
SCS Honors Undergraduate Research Thesis

Spring 2024

SampleLapNet:

A Learnable Laplacian Approach for
Task-Agnostic Point Cloud Downsampling

by

Diram Tabaa

Advisor

Professor Gianni Di Caro

Contents

1 Introduction 2
1.1 Point Cloud Data and its Properties 3
1.2 Point Cloud Laplacian . 4
1.3 Learning on Point Cloud Data and its Challenges 5
1.4 Point Cloud Downsampling and its Limitations 7
1.5 Problem Statement & Contribution 8

2 Related Work 9
2.1 Deep Learning on Point Clouds 9
2.2 Learning-based Sampling methods 10

3 SampleLapNet Architecture 11
3.1 Overview . 11
3.2 Point Cloud preprocessing . 11
3.3 SampleLapNet: the laplacian label predictor 12

3.3.1 Transformers . 12
3.3.2 OctFormer and SampleLapNet 13

3.4 Downsampling with SampleLapNet 14
3.5 Alternative Architectures . 16

4 Experimental settings 18
4.1 Downstream Tasks & Datasets 18
4.2 Laplacian Labels . 19
4.3 Training Loss Function . 21
4.4 Evaluation Metrics . 22

5 Results 23
5.1 Laplacian Segmentation (Prediction) 23
5.2 Semantic Segmentation . 25

6 Conclusions & Future Work 27
6.1 Discussion . 27
6.2 Future Work . 28

1

Chapter 1

Introduction

In recent years, we have witnessed greater integration of autonomous and
semi-autonomous agents in our world. From self-driving cars to remote
sensing drones [24], autonomous agents have developed greater environment
awareness due to advancements both at the software level (e.g. AI-based
algorithms), as well as at the hardware level (e.g. higher-fidelity sensors).
In particular, many autonomous agents are now equipped with sensors that
are capable of capturing three-dimensional (3D) information, whether in the
form of depth maps with RGB-D cameras, or point cloud data with Light
Detection and Ranging (LiDAR) sensors. Due to the widespread integration
of LiDAR sensors in modern devices, point clouds became the standard when
it comes to collecting 3D data from the environment in real-time.

Yet beyond the hardware, advancements in the fields of computer vision
and deep learning have made it practical to utilize 3D data in environment
sensing & awareness scenarios. As an example, consider the task of semantic
segmentation, which entails assigning distinct labels to semantically equiva-
lent parts of the data - hence segmenting it. Such semantic definitions range
from object-level semantics (doors, tables, cars, etc..) to part-level seman-
tics (door handle, table-top, car wheels), and even instance-level semantics
(door1, table7, car8 [6]. Like their two-dimensional counterpart (images
& vectors), it was quite difficult to achieve acceptable results on such tasks
before the dawn of Deep Neural Networks. Unlike images, however, the field
of deep learning on 3D data generally, and on point clouds specifically, has
considerably lagged behind in the past for reasons that we will detail in sec-
tion 1.3. Nevertheless, current research trends in the field show promising
results and provide a significant room for exploration, as we shall see in this
project.

2

Figure 1.1: Example of 3D data collected from ranging sensors on board a
car. Different colors in the scene indicate different semantic labels

1.1 Point Cloud Data and its Properties

Point Clouds are a popular representation of 3D information due to their
versatility and proximity to the raw data, making them the ideal choice for
agents with low computational resources, the likes of drones and autonomous
vehicles. Point Clouds are computationally an unordered set of 3D vectors,
where each vector represents a point in space. Points in a Point Cloud
could also contain other features, such as color or vertex normals, that pro-
vide more information about the captured scene. In order for Point Clouds
to accurately represent an object or a scene, they need to be significantly
denser relative to other 3D representations, due to the lack of connectivity
information.

Another important feature of Point Clouds is the lack of a uniformity con-
straint. Unlike images, where each pixel has a fixed ”position”, points in a
Point Cloud could be distributed arbitrarily, which could result in certain
regions being dense, and other regions being sparse. This feature introduces
a challenge of inferring continuity, since it is impossible to determine where
an object in a scene ”begins” and ”ends”. The table below summarizes the
features of point clouds in comparison to Polygonal Meshes and Voxels:

Spatial Feature Point Clouds Polygonal Meshes Voxels

Density Variable Variable Uniform

Connectivity None Faces & Edges None

Neighbourhood Not Defined Edge-Defined Index-Defined

Table 1: Summary of spatial features in different 3D data representations

3

Figure 1.2: Unlike polygonal meshes, point clouds do not have a defined
sense of neighbourhood

1.2 Point Cloud Laplacian

Despite the limitations of such spatial features, many algorithms have been
developed over the years to perform geometric operations on Point Clouds
akin to other 3D data representations like meshes. A great depth of this work
is covered under the field of Discrete Differential Geometry (DDG), which
tackles the problem of converting higher-order differentiable operations into
discrete computations that can be linearly estimated with Linear Algebra
libraries [8].

Amongst such differentiable operations is an important operator known as
the Laplace-Beltrami Operator (∆), or more simply the laplacian in Eu-
clidean space. This operator, at a given point in the domain, measures the
signed deviation of a function from its local neighbourhood. In Euclidean
space, this translates to the divergence of the gradient vector at that point.

Definition 1. The Laplace–Beltrami operator

Let f : M → Rn where M is a manifold (locally-euclidean) space

∆f = Div(∇f)

(
=

m∑
i=1

∂f

∂x2i
if M = Rm

)

In the discrete mesh setting, the laplacian can be represented as the product
of two n× n matrices, M−1 and L. These matrices are intrinsic to a given
mesh, and are invariant of the function applied. Matrix M is a diagonal
matrix known as the mass matrix, where each diagonal value represents the
”area”/”volume” of a vertex. Matrix L is a positive-semidefinite matrix
known as the laplacian matrix, that encodes the influence of other points on
the value of the laplacian, and is such a symmetric matrix.

