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Abstract

Session types are used to describe the structure of communications across channels.

Previous research has established a message-passing interpretation of intuitionistic

linear logic. Meanwhile, communication failures have been an important research

topic in session types. However, the exception handling mechanism has not been

well studied in the context of message passing. To bridge this gap, we study the

interpretation of classical affine logic and propose a new type system containing

features such as explicit channel cancellation and exception handling constructors.

Our type system ensures program safety by enforcing session fidelity and deadlock

freedom. To experiment, we implemented an interpreter for our language and tested

it on several examples to match the expected process behavior. Additionally, we

explore the possibility of representing some programming features, such as uncaught

exceptions and non-exhaustive matches, by revisiting the system.
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Chapter 1

Introduction

Linear logic [Gir87] is a refinement of intuitionistic logic that does not satisfy weakening

and contraction. Weakening drops resources in the contest and contraction duplicates

resources. It emphasizes the management of resources, where each formula should be used

exactly once. Informally speaking, the assumption cannot be too strong for the conclusion,

such as 𝐴, 𝐵 ⊢ 𝐵.
The Curry-Howard isomorphism states a correspondence between logical proof theory

and computational type theory [How80]. A computational interpretation of linear logic,

first given by Abramsky, lays the foundation for the connection between 𝜋-calculus and

linear logic [Abr93]. Later on, an expressive formulation of intuitionistic linear logic

provides a correspondence between linear proofs and processes, which gives rise to two

important ideas: proofs as processes [Abr94] and cut as computation [CPT14].

On the other hand, exceptions have been a practical topic during the development

of programming languages. Programmers can utilize exceptions to write explicit control

flow for their code. In most functional programming languages, exceptions are managed

by expression constructors. For instance, in Standard ML, exceptions are raised by the

keyword raise and caught by the keyword handle [Mil+97]. In concurrent models,

communication failures remain both inevitable and critical. Previous research applies

affine session types that relax the linearity of session types to incorporate error handling

[MV14].

Given the relationship between linear propositions and session types, our goal is to

implement exceptions under the computational interpretation of linear logic. However,

exceptions are inherently incompatible with linear logic. Let us assume we have some kind

of exception handler where part of its processes are designated to deal with exceptional

situations. In other words, it will be activated if an exception is raised. This violates

linearity, as the resources allocated for the exception handler will not be utilized if no

exceptions occur. Affinity, on the other hand, allows us to model such behavior, where

resources that are not used can be weakened.
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Our solution works under affine systems due to the nature of exceptions explained

above. Weakening provides a way to discard resources that are not used, and we interpret

this structural rule as a process cancel to cancel a channel. We add two new constructors

to the type system: raise and try catch. Although these constructors look similar to

most exception handling mechanisms in programming languages, they are interpreted

as processes, where the first signals an exception during the computation of processes,

and the second catches the signal and activates an additional process that handles the

exception concurrently.

We briefly summarize the outline and contributions of this thesis. In the rest of Chapter

1, we will introduce the correlation between sequent proofs and processes, classical affine

logic, and exceptions in functional programming languages. Chapter 2will present the new

type system we propose that deals with exceptions and its statics. We present the model

for process reduction and prove the safety of our type system in Chapter 3. In Chapter 4,

we will demonstrate the implementation of the language interpreter and provide examples

of traced processes. Finally, Chapter 5 will show how to represent non-exhaustive matches

under our type system, with commentary on related work, limitations of the current

approach, and avenues for future research.

1.1 Proofs as processes

A sequent proof of a proposition provides its computational meaning. We use proof terms

to record the structure of proofs such that we can reconstruct the proof from its proof

term. In the context of intuitionistic linear logic, the proof term corresponds to a process.

Below is an annotated sequent proof in intuitionistic linear logic.

