
Memory Reuse in Linear Functional Computation

Daniel Ng, advised by Prof. Frank Pfenning

Abstract

The semi-axiomatic sequent calculus, or SAX, offers an alternative way to represent proofs in the sequent calculus. SAX
also corresponds to a process calculus, where processes interact by writing and reading frommemory cells. Improvements
were then made to the memory layout of data structures to create the SNAX language, which acts similarly to SAX but
uses fewer pointer dereferences. We have now added a system of memory reuse to the existing linear system provided
by SNAX, further minimizing the time spent performing memory allocations. We have also updated both the typing
rules and the dynamic rules for SNAX to accommodate reuse. Unlike the original SNAX, which is concurrent, SNAX
with reuse runs under a sequential semantics. With memory reuse, progress and preservation still hold, meaning that
well-typed programs in SNAX will never cause a memory error. Our changes allow SNAX to more closely match other
functional languages that are capable of updating their single-threaded data structures in-place.

1

1 Introduction

1.1 Background

In 2020, Henry DeYoung, Frank Pfenning, and Klaas Pruiksma developed the semi-axiomatic sequent calculus (SAX).
SAX is an alternate formulation of the sequent calculus, which is a logical system where each part of a proof is a truthful
implication [2]. When interpreted in a proofs-as-programs sense, SAX can be interpreted as a process calculus – a
programming language where the state of a program at any given time is a configuration of processes and memory cells.
Processes can communicate by writing and reading to the memory cells, allowing for messages to be passed between
processes.

The version of SAX that we use stipulates that memory cells are also linear, meaning that they can be written to once,
then read once, and cannot be used again. This style of memory management is of particular interest for a couple of
reasons. Firstly, in the parallel version of SAX, these memory cells can be used as linear futures [8]. Once a process has
written a value to a cell, it stays there until it is read by another process. In parallel SAX, if the reader process reaches the
read point before the writer has finished writing, then it must wait for the value to be written, much like the semantics
of futures dictate in other languages. Additionally, this linearity allows for easy garbage collection, as was suggested by
Girard and Lafont [5]. Once a cell is read, its memory can be deallocated – there is no need for more complex garbage
collection procedures in linear code.

My previous research covered ways that linearity could also be exploited to reuse the memory allocated to a particular
cell after it had been read. The key result was that if a SAX program is executed sequentially – we always allow the
leftmost process to execute to completion before stepping any other processes forward – then reusing memory according
to the system that we had created was type-safe and could never lead to a state where the leftmost process is unable to
step forward.
However, SAX comes with a notable weakness in its implementation. All cells, no matter the type, are represented

by a block of memory made up of one or two words. In the case of a pair, each word is used to store a pointer to each
element of the pair. In the case of a sum, the first word is used to store the label of the sum, while the second word
points to the actual contents. This leads to significant inefficiencies when unpacking the components of practical data
structures such as binary search trees, which store several pieces of information at each node and therefore require
several pointer dereferences. To make SAX more practical, Pfenning and DeYoung introduced SNAX in 2022. The SNAX
language takes SAX and improves the memory layout, so that a value of a sum or product type is represented in a single
contiguous block rather than being split up over several blocks [1]. This, in turn, means that not all blocks are the same
size, making memory management harder. The trade-off is that accessing projections of a block can be done via simple
address arithmetic rather than dereferencing pointers, making SNAX more efficient overall.
SNAX has a front-end that corresponds to the system of natural deduction, which is a much older logical system

proposed by Gentzen in his 1935 paper on constructive logic [4]. This makes it easier for users to write programs in our
language. One step in our compilation pipeline is to translate these natural deduction programs to a SNAX intermediate
representation, which enables us to reap the benefits of memory reuse without forcing the user to directly interact with
memory cells and risk writing an invalid program. Having natural deduction as a front-end also allows us to make our
compilation more modular. Translating it into SNAX with reuse is only one of several intermediate representations that
can be chosen – there are also options for translation to SNAX without reuse, or SAX.

2

2 Motivation

While the number of pointer dereferences has been significantly reduced in comparison to SAX, SNAX still suffers from
another memory-related problem that the original SAX did – it is difficult to modify or otherwise use a data structure.
This is because a function that modifies a data structure must first read its contents via pattern matching and perform
its modifications. It must then recreate the node from the components that it has read, as well as the modified values.
This process involves freeing a block of memory, which held the old value of the data structure, and then allocating an
identically sized block. Recursive data structures, such as lists and binary search trees, acutely suffer from this memory
inefficiency, since operations on these data structures often involve the manipulation of several nodes, all of which must
be reallocated after modification. We therefore hypothesized that adding memory reuse to SNAX would significantly
speed up these operations, since the block of memory that previously held the input data structure could be reused to
store the value of the data structure that is being returned.

This is actually inspired by the way data structures are handled in imperative languages such as C and Java. Reusing
the same block of memory for the updated data structure is reminiscent of an in-place update, which is the semantics
with which these languages choose to modify their structures. This does lead to these data structures also being single-
threaded, as past versions of a data structure cannot be easily recovered since they are not stored. Most applications of
data structures, especially in imperative languages, already work around this sort of semantics, since they are so common.
There have already been some attempts at adding similar in-place updates to functional languages, such as Microsoft’s
FP2 lorenzen2023fp, as well as Reinking and Xie’s Perceus [9]. Perceus is one of the closest languages to SNAX with
reuse, featuring both in-place updates as well as a more efficient form of garbage collection through reference counting.
However, neither of these languages rely on linearity, which is at the center of SNAX.
In real-world applications, writing fully linear programs proves to be challenging, if not impossible. Thus, we make

linear SNAX with reuse more practical to use by embedding it into a adjoint language, which has both linear and
nonlinear components. This language was developed by Jang, Pfenning, Roshal, and Pietntka in their 2024 paper [6].
Programs written in this language can enjoy the benefits of memory reuse for their linear portions, while also containing
the nonlinear components that are necessary for them to function. Data structures in the linear portions of our language
already behaved in a single-threaded manner – this was not a disadvantage that was added by reuse. We hypothesize
that memory reuse in the linear portions of programs will then allow SNAX’s performance to improve without losing
any of its expressivity.

3 Summary of Changes

To implement memory reuse in SNAX, we made several improvements to the language on various levels. In the front
end, we added a pattern matching system to read an entire memory cell all at once, rather than having to make several
calls to the read construct to extract its contents. This might seem like a small change to the concrete syntax for our
language, but it is actually essential for effective memory reuse. Previously in SNAX, a memory cell is broken down
through a series of read statements. If it is processed in this manner, then it cannot be reused until the final read has
finished. This makes it much more difficult for the user to find opportunities for reuse. This problem is compounded
because it can be unclear when a memory cell has been completely read in code with multiple branches. As such, we
entirely removed the read construct from the language, and replace it with pattern matching.

3

Once we have established the match construct, we are able to identify the point in a program where each memory
cell becomes available for reuse. To facilitate this reuse, we make several further modifications to linear SNAX. The
biggest change is the addition of four new constructs, which are used to free a cell after it is read, dispose of a read cell
that cannot be used anymore, reuse a free cell, and deallocate a free cell that is no longer needed. Furthermore, the type
system is modified to account for the fact that a cell is not destroyed after it has been fully read, and instead can be
referenced in a later reuse statement. This requires us to introduce new typing judgments for both individual processes
and entire configurations in our modified SNAX system. Most of the static rules have also been modified to match these
new judgements. Additionally, the dynamic rules have been changed to account for reuse in our linear system. These
changes still obey the theorems of progress and preservation, ensuring that our language is type-safe.

4 Pattern Matching and Translation

The first change that we make is to remove the read construct from our language, and replace it with a match construct.
Threads can no longer be of the form (read 𝑎(· · · ⇒ . . .)). Instead, a thread that reads a memory cell 𝐴 must be of the
form match 𝑎(· · · ⇒ . . .). If we are pattern-matching the contents of a memory cell 𝑎 : 𝐴, then the inner parentheses
will contain a rule of the form 𝑝 ⇒ 𝑃 for every pattern 𝑝 that matches memory cells of type 𝐴, as defined below. The
contents of 𝑎 will match with one of the patterns when it is read, and it will then execute the corresponding branch. This
branch 𝑃 might reference some variables that are bound from the pattern 𝑝 .

Definition (Patterns)

We define a pattern 𝑝 as follows:

𝑝 ::= ⟨⟩ | 𝑥 | ⟨𝑥⟩ | ⟨𝑝1, 𝑝2⟩ | ℓ ⟨𝑝⟩

The three base cases are a unit pattern ⟨⟩, a variable 𝑥 , and a pointer ⟨𝑥⟩. The two recursive cases correspond to a
pair of patterns ⟨𝑝1, 𝑝2⟩ and a labeled injection of a pattern ℓ ⟨𝑝⟩.
We next define the judgement Δ ⊩ 𝑝 : 𝐴, which states that pattern 𝑝 matches some of the values of type 𝐴. The
context Δ is used as an output in this case. It holds the set of variables used in the pattern, as well as their types. If
a memory cell’s value matches a particular pattern, then the variables in Δ will be bound and made available for
use in the corresponding branch. This is similar by the judgement described by Zeilberger in his 2008 thesis [10].
The rules for this judgement are as follows:

· ⊩ ⟨⟩ : 1 P-Unit
𝑥 : 𝐴− ⊩ 𝑥 : 𝐴− P-Var

𝑥 : 𝐴 ⊩ ⟨𝑥⟩ : ↓𝐴 P-Pointer

Δ1 ⊩ 𝑝1 : 𝐴 Δ2 ⊩ 𝑝2 : 𝐵 Δ1 ∩ Δ2 = ∅
Δ1,Δ2 ⊩ ⟨𝑝1, 𝑝2⟩ : 𝐴 ⊗ 𝐵

P-Pair
Δℓ ⊩ 𝑝ℓ : 𝐴ℓ ℓ ∈ 𝐿

Δℓ ⊩ ℓ ⟨𝑝ℓ⟩ : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿
P-Sum

The variable and pointer rules allow us to bind variables. P-Var allows us to take a value of negative type from a
memory cell and store it in the variable 𝑥 , while P-Pointer lets us take a pointer to a cell of type 𝐴 and extract the
cell into a variable. Note that the P-Sum rule is not deterministic – there are several patterns that could apply to a
variable with an ⊕ type. Additionally, a single-variable pattern is only allowed to match against a negative type.
This means that unlike Standard ML, our patterns must fully match the contents of a memory cell. We are not
allowed to match a positive type, such as a pair, to a single variable – we must break it down all the way to ensure
that we are finished with the cell.

4

We can then determine whether a process using a match statement type-checks using the following rule:
∀Δ, 𝑝 s.t. (Δ ⊩ 𝑝 : 𝐴) . 𝑝 ∈ {𝑝1, 𝑝2, . . . } and Δ, Γ ⊢ 𝑄𝑝 :: (𝑐 : 𝐶)

Γ, 𝑎 : 𝐴 ⊢ match 𝑎(𝑝1 ⇒ 𝑄1 | 𝑝2 ⇒ 𝑄2 | . . .) :: (𝑐 : 𝐶)

In this rule, we verify that a process using a match statement is valid. This match statement reads a value of type 𝐴
from memory cell 𝑎, and matches it against the patterns in the parentheses. Multiple patterns and branches will exist
between the parentheses if there are multiple patterns that match values of type 𝐴. The first part of the premise states
that every possible pattern for type 𝐴 needs to be included in the set of patterns {𝑝1, 𝑝2, . . . } that are included in the
match statement. The second portion states that each branch needs to be well-typed after the variables in the pattern are
bound. Together, these guarantee that the process using this match statement is well-typed and covers every possible
pattern.

In SNAX with reuse, our programs will be written using this match construct. This allows us to guarantee that all of
the contents of the cell are read, and that no references to the cell remain after the match completes. This, in turn, means
that a cell can be reused after it has been read via a pattern-match. During compilation, we will translate each match
statement to a series of read statements. These statements will be equivalent to the match statement, in that they will
read the contents of a block and bind the necessary variables. After this series of statements executes, the block will also
be freed using a free statement (described in the next section), which makes it ready for reuse. By abstracting these read
and free statements away from the user, we guarantee that they will be used in a reuse-friendly manner that allows for
progress and preservation to hold.
The translation we introduce begins with a match statement in the form match 𝛼 (𝑝1 ⇒ 𝑄1 | . . .). We use 𝛼 here to

denote the memory cell that is being matched, since we know that it is the root of a block. At the end of our translation,
we will need to free 𝛼 after all parts of it have been read. The judgement 𝑃 { 𝑃 ′ indicates that the process 𝑃 , which
may use match statements, translates to 𝑃 ′, which uses read and free statements. In doing so, we will make use of two
intermediate constructs. match𝐹 (𝛼, 𝑎) (𝑝1 ⇒ 𝑄1 | . . .) will match 𝑎 against the appropriate branch, and then free 𝛼
before 𝑄 begins execution. match𝑁 𝑎(𝑝1 ⇒ 𝑄1 | . . .) simply matches 𝑎 with its pattern and executes the corresponding
branch.

Translation Rules
Initializing the translation:

match𝐹 (𝛼, 𝛼) (𝑝1 ⇒ 𝑄1 | . . .) { 𝑃

match 𝛼 (𝑝1 ⇒ 𝑄1 | . . .) { 𝑃
Init

Base cases:

match𝐹 (𝛼, 𝑎) (⟨⟩ ⇒ 𝑄) { read 𝑎(⟨⟩ ⇒ free 𝛼 ;𝑄) Unit-F

𝑄 { 𝑄 ′

match𝑁 𝑎(⟨⟩ ⇒ 𝑄) { read 𝑎(⟨⟩ ⇒ 𝑄 ′) Unit-N

match𝐹 (𝛼, 𝑎) (𝑥 ⇒ 𝑄) { let 𝑥 = 𝑎 in free 𝛼 ;𝑄 Var-F
𝑄 { 𝑄 ′

match𝑁 𝑎(𝑥 ⇒ 𝑄) { let 𝑥 = 𝑎 in 𝑄 ′
Var-N

match𝐹 (𝛼, 𝑎) (⟨𝑥⟩ ⇒ 𝑄) { read 𝑎(⟨𝑥⟩ ⇒ free 𝛼 ;𝑄) Ptr-F
𝑄 { 𝑄 ′

match𝑁 𝑎(⟨𝑥⟩ ⇒ 𝑄) { read 𝑎(⟨𝑥⟩ ⇒ 𝑄 ′) Ptr-N

Inductive cases:

5

match𝐹 (𝛼, 𝑎 · ℓ𝑖) (𝑝𝑖 ⇒ 𝑄𝑖) { 𝑄 ′𝑖
match𝐹 (𝛼, 𝑎) (ℓ1⟨𝑝1⟩ ⇒ 𝑄1 | . . .) { read 𝑎(ℓ1⟨_⟩ ⇒ 𝑄 ′1 | . . .)