4

If f : V → R is a function that maps each point to a scalar function, and
if x is a vector of points, then u = f(x) is a vector of function values.
Then the laplacian of f is simply M−1Lu. An important result can be
obtained by considering the laplacian of the identity mapping, namely a
vector function that maps each point to its coordinate values. The result
of this would be an n × 3 vector, representing the laplacian value in each
coordinate direction, this provides us with a measure of ”divergence” of each
point from its neighbourhood with respect of each of the coordinates.

Figure 1.3: Computing the laplacian on a manifold triangle mesh. Similar dis-
cretizations exist for other representations

In practice, this operator is useful in many physical and geometric models,
such as heat diffusion, wave propagation, and curvature flow [8]. While
discretizing the laplacian is straightforward with meshes due to the explicit
connectivity data present at each vertex, the same is not true for the case
of point clouds. Workarounds for this lack of connectivity in Point Clouds
often attempt to exploit nearest-neighbour algorithms to estimate a local
neighbourhood for each point [13]. However, this makes the operator much
more computationally expensive, since extracting local neighbourhood of a
point is not constant time in Point Clouds.

1.3 Learning on Point Cloud Data and its Chal-
lenges

As mentioned earlier, the use of point cloud data has become widespread in
many learning-based applications due to the ease of collection and process-
ing. However, point cloud data poses a number of challenges for learning-
based tasks due to the properties we discussed in the previous section. In
this section we discuss the most important challenges faced when attempting
to train Deep Learning models on point cloud data.

5

• Neighbourhood Aggregation: unlike images, graphs, or meshes,
point clouds lack any defined notion of connectivity or neighbourhood.
Instead, neighbourhood is vaguely inferred based on distance measure-
ments subject to a manually selected limits, either in terms of max-
imum radius or number of neighbours. This makes convolutions and
similar forward-aggregation layers both non-generalizable as well as
computationally expensive, due to the overhead of computing a point
neighbourhood. While this issue can be minimized in training by pre-
computing all closest neighbours for all training instances, the same
doesn’t carry over during inference. This introduces a bigger trade-off
between model size and inference time, and thus between accuracy
and efficiency in real-time applications.

• Permutation Invariance: Point Clouds are geometrically invariant
with respect to permutations of vertex indices. Neural networks, how-
ever, operate on vectors and tensors, which introduces non-invariance
with respect to feature ordering. In other words, geometrically iden-
tical point clouds that are permutations of each other would be inter-
preted as different inputs by a neural network, as shown in Figure 1.3.
This problem is often resolved by introducing an embedding compo-
nent before the first layer, but such an embedding increases the depth
of the network, and hence its time and memory bounds.

• Memory Constraints: As discussed earlier, point clouds have very
low information density per unit data. This makes training on point
clouds memory consuming, due to both the memory needed to store
point cloud tensors, as well as the model weights. This implies that
training on point cloud data is not only computationally-costly, but is
also greatly limited by available memory on a GPU.

• Limited Labelled Data: While various point cloud/mesh datasets
exist, with various task benchmarks, there is still a limitation on the
number of available labelled training data for point clouds. Self-
supervised learning has been used to address this issue, but its use
is still in its early stages [23] and is beyond the scope of this research.

It is important to note that all the aforementioned challenges are aggravated
in the case of point cloud sequences.In particular, exploiting temporal corre-
lation in point cloud sequences is not as straightforward as in videos due to
permutation invariance, which removes inter-frame point matching guaran-
tees.This incurs models additional computation costs due to neighbourhood
search operations needed to match ”close” points across frames.

6

Figure 1.4: While PC1 and PC2 are geometrically identical, to a neural
network they represent two different inputs due to point cloud serialization
into tensors

1.4 Point Cloud Downsampling and its Limitations

Many of the challenges discussed in the earlier section can be resolved by
addressing the limitations of point cloud data itself instead of deep learning
models. In particular, reducing the number of points in a point cloud, a
process known as downsampling, provides a larger margin for deeper and/or
wider neural networks. This allows neural networks to generalize better
and/or extract more point features respectively while staying within the
limits of memory/time-bounds.

Nevertheless, downsampling point clouds in itself is not a straightforward
task. Naive methods like uniform or random downsampling do not account
for the non-uniform distribution of point clouds, which can lead to an asym-
metric loss of information. Even more informed methods that downsample
based on point distribution do not take into account information distribu-
tion. Figure 1.5 illustrates the issue.

Figure 1.5: Geometry-agnostic downsampling results in loss of spatial infor-
mations in point clouds

7

Moving towards information-aware point cloud downsampling, various meth-
ods exist that downsample point clouds while minimizing information loss.
A class of such methods exploit geometric measures, such as the Laplacian,
to assign an ’importance’ score to each point, and select points based on such
scores. While such methods are task-agnostic, they pose computational lim-
itations due to the cost of accurately computing those measures on point
clouds. Alternatively, learning-based methods have been incorporated that
update their selection criteria based on the accuracy of the trained down-
stream task [9], while such methods lead to quicker inference times due to
the streamlined pipeline of layers, they remain limited to a specific task they
are trained on, and hence are not generalizable.

1.5 Problem Statement & Contribution

Since deep learning models on point clouds have been greatly optimized over
the past few years, especially within the size limits of benchmark datasets, a
more realistic goal is to improve inference-time on point clouds by downsam-
pling the point clouds before passing them to the network while maintaining
comparable accuracy, or vice versa. However, as we have seen earlier, it is
not clear whether or not information-aware downsampling could be achieved
without relying on a downstream task to drive the gradients in the direction
that optimally select the relevant points for the given task.

In this research, we investigate this problem by proposing a task-agnostic,
learnable downsampling network that is capable of selecting points based on
geometric intuitions of importance. We incorporate the laplacian as indirect
metric of importance by learning to predict which points are more likely to
have a higher laplacian norm. Formally, the goal of the project is:

Design and train a neural network capable of predicting the relative discrete
distribution of identity-function laplacian norms in a point cloud, then

utilize this network to generate predictions that guide downsampling

This project is divided into 3 parts. (1) designing and implementing a neural
network capable of estimating the discrete distribution of laplacian norms on
a training dataset. (2) Incorporating the pre-trained laplacian network in a
standard model for the benchmark task of semantic segmentation (3) Eval-
uating the applicability of the laplacian network for point cloud sampling as
a trade-off between inference time and accuracy.