𝑥1 : 𝐴1, 𝑥2 : 𝐴2, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑃 :: 𝑐 : 𝐶

where variables 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑐 represents distinct channels, propositions 𝐴1, 𝐴2, . . . ,𝐶

represents session types [CP10], and annotation 𝑥𝑖 : 𝐴𝑖 means the messages send along

channel 𝑥𝑖 must obey the communication behavior specified by 𝐴𝑖 . Under such setting,

we can regard the sequent as a process 𝑃 that uses all the channels in the antecedent and

provides a channel in the succedent.

In proof theory, the cut allows for a composition of two separate proofs into a single

proof, and correspondingly, a parallel composition of two processes connected by a channel.

Γ ⊢ 𝑃 :: 𝑥 : 𝐴 Γ′, 𝑥 : 𝐴 ⊢ 𝑄 :: 𝑐 : 𝐶

Γ, Γ′ ⊢ 𝑃 | 𝑄 :: 𝑐 : 𝐶
cut𝐴

The left premise represents a process 𝑃 that provides channel 𝑥 , and the right premise

represents another process 𝑄 that uses channel 𝑥 . In other words, the cut process 𝑃 com-

municates with process 𝑄 through channel 𝑥 specified by 𝐴. The linearity of propositions
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ensures that the channel 𝑥 has only two endpoints, and other processes besides 𝑃 and 𝑄

will not have access to channel 𝑥 , since every channel has a distinct variable name.

The cut rule can also be understood as the spawning of a new process. The main thread

spawns a new process 𝑃 , splits the current resources, creates a new channel 𝑥 , assigns

it as process 𝑃 ’s endpoint, and continues to execute the rest of the process 𝑄 with the

remaining resources in parallel.

1.2 Classical linear logic

In classical logic, the judgment of entailment has the following form.

𝐴1, 𝐴2, . . . , 𝐴𝑛 ⊢ 𝐶1,𝐶2, . . . ,𝐶𝑚

which means the conjunction of antecedents

∧𝑛
𝑖=1𝐴𝑖 implies the disjunction of the succe-

dents

∨𝑚
𝑗=1𝐶 𝑗 . The negation of a proposition becomes a new primitive connective in

classical logic, which distinct from intuitionistic logic where ¬𝐴 is as same as 𝐴 ⊃ ⊥.
Γ ⊢ 𝐴,Δ
Γ,¬𝐴 ⊢ Δ negL

Γ, 𝐴 ⊢ Δ
Γ ⊢ ¬𝐴,Δ negR

The behavior of negation flips around the proposition between the antecedent and the

succedent. In other words, it assumes the contrary and tries to derive a contradiction.

Previous research has shown that classical linear logic can be viewed as 𝜋-calculus by

interpreting the negation as a dual operation on session types [Wad12]. Defining the dual

of a session type 𝐴 is 𝐴⊥, we can rewrite the above the judgment in a single-sided form.

⊢ 𝐴⊥
1
, 𝐴⊥

2
, . . . , 𝐴⊥𝑛 ,𝐶1,𝐶2, . . . ,𝐶𝑚

Instead of cutting a proposition on different sides of inference, we cut a proposition against

its dual.

⊢ 𝐴,Δ ⊢ 𝐴⊥,Δ′
⊢ Δ,Δ′ cut𝐴

In classical logic, we know a proposition 𝐴 is either true or its dual proposition 𝐴⊥ is true.

In the above cut rule, we can eliminate the usage of𝐴 by connecting the remaining context

using disjunction.

Under the interpretation of proofs as processes, we can write the annotated two-sided

judgment as follows.

𝑥1 : 𝐴1, 𝑥2 : 𝐴2, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑃 :: 𝑦1 : 𝐶1, 𝑦2 : 𝐶2, . . . , 𝑦𝑚 : 𝐶𝑚

This judgment can be viewed as a process 𝑃 that communicates along channels 𝑥1, 𝑥2, . . . , 𝑥𝑛
and 𝑦1, 𝑦2, . . . , 𝑦𝑚 , where each channel obeys its protocol requirements. We do not distin-

guish whether a channel is used or provided, because we can always use the negation rule
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to flip the propositions. In other word, classical logic blurs the distinction between client

and server roles in concurrent communication. The translation from classical linear logic

to intuitionistic linear logic using double negation is well studied [Lau18], thus it is possible

to demonstrate the safety of this system by converting it back to intuitionistic linear logic

[Fri78]. Such translation has practical applications, such as continuation passing style

translation [App91].