Sum-F

match𝑁 𝑎 · ℓ𝑖 (𝑝𝑖 ⇒ 𝑄𝑖) { 𝑄 ′𝑖
match𝑁 𝑎(ℓ1⟨𝑝1⟩ ⇒ 𝑄1 | . . .) { read 𝑎(ℓ1⟨_⟩ ⇒ 𝑄 ′1 | . . .)

Sum-N

match𝑁 𝑎 · 𝜋1(𝑝1,1 ⇒ (match𝐹 (𝛼, 𝑎 · 𝜋2) (𝑝2,1 ⇒ 𝑄1,1 | . . .)) | . . .) { 𝑄 ′

match𝐹 (𝛼, 𝑎) (⟨𝑝1,1, 𝑝2,1⟩ ⇒ 𝑄1,1 | . . .) { read 𝑎(⟨_, _⟩ ⇒ 𝑄 ′) Prod-F

match𝑁 𝑎 · 𝜋1(𝑝1,1 ⇒ (match𝑁 𝑎 · 𝜋2(𝑝2,1 ⇒ 𝑄1,1 | . . .)) | . . .) { 𝑄 ′

match𝑁 𝑎(⟨𝑝1,1, 𝑝2,1⟩ ⇒ 𝑄1,1 | . . .) { read 𝑎(⟨_, _⟩ ⇒ 𝑄 ′) Prod-N

The product rules have to support multiple cases because the left element of the pair could match to any of several
different patterns {𝑝1,1, 𝑝1,2, . . . }, while the right element also can match to one of the patterns in {𝑝2,1, 𝑝2,2, . . . }.
As such, when matching a pair, we need a branch for every choice of left pattern and right pattern. We translate
this by first matching the left element. In each of the branches for left elements, we then match the right element,
and execute the corresponding code.

This translation makes use of a key invariant, which states that after we initialize the translation, there is exactly one
instance of match𝐹 and no instances of match𝑁 can occur after it. This allows the last base case to safely free the root 𝛼
after matching, since no further accesses to it will occur. This invariant is preserved in the recursive cases – the Sum-F
rule passes the responsibility of freeing 𝛼 into each branch, while Prod-F makes sure 𝑎 · 𝜋2 frees the whole cell once it is
read. The rules for both sums and products also account for the fact that multiple patterns might match 𝑎. In particular,
the product rule first matches 𝑎 · 𝜋1 against one of its possible matches 𝑝1𝑎, 𝑝1𝑏, Then, in the case for each pattern, it
matches 𝑎 · 𝜋2 with one of its possible matches 𝑝2𝑎, 𝑝2𝑏,
Translating the match construct to a series of read and free operations makes compilation easier, since it becomes

more similar to the existing linear SNAX language without reuse. Moreover, this similarity allows us to more easily
prove progress and preservation.

5 Changes to SNAX

Now that we have established the pattern-matching syntax that makes memory reuse possible, we can begin to modify
the language to add the relevant constructs. Previously in SNAX, a thread could take on several forms – it could either
write to a memory cell, read a memory cell and use its contents, or copy data from one memory cell to another. Threads
could also use the cut rule, which split a thread into two threads, and gave them a memory cell on which they could
communicate. When we add memory reuse, we add four forms to processes, as follows:

𝑃 ::= · · · | free 𝛼 ; 𝑃 | dealloc 𝛼 ; 𝑃 | dispose 𝑎; 𝑃 | (reuse 𝛼 ← 𝑃1; 𝑃2)

The first new form simply frees the root of a memory cell, making it available for reuse. The cell still exist in the
configuration, but is in a free state. The second construct is used to deallocate a memory cell that is no longer needed,
which removes it entirely – it no longer exists in the configuration at all. The third new form is used to dispose of a
memory cell that is no longer being used, but still needs to remain in the configuration as other cells might rely on it.
The last new construct is similar to the cut rule, in that it spawns two processes. Instead of creating a new memory cell
for the processes to communicate, it reuses the existing free cell 𝑎.

6

We additionally need to modify the semantics for memory cells. Previously, any memory cells that appeared in the
configuration were of the form cell 𝑥 𝑆 , which stated that the cell 𝑥 held the storable 𝑆 . Moreover, this implied that the
cell was available for a process to read. Once the cell was read, it would be removed entirely from the configuration.
Adding memory reuse to the system requires us to not destroy memory cells once they are read, since they might be
referenced again later. Thus, we define memory cells as follows:

𝑀 ::= cell 𝑎 □ | cell 𝑎 𝑆 | read 𝑎 𝑆 | free 𝑎 𝑆 | referenced 𝑎 𝑆

The first two constructors in this grammar are the same as before. The first one represents a cell that a process is going
to write to, but has not written to yet. The second one represents a cell named 𝑎 that holds a storable 𝑆 , which is available
for use. Once it is used, it becomes a read cell, instead of being destroyed. Read cells use the third constructor, read 𝑎 𝑆 .
They still contain their previous contents, so that we are able to find the type of a read cell. However, they cannot be used
in any way other than being freed, which creates a free cell, free 𝑎 𝑆 . These free cells can either be deallocated, which
removes them entirely from the configuration, or they can be reused. Finally, a cell can be referenced, meaning that a
pointer to it exists elsewhere in memory. A referenced cell, referenced 𝑎 𝑆 , still exists, but cannot be used in any way –
until the cell containing the corresponding pointer ⟨𝑎⟩ is read, at which point the cell becomes free. The referenced state
for a cell is therefore used to indicate that a cell is not currently usable, but needs to remain in the configuration for
some reason. The transitions between these states are governed by the dynamic rules, which will be described later.

The grammar for programs remains largely unchanged. The current state of a program is defined by its configuration,
which is a set of memory cells and processes ordered from left to right. Thus, we get:

𝐶 ::= · | 𝑀 | thread (𝑎, 𝑃) | 𝐶1 𝐶2

A configuration can be empty, or made up of a single memory cell𝑀 . It can also consist of a thread, which is made up
of a process 𝑃 and a memory cell 𝑎 which it will write its results to. Finally, a configuration can be the concatenation of
two smaller configurations, which allows for more complex programs to be written.

5.1 Type System

In this language, we need a type system which properly models the states that a memory cell is in. Memory cells no
longer carry just a type in the context – rather, they carry both the type of the data they store, and their current status.
Thus, the typing judgement for memory cells is of the form𝑀 : 𝜏 [𝑠], where the status [𝑠] is either [available], [read],
[free], or [referenced]. This allows the type system to account for the current state of each memory cell at any time. As a
result, the context Γ must hold all of the memory cells, as well as their types and statuses. It is no longer limited to the
cells that are available.

Processes must now contend with the new typing judgements and contexts as well. Previously, we wrote Γ ⊢ 𝑃 :: (𝑎 : 𝐴)
to denote that a process 𝑃 used the values in Γ to write a value of type 𝐴 to the memory cell 𝑎, which would be available
for use. However, the typing judgements in our new calculus must contend with the fact that a process 𝑃 will make
use of some memory cells in Γ, and that these memory cells might still exist after the process is done executing! Thus,
we instead write Γ ⊢ 𝑃 :: (𝑎 : 𝐴); Γ′ for our typing judgement. This states that given the memory cells in Γ with their
provided types and statuses, the process 𝑃 will execute. After 𝑃 is done executing, 𝑎 will be available and contain a value
of type 𝐴, while the remaining cells will now match the types and statuses in Γ′, the output context. These cells’ types
should not change, however, their statuses likely change from operations that 𝑃 carries out as it executes.

7

Finally, we have the matter of typing a configuration. In nonlinear SNAX, a distinction was made between configuration
contexts Φ and process contexts Γ. However, in linear SNAX with reuse, no such distinction exists. Configuration
contexts were notable in that they did not support contraction, and that their addresses were presumed to be distinct [1].
However, contraction is already not supported in a linear process calculus. Moreover, our type system prohibits two
pointers from pointing to the same address. Therefore, we can use the same kinds of contexts Γ for typing processes and
configurations.
It follows that the configuration typing judgements Φ ⊨ 𝐶 :: Φ′ can largely remain unchanged. In linear SNAX with

reuse, we write these judgements as Γ ⊨ 𝐶 :: Γ′ to express that 𝐶 , when given the memory cells in Γ, will execute
and leave behind a configuration of type Γ′. This is very similar to both the original style of the configuration typing
judgement and the typing judgement for a single process.

5.2 Statics

5.2.1 Process Typing Rules

Many of the process typing rules are similar to those presented in the original SNAX paper, with linearity added to
match the requirements of our language. The judgments have been converted to match the new Γ ⊢ 𝑃 :: (𝑎 : 𝜏); Γ′ format
as well. We begin by looking at reading and writing basic types to memory.

Units
Processes can read and write unit values of type 1 as follows:

Γ ⊢ write 𝑎 ⟨⟩ :: (𝑎 : 1); Γ 1a
Γ, 𝑎 : 1[read] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′

Γ, 𝑎 : 1[available] ⊢ read 𝑎(⟨⟩ ⇒ 𝑃) :: (𝑐 : 𝐶); Γ′ 1l

The axiomatic rule for a unit remains largely unchanged. Writing a unit to a memory cell 𝑎 makes it available with
type 1, while not affecting any other memory cells in the process. The main change to the rule comes from making it
work with our new judgement format. The changes to the 1l rule are a bit more interesting. We take a context that has a
cell 𝑎 of type 1[available] and read it, as before. However, rather than entirely eliminating 𝑎, we allow the process 𝑃 to
have access to it with the [read] status. This allows 𝑃 to continue interacting with 𝑎, and reflects the fact that it is not
deallocated entirely.

Pairs

Γ, 𝑎 · 𝜋1 : 𝐴1 [available], 𝑎 · 𝜋2 : 𝐴2 [available] ⊢ write 𝑎 ⟨_, _⟩ :: (𝑎 : 𝐴1 ⊗ 𝐴2); Γ
⊗a

Γ, 𝑎 · 𝜋1 : 𝐴1 [available], 𝑎 · 𝜋2 : 𝐴2 [available], 𝑎 : 𝐴1 ⊗ 𝐴2 [read] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′

Γ, 𝑎 : 𝐴1 ⊗ 𝐴2 [available] ⊢ read 𝑎(⟨_, _⟩ ⇒ 𝑃) :: (𝑐 : 𝐶); Γ′ ⊗l

Here, the two cells 𝑎 · 𝜋1 and 𝑎 · 𝜋2 can be consumed by the write operation to write the value of type 𝐴1 ⊗ 𝐴2 to the
memory cell 𝑎. Thanks to the memory layout of SNAX, no actual copying needs to occur. Instead, we lose access to 𝑎 · 𝜋1
and 𝑎 · 𝜋2, and can treat them as one memory cell 𝑎 which is available. The read operation on pairs splits up 𝑎 into its
two parts, and makes them available for the rest of 𝑃 to use. As 𝑃 operates, it changes the remainder of the context from
Γ into Γ′, which is the output context, and also makes 𝑐 into a cell of type 𝐶 [available].

8

Labeled Sums
(𝑘 ∈ 𝐿)

Γ, 𝑎 · 𝑘 : 𝐴𝑘 [available] ⊢ write 𝑎 𝑘 ⟨_⟩ :: (𝑎 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿); Γ
⊕a

∀ℓ ∈ 𝐿 : Γ, 𝑎 · ℓ : 𝐴ℓ [available], 𝑎 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 [read] ⊢ 𝑃ℓ :: (𝑐 : 𝐶); Γ′

Γ, 𝑎 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 [available] ⊢ read 𝑎 (ℓ ⟨_⟩ ⇒ 𝑃ℓ)ℓ∈𝐿 :: (𝑐 : 𝐶); Γ′ ⊕l

Much like the product rules, the sum rules are very similar to the existing SNAX ones. The rule for writing a sum is
axiomatic, requiring only that the contents already be written and that a valid tag is selected. The most important change
comes from the rule for eliminating sums. In this rule, every branch 𝑃ℓ must write a value of type𝐶 to the cell 𝑐 , as before.
This allows us to state that the overall process has type (𝑐 : 𝐶). In SNAX with reuse, an additional condition is added –
all of these branches must also leave the remainder of the configuration in the state corresponding to Γ′. This ensures
that no matter which branch is taken, a predictable set of resources are left behind for the next process to operate with.

Pointers

Γ, 𝑏 : 𝐴[available], proj(𝑏) [available] ⊢ write 𝑎 ⟨𝑏⟩ :: (𝑎 : ↓𝐴); Γ, 𝑏 : 𝐴[referenced], proj(𝑏) [referenced] ↓a

Γ, 𝑥 : 𝐴[available], 𝑎 : ↓𝐴[read] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′ 𝑥 ∉ Γ′

Γ, 𝑎 : ↓𝐴[available] ⊢ read 𝑎 (⟨𝑥⟩ ⇒ 𝑃) :: (𝑐 : 𝐶); Γ′ ↓l

Here, we introduce the [referenced] status into our judgements to represent what happens to a cell 𝑏 when it is
referenced by a pointer, which is written to the cell 𝑎. Since this cell is already being referenced, we cannot allow it to be
used as an available cell – otherwise, this use could lead to us violating the linearity requirement of our language. In
SNAX without reuse, we solved this problem by entirely removing the cell from the configuration (and therefore the
context), however, we cannot do this in SNAX with reuse since this memory cell still needs to be accessible. As such, we
mark a memory cell as [referenced] when its pointer is written.

Once the pointer is dereferenced through a read statement, the cell 𝑥 that 𝑎 was pointing to becomes available for use.
However, we need to ensure that 𝑥 does not escape its scope, and we therefore require that the process 𝑃 that uses 𝑥
removes it from the context as necessary. This is reflected in the ↓l rule, which allows us to read a pointer and have its
contents available for use in the remainder of the process 𝑃 – but not in the resulting context Γ′.

Functions
Functions are different from the previously mentioned types in that their axiomatic rule comes when they are used,
rather than when they are created.