As far as we know, this project is the first of its kind to use learnt-laplacian
values to downsample point clouds. A single research paper [10] has been
produced before that makes use of the learnt laplacian idea, but its applica-
tion has been in a different context, and the methodology involves a nearest
neighbour search, which disqualifies it from our application.

8

Chapter 2

Related Work

2.1 Deep Learning on Point Clouds

Over the years, numerous models have been proposed to perform learning on
point cloud data. One of the foundational models, PointNet [4] introduced
in 2017, put forth the concept of applying pointwise Multi-layer Perceptrons
(MLP) with shared weights. Subsequent models like PointNet++ [12] and
SRINet [15] expanded on this fundamental idea, incorporating shared MLPs
and structured pooling to aggregate results. While these models were adept
in specific contexts such as object classification, they fell short in grasping
geometric relationships due to the intrinsically disconnected and geometri-
cally non-correlated pooling methods they employ, such as max and mean
pooling.

Inspired by the success of convolutional neural network (CNN) architec-
tures - the likes of VGG [14] and ResNet [7] - in the context of learning on
Images, many architectures have attempted to incorporate the concept of
convolution on 3D data. Such architectures include PointCNN [11], Con-
vPoint [3], and KPConv [16]. However, unlike images, convolution is not
straightforward to define on 3D data, and potential computationally expen-
sive depending on the representation. Additionally, defining convolution as
a strict kernel on a subset of the input potentially limits the learning capa-
bilities of the network due to the irregularity in the data density of certain
3D representations.

More recently, the infamous transformer architecture, which has revolution-
ized Natural Language Processing, has made its way to the research space
of point cloud learning. In particular, architectures like PCT and Point
Transformer [25] have demonstrated the applicability of the self-attention
mechanism to point cloud data, achieving state-of-the-art performance rela-
tive to Linear and Convolutional neural network architectures on tasks like

9

classification and semantic segmantation. Since then, many papers have
been published that incorporate the idea of a point cloud transformer, most
relevant to us amongst these architectures is Octformer [19], which utilizes
an octree data structure to perform attention, and thus by reducing the
asymptotic performance of the model for large point clouds. Because our
goal is to work with large point clouds, we opt for Octformer as the starting
point for our research.

2.2 Learning-based Sampling methods

There has been significant work done to implement differentiable, learning-
based down-sampling layers to reduce the number of points in a point cloud
data. The motivation behind a learning-based downsampling layer is the
ability to fine-tune downsampling for specific downstream tasks e.g. clas-
sification or semantic segmentation. One of the earlier works to introduce
a differentiable downsampling layer is SampleNet [9]. They achieve this
differentiable downsampling by passing the features to a linear layer that
reduces the dimensionality of the input, and then for each feature vector of
the output, perform a ’soft-projection’ operation to the nearest-neighbours
of the output feature in the original point cloud. this soft-projection is con-
trolled by a learnable temperature parameter that governs the locality of the
neighbourhood. This differentiability means that the whole network can be
trained end-to-end, and hence leads to sampling results that are fine-tuned
to the needs of the downstream task.

A more recent work in the field of learnable downsampling techniques is
APES [21], which is an attention-based edge sampling network. The au-
thors make use of self-attention on point cloud as a measure of ”variability”
within a neighbourhood (locally or globally) and selecting the points that
provide the greatest such variability, which would likely suggest that these
points are edge points. Once the self-attention matrix is computed, the
columns are summed up, and the points with the largest M column sums
are selected. As with the case of SampleNet, this downsampling forward
computation is differentiable, and hence allows the overall network to be
end-to-end differentiable. With their downsampling technique, they were
able to achieve state-of-the-art performance on ModelNet40 classification
benchmark, which suggests that not only downsampling is crucial to reduce
the computation overhead, but also positively influences the overall accu-
racy of the model, as it allows the downstream task to focus on the more
important spatial features.

10

Chapter 3

SampleLapNet Architecture

3.1 Overview

In this chapter, we explore the architecture of SampleLapNet, organizing
our discussion into the following sections: (1) Preprocessing of point cloud
data for Laplace label targets. (2) The architecture of the base Laplacian
label predictor. (3) Integration of SampleLapNet with frozen weights into
a semantic segmentation model for downsampling. (4) A discussion of the
factors influencing our architectural choices.

3.2 Point Cloud preprocessing

In Chapter 1, we touched upon the mathematical basis of the laplacian
operator, and the intuitive meaning in terms of average ”divergence” away
from a local neighbourhood. In this section, we discuss how we incorporate
that concept into our architecture.

Given our objective of labeling points in a point cloud based on geomet-
ric features, the discrete Laplacian emerges as a fitting metric to employ.
Yet, directly learning the discrete Laplacian proves challenging due to the
quadratic nature of the Laplace matrix. However, this doesn’t imply im-
possibility, particularly if one makes use of the sparse characteristics of the
Laplace matrix to mitigate this non-linearity. For our specific case, directly
estimating the Laplace matrix isn’t deemed worthwhile since our aim is
solely to learn a discrete measure of significance.

A more effective approach to our problem entails predicting the interval
within which each point’s Laplacian norm lies. Essentially, this involves
assigning a label to each point based on the most probable interval for
its Laplacian norm. This transforms the problem into a segmentation task,

11

where original labels are pre-computed prior to training. This pre-computation
involves manually computing the Laplacians (a process notably slow for large
point clouds) and then partitioning the distribution into intervals. Further
discussion on this process is provided in Chapter 4. For now, it’s important
to understand that the task resembles segmentation, albeit with geometry-
based labels rather than semantics-based ones.