1.3 Affine logic

Affine logic is a substructural logic that rejects the structural rule of contraction. In other

words, it is a form of linear logic that retains the weakening rule. Such logic is widely

appreciated in programming languages such as Rust, where the usage of all strongly

typed channels is guaranteed to be affine [LNY22]. There are two ways of formalizing

weakening rules. The first formulation is implicit weakening, which modifies the original

rules, such as the identity rule, to allow for the closure of the proof by silently discarding

all propositions in the context.

Γ ⊢ 1 1𝑅 Γ, 𝐴 ⊢ 𝐴 identity

Another formulation adds the explicit weakening rules.

Γ ⊢ 𝐶
Γ, 𝐴 ⊢ 𝐶 weaken

Under the classical setting, we will have two weakening rules, one for the antecedent and

another one for the succedent. We can establish the equivalence of these two formulations.

However, concerning the computational interpretation, the explicit formulation is more

advantageous for two reasons. Firstly, it offers explicit resource control for programmers.

Let us annotate the explicit weakening rule as follows.

𝑃
Γ ⊢ 𝑐 : 𝐶

Γ, 𝑥 : 𝐴 ⊢ 𝑐 : 𝐶 weaken

We can interpret this rule as a process that discards the future usage of channel 𝑥 from

resources and proceeds with process 𝑃 . Discarding resources is a common practice in

programming. For example, below is an implementation of a function that returns the

length of a list.

let rec length : 'a list -> int = function
| [] -> 0
| _ :: xs -> 1 + length xs
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In the inductive case where the list is not empty, the function discards the head of

the list and proceeds with the remaining list. If we enforce linearity in this function, we

need to rewrite the function to have the type 'a list -> int * 'a list so that we

reconstruct the list while computing its length for any future usage of the list.

Besides the usage of dropping resources, static checking for the interpreter does not

align well with implicit weakening. According to the implicit rule, when the process

reaches its end, all channels in the context will be discarded. This fails to verify whether

the programmer intentionally or accidentally left some resources unused.



Chapter 2

Type system

In this chapter, we introduce the static semantics for our system. First, we list the syntax

and explain the behavior of the propositions (types) included in the system. Next, we

present the process syntax and the inference rules that define the typing judgment for

processes.

2.1 Propositions

The syntax of the propositions are defined in Figure 2.1.

Propositions 𝐴, 𝐵 ::= 1 ’One’, nullary case of ⊗
| ⊥ ’Bottom’, nullary case of O
| 𝐴 ⊗ 𝐵 ’Tensor’, communicates with 𝐴 and behaves as 𝐵

| 𝐴 O 𝐵 ’Par’, communicates with 𝐴 and behaves as 𝐵

| &{𝑙 : 𝐴𝑙 }𝑙∈𝐿 ’With’, finite choices 𝐿 distinguished by labels 𝑙

| ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿 ’Plus’, finite choices 𝐿 distinguished by labels 𝑙

Figure 2.1: Syntax of propositions

(𝑃)⊥ −→ 𝑃⊥ 𝑃 atom

1
⊥ −→ ⊥

⊥⊥ −→ 1

(𝐴 ⊗ 𝐵)⊥ −→ 𝐴⊥ O 𝐵⊥

(𝐴 O 𝐵)⊥ −→ 𝐴⊥ ⊗ 𝐵⊥
(⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿)⊥ −→ &{𝑙 : 𝐴⊥

𝑙
}𝑙∈𝐿

(&{𝑙 : 𝐴𝑙 }𝑙∈𝐿)⊥ −→ ⊕{𝑙 : 𝐴⊥
𝑙
}𝑙∈𝐿

Figure 2.2: Dual operations on propositions

6
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The propositions can be classified into two categories: multiplicatives (⊗,O) and
additives (⊕,&). The behavior of each type depends on whether it is in the antecedent or

the succedent of a sequent. Because of the dual operation in classical logic mentioned in

Figure 2.2, the behavior of a session type in the antecedent is the same as its dual in the

succedent and vice versa. It is worth noticing that taking the dual of a proposition twice

will result in the original proposition, i.e., (𝐴⊥)⊥ = 𝐴.

