
dition to these, the Monitor stage must also gather the outputs of the ML component to
account for situations in which changes in the inputs go by unnoticed, perhaps because
they are too slow, but that manifest themselves faster in the outputs [198]. Examples
of outputs that should be monitored are, for instance, shifts in the output distribution,
model’s predictive performance (e.g., accuracy) and error — obtained by comparing pre-
dictions with real outcomes. A relevant challenge here is that often real outcomes are only
known after a long time, if ever. For instance, in fraud detection, false negatives (i.e.,
undetected real fraud) are known only when users file complaints. Approaches such as
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those proposed in [142, 196, 198] provide a good starting point for the implementation of
a Monitor for self-adaptive machine-learning enabled systems.

Challenges. Monitoring input and output distributions requires keeping track of a mul-
titude of features and parameters, which would otherwise be disregarded. This is already
challenging due to the amount of data that needs to be stored, maintained, and analyzed.
Finding suitable frequencies to gather these data and adapting them in the face of evolving
time constraints is an even bigger challenge in time-critical domains [11, 142].

Analyze

The Analyze stage is responsible for determining whether degradations of the prediction
quality of ML components are affecting (or are predicted to affect) other system components
and system utility to such an extent that adaptation may be required. To accomplish this,
one can leverage techniques developed by the ML community to detect possible issues in
the inputs and outputs of the ML component [142, 149, 150, 198], errors in its training
set [2] and the appearance of new features relevant for prediction [139]. These techniques
must then be adjusted for each system, which includes adapting them to different ML
models and tasks.

Challenges. Estimating the impact of an MLC on other system components and on
system utility can be challenging because often (mis)predictions affect the system’s utili-
ty/dependability in ways that are not only application- but also context- dependent. For
instance, during periods with higher transaction volumes, such as on Black Friday, mispre-
dictions have higher impact on system utility, since during these periods it is more critical
to accurately detect fraud while maximizing accepted transactions. Architectural models
can capture the information flows among components, but the challenge is to estimate how
the uncertainty in the output of the ML components propagates throughout the system.

Plan

The Plan stage is responsible for identifying which adaptation tactics (if any) to employ
to address issues with ML components that are affecting overall system utility. As with
other self-adaptation approaches, this reasoning should consider the costs and benefits
of each viable tactic. Further, most of the ML adaptation tactics described have a non-
negligible latency, which needs to be accounted for as in latency-aware approaches [128]. An
additional concern is that some of these tactics may require a considerable use of resources
to execute, either in the system itself or offloaded. This requires Plan to account for
this impact or cost. For MLSs that rely on multiple MLCs, whenever a system property
is (expected to be) violated or when system utility decreases, fault localization may be
required to understand which component is under-performing and should be adapted [45].
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Challenges. Although there are several approaches [6, 31, 194] that attempt to predict
the time/cost of training ML models, this is a complex problem that is strongly influenced
by the type of ML model considered, its hyper-parameters and the underlying (cloud)
infrastructure used for training. These techniques represent a natural starting point to
estimate the costs and benefits of adaptation tactics such as the ones presented.

One interesting direction is to exploit techniques for estimating the uncertainty [135] of
ML models to quantify both the likelihood of models’ mispredictions as well as the potential
benefits deriving from employing corrective adaptation tactics. While some ML models can
directly estimate their own uncertainty [133], others require additional techniques (e.g.,
ensembles [22]) to obtain uncertainty estimations. Still, existing techniques can suffer
from significant shortcomings in practical settings [135].

Finally, tactics that modify MLCs are typically computationally expensive (e.g., non-
negligible latency). Thus, Plan must have mechanisms to ensure that the tactic is executed
without compromising other components/properties, or even the entire system.

Execute
To execute a given adaptation tactic, the Execute stage must have access to mechanisms
to improve or replace the ML component and/or its training set. As in the conventional
MAPE-K loop, we require implementations of adaptation tactics that: are efficient to
execute, have predictable costs/benefits, and are resilient to run-time exceptions.

Challenges. A key challenge is how to enhance the predictability of the execution of
ML adaptation tactics, which often require the processing of large volumes of data (e.g., to
retrain a large scale model) possibly under stringent timing constraints. We argue that the
community of SAS would benefit from the availability of open-source software frameworks
that implement a range of generic adaptation tactics for MLCs. These frameworks would
allow to mask complexity, promote interoperability and comparability of SAS. Further,
this would also provide an opportunity to assemble, in a common framework, techniques
that have been proposed over many years in different areas of the AI/ML literature.

Knowledge
Finally, the Knowledge module is responsible for maintaining information that reflects what
is known about the environment and the system. As in traditional systems, in the case
of self-adaptive ML-enabled systems Knowledge also needs to maintain information about
the environment so that trends can be observed. These trends can be crucial to detect the
shifts that may lead to mispredictions.

Additionally, for MLSs, the Knowledge component should evolve in order to keep track
of the costs/benefits of each ML adaptation tactic on the affected MLCs and on system
utility. This corresponds to gathering: (i) knowledge on how each tactic altered an MLC
and on the context in which the tactic was executed; and (ii) meta information on training
sets, for instance characterizing the most important features for predicting the costs and
benefits of the different tactics. This added knowledge should be leveraged to improve
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the decision making process and thus improve adaptation. By gathering knowledge on
how each tactic altered an MLC and on the context in which the tactic was executed, the
Analyze and Plan stages can take more effective decisions on when and how to adapt.

Finally, for a tactic that replaces under-performing MLCs, Knowledge must contain a
repository of the available components and their meta-data. This meta-data, we argue,
should provide information to enable reasoning on whether the necessary preconditions to
enable a safe and timely adaptation hold.

4.4 Summary
This chapter introduced a repertoire of adaptation tactics, inspired by the ML literature,
for adapting ML components, and discussed their advantages and disadvantages. Then, a
fraud detection system case study was used to demonstrate the application of each tactic.
Finally, we identified a set of key requirements that should be supported by the various
elements of the classic MAPE-K control loop and a set of challenging research problems,
out of which we highlight the following: (i) How to estimate the costs and benefits of
each tactic? (ii) How to reason about the impact of ML mispredictions on system utility?
(iii) How to reason about the long-term impacts of adaptation tactics on system utility?
The next chapter addresses these challenges by introducing a framework for engineering
self-adaptive ML-based systems.
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Chapter 5

A Framework for Self-Adapting
Machine Learning-based Systems

This chapter presents a framework for engineering self-adaptive ML-based systems. There
are two key requirements associated with reasoning about self-adaptation of ML compo-
nents. First, it is necessary to understand if and how ML predictions affect overall system
utility. Second, it is necessary to estimate the costs and benefits of the available adaptation
tactics. Let us now discuss the key challenges associated with each requirement.

I) Impact of machine learning predictions on system utility. A key problem
that needs to be addressed to enable automatic reasoning on the dynamics of ML-based
systems is determining to what extent incorrect predictions will impact overall system
utility. In fact, this is not only application but also context dependent. For example, in
cloud configuration recommenders, when the relative difference in job execution latency
between the available cloud configurations is low, ML mispredictions have little impact on
system utility [31]. Similarly, in a fraud detection system, the impact of mispredictions is
different in periods with higher volumes of transactions, in which it is critical to maximize
accepted transactions, while accurately detecting fraud [8].

II) Estimating costs and benefits of adaptation tactics. Predicting the cost and
benefits of ML adaptation tactics is far from trivial. This prediction is strongly influenced
both by the type of models and their settings (hyper-parameters and execution infrastruc-
ture), and by the data employed in the adaptation process. For instance, in the case of a
tactic that triggers the retrain of an ML model, the benefits of tactic execution depend on
the data available for the retrain – data more representative of the current environment
contributes to higher benefits. Differently, if the adaptation tactic consists of querying a
human (human-in-the-loop tactic), the benefits are now dependent on human expertise.
The execution latency and economic cost are also likely to be different and affected by
factors that are inherently tactic dependent, e.g., the retraining time is affected by the
amount of available training data, whereas the latency of a human-in-the-loop tactic may
depend on the complexity of the problem the human is required to solve.
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Figure 5.1: Framework modules and inter-dependencies.

This chapter describes a generic framework that can be used to derive formal models
of self-adaptive ML-based systems. The resulting models can then be utilized to enable
automatic reasoning via probabilistic model checking tools such as PRISM [99]. In fact,
the use of model checking tools in the self-adaptive systems (SASs) domain is not new [28,
124, 127]. Conceptually, the proposed framework can be regarded as a specialization of
the frameworks already proposed in this field, but instead targeting a specific class of
“managed” systems: ML-enabled systems. Further, the proposed framework allows us to
abstract away from system-specific issues and instead instantiate the decision of whether
to adapt ML components as a general decision that relies on the key factors of ML-based
systems. The proposed framework should abide by the following key requirements:
R1 Provide the means to predict the effects of adapting and not adapting the model on

its future predictive performance;
R2 Include a way to characterize in a compact but meaningful way the error of an ML

component;
R3 Allow the self-adaptation manager to determine the impact of ML mispredictions on

overall system utility.
The following sections focus on how to capture the most relevant dynamics of ML

components via abstract and generic models that can be extended and customized to
specific use cases and domains.

5.1 Architectural Overview

As in typical frameworks for SAS, our framework requires specifying the behavior of the
modules displayed in Figure 5.1: environment, system, and the adaptation manager. Next,
we discuss how each of these modules is modelled in the proposed framework. For the ML
component, we further describe its internal state, how it evolves, and the methods exposed
by its interface to allow for inter-component interactions.
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Environment. The environment module accounts for the types of stimuli to which the
system responds/reacts. Additionally, since our goal is to reason about the impact of
environment changes, these must also be modeled. Examples of environment stimuli are
for instance the transactions that a fraud detection system has to classify, the sentences
that a machine translation system has to translate, or the jobs received by a scheduler.

Adaptation manager. As in typical SAS, the adaptation manager contains a repository
of adaptation tactics. However, and differently from previous work in this domain, we
consider adaptation tactics that directly actuate over the ML component [32], such as
retraining the ML model. Each adaptation tactic is specified by: (i) a pre-condition that
triggers its execution and which generally depends on the state of the system and the
environment; (ii) the effects on the targeted components. We model adaptation tactics
as a tuple composed of tactic cost and tactic latency. This division allows us to study
the impact of the different dimensions of tactics on overall system utility. For example,
consider a retrain tactic: it has an associated latency, since retraining a model takes a
non-negligible amount of time; if that tactic is executed in cloud environments it also has
a monetary cost, which depends both on its latency, and on the underlying cloud platform
selected for the execution. By leveraging model checking tools such as PRISM [99] we
can explore alternative adaptation policies with the objective of identifying the one that
optimizes system utility.

ML-enabled system. The key novelty of our framework is that it enables reasoning
about the adaptation of ML-enabled systems, which we abstractly define as systems that
comprise two types of components: ML-based and non-ML based components (Figure 5.1).
An ML-based component is used to encapsulate an ML model that can be queried and up-
dated (e.g., retrained). Non-ML based components are used to encapsulate the remaining
functional components of the system being managed/adapted. Our framework is agnos-
tic to the modeling of the application-dependent dynamics of non-ML based components,
which can be achieved by resorting to conventional techniques already proposed in the SAS
literature [28, 124, 127]. However, the interactions between non-ML components and ML
components may still need to be modeled for two purposes: i) pre-processing data to act
as input to the ML component or ii) using the ML component’s outputs to perform some
function affecting system utility by adding negative/positive rewards upon completion of
a task. For example, in an ML-based scheduling system, once a job finishes executing on
the selected cloud platform (considered to be a non-ML based component), it triggers the
accrual of a reward (e.g., dependent on the job’s execution time) that affects system utility.

As for modeling ML components, our design aims to ensure the following key prop-
erties: (i) generic – applicable to offline and online learning, supervised, unsupervised
and semi-supervised models, different types of ML models (e.g., neural networks, random
forests); (ii) tractable – usable by a probabilistic model checker like PRISM, having a
high level of abstraction to aid systematic analysis via model checking; (iii) expressive –
capable of capturing key dynamics of ML models that are general across ML models; (iv)
extensible – designed to be easily extended to incorporate additional adaptation tactics
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and customized to capture application specific dynamics. The following section details how
we formally model ML components to capture their error in a compact but meaningful way
(realizing R2), and the impact of mispredictions on system utility (realizing R3).

5.2 Formally Modeling ML Components
We start by abstractly formalizing the behavior of an ML component by specifying (i) its
state; (ii) the set of events that change its state; (iii) the logic governing how the internal
state evolves due to each possible event.

Machine learning component state. The state of an ML component is characterized
by two elements: a quality matrix and the set of new data (knowledge) which encodes
information regarding the data accumulated so far by the ML component. As the name
suggest, a quality matrix is a n × d matrix where n represents the input types for the
system, and where d represents the different metrics of interest for a system (e.g., mean
absolute error, accuracy). For example, in the case of a machine translation system, it
may be relevant to quantify translation quality in terms of news domain, such as sports or
finance. Similarly, for a fraud detection system, the input types can represent the types of
transactions (e.g., legitimate, fraudulent).

For the specific case of classification ML models, the quality matrix can be seen as
a confusion matrix. The confusion matrix is a tabular way to represent the quality of a
classifier [175] and allows us to abstract over the internal dynamics of the specific model
being used while still capturing the quality of its predictions. More in detail, it is a
n× n matrix where n represents the number of output classes. In cell (i, j) the confusion
matrix maintains the probability of an input of class i to be classified by the model as
belonging to class j. In fact, due to how it is constructed, the confusion matrix provides
access to metrics such as false positives/negatives, which constitute the basis for computing
alternative metrics, like f-score or recall, that can be of interest for domains such as fraud
detection systems [8].

The framework also supports the specification of multiple confusion matrices, which
can be of interest when there are several input types to an ML model: for instance, if
a scheduler receives different job types, some easier to classify than others, this could be
modeled by associating a different quality matrix to each job type. In such a scenario, if
the metrics of interest are by-products of the confusion matrix (e.g., accuracy and recall), a
single quality matrix can be employed instead of multiple confusion matrices. The quality
matrix would thus have each job type for dimension n and each metric for dimension d.

The second element of the ML component’s state represents the knowledge maintained
by the ML component. This is characterized by (i) the data that the model has already
used for training purposes, and (ii) the new data that is continually gathered during oper-
ation and that represents the current state of the environment the system is operating in.
However, the representation of this knowledge is application dependent. While in simpler
use-cases it may be enough to maintain a counter for the inputs that arrive in the sys-
tem, in more complex scenarios the data gathered during execution may encode important
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information to characterize the environment (e.g., measures of dataset shift [149]). This
knowledge can be used by the adaptation tactics when adapting the ML component.

Machine learning component interface. For the other components in the system to
interact with the ML component, we propose a general interface that enables this interac-
tion. Typically, any ML component that supports adaptation requires three key methods:
query, update_knowledge, and retrain. Clearly, new methods can be added to this
interface to tailor the framework to specific application requirements, such as to capture
manipulations of the dataset (e.g., sub-sampling certain types of inputs) or to support
additional adaptation tactics (e.g., unlearning). We detail each key method below.

As the name suggests, query is used to solicit a prediction from the ML component.
Since the quality matrix abstracts away the behavior of the ML component, in the general
case executing a query corresponds to reading the value for the desired metric from the
quality matrix. When the quality matrix takes the form of a confusion matrix, the internal
behavior of the ML component when issuing predictions is abstracted away by reasoning
only over the likelihoods specified in the confusion matrix. Thus, the output event produced
by executing a query is a probabilistic event that can assume any of the possible output
classes of the classifier, with the probability given by the classifier’s confusion matrix.

The method update_knowledge should be called when the system has reacted to
an event and thus there is new data to be accounted for. The framework can keep track
either of the pair 〈ML input, ML prediction〉 or of the triple 〈ML input, ML prediction, real
output〉. The selection of either option is domain dependent. For example, in the fraud
detection domain, knowing the actual value of a transaction (legitimate or fraudulent) is
not always possible [142]. Similarly, for machine translation systems, the availability of
correct/perfect translations for a sentence is not guaranteed. In such cases, the pair 〈ML
input, ML prediction〉 must be employed.

Finally, retrain corresponds to retraining the ML model resorting to the data stored in
the ML component’s state. As discussed in Section 4.1, different types of retrain, with
varying complexities, can be executed, for instance by modifying the hyper-parameters
and/or the architecture of the ML model. Ultimately, the type of retrain executed is
application dependent.

The framework can be extended to account for more methods, and in particular to
more adaptation tactics. Since tactics typically have an associated cost and latency that
directly impact system utility, these are captured by the framework as follows: the latency
is used to determine after how many units of time the effects of a tactic are applied to the
ML component (and to the system); the cost of executing a tactic (when it has a cost) is
discounted from the system’s utility.

Machine Learning component state evolution. When an interface method is trig-
gered, the state of the ML component can be altered. Since query consists only of asking
the ML model for a prediction, it does not alter the component’s state. update_knowl-
edge changes the knowledge of the ML component by adding instances to that set. Finally,
retrain changes both elements of the state: the quality matrix and the knowledge are
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updated to reflect the execution of the adaptation tactic. In the case of a retrain adapta-
tion tactic, the data used for executing the tactic is updated in the knowledge of the ML
component such that it is no longer considered new data. The quality matrix is updated to
reflect the new values for the system metrics or, in the specific case of a confusion matrix,
the new predictive performance of the ML model after the retrain.

5.3 Predicting the Effects of Adapting (or not)
A key requirement of our framework is the ability to predict the costs and benefits of
executing adaptation tactics on the ML components (requirement R1). For this purpose,
the framework associates an adaptation impact predictor (AIP) with each adaptation tactic.
The AIP is in charge of predicting: (i) the adaptation tactic’s cost, that is charged to the
system utility; and (ii) the impact of the adaptation on the future quality of the ML
component. For each ML component, we also include an adaptation tactic corresponding
to performing no changes to the ML component (NOP). While the AIP for tactic NOP
always predicts zero costs (this tactic inherently has no cost), its model quality predictor
captures the evolution of the model’s performance if no action is taken, e.g., the possible
degradation of accuracy of the ML component due to data shifts. Overall, this approach
allows the model checker to quantify the impact of different adaptation tactics on system
utility and reason about their cost/benefits trade-offs.

We focus on the problem of how to estimate the future evolution of the predictive
performance of the ML component and describe, in the following paragraphs, how we
tackle the problem of implementing AIPs for the Retrain and Nop tactics for generic ML
components. Indeed, for adaptation tactics such as Retrain the problem of estimating its
cost has been investigated in the system’s community. The literature has shown that data-
driven approaches based on observing previous retraining procedures [31], possibly mixed
with white-box methods [194], can generate accurate predictive models of the retrain cost.

Predicting the future quality of ML components. Given the reliance on a quality
matrix C to characterize the performance of ML components, estimating how the predictive
performance of these components evolves requires estimating how C will evolve in the
future, for instance due to shifts affecting the quality of the current model (tactic nop) or
as a consequence of retraining the model to incorporate newly available data.

The proposed method abstracts over the specific adaptation tactic a() by modeling it
as a generic function a(M, I,N ) −→ M′ that produces a new ML model M′, and takes
as input: (i) model M prior to the execution of the tactic; (ii) data I, used to generate
model M; (iii) new data, N , that became available since the last adaptation, e.g., by
deploying the model in production and gathering new samples and corresponding ground
truth labels. We assume that both I and N contain ground truth labels. Additionally,
we assume thatM andM′ are generic supervised ML models that are queried and return
predictions for the input samples. These two assumptions allow us to determine the quality
matrices of models M and M′ at any future time interval, since their predictions can be
compared with the ground truth labels.
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We seek to build black-box regressors (e.g., random forests, neural networks) that,
given modelM obtained at time 0 on dataset I, and new data N available at time t > 0,
predict the quality matrices of both models (M andM′) at time t+ k, where k > 0 is the
prediction look-ahead window.

Adaptation impact dataset (AID). To train such black-box regressors, we build an
AID by systematically simulating the execution of the adaptation tactic using production
data at different points in time. This allows us to gather observations characterizing the
execution of the adaption tactic in different environmental contexts, such as: (i) different
sets of data used to adapt the model; (ii) variations in the time passed since the last
execution of the tactic; (iii) different ML performance before and after the adaptation

The first step of the procedure to build an AID consists of monitoring model M0 of a
ML component in production over T time intervals. During this monitoring period, given
the absence of AIPs, we assume that no adaptation is executed.

Next, we deployM0 on a testing platform (so as not to affect the production environ-
ment) and systematically apply tactic a() at each time interval i > 0, i.e., a(M0, I0,Ni).
This yields a new modelMi, which we evaluate at every future time interval i < j ≤ T , ob-
taining the corresponding quality matrices, noted as Ci(j). Overall, this procedures yields
T models, resulting from the adaptation of M0 at different time intervals, and produces
T · (T − 1) measurements of the quality matrices at times j > i.

For each of the T ·(T −1) measurements, we generate an AID entry, ei,j,k that describes
the quality of model Mj at time j + k obtained by executing a(Mi, Ii,Nj) at time j on
model Mi, where Ii denotes the data used at time i to generate model Mi, and Nj the
new data gathered from time i until time j. Each entry ei,j,k has as target variables the
metrics of the quality matrix or, for the particular case of classification models, the values
for the confusion matrix cells, at time j+k of modelMj and stores the following features:

• Basic features: provide basic information on (i) the amount of data (i.e., number of
examples) used to generate model Mi, i.e., Ii, and gathered thereafter, i.e., Nj; (ii)
the accuracy of the model shortly after its generation and at the present time; (iii)
the time elapsed since the last execution of the adaptation tactic, i.e., j − i.

• Output characteristics features: describe the distribution of the output of models
Mi and Mj. It also includes the distribution of the uncertainty of the models’
predictions. This feature is included only when the ML model provides information
regarding the uncertainty of a prediction. This information is usually provided by
commonly employed ML models like random forests, and Gaussian processes.

• Input characteristics features: aim to capture variations in the distributions of the
features of datasets Ii and Nj. Specifically, for each feature f , we compute the
Pearson correlation coefficient between its values in Ii and Nj.

Overall, the AID can be seen as composed of pairs of features, where each pair describes
a specific “characteristic” of the data or model at two different points in time, e.g., amount
of data available at time i and j, or distribution of predicted classes at time j+k by models
Mi and Mj. The last step of the process consists of extending the AID by encoding
the variation of each feature as follows: (i) for scalar features (e.g., amount of data)
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we encode their variation using the ratio and difference; (ii) for features described via
probability distributions (e.g., prediction’s uncertainty) we quantify their variation using
the Jensen-Shannon divergence [120] (inspired by previous work [142]), which yields a
scalar measurement of the similarity between two probability distributions. This generic
methodology can also be applied to the case of the nop tactic. In this case, the dataset
describes how the accuracy of a model originally obtained at time i will evolve at time
j+k, based on the information available at time j. This additional information can simply
be added to each entry ei,j,k.

Adaptation impact predictors (AIPs). We exploit the AID to train a set of inde-
pendent AIPs, which can be simple linear models or black-box predictors such as random
forests or neural networks. Each AIP is trained to predict the value of a different metric
of the quality matrix, or the value of a cell of the confusion matrix. Specifically, given
an n-ary classification problem, we have n2 − n independent values for the corresponding
confusion matrix, given that each row must sum to 1. For the case of binary classification,
n = 2, it is sufficient to predict the values of the two elements on the diagonal, which, being
in different rows, are not subject to any mutual constraint. For the general case of n > 2,
it is necessary to ensure that the predictions of the AIPs targeting different cells of the
same row sum to 1. This can be achieved by using a soft-max function [17] to normalize
the predictions generated by the AIPs into a probability distribution.

Integrating the AIPs in the formal model. If the AIPs are complex models, possi-
bly black-box (e.g., neural networks) they can not be efficiently (nor easily) implemented
as part of the formal model, which is verified by a probabilistic model checker such as
PRISM [99]: these tools do not allow the verification process to interact with external pro-
cesses (which could be used to encapsulate the implementation of the AIPs) during model
analysis. However, if the framework is being used to plan for the following time interval,
the AIPs can be queried before the formal verification takes place and their predictions can
be sent as input variables to the formal model. Section 5.5 provides a detailed discussion
on how to use the framework to plan for the long-term.

5.4 Accounting for Label Delay
While it is fairly trivial to compute values for features such as (i) the amount of new
samples with which the ML model has not been trained and (ii) the time elapsed since
the model was last retrained, computing the ML model’s real time predictive performance
may not be as straightforward. As discussed in Section 2.3.2, this is the case in contexts
for which ground-truth labels may take a non-negligible time to become available.

To address this challenge, we leverage a state-of-the-art ML algorithm [67] to deal with
ground-truth label unavailability when adapting ML-enabled systems. This way the pro-
posed framework can be used for a wider range of domains without requiring assumptions
on label availability, increasing the framework’s applicability and generalizability.
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The following paragraphs provide an overview of the state-of-the-art approach employed
for performance estimation [67], along with a discussion of its limitations and a proposal for
a new version that is better suited to the framework and, in particular, to ML classifiers.
Note that regression problems (the ML model’s output domain is continuous) can be turned
into classification ones by discretizing the target domain, although at the cost of an intrinsic
prediction error due to the chosen discretization granularity.

Average thresholded confidence (ATC)

For self-containment, we provide an overview of ATC [67] and start by introducing pre-
liminary terminology. Let f be a k-class calibrated classifier and fk(x), ∀k ∈ Y , the
predicted probability of an input x belonging to one class k of the set of output classes
Y , according to classifier f . ATC requires a score function, s : [0, 1]k → R, which takes
as input the k-dimensional vector of probabilities output by classifier f , and outputs a
real number. The score function s captures the confidence of classifier f in its prediction
and is used to estimate the expected mis-classification rate. As such, the score func-
tion s is chosen such that if the classifier predicts that the output class for an input x
is i ∈ Y with high probability relatively to the other classes, then s(fi(x)) should be
high: fi(x) >> fj(x),∀j 6= i =⇒ s(fi(x)) > s(fj(x)). Conversely, if the classifier
predicts class i for input x with relatively low probability, then s(fi(x)) should be low:
fi(x) ≤ fj(x),∀j 6= i =⇒ s(fi(x)) < s(fj(x)).

Originally, ATC [67] considers two score functions: Maximum confidence – s(f(x)) =
maxj∈Y fj(x); and Negative Entropy – s(f(x)) =

∑
j fj(x) log (fj(x)). However, in this

work we use only the Negative Entropy function.
In a nutshell, ATC estimates an ML model’s predictive quality as follows: given a

validation set Dval of labeled data (e.g., which includes the most recent ground truth labels
for the past predictions of classifier f) ATC identifies a threshold t on Dval such that the
number of samples that obtain a score less than t match the number of errors of classifier
f on Dval. This procedure is illustrated by the pseudo-code in Algorithm 1 and can be
expressed compactly as follows:

Ex∼Dval [I [s(f(x)) < t]] = E(x,y)∼Dval
[
I
[
argmaxj∈Y fj(x) 6= y

]]
, (5.1)

where I denotes the indicator function, and y the ground truth class for input x. The left
side of the equation defines the ratio of samples in Dval with score below the threshold t
and the right side specifies the error rate for Dval (i.e., number of errors of the classifier
f on Dval), which we also note as Err(Dval). Threshold t can be easily computed as it
corresponds to the Err(Dval)-percentile of the distribution of scores for Dval. One can then
estimate the correctness of individual predictions on a target, unlabeled dataset DT based
on whether each prediction’s score is above/below t. The error rate for DT can thus be
computed as:

Err(DT(s)) = Ex∼DT [I[s(f(x)) < t]]. (5.2)

Note that ATC can estimate whether individual predictions are correct or not. In
the general multi-class scenario (k > 2), this does not allow us to pinpoint which class is
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Algorithm 1 Logic employed by ATC to determine the decision threshold t

1: procedure find_threshold(Dval)

2: Err(Dval) ← ‖misclassified inputs‖
‖inputs‖

. Compute the error rate on the validation set

3: return PercentileErr(Dval)(s(f(x))) . Return the Err(Dval)-th percentile of the
score distribution for the validation set

4: end procedure

expected to be the correct one, in case a classifier’s prediction is deemed incorrect. However,
for binary classification problems estimating the correctness of a prediction implies also
determining which is the expected class in case the classifier’s prediction is estimated to
be incorrect. This allows us to employ ATC to estimate the whole confusion matrix.

Class-Based-ATC (CB-ATC)

In general, label delay can be thought of as a form of temporal misalignment between
the data and the labels. More formally, for a delay d and current timestamp t, ground
truth labels are available for environmental events (e.g., transactions of a fraud detection
system) that completed up to time instant t− d. Thus, to estimate the current quality of
an ML model, one either resorts to (i) delayed labels, hence using stale data as a proxy for
the ML model’s quality, or (ii) to methods like ATC that aim to estimate the ML model’s
predictive quality in the absence of labelled data.

While integrating ATC within our framework we identified two relevant shortcom-
ings, which led us to propose a new method: class-based-average thresholded confi-
dence (CB-ATC). The next paragraphs describe ATC’s limitations, which are illustrated
in Figures 5.2 and 5.3, and explain how CB-ATC circumvents them.

Limitation 1. ATC’s first limitation is related to its (implicit) assumption on the distri-
butions of scores for the correct/incorrect predictions of each class being “similar enough”
so that by using a single threshold, it is possible to fit the error rate on validation data
accurately for both predicted classes. Yet, if the scores of incorrect/correct predictions are
distributed in different regions for different predicted class, as illustrated in Figure 5.2 (mid-
dle), ATC is unable to correctly fit the confusion matrix using a single threshold. CB-ATC
addresses this limitation by computing a threshold per predicted class (Figure 5.2, right),
which is set to match the error rate for the prediction of that specific class. More formally,
in CB-ATC each class threshold, denoted as ti, where i ∈ Y and Y is the set of output
classes, is computed as follows:

Ex∼Dval [I [pred(f(x)) = i ∧ s(f(x)) < ti]] = E(x,y)∼Dval [I [pred(f(x)) = i ∧ y 6= i]] , (5.3)

where pred(f(x)) denotes the class predicted by classifier f for input x. The use of a per
class threshold provides CB-ATC with additional flexibility with respect to ATC and, as
illustrated in Figure 5.2, allows CB-ATC to fit precisely the classifier’s confusion matrix.

50



Figure 5.2: ATC (middle plot) is unable to correctly fit the actual confusion matrix (on
the left, where ‘R’ stands for real/actual ground truth; and ‘P’ for predicted labels) of
the validation data considered in this example via a single threshold. This is due to the
different characteristics of the distributions of scores for the samples that are predicted
as class 0 and 1 (i.e., below and above the assumed 0.5 model threshold). By using one
threshold per class, CB-ATC (right plot) accounts for the different distributions of scores
in each class and fits the actual confusion matrix.

Limitation 2. The second limitation that is inherent to ATC’s design is related to the
fact that in many real world applications (including ML-based financial fraud detection
systems), the predicted class does not necessarily coincide with the one having higher
probability according to the classifier. Focusing on the binary classification case, this
means that the threshold used to decide the class to which a prediction belongs (based on
the model’s output probabilities and referred to as “ML model threshold” in Figures 5.2
and 5.3) is often not 0.5. Figure 5.3 illustrates this scenario, and considers a case in which
the ML model’s threshold is set, by design, above 0.5.

This example demonstrates that ATC fails to correctly fit the confusion matrix and
we argue that this is due to two main causes: (i) the use of a single threshold to fit the
global error rate rather than a per class error rate (as discussed by Limitation 1); (ii) the
use of a scoring function (like negative entropy), which is symmetric around 0.5, fails to
capture the following key desirable property whenever the model’s threshold is not 0.5:
when the model predicted probability gets closer to the model’s threshold (from any given
direction, i.e., above or below in Figures 5.2 and 5.3), the scoring function should also
decrease (uncertainty grows as we approach the threshold). To tackle this issue, CB-ATC
uses a modified version of the Negative Entropy function, which we call Modified Negative
Entropy (MNE) and is defined as follows:

MNE(f(x), pred(f(x))) =

{
NE(f(x)), if pred(f(x)) = argmaxj∈Y(fj(x))

−NE(f(x))− 2, otherwise
(5.4)

where NE() stands for the Negative Entropy function. Analyzing Figure 5.3, it is possible
to see that MNE() ensures, by design, that the two misclassified samples for which class
0 was predicted get a lower score than any other predicted class-0 sample in the validation
set (samples e and f are the closest to the ML model’s threshold and correspond to more
uncertain predictions). We evaluate CB-ATC in Section 6.2.2 with the fraud detection
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Figure 5.3: ATC (middle) fails to correctly fit the actual confusion matrix (left) in a
scenario in which the model threshold is set to a value different from 0.5 (to control the
trade-off between recall and precision). In the same scenario, CB-ATC (right) can correctly
fit the actual confusion matrix by: (i) fitting the error rate of each class via a different
threshold; (ii) employing a Modified Negative Entropy score function, which ensures that
P (f(x) = 1) monotonically decreases as it approaches the ML model’s threshold (i.e., as a
prediction’s uncertainty increases).

use-case and demonstrate how it allows the framework to improve overall system utility
compared to a version that uses ATC and to a version that relies on delayed labels.

5.5 Long-term Estimation of the Benefits of Model
Retrain

Up until this point, we presented a short-sighted version of the adaptation framework that
does not take full advantage of the probabilistic model checker to plan for the long term. In
this section we introduce Ripple, (Retrain ImPact Predictor for Long-tErm Planning), a
self-adaptation approach to decide for the long term when to retrain ML-enabled systems.
Specifically, Ripple focuses on the model Retrain tactic and is later evaluated based on
the fraud detection use-case (Section 6.2).

Challenges of using the framework for long-term planning

The methodology described in Section 5.3 does not support long-term planning and ex-
tending it to plan for the long term is not trivial for the following reasons.

I. AIPs cannot be integrated in model checkers such as PRISM [99]. Because
the AIPs are complex models, possibly black-box (e.g., random forest or neural network
models) they can not be efficiently (nor easily) implemented as part of the formal model.
Therefore, as described in Section 5.3 the AIPs are queried prior to extracting the expected
optimal adaptation strategy with the probabilistic model checker. The predictions of the
AIPs, which encode the expected benefits of executing the retrain and nop adaptation
tactics, are then sent to the model checker as input features for the formal verification
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Figure 5.4: Overview of the process to instantiate long-sighted self-adaptive ML-enabled
systems via Ripple.

process to start. This approach is acceptable for short-term planning, as one has to pre-
query each AIP only once to get the prediction of the effects of each adaptation tactic
solely for the subsequent time interval.