3.3 SampleLapNet: the laplacian label predictor

Figure 3.1: An overview of the SampleLapNet Architecture

Our SampleLapNet builds upon the transformer architecture [18]. In par-
ticular, we have adopted OctFormer [19], an octree-based transformer ar-
chitecture for learning on point clouds, with minor modification to train
for laplacian labels instead of semantic labels. Before introducing the Oct-
Former architecture, we provide a brief overview of transformers.

3.3.1 Transformers

Transformers are encoder-decoder models which have seen success through
their encoder self-attention mechanism. Transformers encode the input se-
quence into a latent vector representation that is fed into a decoder to gen-
erate/extract features required for a task. In our case, we train the decoder
to generate the laplacian vector.

Transformers make use of attention between the encoder and decoder out-
puts to allow decoder to attend over positions in the input sequence. Re-

12

lating back to our task, this allows the decoder to attend to the correct
”neighbourhood” in the process of generating the laplacian values.

Attention, as the name emplies, is a weighting of values V , based on a query
Q made on a keys K. In practice, this attention is computed through a
mechanism known as scaled dot-product attention, shown in equation 3.1

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (3.1)

The attention mechanism itself does not involve learnt parameters. On the
other hand, queries, keys and values are a result of a linear projection of
input features. This becomes clearer in the case of multi-head attention,
where input vectors are linearly projected to produce multiple queries, keys
and vectors. Each linear projection is its own learnt matrix, allowing dif-
ferent ’heads’ to attend to different features. Equation 3.2 illustrates this
mechanism:

MultiHeadAttention(Q,K, V) = Concat(head1, head2, ..., headh)W
O

where headi = Attention(QW k
i ,KW k

i , V W v
i) (3.2)

In self-attention, all of the three inputs to the attention module is the input
sequence itself. Self-attention allows the encoder to relate different positions
in an input sequence as it moves towards a latent representation. A typi-
cal encoder block combines this self-attention with a feed-forward network.
Multiple encoder blocks are combined together to form an encoder layer.

3.3.2 OctFormer and SampleLapNet

Figure 3.2: OctFormer Architecture [19]. Note that the feature downsampling lay-
ers are convolution operations that are unrelated to our point cloud downsampling.

OctFormer is an octree-based transformer architecture. Like its classical
counterpart, OctFormer builds upon the concept of (self-)attention to learn

13

a weighting of the sum of values. Unlike a classical transformer, however,
the octformer architecture implements an improved octree-based attention
that reduces the asymptotic complexity of attention. If we let N be the
number of points in a point cloud. Clearly, in a classical transformer, the
asymptotic complexity of attention is O(N2), which for a point cloud of size
> 100k is simply too slow.

Octformer alleviates this by constructing an octree structure on the point
cloud, where the leaf nodes are either empty, or store a non-negative number
of features that correspond to the points within the coordinate limits (voxel)
of the leaf node. After building the octree, the nodes at the same depth are
sorted according to their shuffled keys, the the shuffle key for the octree
node with integer coordinates (x, y, z) is computed as below:

Key(x, y, z) = x1y1z1x...xdydzd where d is the depth of the octree (3.2)

Once this sorting is achieved, and all the non-empty nodes are filtered out,
the attention module stacks all the features in-order to generate an (N,C)
tensor. This tensor is padded by zeros to make it divisible by the number of
desired points per-partition K, yielding the padded tensor (N̂ , C). At last,

the tensor is reshaped into a (N̂K ,K,C) tensor, so that classical attention is

now applied to each of the N̂
K windows. Note that each of the windows are

non-overlapping, meaning that the attention can be computed in parallel.

Hence, the overall octree attention has a worst-case work of O(N̂K k2) and
worst-case asymptotic span of O(K2). Since K is usually a small number
(32 for example), this is a much more desirable overall performance.

Towards a laplacian label predicting network, we adapt the octformer as the
backbone of our architecture. More precisely, we use the OctFormer network
to generate a concatenation of L latent encodings, where L is the number of
Octformer stages (contiguous blocks). Note that each of the latent encod-
ings have a downsampled dimension, and needs to be upsampled to generate
N features. Once upsampled, the features are fed to a Feature Pyramid Net-
work (FPN) that converts the high dimensionality encoder channel width to
the desirable output width, which in our case would be the number of possi-
ble laplacian labels. Note that this laplacian label prediction/segmentation
architecture is identical to that for the task of semantic segmentation, with
the only difference being the number of classes/labels at the final output.

3.4 Downsampling with SampleLapNet

Once SampleLapNet has been trained to segment points in a point cloud into
Laplacian intervals, we freeze the learned weights. Then, we integrate the

14

model into the semantic segmentation task pipeline to showcase its utility
as a downsampling method for various downstream tasks.

An essential consideration when integrating SampleLapNet into any point
cloud learning architecture is the downsampling criteria, specifically, how
to select points based on Laplacian labels. To illustrate this, we can argue
for at least two distinct types of sampling solely for the task of semantic
segmentation:

Figure 3.3: An example of downsampling by dropping > l labelled points. Note
that blue points have labels 0 and yellow points have labels ≥ 1

• Drop all > l labelled points: This downsampling method entails
discarding all points with a Laplacian label greater than a given thresh-
old l, typically near the maximum importance label. Although this
method doesn’t significantly decrease the number of points, it effi-
ciently divides the scene into patches of low-importance regions. The-
oretically, this could enhance the accuracy of a semantic segmentation
network by aiding in the distinction of boundaries between different
segments.

• Stochastic sampling with label-based probabilites:”This down-
sampling method involves dropping a specified number of points p,
randomly sampled from the point cloud. The sampling probability is
inversely proportional to the numerical label of the sampled points.
This probability distribution can be dynamically computed by apply-
ing a softmax function on the output of the Laplacian predictor. The
rationale behind this downsampling method lies in the principle that
points of lower importance are less likely to significantly affect the
encoding of the point cloud, and therefore can be safely dropped.