To simplify the explanation of the propositions, we discuss their logical behavior in

the succedent through their inference right rules.

• One

· ⊢ 1 1𝑅

The empty truth, called One, holds only if there are no resources. This is the nullary

case of the multiplicative conjunction.

• Bottom

Γ ⊢ Δ
Γ ⊢ ⊥,Δ ⊥𝑅

Bottom is a nullary case of the multiplicative disjunction. This proposition does not

contain any resources and can be dropped freely.

• Tensor

Γ1 ⊢ 𝐴,Δ1 Γ2 ⊢ 𝐵,Δ2

Γ1, Γ2 ⊢ 𝐴 ⊗ 𝐵,Δ1,Δ2

⊗𝑅

The multiplicative conjunction 𝐴 ⊗ 𝐵 is true if 𝐴 and 𝐵 are both true. We need to

subdivide the resources, use some of them to prove 𝐴 the other to prove 𝐵.

• Par

Γ ⊢ 𝐴, 𝐵,Δ
Γ ⊢ 𝐴 O 𝐵,Δ

O𝑅

The multiplicative disjunction 𝐴 O 𝐵 is true if given a refutation of 𝐴, 𝐵 is true, or

given a refutation of 𝐵, 𝐴 is true in the current context.

• With

Γ ⊢ 𝐴𝑙 ,Δ ∀𝑙 ∈ 𝐿
Γ ⊢ &{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ

&𝑅

The additive conjunction &{𝑙 : 𝐴𝑙 }𝑙∈𝐿 is true if for all 𝑙 ∈ 𝐿, 𝐴𝑙 are true separately
with the current resources. We need one premise for each label in 𝐿.

• Plus

Γ ⊢ 𝐴𝑘 ,Δ 𝑘 ∈ 𝐿
Γ ⊢ ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ

⊕𝑅𝑘
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The additive disjunction ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿 is true if there exists some 𝑘 ∈ 𝐿 such that 𝐴𝑘
is true with the current resources. We can replace the subscript 𝑘 by any other labels

in 𝐿. In other words, we have |𝐿 | instances of this rule.

The linear implication 𝐴 ⊸ 𝐵 is not included in the system because it can be derived

from 𝐴⊥ O 𝐵. We can prove this equivalence. Assume Γ ⊢ 𝐴 ⊸ 𝐵, by the invertibility,

we have Γ, 𝐴 ⊢ 𝐵. Using the dual operator, we can derive Γ ⊢ 𝐴⊥, 𝐵. By O𝑅, we conclude
Γ ⊢ 𝐴⊥ O 𝐵. Since the proof is invertible, we can derive the other direction as well.

We include the inference rules of identity and cut in our system.

𝐴 ⊢ 𝐴 identity𝐴

Γ1 ⊢ 𝐴,Δ1 Γ2, 𝐴 ⊢ Δ2

Γ1, Γ2 ⊢ Δ1,Δ2

cut𝐴

The identity rule closes the proof by ensuring that there is only one identical proposition

on each side of the sequent. The cut rule allows us to split the context to prove some

arbitrary propositions 𝐴 and then combine the results to prove the conclusion with the

remaining context.

The structural rule of weakening is included in the system. Since we are working with

a two-sided sequent, we have weakening rules for both the antecedent and the succedent.

Γ ⊢ Δ
Γ, 𝐴 ⊢ Δ weaken𝐿

Γ ⊢ Δ
Γ ⊢ 𝐴,Δ weaken𝑅

To avoid arbitrary splitting of the context and extra premises in ⊗𝑅, we use the alternative
version ⊗𝑅∗ [CP10].