Γ2, 𝑥 : 𝐴1 [available] ⊢ 𝑃 :: (𝑧 : 𝐴2); Γ′2 , 𝑥 : 𝐴1 [read] Γrefd2 ⊆ Γ′2
Γ1, Γ2 ⊢ write 𝑎(⟨𝑥, 𝑧⟩ ⇒ 𝑃) :: (𝑎 : 𝐴1 → 𝐴2); Γ1

→ r

Γ, 𝑎 : 𝐴1 → 𝐴2 [available], 𝑎1 : 𝐴1 [available] ⊢ read 𝑎 ⟨𝑎1, 𝑎2⟩ :: (𝑎2 : 𝐴2); Γ, 𝑎 : 𝐴1 → 𝐴2 [read], 𝑎1 : 𝐴1 [read]
→ a

As in SNAX, a function of type 𝐴1 → 𝐴2 is represented as something which takes two addresses – the first is the
address of the input, while the second is the address that it is supposed to write its results to. Since functions might be
written at one time and then be called at another, we need some way to ensure that the resources from the context that
the function requires are still there when it gets called. To do this, we split up the context into two parts, Γ1 and Γ2. Γ1
continues to be usable after the function has been written. Γ2 contains the resources used by the function body, which

9

will use them later when it is called. As such, we remove these resources from the context so that further processes do
not alter them. The function body is also required to leave every memory cell from Γ2 in the [referenced] state when it
concludes. This is expressed by the condition Γrefd2 ⊆ Γ′2 – we use Γrefd2 to denote the set of cells in Γ2, with all of their
statuses changed to [referenced]. Γ′2 may also contain other memory cells allocated by the process, since 𝑧, the output
of the function, might rely on them. We also require that the input to the function is left in a [read] state to ensure
consistency with the→ a rule.

Since functions are a negative type, the rule to invoke a function is the axiomatic one. Here, we require that both the
function being called and its input are available. They are both read, and the body of the function will write a value of
type 𝐴2 to the provided destination cell 𝑎2. No other memory cells in the configuration are affected, so the remainder of
the context Γ remains the same.

Lazy Products

∀ℓ ∈ 𝐿 : Γ2 ⊢ 𝑃ℓ :: (𝑦 : 𝐴ℓ
𝑚); Γ′2 Γrefd2 ⊆ Γ′2

Γ1, Γ2 ⊢ write 𝑎 (ℓ (𝑦) ⇒ 𝑃ℓ)ℓ∈𝐿 :: (𝑎 : &𝑚{ℓ : 𝐴ℓ
𝑚}ℓ∈𝐿); Γ1

&r

(𝑘 ∈ 𝐿)
Γ;𝑎 : &𝑚{ℓ : 𝐴ℓ

𝑚}ℓ∈𝐿 [available] ⊢ read 𝑎⟨𝑘,𝑦⟩ :: (𝑦 : 𝐴𝑘
𝑚); Γ, 𝑎 : &𝑚{ℓ : 𝐴ℓ

𝑚}ℓ∈𝐿 [read]
&a

The type of lazy products, also known as lazy records, is similar to both the sum and function types. Lazy products do
not perform any computations when they are created (since they are lazy), thus, writing them only requires that each of
the branches is appropriately typed. As with functions, we split the context into two parts. Γ1 contains the resources that
the lazy product does not interact with, while Γ2 contains the resources that every branch is allowed to use when it is
invoked. Importantly, every branch is given the same Γ2, rather than having different contexts for separate branches.
Invoking a lazy product requires passing in the corresponding label, as well as a destination cell. At this point, the result
is written to the destination, and the lazy product is marked as being read. The same condition of Γrefd2 ⊆ Γ′2 is required
for each branch of the lazy product.

Calling Processes

Γ, 𝑎1 : 𝐴1 [available], . . . , 𝑎𝑛 : 𝐴𝑛 [available] ⊢ call 𝑝 𝑐 𝑎1 . . . 𝑎𝑛 :: (𝑐 : 𝐶); Γ Call

where the process 𝑝 is defined as proc 𝑝 (𝑧 : 𝐶) (𝑥1 : 𝐴1) . . . (𝑥𝑛 : 𝐴𝑛) = 𝑃 . This rule has no premises as the
definitions of processes are instead checked separately. We can check a function definition proc 𝑝 (𝑧 : 𝐶) (𝑥1 :
𝐴1) . . . (𝑥𝑛 : 𝐴𝑛) = 𝑃 by checking that 𝑥1 : 𝐴1 [available], . . . , 𝑥𝑛 : 𝐴𝑛 [available] ⊢ 𝑃 :: (𝑧 : 𝐶); Γ such that
𝑥1 : 𝐴1 [referenced], . . . , 𝑥𝑛 : 𝐴𝑛 [referenced] ∈ Γ, in the same style as type-checking a closure. We do this using the
type declarations for all function definitions. This allows us to handle recursion without having the typechecker
risk nontermination.

As in SNAX, we also have a way to invoke a recursive function to write to a particular destination. We call such a
recursive function a ‘process’. We can make use of a process by calling it with a destination and the required arguments.
This causes the process to take over the existing thread, taking control of the arguments which were passed in. The
remaining resources stay in Γ and are not touched at all. Since we have no way of reasoning about the behavior of the
called process 𝑝 , we instead force it to deallocate the arguments and any cells that it happens to create.

10

Identity

Γ, 𝑏 : 𝐴− [available] ⊢ move 𝑎 𝑏 :: (𝑎 : 𝐴−); Γ, 𝑏 : 𝐴− [read] id

The identity rule is responsible for moving data from a memory cell 𝑏 to another one of the same type 𝑎, marking 𝑏 as
being read in the process. It is similar to its counterpart in SNAX without reuse in that it performs this move without
affecting the statuses of any other memory cells. It is also similar in that these move operations are only available for
variables of type ↓𝐴, 𝐴1 → 𝐴2, and &𝑚{ℓ : 𝐴ℓ

𝑚}. Variables with unit, sum, and product types must be read from the old
cell and written to the new cell, as in SNAX.

Cuts and Snips
Γ1 ⊢ 𝑃 :: (𝑥 : 𝐴); Γ2 Γ2, 𝑥 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ3 (𝑥 fresh)

Γ1 ⊢ 𝑥 ← 𝑃 ;𝑄 :: (𝑐 : 𝐶); Γ3
cut

Γ1 ⊢ 𝑃 :: (𝑎 : 𝐴); Γ2 Γ2, 𝑎 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ3
Γ1 ⊢ 𝑃 ;𝑄 :: (𝑐 : 𝐶); Γ3

snip

The cut rule allows us to spawn two processes, 𝑃 and𝑄 , and gives them amemory cell 𝑥 onwhich they can communicate.
𝑃 writes a value to 𝑥 when it is completed, and 𝑄 reads this value from 𝑥 to create a value of type 𝐶 in memory cell 𝐶 .
The remainder of the configuration can be modified by both 𝑃 and 𝑄 . In particular, the starting context Γ1 is modified by
𝑃 to create Γ2, as the execution of 𝑃 may read or write other cells. Γ2 is therefore the context that 𝑄 has access to during
its execution, which eventually results in Γ3, which is also the overall resulting context of the process as a whole.

The snip rule is similar to the cut rule, but it does not allocate a new memory cell at all. Instead, the process 𝑃 writes
its result to an address which already exists within a previously allocated memory cell, and 𝑄 reads from that address.
This rule is also largely unchanged, apart from modifying it to work with the new structure of the typing judgements.

Free
Γ, 𝛼 : 𝐴[free] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′, proj (𝛼) [free]

Γ, 𝛼 : 𝐴[read], proj(𝛼) [read] ⊢ free 𝛼 ; 𝑃 :: (𝑐 : 𝐶); Γ′ free

In this rule, we use proj(𝛼) to refer to a set of addresses related 𝛼 . Every element in this set of projections must be read
before we can free the cell. We define this set as follows:

• For a cell 𝑎 of type 𝐴1 ⊗ 𝐴2, proj(𝑎) is defined to be {𝑎 · 𝜋1, 𝑎 · 𝜋2} ∪ proj(𝑎 · 𝜋1) ∪ proj(𝑎 · 𝜋2).
• For a cell 𝑎 of type ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 , proj(𝑎) is defined as any one of the sets {𝑎 · 𝑘} ∪ proj(𝐴𝑘) for any 𝑘 ∈ 𝐿.
• For a cell 𝑎 of any other type, proj(𝑎) is empty as 𝑎 has no projections.

This means that freeing a product requires us to have read both its 𝜋1 and 𝜋2 components fully, while freeing a sum
requires us to have read exactly one of the summands.

There is an important distinction between two types of addresses in this rule – there are roots 𝛼 , which are guaranteed
to not have any projections in their addresses, and general addresses 𝑎 which can have projections. We only allow a root
to be freed. Other addresses can be marked as read, however, they cannot be explicitly freed – instead, they are freed
when their corresponding root is freed. When a memory cell is freed, it is made available for the rest of the process to
interact with. These interactions can come either in the form of reuse or deallocation.

11

Reuse
Γ1 ⊢ 𝑃 :: (𝛼 : 𝐴); Γ2 Γ2, 𝛼 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ3

Γ1, 𝛼 : 𝐴[free], proj(𝛼) [free] ⊢ reuse (𝛼 ← 𝑃 ;𝑄) :: (𝑐 : 𝐶); Γ3
reuse

The reuse rule is extremely similar to the cut rule. Both cut and reuse cause two processes to be spawned, and provide
them with a memory cell with which they can communicate. The primary difference between the two is that the cut rule
creates an entirely new memory cell 𝑥 with a fresh label, while the reuse rule simply uses an existing free cell 𝛼 for this
purpose. Once this occurs, 𝑃 and 𝑄 are free to use 𝛼 to communicate as before. 𝛼 can also occur in Γ3, which allows
further processes in the configuration can refer to this cell as 𝑎 after the name 𝑥 has gone out of scope.

This reuse rule is slightly different from the one that was used to add reuse to SAX. In SAX, all memory cells had the
same size. Therefore, we were free to reuse any cell that had already been read to store values of any other type. This no
longer applies to SNAX, where the size of a memory cell is dependent on the type of the values it holds. As a result, we
restrict reuse to only be legal on values of the same type. This means that a memory cell of type 𝐴 can only be reused as
a memory cell of type 𝐴. Even if type 𝐵 is the same size as 𝐴 when laid out in memory, we will not allow a memory cell
of type 𝐴 to be reused to hold a value of type 𝐵, which helps ensure memory safety.

Deallocation
Γ ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′

Γ, 𝛼 : 𝐴[free], proj(𝛼) [free] ⊢ deallocate 𝛼 ; 𝑃 :: (𝑐 : 𝐶); Γ′ dealloc

The deallocation rule allows us to entirely remove a memory cell once we no longer need it. We require that a cell
which we are deallocating has first been fully read and freed using the free(𝛼) construct. Once this has happened, we
can remove it, and its projections, from the configuration and the context, and the rest of the process 𝑃 operates without
access to this cell. This is particularly important for ensuring functions and lazy products can type-check, since they are
required to finish executing with an empty context. This means that any cells they allocate must be cleaned up via this
deallocate construct.

Disposal
Γ, 𝑎 : 𝐴[referenced], proj(𝑎) [referenced] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′
Γ, 𝑎 : 𝐴[read], proj(𝑎) [read] ⊢ dispose(𝑎); 𝑃 :: (𝑐 : 𝐶); Γ′ Dispose

Our last new construct is disposal. The disposal construct takes a read cell and changes the status of it, and its
projections, to [referenced]. These cells are marked as referenced to denote the fact that they cannot be used anymore,
but still might be needed in the configuration to ensure other cells type-check. Since no pointers to these cells exist, their
state will remain as [referenced] for the remainder of the program. This disposal construct is useful for functions that
read an argument cell 𝑎 and need to set 𝑎’s status to [referenced] to comply with the→ r.

5.2.2 Configuration Typing Rules

Now that we have established how we can find the type of a particular process, we turn our attention to how we can find
the type of an entire configuration. As mentioned earlier, a configuration is a set of memory cells and processes, ordered
from left to right. As such, we have rules to type configurations made up of individual threads, as well as configurations

12

made up of multiple parts. However, our linear system allows us to use the same contexts Γ for both individual processes
and entire configurations, rather than having a special kind of configuration contexts Φ.

Configuration Typing Rules

Γ ⊨ · :: Γ Empty
Γ0 ⊨ 𝐶1 :: Γ1 Γ1 ⊨ 𝐶2 :: Γ2

Γ0 ⊨ 𝐶1𝐶2 :: Γ2
Join

Γ ⊢ 𝑃 :: (𝑎 : 𝐴); Γ′
Γ ⊨ thread (𝑎, 𝑃), cell 𝑎 □ :: Γ′, 𝑎 : 𝐴[available] Thread

Γ𝑎 ⊢ write(𝑎, 𝑆) :: (𝑎 : 𝐴); Γ′
Γ ⊨ cell 𝑎 𝑆 :: 𝑅(Γ, Γ′), 𝑎 : 𝐴[available] Cell

Γ𝑎 ⊢ write(𝑎, 𝑆) :: (𝑎 : 𝐴); Γ′
Γ ⊨ read 𝑎 𝑆 :: Γ, 𝑎 : 𝐴[read] Read

Γ𝑎 ⊢ write(𝑎, 𝑆) :: (𝑎 : 𝐴); Γ′
Γ ⊨ free 𝑎 𝑆 :: Γ, 𝑎 : 𝐴[free] Free

Γ𝑎 ⊢ write(𝑎, 𝑆) :: (𝑎 : 𝐴); Γ′
Γ ⊨ ref 𝑎 𝑆 :: Γ, 𝑎 : 𝐴[referenced] Referenced

Each of these configuration typing rules takes the form of Γ ⊨ 𝐶 :: Γ′. Γ is the context, while Γ′ is the result type. Both
of these are sets of typing judgements, which map memory cells to their eventual types and statuses after execution has
completed. A configuration is initially typed with an empty context. However, the Join rule allows us to find the result
type of the left-hand portion of a configuration, which can then be used as the context for typing the right-hand portion.
The remaining rules are used as base cases for typing individual threads or memory cells. When we type a thread

thread (𝑎, 𝑃), we give it access to Γ in its current state, which corresponds to the resources that the process 𝑃 is allowed
to use as it computes a value to be written into cell 𝑎. Typing a cell in any status – available, read, free, or referenced –
simply requires us to find the type of its contents. To accomplish this, we find the type of the storable 𝑆 that is stored in
this cell. This is accomplished by considering what the output type of a process writing 𝑆 to 𝑎 would be.

However, there is a problem with trying to derive this judgement using Γ, the current state of the context. 𝑆 might rely
on some variables that are currently in a referenced state, which would prevent the process write(𝑥, 𝑆) from interacting
with them. Additionally, if 𝑆 is stored in a read cell, then it might rely on other cells that have also been read. The same
principle applies to free cells. As such, when typing cells, we use a version of Γ where the status of every cell is set to
[available], which we call Γ𝑎 . This allows us to type the corresponding cell.
The context Γ′ that comes after using Γ𝑎 to type a read, free, or referenced cell can be thrown away, because these

cells do not currently contain a usable value 𝑆 . In these cases, Γ𝑎 existed purely to find the type of the cell. However, in
the case of an available cell, the resulting context does matter. Γ′ no longer contains cells that have been consumed while
writing the value 𝑆 , which should not exist in the context afterward. They still exist in the configuration to the left of the
cell 𝑎, however, they are not accessible to any type-safe processes to the right of 𝑎. As such, we need to use Γ′ to get our
resulting context, by restoring the statuses of all cells in Γ′ from Γ. We call this 𝑅(Γ, Γ′), and it is defined as follows:

• If a cell exists in Γ but no longer exists in Γ′ (because it has been consumed), then it does not exist in 𝑅(Γ, Γ′).
• If a cell exists in Γ with status 𝑠 and still exists in Γ′, then it exists in 𝑅(Γ, Γ′) and inherits its previous status 𝑠 from
Γ.