However, for long-term planning scenarios of look-ahead L > 1 it is not feasible to
pre-query the AIPs to get predictions for the L future states of the ML model (and for all
the tactics available for execution – e.g. retrain and nop), and then send these predictions
as input to the model checker. Getting predictions for the L future states of the ML model
requires simulating the evolution of the system and of the environment outside the model
checker. Yet, this is exactly what model checkers do during the verification process. As
such, repeating the simulation outside the model checker would render the whole process
inefficient and error-prone.

II. Model checkers lack support for pausing and resuming a formal verification
process. Due to the inability to straightforwardly include the AIPs in the formal model,
an alternative option could be to query the AIPs throughout the verification process,
whenever it requires the benefits prediction. However, existing model checkers do not
support invoking external black box functions mid-way through the verification process.
Supporting this feature is challenging given that external queries of black-box functions
would cause the state of the model being checked to vary in unknown and unpredictable
ways. This drastically reduces the possibility of applying path-pruning techniques in the
verification process, which are crucial to managing state space explosion and enhancing
efficiency of the verification process [49].

5.5.1 Ripple: Retrain ImPact Predictor for Long-tErm planning
Ripple extends the framework and enables long-term planning to determine when to
retrain an ML model. To do so, and as shown in Figure 5.4, Ripple requires engineers
to: (1) monitor the ML-enabled system that is in production and collect data D on the
queries that the ML model receives and on the outputs that it generates; (2) build an
application specific adaptation impact dataset (AID) based on data D; (3) based on the
AID, train Look-Ahead-AIPs (LA-AIPs); (4) create a formal model of the ML-enabled
system, integrating the LA-AIPs; (5) deploy Ripple in production and plan when to
retrain the ML model using a finite look-ahead L. Ultimately, Ripple needs as inputs
the ML model’s current predictive performance (i.e., quality matrix or confusion matrix),
the old data that has been used to train the ML model, and the new data that the ML
model might be re-trained with, so that Ripple can generate an expected optimal policy
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for deciding when and when not to retrain over a fixed look-ahead horizon. The following
sections elaborate on Ripple’s building blocks.

Look-ahead adaptation impact dataset (LA-AID)

The LA-AID is the basis for building LA-AIPs and is constructed using a two-step process.
The first step is to build an AID by following the process outlined in Section 5.3. This
requires: (1) getting production data that characterizes the behavior of the environment
(e.g., previous queries for the ML model and associated ground truth labels) during a
fixed period, e.g., 2 months; (2) setting a time interval (e.g., hourly, daily, or weekly) and
retraining the ML model at each time interval; (3) evaluating the performance of each
retrained ML model on all future time intervals (without further retraining each model).

By dividing the production data selected for building the AID into t time intervals, this
process yields Ri, 1 ≤ i ≤ t retrained models. To finalize the AID and compute the features
that the AIPs employ when estimating the benefits of a retrain, it is necessary to compare
the performance of different retrained models at specific time intervals. For instance, to
get the benefits of retraining the ML model at time interval j, we compare retrained model
Rj with each previously retrained model Ri, 1 ≥ i < j. Globally, by comparing all pairs of
retrained models, we obtain an AID of size O(t2) (more precisely t∗(t−1)

2
), based on the t

retrained models.
Once the AID is created, we can generate the LA-AID. Although as detailed in the next

section the LA-AID construction varies slightly depending on the type of LA-AIPs that
are implemented, there are still common steps that need to be performed. Specifically, the
AID needs to be extended with the benefits of retraining models in future time intervals.
For instance, for retrained model Rj, the LA-AID contains the benefits of this retrain at
times j + 1, j + 2, ..., j + L, where L is the target look-ahead. Conversely, the AID only
has the benefits at time j.

To create the AID and LA-AIDs we assume that the adaptation tactics executed do not
influence the future data that the system receives. For instance, the fraud detection system
has a single trace of transactions that is not affected by model retrains: the transactions
that occur at time t are not affected by the adaptation tactic executed at time t− 1.

Look-Ahead Adaptation Impact Predictors

We start by describing the challenges of creating LA-AIPs, and the trade-offs involved
in selecting input features for LA-AIPs. Then, we present two alternative strategies to
implement LA-AIPs, discussing their advantages and disadvantages.

Challenges of building LA-AIPs. Instantiating look-ahead adaptation impact predic-
tors (LA-AIPs) is challenging for two main reasons. First, to leverage the model checker’s
long-term planning capabilities, the LA-AIPs have to be models of low complexity (e.g.,
linear models [57], shallow decision trees [16, 23]) such that they can be encoded in the
formal model.
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The second challenge, resulting from including the LA-AIPs in the formal model, is
simulating how their input features (e.g., the state of the environment or the current
predictive quality of an ML-model) will evolve within the look-ahead horizon. This is
necessary because the model checker simulates the future states of the system during the
verification process. Since the LA-AIPs are part of the formal model and depend on input
features to make a prediction, the evolution of these features over the planning horizon
must also be captured throughout the verification process.

Next, we discuss the trade-offs involved in selecting features for the LA-AIPs and then
explain how we address these challenges and instantiate LA-AIPs.

LA-AIPs input features. For the initial version of the framework we investigated the
use of a large number of alternative input features to estimate the variation of ML models’
quality (cf. Section 5.3). However, when using model checking techniques to plan for
the long term, the larger the number of input features used as input to the LA-AIPs,
the larger the number of features whose evolution needs to be estimated throughout the
planning horizon. This creates a trade-off between having LA-AIPs that rely on more
features, thus potentially achieving better accuracy, versus using features that, due to
their estimated nature are inherently noisy. Thus, when creating LA-AIPs it is crucial
to keep into account not only the importance of input features for the predictive quality
of the LA-AIPs, but also how accurately the evolution of these features can be estimated
throughout the planning horizon.

Keeping these considerations into account, and given the goal of crafting low complexity,
long-term predictors, the first step towards building LA-AIPs consists of a feature selection
phase aimed at navigating the trade-off of LA-AIP accuracy versus noisy simulation of
feature evolution. This can be performed using standard feature selection techniques [106]
on the AIPs, since at this stage the goal is to understand which input features are more
informative to the AIPs.

For instance, starting from an initial (large) set of available features, possible ways for
selecting/discarding features that are expected to be of less importance to the LA-AIP cor-
respond to: (i) looking at feature correlation between the available features and discarding
features that are highly correlated with other features; (ii) training an initial predictor
with all features available, looking at feature importance for that predictor, and selecting
the most important (top N) ones.

Instantiating LA-AIPs. Regardless of the underlying modeling strategy (e.g., linear
models, shallow decision trees) employed to instantiate LA-AIPs, the key missing piece for
enabling long-term planning is simulating the evolution of the input features over the look-
ahead horizon. Recall that this is required since the model checker needs the feature values
at each step of the verification process to query the LA-AIPs and estimate the expected
benefits of executing, or not, a retrain.

Out of the three feature sets for the AIPs (cf. Section 5.3), simulating the evolution
of the environmental features and of the amount of data available for retrain is relatively
straightforward since past data can be used to build time-series models that estimate the
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Figure 5.5: Left: tree representing the paths and future system states (nodes) explored by
the model checker during simulation. Right: example for creating two input samples for
the Prediction-based AID for LA=2. M represents the state of the ML model at each node
in the tree. ∆ represents the predictions of the different LA-AIPs. Note that Mprednop

LA=1 and
Mpredret

LA=1 differ due to the transition that occurs prior to transitions 1 and 2.

future values for these features [33, 124, 162]. Similarly, keeping track of how long ago the
retrain tactic was executed requires an additional variable in the formal model which does
not significantly increase its complexity.

The major challenge lies in simulating how the features that characterize the state of
the ML model evolve. This corresponds to estimating the expected benefits that each
adaptation tactic will yield at each future step1, which is what the LA-AIPs are trained
to predict. Thus, they can be leveraged to compute the evolution of the state of the
ML model during the verification process. While developing Ripple, we designed two
alternative ways for creating LA-AIPs which we describe bloew, discussing their pros and
cons. Both alternatives are grounded on the key principle of instantiating low-complexity
versions (e.g., linear models, shallow decision trees) of the AIPs that can be embedded in
the formal model of the ML-enabled system.

Prediction-based-LA-AIPs. The most straightforward approach to do long-term
planning with the AIPs would be to always use the same AIP in a chained/recursive
fashion, namely using its predictions for time t as input features for predicting the benefits
at time t+1. However, given the chaining of the predictions, and the re-use of predictions
as input features when estimating the benefits for the following simulation step, there is
a mismatch between train (non-noisy data) and inference (noisy) data and non-negligible
error propagation throughout the look-ahead horizon.

Prediction-based-LA-AIPs aim to address the mismatch problem by aligning the dataset
used to train the LA-AIPs with the data used to query them in the planning phase. Thus,
to build Prediction-based-LA-AIPsLA=L for look-ahead L, we create a LA-AIDLA=L based
on the (inherently imperfect) predictions of Prediction-based-LA-AIPsLA=L−1.

Figure 5.5 illustrates the process of creating LA-AIDs for the Prediction-based-LA-AIPs.
The tree shows the exploration paths simulated by the model checker during the verification
process, given the two adaptation tactics (retrain and nop) available at each time-step. Let
us focus on the two purple nodes at LA=2, reached via retrain transitions 1 and 2. Note

1Note that the predictive performance of the ML model depends on the sequence of tactics executed,
while the evolution of the environment’s state is independent from the adaptation strategy.
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that transition 1 follows a prior retrain tactic, while transition 2 is preceded by a nop
tactic. Consider transition 1. The AID used to train the Prediction-based-LA-AIPLA=2

uses Mpredret
LA=1 as the ML model state input features and ∆predret

LA=2 as its target. Note how
Mpredret

LA=1 (the ML model state input features) is computed based on ∆predret
LA=1 , which is

predicted by Prediction-based-LA-AIPLA=1. Also, note how ∆predret
LA=2 is computed as the

difference between the real ML model state at LA= 2 (M real
LA=2) and the predicted ML

model state at LA= 1 (Mpredret
LA=1 ). This way, the prediction errors that are expected to be

seen when the model checker is planning the adaptation strategy are accounted for at the
time the LA-AIPs are created.

Note that these predictors need to be built sequentially, given that when training the
Prediction-based-LA-AIPs for look-ahead L, one needs the predictions of the Prediction-
based-LA-AIPs for look-ahead L − 1. To start creating LA-AIDs for each look-ahead, we
first need to obtain the predictions of the AIPs. Recall that the AIPs predict for look-ahead
1 based on the current state of the environment and of the system and, thus, the AID does
not contain any predicted/noisy value (neither for the input features nor for the target).

Root-LA-AIPs. Although the Prediction-based-LA-AIPs address the mismatch issue
previously described, the use of predictions of look-ahead L to compute both input fea-
tures and target values for look-ahead L + 1 leads to an error accumulation problem.
Root-LA-AIPs address this problem by trading-off feature estimation error for feature stal-
eness. Specifically, Root-LA-AIPs exploit the observation that only at the start of the
simulation process do we actually know the current state of the ML model without error.
Based on this insight, Root-LA-AIPs (also look-ahead specific) are trained to estimate the
ML quality variation with respect to the known and error-free (albeit stale) ML state at
the start of the simulation. This way, they avoid relying on error-prone estimations of the
ML model state to generate predictions for the following time step.

Also in this case, to create Root-LA-AIPs for each look-ahead up to L we need L
LA-AIDs: one LA-AID for each look-ahead. Each LA-AID is created from the base AID
by going through all its samples, considering that each one is a possible root for a tree such
as the one depicted in Figure 5.5. Then, for each root, the tree is constructed up to the
look-ahead of the LA-AID under construction. Once the desired look-ahead is reached, all
the nodes (i.e., possible future ML model states) at that depth are added as samples to
the LA-AID. For each node n, the input features that characterize the state of the ML
model are the ones at the root of the tree, and the target that the Root-LA-AIP will be
trained to predict is computed as the difference between the real values of the ML model
state at node n and the values of ML model state features at the root.

Regardless of the LA-AIP type that is instantiated, we need to predict the benefits
both when the ML model is retrained and when it is not. Thus, we train two LA-AIPs
for each look-ahead: a retrain LA-AIP and a nop LA-AIP. To train these LA-AIPs, the
LA-AID for the corresponding look-ahead is sub-divided into retrain and nop transitions,
which are used to train the corresponding LA-AIPs. For instance, in Figure 5.5, purple
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Figure 5.6: Modules of the formal model (in blue) required by Ripple.

nodes are used as input to retrain LA-AIPs, because they come from retrain transitions,
while brown nodes are used for nop LA-AIPs.

Formal Model of the ML-Enabled System

The formal model of the ML-enabled system (Figure 5.6) is composed of modules for the
environment, the adaptation tactics, and the ML-enabled system, which encapsulates the
ML model abstraction. Additionally, and differently from the short-term implementation of
the framework, Ripple’s formal models incorporate the LA-AIPs. This is a key building
block to plan for the long term when to retrain. Finally, the system utility component
encodes the system-specific function to optimize.

The LA-AIP component encapsulates the logic that is used by the model checker to
obtain, during the verification phase, estimates of the impact of the retrain and nop adap-
tation tactics on the predictive quality of the ML-model. Ripple needs as many LA-AIPs
as the product of available tactics, metrics of interest and look-aheads. For instance, for the
fraud detection use-case with SLAs on true positive rate (TPR) and FPR, Ripple would
require 4 LA-AIPs for each look-ahead: TPR-retrain, TPR-nop, true negative rate (TNR)-
retrain, and TNR-nop (recall that, for a normalized confusion matrix, FPR= 1−TNR).
Listing 5.1 (lines 2-3) shows how the TPR Root-LA-AIPs for look-ahead 2 for the fraud
detection use-case are implemented in the PRISM model checker via linear-models. Specifi-
cally, these LA-AIPs rely on three key features, whose selection is explained in Section 6.2.4:
fraud rate, the TPR of the fraud detection model at the time when the model checker was
queried, and the TNR also at the start of the planning process. Recall from the pre-
vious section that the Root-LA-AIPs use the performance of the ML model at the root
(i.e., LA= 0) of the tree of possible exploration paths (Figure 5.5, left) to estimate the
benefits of retrain at the target depth L. Estimating the benefits for other look-aheads re-
quires instantiating more of these predictors in the formal model, replacing the coefficients
associated with each feature and the noise term.

The system utility definition, which encodes the goal of the self-adaptive system, is
defined via PRISM’s notion of rewards. By defining the property that the model checker
verifies as a function of the rewards, we can enable reasoning over quantitative measures
of interest. For the fraud detection use-case, where the goal is to minimize the overall cost
incurred by the system, the rewards keep track of the different costs that the system incurs:
the cost of executing the retrain tactic, and the costs of violating either (or both) SLAs
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Listing 5.1: Integration of the Root-LA-AIPs in PRISM’s formal model & system utility
definition via rewards function2.
1 // TPR Root-LA-AIPs for look-ahead 2 and for tactics Retrain (ret) and Nop
2 formula LA_AIP_TPR_ret_LA2 = round(
3 0.6401*ret_Fraud_Rate + -0.9281*INIT_TPR + 1.7525*INIT_TNR + -1.1272*100
4 );
5 formula LA_AIP_TPR_nop_LA2 = round(
6 0.5036*nop_Fraud_Rate + -0.8167*INIT_TPR + 1.0348*INIT_TNR + -0.5498*100
7 );
8
9 // System utility definition

10 formula fpr_SLA_penalty = (fpr > FPR_SLA_THRESHOLD) ? SLA_PENALTY : 0;
11 formula tpr_SLA_penalty = (tpr < TPR_SLA_THRESHOLD) ? SLA_PENALTY : 0;
12 rewards "systemUtility"
13 [retrain_complete] true & (time > 0) : (RETRAIN_COST);
14 [tick] true & (time > 0) : (fpr_SLA_penalty + tpr_SLA_penalty);
15 endrewards

(TPR and FPR). These are shown in lines 8-11 of Listing 5.1: whenever a retrain completes,
the system accrues the retrain cost; whenever time advances (there is a new time tick),
the system accrues the FPR and TPR SLA violation penalties (lines 6-7). Based on this
rewards structure, we define the quantitative property RsystemUtility

min=? [F end] (cf. Figure 5.6)
that is checked during the formal verification process. The definition of system utility is
application dependent and when it is modified, the rewards and the quantitative property
should be updated accordingly.

5.6 Summary
This chapter presented a framework to engineer self-adaptive ML-based systems, that
generates policies that specify when and how to adapt an ML-based system. Additionally,
the framework supports both short-term as well as long-term planning, and deals with
ground-truth label delay by leveraging state-of-the-art ML methods for estimating ML
model performance in the absence of ground-truth labels.

To create the framework, we addressed two main challenges: (i) estimating the benefits
of the adaptation tactics available to adapt the ML component, and (ii) reasoning about
how the execution of a specific adaptation tactic was expected to affect overall system
utility. We solved the first challenge by creating adaptation impact predictors (AIPs),
which are models trained to predict the expected benefits of executing an adaptation
tactic. The second challenge was addressed by leveraging probabilistic model checkers
and creating a formal model of the system under adaptation. This allowed to model the
impact of an adaptation on other system components and reason about how an adaptation
is expected to impact overall system utility.

2In PRISM commands are encoded as probabilistic state transitions following the format [action] guard
→ prob1:update1 + ... + probn:updaten. When guard is true, update1 is applied with probability
prob1 (called transition probability). action allows to specify a name for the command or to synchronize
commands between modules. Thus, commands with the same action are only triggered when all the guard
of all commands is true.
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Finally, we introduced Ripple, an approach for using the framework to plan for the
long term when to adapt the ML component. Ripple leverages different AIPs that are in-
tegrated in the system’s formal model to take advantage of the probabilistic model checker’s
state exploration mechanism and plan for the long term.

The following chapter presents the claims that are used to evaluate the thesis, evaluates
the contributions, and validates the claims via two use-cases.
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Chapter 6

Evaluation

This chapter evaluates the framework proposed in this thesis based on the following three
claims:

1. The proposed framework leads to better system utility when compared against sim-
pler baselines, such as periodic model updates.

2. The framework has low latency, rendering it usable in online planning settings.

3. The framework is generalizable and applicable to a range of scenarios and domains
with different characteristics and ML models.

Each claim is further discussed in Section 6.1 and validated via two use cases from two
distinct domains. The first use case is a self-adaptive fraud detection system (Section 6.2),
which is representative of binary classification systems that leverage tabular data. Binary
classification is commonly employed for medical diagnosis systems [62], spam detection
systems, and intrusion detection systems [139], highlighting the relevance of testing the
framework with binary classification ML-enabled systems. Additionally, the considered
use case targets a highly impactful domain, namely AI-based financial fraud detection,
whose market was valued at approximately 12.1 billion USD and is projected to grow to
over 108 billion USD by 2033 [117].

The second use case (Section 6.3) considers a self-adaptive machine translation (MT)
system, highlighting the framework’s flexibility, since MT systems represent sequence-
to-sequence problems (family of ML approaches typically leveraged to deal with natu-
ral language problems). Typical MT applications include (i) breaking language barriers
for international business, diplomacy, and personal communication (e.g., news transla-
tion [75]); (ii) adapting products, services, and content to different languages and cultures;
(iii) teaching non-native speakers to understand content with language learning tools (e.g.,
Duolingo [4]), and (iv) helping users via applications in travel, customer support, and social
media where immediate translation is beneficial [143]. Software engineers have also started
exploring the capabilities of MT models for tasks such as automatic program repair [87],
code changes [177] and bug fixing [178], or code completion [46]. The wide applicability of
MT models highlights the relevance of this use case and of the application of the proposed
framework to this domain and class of systems.
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Table 6.1: Framework capabilities and representation in the use cases.

Fraud detection Machine translation
(Section 6.2) (Section 6.3)

ML self-adaptation

Extension to multiple tactics

Long-term planning

Table 6.1 shows the capabilities of the framework and the use cases in which those
capabilities were implemented. Specifically, in both use cases the base ML-enabled system
was turned into a self-adaptive system that attained higher system utility when compared
against simpler baselines (e.g., periodic adaptation). This demonstrates the applicability
of the framework and validates claim 1 (Sections 6.2.1 and 6.3). Then, both use cases
demonstrate how the framework can be extended to account for multiple adaptation tactics:
for the fraud detection system, we conducted a study showcasing how the formal model of
the system could be extended to account for an extra tactic and how the PRISM model
checker was capable of handling such extension (Section 6.2.3); the machine-translation
system is either not adapted (tactic nop) or the ML model is fine-tuned. This tactic had
not been considered in the fraud detection system, thus demonstrating how the framework
can cope with varying adaptation tactics (Section 6.3). Finally, the extension to planning
for the long term was only evaluated on the fraud detection use case (Section 6.2.4).

6.1 Claims
1. The framework leads to better system utility when compared against simple
heuristic baselines, such as periodic model updates. This claim is evaluated by
analyzing the ability of the framework to synthesize adaptation strategies that lead the
system to achieve a utility that is closer to the optimal one than when simpler baselines
are employed (such as periodically or reactively adapting the ML model). The general idea
is that, given that the framework is equipped with predictors of the expected benefits and
costs of executing each ML adaptation tactic, it will do a better job at trading off these
two dimensions thus bringing system utility closer to the optimal.

2. The framework incurs low latency, rendering it usable in online planning
settings. The framework is effective at optimizing system utility due to the contributions
in the Analyze and Plan components. Namely, the adaptation impact predictors and the
probabilistic model checking approach for synthesizing adaptation strategies. However,
adding these components to the decision-making loop increases the time complexity of
the overall approach for deciding whether to adapt, particularly when compared against
the simpler baselines, which incur zero decision latency. Since the framework is meant for
online use, its time complexity should be sufficiently low, such that it enables near real-time
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adaptation decisions for domains such as recommender systems, enterprise systems, and
Internet of Things (IoT) systems, but not necessarily for real-time safety-critical systems.

3. The framework is applicable to a range of scenarios and domains with
different characteristics and ML models. Besides being feasible for online planning,
the framework should also generalize to a multitude of domains and systems, regardless of
their specific characteristics, such as type of ML model – e.g., random forest versus neural
network – or ML task – classification versus sequence-to-sequence problems. Demonstrating
this capability is achieved by instantiating the framework to render two different ML-
enabled systems self-adaptive: the credit card fraud detection system (Section 6.2) and
the machine translation system (Section 6.3).

6.2 Self-Adaptive Fraud Detection System
To demonstrate that the proposed framework can be used to instantiate self-adaptive
ML-based systems, we engineer an adaptation manager for a ML-based credit card fraud
detection system, based on a real credit card fraud detection system [53]. Typically, fraud
detection systems rely on supervised binary classifiers to classify incoming (credit/debit
card) transactions as either legitimate or fraudulent and have banks and merchants as their
clients. In this domain, quality attributes of interest are for example the overall cost of
service level agreement (SLA) violations. Hence, we consider that our system has SLAs on
the target: (i) true positive rate (TPR) – percentage of fraudulent transactions actually
caught – and (ii) false positive rate (FPR) – percentage of fraudulent transactions not
caught – which should be kept within pre-defined thresholds:

system(TPR) ≥ TPR_threshold;
system(FPR) ≤ FPR_threshold;

SLA violations can occur when the ML component misclassifies a substantial amount of
samples, such that either the TPR decreases below the threshold, the FPR becomes higher
than acceptable, or both. These misclassifications are typically caused by environmental
changes through data shifts: the input samples to the ML component change such that
the ML model is no longer capable of correctly classifying those samples. This occurs for
example when the amount of fraud in a given period increases or when fraudsters change
their strategies (see Section 4.2) [32, 111].

Whenever these SLAs are violated, the system incurs non-negligible costs, which we
assume are fixed (this assumption is discussed in Section 7.2.1. We further assume that
the fraud-detection system is deployed in production and that new data is gathered con-
tinuously. Although we start by assuming immediate ground truth label availability, we
later relax this assumption and evaluate CB-ATC the approach presented in Section 5.4 to
deal with delayed ground truth labels for transactions that are available only d time units
after the transaction has been processed (Section 6.2.2).

Periodically, the self-adaptation manager can decide to either do nothing (tactic nop),
i.e., not to adapt the model, or to retrain the model, leveraging the newly collected data
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and labels. We consider fixed retrain costs since the problem of estimating these costs has
already been addressed in the literature [31, 194].

The framework solves the problem of deciding when to retrain such that the global cost
given by the sum of SLA violation penalties and adaptation costs is minimized. System
utility (sysU ) is thus defined as:

sysU = total cost =
= cost(TPR SLA violation) + cost(FPR SLA violation) + cost(tactic),

(6.1)

where total_cost is the global cost the system is expected to incur in L time units;
cost(TPR SLA violation) and cost(FPR SLA violation) are the costs of violating the
TPR and FPR SLAs, respectively, established for the system. The system is charged ei-
ther of these costs when the monitored TPR is below the pre-defined TPR threshold and/or
when the FPR is above the FPR threshold. Finally, cost(adaptation tactic) encodes the
cost of adapting the ML model. This cost is set to zero for the nop adaptation tactic.
Finally, although the definition of system utility is application-dependent, it is expected
that the cost (e.g., monetary, environmental) and/or latency of adaptation will need to be
accounted for, hence making this term of the equation general to other applications.

At a first stage we set the planning horizon L to one time unit, thus employing the
myopic version of the framework. In this case, we capture retrain latency by having it weigh
in on system utility: retrain latency is first translated into a percentage of the time period;
for this percentage of time, system utility is computed based on the confusion matrix of
the ML component that represented the state prior to the retrain; for the remainder of the
time interval, system utility is computed based on the confusion matrix of the retrained
model. Since the distribution of environment generated events may not be uniform, system
utility is further weighted by the percentage of events in each period (during adaptation
and after). Later, we show how the framework can plan for the long term (i.e., L > 1)
when to adapt the ML model (Section 6.2.4).

6.2.1 Myopic Self-Adaptive Fraud Detection System
We start by describing the formal model of the system, illustrating key components resort-
ing to PRISM syntax. These PRISM blocks can be re-used when applying the framework
to additional use cases, requiring only slight modifications that are use case dependent
(e.g., metrics of interest, repertoire of tactics, system utility definition). Then, we explain
how probabilistic model checking is employed to extract the expected optimal adaptation
tactic and how the repertoire of tactics can be extended. Finally, we discuss the AIPs
required for this use case.

Formal model of the fraud detection system. The formal model of the system re-
quires modules for each of the different moving parts that have an impact on the system.
Thus, we model: (i) the environment under which the system is operating; (ii) the adapta-
tion tactics – nop and retrain; and (iii) the ML component – to analyze how mispredictions
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Listing 6.1: Adaptation manager and System rewards1

1 module adaptation_manager
2 selectTactic : bool init false;
3 currTactic : [none .. retrain] init none;
4
5 [newEvent] !selectTactic -> (selectTactic'=true)&(currTactic'=none);
6
7 // non-deterministic choice between adaptation tactics
8 [nop] (selectTactic=true) -> 1:(currTactic'=nop)&(selectTactic'=false);
9 [retrain] (selectTactic=true)&(newData > 0) ->

10 1:(currTactic'=retrain)&(selectTactic'=false);
11
12 [tick] (currTactic != none) -> 1:(currTactic' = none);
13 endmodule
14
15 formula tactic_cost = (currTactic = retrain) ? retrainCost : 0;
16 formula fpr_violation_cost = (fpr > FPR_THRESHOLD) ? FPR_COST : 0;
17 formula tpr_violation_cost = (tpr < TPR_THRESHOLD) ? TPR_COST : 0;
18
19 rewards "systemUtility"
20 [tick] true & (time>0) : (tacticLatency * percentTxs * (
21 ((INIT_FPR > FPR_THRESHOLD) ? FPR_COST : 0)
22 + ((INIT_TPR < TPR_THRESHOLD) ? TPR_COST : 0)
23 ) + (1 - tacticLatency) * (1 - percentTxs) * (tacticCost + fpr_violation_cost +

tpr_violation_cost));
24 endrewards

affect system utility, to simulate the execution of the tactics, and to understand the impact
of mispredictions and adaptation tactics on system utility.

Since we assume that the two tactics (nop and retrain) cannot be executed simulta-
neously, we further consider an adaptation manager module that prevents this from hap-
pening and non deterministically selects which tactic to execute. As shown in Listing 6.1,
whenever there is a new event generated by the environment (line 5) – for the fraud detec-
tion system an event consists of a batch of transactions – the adaptation manager enters
the selectTactic state and can select to execute one tactic among the available ones1.
For example, while tactic nop can always be executed (line 8), tactic retrain can only be
executed when there is newData with which to train the ML model (line 9). Finally, since
our approach assumes that time is divided into fixed-sized intervals, we further model a
clock to keep track of the passing of each time interval. The clock module is implemented
as in Moreno et al. [124].

Synthesizing optimal adaptation policies. As can be seen in Listing 6.1, each tick
of the clock triggers the accrual of a reward2 (lines 19-21). As defined in Equation (6.1),

1In PRISM commands are encoded as probabilistic state transitions following the format [action]
guard → prob1:update1 + ... + probn:updaten, where guard is a predicate over all variables in the
model (including variables from other modules). When guard is true, update1 is applied with probability
prob1 (called transition probability). Transition probabilities of a command must sum to 1. action allows
to specify a name for the command or to synchronize commands between modules. Thus, commands with
the same action are only triggered when all the guard of all commands is true.

2The basic building blocks of PRISM’s syntax are modules, rewards structures, and formulas. Each
module is composed of a set of variables and commands, which affect the variables belonging to the
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system utility for the fraud detection system is given by the total costs incurred by the
system due to the tactics executed and possible SLA violations. To encode this definition
in the formal model, we use PRISM’s reward structure (lines 18-22).

We account for retrain latency by considering that it takes up a percentage of the time
interval to execute, which is given by tacticLatency. During this period, the system is
receiving and classifying transactions. The transactions that are received while the tac-
tic is on-going are classified resorting to the non-adapted ML model, while the remaining
transactions are classified resorting to the adapted model. The percentage of transac-
tions classified during the tactic execution period is encoded in percentTxs. Thus, if the
non-adapted model violates any SLA (TPR or FPR), the cost the system incurs in is pro-
portional to tacticLatency×percentTxs×sum of costs of SLA violations. For the
remainder of the time instant, i.e., 1 − tacticLatency, the remaining 1 − percentTxs
transactions are classified with the adapted model, hence leading the system to possibly
incur different SLA violation costs due to variations in the system’s TPR and FPR. This
is encoded in lines 20-21 of Listing 6.1.

To generate optimal adaptation strategies, we need to define a formal property for the
PRISM model checker to verify. Since for this use case system utility is defined as the
total costs incurred by the system (Equation (6.1)) and since the goal is to minimize these
costs, the property that leads to the expected optimal adaptation strategy corresponds to
minimizing system utility, which is defined in PCTL (reward-based property specification
logic, cf. Section 2.1) as RsystemUtility

min=? [F ‘end’], which means “minimum system utility when
time ‘end’ is reached”. Here R and F are the operators described in Section 2.1, min=? is
the query, and systemUtility specifies the reward structure to use as target. ‘end’ defines
the simulation horizon, i.e., how many future time intervals we want the formal model to
simulate, which in this case is set to 1.

Extending the tactic’s repertoire. To reason about self-adaptation considering a
broader set of adaptation tactics, the formal model needs to be changed only through
the addition of the corresponding tactics’ modules such that the adaptation manager can
consider them as available when making its nondeterministic choice. This can be achieved
by adding these tactics to Listing 6.1, in addition to nop and retrain (lines 8-9). This is
demonstrated and evaluated in Section 6.2.3.

AIPs for the fraud detection system. As discussed in Section 5.3, the framework
instantiates an AIP for each adaptation tactic. The AIPs are trained using the features
presented in Table 6.2. In this case, since there are two adaptation tactics (retrain and nop),
the framework instantiates two AIPs for each: one for predicting the increase/decrease in
the true positive rate (TPR) and a second one to predict the true negative rate (TNR).
Thanks to the properties of the confusion matrix, by predicting the future TPR and TNR,

module. The state of the MDP is given by the composition of all variables of all modules. The actions
and transitions that the MDP can execute and take at a particular state are given by the commands that
are enabled at a specific moment in time, by the different variables. Finally, the rewards that the MDP
collects are specified with the rewards structure.
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Feature group Basic Features Output Features

Feature name

BF1.1: |Nj |, # transactions never used for training

scores-JSD

BF1.2: |Ii|, # transactions used for training
BF1.3: total data = |Ii|+ |Nj |
BF1.4: ratio new-old data = |Nj |/|Ii|
BF2.1: current TPR
BF2.2: current TNR
BF3.1: time elapsed since the last retrain
BF4.1: current fraud rate

Table 6.2: Features used by the AIPs to predict the benefits of retraining and not adapting.

we can fully characterize the ML component’s confusion matrix in the following time
interval. These predictions are then provided as inputs to the formal model and leveraged
by the probabilistic model checker to synthesize an optimal adaptation strategy.

To evaluate the improvements to system utility attained via the use of the framework
and its tractability when applied to the myopic self-adaptive fraud detection system we
consider the following research questions:
RQ1 Can the benefits of a model retrain be predicted with acceptable accuracy?
RQ2 Does the framework allow to improve system utility when compared against baselines

such as periodic retrains, or reactive policies that retrain upon SLA violations?
RQ3 How do alternative execution contexts affect the gains achievable by the framework?
RQ4 Is the time complexity of the framework acceptable for online adaptation?
RQ5 What is the impact of label delay when estimating model performance?

These research questions evaluate and demonstrate the claims discussed in Section 6.1.

Experimental settings. We leverage Kaggle’s IEEE-CIS Fraud Detection dataset [164]
and the winning solution of the challenge [53] as basis for our implementation. The winning
solution relies on an XGBBoost random forest model [39] that uses 216 features, includ-
ing both features originally present in the IEEE-CIS Fraud Detection dataset as well as
additionally engineered features. We utilize this winning solution to implement the data
cleaning, and feature selection tasks. The data splits for training, validation, and test, the
self-adaptation mechanisms, and the generation of the AID are then implemented on top
of that base solution. Further, for the purpose of our use case we leverage only the train
dataset of the Kaggle competition for which labels are available (the test dataset does not
have labels of the transactions). Label availability is necessary to evaluate the predictive
quality of the ML model and the benefits of retraining.