Γ ⊢ 𝐵,Δ
Γ, 𝐴 ⊢ 𝐴 ⊗ 𝐵,Δ ⊗𝑅

∗

We provide a simple justification for the sensibility of this rule by showing the original

⊗𝑅 can be derived from ⊗𝑅∗ and vice versa.

• Assume we have a derivation D1 for Γ1 ⊢ 𝐴,Δ1 and D2 for Γ2 ⊢ 𝐵,Δ2. We can create

a derivation for Γ1, Γ2 ⊢ 𝐴 ⊗ 𝐵,Δ1,Δ2 without using ⊗𝑅 rule as the following:

D1

Γ1 ⊢ 𝐴,Δ1

D2

Γ2 ⊢ 𝐵,Δ2

Γ2, 𝐴 ⊢ 𝐴 ⊗ 𝐵,Δ2

⊗𝑅∗

Γ1, Γ2 ⊢ 𝐴 ⊗ 𝐵,Δ1,Δ2

cut𝐴

• Assume we have a derivation D for Γ ⊢ 𝐵,Δ. We can create a derivation for

Γ, 𝐴 ⊢ 𝐴 ⊗ 𝐵,Δ without using ⊗𝑅∗ rule as the following:

𝐴 ⊢ 𝐴 identity𝐴
D

Γ ⊢ 𝐵,Δ
Γ, 𝐴 ⊢ 𝐴 ⊗ 𝐵,Δ ⊗𝑅
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We can rewrite O𝐿∗ rule accordingly and justify its equivalence with the original O𝐿.

Γ ⊢ 𝐵,Δ
Γ, 𝐴 O 𝐵 ⊢ 𝐴,Δ O𝐿∗

2.2 Processes

In this section, wewill annotate the proofs with proof terms and interpret them as processes.

Moreover, we will introduce our exception handling mechanism in our system. We first

present the syntax of the processes in Figure 2.3.

Messages 𝑀 ::= ()
| 𝑙

| 𝑥

Continuations 𝐾 ::= (() ⇒ 𝑃)
| (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿
| (𝑥 ⇒ 𝑃 (𝑥))

Processes 𝑃,𝑄 ::= send 𝑥 𝑀

| recv 𝑥 𝐾

| fwd 𝑦 𝑥

| 𝑥 
| 𝑥 ← 𝑃 (𝑥); 𝑄 (𝑥)
| raise𝑀

| 𝑥 ↞ try 𝑃 (𝑥) catch 𝑄 (𝑥)

Figure 2.3: Syntax of processes

We separate the terms into three categories: messages, continuations, and processes.
Variables are used to represent channels and strings are used to represent labels. We

require the channels to have distinct names. The information passed through channels

can be either a unit message (), a label 𝑙 , or a channel 𝑥 . The continuation specifies the

behavior of the process after receiving a message. Correspondingly, there are three kinds of

continuations. (() ⇒ 𝑃) is a unit continuation that waits for a unit message and continues

with process 𝑃 . (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿 is a branching continuation that selects to execute process

𝑃𝑙 based on the label 𝑙 it receives. In other words, it has prepared the same number of

processes as the number of labels in 𝐿. (𝑥 ⇒ 𝑃 (𝑥)) is a continuation that waits for a

channel 𝑥 and continues with process 𝑃 (𝑥). We write 𝑃 (𝑥) instead of 𝑃 to indicate that

the process 𝑃 depends on the channel 𝑥 .

From the description above, we provide an intuition of how processes interact with

each other. Imagine a segment where one endpoint outputs a message and passes it to
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the other endpoint, which works as a continuation that waits for the message through

this segment. We can see that each message has its own corresponding continuation. This

means that if the message passing through the segment is a label while the continuation

is waiting for a channel, the interaction will be stuck and cannot proceed. We can use

propositions as session types introduced in Section 2.1 to restrict channel behavior. More

details on this observation will be discussed in the operational semantics.