In practice, the only cells that meet the first condition are the projections of 𝑎, which are consumed if 𝑎 has a sum or
pair type. If 𝑎 is a pointer to some other cell 𝑏, then 𝑏 will exist in Γ′ as a referenced cell, which should match its state in
Γ. Writing the value 𝑆 should not interact with any other cells, meaning that their statuses will be restored from their
original ones in Γ.

13

5.3 Dynamics

In SNAX with reuse, the dynamic rules are used to state how a configuration can step forward to another configuration.
The threads in a configuration are ordered. Unlike SNAX, which was designed to run concurrently, our version of linear
SNAX with reuse runs sequentially and deterministically. Dynamic rules that step a thread forward only can be used if
the thread stepping forward is the leftmost one in the configuration. If a thread is not the leftmost one, then it must wait
for all threads to the left of it to finish executing before it can begin to step forward. Beyond this ordering requirement,
many of these dynamic rules are the same as in linear SNAX, but also account for the fact that the status of a cell is often
changed when it is read.

Dynamic Rules
Writing storables 𝑆 and pointers ⟨𝑥⟩:

thread (𝑎,write 𝑎 𝑆), cell 𝑎 □ ↦−→ cell 𝑎 𝑆

thread (𝑎,write 𝑎 ⟨𝑥⟩), cell 𝑥 𝑆, cell proj(𝑥), cell 𝑎 □ ↦−→ cell 𝑎 ⟨𝑥⟩, referenced 𝑥 𝑆, referenced proj(𝑥)

Reading general storables 𝑆 and pointers ⟨𝑥⟩:

thread (𝑐, read 𝑎 𝑇), cell 𝑎 𝑆 ↦−→ thread (𝑐, 𝑆 ⊲𝑇), read 𝑎 𝑆

thread (𝑐, read 𝑎 (⟨𝑥⟩ ⇒ 𝑃)), referenced 𝑦 𝑆, referenced proj(𝑦), cell 𝑎 ⟨𝑦⟩

↦−→

thread (𝑐, [𝑦/𝑥]𝑃), cell 𝑦 𝑆, cell proj(𝑦), read 𝑎 𝑆

Calling recursive functions (where proc 𝑝 𝑧 𝑥1 . . . 𝑥𝑛 = 𝑃)

cell 𝑎1 𝑆1, . . . , cell 𝑎𝑛 𝑆𝑛, cell 𝑐 □, thread (𝑐, call 𝑝 𝑐 𝑎1 . . . 𝑎𝑛)

↦−→

cell 𝑎1 𝑆1, . . . , cell 𝑎𝑛 𝑆𝑛, cell 𝑐 □, thread (𝑐, [𝑐/𝑧, 𝑎1/𝑥1, . . . 𝑎𝑛/𝑥𝑛]𝑃)

Moving values between cells (only for negative types):

thread (𝑎,move 𝑎 𝑏), cell 𝑏 𝑆 ↦−→ cell 𝑎 𝑆, read 𝑏 𝑆

The cut, snip, and reuse rules split a process into two processes:

thread (𝑐, (𝑥 ← 𝑃 ;𝑄)) ↦−→ thread (𝛼, [𝛼/𝑥]𝑃), cell 𝑎 □, thread (𝑐, [𝛼/𝑥]𝑄) (𝛼 fresh)

thread (𝑐, (𝑃 ;𝑄)) ↦−→ thread (𝑎, 𝑃), cell 𝑎 □, thread (𝑐,𝑄) (if dest(𝑃) = {𝑎})

thread (𝑐, reuse 𝛼 (𝑥 ← 𝑃 ;𝑄)), free 𝛼 𝑆, free proj(𝛼) ↦−→ thread (𝛼, [𝛼/𝑥]𝑃), cell 𝑎 □, thread (𝑐, [𝛼/𝑥]𝑄)

Freeing, deallocating, and disposing read cells:

thread (𝑐, free 𝛼 ; 𝑃), read 𝛼 𝑆, read proj(𝛼) ↦−→ thread (𝑐, 𝑃), free 𝛼 𝑆, free proj(𝛼)

thread (𝑐, deallocate 𝛼 ; 𝑃), free 𝛼 𝑆, free proj(𝛼) ↦−→ thread (𝑐, 𝑃)

thread (𝑐, dispose 𝑎; 𝑃), read 𝑎 𝑆, read proj(𝑎) ↦−→ thread (𝑐, 𝑃), referenced 𝑎 𝑆, referenced proj(𝑎)

The judgement 𝑆 ⊲𝑇 is used in the rules for reading general storables 𝑆 out of memory cells. It is defined as:

14

⟨_, _⟩ ⊲ (⟨_, _⟩ ⇒ 𝑃) = 𝑃

⟨⟩ ⊲ (⟨⟩ ⇒ 𝑃) = 𝑃

𝑘 ⟨_⟩ ⊲ (ℓ ⟨_⟩𝑃ℓ)ℓ∈𝐿 = 𝑃𝑘 (𝑘 ∈ 𝐿)

(⟨𝑥, 𝑧⟩ ⇒ 𝑃) ⊲ ⟨𝑎1, 𝑎2⟩ = [𝑎1/𝑥, 𝑎2/𝑧]𝑃

(ℓ (𝑥) ⇒ 𝑃ℓ)ℓ∈𝐿 ⊲ ⟨𝑘,𝑦⟩ = [𝑦/𝑥]𝑃𝑘 (𝑘 ∈ 𝐿)

Each of these rules states how a specific subset of the cells and threads within the configuration can step forward,
transitioning from their previous state to a new one. Many of these rules are the same, or very similar to the corresponding
dynamic rules in SNAX without reuse. Specifically, the rules for writing general storables, calling recursive functions,
and splitting a process into two (via the cut rule) remain the same. The snip rule also remains the same as before, with
the dest(𝑃) judgement being defined in the same manner. A few cases need to be added to account for our four new
constructs, however:

Additional Cases of dest

dest(free 𝑎; 𝑃) = dest(𝑃)

dest(dispose 𝑎; 𝑃) = dest(𝑃)

dest(deallocate 𝑎; 𝑃) = dest(𝑃)

dest(reuse 𝑎(𝑥 ← 𝑃 ;𝑄)) = dest(𝑄)

Lastly, the rule for copying values from one cell to another also remains the same – including the constraint that the
values being copied must be a pointer, function, or lazy product. As stated previously, copy operations for other values
must be 𝜂-expanded into series of reads and writes [1].

The first modified set of rules are those pertaining to reading and writing pointers, ⟨𝑥⟩. In the write case, we must not
only write the pointer ⟨𝑥⟩ to the corresponding cell – we must also change the state of the cell 𝑥 to reflect the fact that
it is now being referenced by a pointer. The type system uses this state to prevent 𝑥 from being used again. Likewise,
when reading, we must ensure that the previously-referenced cell 𝑥 is changed back to an available state, so that the
process 𝑃 that reads the pointer can access 𝑥 ’s contents. This is done in a manner consistent with the definition of 𝑆 ⊲𝑇

for pointers that we had in SNAX.
The rules for reading memory cells are also modified to accommodate the fact that cells stay in the configuration after

they are read, rather than being entirely removed. Reading the data causes the necessary changes to existing threads to
be made from 𝑆 ⊲𝑇 , and also marks the cell as being read. The configuration thus accumulates read cells, each in the
form read 𝑎 𝑆 , which stay there until it is time for them to be freed. Additionally, the storable 𝑆 is kept in the cell, which
both allows the cell to be typed later and allows the reading process to read addresses from this cell.

Finally, there is the matter of the new dynamics that we have added to support the new language features. The dynamic
rule for reusing a cell is nearly identical to the dynamic rule for cut – the only change is that we consume the free cell,
and all of its projections, that we are reusing in place of allocating an entirely new cell. Freeing a cell requires that the
cell, and all of its projections, have been read. We slightly abuse notation by stating in the premise for this rule that
read proj(𝛼) , which is used to express that all of the projections in proj(𝛼) have also been marked as read. This ensures

15

that no further reads to this cell will be attempted, allowing us to safely put it in the free state. Like reuse, deallocating a
cell 𝛼 also requires that it is free, however, this construct simply removes 𝛼 from the configuration entirely and does not
perform further operations on it. Disposing a cell 𝑎 is similar to freeing 𝑎, in that it requires both 𝑎 and proj(𝑎) to be read.
The difference is that their statuses are set to referenced, rather than read. This prevents them from being used further –
no pointers exist to 𝑎, and therefore it cannot be moved out of the read state by using the pointer-reading dynamic rule.

Freeing, reuse, and deallocation all operates on the roots of cells 𝛼 . This requires that the address being freed, reused,
or deallocated cannot contain any projections, ensuring that we do not attempt to free or reuse only part of a memory
cell. It is possible that we might later be able to split up a free cell into multiple parts, each of which could be individually
reused. For example, a cell of type 𝐴1 ⊗ 𝐴2 could be split into two cells, one of type 𝐴1 and one of type 𝐴2. They could
then each be reused or deallocated separately. However, the language does not currently support this. Instead, we
mandate that every cell be reused to store a value of its original type. This allows us to easily guarantee that it is the
correct size for its data.

5.4 Progress

We define a configuration to be final if it has no threads and is entirely made up of cells. Given this definition, we are
able to prove a sequential form of the progress theorem for SNAX with reuse:
Progress: If · ⊨ 𝐶 :: Γ, then either 𝐶 is final or there exists some 𝐶′ such that 𝐶 ↦−→ 𝐶′.
More specifically, we show that the leftmost thread in𝐶 can always step forward. In a similar manner to how progress

was shown for the original SNAX language, we show that this holds by right-to-left induction on the structure of the
derivation · ⊨ 𝐶 :: Γ, which is given to us. We begin by reproducing a lemma from the original proof, which remains
mostly unchanged when memory reuse is present.

Lemma
If Γ ⊢ 𝑃 :: (𝑎 : 𝐴); Γ′, then dest(𝑃) = 𝐴.
The definition of dest(𝑃) has not changed from the original SNAX language, and our statics remain mostly the
same. As such, we proceed in a similar manner, using induction on the derivation of the typing judgement
Γ ⊢ 𝑃 :: (𝑎 : 𝐴); Γ. The most interesting case once again comes from reading a sum:

∀ℓ ∈ 𝐿 : Γ, 𝑎 · ℓ : 𝐴ℓ [available], 𝑎 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 [read] ⊢ 𝑃ℓ :: (𝑐 : 𝐶); Γ′
Γ, 𝑎 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 [available] ⊢ read 𝑎 (ℓ ⟨_⟩ ⇒ 𝑃ℓ)ℓ∈𝐿 :: (𝑐 : 𝐶); Γ′ ⊕l

The inductive hypothesis still applies, giving us that dest(𝑃ℓ) = {𝑐} for all choices of ℓ ∈ 𝐿. Then
⋃

ℓ∈𝐿 dest(𝑃ℓ) = {𝑐}.
The proof of this lemma for the reuse rule is identical to the one for the cut rule. The free construct is handled as
follows:

Γ, 𝛼 : 𝐴[free] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′
Γ, 𝛼 : 𝐴[read], proj(𝛼) [read] ⊢ free 𝛼 ; 𝑃 :: (𝑐 : 𝐶); Γ′ free

By the inductive hypothesis, we know that dest(𝑃) = {𝑐}. The provided definition for dest(free 𝛼 ; 𝑃) then states
that the destination is {𝑐}, as desired. The cases for dispose 𝑎; 𝑃 and deallocate 𝛼 ; 𝑃 are identical. Thus, the lemma
holds, even when the language is extended with memory reuse.

With this lemma, we are now ready to show that the progress theorem holds. We proceed by induction on the given
typing judgement, which states that · ⊨ 𝐶 :: Γ. We then show that any well-typed configuration 𝐶 either is final or can

16

step forward to some 𝐶′. This requires us to strengthen the inductive hypothesis with an additional clause, which states
that every cell 𝑎 in a configuration 𝐶 has the correct status in Γ if · ⊨ 𝐶 :: Γ – and that this property is preserved when
stepping forward. We begin by reproducing the snip case from the original paper on SNAX, to show that the proof of
progress still holds in the same form:

· ⊨ 𝐶 : Γ1

Γ1 ⊢ 𝑃 :: (𝑎 : 𝐴); Γ2 Γ2, 𝑎 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ
Γ1 ⊢ (𝑃 ;𝑄) :: (𝑐 : 𝐶); Γ snip+

Γ1 ⊨ thread (𝑐, (𝑃 ;𝑄)), cell 𝑐 □ :: Γ, 𝑐 : 𝐶 [available] thread

· ⊨ 𝐶, thread (𝑐, (𝑃 ;𝑄)), cell 𝑐 □ :: Γ, 𝑐 : 𝐶 [available]
join

By the inductive hypothesis, either 𝐶 is final or it can step forward to some new configuration 𝐶′. In the former case,
we note that dest(𝑃) is {𝑎}, using the earlier lemma. Our dynamic rule for snips still applies in this case:

𝐶, thread (𝑐, (𝑃 ;𝑄)), cell 𝑐 □ ↦−→ 𝐶, thread (𝑎, 𝑃), cell 𝑎 □, thread (𝑐,𝑄), cell 𝑐 □

On the other hand, if the remainder of the configuration can step forward 𝐶 ↦−→ 𝐶′, then we allow it to do so:

𝐶, thread (𝑐, (𝑃 ;𝑄)), cell 𝑐 □ ↦−→ 𝐶′, thread (𝑐, (𝑃 ;𝑄)), cell 𝑐 □

It follows that any configuration whose typing judgement is derived in this manner can step forward. Progress can be
proved for other constructs in the original SNAX language by translating their progress proofs to work with the new
typing judgements from SNAX with reuse, in a similar manner to the snip example shown here. We now show that
progress holds for the reuse, free, and deallocate rules, which are the three newly added cases that cannot be directly
converted from a SNAX equivalent. To do this, we need another lemma to ensure that the statuses in Γ are accurate:

Lemma (Status Accuracy)

