
SCS Honors Undergraduate Research Thesis

Spring 2024

Indoor Mapmaking: From Map Drawing to
Navigable Representations

by

Huda Baig

Advisors

Khaled A. Harras
Eduardo Feo Flushing

Contents

1 Introduction 3
1.1 What are Maps? . 3
1.2 Motivation . 4

1.2.1 Outdoor Mapmaking 4
1.2.2 Indoors vs Outdoors 4
1.2.3 General Mapmaking Approaches 5

1.3 Challenges . 5
1.4 Contribution . 6

1.4.1 Mapmaking Method 7
1.4.2 Evaluation . 7

2 Related Work 9
2.1 Input . 9

2.1.1 CAD . 10
2.1.2 PNG Export of CADs 10

2.2 Map Representations . 11
2.2.1 IMDF . 11
2.2.2 IndoorGML . 12
2.2.3 SVG . 13
2.2.4 Graph . 14

2.3 Visualisation . 15
2.4 Human in the Loop Approaches 15

3 Exploring Mapmaking Methods 16
3.1 IMDF-based Mapmaking . 16
3.2 IndoorGML-based Mapmaking 17
3.3 SVG-based Mapmaking . 18
3.4 Graph-based Mapmaking . 20

4 Our Mapmaking Pipeline - System Architecture 22
4.1 Pipeline Input . 22

4.1.1 Input Assumptions . 23
4.1.2 Label Categories . 24

1

4.2 Task Formalisation . 25
4.3 Image Slicing . 25
4.4 Extraction Module . 26

4.4.1 Area Extraction . 27
4.4.2 Door Extraction . 28

4.5 Linking Module . 30
4.5.1 Door Linking . 30

4.6 Completion Module . 31
4.6.1 Door Completion . 31
4.6.2 Area Completion . 32

4.7 Indoor Map Output . 32
4.7.1 Semantic Representation 33
4.7.2 Navigable Links . 33

5 Evaluation 34
5.1 Creating the Ground Truth 34
5.2 Evaluation Metrics . 36

5.2.1 Shortest Paths Similarity 36
5.2.2 Node Matches . 38

5.3 Evaluation on Different Locations 39
5.4 Experiments with Pipeline Parameters 41

5.4.1 Pixel to Distance Ratio 41
5.4.2 Overlap Percentage of Image Slices 43
5.4.3 Door Confidence Score Threshold 44

6 Conclusion 46
6.1 Future Work . 46

7 Appendix 48
7.1 CubiCasa5k Segmentation . 48
7.2 Ground Truth Testbeds . 51

7.2.1 Raw Images . 51
7.2.2 Annotated Ground Truths 52
7.2.3 Pipeline generated graphs 53

2

Chapter 1

Introduction

1.1 What are Maps?

The term ‘map’ can be understood under a variety of semantics by different
people. Each semantic understanding of maps lends itself to a different map
format. According to the Merriam-Webster Dictionary, a map is “a diagram
or other visual representation that shows the relative position of the parts
of something” [11]. Maps have particularly been used to visually represent
positions in outdoor spaces, so that travellers can determine where they are
and gain an understanding of the relative space around them. These outdoor
area maps were always imprinted on physical mediums, like paper, until the
age of digitisation.

With the mass digitisation of information, paper maps were transformed
into a digitised format that emerging systems could leverage in order to
integrate location data into their functionality. Over time, these digitised
outdoor maps were refined to embody more and more semantic information
about the relative outdoor space so that applications could better perform
context-aware functions.

In supporting context-aware functions, we focus our scope on human-
centred functions. The reason we feel that human-centred applications de-
serve particular focus with regard to indoor maps is because there is huge
quality-of-life potential in developing applications that can service human
users with location-based services, as a reflection of how reliant we as human
users have become on systems providing human-centred location functional-
ity in the outdoor space, such as navigation systems, live tracking systems,
among others.

Given the importance of systems having location information indoors,
this thesis focuses on the digitised map representation that systems leverage
to become more contextually aware of location information. Based on this
focus, we define maps to be an analogical representation [8] that is structured
in a way that systems can directly access semantic details and navigable

3

links for key areas in the map’s described space. Here, semantic details
of key areas indicate important positional details, such as room name or
coordinate location, relative to the larger described space. Coupled with
semantics, navigable links for each key area in the described space indicate
which other areas can be directly reached from the current one.

1.2 Motivation

By our definition of maps, there is already a standardised and efficient
process for representing outdoor spaces as outdoor maps. In contrast to
outdoors, indoor spaces don’t have a standardised and efficient process to
represent them as indoor maps.

1.2.1 Outdoor Mapmaking

Outdoor maps are created using satellite images of outdoor spaces as in-
put. The input satellite images are imposed with location data from various
organisations and governments [19]. Human annotators take these satellite
images with imposed data and manually label key semantic details and navi-
gable links necessary to form the outdoor map. These human-sourced labels
have been collated into an outdoor map database that systems can query to
directly access the location information they need to provide context-aware
services for outdoor spaces.

Over the last few years, Google has optimised outdoor mapmaking by
training machine learning models to automatically label input satellite im-
ages [19]. However, it is crucial to note that this automation was trained
using the existing outdoor database, sourced on the accumulated effort of
human annotators over decades.

1.2.2 Indoors vs Outdoors

Outdoor mapmaking cannot be applied directly to indoor spaces.
Firstly, there is no indoor map database for indoor mapmaking to be

automated through, so manual effort by human annotators would have to be
employed to label indoor spaces. Indoor maps created through the manual
efforts of human annotators would require decades of work before sufficient
data [19], matching the scale of outdoor spaces, is accumulated to explore
automation, as we have seen with outdoor mapmaking.

Secondly, the nature of the semantic details and navigable links in indoor
spaces is very different from that of outdoor spaces [17]. For example, we
must account for separate structures like doors, stairwells, etc. Due to the
difference in fundamental nature between indoor and outdoor spaces, indoor
spaces need a completely separate labelling scheme.

4

Finally, we note that satellite images are not available for indoor spaces [20].
Instead, the most basic description format that can serve as input for in-
door mapmaking is architectural blueprints of indoor spaces, known as CAD
drawings. These CAD drawings are created when indoor spaces are phys-
ically constructed and can be accessed as vector-based CAD files or PNG
image exports.

Given the key contrasts between indoor and outdoor spaces, we need
to develop an indoor mapmaking process that can produce indoor maps
in an accessible and efficient way. This will enable context-aware systems
to operate in the domain of indoor spaces just as they operate in outdoor
spaces.

1.2.3 General Mapmaking Approaches

In terms of the actual process for gathering the indoor space information
required to build maps, there are two main methods that research pursues.
Firstly, the robotics domain uses specialised hardware to extract information
related to sensing and modelling indoor environments [12]. Using this indoor
information, researchers have been able to construct spatial maps that allow
robots to effectively navigate indoor spaces. Unfortunately, these spatial
maps are not sufficient in enabling context-aware systems to perform the
functions we are looking for indoors. This is because we focus on human-
centred location functions, which require more semantics and information
compared to the geometric information encoded by spatial maps. Even
arguing that semantics can be manually added to spatial maps in order
to bring them up to our requirements, we argue that the reliance spatial
maps have on specialised hardware reduces their accessibility, as experts
are needed to operate the hardware and building owners must be willing to
supervise the access of such experts within their indoor spaces.

To address the drawbacks of robotic-sourced indoor space information,
some research turns to data-driven approaches of extracting this informa-
tion. Data-driven approaches generally follow the approach of performing
segmentation to identify key areas within an indoor space [15], followed
by separate algorithms to draw a topology that connects the areas identi-
fied [25]. Finally, manual work or inference models (of inconsistent accuracy)
are used to add semantic details to the key areas. Unfortunately, these data-
driven approaches suffer from many issues including every mapmaking stage
being performed manually or being performed with inaccurate methods.

1.3 Challenges

The data-driven approaches, which attempt to increase the accessibility of
indoor maps by removing the specialised hardware requirement, suffer from
one or more of three major flaws. To contribute a mapmaking process

5

that is more effective than the current approaches, we aim to address these
challenges as much as possible. The main challenges we have found are:

• Automation: Related research proposed the use of data serialisation
file formats to store semantic details and navigable links present in
indoor spaces. In particular, IndoorGML proposes the use of XML-
based files to form indoor maps, while IMDF proposes the use of JSON
files to form indoor maps. Unfortunately, these maps require manual
effort to be created.

As we have already discussed, mapmaking processes that require man-
ual effort to create indoor maps will need decades of work to reach the
coverage that context-aware systems already have available for out-
door spaces. Due to this time investment demand, mapmaking meth-
ods that require manual effort are very inefficient in creating maps for
a wide variety of indoor spaces.

• Navigable Links: As an alternative to data serialisation files to be
used as indoor maps, some research proposed more visual file formats
as indoor maps. These formats include 2D and 3D models, as well as
SVG image files.

Visual format-based mapmaking gives a human looking at the result-
ing map information about how key areas connect with each other.
However, systems using these map formats cannot interpret these vi-
sual format maps in the same way to access navigable links. Without
navigable links, systems cannot access key information such as how to
navigate from point A to point B, severely limiting their functionality.

• Ability to Scale: Along with functional limits come scale limits for
many proposed indoor maps. Indoor spaces come in a huge variety of
sizes, from small house apartments to large public buildings like uni-
versities or airports. If mapmaking cannot accommodate large indoor
spaces, it is severely restrictive on what types of spaces context-aware
systems can work within.

Our goal is to design an indoor mapmaking method that can provide an
indoor map while addressing all the shortcomings of current indoor map-
making methods.