Also, we always ensure that the fraud transactions are fed to the ML model respecting
their original timeline, as we do not wish to give any advantage to the model by providing
it with information about the future. As such, we use the first 1/3 of the original Kaggle
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Model type Retrain S Retrain M Retrain L NOP S NOP M NOP L

TPR MAE 0.1141 0.1158 0.1162 0.1343 0.1254 0.1276

PCC 0.6811 0.6727 0.6731 0.6165 0.5793 0.5737

TNR MAE 0.0055 0.0060 0.0059 0.0066 0.0068 0.0068

PCC 0.7436 0.7086 0.7121 0.6142 0.6008 0.5943

Table 6.3: AIP performance on different sets of features (S, M, L), evaluated resorting to
the mean absolute error (MAE) and to the pearson correlation coefficient (PCC). NOP
represents the AIPs that estimate the TPR and TNR when the model is not retrained.

train dataset to train (70%) and validate (30%) the initial fraud detection model. The
remaining 2/3 are divided as follows: 70% are used for training and validation of the AIPs
(80% and 20%, respectively), and the remaining 30% for testing the framework.

Throughout the evaluation, the cost of an SLA violation is fixed to 10 and the retrain
cost is varied. This approach is justified as the costs/benefits of adaptation are determined
by the relative values of these costs, rather than by their absolute values. Thus, by fixing
the SLA violation cost and varying the retrain cost we can conduct a sensitivity analysis
to evaluate the effectiveness of the proposed framework in a broad range of scenarios
(including different retrain latencies).

In this study, the AIPs are random-forest predictors of the sklearn package [140] with
default parameter values except for the number of trees which is set to 12, similarly to the
fraud detection ML model. The time interval is set to 10 hours and the horizon to one
time unit. Our implementation is available at https://github.com/cmu-able/ACSOS22-
ML-Adaptation-Framework.

Baselines. We consider the following baselines:
• No-retrain: the fraud detection ML model is never retrained;
• Periodic: the model is retrained at every time interval;
• Reactive: the fraud detection model is retrained whenever there is an SLA violation;
• Random: at each time step, there is a 50-50 choice that the model will be retrained;
• Optimum: this is the optimal (short-term) solution which is computed by looking at

the actual future results of both retraining and not retraining the model.

Accuracy of the AIPs (RQ1)

This section answers RQ1 by evaluating the performance of the AIPs resorting to the mean
absolute error (MAE) and to the Pearson correlation coefficient (PCC), and considering
different sets of features employed by each predictor. Specifically, we consider three differ-
ent feature sets: S – minimal set with only the basic features (cf. Section 5.3); M – medium
set, which includes the basic features and output characteristics; L – encompasses the fea-
tures of the previous sets and the input characteristics. Table 6.3 displays these results.
Interestingly, we see that an increase in the size and complexity of the feature set does not
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(a) Cumulative cost. (b) Cumulative SLA Violations.

Figure 6.1: Utility improvements achievable via the proposed framework. The execution
context for this experiment is: FPR threshold = 1, TPR threshold = 70, retrain cost
= 8, retrain latency = 0. The number of retrains executed by each baseline is shown
in the legend of each plot, between brackets after the baseline’s name. The retrains are
represented by the markers in each line.

yield better AIPs. The results also show that the models responsible for predicting the
future TPR and TNR when the model is retrained achieve a higher accuracy (lower MAE
and higher correlation) than their nop counterparts (which predict the future TPR and
TNR when the model is not retrained). Overall, on the one hand, the accuracy of the AIPs
proposed in this work demonstrates that they can be employed to estimate the expected
benefits of adaptation. On the other hand, the accuracy metrics reported in Table 6.3
confirm that predicting the future performance of ML models is far from trivial and that
the proposed predictive methodology still has significant margins of improvement (e.g., by
identifying different features, black-box predictors or combining white-box methods [55]).

Utility Improvement due to Retrain (RQ2)

Figure 6.1 compares the proposed framework (represented by line AIP) against the base-
lines. To evaluate whether the use of the framework allows to improve system utility over
baselines that do not explicitly estimate the benefits of retrain, we define the SLA thresh-
olds as TPR ≥ 70% [8] and FPR ≤ 1% [200], fix the retrain latency to 0 and the retrain
cost to 8. These SLA threshold values were set based on values typically employed by
related work in this domain [8, 200]. As Figure 6.1a shows, by leveraging the proposed
framework it is possible to have the fraud detection system minimize its total costs and be
closer to the optimal possible cost. This answers RQ2 and shows that the framework does
improve system utility over simpler, model-free baselines due to its ability to estimate the
benefits of executing the retrain tactic. As for the number of SLA violations, as shown
in Figure 6.1b, the AIP violates slightly more SLAs than all other baselines except No-
retrain (the baseline that violates the most SLAs). However, as seen previously, this does
not translate into higher incurred costs, which is the quality attribute under optimization.
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TPR Retrain Retrain
threshold cost latency

[50, 60, 70, 80, 90] [1, 5, 8, 10, 15] [0, 1, 5]

Table 6.4: Values tested for different execution contexts.

(a) Variation of TPR SLA (b) Variation of retrain cost (c) Variation of retrain latency

Figure 6.2: Impact of execution context on the total cost incurred.

Impact of Execution Context (RQ3)

To answer RQ3 and evaluate how different execution contexts impact the need for re-
train, we ran experiments for different SLA thresholds, retrain costs, and retrain latencies.
Specifically, we tested the values shown in Table 6.4 for each dimension, fixing the remain-
ing two dimensions to the values of the base scenario (TPR threshold = 70, retrain cost =
8, retrain latency = 0). Figure 6.2 displays these results.
Varying the TPR SLA. Regarding the TPR threshold (Figure 6.2a) the results show
that the cost incurred by the approaches increases as the TPR threshold increases. This is
justified by the fact that an increase in the TPR threshold yields a more difficult problem –
the system tolerates less incorrect classifications of fraud transactions. This leads to more
SLA violations, thus increasing the cost. The Optimum and AIP approaches also suffer a
cost increase since retraining does not necessarily prevent them from violating the SLAs.
Varying the retrain cost. Focusing now on the retrain cost (Figure 6.2b) we see that if
the cost is very low, the decision of whether to retrain is fairly trivial and so all approaches
that retrain the ML component are close to the Optimum. However, as the retrain cost
increases, we start to notice how carefully selecting when to retrain, accounting for the costs
and benefits of the tactic, does pay off, as the AIP gets closer to the Optimum than the
other approaches. As expected, the No-retrain approach is not affected by this dimension.
Varying the retrain latency. Finally, regarding the retrain latency dimension, the values
tested correspond to percentages of the time interval that are occupied with the retrain
execution. That is: retrain latency = 0 =⇒ retrain is assumed instantaneous; retrain
latency = 1 =⇒ during the first 10% hours of the time interval the model is under retrain
and transactions are classified using the existing, non-retrained model. The same rationale
applies to retrain latency = 5. The results (Figure 6.2c) show that this dimension has
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Total Total PRISM PRISM
(mean) (stdev) (mean) (stdev)

3.459 0.070 3.113 0.061

Table 6.5: Time overhead (secs) of the adaptation strategy generation process. The
columns named ‘PRISM’ show only the time overhead due to verifying the formal model.
The remaining columns display the total time overhead due to the AIPs and to the prob-
abilistic model checking.

little impact on the cost of any approach, although the total cost of the Optimum solution
increases slightly as the retrain latency grows. In fact, even if this baseline can always
correctly determine whether it is worth it to retrain the model at any time t, if the retrain
latency increases, a fraction of the transactions for the t-th interval are classified using an
old model, thus increasing the amount of misclassifications and SLA violations.

Time Complexity (RQ4)

Since the purpose of the framework is to enable run-time adaptation of ML components to
improve system utility, we evaluate the time complexity of the process of generating the
adaptation strategy. This process corresponds to querying the AIPs and having PRISM
verify the property of interest for the formal model of the system. Table 6.5 shows the
average and standard deviation of the time overhead due to the whole process and of the
formal model verification alone. These values correspond to the execution context defined
in Section 6.2.1 and were obtained by running the experiments on a machine with an
AMD EPYC 7282 CPU@2.8GHz, with 16 cores and 128GB RAM. As can be seen, the
process of generating the adaptation strategy takes around 3.5 seconds, which is perfectly
affordable considering that retraining ML components has a much higher time overhead.
This answers RQ4 and shows that the proposed framework can be employed to adapt
ML-enabled systems online.

6.2.2 Impact of Label Delay
We now evaluate (i) the impact of label delay when estimating the performance of the ML
model and (ii) how the accrued estimation error affects AIP performance. This allows us
to understand the real impact of the assumption on ground truth label availability. To do
so, we consider the following variants of our framework:
• AIP: assumes immediate label availability, delay= 0 (base version of the framework);
• AIP_del: estimates the current ML model performance based on the delayed metrics;
• AIP_atc: leverages ATC to estimate ML model performance;
• AIP_cbatc: leverages CB-ATC to estimate ML model performance;

We structure this study in two parts. We start by analyzing the effectiveness of ATC and
CB-ATC (see Section 5.4) in predicting the current confusion matrix of the fraud-detection
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(a) True positive rate (TPR). (b) True negative rate (TNR). (c) Fraud rate.

Figure 6.3: Mean Absolute Error (MAE) of the delayed, ATC and CB-ATC baselines.

classifier, as well as the fraud-rate in the environment. Recall that these constitute some
of the input features to the AIPs. Next, we evaluate to what extent using ATC and
CB-ATC to predict the input features for the AIPs impacts the effectiveness of the self-
adaptive framework when optimizing system utility. Throughout this study, we consider
delay intervals ranging from 2 to 34 time intervals, which correspond to, approximately, 1
and 14 days, respectively (recall that a time interval corresponds to 10 hours).

Estimation of the confusion matrix and fraud rate. Figures 6.3 and 6.4 evaluate the
performance of both ATC and CB-ATC when estimating the current (i.e., before adaptation
is enacted) TPR, TNR and fraud rate of the fraud detection ML model. Specifically, we
report the mean absolute error (MAE) (Figure 6.3) and the Pearson correlation coefficient
(PCC) (Figure 6.4) for each approach, and for each value of label delay tested.

Regarding the MAE, we observe that CB-ATC substantially reduces the estimation
error for all metrics (TPR – Figure 6.3a; TNR – Figure 6.3b; fraud rate – Figure 6.3c)
when compared against the delayed labels baseline. ATC however is outperformed by the
delayed labels baseline. This is due to the fact that ATC was developed to estimate the
accuracy of the classifier and not the performance of individual classes, which is the current
case. Regardless, and particularly for the TNR and the fraud rate (Figures 6.3b and 6.3c)
all approaches have a low estimation error.

In terms of the PCC (Figure 6.4) both ATC and CB-ATC present much higher correla-
tions than the delayed approach for all metrics evaluated. In this setting, high correlation
means that the estimations obtained by ATC and CB-ATC provide meaningful insights
into the actual real values of the metrics. Overall, since CB-ATC is the approach that
presents the best trade-off between MAE (low) and PCC (high), we expect it to yield
better performance than the ATC and delayed baselines when leveraged by the framework.

These results corroborate our hypothesis on ATC’s limitations (Section 5.4) and show
that CB-ATC can effectively solve them, yielding lower estimation error.

Impact on system utility. Next we evaluate the impact that using these approaches has
on system utility (i.e., total cost) when dealing with different values of delay. Figure 6.5
reports the total cost incurred by each baseline for the same environmental settings of
Figure 6.1. These results confirm the superiority of CB-ATC, which globally appears
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(a) True positive rate (TPR). (b) True negative rate (TNR). (c) Fraud rate.

Figure 6.4: Pearson Correlation Coefficient (PCC) of the delayed, ATC and CB-ATC
baselines.

(a) Total cost for each delay value. (b) Total SLA violations for each delay value.

Figure 6.5: Total cost and SLA violations incurred by the different approaches when ac-
counting for label delay. The values reported correspond to the last instant of the simula-
tion, corresponding to time= 98 in Figure 6.1.

to be the most competitive solution across the considered delay values up to delay 12
(corresponding to 5 days). More precisely, the average total cost in the range of delay values
[2, 12] for the approaches CB-ATC (AIP_cbatc), ATC (AIP_atc) and delayed metrics
(AIP_del) is 1359, 1407 and 1453, respectively. This is expected given the conclusions
drawn from the analysis of Figures 6.3 and 6.4.

Further, these results show that, for relatively small delay values (i.e., delay 2, corre-
sponding to approximately 1 day), the use of CB-ATC allows the framework to achieve a
system utility that is close to the one obtained in a setting where labels are immediately
available (i.e., 8% worse than the AIP baseline). As the delay grows beyond 12 (i.e., 5 days),
the performances of CB-ATC and ATC tend to degrade relatively to the delayed baseline
that only has access to delayed information, leading them to achieve a performance that
is on par with the random baseline. Conversely, for delays in the [2, 12] interval, CB-ATC
achieves an average gain of approximately 10% with respect to the random baseline.

We suspect that the root cause of the problem is that the quality of the AIPs degrades
significantly as the delay grows, independently of whether their input features are pre-
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(b) Replace cost = 8 and retrain cost = 5

Figure 6.6: Optimal adaptation tactic selection as a function of the true negative rate
(TNR) offered by the component replacement and retrain adaptation tactics. Recall that
the TNR offers a direct proxy to the FPR SLA since FPR = 1−TNR. The model checker
is capable of selecting between multiple adaptation tactics by analyzing the expected cost-
benefits offered by each and selecting the one that optimizes system utility.

dicted via ATC or CB-ATC or if delayed values are used. Regardless, and as previously
observed, CB-ATC can predict these features more accurately than an oracle that simply
outputs delayed information. We argue that this limitation might be imputed to the mod-
eling approach that we currently use to construct the AIPs, which can be addressed by
investigating alternative modeling techniques and different feature engineering methods.

6.2.3 Extending the Repertoire of Adaptation Tactics
Although for this use case we created AIPs only for the nop and retrain tactics, the planning
component (i.e., the probabilistic model checker) of the framework can still be used to
support “what-if” analysis aimed at identifying in which scenarios the use of additional
adaptation tactics optimizes system utility.

To demonstrate the extensibility of the framework, we consider the availability of a
third tactic, which we refer to as component replacement: replacing the ML model used
for fraud detection with a rule-based model defined by human experts. We assume that
the rule-based model offers a fixed TPR of 75% and that the current performance of the
ML model is TPR= 75% and TNR= 98%. The SLA thresholds and costs are the ones
previously defined. We then use the planning component of our framework to conduct a
what-if analysis that aims to identify the optimal adaptation tactic when varying: (i) the
TNR for the rule-based model, (ii) the TNR for the ML model after it is retrained, and
(iii) the costs for the retrain and component replacement tactics.

Figure 6.6 shows the results of this analysis, indicating with different colors the optimal
tactic for each setting of: rule-based model TNR, retrained ML model TNR, and tactic
costs. The figure reports on the x-axis the TNR of the ML model after retrain and on the
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y-axis the TNR of the rule-based model. Note that Figure 6.6a and Figure 6.6b consider
different execution costs for each tactic. This study demonstrates that the model checker is
capable of selecting between multiple adaptation tactics by reasoning on the impact of each
alternative tactic on system utility and identifying the one that yields maximum gains.

6.2.4 Long-Sighted Self-Adaptive Fraud Detection System
This section evaluates Ripple (Section 5.5.1), addressing the following research questions:

RQ1 What is the predictive quality of the LA-AIPs?
RQ2 What are the system utility gains achieved by Ripple?
RQ3 Under which conditions is long-term adaptation useful?
RQ4 Is Ripple’s latency acceptable for online planning?
RQ5 How expensive is it to train LA-AIPs?

These research questions provide further evidence regarding the tractability of the
framework and its ability to lead to system utility gains compared to simpler adaptation
heuristics in the more challenging scenario of long-term adaptation.

Experimental settings. For this study we use the same experimental settings as before.
Specifically, we use Kaggle’s IEEE-CIS Fraud Detection dataset [164]: the first third of
Kaggle’s train dataset is used to train the base fraud detection model (70% train, 30%
validation). The remaining 2/3 are used to create the AIDs: 70% for training and validation
(20% for validation) and the remaining data (30%) to test the framework, simulating an
actual self-adaptive fraud detection system in production. By default, Ripple retrains at
the first time-interval.

For evaluation purposes, the SLA violation cost is set to 10 and the FPR SLA threshold
to 1% [200]. The retrain cost and latency, TPR SLA threshold, and look-ahead parameters
are varied throughout the study. To estimate the total number of transactions, number
of fraud transactions, and fraud rate in future time steps, we employ ARIMA time-series
models from the Statsmodels library [160].

The experiments were performed in a virtual machine with 32 virtual CPU cores run-
ning on an Intel(R) Xeon(R) Gold 5320 CPUs at 2.2GHz and 48GB of DDR4 RAM. The
virtual machine uses Ubuntu 22 LTS, Java 11, and version 4.8.1 of PRISM.

Baselines. To evaluate Ripple we consider the following baselines:
• No-retrain: never retrain the model – this baseline employs the initially trained fraud

detection ML model;
• Periodic: retrain the model at every time step;
• Reactive: retrain the model upon any SLA violation;
• Random: retrain the model at each time step with 50-50 probability;
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Table 6.6: Feature importance of the top 5 most important features for the random forest
AIPs.

Feature Retrain-TPR Nop-TPR Retrain-TNR Nop-TNR
Set Feature Imp. Feature Imp. Feature Imp. Feature Imp.

Small

curr-TPR 66.47 curr-TNR 56.02 curr-TPR 47.16 curr-TNR 48.46
currFraudRate 28.74 currFraudRate 39.88 currFraudRate 38.16 currFraudRate 40.22
ratioNewOldData 2.69 curr-TPR 3.15 ratioNewOldData 9.61 curr-TPR 5.35
curr-TNR 1.71 ratioNewOldData 0.73 curr-TNR 3.78 ratioNewOldData 4.17
prev-TNR 0.2 prev-TPR 0.12 prev-TPR 0.66 prev-TNR 0.91

Medium

curr-TPR 65.46 curr-TNR 55.82 curr-TPR 46.25 curr-TNR 47.68
currFraudRate 26.14 currFraudRate 36.89 currFraudRate 33.05 currFraudRate 37.38
ratioNewOldData 2.33 curr-TPR 2.34 ratioNewOldData 9.05 curr-TPR 4.17
currUncertaintyFraud 2.06 currUncertaintyFraud 2.27 currUncertaintyFraud 4.02 ratioNewOldData 3.03
curr-TNR 1.48 ratioNewOldData 0.64 curr-TNR 2.75 currUncertaintyFraud 2.58

Large

curr-TPR 64.76 curr-TNR 55.49 curr-TPR 45.39 curr-TNR 46.91
currFraudRate 23.17 currFraudRate 35.55 currFraudRate 29.92 currFraudRate 35.1
currUncertaintyFraud 1.66 currUncertaintyFraud 2.02 ratioNewOldData 7.69 curr-TPR 3.32
ratioNewOldData 1.52 curr-TPR 1.97 currUncertaintyFraud 3.21 currUncertaintyFraud 1.91
curr-TNR 1.07 scores-JSD 0.41 curr-TNR 2.02 ratioNewOldData 1.72

• Optimum: optimum oracle, which has perfect knowledge about the future, and, unlike
the previous baselines, is sensitive to the look-ahead parameter. Hence we define both
myopic (look-ahead = 1) and long-sighted (look-ahead > 1) optimum oracles;

• Myopic Ripple: retrain the model according to Ripple’s decision with look-ahead
= 1 (i.e., predict what is expected to happen in the immediate following time interval
when each adaptation tactic is executed).

Predictive Quality of the LA-AIPs (RQ1)

To answer RQ1 and evaluate the predictive quality of the LA-AIPs, we (i) start by ana-
lyzing the feature importance of the top 5 features for the AIPs based on the three feature
sets; then (ii) we compare various modeling approaches that can be leveraged to instan-
tiate LA-AIPs; and finally (iii) compare the methodologies presented in Section 5.5.1 for
creating LA-AIPs.

LA-AIP feature set. Table 6.6 shows the top 5 most important features for the AIPs
as a function of the feature set (small, medium, large). We see that the top 5 features
are fairly consistent regardless of the feature set. Based on this analysis, we select the
following features for the LA-AIPs: current TPR, current TNR and current fraud rate.
These features correspond to approximately 90% of feature importance for the majority of
the AIPs that were tested.

LA-AIP underlying model selection. To select the modeling approach to instanti-
ate the LA-AIPs we started by comparing several low complexity approaches with the
previously selected feature set (i.e., current TPR, current TNR and current fraud rate).
Specifically, we tested linear models, shallow decision trees (maximum depth of 3), and
three types of support vector machine (SVM) models with different kernels (radial basis
function – rbf, polynomial – poly, and linear – lin). We evaluated the models via the Mean
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Table 6.7: Mean Absolute Error (MAE) and Pearson Correlation Coefficient (PCC) of the
AIPs in the test-set with feature set [curr-TPR, curr-TNR, curr-fraud-rate].

Type

MAE PCC

TPR TNR TPR TNR

RET NOP RET NOP RET NOP RET NOP

RF 0.1170 0.1349 0.0065 0.0075 64.75 52.74 67.28 51.33
Lin 0.1057 0.1221 0.0058 0.0066 73.31 68.20 75.20 63.79
DT 0.1080 0.1225 0.0062 0.0073 71.12 63.86 69.61 51.50

SVM rbf 0.1068 0.1277 0.0068 0.0079 70.14 59.67 64.15 44.80
SVM poly 0.1302 0.1305 0.0068 0.0074 57.53 56.48 58.91 50.16

SVM lin 0.1070 0.1210 0.0055 0.0064 72.75 68.61 75.28 63.58
Cubist 0.1097 0.1241 0.0054 0.0068 69.62 61.30 74.42 57.31

Table 6.8: Mean Absolute Error (MAE) and Pearson Correlation Coefficient (PCC) at-
tained by the three types of LA-AIPs. Bold font highlights the overall best MAE and PCC
attained for each of the four predictors (TPR-retrain, TNR-retrain, TPR-nop, TNR-nop).

Error Tactic Predictor TPR TNR
Metric LA 1 LA 2 LA 3 LA 4 LA 5 LA 1 LA 2 LA 3 LA 4 LA 5

MAE

RET

AIPs (large) 0.114 — — — — 0.006 — — — —
Chained 0.115 0.113 0.115 0.113 0.112 0.006 0.006 0.006 0.006 0.005

Pred-based 0.115 0.113 0.115 0.113 0.112 0.006 0.006 0.006 0.006 0.005
Root 0.115 0.113 0.116 0.113 0.112 0.006 0.006 0.007 0.006 0.006

NOP

AIPs (large) 0.120 — — — — 0.007 — — — —
Chained 0.141 0.146 0.147 0.147 0.145 0.007 0.007 0.007 0.0068 0.0068

Pred-based 0.141 0.127 0.121 0.115 0.112 0.007 0.006 0.006 0.0065 0.0056
Root 0.141 0.119 0.113 0.111 0.109 0.007 0.006 0.007 0.0060 0.0060

PCC

RET

AIPs (large) 65.80 — — — — 69.33 — — — —
Chained 68.11 29.52 18.73 15.01 11.74 65.73 24.21 42.05 44.68 43.19

Pred-based 68.11 29.00 21.50 8.84 12.21 65.73 26.10 34.28 10.02 38.96
Root 68.11 73.59 72.57 71.78 72.32 65.73 63.26 68.47 74.51 66.14

NOP

AIPs (large) 61.34 — — — — 54.63 — — — —
Chained 67.37 21.98 1.94 -9.76 -10.32 66.04 5.12 26.98 36.86 34.63

Pred-based 67.37 15.76 3.83 12.61 6.57 66.04 14.74 33.94 -25.09 37.15
Root 67.37 72.48 72.14 71.45 70.99 66.04 61.54 66.60 71.31 60.67

Absolute Error (MAE) and Pearson Correlation Coefficient (PCC) and only compared
predictors for look-ahead 1 (i.e., myopic predictors).

Table 6.7 shows these results, along with the performance obtained by (more complex)
random forest models (100 decision trees of depth 12), which corresponds to the underlying
modeling strategy employed for the (short-term) AIPs. All modeling approaches offer
similar performance both in terms of MAE and PCC, with the linear models and the SVM
with linear kernel offering the best PCCs. Given this empirical analysis, and considering
that linear models are simpler and easier to implement in formal models, and that they
provide, at least for the considered use case, comparable performance guarantees to more
complex alternatives, in the following sections linear models are adopted as the underlying
modeling approach for the LA-AIPs.

Look-ahead adaptation impact predictors (LA-AIPs). Table 6.8 compares each
LA-AIP type (prediction-based, and root – see Section 5.5.1) using features: current TPR,
current TNR and current fraud rate. We include in the comparison also the AIP with the
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large feature set and a simple baseline based on the AIPs, called chained-AIPs. We report
the Mean Absolute Error (MAE) and Pearson correlation coefficient (PCC).

The chained-AIPs are a straightforward instantiation of the LA-AIPs. They are based
on the key rationale that since the AIPs predict deltas (∆) (i.e., variations in ML predic-
tive quality) based on the current quality of the ML model, one can chain them and re-use
their predictions as input features to estimate the ML model’s ∆ for the following simu-
lation step. While chained-AIPs are simple to implement, the chaining of the predictions
when estimating the benefits for the following simulation step leads to non-negligible error
propagation throughout the look-ahead horizon.

With respect to MAE, all LA-AIP types (chained, prediction-based, and root) offer
similar performance. Further, predicting the TPR appears to be a more challenging pre-
dictive problem (higher MAE) than predicting the TNR. This is because the TNR has
only small variations (always around 98% and 99%) whereas the TPR has much larger
variations (e.g., ranging from 50% to 70%).

Regarding the PCC, we see that: (i) all approaches perform equally well for look-ahead
1, which is expected given that they differ only for higher look-ahead horizons (recall that
for look-ahead 1, all predictors are trained based on the same dataset and they all have
access to up-to-date feature values); (ii) the root-LA-AIPs provide, by far, the best corre-
lation across all look-aheads analyzed (1 to 5), offering correlations typically around 70%
for the TPR and 60% for the TNR; (iii) the chained-LA-AIPs have the worst performance
across the considered approaches, which shows that the chained invocation of the AIPs
has an unacceptably low accuracy; (iv) Prediction-based-LA-AIPs offer only slightly better
PCC than the chained-LA-AIPs, remaining by far inferior to the root-LA-AIPs. We argue
that this is due to the fact that, despite avoiding the mismatch between using noisy/non-
noisy input features when querying/training the LA-AIPs, the prediction-based approach
still suffers from error accumulation as the look-ahead increases.

RQ1. Our results demonstrate that: (i) root-LA-AIPs outperform the other strategies
for instantiating long-term predictors; (ii) the predictive performance of the root-LA-AIPs
is consistent across the considered look-aheads; (iii) when coupled with the root-LA-AIPs,
linear models can predict the evolution of the TPR and TNR for the long term with a
quality comparable to that achieved by the myopic, black-box AIPs (cf. Section 6.2.1).

Utility Improvement due to Ripple (RQ2)

To evaluate how Ripple improves over myopic approaches due to its ability to plan for the
long term, we show in Figure 6.7 the total cost incurred by all baselines. For this analysis,
we set the retrain cost to 15. Overall, the results answer RQ2 by showing that in our case
study Ripple’s long-term adaptation improves over myopic adaptation by up to 21.4%.

Figure 6.7a considers a scenario in which there is no retrain latency and the TPR
threshold is set to 60%. The figure shows the (cumulative) total cost over time achieved
by each baseline. The markers highlight instants when the ML model was retrained and
the values between brackets in the legend next to each baseline indicate the number of
retrains executed. We verify that Ripple improves over its myopic counter part, which in

78



(a) TPR = 60 and Retrain-latency = 0 (b) TPR = 70 and Retrain-latency = 2

Figure 6.7: Total cost incurred by each baseline when retrain-cost = 15. The values
between brackets indicate the number of retrains executed by each approach. Each marker
highlights a time instant when a retrain adaptation was performed.

turn improves over the naive baselines. Specifically, Ripple with look-ahead 5 achieves a
total cost of 1205, while the myopic version has a cost of 1535 (a reduction of 21.4%). We
also see that Ripple with look-ahead 10 incurs a cost of 1260, which is higher than the
cost obtained by the version with look-ahead 5. This is not surprising since predicting for
longer look-ahead horizons is harder than for short look-ahead horizons: the further into the
future one aims to predict, the higher prediction error [31, 101, 124]. This can ultimately
lead the planner to make incorrect decisions when adopting long planning horizons.

In Figure 6.7b we consider a scenario where executing a retrain takes 2 time intervals.
We see that both myopic baselines (optimum and Ripple) perform only the initial retrain
(at time 0). This is due to the fact that myopic Ripple cannot properly evaluate the
benefits of executing a retrain since it evaluates only a single future time interval. However,
as the retrain takes 2 time intervals to complete, myopic Ripple perceives a retrain as
having exactly the same impact of not retraining, except at a cost. Hence it decides to never
retrain. Conversely, the long-sighted versions of Ripple get closer to the corresponding
optimal oracles, achieving a cost reduction of 15.14% with respect to myopic Ripple. This
demonstrates how long-term planning allows systems to become latency-aware and improve
overall system utility.

Impact of System/Environmental State (RQ3)

To understand the landscape of possible improvements that long-term adaptation can yield,
we investigated how several tunable system variables impact both the need for and gains
achievable by adaptation. Thus, we varied the following parameters: SLA on the system’s
true positive rate (TPR), retrain cost (RC), retrain latency (RL), and the look-ahead. The
optimum oracle is the only baseline considered because it is the only one sensitive to the
look-ahead parameter.

The results can be observed in Figure 6.8, where we show the total cost (i.e., system
utility) attained by the optimum (Fig. 6.8a) and by Ripple (Fig. 6.8b) normalized to the
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(a) Optimum. (b) Ripple.

Figure 6.8: Total cost obtained by Ripple and Optimum in multiple execution contexts,
varying the retrain cost, retrain latency, look-ahead, and TPR SLA threshold. The costs
are normalized to the cost of the myopic approach (look-ahead=1), hence cells with values
lower than 1 indicate scenarios for which long-term adaptation is beneficial.

total cost obtained by the (corresponding) myopic baseline (i.e., the total cost achieved
by long-term optimum is normalized to the cost achieved by myopic optimum and the
cost achieved by long-term Ripple is normalized to the cost achieved by myopic Ripple).
Recall that the goal of the self-adaptive system is to minimize the total cost incurred,
thus values lower than 1 represent gains with respect to the myopic counter part of each
approach (Optimum and Ripple).

Overall, a first high-level analysis of the Optimum (Fig. 6.8a), shows that for any (fixed)
retrain cost, there is at least one look-ahead for which long-term planning improves system
utility (i.e., lowers total cost).

In practice, Ripple’s results also demonstrate benefits stemming from long-term adap-
tation: when retrain latency is accounted for (RL= 2 and RL= 4) Ripple improves over
the myopic version for retrain costs up to 20. Further, when no retrain latency is con-
sidered (RL= 0), our results show that Ripple, via its long-term planning capabilities,
improves overall system performance even in scenarios where the retrain cost is 25 (recall
that SLA penalties can amount to at most 20 in a single time interval). This shows that
by looking ahead, Ripple can identify situations in which delaying retraining can lead
to greater benefits in the long term. This could be due to the environment changing in
non-trivial ways or because the current data available for the retrain might not result in a
better-performing ML model under the current environment.

Comparing Ripple with Optimum, we see a clear performance gap, particularly when
considering higher retrain costs: although Ripple can improve system utility with retrain
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costs up to 25 (e.g., TPR= 70 and RL= 2), this occurs only for very specific look-ahead
values. Instead, Optimum shows clear benefits with a range of look-aheads. This shows
that although the performance of the root-LA-AIPs is always consistently around 60% and
70% correlation, there are still margins for improving long-term prediction.

Finally, regarding the TPR SLA threshold, we see that as it increases, the gap between
the long-term and myopic approaches decreases (all values get closer to 1). The reason
for this is that the TPR affects the difficulty of the underlying problem of fraud detection:
higher TPR means that the system has to make fewer mistakes and correctly flag more
fraudulent transactions. With higher TPR SLAs even if the system retrains, it might still
not comply with the SLA. This intuitively justifies why all values get closer to 1.

RQ3. When retrain has latency, Ripple’s long-term planning provides benefits of up to
35% (TPR= 60, RL= 2, RC= 0, LA=[3, 4, 5]) and of up to 25% (TPR= 60, RL= 0, RC=
20, LA=[7, 8, 9]) when retrain latency is not considered. Typically, higher retrain costs
hinder Ripple’s ability to reap the benefits that long-term planning yields. Additionally,
higher TPR thresholds also lead to lower benefits, since it is more challenging to comply
with the SLA. Finally, we verify empirically that mid-range look-ahead horizons (e.g., 4, 5)
typically provide improved system utility. This is aligned with the previous observation (cf.
RQ2) that excessively long look-ahead horizons can lead to sub-optimal planning decisions.

Feasibility for Online Planning (RQ4)

Since Ripple aims to enable the online reasoning of when to retrain ML-enabled systems,
we analyze the time complexity of the formal verification process (i.e., how long it takes to
determine the next adaptation tactic to execute) as a function of the look-ahead. Table 6.9
reports these results and shows the average latency, and the 95-th and 99-th percentiles.

Overall, the results shows that incrementing the look-ahead naturally leads to an in-
crease of the latency to extract the adaptation strategy. However, even for look-ahead 10
it takes on average less than 3 seconds to extract the adaptation strategy, and 3.51 seconds
on the 99-th percentile. Regarding RQ4 we verify that Ripple’s latency is fast enough for
a large majority of non-safety-critical ML-enabled systems (e.g., fraud detection, machine
translation, and recommendation systems).

Cost of Training LA-AIPs

When creating LA-AIPs, the dominant cost is associated with building the AID, given
that this entails performing multiple retrains of the ML model under adaptation. As such,
we conduct a sensitivity analysis aimed at studying how reducing the number of retrains
performed to build the AID impacts the predictive quality of the LA-AIPs.