Let 𝐶 be a configuration made up entirely of cells, with no threads – that is, 𝐶 is final. If · ⊨ 𝐶 :: Γ and 𝑎 ∈ Γ with
some status 𝑠 , then 𝑎 exists as a cell in 𝐶 with the status 𝑠 .
We proceed by right-to-left induction on the configuration 𝐶 . 𝐶 cannot be empty, as it contains at least one cell.
Our base cases therefore come when 𝐶 contains one cell. In this case, 𝐶 is typed with one of the single-cell rules.
We can proceed by inversion on the configuration typing rule corresponding to status 𝑠 to conclude that 𝐶 is made
up of a single cell with the desired status.
In the inductive case, we can type the configuration using the Join rule. In particular, we can select 𝐶2 as the
rightmost cell, while 𝐶1 is the remaining cells in the configuration. We now consider the address of the cell in
𝐶2. There are two cases – either this cell has address 𝑎 or it does not. In either case, we consider the judgement
Γ′ ⊨ 𝐶2 :: Γ, which is derived by one of the single-cell typing rules.
If the cell in 𝐶2 is 𝑎, then it follows that the single-cell typing rule added 𝑎 to Γ with the status 𝑠 . Thus, 𝑎 must have
status 𝑠 in the configuration, since no other status could lead to it being added to the context with this status.
If the cell in 𝐶2 has some address 𝑏 ≠ 𝑎, then we know that the single-cell typing rule used for 𝐶2 added 𝑏 ≠ 𝑎 to
the context. It follows that 𝑎 ∈ Γ′ with status 𝑠 . Additionally, we can observe that · ⊨ 𝐶1 :: Γ from the other premise
of the Join rule. We can therefore apply the inductive hypothesis to conclude that 𝑎 is in 𝐶1 (and therefore in 𝐶)
with the status 𝑠 . □

Now that we have our lemma, we can begin with the reuse:

17

· ⊨ 𝐶 : Γ1, 𝑎 : 𝐴[free]

Γ1 ⊢ 𝑃 :: (𝑥 : 𝐴); Γ2 Γ2, 𝑥 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ
Γ1, 𝑎 : 𝐴[free] ⊢ reuse 𝑎(𝑥 ← 𝑃 ;𝑄) :: (𝑐 : 𝐶); Γ reuse

Γ1, 𝑎 : 𝐴[free] ⊨ thread (𝑐, reuse 𝑎(𝑥 ← 𝑃 ;𝑄)), cell 𝑐 □ :: Γ, 𝑐 : 𝐶 [available] thread

· ⊨ 𝐶, thread (𝑐, reuse 𝑎(𝑥 ← 𝑃 ;𝑄)), cell 𝑐 □ :: Γ, 𝑐 : 𝐶 [available]
join

Once again, we note that either 𝐶 is final or 𝐶 ↦−→ 𝐶′ for some other configuration 𝐶′. In the first case, it must hold
that 𝐶 contains the cell free 𝑎 𝑆 for some storable 𝑆 of type 𝐴, and it must also contain the cells free proj(𝑎) for any
applicable projections. This is because 𝐶 is final, meaning our reusing thread is the leftmost process in the configuration,
and we can therefore apply our lemma on 𝑎 for all of these cells. Therefore, we can rewrite 𝐶 as the configuration
𝐶′′, free 𝑎 𝑆, free proj(𝑎) . It then follows that we can step forward as follows:

𝐶′′, free 𝑎 𝑆, free proj(𝑎) , thread (𝑐, reuse 𝑎(𝑥 ← 𝑃 ;𝑄)), cell 𝑐 □ ↦−→ 𝐶′′, thread (𝑎, 𝑃), cell 𝑎 □, thread (𝑐,𝑄), cell 𝑐 □

In the second case, we allow 𝐶 to step forward to 𝐶′, thus making the configuration as a whole step forward as before.
The case for deallocating a freed cell is very similar, albeit somewhat simpler:

· ⊨ 𝐶 : Γ1, 𝑎 : 𝐴[free]

Γ1 ⊢ 𝑃 :: (𝑐 : 𝐶); Γ
Γ1, 𝑎 : 𝐴[free] ⊢ deallocate 𝑎; 𝑃 :: (𝑐 : 𝐶); Γ dealloc

Γ1, 𝑎 : 𝐴[free] ⊨ thread (𝑐, deallocate 𝑎; 𝑃), cell 𝑐 □ :: Γ, 𝑐 : 𝐶 [available] thread

· ⊨ 𝐶, thread (𝑐, deallocate 𝑎; 𝑃), cell 𝑐 □ :: Γ, 𝑐 : 𝐶 [available]
join

Once again, we note that 𝐶 is either final or 𝐶 ↦−→ 𝐶′. If 𝐶 is final, then it contains free 𝑎 𝑆 and free proj(𝑎) by
the lemma. This enables the dynamic rule for deallocation to take effect. If 𝐶 ↦−→ 𝐶′, then we can step the entire
configuration forward by stepping 𝐶 forward.

The final cases are for freeing or disposing a cell that has previously been read. Progress in these cases is proved in a
very similar manner to how we showed progress for the deallocate construct. The sole change is that instead of looking
for the cell free 𝑎 𝑆 in 𝐶 , we instead look for read 𝑎 𝑆 and its read projections so that we can transition them to either
free 𝑎 𝑆 or referenced 𝑎 𝑆 . Indeed, these cells must exist in𝐶 using the same lemma as before. It follows that the progress
theorem holds for both the previously existing forms for processes and the newly added ones. Thus, progress holds for
SNAX with reuse as a whole.

5.5 Preservation

Preservation: If Γ ⊨ 𝐶 :: Γ′ and 𝐶 ↦−→ 𝐶′, then Γ ⊨ 𝐶′ :: Γ′′, where Γ′ ⊆ Γ′′.
Most cases of preservation actually show a stricter claim, where Γ′ = Γ′′. We previously allowed Γ′ ⊆ Γ′′ because

cells introduced by the step forward persisted until the end of the program. This comes from the fact that the original
SNAX language was not linear. Now, this requirement comes about because certain steps, such as functions and lazy
products, cause additional garbage to be added to the configuration that will not be freed and deallocated.
To show this, we begin by observing that our contexts are no longer separated into configuration contexts Φ and

process contexts Γ – rather, the general form of contexts Γ is used for typing all of these things. The lemmas B.1 through
B.3 still hold in a slightly modified form. Lemma B.4 is irrelevant, since it describes a form of weakening which is not
used in linear SNAX. The proofs are identical to those in the SNAX paper, replacing Φ with Γ where appropriate [1].

18

Lemma
Lemma 1: If 𝑎 ≻ 𝑏 and 𝑎 ≻ 𝑐 , then either 𝑏 ⪰ 𝑐 or 𝑐 ⪰ 𝑏.
Lemma 2: If Γ, 𝑎 : 𝐴[available] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′, then 𝑎 ≻ 𝑐 .
Lemma 3: If Γ, 𝑎 : 𝐴[available], 𝑏 : 𝐵 [available] ⊢ 𝑃 :: (𝑐 : 𝐶); Γ′, then 𝑎 ⪰̸ 𝑏 and 𝑏 ⪰̸ 𝑎.

The preservation theorem can be shown by induction on the dynamic rule used to step 𝐶 ↦−→ 𝐶′. These lemmas
are relevant to show that the preservation theorem holds in some of the cases presented in the original SNAX paper.
The dynamics for these cases remain unmodified after our changes, and their proofs of preservation therefore remain
identical.

The interesting cases come from the new dynamics that we have modified and added to the language. The first such
dynamic is the read rule, which has now been changed to mark a cell as read after reading it, rather than removing it
entirely from the configuration. Reads can appear in several forms, each corresponding to the type of the value that is
being read. Two cases of preservation for the read rule appear in Appendix A.
We now show preservation for the free construct. To do this, we need to show that the initial configuration can be

typed as follows:

Γ0 ⊨ read 𝛼 𝑆, read proj(𝛼) , thread (𝑎, free 𝛼 ; 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available]

The types of the cells in this configuration can be found using the following derivation:

A =

D
Γ𝑎0 ⊢ write (𝛼, 𝑆) :: (𝛼 : 𝜏); Γ′0
Γ0 ⊨ read 𝛼, 𝑆 :: Γ0, 𝛼 : 𝜏 [read] Read

. . .

Γ0, 𝛼 : 𝜏 [read] ⊨ read proj(𝛼) :: Γ0, 𝛼 : 𝜏 [read], proj(𝛼) [read] Join

Γ0 ⊨ read 𝛼 𝑆, read proj(𝛼) :: Γ0, 𝛼 : 𝜏 [read], proj(𝛼) [read] Join

Here, the . . . represents the things that are needed to conclude that the projections of 𝛼 are all in a read state. This can
be done by applying the Join rule several times to type each of the individual read cells represented by the read proj(𝛼)
in the configuration. A similar technique can be used to find the type of 𝛼 and its projections when they are all freed:

A′ =

D
Γ𝑎0 ⊢ write (𝛼, 𝑆) :: (𝛼 : 𝜏); Γ′0
Γ0 ⊨ free 𝛼, 𝑆 :: Γ0, 𝛼 : 𝜏 [free] Free

. . .

Γ0, 𝛼 : 𝜏 [read] ⊨ free proj(𝛼) :: Γ0, 𝛼 : 𝜏 [read], proj(𝛼) [free] Join

Γ0 ⊨ free 𝛼 𝑆, free proj(𝛼) :: Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] Join

Then we get the following:

A

E
Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊢ 𝑃 : (𝑎 : 𝐴); Γ1

Γ0, 𝛼 : 𝜏 [read], proj(𝛼) [read] ⊢ free 𝛼 ; 𝑃 :: (𝑎 : 𝐴); Γ1
Free

Γ0, 𝛼 : 𝜏 [read], proj(𝛼) [read] ⊨ thread (𝑎, free 𝛼 ; 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Thread

Γ0 ⊨ read (𝛼, 𝑆), read proj(𝛼), thread (𝑎, free 𝛼 ; 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Join

↦−→

A′

E
Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊢ 𝑃 :: (𝑎 : 𝐴); Γ1

Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊨ thread (𝑎, 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Thread

Γ0 ⊨ free (𝛼, 𝑆), free proj(𝛼), thread (𝑎, 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Join

This proof of preservation also works for the dispose construct, if we replace the instances of “free” with “referenced”

19

in the proof trees and allow it to be applied to a general address 𝑎 instead of a root 𝛼 . After a cell has been freed, we can
reuse it to allow two processes to communicate. This step also obeys the preservation theorem, which uses the same
derivationA′ that we used in the previous proof to type a free cell and its free projections. We use [a] as an abbreviation
for [available] in this proof, where necessary.

A′

E
Γ0 ⊢ 𝑃 :: (𝛼 : 𝐴); Γ1

F
Γ1, 𝛼 : 𝐴[available] ⊢ 𝑄 :: (𝑏 : 𝐵); Γ2

Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊢ reuse 𝛼 ← 𝑃 ;𝑄 :: (𝑏 : 𝐵); Γ2
Reuse

Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊨ thread (𝑏, reuse 𝛼 ← 𝑃 ;𝑄), cell 𝑏 □ :: Γ2, 𝑏 : 𝐵 [available] Thread

Γ0 ⊨ free 𝛼 𝑆, free proj(𝛼), thread (𝑏, reuse 𝛼 ← 𝑃 ;𝑄), cell 𝑏 □ :: Γ2, 𝑏 : 𝐵 [available] Join

↦−→
E

Γ0 ⊢ 𝑃 :: (𝛼 : 𝐴); Γ1
Γ0 ⊨ thread (𝛼, 𝑃), cell 𝛼 □ :: Γ1, 𝛼 : 𝜏 [a] Thread

F
Γ1, 𝛼 : 𝜏 [a] ⊢ 𝑄 :: (𝑏 : 𝐵); Γ2

Γ1, 𝛼 : 𝜏 [a] ⊨ thread (𝑏,𝑄), cell 𝑏 □ :: Γ2, 𝑏 : 𝐵 [a] Thread

Γ0 ⊨ thread (𝛼, 𝑃), cell 𝛼 □, thread (𝑏,𝑄), cell 𝑏 □ :: Γ2, 𝑏 : 𝐵 [a] Join

Finally, there is the matter of deallocating a cell that has already been freed:

A′

E
Γ0 ⊢ 𝑃 :: (𝑎 : 𝐴); Γ1

Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊢ dealloc 𝛼 ; 𝑃 :: (𝑎 : 𝐴); Γ1
Dealloc

Γ0, 𝛼 : 𝜏 [free], proj(𝛼) [free] ⊨ thread (𝑎, dealloc 𝛼 ; 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Thread

Γ0 ⊨ free 𝛼 𝑆, free proj(𝛼), thread (𝑎, dealloc 𝛼 ; 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Join

↦−→
E

Γ0 ⊢ 𝑃 :: (𝑎 : 𝐴); Γ1
Γ0 ⊨ thread (𝑎, 𝑃), cell 𝑎 □ :: Γ1, 𝑎 : 𝐴[available] Thread

It follows that both progress and preservation hold for our language when it is executed sequentially – that is, SNAX
with reuse still remains type safe.

6 Compilation

The grammar of SNAX is fairly low-level. Programs directly written in the SNAX language are mostly made up of
read and write operations to memory cells, rather than higher level computations. This allows a fine-grained level of
control over what the program is doing in memory. However, it also makes SNAX programs difficult to write – much
like assembly, each individual move operation must be controlled by the user. Thus, we do not anticipate that many
programs will be written directly into SNAX. Instead, users will likely write code in some front-end language, which is a
higher-level language which is more user-friendly.

In our examples, we use a front-end language, which is based off of natural deduction as described by Gentzen in his
paper [4]. This language is being developed by Jang et al. in their unpublished work on adjoint natural deduction [6]. It
operates in a similar manner to existing functional languages, such as Standard ML and OCaml. Users are able to define
their own custom types and datatypes, and can assign them names. They can also define functions, which have access to
features such as pattern matching and recursion. This natural deduction framework is only one possible front-end for
our language – other languages can also be made to compile down to SNAX.
We chose this particular front-end because it is fairly versatile in that it supports several modes for each function.