1.4 Contribution

In pursuit of our goal, we explored different methods of extracting infor-
mation from CAD drawings and combining the different parts to form a
cohesive indoor map that can facilitate a wide variety of context-aware lo-
cation functions. Note that we restricted our input to PNG image exports

6

of CAD drawings as vector-based CAD files expose architectural informa-
tion that building owners are often reluctant to share, making PNG image
exports more widely available.

1.4.1 Mapmaking Method

Our proposed mapmaking method is a processing pipeline consisting of six
separate stages. The pipeline takes a PNG input with text labels of key
areas as input. Our pipeline’s modules are broken down as follows:

• Input Slicing: divides the input image into several smaller slices so
that larger input spaces can be handled.

• Area Extraction: identifies all the key areas in every slice of the
input image.

• Door Extraction: identifies all the doors in every slice of the input
image.

• Door Linking: forms connections between key areas and doors iden-
tified.

• Door Completion: Goes through all identified doors to fill in missing
navigable links.

• Area Completion: Goes through identified key areas to fill in miss-
ing navigable links.

Section 4 of this thesis will explain the rationale and methods behind
each module.

Our mapmaking pipeline outputs a graph as the underlying structure
for the final indoor map. Our graph structure represents key areas as nodes
and navigable links as edges, while imposing additional properties to store
the necessary semantic details that an indoor map needs.

1.4.2 Evaluation

To demonstrate the effectiveness of our mapmaking pipeline, we perform two
separate sets of evaluations. Firstly, we investigate the navigable information
that our output map, based on the graph data structure, encodes by checking
the information related to the shortest paths to every area node from some
arbitrarily chosen source node. To supplement our evaluation of navigable
links, we evaluate the semantics of our output by checking the correctness of
the semantic information of every node in the graph. We perform our graph
evaluations based on ground truth graphs that we manually created of three
large areas in the CMUQ building, which contain significant structural and
spatial challenges that our pipeline must tackle to create the output map.
Overall, our evaluation covers tests over ∼ 20, 000m2 of indoor space within
the CMUQ building.

7

To explain our research and rationale in detail, we structure this thesis
as follows: Section 2 covers the research we have found related to data-
driven approaches to indoor mapmaking and their associated challenges or
flaws. Section 3 covers the mapmaking methods from related research that
we experimented with to verify the components of these methods that work
and could be incorporated into our pipeline, as well as the components that
are the source of major flaws or inaccuracies. Section 4 covers the system
architecture of our pipeline, with an in-depth description and algorithms of
how every stage in our pipeline operates. Section 5 explains the evaluation
metrics we use in detail, the results we obtained in evaluating our testbeds,
and the results of experiments we performed on key parameters that our
pipeline relies on. Finally, Section 6 summarises the current state of our
work and ways to extend this research by considering its shortcomings.

You can view our Mapmaking Pipeline implementation on
GitHub1

1https://github.com/morshed-research/cad2map

8

https://github.com/morshed-research/cad2map

Chapter 2

Related Work

Over the last few years, there has been a wide variety of research looking
at indoor mapmaking. The indoor mapmaking methods we investigated
explored either the capability to produce some existing image format as the
final indoor map or to produce a new format that is tailored to fulfil the
requirements of indoor maps. From our investigation, we found that the
indoor mapmaking methods in current research can be divided into three
categories based on the intended purpose behind the method. We summarise
all the indoor mapmaking methods we found in Figure 2.1.

Figure 2.1: Summary of Indoor Maps present in research and their related
mapmaking methods

2.1 Input

Input refers to file formats that are widely available and are used as industry
standards for representing indoor spaces. These industry-standard formats
aren’t for use within context-aware location systems but rather for architec-

9

tural design and construction purposes [8]. Almost all indoor spaces, if not
all, will have one of these formats [1] available to provide details on their
layout and features, making them very useful and practical input for indoor
mapmaking.

(a)

(b)

Figure 2.2: (a) A CAD dwg of CMUQ’s first floor (b) A PNG export of the
CS Corridor from CMUQ’s CAD dwg

2.1.1 CAD

CAD stands for Computer-Aided Design and is used to depict 2D drawings
or 3D models. CAD files, which come as ‘.dwg’ files and are referred to as
drawings, are closely associated with designs and layouts for manufacturing
and construction processes in domains such as architecture, engineering, city
planning, etc. [7]. CAD ‘.dwg’ files are vector-based file formats that come
to scale.

2.1.2 PNG Export of CADs

PNG images are a file format that is used to store computer images in high
quality [14]. Although PNG images are not a specific file format for indoor
spaces or any construction domain, CAD files can be exported as PNG
images.

The PNG export of CAD files takes all the drawn structures for indoor
spaces and flatten them into a single-layered pixel image. The flattened
image retains visual shapes that build different parts of the indoor space
within the CAD drawing, but it doesn’t carry over the structural metadata

10

such as geometric details, among others [18]. Because PNG exports expose
less structural details about indoor spaces, building owners feel it is safer
for the design integrity of their building to share PNG exports rather than
the vector-based CAD file itself. The flattened PNG image is also easier for
some systems to handle as less information has to be processed.

2.2 Map Representations

Back-end representations refer to indoor maps that focus on encoding se-
mantic information about indoor spaces for specific use cases. While some
representations also encode navigable links alongside semantics, back-end
representations emphasise storing semantic information in a parsable format
that can provide a descriptive representation of indoor spaces rather than a
representation that can directly facilitate context-aware functionality.

Figure 2.3: Left: JSON Properties for IMDF. Right: XML Structure for
IndoorGML.

2.2.1 IMDF

The Indoor Mapping Data Format (IMDF) is a file format that was specif-
ically designed to create accurate maps for indoor spaces [3]. It represents

11

and stores information about indoor spaces using property-value pairs ar-
ranged in a JSON structure.

Feature Representation

IMDF generally represents the components of indoor spaces in two cate-
gories. The first category is called a ‘Unit’, which models bounded areas
such as rooms, hallways, etc. Here, we note that bounded areas may not
necessarily be bounded by walls, but instead can be bounded by anything
that denotes a boundary that cannot be walked past (such as a train plat-
form) [3]. The second category is called a ‘Relationship’, which models some
association between two existing objects. Its properties depend on the values
of its property fields.

IMDF-based Mapmaking

While IMDF’s information structure stores everything we need for our in-
door map, the mapmaking process of producing an IMDF-based indoor map
is completely manual. Manual means that a human is expected to take an
indoor space and label it from scratch using the JSON-object structure of
IMDF. Any software claiming to generate the IMDF JSON-structure in the
back-end still requires an annotator to input all semantic properties and
relations themselves, which would require hours of work.

2.2.2 IndoorGML

IndoorGML is another file format specifically designed to create accurate
maps for indoor spaces [16]. It represents information about indoor spaces
with an XML-based file structure.

Feature Representation

Like IMDF, IndoorGML breaks down the representation of indoor spaces
into representing spaces and their relationships.

For spaces (such as rooms, corridors, stairs, etc. [16]), IndoorGML refers
to these as cells and aims to associate each with a unique id and coordinate
to be identified by. These uniquely identified cells can also be broken down
into subspaces and accessibility layers for more close-up details regarding the
space. Cells representing indoor areas have their own XML class of ‘State’,
which has certain properties to describe cells.

For relationships between spaces, IndoorGML refers to these as transi-
tions. Transitions are represented by two combined XML classes to depict all
their properties, ‘RouteNode’ to depict the cells they connect and ‘Route-
Segment’ to describe the properties of the actual transition between the
cells.

12

Figure 2.4: An example SVG where all rooms have been labelled in orange,
walls are labelled in blue, windows in green and doors are labelled in yel-
low. [10]

IndoorGML-based Mapmaking

There are several mapmaking methods that attempt to produce IndoorGML.
Unfortunately, all of these have a high manual overhead, as they need a
human annotator to manually input detailed labelling of the desired indoor
space properties at different stages of the mapmaking process.

2.2.3 SVG

Scalable Vector Graphics are an XML-based file format for representing im-
ages that can be scaled while maintaining their quality. In particular, SVGs
can be searched since their properties are represented in text with XML-
based tags [23]. While SVG files are not a file format created specifically for
representing indoor spaces, many researchers make attempts to transform
CAD drawings (or PNG images of CAD drawings) into an SVG image with
semantic labelling of indoor areas embedded into their tags. Representing
indoor areas and their labelling with SVGs is beneficial due to the standard-
isation of SVG by the World Wide Web Consortium, which means it is a
standard that is constantly maintained and upgraded, as well as the fact
that most web browsers can easily display SVGs [10].

Feature Representation

SVG images represent shapes using tags which depict individual shapes, such
as ‘polygon’, and draw these shapes using coordinate and CSS properties,
such as vertices for polygon tags, specified in the tag’s attribute fields [23].
Using the colour attribute tag, SVGs can depict basic semantics about key

13

areas, such as their type or their coordinate location on the indoor space as
a whole.

SVG-based mapmaking

At present time, SVG cannot currently encode any navigable information
between areas (for example, can I walk between two rooms or not, or explic-
itly represent if two rooms are adjacent, etc.). Due to the lack of navigable
information between areas, SVG cannot serve as our final indoor map.

Beyond the lack of navigable links, the mapmaking methods that pro-
duce SVG suffer from inaccuracies in representing indoor spaces. These
methods often incorrectly interpret key information such as neighbouring
rooms or boundary walls. Even if key information can be corrected, these
methods also fail to scale to large indoor spaces.

2.2.4 Graph

Graphs refer to the graph data structure that is often used in many appli-
cations of the computer science field. In related research, researchers try to
convert base representations into graph structures in order to perform al-
gorithmic comparisons between the structure of apartments [25]. Searching
by structure is very important for apartment buyers [24].