Specifically, we sub-sample the AID at random to reduce the number of retrains used
to gather information on ML retrain benefits. The resulting AID is then used to train
the root-LA-AIPs, which are evaluated on the full test-set. Each sub-sample percentage
is repeated 10 times for reliability. The results are depicted in Figure 6.9, which shows
that the performance of the LA-AIPs remains largely unaltered when using up to 30%
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Table 6.9: Latency of the adaptation strategy generation process (in seconds) and model
size as a function of the look-ahead (recall that a myopic system has look-ahead 1).

LA 1 2 3 4 5 6 7 8 9 10

Avg ± stdev [s]
2.64 2.70 2.71 2.77 2.80 2.80 2.87 2.81 2.87 2.90
± ± ± ± ± ± ± ± ± ±

0.36 0.35 0.38 0.39 0.41 0.41 0.38 0.44 0.42 0.40

95-perc [s] 3.13 3.15 3.25 3.29 3.31 3.32 3.35 3.37 3.41 3.42

99-perc [s] 3.20 3.22 3.32 3.36 3.37 3.39 3.43 3.44 3.49 3.51

Num states (min) 13 62 194 303 444 582 720 841 985 1081
(max) 77 336 524 710 917 1138 1352 1587 1837

Num transitions (min) 14 70 229 347 503 644 791 921 1074 1250
(max) 88 402 622 835 1074 1329 1574 1836 2125

smaller AIDs. In other words, the cost benefits enabled by Ripple (see Figure 6.1a) can
be achieved by performing just one third of the ML model retrains used to build the AIDs
considered previously in this study.

6.3 Self-Adaptive Machine Translation Systems
To further demonstrate the applicability and generality of the proposed framework, we use
it to engineer a self-adaptive machine translation (MT) system. Specifically, consider an
MT system tasked with translating news from a popular news-source, Znn.com [44, 159],
from a source language into a target language.

As time passes and new events occur, the distribution of data that the model needs to
serve at inference time might differ from the distribution of data used to train it. Because of
this difference between inference and training time data the MT model might have a decline
in translation quality while it tries to cope with new terms, morphological constructions, or
different words meanings, among other linguistic phenomena [158]. Further, the popularity
of different news domains (e.g., sports, politics) also varies over time: for instance, if an
important election is coming up, the majority of news will likely be about politics; yet, if the
Olympics are about to start, there might be a surge of sports news. When the news domain
changes, the MT model may require adaptation such that higher translation quality for the
emerging domain is achieved. This is represented in Figure 6.10, which shows that there is
a football game scheduled for Sunday and a political debate scheduled for Thursday. Thus,
an increase in sports news would be expected on Monday, while an increase in political
news would be expected on Friday. In this scenario, it would be desirable to have an MT
proficient in sports news on Monday, and then adapt it to political news to provide the
best translations by Thursday,

The framework evaluates the need for adaptation based on the expected benefits of
fine-tuning the MT model and the cost of doing so, such that the utility of the news
website is maximized. Specifically, we focus on two main quality attributes: (i) variation
of the translation quality upon a model fine-tuning ∆Q – provided via a combination of
state-of-the-art MT evaluation metrics such as COMET22 [151] and chrF [144]; and (ii)
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(a) Delta-TPR-retrain (b) Delta-TNR-retrain

(c) Delta-TPR-nop (d) Delta-TNR-nop

Figure 6.9: Predictive quality of the root-LA-AIPs in terms of MAE and PCC when
decreasing the number of retrains employed to create the AID. Due to space constraints,
we show the plots only for retrain, however nop root-LA-AIPs showed the same trends.

costs incurred by the news website. These costs are defined in terms of the expected and
actual ∆Q as follows: (a) if the MT model is not fine tuned (i.e., nop) and the actual ∆Q
had the MT model been fine-tuned exceeds a pre-defined threshold T , the system incurs
a missed opportunity cost O; (b) if the MT model is fine-tuned, the adaptive action will
incur a cost F , capturing, e.g., cloud provisioning or energy costs; (c) if the MT model is
fine-tuned, but its performance improvement is sub-par, i.e., below T , the system will incur
a penalty R, which embodies a “regret” cost (e.g., from the sustainability perspective) for
having performed a useless fine-tuning. Based on these costs, on the set M of MT metrics
of interest, n news domains each with its own translation quality Qi,m, 1 ≤ i ≤ n,∀m ∈M
and importance/weight wi, the system utility SysU of the MT system is:
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Figure 6.10: The distribution of news domains translated by the Machine Translation
system varies during the week. This variability may signal the need for adaptation.

Optimize(SysU) = choose tactic than minimizes total cost
Optimal Tactic = arg min

tactic∈{finetune,nop}
cost(tactic)

cost(nop) =
M∑

m=1

O × bool(( 1
n

n∑
i=1

wi ×∆Qim) > T )

cost(finetune) = F +
M∑

m=1

R× bool(( 1
n

n∑
i=1

wi ×∆Qim) < T )

The goal of the self-adaptive MT system is thus to select the tactic that minimizes the
sum of the overall costs incurred.

Flexico

Given the differences between this use case and the fraud detection one, and since MT
models are widely used in a number of applications, we describe how the framework can
be specialized to instantiate self-adaptive machine translation systems. We call this spe-
cialization Flexico and describe how each key component of the framework is modified
in Flexico to account for the intrinsic characteristics of MT systems.

Since Flexico considers the nop and fine-tune adaptation tactics, and since the MT
domain requires a different set of predictive features compared to the fraud detection
use case, we introduce Fine-tuning Impact Predictors (FIPs), which specialize the idea of
AIPs by introducing novel methodological aspects in order to be effectively employed in
the context of MT systems. These include:
1. Identifying a new set of MT specific features capable of capturing dataset shifts in the
input and output of MT models, while achieving an acceptable trade off between their
effectiveness (i.e., predictive power) and computational costs (as this has to be incurred
not only for training but also for querying the FIPs).
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Figure 6.11: Machine Translation Quality Matrix (MTQM) – each row represents a domain
that is relevant to the MT system, and each column represents a specific MT evaluation
metric (e.g., COMET22, SacreBLEU, chrF).

2. For MT systems like Znn, that consider several domains (e.g., politics news vs sports
news) with different weights, the impact of a fine-tune may have benefits for some domains
but a detrimental impact for others. Thus, to focus on studying the predictive quality of the
FIPs we decouple the problems of (i) estimating future evolutions of the input distributions
to the MT model and (ii) predicting the variation in the translation quality of an MT system
due to fine-tuning the MT model. As such, we consider an alternative methodology for
estimating the variations of the predictive quality of the MT model under adaptation:
evaluating the MT model based on a set of reference test-sets that are representative of
the expected input distributions across different MT domains.
3. By leveraging the notion of domain-specific test sets, we propose two alternative FIP
designs, namely FIPs trained to predict the variation of an MT model’s translation quality
after fine-tuning either (a) for a single domain, or (b) for any target domain. These
FIP variants, as we will see, yield different trade-offs regarding generalization to unknown
domains versus predictive quality on known domains.

Formally modeling MT models. In Flexico, we formally model the MT model via
a Machine Translation Quality Matrix (MTQM). The MTQM is a specialization of the
quality matrix described in Section 5.2 in which each column represents a domain that
is relevant to the MT system, and each row represents a specific MT evaluation metric
(e.g., COMET22 [151], chrF [144], SacreBLEU [145]). Figure 6.11 shows an example of
this matrix, considering domains like sports, finance, and tourism.

Estimating the expected benefits of fine-tuning. Out of the three feature groups
presented in Section 5.3, the basic features’ one is the most re-usable, given its completely
domain-agnostic nature. Yet, the remaining feature groups (input and output features)
are strongly domain (and possibly application) dependent.

We propose and evaluate the use of a specialization of these two sets of features for MT
models: MT-quality features content-aware. The former capture the translation perfor-
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mance of the MT model, both on the current environment (recently translated sentences)
as well as on fixed MT test sets.

The latter (content-aware) includes features inspired by work on statistical machine
translation [93] that aim to characterize the data shifts of the textual content of the sen-
tences available to the MT models, from the perspective of different language properties
such as semantic similarity and lexical overlap. These features are designed to detect shifts
in the distributions of two different data groups: a group representing “old data”, i.e.,
sentences that the MT model has been fine-tuned with, and another group representing
“new data”, i.e., fresher sentences with reference translations that have become available
since the last model update (and could be used to perform a new model fine-tuning).

More in detail, we investigate the use of the following feature sets for creating predictors
aimed at estimating the expected benefits of fine-tuning MT models:
Basic features. This feature set includes: (i) count of new/old/fine-tune3 sentences
available to the MT model; (ii) ratio of new and old data; (iii) count of new/old/fine-
tune source and target language words (including and excluding stop words and non-
alphabetic characters); (iv) ratio between new and old word counts, for both source and
target languages; (v) time elapsed since the last fine-tune.
Content-aware features. This set of features is designed with the goal of capturing
environment shifts by analyzing textual information at the semantic, and lexical levels. To
do so, and inspired by statistical MT, we focused on the popular concepts of n-grams [121],
embeddings [27] and sentence overlaps.

• n-grams capture information about the context, word order, phrase structure, and
linguistic patterns in sentences or texts. By computing the distance (via the
JensenShannon [108] distance) between the n-gram distributions in the new and old
datasets, we capture variations at the lexical level (e.g., if sentences started having
more/less typos in the new data).

• To capture variations at the semantic level, we leveraged embeddings, which are
representations of sentences into lower dimensional spaces that preserve the semantic
relation between the transformed words/sentences [27]. Comparing the distributions
of embeddings (via both Cosine, and Euclidean [51]) in the new and old data, should
allow us to capture new domains that arise in the new data, thus signaling shifts in
the environment.

• Finally, sentence overlap allows us to capture information at the lexical level, by
measuring common words between the new and old data. This allows us to capture
semantics information and detect new domains, given that if the overlap between
new and old data is low, that likely means that the environment is changing.

MT-quality features. COMET22 [151], COMET22Kiwi [152], SacreBLEU [145],
chrF [144]. These four metrics capture important textual information at the semantic sim-
ilarity (COMET22 and COMET22Kiwi), lexical levels (chrF and SacreBLEU), allowing
to characterize the translation quality of the MT model for both the current environment
and for the fixed test sets. It should be noted that, except for COMET22Kiwi, all other

3We consider the fine-tune set as being composed of the new and old data.
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features in this class assume the availability of references (i.e., human translations) for the
data available for fine-tuning. Thus, including exclusively COMET22Kiwi among the fea-
tures used by FIPs (or avoiding completely the use of MT-quality-aware features) allows
Flexico to estimate whether it would be worth fine-tuning an MT model even before
incurring the cost of obtaining references for the new sentences. In this case, Flexico
enables an additional dimension of cost reduction: beyond saving the cost of useless fine-
tunings, Flexico also reduces the costs of obtaining references for sentences that are not
predicted to be useful for improving the MT model’s quality.

Reference test-sets. A test set is a collection of sentences for a language pair composed
of a sentence in the source language (source sentence) along with its corresponding reference
translation in the target language. Each domain usually has its own test set with sentences
sampled from a large pool of data of that domain. The test sets are disjoint from any
data used to train or optimize models. In consider a test-set to be a reference test-set,
when we keep the it the same across different steps of fine-tuning. The test set creation
process is application-dependent (e.g., specialized fields such as medical, legal, technical,
or conversational domains). “Fixed” test sets have been used for a long time in academic
benchmarks, such as the WMT [61, 92] and IWSLT [3] shared tasks.

Recall that Flexico does not attempt to predict what is the expected performance
of the MT system at a specific time in the future, which entails having to keep into
account what type of inputs the system will be subject to in the future. Instead, Flexico
relies on fixed test sets, which provide a fairer and more accurate comparison between the
translation quality of different MT models (as all of them are evaluated on the same test
set). Additionally, by using multiple fixed test sets, representative of various domains, we
are able to understand what model performs best across different domains.

Fine-Tuning Impact Predictors (FIPs). FIPs are trained using an FID (Fine-tuning
Impact Dataset) that is constructed similarly to an AID. We start by fine-tuning N times
the target MT model and, for each fine-tuning, we measure the quality of the resulting MT
model on the selected fixed test-sets using multiple quality metrics. This yields the MTQM
for each fine-tuned model Mi, i < N . When fine-tuning model i, we fine-tune it considering
all the data available up to i. This includes data with which model i − 1 was trained as
well as new data gathered since. Next, for each pair of fine-tuned models Mi,Mj, where
i < j, we generate a new sample for the FID by computing: (i) the previously described
features, assuming that the old data is the data used to fine-tune Mi and that the new
data is the data used to fine-tune Mj and not used to fine-tune Mi (i.e., the additional
data used in fine-tune j w.r.t. fine-tune i); (ii) the target quality variation as the difference
between the MTQMs for Mj and Mi. We propose two alternative FIPs variants, which
explore different trade-offs between generalization, and prediction quality:
Domain-specific FIPs. These FIPs, as the name suggests, are built to estimate the
expected difference in MT performance for a specific domain (e.g., sports or finance). For
instance, with this type of FIP, if our goal was to understand how fine-tuning the MT
model would impact its performance in terms of COMET22 in the domain of sports, we
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would have to query the FIP that had exclusively been trained with examples describing
COMET22 variations evaluated based on the sport domain test set. For instance, for Znn,
this approach requires having M × n FIPs. Having more FIPs will be more expensive
(more models to train), but as the FIPs are tailored to each domain, they are expected to
attain higher predictive quality.
Generic FIPs. These are more ambitious predictors that, unlike the specific FIPs, are
domain-agnostic and can be queried to predict the quality fluctuations of an MT model with
respect to an arbitrary domain, including domains not seen in the training phase. Similarly
to the domain-specific FIPs, we require a generic FIP for each metric m ∈ M. Generic
FIPs exploit the fact that both the content-aware and the MT-quality features encode
information about the domain test set, which can be exploited by a FIP to learn how to
adjust its predictions to the characteristics of the target test set. In fact, the content-aware
features describe data shifts between the new-data set and the domain test set, and the
MT-quality features quantify the performance of the MT model for the domain test set.
We leverage these observations and train generic FIPs by using a training set obtained by
simply merging the training sets of the various domain-specific FIPs. This way, during
training, we expose the generic FIP to information about how the quality of a MT model
varies across different domain test-sets, with the objective of enabling the resulting FIP to
generalize its predictions to arbitrary domain test-sets

We evaluate Flexico with respect to the following research questions:
RQ1 How accurately can FIPs predict the benefits of fine-tuning?
RQ2 What features lead to higher FIP predictive quality and how expensive is it to train

and query them?
RQ3 Can the FIPs generalize across domains?
RQ4 What utility improvements does Flexico yield?

Use cases

We consider two use cases accounting for different languages pairs and data types/contents.
For both use cases, the MT model is evaluated on fixed test sets.

English-Chinese (En-Zh). This use case, inspired by Znn, uses the OpusMT model [9,
172] available through HuggingFace and LDC’s ‘Hong Kong News Parallel Text’ [112],
which contains news data from 1997 to 2000. To create the fixed test sets, we used chat-
GPT [132] to assign domains, which are not present in the original dataset, to each news
article as follows. To bound the output of chat-GPT, we created a list of news domains
that was passed to chat-GPT: politics, business & economy, technology, science,
health & wellness, environment, entertainment, sports, culture & education,
social issues, travel & tourism, fashion & lifestyle, opinion & editorial, law
& legal issues, finance, real estate & infrastructure. This list was created by
browsing the news categories of multiple online news sites and by asking chat-GPT to
provide a list of news domains. With this list, we prompted chat-GPT to give us the top
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Table 6.10: Sizes (in number of news articles and sentences) of the En-Zh fixed test-sets.

News Topic Entertainment Environment Finance Governance Health & Sports Travel &
Wellness Tourism

#Articles 50 254 172 113 112 36 158

#Sentences 764 3295 2199 2131 1923 573 2514

3 domains (from the list) that it associated with each news article, along with a number
between 0 and 100 for each domain selected, to allow us to order the domains from most
to least important. We thus sent the following query to elicit news topics from chatGPT:

CHATGPT_ANSWER_FORMAT = (
"1. Topic: value - Score: value"
"2. Topic: value - Score: value"
"3. Topic: value - Score: value"

)

prime_msg = {
"role": "system",
"content": (

f"You are a helpful assistant that classifies
news articles into topics based on this topics
list: [TOPICS_LIST]. Your output consists of
the top 3 topics and a number from 0 to 100
associated with each topic to allow me to order
the topics from most import to least important.
Format your answer as {CHATGPT_ANSWER_FORMAT}."

),
}

query_msg = {
"role": "user",
"content": f"Classify the following

article: `{article}´",
}

After getting domains for all articles, we isolated the articles of year 2000, grouped them
by the domain with the highest score and selected the domains with the most articles and
that could be more different among each other to create 7 fixed test sets (Table 6.10). Note
that Governance was not an original category and we created it by merging the following
three categories: politics, Law and legal issues, and Business and economy.

The remaining years of the Hong Kong News dataset [112] (i.e., years 1997, 1998, and
1999) are used to (i) create the FID which is used to train the FIPs (years 1997 and 1998),
and (ii) test the FIPs (year 1999). When computing the content-aware and the MT-
quality features for the FID, we used a sample of 10% of the data available to compute
these features. The FID was created by fine-tuning the OpusMT model 147 times, which
yields 10585 FID samples.

English-French (En-Fr). For this use case, we employ the Opus datasets [173] and the
Tatoeba OpusMT model [168, 171]. To create our own dataset out of the Opus dataset,
we started by comparing the training data of the Tatoeba OpusMT model with each Opus
dataset, to guarantee that we only selected datasets whose data had not previously been
used to train the base MT model. From this analysis, we obtained 7 datasets, from domains
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Figure 6.12: En-Fr FIP fine-tune dataset. Each cell corresponds to a chunk of 10000
sentences belonging to each of the Opus datasets used for fine-tuning the base MT model.

Table 6.11: Opus datasets used for fine-tuning and testing [173].

Dataset Task #Sents Domain Source

ELRC [59] Test 1625 Legal ELRC_1075_EUIPO - IP case law French-English

PHP [141] Test 1754 Tech Parallel corpus originally extracted from
http://se.php.net/download-docs.php

Quran (Tanzil) [146] Test 440 Religion Collection of Quran translations

ELITR [187, 188] Test & 1774 | 359000 Legal Derived from documents published
fine-tune by the European Court of Auditors

EU Bookshop [174] Test & 1022 | 405000 Corpus of documents from the EU bookshopfine-tune

TedX-fr [153, 167] Test & 1927 | 233000 Crawl of nearly 4000 TED and TED-X
TedX-fr_ca [153, 167] fine-tune 1495 | 10000 transcripts from July 2020

such as Religion, Legal, and Tech. Table 6.11 lists the Opus datasets that served as basis
for the creation of fixed test sets for this use case. Some datasets (e.g. PhP and Quran)
had very few samples so they were used only for testing purposes.

After gathering these datasets, and assigning some of them only for test purposes due
to their smaller size (less than 2000 sentences), we split the remaining ones into chunks
of 10000 sentences. The “left-over” of these fine-tuning sets was used to define the fixed
domain test sets for MT quality evaluation. Finally, we ordered the fine-tuning data chunks
randomly to form a larger dataset with which we could simulate fine-tunings and create
the FID. Figure 6.12 displays the random order of the random chunks in the dataset.

Again for this use case, when computing the content-aware and the MT-quality features
for the FID, we used a sample of 10% of the data available to compute these features. We
use 70% of the FID for training the FIPs and 30% for evaluation. The FID was created
by fine-tuning the Tatoeba OpusMT model 105 times, which yields 5356 FID samples.

90

http://se.php.net/download-docs.php


Table 6.12: Performance of the generic FIPs and average performance (across domains) of
the specific FIPs, for the best feature-sets for each domain.

Use Case Model MAE PCC
Generic Specific Generic Specific

En-Zh
RF 0.0049 0.0032 76.77 86.44
XGB 0.0053 0.0048 76.51 84.83
Lin 0.0066 0.0054 68.3 89.07

En-Fr
RF 0.0013 0.0021 30.09 65.63
XGB 0.0012 0.0016 33.72 62.33
Lin 0.0018 0.0016 25.11 70.49

FIP Prediction Quality (RQ1)

To evaluate the prediction quality of the FIPs we conducted a study varying three key as-
pects of the FIP building process: (i) three different model types – XGBoost trees [38]
(XGB), and Random Forest (RF) and Linear (Lin) regressors from the SKLearn Li-
brary [140]; (ii) three sets of features – basic, content-aware, all; (iii) two versions of the
target – domain-specific or generic. The quality of the resulting predictions is evaluated
with mean absolute error (MAE) and pearson correlation coefficient (PCC).

Let us start by comparing, in Table 6.12, the prediction quality of the generic and
domain-specific FIPs for COMET22, trained with the best performing sub-set of features
among the ones presented earlier (this set can be discovered, e.g., using a validation set).
We report the MAE and PCC across all domains, for both use cases and considering the
three model types mentioned above for the FIPs. The use case for which both FIP variants
achieve the highest PCC is En-Zh, where the S-FIPs and G-FIPs achieve an average PCC
of 86.44 and 76.77 for the best performing modeling approach (Lin and RF, respectively).
The En-Fr is more challenging for the FIPs, since it encompasses data originated from a
much wider set of domains and have been with trained with approximately half of the data
available for the En-Zh use case. In fact, with the En-Fr use case, the PCC of the S-FIPs
and G-FIPs drops to 70.49 (Lin) and 30.09 (XGB), respectively.

Overall, in both use cases, the G-FIPs achieve lower performance than the S-FIPs,
both in terms of MAE and PCC. The superiority of S-FIPs is not surprising, as being
queried solely on the domain on which they were trained inherently favors them. The
performance gap between the two FIPs variants is not very large in the En-Zh use case
(the PCC of the best G-FIPs is 76.77%), but it is quite large in the En-Fr use case (where
the he PCC of the best G-FIPs drops to 30.09%). This can be explained by recalling that
the En-Fr use case spans a broader range of domains, creating more challenging conditions
for domain-agnostic predictors like the G-FIPs.

FIP Feature Importance and Cost (RQ2)

We now focus on the S-FIPs that achieved higher predictive performance than the generic
FIPs for both use cases. Specifically, we analyze how different combinations of feature sets
impact the FIPs predictive performance.
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For this study, we consider: (i) the 3 MT feature sets presented earlier (i.e., Basic, Con-
tent aware, MT-quality aware); (ii) all 3 feature sets together (i.e., All); (iii) combinations
of the 3 feature sets (Basic + Content aware, Basic + MT-quality, Content aware + MT-
quality ); (iv) combinations of the COMET22Kiwi metric with the Basic, Content aware,
and both to evaluate the expected quality should no reference sentences be available; (v)
a version of the content aware features that does not account for the n-grams (content
aware-no-ngrams). As we will show later, this is motivated by the high computational cost
of computing n-gram features compared to the remaining content aware features.

On the En-Zh use case the content-aware-no-ngrams feature set (i.e., sentence overlaps
and embedding features) is the best performing across the domains considered. On the
En-Fr use case (cf. appendix) we see much stronger variations, with different feature
sets having substantially different performances across domains. On average, the best
performing feature set is Basic + MTQual, followed by content-aware + MTQual.

Additionally, looking at the feature set combinations that use MT quality metrics4, we
see that for En-Zh these features are typically not needed: only 2 out of the 7 domains
achieve the highest PCC with a feature set using MT-quality aware features (Governance
and Travel and Tourism). Differently, for the En-Fr use case, only 1 out of 7 domains (Elitr)
does not require MT-quality aware features to achieve the highest predictive performance.

This suggests that for scenarios in which the domains are less heterogeneous, MT-
quality aware features are less important to the S-FIPs and that S-FIPs can be used, in
these scenarios, to determine whether to ask human annotators for references. Ultimately,
the set of best features for the FIPs is dataset/domain dependent and can be discovered
via classical feature selection techniques

Feature computation cost. Since the features employed by the FIPs impact how much
it costs to query them (each time a FIP is queried, its input features need to be computed),
we investigated how much it costs to compute each feature-set. The results, which we
include in the appendix, represent upper-bounds on the actual feature computation times as
the feature computation process was not fully optimized and other users could concurrently
access the machines, possibly introducing noise in the measurements.

Specifically, for the En-Zh S-FIPs which achieve the highest predictive performance
with the content aware-no-ngrams feature set, this represents cost savings of around 80×
w.r.t. the cost of fine-tuning the MT model. We see that the trends for the En-Fr use case
are similar, albeit smaller, allowing for cost savings of around 40× when considering the
Basic + MTQual feature set and comparing to the fine-tune cost.

Note that due to resource limitations we considered relatively small MT models. Since
the cost of feature computation is independent from the MT model, unlike the fine-tuning
cost that is strongly dependent on the MT model’s size, for largerMT models we expect to
see even larger cost savings.

4Recall that these features, except for COMET22Kiwi, require reference translations, which are ob-
tained by paying human annotators.
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Figure 6.13: MAE and PCC for FIPs with RF on En-Zh and COMET22, varying the
number of fine-tunings to create the FID.

Computational cost of building the FID. Finally, we analyze the cost of creating
the FID. The FID was obtained by fine-tuning the MT models 147 and 105 times (69 and
57 fine-tunings for training the FIPs, En-Zh and En-Fr, resp.). Despite the methodology
for FID generation produces O(n2) samples out of n fine-tunings, fine-tunings can be costly
and the cost of feature computation also adds up. To understand whether we can reduce
the cost associated with creating the FIDs, we explore how much data is actually needed
to train accurate FIPs, by conducting a sensitivity study analyzing the FIP’s prediction
quality (measured via PCC and MAE) as we vary the size of the G-FIPs’s training set.

We fixed the G-FIP feature set to Basic and System Performance features (i.e., the
feature combination that led to the best performing G-FIPs) and tested with the random-
forest model. We repeated each sample size 10 times for reliability. Figure 6.13 displays
the results, showing that decreasing the number of fine-tunings performed to 20% (≈ 13) of
the original number of fine-tunings in the train-set (69) still guarantees high performance.

FIP Domain Generalization (RQ3)

To evaluate the domain generalization capability of the G-FIPs, we conduct a leave-one-
out cross-validation study by leaving each domain test set out of the G-FIPs’ train-set
and then evaluating the predictive performance of the FIP on the test set that was left
out. Table 6.14 shows the results obtained for the specific case of random forest FIPs for
the En-Zh use case. We focus this study on the En-Zh use case since we have already
established (cf. RQ1) that the G-FIPs achieve poor performance in the En-Fr use case,
due to its challenging characteristics (and that S-FIPs are recommended in such scenarios).
We still report the full results in the appendix.

Overall, we observe very high PCC values (above 85% and up to 95%) for all domains
except Entertainment, where the G-FIPs achieve ≈67% PCC. The best G-FIPs, similarly
to the S-FIPs (Table 6.13), also do not use feature sets with MT quality metrics. These
results confirm that in the En-Zh use case the G-FIPs are very accurate when challenged
with out of distribution queries regarding domains not seen in training.
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Table 6.13: Performance — pearson correlation coefficient (PCC) and mean absolute error
(MAE) — of the S-FIPs when predicting COMET22 with RF models on En-Zh.

Metric Test set Entertainment Environment Finance Governance Health & Sports Travel &
Feature Set Wellness Tourism

PCC

All 61.14 92.08 88.82 95.62 90.63 76.31 84.75
All + Kiwi 61.73 91.74 88.61 95.55 90.73 75.30 84.51

Basic 61.52 91.88 91.20 95.15 90.61 74.98 85.08
Basic + ContAware 60.64 91.50 91.29 95.06 90.80 74.41 84.21

Basic + Kiwi 62.65 92.21 86.75 95.89 89.91 76.11 85.60
Basic + MTQual 61.47 92.21 87.11 95.97 89.49 76.63 85.66

ContAware 48.79 80.02 89.26 93.72 89.37 69.02 80.31
ContAware-no-ngrams 64.65 95.66 89.92 95.00 91.94 79.90 85.15

ContAware + Kiwi 51.67 78.82 87.87 93.93 87.84 70.12 80.34
ContAware + MTQual 50.50 79.84 87.59 93.75 89.16 69.07 80.85

MTQual -2.18 13.26 -33.36 31.43 -5.80 -7.05 -19.26

MAE

All 0.0098 0.0110 0.0078 0.0025 0.0021 0.0046 0.0033
All + Kiwi 0.0102 0.0115 0.0082 0.0026 0.0022 0.0052 0.0033

Basic 0.0107 0.0096 0.0065 0.0028 0.0022 0.0042 0.0034
Basic + ContAware 0.0104 0.0096 0.0064 0.0026 0.0019 0.0052 0.0034

Basic + Kiwi 0.0105 0.0114 0.0082 0.0025 0.0025 0.0040 0.0033
Basic + MTQual 0.0100 0.0109 0.0076 0.0023 0.0023 0.0036 0.0035

ContAware 0.0066 0.0054 0.0106 0.0026 0.0018 0.0051 0.0039
ContAware-no-ngrams 0.0032 0.0040 0.0018 0.0015 0.0011 0.0020 0.0040

ContAware + Kiwi 0.0064 0.0061 0.0120 0.0027 0.0022 0.0048 0.0037
ContAware + MTQual 0.0061 0.0052 0.0118 0.0028 0.002 0.0044 0.0038

MTQual 0.0026 0.0025 0.0044 0.0022 0.0024 0.0048 0.0064

MT System Utility Improvement (RQ4)

To evaluate the improvement in system utility attained by Flexico, we used it to create
a self-adaptive version of the Znn use case described earlier. Specifically, the set M of
MT metrics of interest is given by COMET22 [151] and chrF [144]. We consider fine-tune
costs of [1, 5, 10] and thresholds for the delta improvement (i.e., minimum improvement
that we want to achieve with a fine-tune) from 0.1 to 1.0 with intervals of 0.1. The missed
opportunity cost is set to 2×finetune cost×FIP_pred and the incorrect fine-tune penalty
to 2× finetune cost× (∆_threshold− FIP_pred).

Baselines. Flexico uses the generic En-Zh FIPs with all the features, and we compare
it against the following baselines:

• Periodic-n: fine-tune the model at every n-th time step. We set n=2;
• Exponential-n: fine-tune the model with an exponentially increasing period of base

n. We set n=2;
• Random: fine-tune at each time step with 50-50 or 75-25 probability;
• Sentence: fine-tune whenever at least 1000 or 2000 new sentences are available;
• Reactive-85: fine-tune if any target MT metric is below 85;
• Optimum: an ideal oracle that has perfect knowledge up to 5 steps into the future,

and thus knows exactly the actual benefits of fine-tuning the MT model;
Figure 6.14 compares the utility (i.e., total cost) attained by each baseline for each fine-

tune cost tested and for a sub-set of the delta thresholds. Results for all delta thresholds
can be consulted in the appendix. The results demonstrate that Flexico improves system
utility over the naive baselines, getting closer to the optimum oracle. The results show
that some of the baselines can achieve performances close to Flexico for some specific
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Table 6.14: Leave-one-out cross validation performance — pearson correlation coefficient
(PCC) and mean absolute error (MAE) — of the G-FIPs with RF models on En-Zh.

Metric Test set Entertainment Environment Finance Governance Health & Sports Travel &
Feature Set Wellness Tourism

PCC

All 57.25 89.07 87.95 92.87 90.62 85.88 77.55
All + Kiwi 60.58 85.48 86.11 92.38 91.26 85.53 82.73

Basic 61.40 88.50 86.11 92.55 90.07 86.56 84.28
Basic+ ContAware 60.47 89.66 88.98 91.96 88.74 84.72 75.46

Basic + Kiwi 60.08 84.95 84.47 92.7 91.29 86.13 83.45
Basic + MTQual 59.66 85.65 80.97 94.00 90.70 85.86 83.88

ContAware 66.98 93.86 94.45 76.14 87.16 86.70 86.01
ContAware-no-ngrams 64.89 95.74 94.04 94.44 92.16 86.21 85.76

ContAware + Kiwi 68.79 89.32 90.52 90.69 91.36 87.61 85.1
ContAware + MTQual 66.59 93.23 94.59 64.34 91.38 85.92 84.73

MTQual 13.62 18.25 16.48 12.5 21.6 6.73 10.89

MAE

All 0.0065 0.0038 0.0033 0.0076 0.0056 0.0051 0.0040
All + Kiwi 0.0052 0.0059 0.0025 0.0046 0.0083 0.007 0.0049

Basic 0.0062 0.0044 0.0040 0.0070 0.0075 0.0056 0.0031
Basic+ ContAware 0.0063 0.0042 0.0040 0.0088 0.0087 0.0051 0.0039

Basic + Kiwi 0.0054 0.006 0.0026 0.0045 0.0082 0.0072 0.005
Basic + MTQual 0.0070 0.0029 0.0026 0.0045 0.0061 0.0074 0.0060

ContAware 0.0049 0.0026 0.0024 0.0032 0.0020 0.0015 0.0043
ContAware-no-ngrams 0.0020 0.0016 0.0009 0.0037 0.0041 0.0016 0.0063

ContAware + Kiwi 0.0034 0.0041 0.0016 0.0013 0.004 0.0018 0.0045
ContAware + MTQual 0.0036 0.0027 0.0023 0.0039 0.0019 0.0016 0.0038

MTQual 0.0039 0.0024 0.0026 0.0024 0.0028 0.0038 0.0062

(a) Fine-tune cost 1. (b) Fine-tune cost 10.

Figure 6.14: Total cost incurred by each baseline as a function of: the fine-tune cost, the
target delta improvement for MT metrics.

settings (e.g., sentence-2000 for the largest delta threshold of 1.0). However, none of the
baselines achieves robust performances across all delta thresholds (e.g., sentence-2000 for a
delta threshold of 0.2 and fine-tune cost of 1, yields 80% higher total cost than Flexico).

6.4 Summary
This chapter evaluated this thesis via two use cases (credit card fraud detection and ma-
chine translation systems), providing evidence for the claims presented and discussed in
Section 6.1. Sections 6.2.1, 6.2.4, and 6.3 demonstrated that overall system utility can
be successfully optimized by leveraging the proposed framework to engineer self-adaptive
ML-based systems (claim 1), both for the short-term (Sections 6.2.1 and 6.3) and for the
long-term (Section 6.2.4). Additionally, the latency of the process for generating adapta-
tion strategies proved to be suitable for online planning in non-critical scenarios (claim 2),
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regardless of whether we are planning for the short-term or for the long-term. Finally, by
successfully enabling self-adaptation for both use cases, we demonstrate that the frame-
work is generalizable to these two use cases and can be applicable to a range of execution
scenarios with different characteristics and types of ML models, thus validating claim 3.
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Chapter 7

Discussion and Future Work

This chapter starts by discussing how users and practitioners should proceed when adopting
the framework and instantiating it for their ML-enabled systems in Section 7.1. Then, in
Section 7.2, we go over the assumptions and limitations of the framework proposed in this
thesis. Section 7.3 describes promising directions for future work that further validate and
expand the proposed framework. Finally, Section 7.4 concludes this thesis.