Finally, it’s crucial to consider whether SampleLapNet is integrated during
training or inference. Our research primarily revolves around the tradeoff

15

between two aspects. On one side of the coin is the aim to reduce the
tradeoff between inference/training time and accuracy, while on the other
side is the goal to diminish the tradeoff between accuracy and inference
time. This tradeoff is seen more clearly when considering whether or not
SampleLapNet is incorporated during training.

If integrated during training, SampleLapNet contributes to convergence by
augmenting the training data and mitigating the risk of overfitting in the
downstream model. While SampleLapNet is unlikely to significantly im-
prove training times due to the substantial overhead of backpropagation,
it also doesn’t extend training time extensively. This is because the over-
head of inferring Laplacian labels is comparatively smaller than training the
downstream model.

Conversely, if SampleLapNet is exclusively integrated during inference, it
has the potential to significantly enhance inference time, particularly when
the ratio of the downstream model’s size to the Laplacian predictor’s size is
large—a topic we’ll look into into further in Chapter 5. The rationale be-
hind this lies in the constant overhead of SampleLapNet, which often pales
in comparison to the reduction in overhead achieved through downsampling.
This is because inference time scales non-linearly with input size. However,
in practice, applying SampleLapNet solely during inference presents a chal-
lenge related to the generalizability of the learned model. A downstream
model lacking in generalizability may experience a notable reduction in ac-
curacy due to such downsampling.

Given that semantic segmentation remains a challenging benchmark for
point cloud learning, integrating our Laplacian predictor to downsample
the point cloud during inference only could substantially compromise accu-
racy. Therefore, we opt to concentrate on the alternative side of the tradeoff:
enhancing the training accuracy of semantic segmentation without imposing
significant overhead on training.

3.5 Alternative Architectures

Towards our goal of learning the laplacian labels, we have explored alter-
native architectures to OctFormer. Below is a selected list of alternative
experiments:

• MLP-based Architecture (PointNet): Our earliest attempt at
training a laplacian estimator was using the foundational PointNet
[4] model, a simple, MLP-based architecture that was the earliest in
the field to apply learning on points directly. Our tests showed that
PointNet was not suited to learn the laplacian. We reason that this is
caused by the lack of local aggregation, as the architecture relies solely

16

on a global feature vector to output per-point features.

• Convolution-based Architecture (DGCNN): Since the laplacian
is a geometric local operation by its nature, one of our earlier work
involved experimenting with a convolution based architecture, such
that the learnt kernels become an estimate of actual laplacian compu-
tation. To test that intuition, we made use of Dynamic Graph CNN
(DGCNN) [20], a benchmark architecture for point cloud convolution.
We observed that such architecture, and similar CNN based were too
slow for our purposes, since k-nearest neighbours (kNN) needed to
be computed for each convolution operation, which became a huge
overload as channel width increased.

• Alternative Transformer Architecture (Point Transformer):
Before settling on OctFormer as the base architecture, we attempted
to use a standard Point transformer [26] to perform laplacian label
prediction. While the results were promising, we ended up opting for
an Octformer architecture due to its better asymptotic performance
with large input point clouds, something a Point transformer would
struggle with.

17

Chapter 4

Experimental settings

This chapter details the different experiments that have guided our decisions
with respect to training hyperparameters, task selection, and evaluation
metrics.

4.1 Downstream Tasks & Datasets

Deep Learning models that learn on point clouds are usually assessed on a
set of common benchmark tasks. These tasks are often applicable to real-
world scenarios, and pose significant challenges to current models.

In our literature review, we found that the tasks of classification, semantic
segmentation, instance segmentation and object detection to be recurring in
point cloud learning research papers. From these four tasks, we filtered out
semantic segmentation as the task of choice due to the reasons listed below:

• Non-saturated State-of-the-art: Unlike the task of classification,
whose state of the art has surpassed 95% accuracy [?], semantic seg-
mentation remains a challenging task to even state-of-the-art models,
with current top results for the mean Intersection-over-Union (mIOU)
being 0.75 for SemanticKITTI and only 0.39 for ScanNet200 [22]

• Straightforward End-to-End training: Unlike the task like ob-
ject detection, which itself might involve semantic segmentation [17],
semantic segmentation is a straightforward feature generation task.
Input point clouds are fed as N×3 tensors, and the output is given by
N × k tensor, where k is the number of labels, such that the features
of each point represent the likelihood probabilities for that point to be
of a particular label.

• Rich annontated datasets: Semantic segmentation has relatively
richer datasets relative to other tasks. Such benchmark datasets in-

18

clude: SemanticKITTI [2], ScanNet20, ScanNet200 [5], and S3DIS [1]
to name a few.

Additionally, we have chosen to use ScanNet as the benchmark dataset of
choice due to its large collection of real-world scans (> 1500 real-life indoor
scenes), and its two benchmark options, namely 20 classes and 200 classes,
the later of which remains extremely challenging to state-of-the-art models
as stated earlier.

Figure 4.1: Example scenes from the ScanNet dataset. Note that different colors
indicate different object class. In our experiments, we extract only the points to
form point clouds from given meshes

4.2 Laplacian Labels

So far, we have built the idea of estimating the importance of points in a
point cloud based on the interval within which they in the laplacian distri-
bution. However, the way we define such intervals has a great influence on
the convergence of our laplacian predictor. In this section, we briefly discuss
the experimental choices pertaining laplacian labels.

Firstly, we need to decide on the metric that we are using to generate the
labels. The laplacian of the identity function f(x, y, z) = (x, y, z) is not
a scalar value, and is indeed a vector that describes the average deviation
of a point in all three coordinates. There are various ways to aggregate
this information into a scalar value, but we choose the simplest and most
effective way to approach that, which is simply to compute the norms of the
laplacian vectors, that is compute ||∆f ||2. The reason for this choice is that
it limits high importance points to truly divergent points (corners, edges),
and is that it combines the directional Laplacian in a non-negative fashion,
preventing the values from cancelling out.