Feature Representation

In general, it is expected that when representing indoor spaces, the graph
nodes will represent key areas like rooms (as well as storing relevant seman-
tics about these areas), and the edges will represent adjacency information
(i.e., a threshold of closeness) between areas from which navigation can be
derived [25].

Graph-based Mapmaking

These graphs choose to represent edges as some threshold adjacencies [25]
between areas (because only adjacencies are relevant when depicting the
structure of an indoor space), they don’t hold direct navigable information
as closeness does not always guarantee navigable links (a wall may stop a
person from passing through, etc.)

In terms of actual mapmaking, these adjacency graphs are produced with
segmentation methods that are similar to SVG-based mapmaking. Similarly,
they suffer from the same shortcomings of inaccuracy.

14

2.3 Visualisation

Visualisations in Figure 2.1 refer to methods that produce a visual interpre-
tation or replication of indoor spaces. Although it may be argued that these
visualisations could be considered an indoor map because it allows humans
to orient themselves around an indoor space with its semantic information,
they cannot be used by systems. Based on the fact that systems cannot use
visualisations on their own to access semantic details and navigable links
within an indoor space, we do not consider visualisations as indoor maps
and only include them to give a complete view of mapmaking methods in
related work.

2.4 Human in the Loop Approaches

Human in the Loop approaches refer to mapmaking methods which require
humans to contribute some level of information and then operate to create
some map format based on the information that a human manually provided.
Note that these approaches are distinct from completely manual processes
as manual work goes into providing only a part of the necessary information
and algorithms are applied onto this partial information to complete the
picture. In this way, the manual work involved is minimised.

Our work is classified under human-in-the-loop approaches as we take
a small level of annotation from a human in our input images. Because of
this classification, we looked into whether there are any related mapmak-
ing methods that also employ human-in-the-loop approaches. We found
one approach that creates geometric-based SLAM maps from CAD files [9].
However, we do not include this work in our summary table because it gen-
erates information that is very specific to robot movement and cannot be
generalised to providing any related semantics or navigable link information
that our indoor map needs.

Aside from the different information set that this SLAM human-in-the-
loop mapmaking process provides, we also note that it has a high information
demand from human annotators that will prevent it from scaling to large
spaces. In essence, this method aims to generate geometric structure maps
(i.e., only defining room shapes with no links or semantics) by asking a user
to define all possible trajectories [9], which would be impossible for large
indoor spaces, that may go through an indoor space. Based on the trajecto-
ries, parametric models are used to infer the relevant geometric structure for
robotic movement. Ignoring the lack of applicability of SLAM maps in de-
riving semantic and navigable information, the high manual demand of even
human-in-the-loop approaches to related mapmaking, it is clear that there
is no mapmaking method that minimises manual work while ubiquitously
fulfiling the requirements of our indoor map, especially for large spaces.

15

Chapter 3

Exploring Mapmaking
Methods

The first step in devising our proposed mapmaking pipeline was to exper-
iment with existing indoor mapmaking methods. From our exploration of
these methods, we hoped to gain insight on any successful modules we could
leverage in our pipeline, as well as understanding what types of information
could be extracted from our input CAD drawing.

Unfortunately, some of the mapmaking methods described in the liter-
ature are locked behind paid subscriptions, and we could not experiment
with these, so we opted to read the documentation to understand how they
work.

3.1 IMDF-based Mapmaking

Currently, the only mapmaking process that can be used to create an IMDF
representation of an indoor space is to use a conversion tool called Feature
Manipulation Engine (FME). Using FME, a user can supply the tool a CAD
dwg of indoor space and then use the interface to manually label indoor areas
and properties they want to add as part of their IMDF representation. Once
the user has manually entered all the information they want to include in
their IMDF representation, FME generates the final IMDF JSON objects.

The most significant flaw with this FME-based mapmaking process is
that it is completely manual, meaning it has to be individually done for
every building that wants to use an indoor map. Because of this manual
overhead in the mapmaking process, along with the previous flaws noted
in its representation, IMDF cannot fulfil the requirements of the navigable
indoor map we are seeking.

16

Figure 3.1: An example of using FME to build an IMDF representation [2]

3.2 IndoorGML-based Mapmaking

The first available mapmaking process to produce an IndoorGML represen-
tation of an indoor space is again using the Feature Manipulation Engine
tool. The process of using FME to produce an IndoorGML representation is
almost identical to IMDF’s process, except that some property labelling by
the user will differ. Once the user has entered all information regarding the
indoor space, FME will generate the final IndoorGML. As we have already
mentioned, the FME-based mapmaking process does not meet our require-
ments of a navigable indoor map as it has too high of a manual overhead.

The second available mapmaking process to produce an IndoorGML rep-
resentation of an indoor space is to use a deep learning model that takes in
a PNG image of a CAD drawing and produces a vector representation of
the image. The vector data is then used with FME to produce a final In-
doorGML representation [13]. Because this mapmaking process again relies
on FME to be fully completed, we regard it to have the same issue of high
manual overhead as we found with the first mapmaking process.

The final available mapmaking process to produce an IndoorGML rep-
resentation of an indoor space is to use the software tool named ‘InEditor’.
InEditor is a software interface where a user can upload a PNG of a CAD
drawing and use the provided tools to manually outline (by selecting ver-
tices) what boundaries depict cells from IndoorGML [22]. Upon creation,
users can manually fill in the properties of cells in a side pane. Once all cells
have been identified, the user must use another tool to connect cells that
have transitions between them. Once again, users can manually fill in transi-
tion properties. The use of InEditor to create an IndoorGML representation
is a completely manual process guided by interface tools, as demonstrated
in Figure 3.2.

Overall, we have found that IndoorGML poses issues with its repre-
sentation not supporting access to localisation and navigation information
directly, and its mapmaking issues having high manual overhead. Because of

17

Figure 3.2: Using InEditor to create IndoorGML for a subset of the CS
corridor

these two issues, IndoorGML cannot fulfil our requirements for a navigable
indoor map.

3.3 SVG-based Mapmaking

Scalable Vector Graphics are an XML-based file format for representing
images that can be scaled while maintaining their quality. In particular,
SVGs can be searched since their properties are represented in text with
XML-based tags [23]. While SVG files are not a file format created for
specifically representing indoor spaces, many researchers make attempts to
transform CAD drawings (or PNG images of CAD drawings) into an SVG
image with semantic labelling of indoor areas embedded into their tags.
Representing indoor areas and their labelling with SVGs is beneficial due to
the standardisation of SVG by the World Wide Web Consortium, meaning
it is a standard that is constantly maintained and upgraded, as well as the
fact that most web browsers can easily display SVGs [10].

SVG images represent shapes using tags which depict individual shapes,
such as ‘polygon’, and draw these shapes using coordinate and CSS prop-
erties, such as vertices for polygon tags, specified in the tag’s attribute
fields [23]. For example, Figure 2.4 shows an example SVG where all rooms
have been labelled in orange, walls are labelled in blue, windows in green
and doors are labelled in yellow.

Using the colour attribute tag, SVGs can depict basic semantics about
key areas such as their type or their coordinate location on the indoor space

18

as a whole. Beyond these features, SVG cannot currently encode any re-
lational information between areas (for example, can I walk between two
rooms or not, or explicitly represent if two rooms are adjacent etc.). Be-
cause of the lack of navigable information between areas, SVG cannot serve
as our final navigable indoor map. However, if SVG is a format that can be
produced easily with its mapmaking methods, we could leverage its capa-
bilities by creating a new mapmaking process that starts with SVG instead
of CAD due to the improved parsability of XML-based files.

Mapmaking Process

SVG-based indoor maps have two mapmaking processes. Firstly, there are
many tools available online that can convert a PNG image into an SVG
image. Given any one of these SVG tools, we can supply a PNG image
of a CAD drawing and receive an equivalent SVG image. Unfortunately,
the SVG image produced by these tools may look visually accurate, but
it usually represents shapes in the image through one or two XML tags
and fails to separate individual rooms and areas with their own tags and
properties, thereby losing a lot of the semantic detail we wish to represent.

The second available mapmaking method is the use of deep-learning
models to produce SVG-style floor plan images by inputting a PNG image
of a CAD drawing into the model [15]. These deep-learning models attempt
to segment the given PNG with different colour labels for walls, doors and
different room types. To derive the labelling, the PNG image is passed to
the model to create a pixel-based, labelled image. This label image is then
passed to a post-processing algorithm to separate rooms, walls and other
components into strict, separate shapes [15].

We spent a lot of time experimenting with different indoor spaces as
input determine how accurately the model could label indoor spaces. We
initially tried a low quality input of a simple corridor with many offices,
finding that no wall except the outer boundary wall of the building was
detected. After this we experimented with higher quality images, smaller
segments and different shaped areas. Overall, our experimentation showed
that any indoor space cut down to roughly 4 rooms could be segmented
and labelled accurately, likely because the model was trained on houses of
the same size [15]. Areas that exceeded this size were often missing many
walls in the final labelling. We also found the labelling produced after post-
processing was unable to account for any curved shapes, even if the model’s
segmentation detected these curves to some extent (even then the model’s
detection of curves was not too accurate). Overall, we found that SVG’s
model-based conversion process was accurate on a very particular subset of
indoor spaces, and depended a lot on the quality of the input image.

Given the inaccuracy of SVG’s mapmaking processes, as well as the miss-
ing details in the information it can store about indoor spaces, SVG does

19

Figure 3.3: An attempt to use the deep-learning model segmentation on the
CS Corridor. Left: PNG image, Middle: Segmented rooms and walls after
post-processing (many walls are missed), Right: Segmented windows and
doors after post-processing

not meet the requirements of our indoor navigable map. We also considered
whether, in building our navigable indoor map, SVG could be leveraged
as a starting point since XML is easier to parse than image format of our
base representations. Unfortunately, SVG cannot serve as an intermedi-
ate representation in our new mapmaking process due to the inaccuracies
in its own mapmaking process, meaning we cannot assume that any base
representation could be reliably converted into SVG.