7.1 Framework Adoption

As demonstrated in the previous sections, the framework proposed in this thesis allows
practitioners to engineer self-adaptive ML-based systems as a way to optimize the utility
of the ML-based system. However, for practitioners to actually benefit from the use of the
framework, they need to be able to apply it to their use cases. This requires understanding
the key steps that should be followed and components that ought to be tailored when
applying the framework to new use cases. These are described in this section.

For practitioners wanting to engineer self-adaptive ML-enabled systems, the following
elements must be tailored to their specific application needs: (i) system utility definition
– this is intrinsically system dependent, as some systems may be more concerned with
latency and throughput, whereas for others user-experience may be the most important
quality attribute; (ii) formal model of the system – although some components of the
formal model are generic across all implementations, such as the abstraction over the ML
models via the quality matrix, the representation of the system’s environment of operation,
and the adaptation manager with the repertoire of tactics for adaptation (e.g., retrain and
fine-tune), each system may have specific components that are critical for the system’s
overall utility and that should be accounted for when reasoning about ML adaptation.

Regarding the AIP features, we argue that the basic feature set (see Section 5.3) is
generic across ML systems and that the content-aware feature set is generic across MT
systems and can be re-used when implementing Flexico for tasks in the natural language
processing domain. The remaining features, such as the MT-quality-aware features and the
fraud rate, which are specific to the MT and fraud detection domains, respectively, can be

97



ML-enabled
system's
ML model

Create
the AID

Train
AIPs

Create
formal model

Input
Samples

Output Prediction
(e.g. Fraud/Legit)

Output
AID

Output
AIPs

Output
Formal model

Output
Adaptation strategy

Input Qual. matrix
& new data

1 2 3 4 5Self-adaptive
ML-enabled

system

Figure 7.1: Framework adoption pipeline.

replaced with performance features specific to the task/domain at hand. This step requires
domain knowledge, and/or experimentation for creating new domain-specific features.

Overall, and as shown in Figure 7.1, to use the framework to engineer self-adaptive
ML-based systems for new applications, it is necessary to (i) create an AID by following
the proposed methodology (Section 5.3), (ii) instantiate AIPs for the selected adaptation
tactics and metrics of interest, leveraging the AID that was built by observing the impact
of the considered adaptation tactics on the ML model’s predictive quality, (iii) create a
formal model of the system, capturing the evolution of the state of the ML component that
will be adapted as described in Section 5.2. Note that the proposed strategy to formally
model ML components does not constrain the applicability of the framework to specific
types of ML models (e.g., neural networks, random forests).

7.2 Assumptions and Limitations
The goal of the work developed in this thesis was to create a general framework to de-
cide when and how to adapt ML-based systems. Despite the successful creation of two
self-adaptive ML-based systems, limitations still exist. This section discusses these limita-
tions, in particular the assumption of ground-truth label availability (Section 7.2.1). Then,
we present threats to the generalizability of the results (Section 7.2.2), followed by a dis-
cussion on the assumption of environmental state independence from the tactics executed
(Section 7.2.3), and on how we account for uncertainty (Section 7.2.4). Finally, we analyze
the extension of the framework to account for multiple adaptation tactics (Section 7.2.5).

7.2.1 Ground-truth Label Availability Assumption
We assume, in both use-cases, the availability of ground truth labels for an immediate
evaluation of the ML model’s predictive performance. In reality, ground truth labels may
not be immediately available for the system’s performance to be evaluated. This is often
the case in the fraud detection domain, since transaction labels may take months (if ever) to
become available [111, 169]; Similarly, in the machine translation domain, standard metrics
for evaluating the quality of machine translations (such as Comet22 [151], SacreBLEU [145],
and chrF [144]) are subject to the availability of golden reference sentences (i.e., human
translated sentences) which are not always available and are expensive to obtain.

However, the problem of real-time performance estimation with unlabeled samples is
orthogonal to the problem addressed in this work. Nonetheless, we attempted to mitigate
this threat by showing how to leverage state-of-the-art ML algorithms to address the issue
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of ground-truth label availability when adapting ML-enabled systems, by proposing CB-
ATC (Section 5.4), an extension of ATC [67] (a state-of-the-art algorithm), which we
empirically evaluate with the fraud-detection system use-case (Section 6.2.2).

7.2.2 Threats to Validity
External validity. The findings regarding the predictability of the impacts of retrain
and fine-tune tactics are dataset and domain- dependent and so they cannot be generalized
to other domains or datasets beyond those evaluated in this thesis. This also applies to the
time complexity of the approach, which depends on the complexity of the formal model.

We mitigate the general applicability threat by instantiating the proposed framework
for two use-cases with different characteristics (classification-based fraud detection ML
model and sequence-to-sequence MT model). Further, the MT use-case is tested with
two datasets representing two different language pairs (one of a widely used European
language pair, and one of high importance due to the number of speakers) and resorting to
two different MT models. We empirically verified that the improvements in overall system
utility were consistent across use cases, which supports the claim that the framework can
be applied to multiple domains with different characteristics and ML models.

Nonetheless, evaluating the framework with additional domains (e.g., intrusion and
spam detection) and with systems that rely on other types of ML models (e.g., NNs,
support vector machines, linear models) will further strengthen the generalizability claim.

Analogous considerations apply to the evaluation of CB-ATC, which has only been
conducted in the context of the fraud detection use case. Clearly, it would be desirable to
evaluate this method on a broader set of datasets to verify whether the benefits observed
in our study generalize to different domains.

Internal validity. The conclusions regarding the improvements to system utility are
intrinsically dependent on the definition of system utility and on the evaluated execution
contexts (regarding tactic cost and latency, system SLAs, MT delta threshold, MT metrics,
underlying AIP model and features). For this reason, in both use-cases, we evaluate: (i) the
performance of the framework under different contexts, and (ii) the predictive performance
of the AIPs with different feature sets and modeling approaches.

Regarding tactic latency, we test the framework under different assumptions for adap-
tation latency. For the fraud-detection use-case, we start by assuming that retrain latency
is lower than one time interval. This assumption holds for the considered use-case since the
ML components employed by the fraud detection system are relatively simple. Nonethe-
less, when testing Ripple, the long-sighted version of the framework, we relax the retrain
latency assumption and instead assume that a tactic’s latency is lower than or equal to
the look-ahead horizon considered. Without this assumption, the LA-AIPs revert to the
myopic setting and can no longer gauge the benefits of adapting because these would only
be available further into the future than what is actually analyzed. For the MT use-case
fine-tune latency was not accounted for, since the focus of this use case was on under-
standing whether the impact of fine-tuning MT models could be estimated, as a first step
towards creating self-adaptive MT systems.
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However, as demonstrated by the fraud-detection use-case and by existing work in the
self-adaptive systems literature [125, 126], accounting for tactic latency may affect the
selected adaptation strategy, since tactics may be pro-actively enacted such that their
benefits can be collected when they are actually needed. Studying the impact of fine-tune
latency is an interesting direction for future work as accounting for latency may bring even
further benefits, especially in the context of real-time MT applications.

Finally, we consider time to be discretized into application-dependent fixed time in-
tervals. We believe this assumption does not hamper the applicability of the framework,
since (i) it is natural to wait non-negligible time intervals to both monitor the evolution of
the environment and the impact of the adaptation tactics; and (ii) this wait is necessary
to collect new data to enable future executions of the retrain and fine-tune tactics.

7.2.3 Environment State Independence Assumption
We assume that the adaptation tactics that are executed do not influence the future state of
the environment nor the behavior of external (environmental) agents (e.g., fraudsters). This
simplifying assumption allows us to focus on estimating the expected benefits of adapting
ML models via retrain or fine-tune tactics, which is the focus of the work developed in
this thesis. We believe this to be a reasonable assumption since it is common for external
agents to be unaware of system updates, particularly when such updates do not require the
agent’s authorization to be performed. In such cases, there is no reason to believe that the
agent’s behavior would be altered. However, it is also possible to consider scenarios where
(i) system updates require an agent’s authorization (e.g., when a software update requires
a user’s permission to execute) or (ii) an adversarial agent is monitoring the system and is
aware of when it is adapted. In such scenarios it is reasonable to assume that the agent’s
behavior might change in response to the adaptations. This assumption can be relaxed in
future work, for instance by taking a game-theoretic approach to modeling the interactions
of the system and the environment [28, 91, 107].

7.2.4 Accounting for Uncertainty
Recent work [25, 80, 127] has shown that capturing uncertainty and including it when
reasoning about adaptation contributes to improved decision making. In our work, we
capture uncertainty (in the environment and in AIP predictions) via the Extended Pearson-
Tukey (EP-T) three-point approximation, used in the self-adaptive systems’ literature to
deal with uncertain predictions [124]: we get the predictions for the 5th, 50th and 95th
percentiles and create three paths in the formal model (for each percentile) with different
probabilities. However, since our goals were to predict the benefits of the retrain, fine-tune,
and nop adaptation tactics, and to understand the impact of an adaptation on overall
system utility, we did not simultaneously account for uncertainty in both the environment
and in the AIPs. We also do not test how uncertainty propagation across the ML-enabled
system may affect the adaptation decision nor the impact of adaptation on overall system
utility. This is a promising research direction which we elaborate in the Section 7.3.1.
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7.2.5 Extension to Multiple Tactics
We have constructed and evaluated AIPs to predict the impact of executing tactics nop,
retrain, and fine-tune, with each use-case considering only two of these tactics. However,
the framework was designed to support other tactics, such as the ones described in Sec-
tion 4.1. Thus, to demonstrate how the framework can be extended and cope with these
additional tactics even in the absence of tactic specific AIPs, we performed a “what-if”
analysis with the planner component (i.e., the formal model) and with the component
replacement tactic (cf. Section 6.2.3). This analysis demonstrated how the planner can
be extended to account for multiple tactics and can effectively analyze the cost/benefits
trade-offs of the different tactics to generate optimal adaptation strategies. To further
validate the framework’s ability to account for multiple tactics, it would be necessary to
create AIPs for the additional tactics. This is an interesting and promising direction for
future work, which we explore in more detail in the next section.

7.3 Open Research Questions & Future Work
In this section we discuss promising directions for future work, that further validate and
extend the proposed approach.

7.3.1 Reasoning About Uncertainty Propagation
One promising research direction is studying how uncertainty and errors propagate in a sys-
tem and how they affect an ML model and ML adaptation. Indeed, uncertainty and errors
may originate not from the ML component, but instead from components that are upstream
relatively to the ML component, thus potentially inducing the ML model to mispredict.
Alternatively, it is also possible to have uncertainty and errors in the planning process
impacting downstream components, and affecting system utility in unexpected ways. An
interesting research direction would be to explore the role of uncertainty in adaptation of
ML-based systems. Specifically, since it has been shown that accounting for uncertainty
when adapting non-ML systems leads to improved system utility, it would be interesting
to understand (i) whether the proposed framework can be extended with state-of-the-art
ML uncertainty quantification methods [1, 69, 119] and (ii) if these methods contribute to
the generation of improved adaptation plans, further optimizing system utility. Then, in a
second stage, one could explore incorporating uncertainty reduction approaches [131, 182]
for ML models in the framework to further improve decision making.

7.3.2 Coupling Self-Adaption of ML and Non-ML Components
As mentioned previously, uncertainty and errors may not be due to the ML component
but instead to other (possibly non-ML) components that the system relies on. Thus, in
such situations we do not expect ML adaptation to contribute to improving overall system
utility, since the ML component is not the one at fault. In such situations, it would be ideal
to have at our disposal fault localization mechanisms that allow to flag the misbehaving
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component such that we can trigger its adaptation. Since non-ML components might be
the ones negatively impacting system utility, it would be interesting to explore how easily
the framework proposed in this thesis could be coupled with existing frameworks for self-
adaptation of non-ML-based systems and with fault localization mechanisms to trigger
adaptation of the correct component.

7.3.3 Collaborative AID construction.
The methodology for AID generation produces O(n2) samples out of n repetitions of a spe-
cific adaptation tactic (e.g., retrain or fine-tune). However, tactic executions can be costly
(not only in monetary terms, but also from computational and sustainability perspectives)
and the cost of feature computation also adds up. For instance, in typical production
pipelines, it is common practice to periodically update ML models and deploy them only if
the updated version improves over the quality of the current model version. Although this
allows the AID to be gathered at no additional costs during this initial deployment phase,
before instantiating the AIPs and enabling self-adaptation, there are still adaptations that
could have been avoided (e.g., model retraining may generate a model that is worse than
the one currently in production and that ends up being discarded).

An interesting alternative approach to creating the AID is the idea of Adaptation Cards:
extending the concept of Model Cards [123] to contain information regarding a model
adaptation (e.g., retrain, fine-tune). Adaptation Cards are meant to be publicly available in
repositories such as GitHub [73] or HuggingFace [83] and to contain information regarding
the impact of adapting a model with diverse sets of data. For instance, an Adaptation
Card characterizing a model fine-tune would make available (i) a pointer to the target MT
model, (ii) (a subset of) the features introduced in Section 5.3 providing information on
the statistical characteristics of the data set used for fine-tuning the model, (iii) quality
of the MT model before and after fine-tuning evaluated using a standardized set of MT
evaluation metrics and test sets. This approach should not require users to make the
data used for fine-tuning publicly available, but only the resulting features, thus limiting
potential privacy concerns.

Ideally, this would allow practitioners to re-use the data collected and compute power
spent by other practitioners to improve their ML-based systems or to create an AID for their
self-adaptive ML-enabled system. Promoting such data re-use is a step towards greener
AI as the environmental cost of these expensive model updates/tests can be diluted across
multiple usages of the data.

7.4 Conclusion
With the prevalence of machine learning (ML) systems, and the surge of highly impactful
ML-based systems such as large language models [134] (e.g., ChatGPT), detecting when
these systems are misbehaving and adapting them to ensure their system utility is opti-
mized becomes a first-order goal. The work developed in this thesis takes a first step at
tackling this problem by proposing a repertoire of tactics for adapting ML components
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of ML-enabled systems and developing a general framework for engineering self-adaptive
ML-enabled systems.

The literature on self-adaptive system has mostly targeted non-ML systems, or lever-
aged ML as part (but not as target) of the adaptation process, for instance leveraging
ML to improve a planner’s capabilities and explore the space of adaptation tactics more
efficiently. In contrast, we focus on the problem of determining when and how to adapt
an ML-based system to optimize system utility. This raises non-trivial challenges, such as
(i) estimating the expected costs and benefits that an adaptation tactic will have and (ii)
reasoning about how the expected benefits will impact overall system utility to understand
whether adaptation is worth it.

To address the first challenge, we start by eliciting a repertoire of tactics for ML adap-
tation from state-of-the-art work on ML. Chapter 4 presents the repertoire, along with a
discussion on the advantages and disadvantages of each tactic and examples of when to
apply them. Then, we focus on two of these tactics, particularly ML model retrain and
fine-tune and create predictors to estimate the expected benefits of executing them.

The second challenge is tackled by leveraging probabilistic model checkers to plan the
adaptation strategy to execute. This requires creating formal models of ML-enabled sys-
tems and finding an adequate level of abstraction to represent ML components, ensuring
not only that their characteristic behaviors are modeled, but also that the formal abstrac-
tion is expressive, general, accurate, and that the model verification is tractable for usage
in online adaptation of systems.

Thus, in Chapter 5 we present a framework to reason, in a principled way, about the
cost/benefit trade-offs associated with adapting ML components of ML-based systems. The
framework relies on adaptation impact predictors (AIPs) to estimate the expected benefits
of executing different adaptation tactics and on probabilistic model checking to navigate the
trade-offs of executing one tactic over another and generate optimal adaptation strategies.
The model checker is particularly valuable when considering longer planning horizons and
when tactics have a non-negligible execution latency.

The framework was successfully applied to engineer two self-adaptive systems (Chap-
ter 6): a credit card fraud detection system and a machine translation system. In both
cases, the framework allowed to achieve higher system utility when compared against sim-
pler baselines that periodically or randomly adapt the ML model. Further, we empirically
verified that the execution time of the adaptation strategy generation is suitable to plan
how to adapt a system in an online fashion. Finally, we demonstrate how to apply the
framework to plan for the long term and how that leads to further improvements to system
utility when compared against short-sighted approaches.
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Appendix A

This appendix provides additional details on Flexico’s evaluation and on the experimental
results obtained. Specifically:

Section A.1. Provides details about the feature computation cost for querying the
FIPs and the cost savings that Flexico leads to;
Section A.2. Provides all the results for the specific FIPs of both use-cases (En-Zh
and En-Fr) on the 4 MT metrics (COMET22, chrF, SacreBLEU, COMET22Kiwi),
3 models (random forest, linear, xgboost trees) and FIP feature sets tested;
Section A.3. Contains the results for the generic FIPs of both use-cases (En-Zh
and En-Fr) on the 4 MT metrics (COMET22, chrF, SacreBLEU, COMET22Kiwi),
3 models (random forest, linear, xgboost trees) and FIP feature sets tested;
Section A.4. Has the results for the leave-one-out cross-validation evaluation of the
generic FIPs of both use-cases (En-Zh and En-Fr) on the 4 MT metrics (COMET22,
chrF, SacreBLEU, COMET22Kiwi), 3 models (random forest, linear, xgboost trees)
and FIP feature sets tested;
Section A.5. Compares the system utility improvements obtained by Flexico with
those obtained by simpler baselines.

A.1 Feature Computation Cost
Table A.1 displays the cost (in USD) of computing each feature-set to query the FIPs. We
see that using Flexico to prevent useless fine-tunings can save up to 80× the cost of a
fine-tuning for the En-Zh use-case and up to 40× for the En-Fr use-case.

A.2 Specific AIPs
The experimental results obtained for the specific FIPs for the En-Zh use case are displayed
in Tables A.2, A.4 (for MAE) and in Tables A.3, A.5 (for PCC).

Tables A.6, A.8 and Tables A.7, A.9 contain the experimental results obtained for En-Fr
use-case, for MAE and PCC, respectively.
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Table A.1: Cost (in USD) of feature set computation for a single FID sample.

Feature set Cost-En-Zh Cost-En-Fr

All 7.49e-03 5.06e-02
Basic 6.46e-05 1.82e-04
ContAware 4.82e-03 3.69e-02
MTQual 2.61e-03 1.35e-02
Basic + MTQual 2.67e-03 1.37e-02
Sent-overlaps 1.28e-07 2.36e-07
Embeddings 1.09e-03 3.98e-03
n-grams 3.73e-03 3.30e-02
Finetune duration 8.38e-02 4.80e-01

Both sets of tables show the MAE and PCC obtained for each fixed test-set, for each MT
quality metric (COMET22, chrF, SacreBLEU, COMET22Kiwi) and model tested (random
forest, xgboost, linear).

A.3 Generic AIPs
Tables A.10, A.11, A.12, and A.13 contain the experimental results obtained for the
generic FIPs for the En-Zh and En-Fr use-cases, respectively. The tables show the MAE
and PCC obtained for each fixed test-set, for each MT quality metric (COMET22, chrF,
SacreBLEU, COMET22Kiwi) and model tested (random forest, xgboost, linear).

A.4 Generic AIPs: Leave-one-out evaluation
The experimental results obtained for the leave-one-out cross validation study of the generic
FIPs for the En-Zh use-case are displayed in Tables A.14, A.16 (for MAE) and in Ta-
bles A.15, A.17 (for PCC).

Tables A.18, A.20 and Tables A.19, A.21 contain the experimental results obtained
for the leave-one-out cross validation study of the generic FIPs for the En-Fr use-cases.

Both sets of tables show the MAE and PCC obtained for each fixed test-set, for each MT
quality metric (COMET22, chrF, SacreBLEU, COMET22Kiwi) and model tested (random
forest, xgboost, linear).

A.5 System Utility Improvements
Figure A.1 complements the results displayed in Figure 6.14 of the main manuscript by
showing results for all the delta thresholds and fine-tune costs considered. We see that
Flexico is consistently closer to the optimal oracle than the simpler baselines.
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Table A.2: mean absolute error (MAE) of the specific FIPs for the en-zh use-case and for
the COMET22 and chrF MT metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

COMET22

rf

All 0.0098 0.011 0.0078 0.0025 0.0021 0.0046 0.0033
All + Kiwi 0.0102 0.0115 0.0082 0.0026 0.0022 0.0052 0.0033
Basic 0.0107 0.0096 0.0065 0.0028 0.0022 0.0042 0.0034
Basic + ContAware 0.0104 0.0096 0.0064 0.0026 0.0019 0.0052 0.0034
Basic + Kiwi 0.0105 0.0114 0.0082 0.0025 0.0025 0.004 0.0033
Basic + MTQual 0.01 0.0109 0.0076 0.0023 0.0023 0.0036 0.0035
ContAware 0.0066 0.0054 0.0106 0.0026 0.0018 0.0051 0.0039
ContAware-no-ngrams 0.0032 0.004 0.0018 0.0015 0.0011 0.002 0.004
ContAware + Kiwi 0.0064 0.0061 0.012 0.0027 0.0022 0.0048 0.0037
ContAware + MTQual 0.0061 0.0052 0.0118 0.0028 0.002 0.0044 0.0038
MTQual 0.0026 0.0026 0.004 0.0025 0.0023 0.0033 0.0068

xgb

All 0.0106 0.0105 0.0076 0.0027 0.0028 0.0046 0.0039
All + Kiwi 0.0111 0.0115 0.0085 0.0036 0.0032 0.006 0.0038
Basic 0.011 0.0096 0.0063 0.0031 0.003 0.0032 0.0044
Basic + ContAware 0.011 0.01 0.0065 0.0032 0.0018 0.0062 0.0041
Basic + Kiwi 0.0111 0.011 0.0091 0.0033 0.0028 0.0043 0.0042
Basic + MTQual 0.0104 0.0107 0.0072 0.0032 0.003 0.0034 0.0046
ContAware 0.0071 0.0077 0.0098 0.0032 0.002 0.0065 0.0041
ContAware-no-ngrams 0.004 0.0046 0.0027 0.0013 0.0016 0.0023 0.0036
ContAware + Kiwi 0.007 0.0081 0.0119 0.0034 0.0028 0.005 0.004
ContAware + MTQual 0.0063 0.0067 0.0119 0.0029 0.002 0.0045 0.0039
MTQual 0.0026 0.0025 0.0044 0.0022 0.0024 0.0048 0.0064

lin

All 0.0246 0.0396 0.0242 0.0198 0.0127 0.0061 0.0032
All + Kiwi 0.0097 0.0079 0.0084 0.0072 0.0087 0.0183 0.0046
Basic 0.012 0.0096 0.0094 0.0036 0.0074 0.018 0.0066
Basic + ContAware 0.0105 0.0134 0.0085 0.0067 0.012 0.0257 0.0078
Basic + Kiwi 0.0209 0.0064 0.0093 0.0056 0.0059 0.0131 0.0045
Basic + MTQual 0.0307 0.0497 0.0307 0.0217 0.0138 0.0084 0.0078
ContAware 0.0075 0.0073 0.0106 0.0022 0.0016 0.0074 0.0114
ContAware-no-ngrams 0.0039 0.011 0.005 0.0024 0.0018 0.0031 0.0049
ContAware + Kiwi 0.0025 0.0042 0.0076 0.0021 0.0018 0.0065 0.0128
ContAware + MTQual 0.004 0.009 0.0101 0.0015 0.0013 0.0051 0.0047
MTQual 0.0026 0.0046 0.004 0.0049 0.0059 0.0188 0.0255

CHRF

rf

All 1.2988 1.8845 0.8852 0.201 0.2528 0.5287 1.3755
All + Kiwi 1.3325 1.9266 0.8345 0.1977 0.2623 0.5125 1.3419
Basic 1.2669 1.7982 0.7468 0.188 0.2918 0.39 1.1686
Basic + ContAware 1.3139 1.7564 0.7176 0.2059 0.2279 0.5191 1.3622
Basic + Kiwi 1.3154 2.0483 0.8955 0.1723 0.2997 0.4629 1.2647
Basic + MTQual 1.2851 1.9641 0.8432 0.1773 0.2939 0.4712 1.3064
ContAware 0.8964 2.5906 1.4404 0.224 0.186 0.5581 1.449
ContAware-no-ngrams 0.325 0.6658 0.3926 0.2172 0.1696 0.6135 1.5296
ContAware + Kiwi 0.9221 2.6954 1.5336 0.2168 0.2262 0.5575 1.4343
ContAware + MTQual 0.8961 2.5787 1.5214 0.224 0.2012 0.5644 1.4347
MTQual 0.3384 0.8124 0.8026 0.9022 0.5233 0.9051 1.8848

xgb

All 1.2929 1.9174 1.0962 0.2395 0.4202 0.4186 1.2297
All + Kiwi 1.3264 2.0017 0.8072 0.2501 0.3902 0.425 1.261
Basic 1.167 1.7862 0.9736 0.2125 0.3685 0.459 1.0149
Basic + ContAware 1.3251 1.9632 0.7553 0.2453 0.4014 0.4727 1.3052
Basic + Kiwi 1.3376 1.9825 1.0281 0.2086 0.4091 0.4797 1.1483
Basic + MTQual 1.3195 1.8725 0.8798 0.203 0.3978 0.4476 1.1756
ContAware 0.9549 2.1203 1.4026 0.2806 0.314 0.454 1.3388
ContAware-no-ngrams 0.3777 0.8781 0.3986 0.2517 0.2109 0.639 1.3925
ContAware + Kiwi 0.9275 2.408 1.5952 0.2465 0.4448 0.5183 1.3323
ContAware + MTQual 0.9516 2.0614 1.5635 0.2394 0.3848 0.5306 1.3651
MTQual 0.4334 0.8152 0.6905 0.736 0.5333 0.8348 1.4902

lin

All 2.4429 7.0028 4.6614 4.0561 3.7619 1.4253 1.2898
All + Kiwi 1.5736 1.7068 1.9461 0.6751 0.5063 0.5218 0.8251
Basic 2.0297 1.8097 1.5082 1.4454 0.4298 0.8861 1.3179
Basic + ContAware 1.2713 2.2282 2.043 0.4451 0.6439 0.4628 0.7274
Basic + Kiwi 2.4374 1.5041 1.0727 1.6222 0.4386 1.2873 1.4629
Basic + MTQual 3.1717 9.6014 5.0863 3.8458 3.5403 1.0985 1.3389
ContAware 0.5671 1.1085 0.8213 1.093 0.3859 0.4743 1.4373
ContAware-no-ngrams 0.3349 2.0347 0.5316 0.8608 0.4463 0.7464 1.2638
ContAware + Kiwi 0.2521 0.6423 0.4619 1.1642 0.4441 0.5215 1.0884
ContAware + MTQual 0.3975 1.002 0.4656 0.4841 0.2788 0.9011 2.4838
MTQual 0.9901 1.2518 1.8091 1.7137 1.1945 2.748 6.1039
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Table A.3: pearson correlation coefficient (PCC) of the specific FIPs for the en-zh use-case
and for the COMET22 and chrF MT metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

COMET22

rf

All 61.14 92.08 88.82 95.62 90.63 76.31 84.75
All + Kiwi 61.73 91.74 88.61 95.55 90.73 75.3 84.51
Basic 61.52 91.88 91.2 95.15 90.61 74.98 85.08
Basic + ContAware 60.64 91.5 91.29 95.06 90.8 74.41 84.21
Basic + Kiwi 62.65 92.21 86.75 95.89 89.91 76.11 85.6
Basic + MTQual 61.47 92.21 87.11 95.97 89.49 76.63 85.66
ContAware 48.79 80.02 89.26 93.72 89.37 69.02 80.31
ContAware-no-ngrams 64.65 95.66 89.92 95 91.94 79.9 85.15
ContAware + Kiwi 51.67 78.82 87.87 93.93 87.84 70.12 80.34
ContAware + MTQual 50.5 79.84 87.59 93.75 89.16 69.07 80.85
MTQual -13.14 -4.65 -48.1 -9.08 -18.69 -16.65 -28.18

xgb

All 60.62 92.02 87.8 94.44 84.05 66.68 84.36
All + Kiwi 61.25 91.7 87.18 94.29 83.24 75.95 83.12
Basic 61.87 92.7 88.54 96.02 86.06 76.71 75.46
Basic + ContAware 61.13 92.22 89.22 94.77 90.82 53.26 75.05
Basic + Kiwi 62.43 91.44 82.35 93.95 86.72 74.12 77.38
Basic + MTQual 62.87 92.36 84.59 94.44 85.47 74.49 74.57
ContAware 45.19 75.3 87.9 91.89 87.8 64.35 74.6
ContAware-no-ngrams 60.3 93.84 87.83 93.22 87.7 70.78 82.23
ContAware + Kiwi 51.57 69.58 84.15 93.26 83.56 60.89 79.52
ContAware + MTQual 52.48 76.42 84.61 92.64 86.62 66.02 79.45
MTQual -2.18 13.26 -33.36 31.43 -5.8 -7.05 -19.26

lin

All 37.82 -0.81 48.22 31.34 65.76 89.45 90
All + Kiwi 66.05 95.68 90.11 93.11 80.75 74.96 88.21
Basic 55.26 94.9 85.17 78.91 -14.63 -27 56.17
Basic + ContAware 66.1 94.16 88.22 94.01 56.24 37.37 74.41
Basic + Kiwi 27.91 92.32 79.2 5.73 -28.57 -19.47 81.98
Basic + MTQual 18.06 -15.62 21.05 -33.74 -23.96 39.99 39.39
ContAware 13.65 86.82 77.86 91.28 86.04 64.99 63.6
ContAware-no-ngrams 40.71 65.16 85.35 56.64 48.57 30.08 51.65
ContAware + Kiwi 69.39 88.75 81.1 91.11 87.16 76.12 62.26
ContAware + MTQual 58.75 64.83 85.26 91.35 90.77 88.35 94.06
MTQual 37.9 10.18 23.15 28.85 34.98 48.64 69.67

CHRF

rf

All 81.97 96.13 91.4 96.78 94.27 91.77 85.51
All + Kiwi 81.77 96.09 90.28 96.69 94.82 91.96 85.2
Basic 82.54 95.84 91.6 97.35 95.03 93.39 90.55
Basic + ContAware 82.15 95.7 90.36 96.34 94.57 92.41 85.41
Basic + Kiwi 81.95 96.11 91.61 97.65 95.33 91.92 91
Basic + MTQual 81.78 96.21 92.24 97.73 94.83 92.34 90.39
ContAware 75.37 82.74 84.32 95.53 95.07 91.9 82.38
ContAware-no-ngrams 84.17 95.39 84.88 95.32 93.95 93.62 85.14
ContAware + Kiwi 75.44 82.42 84.56 95.88 95.68 91.06 82.82
ContAware + MTQual 75.65 83.44 85.13 95.88 95.35 91.47 83.37
MTQual -12.04 -23.49 -20.34 -6.45 -15.79 -21.48 -6.98

xgb

All 81.58 96.35 92.66 95.62 93.07 91.5 84.7
All + Kiwi 81.44 96.02 90.27 95.49 93 91.69 85.36
Basic 82.46 96.35 92.59 97.03 93.61 93.18 89.81
Basic + ContAware 83.74 96.39 88.87 94.84 90.42 86.64 86.52
Basic + Kiwi 80.64 96.15 92.46 96.64 92.82 89.86 88.73
Basic + MTQual 81.16 96.02 91.77 96.96 91.38 91.32 88.48
ContAware 74.33 79.55 81.63 94.7 93.79 89.86 85.49
ContAware-no-ngrams 83.36 91.77 83.84 93.81 92.92 88.34 85.35
ContAware + Kiwi 75.3 81.99 82.69 94.64 89.65 82.89 80.25
ContAware + MTQual 74.97 82.3 82.02 95.46 91.77 86.26 81.12
MTQual 3.81 -12.98 6.14 -1.54 -3.26 -18.95 -6.19

lin

All 69.37 34.59 10.23 -12.44 6.43 41.16 92.62
All + Kiwi 86.06 95.7 90.6 55.01 90.87 71.95 87.61
Basic 70.82 93.96 89.67 -16.7 51.04 0.84 58.5
Basic + ContAware 88.47 94.34 89.92 95.51 90.55 84.46 88.74
Basic + Kiwi 48.98 94.17 87.75 -72.3 31.27 -56.55 32.54
Basic + MTQual 36.72 15.28 -12.32 -52.58 -30.31 -10.17 78.79
ContAware 61.99 90.79 92.12 85.73 91.84 82.53 82.1
ContAware-no-ngrams 55.04 68.65 76.93 53.46 75.29 54.35 54.12
ContAware + Kiwi 77.32 91.79 91.49 82.57 91.94 78.48 86.22
ContAware + MTQual 85.6 83.16 92 90.94 93.88 83.74 83.72
MTQual 27.16 16.42 38.37 33.73 32.16 40.13 40.74
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Table A.4: mean absolute error (MAE) of the specific FIPs for the en-zh use-case and for
the SacreBLEU and COMET22Kiwi MT metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