We present the annotated inference rules in Figure 2.4, where proof terms are inter-

preted as processes. The judgment has the form Γ ⊢ 𝑃 :: Δ;Ω, which means the process 𝑃

communicates along the channels in Γ and Δ and has an exception handler Ω. The usage
of the singleton context Ω is explained in Section 2.3. We first introduce the standard pro-

cesses and explain how information flows through channels. Processes of send and recv

are elementary processes. send 𝑥 𝑀 sends a message 𝑀 along channel 𝑥 , and recv 𝑥 𝐾

receives a message from channel 𝑥 and continues with the continuation 𝐾 . Whether a

process sends or receives a message depends on the polarity of the connective. Positive

connectives, whose right rule is not invertible, will send a message in their right rule and

receive a message in their left rule. The intuition is that non-invertible rules always make

a choice, while invertible rules do not contain any extra information.

The proposition restricts the message type a channel can send or receive. A channel

of type 1 or ⊥ can only send or receive a unit message, respectively. In logic systems,

1 represents the empty truth, and ⊥ represents the empty falsehood. Therefore, a unit

message is also called an empty message since it does not contain any useful information.

An analogy can be drawn from a unit message to computation suspension in functional

programming. Under call-by-value settings, an expression 𝑒 needs to be eagerly evaluated

before it can be involved in future computation. However, if we replace 𝑒 by 𝜆(𝑥 : unit.𝑒),
then the computation of 𝑒 is suspended since a function is already a value. We can retrieve

the computation by applying the function to a unit value (). In the message-passing

setting, recv 𝑥 (() ⇒ 𝑃) is a "suspended" process that waits for a unit message sent

through channel 𝑥 .

A channel of product type ⊗ and O can send or receive a channel, and its type evolves

accordingly. For instance, in the [⊗𝑅∗] rule, the process send 𝑥 𝑦; 𝑃 sends a channel 𝑦

along channel 𝑥 and continues with process 𝑃 . Before sending the channel 𝑦, the channel 𝑥

has type𝐴⊗𝐵. After sending𝑦 of type𝐴, the channel 𝑥 evolves to type 𝐵. The last message

corresponds to choice types ⊕ and &. A choice type is a collection of types distinguished

by labels. For instance, the type bool can be written as ⊕{true : 1, false : 1}, a choice type
of two labels true and false with unit types. send 𝑥 𝑙 sends a label 𝑙 along channel 𝑥 . This

can be viewed as a process that makes a choice to select label 𝑙 from all the possible label

collections 𝐿. We add a subscript 𝑘 as a label to the [⊕𝑅𝑘] rule to indicate that the process

chooses 𝑘 . The type of the channel evolves from choice type to the corresponding type

of label 𝑘 . recv 𝑥 (𝑙 ⇒ 𝑃𝑙 ) provides a branching continuation that selects one branch to

execute based on the label it receives. We write ∀𝑙 ∈ 𝐿 to indicate that the process has
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[1𝑅]

· ⊢ send 𝑥 () :: 𝑥 : 1;Ω

[1𝐿]

Γ ⊢ 𝑃 :: Δ;Ω

Γ, 𝑥 : 1 ⊢ recv 𝑥 (() ⇒ 𝑃) :: Δ;Ω

[⊥𝑅]

Γ ⊢ 𝑃 :: Δ;Ω

Γ ⊢ recv 𝑥 (() ⇒ 𝑃) :: 𝑥 : ⊥,Δ;Ω

[⊥𝐿]