3.4 Graph-based Mapmaking

Currently, there is only 1 mapmaking process associated with graphs. This
mapmaking process consists of two stages. Firstly, similar to [15], it performs
a deep-learning-based segmentation of floor plans to extract details of where
walls are and what room types exist with what boundaries. Once segmen-
tation has been performed successfully, the resulting output goes through
a rule-based extraction to map the found areas to nodes and derive edges
based on distance thresholds (usually edges are drawn between areas that
are no more than 30m apart [25]).

Unfortunately, as we have already seen, deep-learning-based segmenta-
tion is inaccurate for many types of indoor spaces. Since this indoor map-
making method depends on accurate segmentation as its first stage, it is
not ubiquitously applicable to any indoor space so it cannot be used as our

20

Figure 3.4: The process of taking a PNG image of an indoor space, segment-
ing it and extracting the graph [24]

navigable indoor map in its current inaccurate state.

21

Chapter 4

Our Mapmaking Pipeline -
System Architecture

From the current state and flaws in existing indoor mapmaking methods, it
is clear that we need a new mapmaking method that is capable of producing
a map tailored to the requirements of context-aware location systems. The
novel mapmaking method should be easy and efficient to use so that it is
accessible to most, if not all, systems that wish to make use of it.

We formulate a novel indoor mapmaking method that takes a PNG image
of a CAD drawing as input, applies the image to a multistage pipeline, and
outputs a graph structure tailored to meet the requirements of an indoor
map. Our complete pipeline is illustrated in Figure 4.1

Based on our discoveries among existing indoor mapmaking methods, we
created a pipeline consisting of six stages to produce an indoor map. Our
pipeline is devised in such a way that it addresses the major flaws that most
indoor mapmaking methods face, being automated, efficient, scalable, and
containing all the necessary semantic details and connective links.

4.1 Pipeline Input

The input to our mapmaking pipeline is a PNG export of a CAD drawing.
Here, we note that we chose to have the input of the PNG export image
rather than the vector-based CAD file. There are several reasons why we
favoured the PNG as input, the most important of which was that we want
our input to be as accessible as possible. Unfortunately, the accessibility
of vector-based CAD files is limited as they are known to expose key ar-
chitectural information about buildings [8]. Given their exposing nature,
many building owners are reluctant to share their vector-based CAD file
and instead prefer to share the PNG export of the CAD drawing.

Aside from how PNGs are less exposing, in older buildings, the original
vector-based CAD file is sometimes lost, with only the PNG export remain-

22

Figure 4.1: Our proposed system pipeline

ing. By choosing PNG images as our input, our indoor mapmaking pipeline
becomes accessible to even these older buildings.

4.1.1 Input Assumptions

Because our input is a PNG image, which is a fairly flat file format, we don’t
have much information to work with beyond the layout and colours of pixels
in the image. In order to add more detailed information for our pipeline to
derive an indoor map from, we make several assumptions about the PNG.
To give a sense of the actual distance within the image, we assume that
the input PNG will have a minimum of A0 resolution (150 or 300 dpi) and
display the indoor space with a mapping of 50 pixels per metre. We justify
this chosen mapping in Section 5.

Aside from the pixel-to-distance mapping, we assume that our input
PNG will have text as part of the image, which will label all key areas
relevant to the indoor map in the image. Examples of these key area labels
for maps include room numbers for offices, shared areas like lounges, and
“passage way” areas, which we describe as connective areas moving forward,
such as hallways or walkways.

Within the time frame of this thesis, we were unable to solve the issue
of breaking down large connective areas, such as hallways, into smaller sub-

23

areas. Having subareas is desirable because it makes it easier to identify
which sections of a larger space destination, like offices, connect to, and
it allows systems to better gauge distances for areas in the map as there
is less contrasting size between larger and smaller areas. To simulate this
large area breakdown, we will assume that large areas will be labelled with
multiple sequential labels.

We argue that our assumed labelling is reasonable as it is a low-effort
assumption. Labelling a PNG is low-effort because:

• It does not need expertise
• It does not need customised tools
• It can be crowdsourced at a reasonable cost, if needed

4.1.2 Label Categories

The labels for key areas in our PNG input are divided into three categories.
We define different categories for key areas to not only give them richer
semantic information but also because areas in each category share com-
mon properties that change how navigable links can be inferred for each of
these area categories. Particular stages of our mapmaking pipeline leverage
properties for inferring navigable links for specific categories.

The first category of label is “Destination”. This label specifies key
areas of indoor spaces that are notable as places where people go. We select
destinations as our first category because we have observed that destinations
branch out into more open areas from their enclosed space. To leverage how
destinations branch out into the rest of their wider indoor space, we mark
them out as a label category. Possible destinations include an office, a cafe,
or a prayer room.

The second type of label is “Connective Areas”. This label specifies
the areas of indoor spaces that are used to pass through from one key area
to the next. We’ve observed that connective areas are typically the areas
that lie between enclosed spaces like rooms, offices and bathrooms, making
connective areas a convergence point of key areas within an indoor space.
In particular, we note that beyond being a convergence point, connective
areas form pathways between one another to allow people to move from one
convergence point to the next and access a different set of converging key
areas. Possible connective areas include hallways and bridges.

The last type of label is “Shared Spaces”. This label marks key areas that
are used as communal, for multiple people to gather. Shared spaces come
into play mainly when enclosed rooms are nested inside a larger enclosed
space rather than converging onto a connective area. To better handle larger
enclosed spaces with ‘sub-rooms’, we mark the larger space as a shared area
but we treat it similarly to a connective area, as it is a convergence point on
a smaller, enclosed scale. Possible shared spaces include shared department
spaces and lounges.

24

Based on the observations that inspired our label categories, we also
assume that destinations will only directly connect to shared spaces or con-
nective areas.

4.2 Task Formalisation

Based on our input requirements, we formalise our task as follows:

We are given a PNG image representing an indoor space accord-
ing to our input specifications, with text labels < x1, x2, ..., xn >
marking key areas within the PNG image itself. Then our task
is to find a graph G = (V ∪D,E). G’s nodes are such that each
vi for 1 ≤ i ≤ n is a node that represents the area denoted by the
text label xi in the image and each d ∈ D represents a door in
the PNG image. G’s edges are such that for each edge (u, v) ∈ E,
a person can directly navigate (i.e. walk/travel) from the area
or door represented by node u to the area or door represented
by node v.

4.3 Image Slicing

The Image Slicing module divides the input PNG into multiple smaller im-
ages. We divide our input image into smaller images so that the door and
area extraction modules have a smaller pixel area to operate on. A smaller
area is crucial for the following models as they use detection algorithms
that are optimised for small-scale indoor spaces. To make these small-scale
algorithms applicable to large indoor spaces, we divide our input image to
smaller images of fixed width and height.

We formulate our smaller images in a sliding window fashion. Based on
a fixed width w and height h and an overlap percentage p, we start at the
image coordinate origin (0, 0) at the top left and create a cropped image that
covers a region of w x h for the image. We refer to this cropped image as a
slice. We then continually shift the top left x-coordinate to create the next
cropped image by taking the previous x-coordinate and adding to it w ∗ p.
Once we have covered the full width of our original input image with slices,
we repeat the process for a top left y-coordinate of previousy + (h ∗ p).
We repeat the y-direction shift until the full width of our original input
image has been converted into slices. Each new slice is saved as a new
image file under the name “panel-sliceindex.png” and its filename, top left
x coordinate, top left y coordinate, bottom right x coordinate and bottom
right y coordinate is saved in a python Pandas DataFrame. We display our
algorithm in detail in Algorithm 1

We note that we choose to create a region of overlap between our slices
to reduce the likelihood some label or door is not detected due to it being cut

25

off between slice boundaries. We discuss optimising the percentage overlap
to minimise cutoffs in Section 5 and as such we assume that at least 1 slice
has each label/door without any cut-off.

Algorithm 1 Image Slice algorithm

1: Input: A PNG image that was exported from an Indoor CAD, each
slice’s width and height and the overlap percentage between slices

2: Output: A DataFrame containing the filename of each slice, its top left
and bottom right coordinates

3:

4: function slice rectangles(wimg, himg, wslice, hslice, p)
5: boxes← []
6: ymin, ymax ← 0
7: yoverlap = hslice ∗ p
8: xoverlap = wslice ∗ p
9:

10: while ymax < himg do
11: xmin, xmax ← 0
12: ymax ← ymin + hslice
13:

14: while ymax < himg do
15: xmax ← xmin + wslice

16: ▷ bound between 0 and image width/height when necessary
17: boxes← boxes+ [xmin, ymin, xmax, ymax]
18: xmin ← xmax − xoverlap
19: end while
20: ymin ← ymax − yoverlap
21: end while
22: end function
23:

24: image boxes ← slice rectangles(width(image), height(image), w,
h, p)

25: df ← iterate over image boxes ▷ store each box with panel name

4.4 Extraction Module

Our sliced images are passed to the Extraction Module. The Extraction
Module is responsible for creating all the necessary nodes and adding them
to the global graph that will serve as our output. Using a series of sub-
modules, the Extraction Module first identifies key areas, including all label
types of destination, shared spaces and connective areas, and adds each of
these as area nodes of each label type. Then it goes on to identify all the

26

doors present in the original input image and adds each of these as door
nodes. The sub-modules that create these nodes leverage deep-learning-
based techniques to perform node extraction.

4.4.1 Area Extraction

The Area Extraction module identifies key areas in the input image, converts
these into area nodes, and adds these nodes to a global graph. The graph will
be used to represent the indoor space at the end of our pipeline. Each node
is added to the global graph with a rough coordinate location of the area
it represents and a label describing the area. The node and its associated
properties are extracted by three separate parts.