SacreBleu

rf

All 0.4513 4.1395 1.0724 1.094 0.7551 0.7358 0.7954
All + Kiwi 0.5889 4.2074 1.1478 1.1737 0.7897 0.7397 0.7454
Basic 0.5245 3.9928 0.5011 0.6638 0.307 0.7121 0.6187
Basic + ContAware 0.512 4.0452 1.13 1.1436 0.814 0.7518 0.7455
Basic + Kiwi 0.601 4.2934 0.5124 0.6712 0.3523 0.7683 0.6535
Basic + MTQual 0.4785 4.2096 0.5325 0.6408 0.3145 0.6743 0.717
ContAware 0.465 4.2742 1.3669 2.0439 0.9647 0.9096 0.9184
ContAware-no-ngrams 0.4443 1.559 0.8352 0.4391 0.2933 0.505 0.6144
ContAware + Kiwi 0.4634 4.441 1.3982 2.1174 0.9452 0.852 0.885
ContAware + MTQual 0.3429 4.2862 1.1328 1.6838 0.8849 0.9553 0.9285
MTQual 0.2384 0.4718 1.1186 1.0666 0.4834 1.1127 0.984

xgb

All 0.4949 4.0058 0.983 1.1256 0.7215 0.6591 0.9012
All + Kiwi 0.6069 4.0857 1.1069 1.4065 0.9411 0.6439 0.755
Basic 0.67 3.9185 0.5318 0.8456 0.4019 0.5145 0.5164
Basic + ContAware 0.6579 3.8573 1.0346 1.2539 0.8677 0.5525 0.676
Basic + Kiwi 0.6311 4.2777 0.5603 0.966 0.4172 0.6568 0.6056
Basic + MTQual 0.5301 4.2265 0.5729 0.7328 0.2551 0.6292 0.6301
ContAware 0.5941 3.9492 1.4202 1.3147 1.0642 0.8614 0.9524
ContAware-no-ngrams 0.4686 1.578 0.8028 0.6505 0.3503 0.5648 0.6457
ContAware + Kiwi 0.4851 4.2552 1.3207 1.5951 1.014 0.7156 0.9415
ContAware + MTQual 0.3762 4.0718 1.1933 1.0224 0.7849 0.9599 0.9639
MTQual 0.256 0.5425 0.9609 0.8061 0.3828 0.835 0.854

lin

All 3.4864 12.261 2.4845 8.5803 3.3706 8.5884 1.4786
All + Kiwi 2.5794 3.2655 6.2742 8.2808 1.5673 4.4889 1.7998
Basic 1.1463 3.8732 4.5451 8.9053 1.8903 4.98 2.3538
Basic + ContAware 2.3252 3.3868 6.7316 11.221 1.8873 7.1211 2.221
Basic + Kiwi 1.2038 3.8149 4.1696 6.6807 1.8231 3.5084 1.8235
Basic + MTQual 3.8911 13.7753 3.6442 7.4655 3.1398 5.6612 2.0023
ContAware 0.4709 3.0819 0.9458 2.4893 0.4134 2.003 2.6343
ContAware-no-ngrams 0.6318 3.7758 0.7622 1.5584 0.5532 0.6751 0.8542
ContAware + Kiwi 0.7591 2.245 1.3426 3.1873 0.6999 4.0094 1.1261
ContAware + MTQual 1.1344 2.31 1.3716 1.6866 0.2569 1.0122 1.6106
MTQual 0.9101 0.8251 2.9408 0.99 0.6903 1.1218 1.3302

COMET22Kiwi

rf

All 0.0016 0.0037 0.0023 0.0009 0.0018 0.0013 0.0018
All + Kiwi 0.0016 0.0037 0.0024 0.0009 0.0019 0.0013 0.0018
Basic 0.0029 0.0019 0.0011 0.0006 0.0031 0.0034 0.0023
Basic + ContAware 0.0025 0.0017 0.001 0.0009 0.0032 0.0025 0.0029
Basic + Kiwi 0.0018 0.0038 0.0025 0.0008 0.0019 0.002 0.002
Basic + MTQual 0.0018 0.0038 0.0025 0.0008 0.0018 0.0019 0.002
ContAware 0.0026 0.0016 0.0016 0.0008 0.0032 0.0022 0.0024
ContAware-no-ngrams 0.0021 0.0028 0.002 0.0006 0.0023 0.0015 0.0021
ContAware + Kiwi 0.0016 0.0036 0.002 0.0009 0.0022 0.0013 0.0022
ContAware + MTQual 0.0016 0.0036 0.0021 0.0009 0.0022 0.0013 0.0021
MTQual 0.0018 0.0028 0.0018 0.0009 0.0013 0.0012 0.0039

xgb

All 0.0017 0.0027 0.0021 0.0008 0.0018 0.001 0.0019
All + Kiwi 0.0016 0.0027 0.0021 0.0008 0.0018 0.001 0.0019
Basic 0.0028 0.0022 0.001 0.0006 0.0029 0.0015 0.002
Basic + ContAware 0.0035 0.0016 0.001 0.0008 0.0026 0.0015 0.0027
Basic + Kiwi 0.0016 0.0027 0.0022 0.0006 0.0018 0.0012 0.002
Basic + MTQual 0.0016 0.0027 0.002 0.0006 0.0019 0.0011 0.0019
ContAware 0.0027 0.0015 0.001 0.0008 0.0034 0.0015 0.0021
ContAware-no-ngrams 0.0025 0.0022 0.0018 0.0008 0.0022 0.0014 0.0022
ContAware + Kiwi 0.0017 0.0029 0.0019 0.0008 0.0017 0.001 0.0022
ContAware + MTQual 0.0018 0.0028 0.0018 0.0008 0.0016 0.001 0.002
MTQual 0.0018 0.0024 0.0019 0.0007 0.0012 0.0012 0.0033

lin

All 0.0121 0.0107 0.006 0.001 0.0091 0.008 0.0161
All + Kiwi 0.0057 0.0114 0.0099 0.0014 0.0083 0.0062 0.0155
Basic 0.0066 0.0074 0.0052 0.0027 0.0062 0.0026 0.0064
Basic + ContAware 0.0076 0.0101 0.0062 0.0033 0.008 0.0025 0.0076
Basic + Kiwi 0.0099 0.0103 0.0093 0.0009 0.0082 0.0056 0.0138
Basic + MTQual 0.0142 0.0079 0.0062 0.0012 0.0076 0.0056 0.0125
ContAware 0.0067 0.0026 0.0058 0.0013 0.0026 0.002 0.0122
ContAware-no-ngrams 0.0026 0.0034 0.0034 0.001 0.0028 0.0021 0.0061
ContAware + Kiwi 0.0019 0.0057 0.0053 0.0007 0.0031 0.001 0.0051
ContAware + MTQual 0.0043 0.0051 0.004 0.0005 0.0037 0.0011 0.0064
MTQual 0.0038 0.0034 0.0024 0.0006 0.0016 0.0012 0.0029

109



Table A.5: pearson correlation coefficient (PCC) of the specific FIPs for the en-zh use-case
and for the SacreBLEU and COMET22KiwiMT metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

SacreBleu

rf

All -9.67 79.61 69.54 80.72 73.18 65.25 74.38
All + Kiwi -16.31 79.69 69.09 80.5 72.54 68.2 76.9
Basic -14.83 79.69 69.72 74.2 76.01 63.47 74.82
Basic + ContAware -15.75 79.83 69.03 81.14 72.85 60.46 80.02
Basic + Kiwi -15.99 79.72 67.5 75.85 74.87 70.49 68.37
Basic + MTQual -6.68 79.64 67.3 71.51 73.25 63.16 70.35
ContAware -9.94 70.05 65.17 75.19 65.99 -44.19 -2.71
ContAware-no-ngrams -13.61 85.29 31.07 77.97 64.67 60.52 65.75
ContAware + Kiwi -12.47 70.59 65.26 74.22 66.08 -44.27 -8.55
ContAware + MTQual 0.2 70.92 66.45 75.73 66.71 -17.01 41.66
MTQual 37.15 17.25 -25.4 3.5 -7.37 -4.74 -10.62

xgb

All -9.11 78.86 69.9 68.8 72.89 67.39 29.86
All + Kiwi -14.08 79.86 69.76 77 68.42 73.31 40.29
Basic -12.59 78.86 64.03 75.55 72.86 70.46 73.16
Basic + ContAware -14.25 79.84 69.81 79.2 72.37 70 71.18
Basic + Kiwi -16.46 79.49 62.29 71.92 70.61 74.01 65.31
Basic + MTQual -4.96 79.57 59.56 73.72 74.08 67.86 62.99
ContAware -11.48 70.11 63.32 69.56 63.25 -28.95 -16.15
ContAware-no-ngrams -16.72 84.12 42.89 72.88 58.98 49.97 23.38
ContAware + Kiwi -1.41 69.53 64.61 68.74 63.1 -28.16 -18.44
ContAware + MTQual 6.59 70.41 65.55 67.19 65.16 -50.25 20.82
MTQual 29.14 14.08 -2.85 -4.42 7.94 1.51 -14.86

lin

All 11.98 15.07 2.68 -58.65 -7.55 -31.57 34.23
All + Kiwi -5.63 84.81 51.78 18.96 36.49 17.4 44.16
Basic -11.78 84.01 66 65.51 36.51 54.48 38.92
Basic + ContAware -6.68 85.34 51.97 52.73 45.76 35.87 45.95
Basic + Kiwi -9.51 83.88 66.5 47.8 20.78 51.45 28.49
Basic + MTQual 10.22 21.57 12.64 -48.37 -8.34 -15.89 22.87
ContAware -4.21 78.46 58.84 72.48 64.99 47.57 43.86
ContAware-no-ngrams -6.67 52.12 52.76 51.4 50.32 64.12 25.13
ContAware + Kiwi -5.6 80.79 56.14 68 58.61 32.39 47.4
ContAware + MTQual 31.43 71.02 75.21 57.51 77.5 53.32 49.39
MTQual 41.44 26.42 62.65 33.59 39.25 17.9 28.69

COMET22Kiwi

rf

All 40.04 55.99 64.05 50.86 27 63.86 62.82
All + Kiwi 38.96 55.45 62.52 51.2 25.27 63.43 61.93
Basic 10.64 -68.54 63.58 39.95 -56.63 -11.35 -18.52
Basic + ContAware -0.68 -34.25 -53.86 -0.82 -52.48 -6.16 -12.26
Basic + Kiwi 35.08 55.27 63.78 59.81 30.45 61.69 55.81
Basic + MTQual 37.48 55.42 63.67 56.13 29.68 62.43 57.66
ContAware -3.4 -31.83 -57.48 0.78 -48.42 -11.73 2.85
ContAware-no-ngrams 11.35 -76.94 -48.98 0.07 -57.83 -4.19 -6.01
ContAware + Kiwi 31.34 55.38 61.29 56.14 -9.17 63.25 61.06
ContAware + MTQual 34.52 55.73 64.18 56.33 -10.05 63.74 60.36
MTQual 47.7 50.97 43.28 54.18 24.06 54.36 60.17

xgb

All 36.61 55.6 61.17 54.51 35.61 62.26 67.06
All + Kiwi 39.02 55.6 60.51 55.82 39.03 61.16 66.78
Basic 11.37 -62.05 -9.93 nan -54.74 nan 6.92
Basic + ContAware -6.67 3.99 -18.04 -1.73 -50.86 21.2 -2.23
Basic + Kiwi 42.06 56.67 60.04 57.16 27.67 59.75 58.94
Basic + MTQual 44.7 56.67 59.08 53.31 24.93 57.96 60.92
ContAware -6.66 17.58 8.61 9.52 -46.79 -1.23 15.12
ContAware-no-ngrams -0.81 -73.16 -36.87 1.82 -55.75 -2.28 -2.15
ContAware + Kiwi 26.24 54.15 64.78 57.06 44.65 60.28 59.07
ContAware + MTQual 23.26 55.43 63.33 55.78 45.5 61.04 62.91
MTQual 40.36 44.82 51.8 57.09 33.15 54.05 60.48

lin

All 7.83 17.26 -58.13 60.44 -11.11 32.88 -14.08
All + Kiwi 21.49 -18.47 -48.66 52.56 -21.86 38.6 -15.09
Basic 13.34 -17.79 -74.01 44.53 -54.7 21.08 3.54
Basic + ContAware 15.04 0.63 -76.09 32.87 -54.19 9.19 0.42
Basic + Kiwi 17.83 -19.16 -45.36 57.69 -17.61 48.24 -18.16
Basic + MTQual 4.6 -28.76 -62.48 47.9 -21.35 46.02 -16.92
ContAware -28.36 -69 -52.59 -6.59 -62.41 -30.09 -37.3
ContAware-no-ngrams 0.14 -37.9 -70.65 1.02 -52.94 -12.74 -30.38
ContAware + Kiwi 48.98 -44.27 -32.86 46.3 -35.03 61.75 1.32
ContAware + MTQual 27.1 -30.15 -26.64 61.16 -18.6 64.63 2.9
MTQual 39.08 61.96 70.37 58.88 65.34 70.32 69.72
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Table A.6: mean absolute error (MAE) of the specific FIPs for the en-fr use-case and for
the COMET22 and chrF MT metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

COMET22

rf

All 0.0014 0.0016 0.0008 0.001 0.009 0.0006 0.0008
All + Kiwi 0.0014 0.0017 0.0011 0.0018 0.0063 0.0007 0.001
Basic 0.0013 0.002 0.001 0.0012 0.002 0.0009 0.0009
Basic + ContAware 0.0012 0.0018 0.0011 0.0015 0.0032 0.0008 0.0009
Basic + Kiwi 0.0014 0.0018 0.0011 0.0012 0.0017 0.0009 0.0008
Basic + MTQual 0.0014 0.0016 0.001 0.0012 0.0027 0.0004 0.0006
ContAware 0.0027 0.0024 0.0016 0.001 0.0104 0.0015 0.0011
ContAware-no-ngrams 0.0028 0.0025 0.0019 0.001 0.0105 0.0015 0.0011
ContAware + Kiwi 0.0022 0.0017 0.0014 0.0014 0.0065 0.0008 0.001
ContAware + MTQual 0.0024 0.0016 0.0008 0.0011 0.0091 0.0004 0.0008
MTQual 0.0023 0.0022 0.001 0.0015 0.0033 0.0004 0.0009

xgb

All 0.0015 0.0015 0.0008 0.0009 0.0056 0.0005 0.0006
All + Kiwi 0.0015 0.0017 0.001 0.0014 0.0049 0.0008 0.0009
Basic 0.0012 0.0021 0.001 0.001 0.0015 0.0007 0.0009
Basic + ContAware 0.0012 0.0019 0.0011 0.0013 0.0035 0.0008 0.0009
Basic + Kiwi 0.0013 0.002 0.0011 0.0011 0.0019 0.0007 0.0009
Basic + MTQual 0.0012 0.0014 0.0009 0.0012 0.0033 0.0005 0.0006
ContAware 0.0024 0.002 0.0012 0.001 0.0058 0.001 0.0011
ContAware-no-ngrams 0.0025 0.0021 0.0012 0.001 0.0058 0.001 0.001
ContAware + Kiwi 0.0019 0.0019 0.0011 0.001 0.0048 0.0008 0.0008
ContAware + MTQual 0.0019 0.0014 0.0008 0.0013 0.0055 0.0004 0.0006
MTQual 0.0018 0.0015 0.0009 0.0013 0.0034 0.0004 0.0007

lin

All 0.0021 0.0024 0.0024 0.0031 0.0129 0.0006 0.0013
All + Kiwi 0.0018 0.0039 0.0031 0.0048 0.0044 0.0009 0.0023
Basic 0.0015 0.003 0.0012 0.001 0.0028 0.0006 0.0015
Basic + ContAware 0.0025 0.0033 0.0035 0.0024 0.0035 0.0006 0.0026
Basic + Kiwi 0.0027 0.0036 0.0013 0.003 0.0016 0.0007 0.0013
Basic + MTQual 0.0027 0.0015 0.0008 0.0014 0.0096 0.0006 0.0011
ContAware 0.0037 0.0037 0.0018 0.0033 564945.2171 0.0014 0.0015
ContAware-no-ngrams 0.0033 0.003 0.0012 0.0026 0.0056 0.0013 0.0015
ContAware + Kiwi 0.0032 0.0025 0.0022 0.0027 714006.1306 0.0008 0.0016
ContAware + MTQual 0.0036 0.0024 0.0024 0.0035 21901.6952 0.0005 0.0015
MTQual 0.0041 0.0016 0.0009 0.0015 0.0038 0.0004 0.0006

CHRF

rf

All 0.0874 0.3745 0.1323 0.1048 1.0928 0.0619 0.1114
All + Kiwi 0.0764 0.2398 0.1371 0.1278 0.7233 0.1051 0.1833
Basic 0.0954 0.2093 0.1372 0.2102 0.3428 0.1063 0.1442
Basic + ContAware 0.0869 0.2305 0.1386 0.1264 0.372 0.1013 0.172
Basic + Kiwi 0.0798 0.2236 0.1359 0.1432 0.3232 0.0953 0.1654
Basic + MTQual 0.0838 0.363 0.1497 0.0944 0.4296 0.0651 0.1096
ContAware 0.2745 0.2968 0.1752 0.4114 0.973 0.2495 0.3192
ContAware-no-ngrams 0.2618 0.3074 0.1709 0.4247 1.0312 0.2425 0.3229
ContAware + Kiwi 0.0988 0.3482 0.1359 0.1255 0.8426 0.1126 0.1694
ContAware + MTQual 0.1551 0.4568 0.1335 0.1455 1.2017 0.0699 0.1038
MTQual 0.135 0.4507 0.1379 0.1255 0.4717 0.066 0.1294

xgb

All 0.0985 0.2597 0.1289 0.1102 0.7089 0.0647 0.1242
All + Kiwi 0.0852 0.2257 0.1474 0.1277 0.5657 0.1329 0.1853
Basic 0.1333 0.2129 0.1352 0.1469 0.2314 0.1259 0.1539
Basic + ContAware 0.0953 0.2126 0.1407 0.1358 0.4612 0.1161 0.1823
Basic + Kiwi 0.1054 0.2145 0.1407 0.1449 0.2532 0.1139 0.166
Basic + MTQual 0.0868 0.301 0.1213 0.1076 0.4166 0.0699 0.1132
ContAware 0.2375 0.2495 0.1734 0.3805 0.7198 0.2026 0.2074
ContAware-no-ngrams 0.2363 0.2486 0.166 0.3724 0.7364 0.1869 0.202
ContAware + Kiwi 0.1043 0.2804 0.1388 0.1375 0.5212 0.1266 0.1667
ContAware + MTQual 0.1288 0.2691 0.1227 0.1828 0.7108 0.065 0.104
MTQual 0.1132 0.2215 0.1272 0.1668 0.497 0.1004 0.1419

lin

All 0.2284 0.4376 0.3785 0.5415 1.3405 0.1097 0.2703
All + Kiwi 0.1505 0.3603 0.395 0.3829 0.4415 0.1161 0.2809
Basic 0.1008 0.2437 0.258 0.4032 0.6187 0.1653 0.3276
Basic + ContAware 0.1182 0.3354 0.5197 0.3916 0.5045 0.1665 0.2792
Basic + Kiwi 0.1391 0.3672 0.1682 0.2448 0.3412 0.0772 0.3321
Basic + MTQual 0.2641 0.2373 0.1444 0.3276 0.9824 0.1405 0.3172
ContAware 0.3349 0.4995 0.1717 0.6531 56795008.1331 0.2245 0.3308
ContAware-no-ngrams 0.2924 0.4215 0.159 0.6028 0.6337 0.2233 0.324
ContAware + Kiwi 0.2076 0.343 0.179 0.2673 77225788.7501 0.1095 0.252
ContAware + MTQual 0.2233 0.5198 0.2085 0.4271 3477672.0195 0.0872 0.1704
MTQual 0.219 0.4053 0.1561 0.1583 0.5144 0.0434 0.1169

111



Table A.7: pearson correlation coefficient (PCC) of the specific FIPs for the en-fr use-case
and for the COMET22 and chrF MT metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

COMET22

rf

All 57.52 57.42 61.24 61.5 58.44 7.07 71.42
All + Kiwi 57.05 7.92 -0.32 6.34 42.98 -0.36 31.76
Basic 66.62 10.43 18.29 1.73 -10.47 3.1 17.41
Basic + ContAware 67.11 -10.19 3.14 -0.97 -13.97 -2.68 2.68
Basic + Kiwi 53.83 5.17 14.72 4.86 46.11 8.4 45.31
Basic + MTQual 58.16 53.19 65.65 64.41 59.69 46.92 77.01
ContAware 14.9 -22.55 -17.1 -3.38 18.88 21.52 -8.58
ContAware-no-ngrams 10.77 -14.07 3.03 -5.25 18.77 17 15.86
ContAware + Kiwi -8.58 10.33 -12.93 5 66 23.5 32.24
ContAware + MTQual 5.9 53.88 60.09 65.02 72.98 54.23 70.55
MTQual 7.95 37.52 57.52 52.53 20.99 29.15 64.64

xgb

All 32.58 55.99 61.4 58.24 44.3 18.76 73.94
All + Kiwi 39.23 11.7 9.94 -0.79 39.13 6.8 18.26
Basic 65.02 10.03 7.56 0.81 -16.04 2.93 15.85
Basic + ContAware 57.32 10.02 12.82 -2.73 -17 3.04 -7.67
Basic + Kiwi 48.73 2.56 5.75 5.49 42.46 17.18 29.27
Basic + MTQual 61.07 60.49 61.54 62.92 43.25 54.38 68.48
ContAware 13.56 9.46 -9.37 1.66 5.82 3.17 -18.93
ContAware-no-ngrams 9.19 -15.6 6.81 7.04 5.83 3.17 10.36
ContAware + Kiwi -17.9 0.37 -5.91 2.6 53.33 12.94 32.02
ContAware + MTQual -19.54 59.69 61.16 53.04 58.04 43.96 71.63
MTQual 20.75 57.3 56.21 50.71 9.57 27.7 59.24

lin

All 63.9 41.31 17.63 28.58 36.02 59.56 28.69
All + Kiwi 57.48 11.89 3.82 21.06 19.01 31.11 15.8
Basic 58.45 -5.44 -0.43 42.72 -23.07 15.62 10.48
Basic + ContAware 53.56 8.06 -2 19.45 -6.35 22.29 5.79
Basic + Kiwi 70.64 3.22 16.84 49.25 37.74 23.25 30.42
Basic + MTQual 81.21 63.05 63.07 74.56 67.86 60.74 65.06
ContAware 19.53 10.63 -3.64 6.63 7.38 8.53 -3.02
ContAware-no-ngrams 24.96 -0.53 27.75 -16.51 2.51 12.05 -2.21
ContAware + Kiwi 35.76 11.27 0.95 6.38 7.38 19.07 7.06
ContAware + MTQual 47.42 41.55 15.7 22.37 7.38 43.07 27.67
MTQual 59.15 61.9 66.09 58.24 72.93 59.94 74.84

CHRF

rf

All 40.54 12.74 31.94 61.95 54.13 34.4 21.8
All + Kiwi 50.79 29.18 -3.24 17.27 46.02 6.77 -26.25
Basic 46.04 28.29 5.77 2.16 7.48 -8.13 -23.13
Basic + ContAware 46.02 30.93 1.43 36.68 -5.42 -4.29 -24.59
Basic + Kiwi 54.87 25.51 -6.45 9.96 47.29 8.1 -18.8
Basic + MTQual 48.78 18.28 54.69 65.22 57.81 25.24 20.52
ContAware 7.71 -0.77 -2.54 7.56 -0.56 6.74 -2.12
ContAware-no-ngrams 10.63 -11.36 -3.55 -3.08 -7.66 10.19 4.21
ContAware + Kiwi 20.58 -21.73 2.23 25.81 43.03 18.58 -6.01
ContAware + MTQual 4.86 -1.68 33.77 44.41 53.87 18.42 34.81
MTQual 17.42 22.5 26.12 51.73 36.62 25.83 1.56

xgb

All 27.55 19.58 24.72 62.64 35.43 45.63 33.79
All + Kiwi 46 13.21 3.22 29.46 39.97 1.99 -17.22
Basic 44.07 25.49 2.46 -15.56 -5.68 -4.73 -21.49
Basic + ContAware 43.69 33.15 -0.75 13.82 11.86 -6.26 0.28
Basic + Kiwi 48.57 25.29 -3.52 17.18 42.84 8.54 -22.63
Basic + MTQual 42.6 0.16 39.63 59.17 47.9 38.61 26.25
ContAware 18.72 15.9 -22.08 18.24 4.1 2.79 -3.94
ContAware-no-ngrams 13.37 15.49 -20.75 -4.85 1.79 7.95 4.83
ContAware + Kiwi 16.22 -0.8 14.73 33.48 24.96 4.8 -7.37
ContAware + MTQual 1.96 30.56 35.1 30.85 31.54 47.3 33.53
MTQual 7.96 22.63 17.67 27.56 23.19 21.98 -6.25

lin

All 41.9 13.8 41.54 35.12 30.04 48.13 12.51
All + Kiwi 25.2 -8.26 25.58 22.15 2.64 24.54 -22.2
Basic 52.53 19.1 15.16 5.18 -9.04 -4.15 -24.4
Basic + ContAware 40.23 2.82 17.14 16.9 -15 -2.84 -19.15
Basic + Kiwi 42.94 6.46 29.58 7.22 22.82 37.74 -28
Basic + MTQual 58.72 64.68 58.96 32.94 60.47 66.01 20.08
ContAware -4.29 6.58 13.3 21.51 -16.4 -2.83 -11.5
ContAware-no-ngrams 22.47 1.92 -2.71 -21.42 -2.01 2.12 -17.45
ContAware + Kiwi 8.23 -10.43 20.88 17.73 -16.4 19.78 -17.16
ContAware + MTQual 37.62 12.54 43.04 33.79 -16.4 39.93 17.46
MTQual 63.03 51.72 59.45 19.98 70.42 76.08 49.76
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Table A.8: mean absolute error (MAE) of the specific FIPs for the en-fr use-case and for
the SacreBLEU and COMET22Kiwi MT metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

SacreBleu

rf

All 0.1821 0.607 0.2525 0.3795 0.7009 0.1037 0.2352
All + Kiwi 0.1407 0.3684 0.2174 0.1861 0.4563 0.1627 0.2669
Basic 0.1211 0.3272 0.2198 0.2177 0.3506 0.1573 0.219
Basic + ContAware 0.1412 0.3546 0.2274 0.1798 0.4137 0.1609 0.2612
Basic + Kiwi 0.1334 0.3454 0.2184 0.1911 0.2303 0.1709 0.2244
Basic + MTQual 0.1711 0.6225 0.2984 0.3712 0.4046 0.1018 0.2223
ContAware 0.5934 0.3829 0.3185 0.8886 0.7866 0.2897 0.3253
ContAware-no-ngrams 0.5624 0.3633 0.3862 0.9039 0.8778 0.2926 0.351
ContAware + Kiwi 0.1808 0.3985 0.2335 0.1878 0.6793 0.1395 0.208
ContAware + MTQual 0.2883 0.6237 0.2507 0.1444 0.7186 0.1085 0.2075
MTQual 0.26 0.7039 0.2856 0.1533 0.3512 0.0965 0.2374

xgb

All 0.1711 0.4229 0.2022 0.4112 0.42 0.1072 0.221
All + Kiwi 0.1372 0.3491 0.2284 0.1824 0.3981 0.2291 0.2703
Basic 0.1745 0.3211 0.23 0.1922 0.2088 0.1874 0.234
Basic + ContAware 0.1378 0.3583 0.2458 0.1965 0.3427 0.1974 0.2726
Basic + Kiwi 0.1371 0.3377 0.2475 0.1996 0.2591 0.2285 0.2348
Basic + MTQual 0.1337 0.3781 0.2086 0.378 0.2441 0.1311 0.1984
ContAware 0.5548 0.4111 0.3257 0.7955 0.4136 0.265 0.2905
ContAware-no-ngrams 0.5149 0.3394 0.2967 0.8688 0.4422 0.3052 0.3028
ContAware + Kiwi 0.1445 0.3607 0.2526 0.2124 0.3896 0.1754 0.2379
ContAware + MTQual 0.187 0.4961 0.2086 0.1967 0.4043 0.128 0.2032
MTQual 0.1851 0.3948 0.2136 0.1702 0.3709 0.1258 0.2306

lin

All 0.4789 0.7229 0.2013 0.9234 0.7736 0.1898 0.4702
All + Kiwi 0.303 0.8847 0.2512 0.5576 0.4963 0.3342 0.3086
Basic 0.2488 0.5475 0.2721 0.7829 0.2884 0.3472 0.3082
Basic + ContAware 0.2444 0.5835 0.2895 0.6555 0.4165 0.4436 0.3147
Basic + Kiwi 0.3447 0.6557 0.2318 0.6056 0.293 0.1975 0.2992
Basic + MTQual 0.5744 0.3539 0.1805 0.736 0.6751 0.2751 0.4794
ContAware 0.6226 0.7236 0.3965 1.1769 24873987.7997 0.3524 0.4119
ContAware-no-ngrams 0.6052 0.4368 0.4516 1.1257 0.449 0.3384 0.4259
ContAware + Kiwi 0.4812 0.511 0.309 0.5688 22193794.0062 0.1916 0.2899
ContAware + MTQual 0.299 0.4863 0.2697 0.6586 729107.0116 0.1656 0.236
MTQual 0.3104 0.6357 0.2745 0.2041 0.3778 0.1038 0.1825

COMET22Kiwi

rf

All 0.0012 0.0026 0.0018 0.0035 0.002 0.0003 0.0007
All + Kiwi 0.0013 0.0026 0.0018 0.004 0.002 0.0003 0.0007
Basic 0.0011 0.003 0.0014 0.0029 0.0016 0.001 0.0012
Basic + ContAware 0.0011 0.0026 0.0017 0.0035 0.0018 0.0005 0.001
Basic + Kiwi 0.0012 0.0036 0.0014 0.0037 0.0011 0.0007 0.0009
Basic + MTQual 0.0011 0.0034 0.0015 0.0036 0.001 0.0006 0.001
ContAware 0.0048 0.004 0.0025 0.0086 0.0034 0.0004 0.0011
ContAware-no-ngrams 0.0048 0.0043 0.0024 0.0085 0.0035 0.0004 0.0011
ContAware + Kiwi 0.0031 0.0026 0.0019 0.004 0.002 0.0003 0.0007
ContAware + MTQual 0.0029 0.0026 0.002 0.004 0.002 0.0003 0.0007
MTQual 0.0027 0.0032 0.0018 0.0043 0.0012 0.0004 0.0008

xgb

All 0.0013 0.0026 0.0016 0.003 0.002 0.0003 0.0007
All + Kiwi 0.0013 0.0027 0.0016 0.0034 0.0021 0.0003 0.0007
Basic 0.0015 0.003 0.0015 0.0034 0.0013 0.0005 0.001
Basic + ContAware 0.0013 0.0025 0.0016 0.0031 0.0018 0.0004 0.001
Basic + Kiwi 0.0013 0.0033 0.0014 0.0032 0.001 0.0005 0.0009
Basic + MTQual 0.0013 0.0032 0.0014 0.0029 0.0011 0.0004 0.0009
ContAware 0.0043 0.0037 0.0026 0.0083 0.0022 0.0004 0.0011
ContAware-no-ngrams 0.0042 0.0037 0.0022 0.0082 0.0022 0.0004 0.0011
ContAware + Kiwi 0.0028 0.0026 0.0017 0.0034 0.0022 0.0003 0.0007
ContAware + MTQual 0.0024 0.0025 0.0016 0.003 0.0021 0.0003 0.0007
MTQual 0.0026 0.0032 0.0015 0.0032 0.0011 0.0004 0.0008

lin

All 0.0049 0.0023 0.0019 0.0112 0.0045 0.0004 0.0013
All + Kiwi 0.005 0.0023 0.002 0.0105 0.0053 0.0004 0.0011
Basic 0.0023 0.0041 0.0021 0.0044 0.0013 0.0007 0.0012
Basic + ContAware 0.0028 0.0054 0.002 0.0052 0.0035 0.0007 0.0015
Basic + Kiwi 0.0058 0.0027 0.0019 0.009 0.0022 0.0003 0.0014
Basic + MTQual 0.0051 0.0022 0.0019 0.0087 0.0024 0.0003 0.0014
ContAware 0.0067 0.0041 0.0034 0.0151 348473.9762 0.0005 0.0016
ContAware-no-ngrams 0.0061 0.0044 0.0028 0.0129 0.0025 0.0005 0.0014
ContAware + Kiwi 0.0054 0.0034 0.0018 0.0051 379450.0779 0.0004 0.0011
ContAware + MTQual 0.0051 0.0032 0.0018 0.0054 10484.5242 0.0005 0.0012
MTQual 0.0063 0.003 0.0015 0.0039 0.0009 0.0004 0.0006
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Table A.9: pearson correlation coefficient (PCC) of the specific FIPs for the en-fr use-case
and for the SacreBLEU and COMET22Kiwi MT metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

SacreBleu

rf

All 52.22 24.68 47.19 33.55 65.53 22.42 15.06
All + Kiwi 45.82 -5.38 19.86 23.67 33.73 -12.55 -16.17
Basic 39.58 32.58 5.71 12.02 -3.36 -3.46 -5.87
Basic + ContAware 34.64 -6.99 11.89 33.61 -2.38 -8.39 -14.51
Basic + Kiwi 55.86 18.7 20.13 30.54 58.49 -5.38 -9.81
Basic + MTQual 55.3 29.99 45.68 34.63 70.94 46.33 18.83
ContAware 18.24 -14.95 10.83 3.04 -4.9 1.04 7.33
ContAware-no-ngrams 16.51 -1.29 -3.49 -11.45 -10.64 -24.02 -6.18
ContAware + Kiwi 33.31 -13.9 19.08 19.64 35.26 -25.08 3.75
ContAware + MTQual 30.54 13.74 47.2 65.97 55.02 23.8 38.46
MTQual 32.26 25.26 40.1 62.75 46.58 50.35 38.47

xgb

All 53.47 20.86 44.43 26.96 46.8 31.15 7.58
All + Kiwi 41.67 13.54 14.14 27.33 36.49 -11.13 -5.37
Basic 45.74 28.95 2.9 -5.61 3.14 -5.87 -6.94
Basic + ContAware 33.65 -6.4 -2.5 16.3 3.11 -3.52 -5.51
Basic + Kiwi 56.02 13.16 15.97 14.17 54.71 -7.55 -13.3
Basic + MTQual 59.17 10.8 35.74 30.46 67.76 37.9 26.88
ContAware 8.4 -16.21 -6.69 -18.13 7.27 0.06 4.11
ContAware-no-ngrams -5.55 15.1 9.12 -4.7 1.84 14.83 -15.78
ContAware + Kiwi 34.12 -4.28 10.11 3.05 39.87 -30.4 -7.75
ContAware + MTQual 28.76 5.63 37.66 42.26 43.61 9.52 17.4
MTQual 37.59 15.18 42.35 58.55 39.99 45.68 1.09

lin

All 46.65 20.17 63 34.63 45.92 30.76 30.01
All + Kiwi 28.54 2.09 37.34 23.91 28.27 14.69 3.01
Basic 51.18 6.71 -10.48 3.51 -3.43 -14.28 -7.8
Basic + ContAware 44.85 2.67 27.62 18.42 15.39 -3.47 2.07
Basic + Kiwi 41.73 10.63 13.21 6.49 25.57 21.83 -7.15
Basic + MTQual 59.32 56.92 61.28 35.3 69.28 43.42 25.2
ContAware 0.35 6.46 27.5 21.13 -21.92 3.84 7.75
ContAware-no-ngrams 24.18 16.97 -14.22 -13.71 -13.14 -0.51 4.72
ContAware + Kiwi 14.51 1.3 26.19 16.82 -21.92 13.49 9.52
ContAware + MTQual 41.3 29.85 49.35 29 -21.92 24.77 34.58
MTQual 60.76 50.48 64.47 26.44 73.85 51.92 54.75

COMET22Kiwi

rf

All 78.31 52.4 14.22 28.05 56.88 54.76 67.3
All + Kiwi 76.99 52.27 13.18 19.77 61.78 54.2 68.81
Basic 81.4 7.91 13.5 -19.47 2.23 -7.65 7.1
Basic + ContAware 81.3 27.1 -28.17 14.14 6.12 -16.76 0.06
Basic + Kiwi 80.32 43.12 36.96 20.5 67.62 63.27 76.17
Basic + MTQual 80.44 48.44 39.13 28.67 60.22 52.57 62.22
ContAware -5.08 4.38 -34.86 11.31 9.89 -13.54 6.14
ContAware-no-ngrams -5.41 -3.73 -37.54 11.99 14.62 15.33 7.91
ContAware + Kiwi -4 51.26 5.79 20.05 66.06 51.15 68.96
ContAware + MTQual -8.29 53.67 3.46 16.43 63.47 51.82 66.72
MTQual 2.01 41.41 25.76 22.62 48.39 37.45 67.43

xgb

All 75.14 41.19 -0.26 24.12 36.84 56.96 70.1
All + Kiwi 71.05 37.03 4.8 14.19 31.83 59.78 73.3
Basic 77.65 22.64 13.88 -46.53 -14.34 nan 2.76
Basic + ContAware 74.77 39.65 -10.59 13.56 -9.35 -20.5 12.62
Basic + Kiwi 70.96 37.89 25.24 9.62 63.56 63.27 76.57
Basic + MTQual 74.92 47.52 33.64 24.84 53.38 57.72 63.43
ContAware 3.24 -13.44 -32.19 7.21 -7.66 -7.72 10.75
ContAware-no-ngrams -11.57 -18.9 -30.43 8.28 6.6 1.52 10.24
ContAware + Kiwi -14.03 36.65 -6.71 15.96 42.94 44.28 69.67
ContAware + MTQual 7.71 47.96 -8.29 11.32 46.45 51.26 72.25
MTQual 2.68 41.77 20.32 16.1 55.14 43.76 69.25

lin

All 68.82 69.8 31.86 41.85 48.17 47.16 40.31
All + Kiwi 70.16 64.83 29.28 50.51 48.72 55.72 43.43
Basic 73.94 19.06 14.52 40.09 -14.58 6.67 8.52
Basic + ContAware 68.57 26.28 -2.76 34.23 14.84 12.51 7.16
Basic + Kiwi 86.16 77.1 61 76.3 74.12 63.67 76.33
Basic + MTQual 85.95 77.98 41.82 81.5 72.71 57.99 80.86
ContAware 10.69 24.54 -12.08 21.65 11.76 1.96 5.92
ContAware-no-ngrams 12.33 11.78 -11.05 24.09 -2.94 -30.42 -4.21
ContAware + Kiwi 40.86 56.58 23.81 22.77 11.76 51.84 42.6
ContAware + MTQual 41.24 59 28.21 10.18 11.76 44.84 38.32
MTQual 53.67 64.67 35.31 43.15 73.52 61.24 81.53
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(a) Fine-tune cost 1. (b) Fine-tune cost 5. (c) Fine-tune cost 10.