19

Throughout our research, we’ve noted that points within a point cloud of-
ten exhibit a Laplacian norm distribution resembling a Boltzmann-Maxwell
distribution. This distribution typically entails numerous points clustered
around the minimum Laplacian norms, with fewer points possessing above-
average norms. Figure 4.2 depicts this characteristic. Given the positively
skewed nature of this distribution, the mean surpasses the median, indicat-
ing that the majority of points in any given point cloud have below-average
Laplacian norms. Additionally, there exists a range of points with above-
median Laplacian norms but still below the mean due to the skewed dis-
tribution. These observations suggest that partitioning the Laplacian norm
distribution into equal-width intervals would result in the initial intervals
containing a significant number of instances, while the tail intervals would
contain very few.

Towards a more reasonable partitioning, we employ the following scheme to
produce the intervals:

1. Compute all 100(1− i
k) percentiles for 0 < i < k

2. Compute the upper quartile of the laplacian norm, and redistribute
the points into two intervals L1 and L2 corresponding to points below
and above upper quartile.

3. for all the points in L2, further partition the interval into k
4 partitions,

according to the percentiles computed earlier.

4. Label the points in order of interval, with lowest interval having label
0, and largest interval having label k

4 , for a total of 1 + k
4 interval.

The rationale behind this approach is twofold: firstly, we aim to assign
the lowest importance label to points with below-average Laplacian norms.
Secondly, we strive to maintain a consistent distribution of points across
various training instances to facilitate model convergence. By utilizing the
upper quartile—excluding extreme distributions, where it may not align
with the mean—we achieve both objectives simultaneously.

In the remaining distribution, we aim to establish clearer distinctions be-
yond a single label. As we move further to the right, the number of points
decreases, yet their geometric significance increases. However, we also strive
to avoid creating an excessive number of intervals that could render the
partitioning meaningless. This delicate balance is precisely captured by the
hyperparameter k: larger values of k result in potentially numerous but
vague geometric partitions, while smaller values yield fewer yet more dis-
tinct distributions. We selected k = 12, providing three partitions, which
we believe strikes a suitable balance between both considerations.

20

Figure 4.2: Picture (left) shows the laplacian norm distribution over a scene point
cloud with cyan hues indicating larger laplacian norms. Plot (right) depicts the
skewed head distribution of the laplacian norms in a scene point cloud

4.3 Training Loss Function

The nature of the laplacian predictor, at its core, is a per-point classification
task, and hence it is very natural to utilize a loss function that is commonly
used to train classification neural networks. In our experiments, we use the
cross-entropy loss, which for a predicted discrete probability distribution of
classes x = (x1, · · · , xC), and a truth target y ∈ 1, · · ·C, is given by the
following equation:

CrossEntropy(x, y) = −
C∑
c=1

y log(xc)

Since the output of our final layer might not necessarily be a probability
distribution, we apply a softmax function to normalize the values. That is,
if the final layer output is vector z = (z1, · · · , zC), we can compute x using
the formula below:

x = (x1, · · · , xc) xi =
exp (zi)∑C
c=1 exp (zc)

The cross-entropy losses are computed per point and aggregated (compute
the average loss), which is then used to back propagate through the network.

Nevertheless, applying the base cross-entropy loss to our logits is not ideal.
As we discussed in the previous section, we have a distribution of classes
where 75% of all points are labelled as class 1. This implies that the model is
more likely to converge to a state that satisfies the labelling of the dominant
target, and the mis-classification of the other labels has lesser impact on the

21

back propagation of gradients. To fix this, we assign weights to the classes
that’s inversely proportional to their distribution. Hence, we assign w1 =

4
3

to class 1, and wi = 12 for the rest three. The overall modified cross entropy
formula is shown below:

CrossEntropy(x, y) = −
C∑
c=1

y · wc log(xc)

Note that because the semantic segmentation task is also a per-point classifi-
cation task, we also use the cross-entropy loss function to train the semantic
segmentation network. However, we keep the default weights because we
are not informed on the distribution of semantic classes.

4.4 Evaluation Metrics

There are three main evaluation metrics that are relevant to our Laplacian
predictor. In this section, we provide a brief mathematical background on
these metrics:

• Accuracy: the accuracy of a single point cloud instance is simply the
percentage of points that the laplacian predictor/semantic segmenta-
tor has predicted correctly. Accuracy provides a broad view of the
performance of a model, but is not a good indicator overall due to the
imbalanced nature of most instances.

• Recall: For our laplacian predictor, it is important to know the per-
centage of high-importance points that are classified correctly, that is,
the ratio of true-positive instances, to true positive and false negatives
instances TP

TP+FN . We consider all points that are not the lowest class
positive, and all that are at the lowest class negative, and compute the
recall. Note that we are not interested in computing the precision for
two reasons: (1) because the upper quartile could be below the mean,
some points that end up having truth labels as low-importance should
more ideally be high importance, and (2) because we care more about
the completeness of our predictor over its soundness.

• mean Intersection over Union (mIoU): Intersection over union
is a measure of the accuracy of ”alignment” of two sets. It is simply
the ratio of the size of the set of intersection over the size of the set
of union. In our case, we compute the IoU of the sets corresponding
to each of the classes. That is, we create the sets X1, · · ·XC from the
predictions and Y1 · · ·YC from the ground truth, and compute for each
of the C classes the IoU |Yi∩Xi|

|Yi∪Xi| , those individual IoU’s are averaged
to obtain mIoU.

22

Chapter 5

Results

In this section, we detail the results of training the different components of
our architecture, and the results of various experiments that were carried
out to find out the optimal sampling strategy.

5.1 Laplacian Segmentation (Prediction)

As detailed in the previous section, our architecture relies on the a laplacian
prediction network that predicts the relative magnitude (interval) of the
laplacian norm, and hence the geometric importance of each point. We pre-
train this network before incorporating it into the full segmentation network.