Bounding Box Detection

Bounding box detection is used to identify the coordinate region associated
with each text label that pinpoints a key area in the indoor space. We
obtain the coordinate region of each label by using a deep learning model to
output the top left and bottom right coordinates of the tightest bounding
rectangle that encloses each label. Because text bounding box detection is
a well-established task in the field of deep learning, we leverage an existing
Convolutional Neural Network designed by Clova AI [6], known as Character
Region Awareness for Text detection, or CRAFT for short, to extract the
bounding boxes of the labels in our input image. Because the CRAFT model
is tailored to images with a few words, we apply the model individually to
the image slices produced by the previous stage in our pipeline rather than
to the input PNG as a whole.

Integrating the CRAFTmodel into our pipeline required us to implement
function wrappers [21] to modularise the input of each image slice, detection
on the image, and output of the bounding boxes. In particular, we focused
on ensuring that the output was directly passed out of the module rather
than being saved to intermediary files like CSVs to reduce computational
time and memory.

Text Inference

Once the bounding boxes are obtained, we use another deep-learning model
to extract the textual meaning of the bounded label so that its node can
be associated with this label. For this text inference on labels, we leverage
the deep text recognition model by Clova AI [5]. We also put in effort to
connect this second model to the existing bounding box detection module,
so that the output bounding boxes would be directly used to infer the text
associated with each individual bounding box. The connected models then
serve to output the bounding box and associated text as one output to the
area extraction module as a whole.

27

Notably, we crop out each label from the input slice before passing it
for text inference. Making each text label the only text inference improves
the accuracy of the inference. However, we note that text inference is an
established OCR task, so moving forward, we assume that the module will
infer text with complete accuracy. In cases where the text is incorrect, we
leave it to optimisations within the field of OCR.

Area Node Extraction

After identifying the bounding box coordinates and associated text inference
for each label in our input image, we work on creating nodes for each label.
We note that, since our models operated on individual slices, we create nodes
per slice and then perform a merging operation across nodes for all slices.

In terms of creating nodes, for each bounding box we calculate the centre
coordinate and make a node for this center coordinate. We store the centre
coordinate and the inferred label as part of the node’s properties. We also
mark the node as an “area” node in its properties. Flagging the node’s type
will serve the purpose of distinguishing actual areas and the door nodes we
will be creating in the next pipeline stage. Every created node is added to
a global graph that is common to all input slices.

Because our input slices are formed with a region of overlap, it is pos-
sible that some area labels have more than 1 node created for them. To
resolve this duplication of nodes, we perform a merge operation. Our merge
operation combines nodes that are within 2 metres of real distance, taking
the new centre coordinate to be the midpoint of the coordinate from the
nodes being merged. We reason that 2 metres is an acceptable lower bound
for the widths of rooms because it is close to most architectural standards
for minimum room width [4].

For the label of the merged node, because we assume that at least 1 slice
has our label without cut-offs, we take the longer label from the two nodes
being merged because this will eventually converge to keeping the label from
the slice with no cut-offs.

4.4.2 Door Extraction

The Door Extraction module identifies all doors in the input image, converts
them to door nodes, and adds these nodes to the global graph. Each node
is added to the global graph with a rough coordinate location of the door.
We perform door extraction in 2 parts.

Door Coordinate Detection

We extract the (roughly) centre coordinate of the door by training our own
deep learning model to recognise and output the bounding boxes of doors

28

in the input image. To make detection easier, this model operates on the
slices of the input image produced by the Image Slicing module.

We train our model by performing fine-tuning on the Faster-RCNN ob-
ject detection model. We fine-tune the model using a dataset that consists
of PNG images exported from CAD drawings of home apartments for the
model’s input and coordinates of the top left & bottom right of the door’s
bounding box for the model’s output. We created this custom dataset by
leveraging the CubiCasa5k project dataset [15].

The CubiCasa5k dataset consists of PNG exports of CAD drawings for
home apartments and SVG reconstructions of the CAD drawing to serve
as labelling for the apartment space. We use the PNG images as they are,
and we extract the bounding box coordinates for our doors based on the
attributes that doors are labelled within the SVG files.

Algorithm 2 Algorithm to extract door bounding boxes from SVG

1: function door boxes(SV G file)
2: door tags = t : t ∈ tags(SV G file) | t.id = “Door”
3: boxes = []
4: for tag ∈ door tags do
5: polygon = tag.find(“polygon”)

▷ find first polygon subtag, e.g. BeautifulSoup tag find function
6: X = []
7: Y = []
8: for s ∈ polygon[”points”] do ▷ data of points attribute
9: X ← X + s[0]

10: Y ← Y + s[1]
11: end for
12: for s ∈ polygon[”path”] do ▷ data of path attribute
13: X ← X + s[0]
14: Y ← Y + s[1]
15: end for
16: boxes← boxes+(SV G file,min(X),min(Y),max(X),max(Y))
17: end for
18: end function
19: door boxes(file) for file ∈ all files

Door Node Creation

Like with the area nodes, we create nodes for each door after identifying
the bounding box coordinates for each door in our input image. We note
that since our model was trained on small apartments, we operate it on the
image slices instead of the whole input image. We then create nodes per
slice and perform a merging operation across nodes for all slices.

29

Figure 4.2: A demonstration on creating navigable links through doors on a
subset of CMUQ. Blue dots mark area nodes and red dots mark door nodes.

In terms of creating door nodes, we use the same method as for area
nodes, but specify the label as “Door” for every node. We also change the
node type to be the door for all nodes.

We also use the same method for merging door nodes as we did for area
nodes. Here, the label update is not relevant, as all the nodes have the same
labels.

4.5 Linking Module

The Linking Module is responsible for adding edges as an initial, albeit
incomplete, sense of connectivity between nodes. Our Linking Module con-
sists of one key algorithm that leverages connective properties between area
nodes and doors, mainly the fact that when moving from one area to the
next, a person must pass through either a door or an opening (in the wall
of the area). Our algorithm is named “Door Linking”.

4.5.1 Door Linking

With all the necessary nodes created, we move on to creating the edges
between the nodes that represent the navigable links between areas. We
connect key areas through the doors that people would have to pass through.

To associate every area node with the door that has to be passed through
to exit the said area, we connect every area node to its nearest door. To do
this connecting, form two lists of area nodes and door nodes, respectively

30

(identified by the node type). For every area node in the list, we calculate
the Euclidean distance from the area node’s centre coordinate to every door
node’s centre coordinate. We then draw an edge between the area node
and the door node with the smallest Euclidean distance. This results in
navigable edges as shown in Figure 4.2.

Algorithm 3 Algorithm to link areas to doors

1: function door linking(G : global graph)
2: door nodes = n : n ∈ nodes(G) | n.type = “Door”
3: area nodes = n : n ∈ nodes(G) | n.type ̸= “Door”
4: for n ∈ area nodes do
5: d =closest door(n, door nodes)
6: G.add edge(n, d)
7: end for
8: end function
9: door linking(Gmap)

4.6 Completion Module

The Completion Module is responsible for forming missing navigable links.
We identified that after the Linking Module, we are missing edges, repre-
senting navigable links, through door nodes and through connective area
nodes. Based on this observation, the Linking Module consists of two sub-
modules to address each shortcoming. In particular, the Door Completion
sub-module addresses missing links through doors, while the Area Comple-
tion Module addresses missing links through connective areas.

4.6.1 Door Completion

Doors connect two spaces through their front and back. On the basis of this
reasoning, we ensure that all door nodes are connected to at least two area
nodes. The Door Completion module enforces this reasoning by forming a
list of door nodes and a list of area nodes that are connective areas or shared
spaces, then going through all door nodes and checking how many edges
each has. If any door node has less than 2 edges, we go through the list of
area nodes and calculate the Euclidean distance to each. We then add an
edge between the door node and the closest area node from our list.

Note that we connect doors to connective areas or shared spaces because
of our assumption that destination areas do not connect to other destination
areas directly. Because destination areas would then connect to connective
areas or shared spaces, multiple doors associated with destination areas
would lead to connective spaces to bridge these destination areas to connec-
tive areas or shared spaces. Thus, connective areas or shared spaces would

31

have edges to multiple doors while destination areas would be connected to
1.

Algorithm 4 Algorithm to complete door links

1: function door completion(G : global graph)
2: door nodes = n : n ∈ nodes(G) | n.type = “Door”
3: area nodes = n : n ∈ nodes(G) | n.type = “Connective”
4: for d ∈ door nodes do
5: n =closest area(d, area nodes)
6: G.add edge(n, d)
7: end for
8: end function
9: door completion(Gmap)

4.6.2 Area Completion

After the Door Completion sub-module, we note that our graph has many
isolated components as there are some navigable links missing. From the
investigation of various samples, we found that missing links can be traced
to two issues. The first issue is that some areas may branch out to converge
onto connective areas without passing through a door. The second issue is
that we have not made an effort to link connective areas to form our path
of convergence points, or connective areas. The Area Completion stage
attempts to resolve these two issues.

Firstly, to create a connected path between connective area nodes, we
take all the nodes that are connective areas and operate on them as an
individual subset. Within this node subset, we connect every node to its
nearest two nodes in the subset to link each connective area to the connected
path forward and backward (whether this is up and down or left and right).
By performing this linking step on every node in our subset of connective
nodes, we converge onto a continuous path that links all isolated graph
components that contain a connective area node as part of their subgraph.
After this step, our graph should be connected by convergence over the
numerous edges.

4.7 Indoor Map Output

With the execution of the final stage in our pipeline, we have a graph struc-
ture that fully represents the indoor space passed into the pipeline as a PNG
image. We argue that this graph is sufficient to serve as our indoor map.