Figure A.1: Total cost incurred by each baseline as a function of: the fine-tune cost, the
target delta improvement for MT metrics.
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Table A.10: MAE and PCC of the generic FIPs for the en-zh use-case and for the
COMET22 and chrF MT metrics.

MT Metric Predictor Feature Set MAE PCC

COMET22

rf

All 0.0044 72.76
All + Kiwi 0.0045 71.46
Basic 0.0048 69.4
Basic + ContAware 0.0045 69.34
Basic + Kiwi 0.0051 69.72
Basic + MTQual 0.0049 76.62
ContAware 0.0026 67.9
ContAware-no-ngrams 0.0027 57.78
ContAware + Kiwi 0.0026 71.29
ContAware + MTQual 0.0026 71.86
MTQual 0.0035 17.04

xgb

All 0.0045 72.03
All + Kiwi 0.0044 64.94
Basic 0.004 65.31
Basic + ContAware 0.0044 60.25
Basic + Kiwi 0.005 70.22
Basic + MTQual 0.0053 76.51
ContAware 0.0023 69.07
ContAware-no-ngrams 0.0027 55.07
ContAware + Kiwi 0.0026 68.47
ContAware + MTQual 0.0032 68.48
MTQual 0.004 18.06

lin

All 0.0177 35.75
All + Kiwi 0.0136 61.78
Basic 0.0075 60.9
Basic + ContAware 0.0141 61.64
Basic + Kiwi 0.0066 68.3
Basic + MTQual 0.0073 53.52
ContAware 0.0062 57.25
ContAware-no-ngrams 0.0045 44.28
ContAware + Kiwi 0.0059 56.33
ContAware + MTQual 0.0063 46.15
MTQual 0.0057 10.19

CHRF

rf

All 0.6206 58.05
All + Kiwi 0.6487 57.59
Basic 0.5614 72.8
Basic + ContAware 0.6717 56.18
Basic + Kiwi 0.6202 66.08
Basic + MTQual 0.6056 70.69
ContAware 0.6958 51.42
ContAware-no-ngrams 0.5648 55.5
ContAware + Kiwi 0.6424 53.65
ContAware + MTQual 0.5943 56.92
MTQual 0.7524 28.06

xgb

All 0.7377 53.23
All + Kiwi 0.6939 57.47
Basic 0.5472 69.74
Basic + ContAware 0.7504 48.86
Basic + Kiwi 0.5455 74.07
Basic + MTQual 0.5739 69.38
ContAware 0.7471 47.49
ContAware-no-ngrams 0.5777 55.45
ContAware + Kiwi 0.6743 52.12
ContAware + MTQual 0.6908 44.17
MTQual 0.8059 29.61

lin

All 1.6522 41.38
All + Kiwi 1.0963 64.43
Basic 0.6292 62.72
Basic + ContAware 1.1079 64.51
Basic + Kiwi 0.6258 71.87
Basic + MTQual 1.2031 42.53
ContAware 1.3265 51.4
ContAware-no-ngrams 1.2906 33.17
ContAware + Kiwi 1.2834 49.45
ContAware + MTQual 1.4369 47.16
MTQual 1.3162 9.84
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Table A.11: MAE and PCC of the generic FIPs for the en-zh use-case and for the Sacre-
BLEU and COMET22Kiwi MT metrics.

MT Metric Predictor Feature Set MAE PCC

SacreBleu

rf

All 1.0156 55.24
All + Kiwi 1.1691 58.84
Basic 0.6732 58.37
Basic + ContAware 1.1031 56.94
Basic + Kiwi 1.0263 41.83
Basic + MTQual 1.4243 47.68
ContAware 1.0664 52.3
ContAware-no-ngrams 0.6172 39.55
ContAware + Kiwi 0.9828 47.83
ContAware + MTQual 0.992 53.02
MTQual 0.8047 12.42

xgb

All 1.0205 49.95
All + Kiwi 1.106 58.98
Basic 0.6623 57.38
Basic + ContAware 1.202 57.77
Basic + Kiwi 1.0439 43.34
Basic + MTQual 1.5072 44.38
ContAware 1.1257 50.65
ContAware-no-ngrams 0.6595 35.72
ContAware + Kiwi 1.001 44.36
ContAware + MTQual 0.9409 53.46
MTQual 0.7512 11.52

lin

All 2.1411 34.27
All + Kiwi 4.9097 53.16
Basic 2.9786 52.43
Basic + ContAware 4.697 54.23
Basic + Kiwi 3.2661 52.89
Basic + MTQual 1.1195 71.36
ContAware 1.3521 59.12
ContAware-no-ngrams 1.5146 35.42
ContAware + Kiwi 1.3328 57.54
ContAware + MTQual 1.2565 46.69
MTQual 1.2566 42.22

COMET22Kiwi

rf

All 0.0018 26.1
All + Kiwi 0.0019 22.15
Basic 0.0013 -31.58
Basic + ContAware 0.002 -18.62
Basic + Kiwi 0.002 15.32
Basic + MTQual 0.0019 5.66
ContAware 0.0021 -20.12
ContAware-no-ngrams 0.0019 -17.03
ContAware + Kiwi 0.002 12.13
ContAware + MTQual 0.0022 4.03
MTQual 0.0019 16.15

xgb

All 0.0017 31.5
All + Kiwi 0.0016 30.6
Basic 0.0012 -19.91
Basic + ContAware 0.0018 -12.42
Basic + Kiwi 0.0017 24.36
Basic + MTQual 0.0015 19.84
ContAware 0.0018 -0.55
ContAware-no-ngrams 0.0017 -15.95
ContAware + Kiwi 0.0022 14.93
ContAware + MTQual 0.002 9.65
MTQual 0.0017 17.89

lin

All 0.0041 -23.32
All + Kiwi 0.0043 -28.39
Basic 0.002 -14.79
Basic + ContAware 0.0041 -25.7
Basic + Kiwi 0.0025 -23.04
Basic + MTQual 0.0024 -16.44
ContAware 0.0025 -15.52
ContAware-no-ngrams 0.0027 -9.3
ContAware + Kiwi 0.0025 -19.3
ContAware + MTQual 0.005 -16.56
MTQual 0.0036 -6.41
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Table A.12: MAE and PCC of the generic FIPs for the en-fr use-case and for the COMET22
and chrF MT metrics.

MT Metric Predictor Feature Set MAE PCC

COMET22

rf

All 0.002 3.12
All + Kiwi 0.0019 9.43
Basic 0.0013 2.87
Basic + ContAware 0.0014 24.32
Basic + Kiwi 0.0012 39.79
Basic + MTQual 0.0013 29.9
ContAware 0.0026 15.18
ContAware-no-ngrams 0.0028 12.21
ContAware + Kiwi 0.0024 1.13
ContAware + MTQual 0.0021 0.67
MTQual 0.0016 0.02

xgb

All 0.0015 -2.64
All + Kiwi 0.0015 12.42
Basic 0.0013 3.74
Basic + ContAware 0.0013 27.61
Basic + Kiwi 0.0012 39.29
Basic + MTQual 0.0012 33.72
ContAware 0.0015 17.66
ContAware-no-ngrams 0.0014 16.69
ContAware + Kiwi 0.0015 5.66
ContAware + MTQual 0.0015 -0.61
MTQual 0.0014 7.61

lin

All 0.002 5.76
All + Kiwi 0.0019 25.17
Basic 0.0013 2.51
Basic + ContAware 0.0019 24.83
Basic + Kiwi 0.0013 7.62
Basic + MTQual 0.002 5.26
ContAware 0.0018 25.11
ContAware-no-ngrams 0.0018 24.83
ContAware + Kiwi 0.0018 25.74
ContAware + MTQual 0.0019 3.2
MTQual 0.0019 4.5

CHRF

rf

All 0.2474 -1.01
All + Kiwi 0.2147 13.04
Basic 0.1603 -1.39
Basic + ContAware 0.204 7.07
Basic + Kiwi 0.1636 37.79
Basic + MTQual 0.1982 5.26
ContAware 0.3443 6.67
ContAware-no-ngrams 0.3892 2.69
ContAware + Kiwi 0.2877 7.23
ContAware + MTQual 0.2732 -2.43
MTQual 0.2002 -2.44

xgb

All 0.1618 -7.46
All + Kiwi 0.1563 4.46
Basic 0.1508 -0.9
Basic + ContAware 0.167 14.62
Basic + Kiwi 0.1474 37.82
Basic + MTQual 0.17 11.68
ContAware 0.1699 13.94
ContAware-no-ngrams 0.1893 -2.63
ContAware + Kiwi 0.1657 2.83
ContAware + MTQual 0.1632 -1.9
MTQual 0.1726 -0.31

lin

All 0.233 10.29
All + Kiwi 0.2426 5.31
Basic 0.15 -4.22
Basic + ContAware 0.2339 14.03
Basic + Kiwi 0.2009 -8.1
Basic + MTQual 0.238 -0.4
ContAware 0.2364 14.02
ContAware-no-ngrams 0.2247 5.59
ContAware + Kiwi 0.2517 5.07
ContAware + MTQual 0.227 10.78
MTQual 0.2563 0.46
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Table A.13: MAE and PCC of the generic FIPs for the en-fr use-case and for the Sacre-
BLEU and COMET22Kiwi MT metrics.

MT Metric Predictor Feature Set MAE PCC

SacreBleu

rf

All 0.281 13.59
All + Kiwi 0.2446 11.4
Basic 0.2085 -1.59
Basic + ContAware 0.2403 8.57
Basic + Kiwi 0.2102 26.97
Basic + MTQual 0.2333 16.56
ContAware 0.4918 18.92
ContAware-no-ngrams 0.501 18.19
ContAware + Kiwi 0.3139 10.25
ContAware + MTQual 0.3054 10.21
MTQual 0.2453 3.4

xgb

All 0.2666 11.09
All + Kiwi 0.237 11.87
Basic 0.2139 -1.74
Basic + ContAware 0.2328 18.57
Basic + Kiwi 0.211 27.33
Basic + MTQual 0.2174 15.08
ContAware 0.3226 18.15
ContAware-no-ngrams 0.3308 9.94
ContAware + Kiwi 0.2669 12.31
ContAware + MTQual 0.2572 15.25
MTQual 0.2342 5.74

lin

All 0.3381 26.64
All + Kiwi 0.3696 17.96
Basic 0.2361 -2.99
Basic + ContAware 0.3563 24.5
Basic + Kiwi 0.2726 1.81
Basic + MTQual 0.3397 10.98
ContAware 0.3913 25.5
ContAware-no-ngrams 0.3693 15.93
ContAware + Kiwi 0.4049 17.9
ContAware + MTQual 0.3268 26.9
MTQual 0.374 12.68

COMET22Kiwi

rf

All 0.0017 42.39
All + Kiwi 0.0017 44.65
Basic 0.0019 2.12
Basic + ContAware 0.0019 28.34
Basic + Kiwi 0.0017 37.19
Basic + MTQual 0.0016 52.06
ContAware 0.0035 41.94
ContAware-no-ngrams 0.0036 41.88
ContAware + Kiwi 0.0019 28.66
ContAware + MTQual 0.0019 20.69
MTQual 0.0019 19.6

xgb

All 0.0017 38.18
All + Kiwi 0.0018 35.84
Basic 0.0019 -19.94
Basic + ContAware 0.0019 25.42
Basic + Kiwi 0.0019 25.64
Basic + MTQual 0.0016 49.44
ContAware 0.0029 32.45
ContAware-no-ngrams 0.0029 36.31
ContAware + Kiwi 0.002 16.3
ContAware + MTQual 0.0021 -0.78
MTQual 0.002 13.58

lin

All 0.0026 47.12
All + Kiwi 0.0028 49.42
Basic 0.0023 20.2
Basic + ContAware 0.0028 32.3
Basic + Kiwi 0.0022 41.73
Basic + MTQual 0.0028 45.93
ContAware 0.0036 26.97
ContAware-no-ngrams 0.0035 17.24
ContAware + Kiwi 0.0032 46.42
ContAware + MTQual 0.0028 35.3
MTQual 0.0028 40.33
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Table A.14: mean absolute error (MAE) of the generic FIPs when each dataset is left-out
of the training set, for the en-zh use-case and for the COMET22 and chrF MT metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

COMET22

rf

All 0.0065 0.0038 0.0033 0.0076 0.0056 0.0051 0.004
All + Kiwi 0.0063 0.0049 0.0037 0.0075 0.0073 0.0049 0.0039
Basic 0.0062 0.0044 0.004 0.007 0.0075 0.0056 0.0031
Basic + ContAware 0.0064 0.0041 0.004 0.0087 0.0086 0.0051 0.0039
Basic + Kiwi 0.0054 0.0059 0.0026 0.0045 0.0082 0.0072 0.005
Basic + MTQual 0.0069 0.0029 0.0026 0.0045 0.0062 0.0075 0.006
ContAware 0.0049 0.0026 0.0025 0.0034 0.0019 0.0015 0.0043
ContAware-no-ngrams 0.002 0.0016 0.0009 0.0038 0.0041 0.0015 0.0063
ContAware + Kiwi 0.0043 0.0031 0.0023 0.0039 0.002 0.0017 0.0045
ContAware + MTQual 0.0035 0.0027 0.0023 0.004 0.0019 0.0016 0.0038
MTQual 0.0038 0.0025 0.0026 0.0024 0.0028 0.0038 0.0062

xgb

All 0.0058 0.0051 0.0024 0.0078 0.0044 0.0047 0.0049
All + Kiwi 0.0056 0.0062 0.0034 0.0075 0.0059 0.004 0.0041
Basic 0.0052 0.0047 0.0039 0.0065 0.0069 0.0054 0.0033
Basic + ContAware 0.0063 0.0054 0.0034 0.0077 0.007 0.0041 0.0042
Basic + Kiwi 0.0059 0.0063 0.0031 0.008 0.0081 0.0055 0.0041
Basic + MTQual 0.0076 0.0029 0.0023 0.0049 0.0057 0.0073 0.0063
ContAware 0.0066 0.0031 0.0038 0.0022 0.0018 0.0017 0.0053
ContAware-no-ngrams 0.0031 0.0018 0.0015 0.0037 0.0038 0.0018 0.0058
ContAware + Kiwi 0.0057 0.0029 0.0028 0.0042 0.0029 0.0017 0.0046
ContAware + MTQual 0.0036 0.0017 0.0025 0.0044 0.0019 0.0018 0.0037
MTQual 0.0072 0.0026 0.0029 0.0027 0.003 0.0047 0.0065

lin

All 0.0065 0.0107 0.0058 0.0367 0.0369 0.007 0.029
All + Kiwi 0.0256 0.0147 0.0068 0.0232 0.0152 0.0046 0.0296
Basic 0.009 0.0094 0.008 0.0085 0.0084 0.0053 0.0046
Basic + ContAware 0.0088 0.0186 0.0084 0.0195 0.0149 0.0048 0.0291
Basic + Kiwi 0.0055 0.0094 0.0074 0.0061 0.0075 0.0054 0.0053
Basic + MTQual 0.006 0.0157 0.0077 0.0054 0.0102 0.0056 0.0053
ContAware 0.0309 0.0064 0.0036 0.0169 0.0072 0.0115 0.0196
ContAware-no-ngrams 0.0184 0.003 0.0031 0.0068 0.0035 0.0031 0.0051
ContAware + Kiwi 0.0398 0.0027 0.0037 0.0292 0.0058 0.0129 0.0215
ContAware + MTQual 0.0313 0.0158 0.0155 0.0299 0.0087 0.0225 0.0051
MTQual 0.0057 0.0033 0.0035 0.0166 0.0033 0.0051 0.011

CHRF

rf

All 0.4863 0.1696 0.2626 3.5816 0.9808 0.4593 1.3687
All + Kiwi 0.4326 0.1657 0.5441 3.6109 0.8891 0.4603 1.3878
Basic 0.896 0.1784 0.2093 0.7168 0.9245 0.5988 0.795
Basic + ContAware 0.438 0.1715 0.5878 3.9327 1.0351 0.4607 1.3801
Basic + Kiwi 0.7989 0.1851 0.2564 0.3614 0.785 1.1066 0.8681
Basic + MTQual 0.8635 0.1507 0.2343 0.293 0.7631 1.0785 0.8519
ContAware 0.4072 0.1981 0.568 3.7288 1.0523 0.5115 1.4758
ContAware-no-ngrams 0.2623 0.1887 0.4377 0.4633 0.6197 0.5532 1.8174
ContAware + Kiwi 0.4031 0.1985 0.5269 3.4099 0.8166 0.5098 1.5002
ContAware + MTQual 0.4646 0.1891 0.2425 3.4313 0.855 0.5121 1.4696
MTQual 0.8978 0.6018 0.6035 0.7731 0.5792 0.8224 1.5046

xgb

All 0.6077 0.1767 0.302 3.6333 1.0299 0.342 1.262
All + Kiwi 0.4028 0.1723 0.7083 3.0282 0.8754 0.4205 1.3798
Basic 0.8756 0.2235 0.2892 0.6274 0.9882 0.6266 0.7277
Basic + ContAware 0.4289 0.2171 0.631 3.1354 1.1088 0.3717 1.2906
Basic + Kiwi 0.8052 0.2159 0.2632 0.3151 0.8863 1.1387 0.7084
Basic + MTQual 1.3596 0.1861 0.2598 0.3397 0.8916 0.884 0.7404
ContAware 0.3368 0.2597 0.7216 3.1658 1.309 0.5491 1.2696
ContAware-no-ngrams 0.425 0.2067 0.4125 0.6174 0.6555 0.5567 1.6852
ContAware + Kiwi 0.3968 0.2253 0.557 3.2444 1.2608 0.5138 1.2617
ContAware + MTQual 0.7507 0.2322 0.2988 3.1005 1.101 0.4851 1.3469
MTQual 1.4985 0.6052 0.6912 0.6981 0.6349 0.7797 1.5575

lin

All 1.7703 0.8641 1.0688 2.2178 4.6592 1.547 3.2258
All + Kiwi 4.2076 1.2048 0.9176 2.612 0.7953 1.648 1.5182
Basic 0.6833 0.4498 0.4437 0.3906 0.5778 0.4688 1.4436
Basic + ContAware 3.1302 1.6709 0.7315 2.2038 0.8389 1.4856 1.4308
Basic + Kiwi 2.4533 0.4642 0.4066 0.6848 0.498 0.4464 1.064
Basic + MTQual 0.7655 1.9908 0.7721 2.5733 1.9495 0.4453 2.8915
ContAware 5.8912 0.9877 1.2187 2.9332 0.9726 2.8067 1.3736
ContAware-no-ngrams 4.2173 0.9912 0.8794 1.965 1.012 0.8848 1.816
ContAware + Kiwi 5.4418 0.594 1.1102 4.6959 0.7717 3.0684 1.6922
ContAware + MTQual 2.5498 2.399 3.5792 1.9001 1.4178 4.9324 1.0864
MTQual 3.1218 1.0199 0.7587 5.2759 1.0109 1.1878 3.1475
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Table A.15: pearson correlation coefficient (PCC) of the generic FIPs when each dataset
is left-out of the training set, for the en-zh use-case and for the COMET22 and chrF MT
metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

COMET22

rf

All 57.89 88.98 88.27 92.67 90.68 85.85 77.44
All + Kiwi 56.89 89.72 90.26 93.01 89.08 85.81 77.31
Basic 61.39 88.71 86.2 92.55 90.05 86.67 84.25
Basic + ContAware 60.81 89.7 88.69 91.98 88.66 84.69 75.33
Basic + Kiwi 60.13 84.84 84.61 92.66 91.31 86.1 83.5
Basic + MTQual 59.64 83.98 80.96 94.16 90.65 86.15 83.72
ContAware 67.02 93.82 94.41 76.62 87.22 86.96 85.53
ContAware-no-ngrams 65.02 95.62 94.01 94.44 92.25 86.39 85.87
ContAware + Kiwi 65.58 94.11 94.27 62.46 91.21 85.42 86.76
ContAware + MTQual 67.15 93.1 94.57 65.07 91.08 86.16 84.96
MTQual 13.51 17.06 16.42 11.38 21.25 7.8 9.54

xgb

All 64.17 84.91 80.78 94.5 88.98 84.01 73.03
All + Kiwi 57.06 85.99 79.1 94.3 87.59 84.5 75.78
Basic 60.2 87.02 83.78 92 89.96 86.69 83.47
Basic + ContAware 58.26 89.26 91.45 94.21 89.04 85 71.21
Basic + Kiwi 58.55 80.64 88.83 92.78 89.44 85.48 83.14
Basic + MTQual 50.51 85.19 83.03 94.1 90.24 84.49 81.19
ContAware 61.96 92.18 90.78 89.19 86.44 83.71 79.51
ContAware-no-ngrams 61.72 93.75 85.52 92.42 89.9 84.6 84.25
ContAware + Kiwi 59.36 92.45 92.23 69.37 90.46 84.48 78.63
ContAware + MTQual 56.69 91.77 91.91 51.32 88.06 85.42 83.38
MTQual 12.33 5.43 16.18 13.47 19.15 12.06 0.63

lin

All 26.99 45.38 40.63 63.9 39.91 73.12 72.29
All + Kiwi 45.86 64.86 64.65 85.23 84.72 74.76 71.37
Basic 47.56 76.17 75.97 86.79 86.64 84.48 75.39
Basic + ContAware 38.2 60.9 67.43 82.44 85.02 74.13 69.72
Basic + Kiwi 49.53 77.42 77.52 87.8 87.3 85.15 76.49
Basic + MTQual 61.18 73.27 84.49 91.66 89.26 86.5 86.18
ContAware 33.93 82.94 88.93 84.69 86.86 74.45 78.18
ContAware-no-ngrams 38.41 67.76 47.84 47.91 45.63 30.12 46.84
ContAware + Kiwi 37.38 83.15 88.74 82.27 85.37 72.45 77.37
ContAware + MTQual 57.88 82.08 88.12 88.17 81 86.52 90.93
MTQual 36.81 37.28 30.13 34.01 29.59 31.46 51.28

CHRF

rf

All 87.63 95.97 95.59 75.77 86.35 93.74 92.28
All + Kiwi 87.7 96.22 94.63 76.08 83.59 93.87 92.04
Basic 87.13 95.3 94.11 94.33 95.68 95.24 93.76
Basic + ContAware 87.96 95.97 94.86 78.84 94.85 93.74 92.43
Basic + Kiwi 88.62 94.58 92.93 95.36 95.36 94.09 91.25
Basic + MTQual 88.08 96.45 94 95.82 95.56 94.32 73.25
ContAware 86.92 94.59 91.27 58.31 93.14 92.74 91.06
ContAware-no-ngrams 86.39 94.83 96 95.26 86.9 89.28 88.01
ContAware + Kiwi 86.49 94.7 90.44 59.92 81.66 92.79 89.54
ContAware + MTQual 85.83 95.02 94.55 60.22 86.84 93 90.62
MTQual 19.88 22.28 37.65 19.35 27.28 20.77 17.32

xgb

All 86.02 95.29 95.78 69.76 86.14 94.03 87.47
All + Kiwi 81.8 96.02 94.42 77 85.72 91.84 90.79
Basic 84.63 94.92 91.7 94.69 94.27 94.62 92.78
Basic + ContAware 84.82 95.93 94.49 75.74 91.66 92.22 92.79
Basic + Kiwi 88.68 93.13 92.94 90.65 93.53 92.26 90.69
Basic + MTQual 81.62 95.8 93.71 95.8 94.06 95.46 78.51
ContAware 83.87 93.44 90.2 52.98 84.07 88.42 82.99
ContAware-no-ngrams 82.43 93.36 93.48 94.55 85.4 87.93 85.19
ContAware + Kiwi 82.48 94.49 92.2 51.01 70.77 88.55 87.75
ContAware + MTQual 83.24 94.9 90.5 62.47 86.43 90.43 83.48
MTQual 10.5 22.5 24.31 19.78 20.09 19.86 6.16

lin

All 2.25 62.02 64.72 82.57 35.57 74.46 80.01
All + Kiwi 46.08 86.06 91.98 94.78 93.91 54.23 73.38
Basic 71.65 70.02 78.97 89.01 82.83 85.58 79.64
Basic + ContAware 45.28 84.13 92.06 94.2 94.2 51.17 73.02
Basic + Kiwi 69.07 68.87 79.89 89.53 82.66 85.08 78.01
Basic + MTQual 79.52 61.39 82.43 95.62 85.37 85.18 79.92
ContAware -8.65 84.5 86.15 86.91 88.68 38.65 60.93
ContAware-no-ngrams 52.6 61.83 35.07 44.86 31.24 0.86 49.73
ContAware + Kiwi -14.15 83.77 84.15 86.77 86.26 6.74 53.25
ContAware + MTQual 9.81 81.81 79.43 91.14 82.15 84.33 67.79
MTQual 34.08 38.45 33.12 37.05 32.95 31.37 34.32
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Table A.16: mean absolute error (MAE) of the generic FIPs when each dataset is left-out
of the training set, for the en-zh use-case and for the SacreBLEU and COMET22Kiwi
metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

SacreBleu

rf

All 1.4196 0.7204 1.3441 2.5802 2.4049 0.3908 0.49
All + Kiwi 0.6013 0.8928 1.1191 2.674 0.7504 0.3947 0.691
Basic 1.447 0.5009 0.6365 0.4364 0.7165 0.7503 0.5392
Basic + ContAware 0.5577 0.8352 0.9806 3.6974 0.9437 0.3925 0.415
Basic + Kiwi 1.2902 0.5172 0.651 0.5881 0.8338 2.966 3.6925
Basic + MTQual 3.553 0.3804 2.1117 0.8623 0.7699 2.6789 3.91
ContAware 0.3674 0.4819 0.8559 5.4174 1.5684 0.5556 0.5149
ContAware-no-ngrams 0.5655 0.2977 0.7223 1.2341 1.0838 0.5327 0.5881
ContAware + Kiwi 0.3312 0.4716 0.8251 5.4139 1.1631 0.5511 0.5103
ContAware + MTQual 1.3764 0.3269 0.9302 5.3578 2.0429 0.5464 0.5192
MTQual 2.2232 0.4328 0.7192 0.787 0.4438 0.512 1.1132

xgb

All 1.8858 0.6422 1.095 3.0708 2.3654 0.3699 0.5664
All + Kiwi 1.1003 0.7991 1.1866 2.91 0.7985 0.3855 0.4646
Basic 1.3824 0.4832 0.6571 0.4431 0.648 0.6989 0.4863
Basic + ContAware 0.7195 0.8259 1.0739 3.3794 1.1885 0.4008 0.411
Basic + Kiwi 1.7436 0.4796 0.6469 0.5584 1.1228 2.077 3.4383
Basic + MTQual 2.9448 0.5843 1.988 0.8114 1.1153 2.8788 3.6937
ContAware 0.3024 0.4744 0.8831 4.2216 1.3168 0.6063 0.7309
ContAware-no-ngrams 0.6936 0.3219 0.8205 1.3188 1.3308 0.6059 0.6892
ContAware + Kiwi 0.2976 0.5477 0.8426 4.7363 1.2136 0.5935 0.5227
ContAware + MTQual 1.7673 0.3775 0.8416 4.489 2.0621 0.647 0.7139
MTQual 2.8446 0.4396 0.7602 0.7944 0.5716 0.6743 1.6826

lin

All 2.2983 1.028 2.3787 3.4833 5.7264 1.3493 7.0132
All + Kiwi 5.8963 4.3728 8.3118 1.9794 5.3198 6.1651 3.1335
Basic 2.7373 3.7887 3.0547 2.3415 2.9987 2.6858 3.3378
Basic + ContAware 5.7692 4.0744 7.8768 2.06 5.1542 5.793 3.0997
Basic + Kiwi 2.0295 4.1913 3.3211 2.9278 3.2856 2.8881 3.0178
Basic + MTQual 3.346 1.1886 0.8205 1.0541 2.6599 0.6939 0.9518
ContAware 3.5551 1.1132 3.5902 3.004 1.0769 2.0997 1.7738
ContAware-no-ngrams 2.1056 1.734 0.787 2.5349 2.4592 0.8092 1.5936
ContAware + Kiwi 1.8786 0.9139 3.7156 4.0674 0.9638 2.3554 2.1832
ContAware + MTQual 4.6684 2.0505 3.9047 4.1426 3.5366 2.4456 5.5763
MTQual 1.0105 0.7258 1.0353 2.5415 2.2811 0.984 2.1623

COMET22Kiwi

rf

All 0.0027 0.0023 0.0027 0.0021 0.0056 0.002 0.002
All + Kiwi 0.0025 0.0007 0.0025 0.0033 0.0047 0.0028 0.0021
Basic 0.0018 0.0018 0.0011 0.0008 0.001 0.0015 0.0019
Basic + ContAware 0.0018 0.0014 0.0026 0.0023 0.0014 0.0022 0.0032
Basic + Kiwi 0.0019 0.0032 0.0027 0.0036 0.0058 0.0026 0.0018
Basic + MTQual 0.0019 0.0013 0.003 0.0018 0.006 0.0024 0.0026
ContAware 0.002 0.0012 0.0034 0.0028 0.0019 0.0022 0.0022
ContAware-no-ngrams 0.0017 0.0011 0.0018 0.0022 0.0018 0.002 0.0019
ContAware + Kiwi 0.0038 0.0009 0.0036 0.0036 0.0052 0.0023 0.0027
ContAware + MTQual 0.0028 0.0009 0.0037 0.0033 0.005 0.0022 0.0019
MTQual 0.002 0.0012 0.0028 0.0028 0.0058 0.0027 0.0023

xgb

All 0.0037 0.0015 0.0022 0.0028 0.0045 0.0026 0.0018
All + Kiwi 0.0033 0.0017 0.0026 0.0036 0.003 0.0038 0.0019
Basic 0.0017 0.0019 0.0009 0.0009 0.0006 0.0013 0.0019
Basic + ContAware 0.0017 0.0012 0.0025 0.0014 0.001 0.0019 0.0028
Basic + Kiwi 0.0018 0.001 0.0025 0.0032 0.0046 0.0028 0.0018
Basic + MTQual 0.0022 0.0011 0.0025 0.0024 0.0047 0.0028 0.0021
ContAware 0.0018 0.0015 0.0018 0.0019 0.001 0.0015 0.0021
ContAware-no-ngrams 0.002 0.001 0.0017 0.0021 0.0015 0.0018 0.0019
ContAware + Kiwi 0.0043 0.0014 0.0033 0.0038 0.0041 0.0035 0.0023
ContAware + MTQual 0.0039 0.0011 0.0034 0.0036 0.0044 0.0031 0.0024
MTQual 0.0019 0.0012 0.0024 0.0027 0.0045 0.0038 0.0021

lin

All 0.0034 0.0048 0.004 0.0065 0.0049 0.0028 0.0035
All + Kiwi 0.0076 0.0035 0.0068 0.007 0.0043 0.0055 0.0025
Basic 0.0031 0.0017 0.0019 0.0022 0.0015 0.0022 0.0021
Basic + ContAware 0.0096 0.0034 0.0071 0.0058 0.0038 0.0049 0.0026
Basic + Kiwi 0.0035 0.0025 0.0024 0.0018 0.0017 0.0032 0.0041
Basic + MTQual 0.0039 0.0019 0.0017 0.0046 0.002 0.0018 0.002
ContAware 0.0038 0.0014 0.0049 0.0062 0.0022 0.0034 0.002
ContAware-no-ngrams 0.002 0.0017 0.0031 0.006 0.0021 0.003 0.0024
ContAware + Kiwi 0.0027 0.0016 0.0042 0.0075 0.0023 0.0035 0.0024
ContAware + MTQual 0.0024 0.0088 0.0055 0.0034 0.0017 0.0054 0.0073
MTQual 0.0037 0.0035 0.0038 0.0033 0.0054 0.0045 0.0039
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Table A.17: pearson correlation coefficient (PCC) of the generic FIPs when each dataset
is left-out of the training set, for the en-zh use-case and for the SacreBLEU and
COMET22Kiwi metrics.