20

The two defining traits of a particular mode are whether it supports weakening and whether it supports contraction.
The first criterion, weakening, specifies whether we are allowed to remove a variable from the context. In practice, this
corresponds to dropping a variable without using it in any way. The second criterion, contraction, specifies whether
we are allowed to make multiple “copies” of a variable within the context. In a real program, this would correspond to
using a variable multiple times – if we use a variable twice, this is equivalent to creating two copies of that variable and
consuming each one.
Linear logic, which has been used throughout our description of SNAX with reuse, supports neither weakening nor

contraction. The front-end supports linear logic by allowing the user to specify that both weakening and contraction are
disallowed for a particular function’s inputs and outputs. Likewise, the user can specify that weakening and contraction
are allowed to get the standard form of constructive logic, or specify that only weakening is allowed to get affine logic.
Moreover, the user can create mode variables to represent the modes of particular things. These variables are filled in by
the type system, and can result in functions which are polymorphic across modes. The result is an adjoint system, which
combines multiple logical modes into a single language. Our memory reuse optimizations are applied to the linear and
affine types of this adjoint code, which both do not support contraction. This means that we can immediately free any
cell that is read in these modes, allowing us to reuse their memory.
The compiler and interpreter for this language are both written in Standard ML, which is compiled with MLton to

produce the runtime. The first step in compiling functions which are polymorphic across modes is to monomorphize
them. This means that a function which is used at two modes𝑀 and 𝑁 gets elaborated into two functions – one at mode
𝑀 and one at mode 𝑁 . Each of the two functions is used in the places where its mode matches the mode in which it is
being called. The two functions perform identical computations, but are treated as separate functions by the compiler.
After the monomorphization of functions occurs, the compiler then performs closure conversion and hoisting. Functions
that are defined with reference to variables in their environments – that is, closures – are adapted to no longer reference
their environments. They are then moved to the top level to make code generation easier.
It is at this point that the compilation branches to allow compilation to various middle-end languages. Currently,

our compiler allows us to use either SAX or SNAX as the next intermediate language. This means that the memory
optimizations provided by SNAX can be toggled on and off as necessary. Moreover, the SAX and SNAX code produced
can be written with or without reuse, which allows us to have a further degree of control over the compilation process.
At this point, the program has been translated to a series of SAX or SNAX functions, each of which is made up of read,
write, cut, and identity operations. Some optimizations are added here – one notable optimization removes unnecessary
move operations. From this point, the only thing left to do is to translate this code to C. The C code is then handled by
GCC to create the final executable.

7 Memory Reuse Example

To illustrate our compilation process, as well as show where reuses can be inserted into a SNAX program, we consider
the process of repeatedly decrementing a binary number. This code was generated by our binary counter benchmark,
which measures memory efficiency by starting with the binary number for 216 and repeatedly decrements it until it
reaches 0. We begin by defining our type of binary numbers. In our natural deduction syntax, the code to do this looks
like:

21

1 type std[m] = +{'b0 : <pos[m]>, 'b1 : <std[m]>, 'e : 1}

2 type pos[m] = +{'b0 : <pos[m]>, 'b1 : <std[m]> }

Here, we define std to be the type of standard binary numbers that we will use. We define it as a recursive sum
with three constructors. ’e is the constructor for an empty binary number, which is equal to 0. ’b0 and ’b1 are both
constructors, which represent that the least significant bit of the binary number is 0 or 1 respectively. They each hold a
pointer to the remaining portion of the binary number as well, which is represented by the <pos[m]> – note the angle
brackets to denote that this is a pointer to a pos, and not the pos value itself. The pos type is used to represent a positive
(i.e. non-zero) binary number. A number with a least significant bit of 0 is required to have the remainder of the number
be positive, to prevent leading zeroes. The [m] attached to each bin is a variable representing the mode. In SNAX, this
compiles to the following type declaration:

1 type std[m] = +{'b0 : down[m] pos[m], 'b1 : down[m] std[m], 'e : 1}

2 type pos[m] = +{'b0 : down[m] pos[m], 'b1 : down[m] std[m]}

This type is defined similarly, with the only change being that the type of a pointer to a standard binary number is
written as down[m] std[m] instead of as <std[m]>. In memory, a cell of type std would then be made up of two words
– the first is the label for the sum, and the second is the pointer to the rest of the number. In the ’e case, the second word
would remain unused.

Now that we have established the type of a binary number, we are ready to write code using these binary numbers.
The first function we will present decrements a binary number with a simple algorithm. If the number is already empty,
then we return the empty number again – our binary number type does not support negative numbers, so there is no
way to decrement 0. Otherwise, we look at the least significant bit of the number. If it is 0, then we change it to 1,
and decrement the rest of the number. If it is 1, then we have to check what the rest of the number is. If there are no
further digits, then decrementing results in an empty number. However, if there are further digits, we simply set the
least significant bit to 0 and return.

1 defn dec x = match x with

2 | 'b0 <x> => 'b1 <dec x>

3 | 'b1 <'e()> => 'e()

4 | 'b1 <'b0 <x>> => 'b0 <'b0 <x>>

5 | 'b1 <'b1 <x>> => 'b0 <'b1 <x>>

6 | 'e() => 'e()

The first line shows the syntax for declaring a function, which takes a single variable x as its input. We then match x

against one of five patterns, which each correspond to one of the possible labels for a value of type bin. In each of these
cases, we change the number according to our algorithm, and then return the resulting binary number. This includes a
recursive call in the ’b0 case, where we must decrement the remaining bits of the number. Note that we have to explicitly
write out the ’b1 <’b0 <x>> and ’b1 <’b1 <x>> cases, rather than matching the inner pointer with a variable. This is
because we are not allowed to match one branch (the ’e branch) with an explicit constructor, and then use a variable in
the other cases.

This code compiles to the following SNAX code, after we monomorphize it, perform closure conversion, and translate
match statements to read statements:

22

1 proc dec/0 ($0:std[L]) (x:std[L]) =

2 read x =>

3 | 'b0(_) =>

4 read x.b0 <$1> =>

5 cut $2 = x : std[L] % reuse

6 call dec/0 $2 $1

7 write $0.b1 <$2>

8 write $0 'b1(_)

9 | 'b1(_) =>

10 read x.b1 <$4> =>

11 read $4 =>

12 | 'b0(_) =>

13 read $4.b0 <$5> =>

14 cut $6 = $4 : pos[L] % reuse

15 write $6.b0 <$5>

16 write $6 'b0(_)

17 write $0.b0 <$6>

18 write $0 'b0(_)

19 | 'b1(_) =>

20 read $4.b1 <$8> =>

21 cut $9 = $4 : pos[L] % reuse

22 write $9.b1 <$8>

23 write $9 'b1(_)

24 write $0.b0 <$9>

25 write $0 'b0(_)

26 | 'e(_) =>

27 read $4.e () =>

28 write $0.e ()

29 write $0 'e(_)

30 | 'e(_) =>

31 read x.e () =>

32 write $0.e ()

33 write $0 'e(_)

The declaration of functions in SNAX is somewhat different from that of our natural deduction syntax. The process
that we define, named dec/0, now takes two arguments. This comes about because SNAX functions are written in
destination-passing style, where the first argument to the function is the location to which it should write its output. The
second argument, x, is the actual input to the function. The [L] markings on both arguments denote that the function
has been monomorphized to take a linear argument and write a linear output.
The program begins by casing on the label in x. In each case, it reads the projections of x as well, before proceeding

according to the specification. Of particular note are the cut operations on lines 5, 14, and 21. These operations use

23

a special form of cut to denote the fact that we are reusing memory. On line 5, we reuse x to store the result of the
recursive call to dec, while on line 14, the memory cell $4 is reused to hold the upper bits of the number.

The concrete syntax here is slightly different from the abstract syntax that we have previously used for SNAX programs.
While we still read the projections of a cell all at once, we do not have an explicit free statement at the end of the series
of read operations. The purpose of this statement in the abstract syntax was to flag the cell as being available for reuse.
However, this availability is tracked internally by the compiler, and therefore does not need to be emitted to the SNAX
code. Furthermore, cut is used to represent both cut operations and reuse operations. If an already-read linear cell is
available when a cut of the same type is occurring, then it is automatically reused.

This compiled code has also taken advantage of another opportunity for memory reuse on lines 14 and 21. The cell $4
has type std, however, we are reusing it to store a value of type pos. While this is not explicitly permitted by our type
theory, the compiler can conclude that this reuse is safe by noting that pos is actually a subtype of std! Since this is the
case, we are able to take advantage of the similar memory layouts of the two types and reuse a memory cell from one
type to store a value from the other.

Now that we have compiled the decrement function, we can write a recursive function that repeatedly decrements a
number until it has reached 0. In our front-end, the code is:

1 defn count_down x = match x with

2 | 'e() => ()

3 | 'b0 <x> => count_down (dec ('b0 <x>))

4 | 'b1 <x> => count_down (dec ('b1 <x>))

This compiles to the following SNAX code:

1 proc count_down/0 ($0:1) (x:std[L]) =

2 read x =>

3 | 'b0(_) =>

4 read x.b0 <$1> =>

5 cut $2 = x : std[L] % reuse

6 cut $3:std[L]

7 write $3.b0 <$1>

8 write $3 'b0(_)

9 call dec/0 $2 $3

10 call count_down/0 $0 $2

11 | 'b1(_) =>

12 read x.b1 <$5> =>

13 cut $6 = x : std[L] % reuse

14 cut $7:std[L]

15 write $7.b1 <$5>

16 write $7 'b1(_)

17 call dec/0 $6 $7

18 call count_down/0 $0 $6

24

Benchmark Name Description

count Repeatedly subtracts 1 from the binary number 216 until it reaches 0.

bst Performs operations on a binary search tree such as insertion and deletion.

dequeue Inserts elements into a double-ended queue, which is represented by two lists.

escardo Performs arithmetic on real numbers using Escardó’s representation [3].

fibsum Performs arithmetic on integers represented using Fibonacci encodings.

list Tests list creation and deletion, as well as operations like mapping and folding.

perms Enumerates the permutations of the input list.

trie Insertions and deletions for a set of binary numbers that is represented using a trie.

Figure 1: The list of benchmarks and what computations each one performs.

19 | 'e(_) =>

20 read x.e () =>

21 write $0 ()

Once again, SNAX is able to reuse the read cell x to hold another value of type std. In the first branch, $2 is used as
the argument to the recursive call. It is reused on line 5 after x is completely read, and gets used on lines 9 and 10 where
it receives the output from dec and passes this output into count_down. As such, the SNAX runtime identifies this as
an opportunity for reuse, and uses x here rather than allocating a new cell. The same holds for $6 on line 13, which is
reused in a similar manner.

8 Impacts of Memory Reuse

To measure the impacts of memory reuse, the compiler that we previously described was instrumented. The programs it
generates, in both SAX and SNAX, track the number of allocations they make and what the total size of those allocations
are, in machine words. When reuse is enabled, these programs also track how many words are reused. To test the
effectiveness of our changes, we then ran a set of benchmarks, which are described in Figure 1.
Each of these benchmarks was run in both SAX and SNAX with reuse enabled. In both languages, we tracked the

number of words allocated, as well as the number of words that were reused. Summing these gives the number of
allocations that would have been used if the program was running without reuse, since the reuses in our system replace
allocations that otherwise would have required a fresh cell to be created.
The tables in Figure 2 and 3 summarize our results. In Figure 2, the first three columns for each benchmark state

the number of allocations and reuses in SAX with reuse (which we abbreviate to rSAX), as well as the total number of
allocations that would have been necessary when running the benchmark in SAX without reuse. The fourth column
states the percentage of SAX allocations that still occur in the rSAX program. Figure 3 states the same data for rSNAX
and SNAX.

25

Benchmark rSAX allocations rSAX reuses SAX allocations % of original

count 196724 589878 786602 25.01%

bst 261988 491732 753720 34.76%

dequeue 52397 51658 104055 50.36%

escardo 1561258 397699 1958957 79.70%

list 6743 394752 401495 1.68%

perms 230630 140444 371074 62.15%

trie 785946 338537 1124483 69.89%

Figure 2: The results from the SAX versions of the benchmarks. The total sizes of allocations and reuses given here are
measured in words. The last column measures the percentage of the original program’s allocations that are still
used in the program with memory reuse – a lower percentage is better.

Benchmark rSNAX allocations rSNAX reuses SNAX allocations % of original (lower is better)

count 131152 393266 524418 25.01%

bst 278142 135152 413294 67.30%

dequeue 52410 10746 63156 82.98%

escardo 1029802 38653 1068455 96.38%

list 5960 197376 203336 2.93%

perms 149421 71970 221391 67.49%

trie 550822 241856 792678 69.49%

Figure 3: The same metrics from the SNAX versions of the benchmarks.

26

Figure 4: The fraction of the original number of allocations that are needed after enabling reuse in both SAX and SNAX.

As expected, the data indicates that the overall number of words allocated decreases when using SNAX instead of
SAX. This can be attributed to the lower number of pointers that are allocated when the program is run in SNAX instead.
In all of the benchmarks, SNAX allocated fewer words than SAX. Moreover, rSAX allocated significantly fewer words
than SAX on most of the benchmarks. The same relationship holds between rSNAX and SNAX, as expected.

Figure 4 provides a more interesting comparison. By dividing the number of words allocated by rSAX on a particular
benchmark by the number of words allocated by SAX on the same program, we are able to determine the fraction of
allocations that are still necessary. These fractions form the blue series in the column chart, while the purple series
represents the coresponding metrics for SNAX. On almost every benchmark, we can see that enabling reuse for SAX
is more impactful than enabling reuse for SNAX. This is likely because the original SAX language inefficiently uses
pointers, leading to more opportunities for reuse arising.

We can also see that escardo is a particularly bad test case for memory reuse in SNAX, as it offers nearly no advantage
when compared to running escardo without memory reuse. Strangely, enabling memory reuse for tries in SNAX is
actually more impactful than enabling it in SAX. This could indicate an inefficiency in the SNAX layout for tries. However,
this gap is only 0.4%, which could be considered negligible.
Figure 5 demonstrates the overall impacts of both the memory reuse and memory layout optimizations. For each

benchmark, we used the number of allocations from SAX without reuse as our baseline. The number of allocations
needed by each optimized language wa divided by the baseline value to find the fraction of allocations that it required –
a lower fraction indicates that less memory was needed, and that it was more efficiently used.

Adding reuse to SNAX was effective in most cases. rSNAX generally outperformed both rSAX, which only had memory
reuse, and SNAX, which only had the improved memory layout. The two exceptions were BST and fibsum, where rSAX
used less memory than rSNAX in total. There are a few reasons why this might be the case. The first is because cells
in SNAX of type 𝐴 can only be reused to store values of type 𝐴, or any of its subtypes. In contrast, SAX cells can be

27

Figure 5: The relative impacts of only reuse optimizations (red), only layout optimizations (blue), and both types (purple).

reused to store values of any type, since they are all the same size. This means that SNAX might have to allocate new
cells in places where SAX could reuse a cell that previously stored a different type. The second reason this might be
happening relates to function calls. If function 𝑓 frees a cell and then calls function 𝑔, the free cell is not available to 𝑔 to
reuse. If the output of 𝑔 is part of some large SNAX memory cell, then it will have to rewrite the entire cell. In contrast,
SAX programs can reuse most of the cell, and have 𝑔 return only the part that it has changed, leading to better memory
efficiency.
rSNAX performed particularly well in benchmarks that involved repeated operations, such as counting, generating

permutations, and trie operations. In each of these three cases, it outperformed both rSAX and SNAX by a significant
fraction. It also provided significant improvements on the list benchmark, much like rSAX did – lists allocate many
nodes, creating many reuse opportunities.
Tests such as dequeue and escardo were less successful for rSNAX, but they still demonstrated that rSNAX was no

worse than rSAX and SNAX. Part of the reason that all three languages still need at least 50% of the memory that SAX
needs on these cases is that these test cases are adjoint – they contain both linear and nonlinear components. Memory
reuse only affects the linear components, so it is less effective on adjoint tests.