32

4.7.1 Semantic Representation

The first requirement for our indoor map was that it represents the semantic
details of an indoor space in a way that context-aware location systems can
easily access. Our graph-based map enables the coordinate location and
label of an area to be accessed by simply accessing a node.

We also note that graphs are a common data structure software often
uses, so context-aware location systems can easily use and access them.

4.7.2 Navigable Links

The second requirement for our indoor map was that it represents the key
navigable links between key areas in the input indoor space, doing so in a
way that context-aware location systems can access directly. Our graph-
based map enables these links to be accessed by simply traversing the edges
of the graph, which are undirected and unweighted.

33

Chapter 5

Evaluation

We put considerable effort into evaluating the accuracy of our graph-based
indoor map output. We first formulate ground truth graphs to evaluate our
outputs against, followed by several experiments to evaluate the accuracy
of our outputs as a whole as well as variable parameters in our system. We
employ two different sets of metrics in our evaluation process. Firstly, we
use a set of metrics to evaluate the navigable connectivity represented in
our graph. To evaluate this connectivity, we leverage the Dijkstra algorithm
that addresses the traditional single-source shortest-path problem for nodes
in a graph. Secondly, we use metrics to evaluate the accuracy of the nodes
themselves. We compare nodes from our ground truth to generated nodes
to determine how well key areas were detected by our pipeline and added to
the generated output graph.

5.1 Creating the Ground Truth

Initially, we searched for existing data sets that contain CAD drawings or
equivalent floor plans as PNG files, as well as an associated graph that repre-
sents key areas as nodes and some form of area connectivity as edges. While
we found some research that encoded key areas as nodes [25] in graphs, these
graphs encoded distance-based adjacency with their edges, rather than the
navigation-based connectivity that we require. Given the lack of appropri-
ate ground truth graphs to evaluate against, we set out to create our own
ground truth graphs for key areas within CMUQ.

Our ground truth graphs are created as a JSON object that encodes an
array of node objects under the key “nodes” and edge objects under the key
“edges” for each graph. Each node object is structured as:

• “id” - specifies id of node
• “name” - specifies label of node
• “x” - x coordinate of node
• “y” - y coordinate of node

34

Each edge object is structured as:

• “id 1” - id of first node on edge
• “id 2” - id of second node on edge

We created ground truth graphs for three sample subareas within the
first floor of the CMUQ building, covering about 22, 000m2 of indoor space
between each of them. The chosen areas cover about 1

4 of the first floor. Note
that we chose areas within CMUQ that represent structural variations that
pose significant challenges in generating the output graph. For example,
we chose the space around the CMUQ majlis stage as it contains a curved
corridor with rooms and doors attached at multiple angles. The curved
structure can pose a significant challenge, as it requires detection models
to pick up relevant objects at slanted angles. Similarly, we chose the area
spanning from the ARC to Student Affairs because it has large hallways
that could cause difficulties in edge convergence even with multiple hallway
labels. Finally, we chose the area spanning from the West Entrance to
the ARC as its long hallway of multiple clustered offices could cause our
detection models to miss out areas and doors that are very close together.
We provide a summary of our chosen areas in Table 5.1, Table 5.2 and
detailed images of our chosen areas in Section 7.

Testbed Name Approximate Actual Area (m2) Number of Destination Areas Number of Doors

West Walkway 5000 44 49

Student Affairs 7200 58 70

Majlis 10,000 39 43

Table 5.1: Summary of Area Properties for Each Testbed

Testbed Name Number of Paths Shortest Path Average Path Longest Path

West Walkway 132 0 2475.7 5895

Student Affairs 181 0 3163.9 8249

Majlis 118 0 3663.9 6865

Table 5.2: Summary of Paths Properties for Each Testbed. Here, we use
the Total Euclidean Distance along the path to describe path lengths

To create our ground truth graphs, we created a JavaScript-based anno-
tation software that allows a user to upload a PNG image of a CAD drawing
through the web browser interface. Once the PNG image is uploaded, users
can enter edit mode and then click on different points in the image to add
a node at that point. Existing nodes can be double-clicked on to add area
labels, and a user can drag their mouse between two existing nodes to add
an edge between them.

We note that the existence of our annotation software does not over-
shadow the value of our mapmaking pipeline. This is because creating

35

Figure 5.1: Sample Annotation Made on the West Walkway Area

graphs representing indoor spaces with our annotation tool requires a cer-
tain level of expertise and time investment to create accurate graphs for
the indoor space being represented. Even if a basic user can mark key
areas by simply adding nodes at the location of text labels in the PNG im-
age, understanding of graph structures and how their edges must exactly
represent connectivity between areas is essential to correctly add navigable
edges between placed nodes. We also note that adding appropriate labels
to each node can consume a large amount of time. For example, an expert
user from our team took 30 minutes to annotate a 7200m2 area within the
CMUQ building (this area ranged from the ARC to the end of Student Af-
fairs, down to the West Walkway). A non-expert user would reasonably take
much more time to perform the same task.

5.2 Evaluation Metrics

Using our established ground truth, we evaluated the graphs produced by
our pipeline using two different categories of evaluation metrics.

5.2.1 Shortest Paths Similarity

Looking back at our motivation, we aim to create an indoor map that can
enable context-aware systems to operate indoors with location-based infor-
mation. Based on this end goal, rather than evaluating the structure of our
output graph as a whole, we aim to evaluate the indoor information potential
our graph provides. We explore this information potential by evaluating the

36

quality of the navigation paths our graph gives us because navigation paths
contribute the most information about the structural pathways relevant to
human movement. In particular, many context-aware systems leverage loca-
tion information to track movement on maps, making the paths that can be
used to move very important to systems that use our graph output as their
map. To perform all our shortest paths evaluations, we pick an arbitrary,
common node between our output and ground truth graphs and calculate
single-source shortest paths from this common node in each graph.

Distance-Based Shortest Paths Similarity

We first evaluate our generated navigation paths obtaining the Euclidean
distance across each shortest path. By using Euclidean distances, we get
a sense of the lengths of our paths relative to the actual distance in the
represented indoor space. In considering actual path lengths, we can judge
just how efficient our generated paths are in representing navigation.

We accumulate the euclidean distance by taking the euclidean distance
between the coordinates of nodes u and v for each edge (u, v) traversed in
our path. Based on the total Euclidean distance of each path, we report the
average percentage match of total euclidean distance between the generated
graph’s path compared to the ground truth graph’s path. Our average is
taken across the shortest paths from the common source node s to each
destination area node. Note that we only include paths to destination area
nodes because destination area nodes mark out the key areas that people
would want to visit.

Semantics-Based Shortest Path Similarity

We note that, by only considering the total Euclidean distance across the
shortest paths in our graph, we disregard the fact that some navigable edges
may go through walls, rendering them illegal. To evaluate the correctness
of our paths rather than just the length efficiency, we introduce a second
criterion where we compare the nodes present on each ground-truth path to
the nodes present on the equivalent path in our output graph. In essence,
for each path from a common source to each destination area node, we check
the percentage of nodes in the ground truth path that have a matching node
in the output path. We then report the average number of matching nodes.

Metric Formalisation

We formalise the Path Similarity Metrics as follows:

Note that a path from a node v1 to a node vn refers to a sequence of vertices
P =< v1, v2, ..., vn > such that every vi and vi+1 for 1 ≤ i ≤ (n− 1) shares

37

an edge. We say that such a path has length n and has a total weight equal
to the sum of the edge costs between each vi and vi+1

We first find all the shortest weighted paths starting from a source vertex
s to all destination nodes in our ground-truth graphs, then we do the same
thing for our predicted graphs starting from the same common source ver-
tex s. Based on that, we define two metrics: Distance-Based Shortest
Paths Similarity and Semantics-Based Shortest Path Similarity.
Here, the first metric measures our system’s performance in predicting ef-
ficient paths, and the second metric measures our system’s performance in
predicting correct paths.

Now, Let SPgt =< Pgt1, Pgt2, ..., PgtM > be a set of all shortest paths starting
from node s in the ground-truth graph, whereM is the number of destination
nodes in the building. Let SPpr =< Ppr1, Ppr2, ..., PprM > be a set of all
shortest paths starting from vertex s in the predicted graph.

Distance-Based Shortest Paths Difference is defined as:

Simdistance(Ggt, Gpr) = 1−

∑M
i=1

|∆(Ppri)−∆(Pgti)|
∆(Pgti)

M
(5.1)

where ∆(P) is the distance in metres of the path P .

Semantics-Based Shortest Path Similarity as:

Simsemantic(Ggt, Gpr) = 1−
∑M

i=1Π(Pgti, Ppri)

M
(5.2)

Where Π(Pi, Pj) is the number of nodes in the path Pi that do not have a
matching node in Pj .

5.2.2 Node Matches

Having looked into the structural information that our graph gives, we next
verify the semantic information our graph provides by evaluating the cor-
rectness of the nodes present in the graph. We separately consider the
destination area nodes in our graph as these mark the key areas that people
would want to go to, and the door nodes in our graph, as these provide an in-
dication of how the door model we trained through fine tuning is performing
in door detection.

We formally define Node Matches as the problem in which given two sets
of vertices U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}, the percentage of
matching vertices represents the number of ui that have an equivalent vertex
vj , where i may or may not be equal to j.

38

A vertex is a match if:

• For all node types: they have a Euclidean distance less than 2 meters.
• For destination area node types: they additionally have the same label.

Let d(ui, vj) denote the Euclidean distance between the vertices ui and vj .
The percentage of matching vertices can be calculated as follows:

Matching Percentage =
Number of matching pairs

n

Where:

• n is the total number of vertices in U .
• The number of matching pairs is the count of pairs (ui, vj) where
d(ui, vj) < 2, for at least one pair.