Channel width 96

FPN channel width 168

Block Numbers 2, 2, 6/18∗, 2

Attention heads 6, 12, 24, 2

Learning rate 1.5× 10−3

Optimizer AdamW with λ = 0.05

LR Scheduler Step Warmup

Figure 5.1: Summary of the architecture and training hyperparameters for lapla-
cian segmentation. Note that the third stage has 18 blocks for the base OctFormer
and 6 for the small variant

Training settings We train the OctSegFormer (OctFormer + FPN head)
architecture discussed in chapter 3. In order to evaluate the generalizability
of laplacian segmentation models, we test two different network sizes, namely
octsegformer-small and octsegformer. Figure 5.1 show a brief summary of
the training hyperparameters.

23

Network IoU(X1) IoU(Xc
1) mIoU

OctSegFormer-Small 65.1% 15.4% 28.4%

OctSegFormer 63.9% 15.7% 28.7%

Figure 5.2: Mean Intersection over Union (mIOU) for Laplacian segmentation on the
ScanNet validation dataset with two different model sizes.

Network Recall Accuracy

OctSegFormer-Small 91.5% 60.8%

OctSegFormer 91.6% 60.5%

Figure 5.3: Accuracy and Recall for Laplacian segmentation on the ScanNet validation
dataset with two different model sizes.

Results We analyze the two variants of OctSegFormer in Figure 5.2 and 5.3,
focusing on Recall, Accuracy, and mIoU. Despite observing a very small
mIoU in both cases, which could imply poor performance, it’s crucial to rec-
ognize that mIoU is heavily influenced by set sizes. The smaller the ground
truth set, the more significant the impact of misclassification becomes. To
delve deeper into this phenomenon, we compute the IoU of X1, representing
the set of all low-importance points. Results show that we achieve accept-
able outcomes in both scenarios, with 63.9% for the base model and 65.1%
for the smaller model.

Regarding accuracy and recall, it’s notable that the accuracy in both models
is relatively low. However, as discussed in Section 4.3, our model tends to
’overshoot’ when labeling, which is preferable to missing important points
entirely. This is evidenced by our recall values, both exceeding 90%. Thus,
we can infer that the models effectively classify important points. Addition-
ally, considering all evaluation metrics, we observe that a smaller model is
adequate for learning Laplacian labels, with negligible improvements from
the larger model. This suggests that further optimization for model size is
feasible, consequently reducing the overhead when integrated with a down-
stream task network.

To underscore the advantage of our Laplacian prediction network, we com-
pare its inference times with the average time required to compute the mesh
Laplacian for a point cloud. We conduct this comparison using the vali-
dation dataset from ScanNet. Figure 5.5 illustrates the results. Notably,
OctSegFormer operates on average at over four times the speed of the mesh
laplacian algorithm, and almost 16 times the speed of the point cloud lapla-
cian algorithm. This demonstrates the unnecessary complexity of computing
the exact Laplacian solely for labeling points based on their importance.

24

Figure 5.4: Example result on a point cloud from scannet dataset

Figure 5.5: Comparison of Inference time of SampleLapNet’s laplacian pre-
dictor with laplacian algorithms

5.2 Semantic Segmentation

Setup Prior to integrating our Laplacian prediction network, we pre-train a
base OctSegFormer for semantic segmentation using the ScanNet dataset.
The hyperparameters employed in this run mirror those depicted in Figure
5.1. The sole difference lies in the FPN output channel width, set to 20
to accommodate the generation of probabilities for the 20 classes in the
standard ScanNet semantic segmentation task. Figure [insert figure number]
displays the training plots for this phase.

Following training, we initiate two runs to assess the impact of the Lapla-
cian predictor on learning. The first run incorporates standard point cloud
augmentation techniques, including random flip, rotation, and jitter. In the
second run, we employ the aforementioned augmentation methods alongside
point cloud downsampling with a probability of p = 0.2 per instance. We
utilize the > l downsampling technique outlined in Section 3.3, with l = 1,
implying the retention of only the low-importance points (as in Figure 3.3).

25

Figure 5.6: Comparison of validation mIoU and accuracy over epochs for the three
runs. It’s important to mention that we initialize the green and purple runs with
pre-trained model weights.

Network val. mIOU val. mAcc training time / s

OctSegFormer-base 60.2% 60.2% 0.340

OctSegFormer-augment 72.0% 86.4% 0.430

OctSegFormer-laplace 72.9% 87.1% 0.431

Figure 5.7: Semantic Segmentation performance on ScanNet20 with and without
Laplacian downsampling, along with and without augmentation. It’s worth noting
that both augmentation and Laplacian downsampling include the standard random
augmentations mentioned earlier.

Results We compare the results of both runs, alongside the original unaug-
mented run, in Figures 5.6 and 5.7. It’s notable that the base augmentations
significantly enhance the model’s performance, as evident from the plots.
However, these augmentations do incur increased training time per batch,
as shown in the table above.

Regarding Laplacian downsampling, while there is an improvement in both
mIoU and Accuracy, the enhancement is relatively modest. One could ar-
gue that this downsampling indeed contributes to improved training, but
it’s challenging to ascertain whether this is due to the effectiveness of Lapla-
cian downsampling itself or simply because we are randomly removing some
points from the scene, akin to random cropping. Nonetheless, it’s worth
mentioning that the model trains in nearly the same time per batch as its
counterpart, providing some assurance of potential marginal improvements
without added training overhead.

26

Chapter 6

Conclusions & Future Work

6.1 Discussion

This thesis presents SampleLapNet, a novel approach to downsampling that
combines both geometric intuitions as well as learning-based methods to
implement an efficient yet geometry-aware downsampling method on point
clouds. We believe this work is the first of its kind in the domain of point
cloud downsampling. By performing ”smarter” downsampling, we provide
downstream models more leverage to incorporate deeper and more general-
izable networks without inference time concerns. In addition, we foresee it
application in processing point cloud sequences, in particular when to comes
to real-time inference.