MT Metric Pred. Feature Set Entertainment Env. Finance Gov. Health & Sports Travel &
Wellness Tourism

SacreBleu

rf

All 35.99 73.74 70.42 82.88 75.65 80.53 78.09
All + Kiwi -14.16 75.25 70.1 83.6 64.07 81.26 86.97
Basic -10.32 73.77 68.69 81.53 72.39 76.69 82.87
Basic + ContAware -13.97 73.77 69.04 83.58 64.92 81.05 77.75
Basic + Kiwi -12.5 66.45 69.07 79.76 73.16 78.8 82.64
Basic + MTQual -14.97 78.27 69.84 -9.41 75.51 76.57 83.11
ContAware -8.84 69.52 69.1 58.66 77.05 57.41 64.44
ContAware-no-ngrams -12.66 76.87 55.98 86.24 57.7 51.75 37.36
ContAware + Kiwi -4.66 67.88 69.29 58.51 77.58 55.66 61.03
ContAware + MTQual 1.04 68.3 70.79 58.49 77.86 56.49 63.87
MTQual 2.39 46.98 44.78 -0.09 27.36 26.35 26.89

xgb

All 33.04 76.93 71.04 82.66 74.58 75.61 72.74
All + Kiwi -17.09 74.92 71.34 84.14 70.7 75.76 74.51
Basic -10.23 76.32 67.43 77.45 71.42 74.81 79.95
Basic + ContAware -15.83 70.08 69.09 82.76 65.3 75.14 85.82
Basic + Kiwi -10.78 71.02 67.66 73.03 74.44 79.14 83.6
Basic + MTQual -10.94 75.05 73.5 -5.19 76.29 80.89 83.99
ContAware -5 62.72 63.88 57.58 74.74 31.74 15.87
ContAware-no-ngrams -11.21 68.03 44.46 84.43 48.34 31.39 20.3
ContAware + Kiwi -5.47 65.57 65.14 57.77 75.32 17.46 67.53
ContAware + MTQual -10.54 72.27 62.01 55.61 76.64 58.47 31.85
MTQual -1.99 24.06 20.93 -4.7 14.59 16.06 26.5

lin

All 8.53 18.3 74.18 83.5 52.92 56.1 58.8
All + Kiwi -4.78 72.91 55.5 80.61 48.65 27.15 51.5
Basic -12.57 68.19 68.65 85.56 62.72 59.45 63.1
Basic + ContAware -5.15 73.87 56.08 82.08 50.11 26.7 53.67
Basic + Kiwi -12.42 66.64 67.05 84.49 60.14 56.35 60.21
Basic + MTQual -9.22 5.91 80.61 89.01 74.42 76.59 75.33
ContAware 6.34 76.69 60.94 77.62 65.72 9.72 66.12
ContAware-no-ngrams -12.01 56.1 33.46 48.45 30.92 -28.86 50.08
ContAware + Kiwi 9.06 76.75 59.6 77.57 62.71 -16.48 60.18
ContAware + MTQual 26.83 81.53 84.04 84.2 77.61 45.22 73.01
MTQual 24.24 30.26 37.96 38.76 30.84 20.07 5.58

COMET22Kiwi

rf

All 1.02 -32.32 -48.28 -32.16 1.85 -0.36 29.33
All + Kiwi 0.74 37.23 -58.06 -26.22 3.76 -19.31 -30.91
Basic -12.47 -71.32 -58.97 -45.58 -46.69 -24.91 -24.18
Basic + ContAware -6.49 -26.91 -47.9 -41.48 -53.71 -23.48 -35.47
Basic + Kiwi -3.59 -51.25 -2.91 -52.37 5.2 -16.84 23.82
Basic + MTQual -5.24 -49.48 -74.7 -41.34 3.01 -15.56 -40.19
ContAware -9.24 15.67 -53.61 -38 -52.1 -24.69 10.63
ContAware-no-ngrams 16.04 -2.14 -41.59 -50.71 -34.59 -22.33 14.47
ContAware + Kiwi -12.17 -16.27 -46.61 -34.89 -10.38 -21.5 -23.6
ContAware + MTQual -9.74 -40.89 -50.05 -35.92 -29.87 -5.73 8.17
MTQual -3.68 -34.16 0.71 -4.37 8.82 16.92 -1.2

xgb

All 2.6 11.77 -34.7 -0.03 -45.89 -10.86 41.12
All + Kiwi 0.2 10.68 -53.11 11.83 18.84 -21.95 -21.63
Basic -14.14 -64.56 -20.64 -30.49 43.37 -21.67 23.8
Basic + ContAware 16.37 20.58 -16.54 -34.03 -43.34 -13.81 -10.31
Basic + Kiwi -4.03 -19.66 -65.88 -50.45 -41.26 -11.18 22.57
Basic + MTQual 8.34 -4.82 -72.07 -23.43 -42.01 -8.99 -30.54
ContAware 9.4 4.21 -31.44 -32.23 -37.33 5.14 8.41
ContAware-no-ngrams 17.52 -1.8 -34.62 -47.66 -43.96 -14.78 16.09
ContAware + Kiwi -5.48 -40 -40.91 -27.92 -48.33 -26.69 17.59
ContAware + MTQual -0.52 -33.73 -47 -38.5 -46.46 1.15 16.28
MTQual -2.24 -8.17 -25.96 -2.62 -41.6 7.22 -5.77

lin

All -20.48 -43.42 -55.43 -36 -41.52 11.01 20.29
All + Kiwi -22.69 -46.4 -64.06 -43.8 -58.26 -7.33 9.35
Basic -25.2 -40.98 5.27 -46.86 -33.84 3.07 31.06
Basic + ContAware -21.73 -42.69 -61.24 -44.75 -53.48 -6.32 15.28
Basic + Kiwi -24.36 -46.3 1.26 -48.94 -40.12 -2.62 19.9
Basic + MTQual -23.77 -28.68 -7.34 -34.98 -28.22 4.5 32.35
ContAware -7.95 -18.26 -59.92 -51.44 -51.57 14.02 23.29
ContAware-no-ngrams -2.26 -4.56 9.06 -5.5 -0.67 10.45 -3.43
ContAware + Kiwi -9.68 -23.22 -64 -47.01 -53.55 9.76 16.94
ContAware + MTQual 27.75 -12.83 -58.87 -37.75 -30.77 24.58 -9.97
MTQual 22.29 42.65 17.99 15.11 38.49 -0.59 -12.13
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Table A.18: mean absolute error (MAE) of the generic FIPs when each dataset is left-out
of the training set, for the en-fr use-case and for the COMET22 and chrF MT metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

COMET22

rf

All 0.002 0.0034 0.0021 0.0074 0.0024 0.0007 0.0009
All + Kiwi 0.0027 0.0017 0.0016 0.006 0.0018 0.0011 0.0011
Basic 0.0021 0.0018 0.0012 0.0011 0.0016 0.0006 0.0012
Basic + ContAware 0.002 0.0019 0.0019 0.0033 0.0017 0.001 0.0011
Basic + Kiwi 0.0026 0.0017 0.0011 0.0011 0.0014 0.0008 0.0011
Basic + MTQual 0.0022 0.0038 0.0026 0.0014 0.0017 0.0008 0.0009
ContAware 0.0024 0.0023 0.0046 0.0089 0.0019 0.0036 0.0012
ContAware-no-ngrams 0.0019 0.0023 0.0047 0.0095 0.0016 0.0039 0.0012
ContAware + Kiwi 0.0062 0.0019 0.0012 0.0097 0.0022 0.0014 0.0015
ContAware + MTQual 0.0025 0.008 0.0031 0.0117 0.0038 0.0007 0.001
MTQual 0.0031 0.0053 0.0027 0.0034 0.0034 0.0016 0.0015

xgb

All 0.0019 0.002 0.0058 0.0061 0.0018 0.0007 0.001
All + Kiwi 0.002 0.0018 0.0018 0.0051 0.0015 0.0046 0.0013
Basic 0.0019 0.0017 0.0011 0.001 0.0015 0.0007 0.0011
Basic + ContAware 0.0018 0.0019 0.0017 0.003 0.0014 0.0011 0.0011
Basic + Kiwi 0.0028 0.0018 0.001 0.001 0.0014 0.0009 0.001
Basic + MTQual 0.0024 0.0038 0.0032 0.0009 0.0018 0.0009 0.001
ContAware 0.0019 0.0018 0.0024 0.0037 0.0014 0.0018 0.0015
ContAware-no-ngrams 0.002 0.0017 0.0024 0.0032 0.0014 0.0018 0.0011
ContAware + Kiwi 0.0015 0.0017 0.0021 0.004 0.0015 0.0042 0.0014
ContAware + MTQual 0.0021 0.0035 0.008 0.0091 0.002 0.0009 0.001
MTQual 0.0034 0.0045 0.0054 0.0014 0.0024 0.0007 0.0011

lin

All 0.0087 0.0076 0.0028 0.01 0.0216 0.0034 0.006
All + Kiwi 0.0017 0.003 0.0019 0.0037 0.0014 0.0009 0.0053
Basic 0.0025 0.0018 0.0011 0.001 0.0015 0.0007 0.0012
Basic + ContAware 0.0022 0.0028 0.002 0.0026 0.0031 0.0011 0.0051
Basic + Kiwi 0.0044 0.0018 0.0012 0.001 0.0037 0.0007 0.0012
Basic + MTQual 0.0035 0.003 0.0026 0.002 0.0037 0.0046 0.0016
ContAware 0.0024 0.003 0.0012 0.0014 0.0032 0.0008 0.0037
ContAware-no-ngrams 0.0018 0.0028 0.001 0.0017 0.0033 0.0006 0.0037
ContAware + Kiwi 0.0018 0.0032 0.0012 0.0018 0.0014 0.001 0.004
ContAware + MTQual 0.0081 0.0071 0.0034 0.0104 0.0206 0.004 0.0034
MTQual 0.003 0.0026 0.0026 0.0018 0.0032 0.0052 0.0016

CHRF

rf

All 0.1523 0.3013 0.9624 1.1405 0.2725 0.5578 0.4004
All + Kiwi 0.2572 0.3506 0.1612 0.7054 0.255 0.3445 0.1407
Basic 0.0967 0.334 0.1429 0.1242 0.237 0.0968 0.156
Basic + ContAware 0.2208 0.2891 0.1694 0.4743 0.228 0.1092 0.1273
Basic + Kiwi 0.2102 0.4884 0.1334 0.1208 0.2834 0.1162 0.1116
Basic + MTQual 0.2382 0.3064 0.892 0.1315 0.2847 0.446 0.1659
ContAware 0.1369 0.3549 0.3463 1.1604 0.4685 0.2848 0.1693
ContAware-no-ngrams 0.1504 0.3908 0.3394 1.1923 0.4673 0.1238 0.2124
ContAware + Kiwi 0.7496 0.4197 0.2094 1.0876 0.561 0.4198 0.1367
ContAware + MTQual 0.1969 0.2239 0.8046 2.138 0.5865 1.0043 0.1218
MTQual 0.2744 0.2291 0.9182 0.1288 0.4173 0.2431 0.1095

xgb

All 0.0879 0.3074 0.3147 0.3546 0.2813 0.0656 0.2805
All + Kiwi 0.1124 0.3149 0.1356 0.5182 0.2394 0.2097 0.136
Basic 0.1032 0.3078 0.1311 0.122 0.2299 0.069 0.1318
Basic + ContAware 0.1294 0.2883 0.1303 0.1314 0.2363 0.0713 0.1368
Basic + Kiwi 0.1178 0.4696 0.1338 0.1221 0.2652 0.0943 0.1152
Basic + MTQual 0.1529 0.3038 0.4271 0.1632 0.2862 0.168 0.1688
ContAware 0.1145 0.3217 0.1566 0.4768 0.2956 0.0957 0.154
ContAware-no-ngrams 0.1125 0.3287 0.1635 0.3443 0.3001 0.1078 0.1578
ContAware + Kiwi 0.3262 0.3115 0.1417 0.4375 0.4092 0.3828 0.1413
ContAware + MTQual 0.0879 0.2717 0.559 0.6244 0.539 0.0728 0.1111
MTQual 0.1498 0.2487 0.901 0.1413 0.3795 0.1849 0.12

lin

All 0.2442 0.3192 0.2666 0.3092 0.716 1.1444 1.2397
All + Kiwi 0.3957 0.2294 0.3917 0.1887 1.3303 0.1232 0.63
Basic 0.1264 0.2723 0.1321 0.1208 0.2693 0.079 0.1121
Basic + ContAware 0.8395 0.3259 0.5955 0.475 0.4459 0.352 0.3143
Basic + Kiwi 0.2541 0.3806 0.1404 0.1232 0.3031 0.1409 0.1172
Basic + MTQual 0.138 0.3943 0.7105 0.9222 0.7665 0.699 0.1198
ContAware 0.7074 0.2273 0.7169 0.422 0.2451 0.5105 0.1997
ContAware-no-ngrams 0.5892 0.2183 0.9531 0.2147 0.2232 0.1565 0.4308
ContAware + Kiwi 0.2749 0.27 0.3133 0.1828 1.1247 0.1869 0.53
ContAware + MTQual 0.1928 0.2808 0.3057 0.2615 1.4585 1.1476 1.1595
MTQual 0.1065 0.458 0.7811 0.976 0.2314 0.7755 0.1463
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Table A.19: pearson correlation coefficient (PCC) of the generic FIPs when each dataset
is left-out of the training set, for the en-fr use-case and for the COMET22 and chrF MT
metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

COMET22

rf

All 15.74 11.8 -14.9 -4.34 -4.58 -5.7 24.72
All + Kiwi 21.66 15.91 -9.84 -5.77 -18.72 -6.44 -17.09
Basic 5.9 12.04 -17.9 -1.84 -22.97 -4.86 -25.49
Basic + ContAware -17.61 -21.42 -26.26 -4.13 -20.72 -4.7 5.51
Basic + Kiwi 18.81 -2.43 2.82 -11.09 21.16 -4.8 -17.06
Basic + MTQual 12.71 11.45 11.27 0.04 9.9 -30.02 21.14
ContAware -30.47 -22.79 -5.02 -6.92 -1.11 4.53 9.05
ContAware-no-ngrams -11.04 -8.87 -4.24 -2.3 0.02 3.99 7.39
ContAware + Kiwi -0.77 14.52 21.03 6.31 4.33 3.98 -29.7
ContAware + MTQual 2.01 -1.69 2.42 -4.44 9.97 -3.38 3.78
MTQual 25.56 -9.93 11.45 7.64 6.8 -29.94 6.6

xgb

All nan 11.41 -7.29 -10.17 -4.82 -0.67 20.44
All + Kiwi 2.22 -25.24 -13.8 -9.49 -16.03 -8.31 -1.46
Basic 10.21 10.46 -7.84 -2.41 -19.73 -4.51 -24.92
Basic + ContAware -12.09 -19.32 -23.41 -5.84 7.08 4.12 16.05
Basic + Kiwi 23.65 2.94 13.52 -13.15 15.49 -6.71 -14.22
Basic + MTQual 22.81 10.33 -13.42 8.25 4.79 22.19 5.94
ContAware -14.4 -26.65 -6.09 -6.63 2.23 -3.27 11.58
ContAware-no-ngrams 2.49 -1.88 6.34 3.07 12.5 -22.93 11.09
ContAware + Kiwi nan nan 22.4 -3.9 12.31 -8.02 -8.97
ContAware + MTQual -10.94 nan 3.2 -4.32 2.36 -10.35 10.24
MTQual 22.94 9.69 3.37 -1.81 nan -15.22 10.73

lin

All 30.42 37.48 -7.83 27.74 40.4 19.49 15.2
All + Kiwi 14.35 -3.53 -4.21 19.39 12.82 14.33 -9.99
Basic 8.94 -1.48 -14.69 14.96 -4.96 6.58 -23.28
Basic + ContAware 14.76 -5.13 -4.68 19.87 3.04 8.71 -11
Basic + Kiwi 12.24 -3.32 -18.02 9.36 11.9 5.53 -25.31
Basic + MTQual 37.58 24.51 -2.86 21.62 32.36 12.43 -6.66
ContAware 10.29 -8.77 11.82 15.99 0.36 8.58 12.3
ContAware-no-ngrams -13.32 15.69 17.77 15.95 5.98 23.83 4.25
ContAware + Kiwi 7.82 -3.56 12.29 14.74 16.05 15.04 14.98
ContAware + MTQual 21.79 48.79 7.62 15.18 40.75 21.47 38.24
MTQual 49.52 44.05 23.48 23.7 39.09 10.59 28.19

CHRF

rf

All -17.68 -15.2 12.06 -7.03 5.8 8.32 23.83
All + Kiwi -42.51 -29.78 7.22 -11.78 4.56 -5.45 -1.94
Basic -37.04 -5.66 1.79 -1.02 -3.85 -1.36 -16.31
Basic + ContAware 5.43 -35.35 3.4 -31.78 13.6 -3.93 2.81
Basic + Kiwi -42.01 -32.12 -6.39 31.98 18.72 -9.27 -0.12
Basic + MTQual -41.44 -17.96 7.26 -36.38 1.04 0.17 7.5
ContAware -3.43 25.69 19.03 -9.89 0.2 13.34 -2.67
ContAware-no-ngrams -6.46 20.79 -2.64 25.35 -1.72 -14.06 -3
ContAware + Kiwi -11.02 -7.1 -7.57 14.29 0.61 11.01 -1.06
ContAware + MTQual -5.41 -5.12 -8.75 8.21 -7.52 12.81 -1.77
MTQual -8.44 -3.69 10.69 -11.68 3.49 -1.52 -0.85

xgb

All -7.73 -23.59 13.73 -21.75 7.37 nan 22.8
All + Kiwi -21.58 -31.2 15.86 -19.42 2.77 -13.47 -17.65
Basic -5.36 nan -0.5 nan -2.3 2.27 -4.07
Basic + ContAware 11.95 5.41 16.94 -13.62 9.7 -6.47 -15.99
Basic + Kiwi -37.24 -31.95 -7.72 38.76 19.72 -2.61 -25.36
Basic + MTQual 21.75 -30.34 11.64 -13.54 -9.51 7.75 11.15
ContAware 0.66 8.57 34.26 -20.03 -4.62 23.1 -14.01
ContAware-no-ngrams -5.82 nan -35.62 31.69 -3.59 0.85 25.47
ContAware + Kiwi -8.02 -29.56 8.86 0.6 nan 3.79 -2.84
ContAware + MTQual -7.73 13.37 19.18 -27.56 2.38 6.66 nan
MTQual -2.75 -6.31 28.7 -13.23 4.09 -1.62 nan

lin

All -23.21 -0.59 -26.19 1.47 13.14 11.71 17.68
All + Kiwi -30.74 -10.26 -14.33 -11.46 13.41 11.02 4.91
Basic -32.54 -28.7 4.95 15.18 -5.77 2.38 12.7
Basic + ContAware -23.41 14.14 1 -11.66 7.99 0.27 5.61
Basic + Kiwi -37.55 -31.02 6.28 6.42 -9.05 1.34 17.42
Basic + MTQual -48.85 -26.72 -12.18 8.8 -14.85 2.97 -0.38
ContAware -7.87 16.72 -3.08 -10.99 8.76 -0.52 -3.62
ContAware-no-ngrams 14.19 24.94 -41.13 21.89 18.54 7.02 0.41
ContAware + Kiwi 11.68 -17.56 -21.04 -10.91 14.7 13.94 -0.67
ContAware + MTQual -9.89 1.9 -30.59 -2.21 18.29 11.19 9.67
MTQual -40.77 8.98 -29.19 -2.3 -13.52 -5.15 -26.62
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Table A.20: mean absolute error (MAE) of the generic FIPs when each dataset is left-out
of the training set, for the en-fr use-case and for the SacreBleu and COMET22Kiwi MT
metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

SacreBleu

rf

All 0.4161 0.3792 0.3658 0.959 0.3344 0.1409 0.711
All + Kiwi 0.1937 0.4387 0.234 0.2889 0.2547 0.1821 0.1939
Basic 0.1629 0.4141 0.2243 0.1894 0.2065 0.1137 0.1881
Basic + ContAware 0.1966 0.4249 0.2412 0.3897 0.2813 0.1755 0.226
Basic + Kiwi 0.2164 0.4666 0.2362 0.1869 0.2274 0.1168 0.1871
Basic + MTQual 0.5303 0.3788 0.27 0.8106 0.3742 0.1094 0.2383
ContAware 0.1898 0.5893 0.743 0.8517 0.5394 0.4778 0.2832
ContAware-no-ngrams 0.2153 0.6019 0.6961 0.8398 0.4969 0.5589 0.2977
ContAware + Kiwi 1.6878 0.5476 0.2772 0.7083 0.6768 0.2554 0.3269
ContAware + MTQual 0.1556 0.3383 0.8511 1.0385 0.9607 0.293 1.0565
MTQual 0.4473 0.3386 0.2374 0.7007 0.8466 0.1222 0.2358

xgb

All 0.2575 0.3901 0.3658 0.2609 0.5312 0.1427 0.5279
All + Kiwi 0.1455 0.4858 0.2303 0.2094 0.2769 0.1487 0.1994
Basic 0.1329 0.4042 0.2255 0.1927 0.2222 0.1104 0.1843
Basic + ContAware 0.1888 0.4838 0.2514 0.1898 0.2892 0.134 0.22
Basic + Kiwi 0.1654 0.4654 0.266 0.1924 0.2422 0.1673 0.2006
Basic + MTQual 0.1846 0.3746 0.281 0.3288 0.5592 0.1872 0.2006
ContAware 0.1403 0.5712 0.4306 0.3231 0.3877 0.1257 0.2901
ContAware-no-ngrams 0.1591 0.5731 0.3914 0.2318 0.3564 0.1157 0.3332
ContAware + Kiwi 0.3821 0.5589 0.312 0.2595 0.6211 0.1857 0.3078
ContAware + MTQual 0.175 0.3533 0.7241 0.2496 1.0032 0.1276 0.757
MTQual 0.2981 0.362 0.2221 0.4742 0.728 0.1938 0.2714

lin

All 0.1558 0.5775 0.4462 2.3257 0.2388 1.828 2.8919
All + Kiwi 0.7259 0.3784 0.9199 0.7411 2.0817 0.1836 1.2491
Basic 0.2291 0.3718 0.2491 0.1872 0.2435 0.1362 0.2262
Basic + ContAware 1.0266 0.5501 0.4305 0.5268 0.427 0.4243 0.8895
Basic + Kiwi 0.1454 0.4246 0.2396 0.1922 0.3695 0.2442 0.2082
Basic + MTQual 0.4705 0.4984 0.965 1.5737 1.6767 1.3751 0.2698
ContAware 0.5751 0.3756 0.8969 0.3476 0.2913 0.9285 0.3986
ContAware-no-ngrams 0.7478 0.4392 1.2247 0.2002 0.3691 0.495 0.7075
ContAware + Kiwi 0.3502 0.6185 0.5574 0.4294 1.7818 0.5148 0.8705
ContAware + MTQual 0.5664 0.4058 0.3752 2.2058 1.4915 1.8708 3.6077
MTQual 0.1648 0.8713 1.3536 1.5139 0.2849 1.3741 0.2536

COMET22Kiwi

rf

All 0.0028 0.0051 0.0015 0.0036 0.0017 0.0012 0.004
All + Kiwi 0.003 0.0032 0.0014 0.0034 0.0013 0.001 0.004
Basic 0.0031 0.0027 0.0015 0.0035 0.0015 0.0004 0.001
Basic + ContAware 0.0027 0.0031 0.0022 0.0031 0.0012 0.0004 0.0009
Basic + Kiwi 0.0028 0.0062 0.0028 0.0038 0.0013 0.0009 0.0038
Basic + MTQual 0.0027 0.0072 0.0028 0.004 0.0016 0.0018 0.0042
ContAware 0.002 0.0028 0.0066 0.003 0.0014 0.0015 0.0011
ContAware-no-ngrams 0.002 0.0028 0.0067 0.0031 0.0013 0.0012 0.001
ContAware + Kiwi 0.0097 0.0045 0.0014 0.0035 0.0013 0.0014 0.0041
ContAware + MTQual 0.0092 0.0027 0.0015 0.0035 0.0018 0.0013 0.0041
MTQual 0.0054 0.0027 0.0036 0.005 0.0018 0.0018 0.0035

xgb

All 0.0031 0.0052 0.0015 0.0034 0.0016 0.0021 0.0044
All + Kiwi 0.003 0.0032 0.0014 0.0034 0.0013 0.0017 0.0046
Basic 0.0031 0.0028 0.0014 0.0035 0.0016 0.0004 0.001
Basic + ContAware 0.0027 0.0028 0.0023 0.0031 0.0013 0.002 0.001
Basic + Kiwi 0.0031 0.0061 0.0035 0.0041 0.0012 0.0018 0.0039
Basic + MTQual 0.0027 0.007 0.0032 0.0035 0.0014 0.0024 0.0041
ContAware 0.0019 0.0029 0.0042 0.0029 0.0033 0.0038 0.0032
ContAware-no-ngrams 0.002 0.0028 0.0043 0.0029 0.0032 0.0033 0.0031
ContAware + Kiwi 0.0077 0.0038 0.0015 0.0032 0.0012 0.0025 0.0042
ContAware + MTQual 0.0079 0.0026 0.0014 0.0034 0.0015 0.0019 0.0041
MTQual 0.006 0.0026 0.0032 0.0046 0.0017 0.0011 0.0029

lin

All 0.0027 0.0024 0.0033 0.0101 0.0055 0.0195 0.0174
All + Kiwi 0.0032 0.003 0.0059 0.0046 0.0095 0.0036 0.0051
Basic 0.0036 0.0028 0.0017 0.0037 0.0019 0.0014 0.0016
Basic + ContAware 0.011 0.0035 0.0104 0.0094 0.0064 0.0027 0.0024
Basic + Kiwi 0.0016 0.0025 0.0016 0.0035 0.0057 0.0021 0.0016
Basic + MTQual 0.0049 0.0036 0.0017 0.0026 0.0116 0.0131 0.002
ContAware 0.007 0.003 0.0144 0.0069 0.011 0.0068 0.0052
ContAware-no-ngrams 0.0042 0.0028 0.0086 0.0068 0.0096 0.0059 0.0067
ContAware + Kiwi 0.0059 0.0056 0.0038 0.0028 0.0079 0.0014 0.0017
ContAware + MTQual 0.0065 0.0026 0.0074 0.0102 0.0202 0.0217 0.0298
MTQual 0.002 0.0057 0.0035 0.0029 0.0013 0.0131 0.0018
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Table A.21: pearson correlation coefficient (PCC) of the generic FIPs when each dataset is
left-out of the training set, for the en-fr use-case and for the SacreBleu and COMET22Kiwi
MT metrics.

MT Metric Pred. Feature Set Elitr Elrc EuBookshop Php Tanzil Tedx-fr Tedx-fr_ca

SacreBleu

rf

All -9.73 -17.34 0.6 -4.75 25.21 24.37 -8.5
All + Kiwi -15.78 -18.73 3.01 2.88 9.37 -6.37 -6.99
Basic 23.06 -32.54 -3.34 9.31 -0.11 1.04 -2.42
Basic + ContAware 8.62 -27.6 9.31 7.6 4.28 -2.11 -5.46
Basic + Kiwi -4 -27.55 -6.92 21.34 8.93 20.26 -27.64
Basic + MTQual -8.86 -13.46 -16.84 -5.04 16.1 -4.4 -16.68
ContAware 14.46 14.17 18.17 -5.01 12.31 -2.24 9.79
ContAware-no-ngrams -1.03 16.62 21.31 26.92 6.28 11.49 -7.74
ContAware + Kiwi -10.97 -22.72 -0.62 2.85 -5.16 18.24 3.65
ContAware + MTQual 1.23 -3.47 -20.38 3.65 -3.2 16.29 -7.04
MTQual 0.4 1.76 -12.25 5.99 31 10.5 -14.26

xgb

All -9.59 -14.11 16.45 -31.04 12.29 24.93 -14.16
All + Kiwi -13.35 -1.59 14.7 -6.51 -1.56 10.73 31.99
Basic nan nan nan -2.26 0.06 -0.33 2.82
Basic + ContAware 22.13 -22.86 16.89 -8.06 -0.47 27.94 1.39
Basic + Kiwi 17.47 -19.23 -5.57 16.68 9.87 -3.25 -3.37
Basic + MTQual -0.48 19.28 10.31 1.39 13.48 18.2 -20.57
ContAware 3.13 -1.2 9.61 -16.39 2.04 15.92 9.6
ContAware-no-ngrams -11.35 -7.87 26.47 28.66 -1.36 20.68 -4.6
ContAware + Kiwi nan -23.67 -24.16 -14.71 -10 -14.15 20.67
ContAware + MTQual nan nan -4.87 -27.46 12.46 14.42 12.85
MTQual -9.29 5.25 19.78 -27.22 16.63 29.46 0.07

lin

All -4.79 -14.11 -14.49 32.4 25.97 -15.08 -5.29
All + Kiwi 21.65 -26.16 2.05 1.96 23.96 11.38 11.05
Basic 21.24 -27.04 -10.94 21.07 3.7 6.19 -13.73
Basic + ContAware 26.08 2.98 5.05 1.37 19.08 10.89 7.27
Basic + Kiwi 8.89 -27.78 -9.38 14.91 1.74 4.19 -8.66
Basic + MTQual -14.57 -31.38 -10.79 26.51 0.53 3.29 -12.94
ContAware 23.46 15.55 7.67 -3.5 17.98 8.74 11.98
ContAware-no-ngrams 24.4 14.53 -22.79 23.4 32.38 -5.16 15.9
ContAware + Kiwi 19.88 -21.81 4.73 -2.05 20.64 4.57 14.91
ContAware + MTQual 8.98 0.58 -4.59 26.7 24.94 -20.65 -1.49
MTQual -36.25 0.46 -8.43 11.8 -11.58 -8.21 -7.16

COMET22Kiwi

rf

All 28.27 26.09 -15.39 8.3 4.94 10.73 26.35
All + Kiwi 34.14 26.06 -27.65 -8.12 -3.73 17.08 6.02
Basic -27.25 -5.26 -4.97 9.79 -17.39 -8.42 2.01
Basic + ContAware 19.8 -2.18 16.82 -0.69 40.24 10.88 24.04
Basic + Kiwi 28.43 25.91 -36.22 9.04 9.69 14.36 69.33
Basic + MTQual 21.49 27.07 -22.17 9.91 -3.07 -19.92 46.88
ContAware 6.08 2.03 -12.35 -4.54 -10.03 -4.73 13.72
ContAware-no-ngrams 3.98 9.58 -2.03 -8.31 -32.43 -25.05 15.08
ContAware + Kiwi -9.61 2.89 3.66 -9.88 -9.74 13.32 11.06
ContAware + MTQual -10.51 24.26 -7.42 5.6 6.07 10.23 33.37
MTQual 8.36 9.81 -38.29 23.16 -7.68 -7.27 45.95

xgb

All 48.06 20.16 -21.07 18.9 3.55 -13.7 57.68
All + Kiwi 57.1 18.03 6.25 -4.63 1.48 -16.77 57.78
Basic -70.39 -9.77 -4.9 -39.88 -20.48 -11.74 1.67
Basic + ContAware 1.5 2.98 27.49 -2.98 -37.7 19.98 6.14
Basic + Kiwi 12.06 26.07 -28.4 12.65 3.64 13.66 69.95
Basic + MTQual 14.46 26.58 -4.1 -4.09 -30.38 0.24 67.08
ContAware 5.58 -3.22 -41.86 -6.08 nan 22.7 6.23
ContAware-no-ngrams -16.34 -0.08 -1.32 -9.8 nan -4.8 7.98
ContAware + Kiwi -11 1.99 -6.67 -7.37 22 -0.21 46.34
ContAware + MTQual -16.92 28.52 -10.37 -20.08 10.5 -3.1 44.32
MTQual 17.18 18.85 -16.42 11.42 -1.7 -5.21 44.22

lin

All 15.5 38.07 30.45 18.8 15.09 -8.79 6.46
All + Kiwi 24.34 30.57 -3.18 35.67 3.02 -15.69 -0.38
Basic 56.33 21.59 20.72 30.87 -16.08 2.55 -3.94
Basic + ContAware 26.82 13.15 -3.48 39.69 -18.4 -0.57 -3.98
Basic + Kiwi 57.89 27.57 22.91 36.98 -12.12 3.63 -3.36
Basic + MTQual 52.21 35.61 24.07 41.62 -8.87 -6.03 5.59
ContAware -1.46 2.76 -12.47 23.31 -5.16 -3.54 -1.39
ContAware-no-ngrams -5.07 -1.14 20.15 21.94 11.27 -30.79 -4.09
ContAware + Kiwi 9.35 32.94 -18.92 9.6 28.87 -28.13 7.1
ContAware + MTQual 1.71 25.71 26.32 -22.23 32.98 -18.61 8.37
MTQual 12.49 34.24 15.46 -3.78 29.78 -2.27 34.04
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