Mathematically, the number of matching pairs can be expressed as:

Number of matching pairs =
n∑

i=1

max1≤j<nδ(d(ui, vj) < 2)

Where δ(x) is the Kronecker delta function, defined as:

δ(x) =

{
1 if x is true

0 if x is false

Therefore, the percentage of matching vertices can be formally expressed as:

Matching Percentage =
1

n

n∑
i=1

max1≤j<nδ(d(ui, vj) < 2)

5.3 Evaluation on Different Locations

We evaluate each of our 3 testbed areas with both categories of metrics.
From Figure 5.2, we see that our pipeline accuracy is fairly consistent

among our three testbed areas, with more than 90% average matching for
the euclidean distance of the paths. Although the Semantics-Based Shortest
Paths similarity is also consistent at around 70%, we note that it is much
lower compared to the average Euclidean distance matching for paths. From
this result, we conclude that while we can represent a good approximation
on physical distance, we have a fair number of illegal edge instances because
we obtain edges by attempting convergence across our series of modules
and make no attempt to verify information like the presence of walls. Thus,
while the correctness of our paths is not especially poor, there remains much
room for improvement.

39

Figure 5.2: Left: Shortest Path Similarities for different testbed areas.
Right: Node Matching Percentages for different testbed areas

Despite some accuracy issues related to correctness, we note that our
pipeline is operating on significantly large areas, such as the Majlis testbed
being ∼ 10000m2. Thus, we can accurately report on at least 70% of such
large spaces, which amounts to a large amount of physical space.

We see significant variance in node detection among our three testbed
areas. Firstly, we note that there is a significantly lower match percentage
in the Majlis testbed area. From this, we can understand that our pipeline
stages relying on detection models (i.e. the Extraction Module) to identify
key areas and doors struggle when faced with curved spaces. We reasonably
pick out curved spaces as a challenge because it is the most different feature
that the Majlis testbed area has compared to our other two testbed areas.

Next, our Student Affairs testbed area has a significantly more similar
matching percentage with the remaining West Walkway testbed area com-
pared to the Majlis testbed area. However, there is still a noticeable differ-
ence in the percentages of node matching. In node detection, we reason that
open spaces should not create noise in simply detecting labels and doors.
Other than its open spaces, the Student Affairs area does not present signif-
icant structural differences compared to the West Walkway area. Instead,
we argue that the Student Affairs testbed area has lower node matching
percentages in both doors and areas simply due to its larger size, it covering
∼ 7200m2 of physical space while the West Walkway covers ∼ 5000m2. In
this way, we see that there is some decline in accuracy for area and door ex-
traction within our pipeline as the indoor space being operated on increases
in physical size. However, we argue that, compared to the 44% increase in
physical area, our accuracy decrease is not as significant as it may seem.

40

Figure 5.3: Generated Graph for the West Walkway Area of CMUQ

5.4 Experiments with Pipeline Parameters

Having evaluated our output graphs on different testbed areas, we then move
onto investigating key parameters that our system relies on. By running
evaluation experiments on these parameters, we hope to find the optimal
value to increase the accuracy of our pipeline. The key parameters we inves-
tigate are Pixel to Distance ratio, Overlap Percentage between Image Slices
from the Slicing Module, and the Confidence Threshold for a detected door
to be taken as a node.

5.4.1 Pixel to Distance Ratio

We previously stated that we assume that we will receive a PNG image
representing an indoor space with a mapping of 50 pixels per metre. Our
pipeline relies on this mapping to ensure the actual area space of image
slices (which are fixed at 1000 x 1000 pixel images) is a significant enough
portion to not waste computation only detecting one or two “objects” (i.e.
the doors or areas) per slice, while also not clustering too many detection
“objects” into one slice. We additionally rely on this mapping to determine
when to merge nodes during slice merging.

We want to balance the pixel to distance ratio such that the image
matching this mapping is not too large, as this will lead to slow computation
from operating on a large number of slices, but not too small such that

41

Figure 5.4: Bar charts showing our Node Matching Metrics for different
Pixel to Distance Ratios

detection of our “objects” becomes too difficult for our detection models in
the pipeline’s Extraction Module.

Given the nature of exporting PNG images from CAD drawings, testing
Pixel to Distance ratios at small intervals posed a significant challenge. Due
to this challenge in matching exact image dimensions, we test 3 pixel to
distance ratios of significant intervals: 20 pixels per metre, 50 pixels per
metre, and 100 pixels per metre.

As we can see from Figure 5.4, the percentage of matching nodes, in both
doors and destination areas, significantly drops for the 20 pixels per metre
ratio. Thus, 20 pixels per metre is not an appropriate mapping to use. We
then argue that the difference in percentage of matching nodes between the
50 and 100 pixel per metre ratios is small enough to justify a selection of 50
pixels per metre to reduce the number of slices formed to cover the whole
image.

Image Size Conversions

We formalise the calculation of the dimensions of the PNG image based on
our pixel to distance ratio as follows:

Let A be the actual area in square metres. We use a pixel-to-
distance ratio of 50 pixels per metre. Thus, the dimensions of
the input image, with a high A0 resolution (150 or 300 dpi), are
given as follows from the actual area:

1. The width (W) of the image is the square root of the actual
area times 502:

W =
√
A× (502)

42

2. The height (H) of the image is W times the aspect ratio of
the area:

H = W × aspect ratio

Where W is the width of the image, H is the height of the image
and the aspect ratio is the ratio of width to height of the actual
area.

5.4.2 Overlap Percentage of Image Slices

Continuing our optimisations for the Image Slicing Module of our pipeline,
we next look at the percentage of overlapping area between vertically and
horizontally adjacent slices. Note that we take some overlap between slices
to reduce areas or doors that are not detected because they are cut off
at an image boundary. However, having a very high overlap percentage
significantly increases the number of slices formed for a single image, which
in turn increases the computational load (e.g., execution time, memory, etc.).
We aim to balance the accuracy achieved from the slice overlap percentage
while minimising the percentage as much as possible.

Figure 5.5: Left: Shortest Distance-Based Path Similarities for different
Overlap Percentages in Image Slices. Middle: Door Node Matching Per-
centage for different Overlap Percentages in Image Slices. Right: Area Node
Matching Percentage for different Overlap Percentages in Image Slices

First, we look at the percentage of matching nodes for different slice
overlaps to see if smaller overlaps do indeed trigger many cut-off issues.
From Figure 5.5, we see that the number of matching door nodes increases
significantly as the percentage of overlap increases. However, we note that it
falls on a 75% overlap for the West Walkway. It is possible that the overlap
cutoffs at 75% triggered extra doors to be placed at slice boundaries, causing
a drop in matching door nodes due to the structural layout of the West
Walkway testbed area.

For area node matching, we see that the slice overlap has a much less
significant impact on the percentage of matching area nodes. We reason

43

that this could be due to the size of area text labels in our input images
compared to the size of doors. Because our text labels are generally much
wider than doors, it is less likely that an area label is undetected completely
just because it was placed at a boundary. In the case of boundary labels,
the area will be at least partially detected, especially considering the high
performance of OCR detection models in research today.

Next we look into Path Similarity based on overlap percentages. Looking
at the Shortest Distance-Based Path Similarity, as the overlap percentage
would not directly affect the semantics of the paths beyond its impact on
door and area detection, we also notice that the overlap percentage has little
effect on the Shortest Distance-Based Path Similarity. We reason that this
is likely due to the fact that we derive our edges by convergence based on
the coordinates of detected doors and areas; thus our overlap percentage
would not affect paths beyond its impact on node detection.

5.4.3 Door Confidence Score Threshold

Finally, we look at the minimum confidence score that a door within the
input PNG image, by our door detection model, must receive to be taken as
a node. This is crucial to our pipeline as we depend on doors to make edges
to destination areas. If many false doors are detected, we may get invalid
edges through the walls. In contrast, if many doors are missed, we may get
destination areas that cannot correctly connect to the rest of the graph.

Figure 5.6: Left: Node Matching Percentages for different Door Confidence
Thresholds. Right: Shortest Path Similarities for different Door Confidence
Thresholds

Looking at the percentage of matching door nodes, it is clear that increas-
ing the confidence threshold decreases the percentage of matching nodes.
This is reasonably because fewer doors would have a higher confidence
threshold. However, we note that for the West Walkway and Student Affairs
testbed areas, the drop in the matching percentage is not very significant

44

from 0 to the 0.5 confidence threshold. This is not the case for the Majlis
testbed area, but the results are most likely conflated by the difficulty in
detecting doors in its curved hallway.

Next we look at the Semantics-Based Shortest Paths Similarity. We rea-
son that this is important to consider as many of our edges to destination
area nodes are through doors. However, we see that the Semantics-Based
Shortest Paths Similarity does not change much with an increase in the con-
fidence threshold. Based on this observation, we reason that the additional
doors kept by lower confidence thresholds are most likely invalid doors that
are not meant to be present on the semantic shortest path.

45

Chapter 6

Conclusion

In this thesis, we presented a new mapmaking process capable of producing a
graph-based indoor map structure for context-aware systems to leverage for
accessing indoor-based location information. We iterated that it is essential
to design a mapmaking process that is efficient and easy to integrate into
existing systems, as no current approach to representing indoor spaces has
been sufficiently ubiquitous enough to have been widely adopted in industrial
applications.

Our proposed mapmaking process makes use of well-established detec-
tion methods that are known to have high-performing models, as well as
some object detection models that we fine-tuned, to extract key areas and
doors within our indoor space. After completing our extraction process,
we build navigable links between our nodes by leveraging connections going
from areas to doors, as well as forming the connective area to connective
area navigable pathway that usually travels around a building.