Despite this, we recognize certain limitations in our downsampling network.
We present a few of these as follow:

• Diminishing returns: As we’ve observed, enhancements in inference
times and/or accuracy are frequently limited by the prevailing gener-
alizability constraints inherent in point cloud deep learning models.
Attempting more aggressive downsampling, particularly during infer-
ence only, yields inferior results due to these constraints, even when
geometrically insignificant points are sampled out. Further investiga-
tion is needed to understand why this phenomenon occurs.

• Supervised learning: Recent work in the domain of point cloud
learning has seen significant incorporation of unsupervised and self-
supervised learning models. Such models address the challenges of
limited access to labelled data. Nevertheless, we have adopted a super-
vised learning model in this project, which limits our work to datasets
with cleaned datasets that have computable laplacians.

27

• One-time Downsampling: Our downsampling method provides a
very intuitive geometric correlation with the idea of variability as a
measure of importance. Despite that, our downsampling is limited to
three-dimensional measure of laplacian, as our current method only
learns the laplacian labels and not the matrix itself. Downstream lay-
ers with more than 3 channels cannot benefit from additional laplacian-
based downsampling, and it is not clear whether the laplacian values
provide a notion of importance when dimensionality exceeds three.

6.2 Future Work

Due to the novelty of the concept, our laplacian-based downsampling model
has promising future prospects that can be explored in future research. We
list a few of these tangents below:

• Laplacian beyond labels: Although our primary goal in predicting
the Laplacian labels is to facilitate geometry-aware downsampling, we
contend that an accurate and efficient Laplacian estimator, which di-
rectly aligns the model with a Laplacian function instead of simply
labels, holds broader applications beyond downsampling. These ap-
plications include real-time physics inference and modeling, as well as
real-time point cloud denoising through mean curvature flow.

• Downsampling ensemble: One of the important aspects that dis-
tinguish our downsampling methodology is its independence from the
downstream task. Nevertheless, it might be desirable to train down-
sampling models that are fine tuned for a particular task. A potential
middle-ground between those two approaches is an ensemble combina-
tion of both methods, that scores point importance as a weighted (and
potentially learnt) combination of both scoring methods. We reason
this could combat overfitting in task-based downsampling methods,
and improve overall task accuracy.

28

Bibliography

[1] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic
Data for Indoor Scene Understanding. ArXiv e-prints, Feb. 2017.

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall. SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences. In Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV), 2019.

[3] A. Boulch. Convpoint: Continuous convolutions for point cloud pro-
cessing. Computers Graphics, 88:24–34, 2020.

[4] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 77–85, 2017.

[5] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017.

[6] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(12):4338–4364, 2021.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[8] M. D. P. S. Keenan Crane, Fernando de Goes. Digital geometry process-
ing with discrete exterior calculus. In ACM SIGGRAPH 2013 courses,
SIGGRAPH ’13, New York, NY, USA, 2013. ACM.

[9] I. Lang, A. Manor, and S. Avidan. Samplenet: Differentiable point
cloud sampling. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7575–7585, 2020.

29

[10] J. Lee, M. Sung, H. Kim, and T.-K. Kim. Pop-out motion: 3d-aware
image deformation via learning the shape laplacian. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 18532–18541, June 2022.

[11] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: Convolu-
tion on x-transformed points. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[12] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Proceedings of
the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 5105–5114, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[13] N. Sharp and K. Crane. A Laplacian for Nonmanifold Triangle Meshes.
Computer Graphics Forum (SGP), 39(5), 2020.

[14] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[15] X. Sun, Z. Lian, and J. Xiao. Srinet: Learning strictly rotation-invariant
representations for point cloud classification and segmentation. In Pro-
ceedings of the 27th ACM International Conference on Multimedia, MM
’19, page 980–988, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[16] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette,
and L. Guibas. Kpconv: Flexible and deformable convolution for point
clouds. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 6410–6419, 2019.

[17] O. Unal, L. Van Gool, and D. Dai. Improving point cloud semantic
segmentation by learning 3d object detection. In 2021 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 2949–
2958, 2021.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin. Attention is all you need.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[19] P.-S. Wang. Octformer: Octree-based transformers for 3d point clouds.
ACM Trans. Graph., 42(4), jul 2023.

30

[20] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans-
actions on Graphics (TOG), 2019.

[21] C. Wu, J. Zheng, J. Pfrommer, and J. Beyerer. Attention-based point
cloud edge sampling. In 2023 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5333–5343, Los Alamitos,
CA, USA, jun 2023. IEEE Computer Society.

[22] X. Wu, L. Jiang, P.-S. Wang, Z. Liu, X. Liu, Y. Qiao, W. Ouyang,
T. He, and H. Zhao. Point transformer v3: Simpler, faster, stronger,
2024.

[23] C. Zeng, W. Wang, A. Nguyen, J. Xiao, and Y. Yue. Self-supervised
learning for point cloud data: A survey. Expert Systems with Applica-
tions, 237:121354, 2024.

[24] J. Zhang, X. Lin, and X. Ning. Svm-based classification of segmented
airborne lidar point clouds in urban areas. Remote Sensing, 5(8):3749–
3775, 2013.

[25] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun. Point trans-
former. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 16239–16248, 2021.

[26] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun. Point trans-
former. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 16259–16268, October 2021.

31

	Introduction
	Point Cloud Data and its Properties
	Point Cloud Laplacian
	Learning on Point Cloud Data and its Challenges
	Point Cloud Downsampling and its Limitations
	Problem Statement & Contribution

	Related Work
	Deep Learning on Point Clouds
	Learning-based Sampling methods

	SampleLapNet Architecture
	Overview
	Point Cloud preprocessing
	SampleLapNet: the laplacian label predictor
	Transformers
	OctFormer and SampleLapNet

	Downsampling with SampleLapNet
	Alternative Architectures

	Experimental settings
	Downstream Tasks & Datasets
	Laplacian Labels
	Training Loss Function
	Evaluation Metrics

	Results
	Laplacian Segmentation (Prediction)
	Semantic Segmentation

	Conclusions & Future Work
	Discussion
	Future Work