From these benchmarks, we can conclude that SNAX with reuse generally performs better SAX with reuse, as it uses
fewer allocations on most of the benchmarks. Likewise, it allocates significantly less memory than SNAX in most cases.
As such, it appears that SNAX with reuse has successfully unified the performance gains from memory reuse with the
improved memory layout that is provided by SNAX. The relative impact of adding memory reuse to SNAX is less than
that of SAX, but this is because many cells that get reused in SAX store pointers which are optimized out in SNAX.
Thus, memory reuse in SNAX is still impactful and improves the efficiency of programs by reducing their number of
allocations.

28

9 Comparison with Existing Work

The linear process calculus that we have described represents one way to solve the problem of memory reuse in functional
computation. This is a particularly interesting problem because it offers a way to reduce the number of allocations that
functional programs perform. The nature of functional programs is that they will write many persistent, immutable
values to memory, where they are stored until the end of the program whether they are needed or not. This causes
them to perform many memory allocations, which can create a significant impact on performance in a few ways. The
most obvious one comes from the fact that the memory allocator is being repeatedly called, adding to the runtime.
Another problem that can arise comes when the program runs out of heap space. When this occurs, the program is
forced to perform a process known as garbage collection, where values that are no longer needed are deallocated to free
up memory for further allocations. Researchers seeking to optimize both memory reuse and garbage collection have
therefore investigated systems similar to SNAX with reuse.
One similar system is Perceus, which was described by Reinking et al. in their 2021 paper [9]. Like SNAX, Perceus

aims to use memory reuse to avoid garbage collection. However, the way that they go about doing this is different
from our approach. Instead of making memory cells linear, Perceus keeps a reference count for every memory cell,
which represents the number of pointers to each that cell which currently exist. If this count ever reaches 0 for a cell,
then the cell is no longer needed and can be deallocated or reused. In this way, Perceus allows a more flexible form of
programming since values can be referenced multiple times.
In contrast, our adjoint approach requires that each cells must be used at most once if they are also being reused.

From a reference-counting perspective, this can be seen as forcing every cell to always have a reference count of either 0
or 1. This invariant further simplifies the language, for what might initially appear to be no useful gain. However, it
also makes programming easier for the end user, as they do not have to infer when memory is deallocated and reused
based on their high-level code. Furthermore, using a linear system introduces the potential to run processes in the
configuration concurrently. With linearity, a process can immediately free a cell after it is used.

In contrast, in a reference-counting language, a process would have to decrement the reference count for a cell after it
is done reading it. However, this has the potential to cause concurrency issues, such as the ABA problem, to arise. The
concurrent program itself is safe, because values are only read from cells and are not mutated. However, any process that
is a reader for a particular cell then becomes a writer for its reference count! Thus, if two concurrent reads target the
same cell, then it is possible that the reference count could be inaccurate after the reads have completed. This could cause
garbage to accumulate, or even lead to a cell being freed when it is still needed. It is possible to resolve this problem by
ensuring that the changes to reference counts are atomic, however, linearity provides a simpler solution to this problem.

Another system that investigates similar problems to our work is Microsoft Research’s FP2, which was was published
in Lorenzen, Leijen, and Swierstra’s 2023 technical report [7]. FP2 approaches the problem of memory reuse in a similar
manner to our language – it is linear and aims to use said linearity to reduce the number of allocations overall. It frames
its memory reuse in the context of in-place updates. The central idea behind these updates is that a common way to
interact with a (possibly recursive) data structure of some type 𝜏 is to read it, perform some small modification, and then
write a new value of type 𝜏 to the same location. Indeed, this pattern of in-place updates was one of the motivations for
SNAX with reuse.

However, the similarities between FP2 and SNAX end at this point. The implementation of FP2 that the authors present
is based on reference counting, much like Perceus. Functions that perform in-place updates on a data structure then

29

perform the update in-place if and only if they hold the last remaining reference to that block of memory – otherwise,
they allocate new values since the old data is still being used. Moreover, FP2’s memory reuses are limited in comparison
to SNAX, since it only reuses memory in the case where a data structure is being updated in-place. In contrast, SNAX can
reuse a cell of type 𝐴 for any other value of type 𝐴, regardless of whether the new value is related to the old one. While
many instances of reuse fall into the category of in-place updates, there are certainly still other reuse opportunities that
FP2 cannot take advantage of.
As such, SNAX represents another language that solves the problems of memory reuse in functional programming,

with the intent of reducing memory allocation overall. This idea is closely connected to the problems of reducing the
overhead of garbage collection and performing in-place updates on data structures. Linear SNAX with memory reuse
addresses both of these problems in different ways from the existing solutions of Perceus and FP2. Linearity allows for
easy garbage collection since a cell must be freed as soon as it is read, entirely eliminating the need for complex garbage
collection routines. Additionally, the in-place update patterns that FP2 optimizes translate to clear opportunities for reuse
in our language as well. SNAX with reuse therefore provides a similar, but not identical, approach to these problems.

10 Future Work

One potential research direction is to further optimize the generated code when rewriting certain memory cells. Suppose
we are reading a cell 𝑎 that belongs to some labeled sum type, where the potential labels are ℓ1 and ℓ2. If we reuse 𝑎 along
the ℓ1 branch, then we know that 𝑎 contains the label ℓ1. However, the compiler will overwrite all of 𝑎 when writing
the new value into it after a reuse. This can lead to unnecessary writes, as we might overwrite the word containing a
label with the same label that it held previously. Likewise, updates to data structures can leave many of the values in a
memory cell unchanged, despite having to rewrite them. In the future, it might be useful to instrument the compiler
with a way to detect what values are stored in a cell after it is freed, and use this information to minimize the amount of
words that are written when the cell is eventually reused.

Another improvement that could be made is to allow a more diverse set of reuse operations. Currently, we stipulate
that reuses must be done on the root of a cell 𝛼 : 𝐴, and that the new value must also be of type 𝐴. The most obvious
way to add more reuse opportunities to the language is to allow 𝛼 to be reused to other types. More specifically, we
could find the set of types whose representations are the same size as type 𝐴, and allow any of these to be stored in 𝛼

after reuse. However, this comes with a potential problem – this reuse must be kept strictly internal to the compiler,
since the user should not need to be aware of the internal implementation of types.

A different way to increase the number of reuse opportunities is to allow a free cell to be split into multiple free cells,
each of which can be reused individually. The primary impact of this would be on cells of type 𝐴1 ⊗ 𝐴2. In the flat
memory layout of SNAX, these cells are represented as a cell of type 𝐴1 directly before a cell of type 𝐴2. The first portion
could thus be reused to store a value of type 𝐴1, while the second portion could be reused to store a separate value of
type 𝐴2 at a different time. Similar opportunities come up with sums and pointers. Removing the label from a cell that
stores a sum creates a cell that can store a value of one of the summand types. Pointers are all the same size anyhow,
and therefore always present these reuse opportunities. These improvements could bring significant speedups to the
compiled executables, and also further reduce their memory usage.

A third way to increase the number of reuse opportunities comes around function boundaries, like the ones described
in the fibsum benchmark. If a function 𝑓 calls another function 𝑔 using the call construct, then 𝑔 does not have access to

30

any resources beyond its arguments. This can be problematic for memory reuse if 𝑓 has freed a cell that 𝑔 would be able
to reuse. Thus, another optimization that we would like to investigate is adding the ability for a process to take free cells
as inputs. An argument that is given in a free state could then be reused, giving the callee access to a memory cell from
the caller. This would allow them to reuse these cells that would otherwise be wasted.
Function boundaries also cause problems because they can generate garbage in the form of [referenced] cells which

have no actual references. When we were defining functions, we stated that a function that uses up the memory cells in
Γ must conclude with these cells somehow ending in a referenced state. This sometimes naturally happens because a
pointer to something in Γ is written to the output. However, it also can come about because the function disposes the
cell to comply with the requirements from its typing rule. Disposed cells have no references and therefore cannot ever
be freed or reused, losing out on potential reuse opportunities. The same problem applies to lazy products, which are the
other negative type in our language.

The final potential research direction is to add concurrency to our language. The original SNAX language, in both its
linear and nonlinear forms, permitted concurrency. This stemmed from the fact that memory cells could only be read
after they were initially written, preventing race conditions from occurring. In the linear setting, a cell 𝑎 can only be
read once, and then it no longer exists. The type system therefore requries that 𝑎 is written exactly once, and that it is
read exactly once. The process reading 𝑎 blocks until 𝑎 is written, therefore, no uninitialized reads can occur either. In
the nonlinear setting, 𝑎 is written exactly once, and then other processes can read 𝑎 an unlimited number of times – the
cell 𝑎 persists to the end of the program. However, since 𝑎’s contents do not change, no race conditions on 𝑎 can occur.
After all, every read from cell 𝑎 reads identical data, ensuring that the program outputs a consistent result.

Throughout this paper, we have been presenting a sequential form of SNAX, where the leftmost process in the
configuration is always the one to step forward. If we lift this restriction and allow any thread to step forward, we get a
concurrent form of SNAX. Unfortunately, adding concurrency to SNAX with memory reuse can create race conditions in
certain programs. This problem becomes evident when considering a simple configuration like the following:

cell 𝑎 ⟨⟩

thread (𝑏, read 𝑎(𝑛 ⇒ free 𝑎; reuse (𝑎 ← (write 𝑥 (2 · 𝑛); write 𝑏 ⟨⟩)))

cell 𝑏 □

thread (𝑐, read 𝑎(𝑛 ⇒ free 𝑎; reuse (𝑎 ← (write 𝑥 (𝑛 + 1); write 𝑐 ⟨⟩)))

cell 𝑐 □

This configuration type-checks under our linear system – the first cell 𝑎 is available, with type 1. The thread writing
to 𝑏 performs three operations. First, it reads the contents of 𝑎. It then doubles its contents, and writes the new value
back into 𝑎, which can be thought of as an in-place update for 𝑎. Finally, it writes a unit to the cell 𝑏. The context that
was used to type this thread is 𝑎 : 1[available]. If we were to apply the Thread rule to this thread, we would get that
the new context is 𝑎 : 1[available], 𝑏 : 1[available] – meaning that 𝑎 is available to the next thread as well. This thread,
which writes to 𝑐 , performs a similar in-place update, except it adds 1 to the value of 𝑎 instead of doubling it.

Interpreted concurrently, this configuration contains a race condition depending on which of the two processes steps
forward first! If the thread writing to 𝑏 steps forward first, then we will multiply the value in 𝑎 by 2 before making it
available to the other process, which will then add 1. Thus, once these two processes have finished executing, 𝑎 will
contain the value 4. However, if these two processes execute in the opposite order, then 𝑎 will contain the value 3 instead.
In this example, the race condition is benign, as the value of 𝑎 is never used. Still, the value stored in 𝑎 can differ between

31

runs of our program, making it nondeterministic. If we add a fourth process that reads the value of 𝑎 and does something
meaningful with it, then the unpredictability of the value of 𝑎 can cause actual problems as well. Thus, a program that
type-checks under our current set of rules is not guaranteed to be race-free.
These sorts of problems can be generalized into a larger class of programs. Suppose we have a cell 𝑏, which stores a

unit. After this cell, we have a series of processes, each of which reads ⟨⟩ out of 𝑏 and then restores ⟨⟩ back to 𝑏 through
a reuse once it is done executing. In this manner, we have essentially created a mutual exclusion lock in SNAX, such
that only one process can continue executing at any given time. However, the manner in which these processes might
execute varies, which could once again lead to the results stored in the other cells differing between runs of the program.
Combining multiple of these “locks” can also lead to other problems, such as deadlock.

Due to this problem, integrating memory reuse into the current SNAX language will require more work in the future.
The statics and dynamics presented here only suffice to ensure that sequential execution of SNAX programs will not
deadlock or otherwise exhibit undesirable behavior. To ensure that concurrent programs are valid, there are two options.
The first is to make the statics stricter, so that problematic programs like the above one will not type-check. The second
is to make the dynamics more specific, so that these programs can only step forward in a limited set of ways which end
up being equivalent. Both of these approaches will require significant changes to the language in the future.

11 Bibliography

References

[1] Henry DeYoung and Frank Pfenning. “Data Layout from a Type-Theoretic Perspective”. In: Electronic Notes in
TICS Vol. 1 (Feb. 2023). doi: 10.46298/entics.10507.

[2] Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. “Semi-Axiomatic Sequent Calculus”. In: FSCD 2020. Vol. 167.
2020. doi: 10.4230/LIPIcs.FSCD.2020.29.

[3] Martin Hötzel Escardó. “PCF extended with real numbers”. In: Theoretical Computer Science 162.1 (1996), pp. 79–115.
issn: 0304-3975. doi: https://doi.org/10.1016/0304-3975(95)00250-2.

[4] G. Gentzen. “Untersuchungen über das logische Schließen I”. In: Mathematische Zeitschrift 39 (1935), pp. 176–210.

[5] Jean-Yves Girard and Yves Lafont. “Linear Logic and Lazy Computation”. In: TAPSOFT, Vol.2. 1987.

[6] Junyoung Jang et al. Adjoint Natural Deduction (Extended Version). 2024. arXiv: 2402.01428 [cs.LO].

[7] Anton Lorenzen, Daan Leijen, and Wouter Swierstra. FP2: Fully in-Place Functional Programming. Tech. rep.
MSR-TR-2023-19. Extended version of the ICFP’23 publication. Microsoft, May 2023.

[8] Klaas Pruiksma and Frank Pfenning. “Back to Futures”. In: CoRR abs/2002.04607 (2020). arXiv: 2002.04607.

[9] Alex Reinking et al. “Perceus: Garbage Free Reference Counting with Reuse”. In: PLDI 2021. Virtual, Canada:
Association for Computing Machinery, 2021, pp. 96–111. isbn: 9781450383912. doi: 10.1145/3453483.3454032.

[10] Noam Zeilberger. “Focusing and higher-order abstract syntax”. In: POPL 2008, pp. 359–369.

32

https://doi.org/10.46298/entics.10507
https://doi.org/10.4230/LIPIcs.FSCD.2020.29
https://doi.org/https://doi.org/10.1016/0304-3975(95)00250-2
https://arxiv.org/abs/2402.01428
https://arxiv.org/abs/2002.04607
https://doi.org/10.1145/3453483.3454032

Appendix A: Additional Cases of Preservation

We once again consider the preservation theorem, and show two cases for the modified read rules: one for the positive
type 𝐴1 ⊗ 𝐴2, and one for the negative type 𝐴1 → 𝐴2. We start with the proof of preservation in the case where we are
reading a value of type 𝐴1 ⊗ 𝐴2 out of a memory cell. For brevity, we abbreviate [available] as [a] where necessary.