6.1 Future Work

Despite the satisfactory results we presented in the evaluation of our pipeline,
there are still several key points in the pipeline that could be improved.
Firstly, the accuracy of our pipeline’s door detection model needs to be
improved. Because our pipeline struggled to detect doors in specific struc-
tural scenarios such as curved hallways, the door detection model should be
improved to better handle these scenarios. By improving door detection,
we would not only increase the percentage of matching door nodes from
our evaluation metrics but also improve the navigable links derived from
destination areas through doors.

Secondly, we point out that our pipeline will not accurately converge
for indoor spaces where destination areas connect to connective areas and
other areas without passing through doors, such as a doorless shop opening.
We believe that further investigation needs to be performed to find a good

46

connective rule for these doorless cases.
Finally, we point out that the semantic paths of our output graphs need

to be improved. For this, we propose that a highly accurate method of
detecting walls could be used to refine edges based on whether they pass
through a wall or not. We note that detecting black pixels is not sufficient
for wall detection, as image noise could cause black pixels in open spaces
and furniture could be perceived as walls, disregarding edges where a user
simply has to walk around a sofa.

47

Chapter 7

Appendix

7.1 CubiCasa5k Segmentation

Results from experimenting with the indoor space segmentation [15] for
SVG’s mapmaking process:

Figure 7.1: Using the model to segment 4 rooms of the CS Corridor. Top:
PNG image, Middle-Left: Room and wall segmentation by model, Middle
Right: Door and window segmentation by model, Bottom-Left: Room and
wall segmentation after post-processing, Bottom-Right: Door and window
segmentation after post-processing

48

Figure 7.2: Using the model to segment the Majlis Area of CMUQ. Left:
PNG image, Top: Room and wall segmentation by model, Bottom: Room
and wall segmentation after post-processing

Figure 7.3: Using the model to segment the Majlis Area of CMUQ. Left:
PNG image, Right: Door and window segmentation after post-processing

49

Figure 7.4: Using the model to segment the Men’s Prayer Room of CMUQ.
Left: PNG image, Middle: Room and wall segmentation by model, Right:
Room and wall segmentation after post-processing

Figure 7.5: Using the model to segment the Men’s Prayer Room of CMUQ.
Left: PNG image, Middle: Door and window segmentation by model, Right:
Door and window segmentation after post-processing

50

7.2 Ground Truth Testbeds

7.2.1 Raw Images

Figure 7.6: An image representing the West Walkway Upper Area

Figure 7.7: An image representing the Student Affairs Surrounding Area

51

Figure 7.8: An image representing the Majlis Area

7.2.2 Annotated Ground Truths

Figure 7.9: An image representing the ground truth graph of West Walkway
Upper Area

52

Figure 7.10: An image representing the ground truth graph of the Student
Affairs Surrounding Area

Figure 7.11: An image representing the ground truth graph of the Majlis
Area

7.2.3 Pipeline generated graphs

53

Figure 7.12: An image representing the generated graph of West Walkway
Upper Area

Figure 7.13: An image representing the generated graph of the Student
Affairs Surrounding Area

54

Figure 7.14: An image representing the generated graph of the Majlis Area

55

Bibliography

[1] Adobe. Learn about dwg files. https://www.adobe.com/africa/

creativecloud/file-types/image/vector/dwg-file.html. (Ac-
cessed on 12/03/2023).

[2] I. Andersson. Indoor positioning systems in office environments-a study
of standards, techniques and implementation processes for indoor maps.
Examensarbete i geografisk informationsteknik, 2020.

[3] Apple. Indoor mapping data format - indoor mapping data format,
Oct. 2021.

[4] L. Appolloni and D. D’alessandro. Housing spaces in nine european
countries: A comparison of dimensional requirements. International
Journal of Environmental Research and Public Health, 18(8):4278, 2021.

[5] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and H. Lee.
What is wrong with scene text recognition model comparisons? dataset
and model analysis. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4715–4723, 2019.

[6] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character region aware-
ness for text detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9365–9374, 2019.

[7] W. Chai. Cad (computer-aided design). Tech Target, Dec. 2020.

[8] J. Chen and K. C. Clarke. Indoor cartography. Cartography and Geo-
graphic Information Science, 47(2):95–109, 2020.

[9] R. Daher, T. Chakhachiro, and D. Asmar. From slam to cad maps and
back using generative models. In 2022 26th International Conference
on Pattern Recognition (ICPR), pages 2979–2985. IEEE, 2022.

[10] L.-P. de las Heras, O. R. Terrades, S. Robles, and G. Sánchez. Cvc-
fp and sgt: a new database for structural floor plan analysis and its
groundtruthing tool. International Journal on Document Analysis and
Recognition (IJDAR), 18:15–30, 2015.

56

https://www.adobe.com/africa/creativecloud/file-types/image/vector/dwg-file.html
https://www.adobe.com/africa/creativecloud/file-types/image/vector/dwg-file.html

[11] M.-W. Dictionary. Map definition & meaning - merriam-webster.
https://www.merriam-webster.com/dictionary/map. (Accessed on
03/15/2024).

[12] H. Durrant-Whyte and T. Bailey. Simultaneous localization and map-
ping: part i. IEEE robotics & automation magazine, 13, 2006.

[13] H. Jang, K. Yu, and J. Yang. Indoor reconstruction from floorplan
images with a deep learning approach. ISPRS International Journal of
Geo-Information, 9(2):65, 2020.

[14] D. Johnson. What is a png file? how to open or convert the popular
graphic file format. Business Insider, Jan. 2022.

[15] A. Kalervo, J. Ylioinas, M. Häikiö, A. Karhu, and J. Kannala. Cubi-
casa5k: A dataset and an improved multi-task model for floorplan im-
age analysis. In Image Analysis: 21st Scandinavian Conference, SCIA
2019, Norrköping, Sweden, June 11–13, 2019, Proceedings 21, pages
28–40. Springer, 2019.

[16] J. Lee, K.-J. Li, S. Zlatanova, T. H. Kolbe, C. Nagel, T. Becker,
and H.-Y. Kang. Ogc® indoorgml 1.1. https://docs.ogc.org/is/

19-011r4/19-011r4.html, Nov 2020. (Accessed on 12/05/2023).

[17] K.-J. Li, S. Zlatanova, J. Torres-Sospedra, A. Pérez-Navarro,
C. Laoudias, and A. Moreira. Survey on indoor map standards and
formats. In 2019 International Conference on Indoor Positioning and
Indoor Navigation (IPIN), pages 1–8. IEEE, 2019.

[18] C. Liu, J. Wu, P. Kohli, and Y. Furukawa. Raster-to-vector: Revisit-
ing floorplan transformation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2195–2203, 2017.

[19] A. Lookingbill and E. Russell. Google maps 101: how
we map the world. https://blog.google/products/maps/

google-maps-101-how-we-map-world/, July 2019. (Accessed on
03/15/2024).

[20] NESDIS. Can satellites see you? can you see a satellite? National
Environmental Satellite, Data, and Information Service, Nov. 2017.

[21] N. Saxena. Pytorch: Scene text detection and recognition by craft and
a four-stage network — by nikita saxena — towards data science, Aug
2020. (Accessed on 03/22/2024).

[22] STEMLab. Ineditor: A web-based editor for drawing and creating ogc
indoorgml data, 2021.

57

https://www.merriam-webster.com/dictionary/map
https://docs.ogc.org/is/19-011r4/19-011r4.html
https://docs.ogc.org/is/19-011r4/19-011r4.html
https://blog.google/products/maps/google-maps-101-how-we-map-world/
https://blog.google/products/maps/google-maps-101-how-we-map-world/

[23] W3Schools. Svg tutorial. https://www.w3schools.com/graphics/

svg_intro.asp, 2023. (Accessed on 12/06/2023).

[24] M. Yamada, X. Wang, and T. Yamasaki. Graph structure extrac-
tion from floor plan images and its application to similar property re-
trieval. In 2021 IEEE international conference on consumer electronics
(ICCE), pages 1–5. IEEE, 2021.

[25] T. Yamasaki, J. Zhang, and Y. Takada. Apartment structure estimation
using fully convolutional networks and graph model. In Proceedings of
the 2018 ACM Workshop on Multimedia for Real Estate Tech, pages
1–6, 2018.

58

https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp

	Introduction
	What are Maps?
	Motivation
	Outdoor Mapmaking
	Indoors vs Outdoors
	General Mapmaking Approaches

	Challenges
	Contribution
	Mapmaking Method
	Evaluation

	Related Work
	Input
	CAD
	PNG Export of CADs

	Map Representations
	IMDF
	IndoorGML
	SVG
	Graph

	Visualisation
	Human in the Loop Approaches

	Exploring Mapmaking Methods
	IMDF-based Mapmaking
	IndoorGML-based Mapmaking
	SVG-based Mapmaking
	Graph-based Mapmaking

	Our Mapmaking Pipeline - System Architecture
	Pipeline Input
	Input Assumptions
	Label Categories

	Task Formalisation
	Image Slicing
	Extraction Module
	Area Extraction
	Door Extraction

	Linking Module
	Door Linking

	Completion Module
	Door Completion
	Area Completion

	Indoor Map Output
	Semantic Representation
	Navigable Links

	Evaluation
	Creating the Ground Truth
	Evaluation Metrics
	Shortest Paths Similarity
	Node Matches

	Evaluation on Different Locations
	Experiments with Pipeline Parameters
	Pixel to Distance Ratio
	Overlap Percentage of Image Slices
	Door Confidence Score Threshold

	Conclusion
	Future Work

	Appendix
	CubiCasa5k Segmentation
	Ground Truth Testbeds
	Raw Images
	Annotated Ground Truths
	Pipeline generated graphs