𝑥 : ⊥ ⊢ send 𝑥 () :: ·;Ω

[⊗𝑅∗]
Γ ⊢ 𝑃 :: 𝑥 : 𝐵,Δ;Ω

Γ, 𝑦 : 𝐴 ⊢ send 𝑥 𝑦; 𝑃 :: 𝑥 : 𝐴 ⊗ 𝐵,Δ;Ω

[⊗𝐿]
Γ, 𝑥 : 𝐵,𝑦 : 𝐴 ⊢ 𝑃 :: Δ;Ω

Γ, 𝑥 : 𝐴 ⊗ 𝐵 ⊢ recv 𝑥 (𝑦 ⇒ 𝑃 (𝑦)) :: Δ;Ω

[O𝑅]
Γ ⊢ 𝑃 :: Δ;𝑥 : 𝐵,𝑦 : 𝐴,Ω

Γ ⊢ recv 𝑥 (𝑦 ⇒ 𝑃 (𝑦)) :: 𝑥 : 𝐴 O 𝐵,Δ;Ω

[O𝐿∗]
Γ, 𝑥 : 𝐵 ⊢ 𝑃 :: Δ;Ω

Γ, 𝑥 : 𝐴 O 𝐵 ⊢ send 𝑥 𝑦; 𝑃 :: 𝑦 : 𝐴,Δ;Ω

[⊕𝑅𝑘]
Γ ⊢ 𝑃 :: 𝐴𝑘 ;Ω 𝑘 ∈ 𝐿

Γ ⊢ send 𝑥 𝑘 ; 𝑃 :: 𝑥 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ;Ω

[⊕𝐿]
Γ, 𝑥 : 𝐴𝑙 ⊢ 𝑃𝑙 :: Δ;Ω (∀𝑙 ∈ 𝐿)

Γ, 𝑥 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿 ⊢ recv 𝑥 (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿 :: Δ;Ω

[&𝑅]

Γ, 𝑥 : 𝐴𝑙 ⊢ 𝑃𝑙 :: Δ;Ω (∀𝑙 ∈ 𝐿)
Γ, 𝑥 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿 ⊢ recv 𝑥 (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿 :: Δ;Ω

[&𝐿𝑘]

Γ, 𝑥 : 𝐴𝑘 ⊢ 𝑃 :: Δ;Ω 𝑘 ∈ 𝐿
Γ, 𝑥 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿 ⊢ send 𝑥 𝑘 ; 𝑃 :: Δ;Ω

[weakenR]

Γ ⊢ 𝑃 :: Δ;Ω

Γ ⊢ 𝑥 ; 𝑃 :: 𝑥 : 𝐴,Δ;Ω

[weakenL]

Γ ⊢ 𝑃 :: Δ;Ω

Γ, 𝑥 : 𝐴 ⊢ 𝑥 ; 𝑃 :: Δ;Ω

[identity𝐴]

𝑦 : 𝐴 ⊢ fwd 𝑥 𝑦 :: 𝑥 : 𝐴;Ω

[cut𝐴]

Γ1 ⊢ 𝑃 (𝑥) :: 𝑥 : 𝐴,Δ1; · Γ2, 𝑥 : 𝐴 ⊢ 𝑄 (𝑥) :: Δ2;Ω

Γ1, Γ2 ⊢ 𝑥 ← 𝑃 (𝑥); 𝑄 (𝑥) :: Δ1,Δ2;Ω

[raise]

Γ ⊢ 𝑃 :: Δ; ·
Γ ⊢ raise 𝑃 :: Δ;𝑥 : exn

[trycatch𝐴]

Γ1 ⊢ 𝑃 (𝑦) :: 𝑦 : 𝐴,Δ1;𝑥 : exn Γ2, 𝑥 : exn, 𝑦 : 𝐴 ⊢ erecv 𝑥 𝑄 (𝑦) :: Δ2;Ω

Γ1, Γ2 ⊢ 𝑦 ↞ try 𝑃 (𝑦) catch 𝑄 (𝑦) :: Δ1,Δ2;Ω

Figure 2.4: Static semantics of the type system
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prepared a process for each label in 𝐿. In other words, if there is some label missing in

the branching, the process will panic and do not know how to proceed. However, we can

exploit this feature by including non-exhaustive matches in our language, which will be

discussed in Section 5.2.

Now we discuss the structural rules of our system. The weakening rule is represented

by the channel cancellation process 𝑥 . Although we have two different weakening rules:

[weakenL] and [weakenR], we do not distinguish them syntactically. The process 𝑥 
discards the channel 𝑥 from the context and continues with process 𝑃 under the remaining

context. The [identity𝐴] rule is represented by the process fwd 𝑦 𝑥 , which passes the

information from channel 𝑦 to channel 𝑥 . The cut rule spawns a child process 𝑃 with

a newly created private channel 𝑥 and continues with the parent process 𝑄 under the

remaining context. The split of the exception handling context and the remaining rules

about exceptions are discussed in the next section.