The typing judgement for the relevant portion of the configuration is of the form:

Γ0 ⊨ cell 𝑥 .𝜋1 𝑆1, cell 𝑥 .𝜋2 𝑆2, cell 𝑥 ⟨_, _⟩, thread (𝑎, read 𝑥 (⟨_, _⟩ ⇒ 𝑃)), cell 𝑎 □ :: Γ3, 𝑎 : 𝐴[available]

To find the type of this before it steps forward, we need to first add the cells on the left-hand side to the context, and
then use them to type the process on the right-hand side. We begin by finding the type of the individual component cells,
which we call derivation A:

A =

D
Γ𝑎0 ⊢ write (𝑥 · 𝜋1, 𝑆1) :: (𝑥 · 𝜋1 : 𝐴1); Γ′0
Γ0 ⊨ cell 𝑥 · 𝜋1 𝑆1 :: Γ1, 𝑥 · 𝜋1 : 𝐴1 [a]

Cell

E
Γ𝑎1 , 𝑥 · 𝜋1 : 𝐴1 [a] ⊢ write (𝑥 · 𝜋2, 𝑆2) :: (𝑥 · 𝜋2 : 𝐴2); Γ′1 , 𝑥 · 𝜋1 : 𝐴1 [a]
Γ1, 𝑥 · 𝜋1 : 𝐴1 [a] ⊨ cell 𝑥 · 𝜋2 𝑆2 :: Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a]

Cell

Γ0 ⊨ cell 𝑥 · 𝜋1 𝑆1, cell 𝑥 · 𝜋2 𝑆2 :: Γ0, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a]
Join

We write Γ1 for 𝑅(Γ0, Γ′0) and Γ2 for 𝑅(Γ1, Γ′1) here, which allows us to account for any cells that 𝑆1 and 𝑆2 consume.
With the conclusion from A, we can find the type of the overall cell 𝑥 , which we call derivation B:

B =

A
Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a] ⊢ write 𝑥 ⟨_, _⟩ : Γ2, 𝑥 : 𝐴1 ⊗ 𝐴2 [a]

⊗a

Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a] ⊨ cell 𝑥 ⟨_, _⟩ :: Γ2, 𝑥 : 𝐴1 ⊗ 𝐴2 [a]
Cell

Γ0 ⊨ cell 𝑥 · 𝜋1 𝑆1, cell 𝑥 · 𝜋2 𝑆2, cell 𝑥 ⟨_, _⟩ :: Γ2, 𝑥 : 𝐴1 ⊗ 𝐴2 [a]
Join

Here, Γ2 stays the same on both the left and right-hand contexts when typing the cell 𝑥 because 𝑥 only consumes the
two cells 𝑥 .𝜋1 and 𝑥 .𝜋2, and nothing else. With derivation B in hand, we can now find the type of the configuration as a
whole:

B

F
Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a], 𝑥 : 𝐴1 ⊗ 𝐴2 [read] ⊢ 𝑃 :: (𝑎 : 𝐴); Γ3

Γ2, 𝑥 : 𝐴1 ⊗ 𝐴2 [a] ⊢ read 𝑥 (⟨_, _⟩ ⇒ 𝑃 :: (𝑎 : 𝐴); Γ3
⊗l

Γ2, 𝑥 : 𝐴1 ⊗ 𝐴2 [a] ⊨ thread (𝑎, read 𝑥 (⟨_, _⟩ ⇒ 𝑃)), cell 𝑎 □ :: Γ3, 𝑎 : 𝐴[a] Thread

Γ0 ⊨ cell 𝑥 · 𝜋1 𝑆1, cell 𝑥 · 𝜋2 𝑆2, cell 𝑥 ⟨_, _⟩, thread (𝑎, read 𝑥 (⟨_, _⟩ ⇒ 𝑃)), cell 𝑎 □ :: Γ3, 𝑎 : 𝐴[a] Join

Once we step this configuration forward using the read rule, we want to show:

Γ0 ⊨ cell 𝑥 .𝜋1 𝑆1, cell 𝑥 .𝜋2 𝑆2, read 𝑥 ⟨_, _⟩, thread (𝑎, 𝑃), cell 𝑎 □ :: Γ3, 𝑎 : 𝐴[a]

The type of the leftmost three cells can once again be found using the Join rule. Since the first two have not changed,
we can reuse the derivation A and get derivation B′:

B′ =
A

Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a] ⊢ write 𝑥 ⟨_, _⟩ : Γ2, 𝑥 : 𝐴1 ⊗ 𝐴2 [a]
⊗a

Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a] ⊨ read 𝑥 ⟨_, _⟩ :: Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a], 𝑥 : 𝐴1 ⊗ 𝐴2 [read]
Read

Γ0 ⊨ cell 𝑥 · 𝜋1 𝑆1, cell 𝑥 · 𝜋2 𝑆2, read 𝑥 ⟨_, _⟩ :: Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a], 𝑥 : 𝐴1 ⊗ 𝐴2 [read]
Join

And finally, we can prove the desired result as follows:

33

B′

F
Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a], 𝑥 : 𝐴1 ⊗ 𝐴2 [read] ⊢ 𝑃 :: (𝑎 : 𝐴); Γ3

Γ2, 𝑥 · 𝜋1 : 𝐴1 [a], 𝑥 · 𝜋2 : 𝐴2 [a], 𝑥 : 𝐴1 ⊗ 𝐴2 [read] ⊨ thread (𝑎, 𝑃), cell 𝑎 □ :: Γ3, 𝑎 : 𝐴[available] Thread

Γ0 ⊨ cell 𝑥 · 𝜋1 𝑆1, cell 𝑥 · 𝜋2 𝑆2, read 𝑥 ⟨_, _⟩, thread (𝑎, 𝑃), cell 𝑎 □ :: Γ3, 𝑎 : 𝐴[a] Join

The other cases for the use of the read dynamic for positive types are similar to this one – we find the types of the
relevant cells to the left of the process. This consists of any new resources that are available to the thread after the
read executes, as well as the type of the cell being read. We then step forward, marking the relevant cell as read in
the configuration. The resulting context should then match the remainder of the process, allowing us to show that
preservation holds.
We now consider the read dynamic for the case of invoking a closure of type 𝐴1 → 𝐴2, and show that preservation

holds in this case as well.
First, we show a lemma, which is similar to weakening but for linear programs:

Lemma
If Γ1 ⊢ 𝑃 :: (𝑎 : 𝐴); Γ′1 , then Γ1, Γ2 ⊢ 𝑃 :: (𝑎 : 𝐴); Γ′1 , Γ2.
This lemma essentially states that we can add memory cells to the context of a well-typed process, and when the
process finishes, those cells will remain untouched. We can show this by induction on the structure of the given
typing judgement. The base cases come from axiomatic rules, where there are no premises. For example:

Γ1 ⊢ write 𝑎⟨⟩ :: (𝑎 : 1); Γ1
1a −→ Γ1, Γ2 ⊢ write 𝑎⟨⟩ :: (𝑎 : 1); Γ1, Γ2

1a

Cases with premises can be resolved largely by appealing to the inductive hypothesis. One interesting example of
this is with the cut rule:

Γ1 ⊢ 𝑃 :: (𝑥 : 𝐴); Γ2 Γ2, 𝑥 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ3 (𝑥 fresh)
Γ1 ⊢ 𝑥 ← 𝑃 ;𝑄 :: (𝑐 : 𝐶); Γ3

cut

−→
Γ1, Γ4 ⊢ 𝑃 :: (𝑥 : 𝐴); Γ2, Γ4 Γ2, Γ4, 𝑥 : 𝐴[available] ⊢ 𝑄 :: (𝑐 : 𝐶); Γ3, Γ4 (𝑥 fresh)

Γ1, Γ4 ⊢ 𝑥 ← 𝑃 ;𝑄 :: (𝑐 : 𝐶); Γ3, Γ4
cut

The second derivation here is a direct consequence of applying the inductive hypothesis to both premises. □

We now consider the following configuration:

Γ0 ⊨ cell 𝑥 𝑆, cell 𝑎 (⟨𝑧, 𝑑⟩ ⇒ 𝑃), thread (𝑐, read 𝑎⟨𝑥, 𝑐⟩), cell 𝑐 □ :: Γ2, 𝑐 : 𝐴2 [available], 𝑎 : 𝐴1 → 𝐴2 [read], 𝑦 : 𝐴1 [read]

We begin by finding the types of the two cells on the left-hand side. We define Γ2, Γ3 to be some partition of the cells in
Γ1, where Γ3 are the cells needed by the function, and Γ2 are the cells that can still be used after the closure is typed.

A =

D
Γ0 ⊢ write (𝑥, 𝑆) :: (𝑥 : 𝐴1); Γ1
Γ0 ⊨ cell 𝑥 𝑆 :: Γ1, 𝑥 : 𝐴1 [a]

Cell

E
Γ3, 𝑧 : 𝐴1 [a] ⊢ 𝑃 :: (𝑑 : 𝐴2); Γ4, 𝑧 : 𝐴1 [read] (Γrefd3 ⊆ Γ4)

Γ2, Γ3, 𝑥 : 𝐴1 [a] ⊢ write (𝑎, (⟨𝑑, 𝑧⟩ ⇒ 𝑃)) :: (𝑎 : 𝐴1 → 𝐴2); Γ2, 𝑥 : 𝐴1 [a]
→ r

Γ2, Γ3, 𝑥 : 𝐴1 [a] ⊨ cell 𝑎 (⟨𝑧, 𝑑⟩ ⇒ 𝑃) :: Γ2, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [a]
Cell

Γ0 ⊨ cell 𝑥 𝑆, cell 𝑎 (⟨𝑧, 𝑑⟩ ⇒ 𝑃) :: Γ2, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [a]
Join

Using this, we can find the type of the thread, and therefore the overall configuration:

34

A
Γ2, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [a] ⊢ read 𝑎⟨𝑥, 𝑐⟩ :: (𝑐 : 𝐴2); Γ2, 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]

→ a

Γ2, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [a] ⊨ thread (𝑐, read 𝑎⟨𝑥, 𝑐⟩), cell 𝑐 □ :: Γ2, 𝑐 : 𝐴2 [a], 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]
Thread

Γ0 ⊨ cell 𝑥 𝑆, cell 𝑎 (⟨𝑧, 𝑑⟩ ⇒ 𝑃), thread (𝑐, read 𝑎⟨𝑥, 𝑐⟩), cell 𝑐 □ :: Γ2, 𝑐 : 𝐴2 [a], 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]
Join

It follows that the resulting type of the configuration is Γ2, 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]. We now show that once
the configuration takes a step forward, it will have a type that is a superset of this type. After applying the read dynamic,
we get:

Γ0 ⊨ cell 𝑦 𝑆, read 𝑎(⟨𝑧, 𝑑⟩ ⇒ 𝑃), thread (𝑐, [𝑥/𝑧, 𝑐/𝑑]𝑃), cell 𝑐 □ :: Γ2, Γ4, 𝑐 : 𝐴2 [a], 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]

We now want to show that this type holds after stepping forward. Since Γ2 ⊆ Γ2, Γ4, showing this will prove that
preservation holds in this case. We once again begin by finding the type of the first two cells:

A′ =

D
Γ0 ⊢ write (𝑥, 𝑆) :: (𝑥 : 𝐴1); Γ1
Γ0 ⊨ cell 𝑥 𝑆 :: Γ1, 𝑥 : 𝐴1 [a]

Cell

E
Γ3, 𝑧 : 𝐴1 [a] ⊢ 𝑃 :: (𝑑 : 𝐴2); Γ4, 𝑧 : 𝐴1 [read] (Γrefd3 ⊆ Γ4)

Γ2, Γ3, 𝑥 : 𝐴1 [a] ⊢ write (𝑎, (⟨𝑑, 𝑧⟩ ⇒ 𝑃)) :: (𝑎 : 𝐴1 → 𝐴2); Γ2, 𝑥 : 𝐴1 [a]
→ r

Γ2, Γ3, 𝑥 : 𝐴1 [a] ⊨ cell 𝑎 (⟨𝑧, 𝑑⟩ ⇒ 𝑃) :: Γ2, Γ3, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [read]
Read

Γ0 ⊨ cell 𝑥 𝑆, read 𝑎 (⟨𝑧, 𝑑⟩ ⇒ 𝑃) :: Γ2, Γ3, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [read]
Join

With the information inA′ and our earlier lemma, we are ready to prove what the overall type of the configuration is.

A′

[𝑐/𝑑, 𝑥/𝑧]E
Γ3, 𝑥 : 𝐴1 [a] ⊢ [𝑥/𝑧, 𝑐/𝑑]𝑃 :: (𝑐 : 𝐴2); Γ4, 𝑥 : 𝐴1 [read]

Γ2, Γ3, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [read] ⊢ [𝑥/𝑧, 𝑐/𝑑]𝑃 :: (𝑐 : 𝐴2); Γ2, Γ4, 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]
Lemma

Γ2, Γ3, 𝑥 : 𝐴1 [a], 𝑎 : 𝐴1 → 𝐴2 [read] ⊨ thread (𝑐, [𝑥/𝑧, 𝑐/𝑑]𝑃), cell 𝑐 □ :: Γ2, Γ4, 𝑐 : 𝐴2 [a], 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]
Thread

Γ0 ⊨ cell 𝑦 𝑆, read 𝑎(⟨𝑧, 𝑑⟩ ⇒ 𝑃), thread (𝑐, [𝑥/𝑧, 𝑐/𝑑]𝑃), cell 𝑐 □ :: Γ2, Γ4, 𝑐 : 𝐴2 [a], 𝑎 : 𝐴1 → 𝐴2 [read], 𝑥 : 𝐴1 [read]
Join

Here, we are able to apply the lemma on Γ2, 𝑎 : 𝐴1 → 𝐴2 [read] to obtain the desired result. A similar proof works for
lazy products, which are the other negative type in our language.

It is also important to note that as this configuration continues to step forward, we will continue to be able to find the
type of (⟨𝑧, 𝑑⟩ ⇒ 𝑃), which are the contents of the read cell 𝑎. This is because the function needs to know the types of
the cells in Γ3 in order to type-check. We also know that in Γ4, each such cell has a [referenced] status. Thus, none of
these cells can be deallocated by the function body 𝑃 , allowing us to continue using them for our typing judgement.

35

	Introduction
	Background

	Motivation
	Summary of Changes
	Pattern Matching and Translation
	Changes to SNAX
	Type System
	Statics
	Process Typing Rules
	Configuration Typing Rules

	Dynamics
	Progress
	Preservation

	Compilation
	Memory Reuse Example
	Impacts of Memory Reuse
	Comparison with Existing Work
	Future Work
	Bibliography