2.3 Exception processes

We first examine how exceptions are raised and handled in common functional program-

ming languages. Below is a function that returns the division of two numbers optionally.

In other words, if there is no division by zero, the function returns the division of two

numbers. Otherwise, it prints a message to console and returns none.

let div (a : int) (b : int) : int option =
try

Some (a / b)
with Failure _ -> print_endline "Division by zero"; None

An important observation is sequential execution in computation. Whether the print

statement will be executed is not determined until the division is evaluated. We adapt such

an idea in our exception handling mechanism. The execution of an exception handling

process requires the execution of the main process, and we use Ω to store the channels

that communicate between the main process and the exception handling process. Ω is a

singleton context, which means it contains at most one channel. If there are no channels

in Ω, this means process 𝑃 does not have any exception handling mechanism. Then, if 𝑃

raises an exception, it will be an uncaught exception.

Ω = · | 𝑥 : exn

The channel in Ω has type exn, which is defined as the following:

exn = ⊕{act : 1, sil : 1}
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As described before, a channel of type exn sends and receives a label of either act or sil.
act label represents activation of the exception handling process when an exception is

raised. Conversely, sil label represents the drop of the exception handling process when

the process finished executing without any exceptions.

With enough introduction, we can look at the structure of [trycatch𝐴]. It creates
a channel 𝑦 and splits the resources to execute the main process 𝑃 . Meanwhile, a new

channel 𝑥 of type exn is created and assigned to 𝑃 . The process erecv is a derived form

which is defined by the following:

Γ ⊢ erecv 𝑥 𝑄 (𝑦) :: Δ;Ω ≜ Γ ⊢ recv 𝑥 (act⇒ recv 𝑥 (() ⇒ 𝑄 (𝑦))
| sil⇒ recv 𝑥 (() ⇒ 𝑦 ; Γ ;Δ )) :: Δ;Ω

It waits for a label sent through channel 𝑥 . If the label is act, which means an exception

is raised by its main process, it starts to execute the process 𝑄 (𝑦) using the remaining

context and the original exception handling context. On the other hand, if the main process

finishes execution without any exceptions, a sil label will lead to a branch of cancelling

all resources prepared for exception handling. The exception handling context is inherited

from the original process.

Now let’s revisit the body of the division function to see how exceptions are raised.

The division a / b is a partial function that will raise an exception when 𝑏 = 0. The

exception is characterized by the exception constructor Failure with a message attached

to it. In the example above, we do not utilize the information stored in the exception.

We follow the same structure in our system; instead of raising an exception with a value,

we raise a process as described in [raise]. raise 𝑃 raises an exception and continues to

execute with process 𝑃 . Currently, we require the exception to be caught by the exception

handling process. This invariant is enforced by requiring Ω to be non-empty. However, this

restriction can be relaxed, as uncaught exceptions are common in programming languages.

We explore this feature in Section 5.1.



Chapter 3

Runtime semantics

Wemodel the execution of the program as transitions between states. Each state consists of

a configuration and a cancelled set. We adapt previous work by regarding the configuration

as a multiset whose reduction follows linear inference [CS09], while the cancelled set

records the channels that are cancelled during the execution globally. We also formalize

recursion to make the program more expressive. After that, we prove the safety theorems

of the system by showing that well-typed configurations will not get stuck, and after

reduction, the configuration will still be well-typed.

3.1 Configuration

To formalize the runtime semantics, we can view each process as an individual object. The

start of the program can be viewed as a configuration with a single object. During the

execution of the program, new processes will be spawned, adding new process objects to

the configuration. We define the configuration C in Figure 3.1.

Configuration C ::= · empty configuration

| C1, C2 join configuration

| proc(Γ/Δ/Ω/𝑃) process object

Figure 3.1: Syntax of configuration

The empty configuration is an empty multiset that does not contain any process object.

A single process object of form proc(Γ/Δ/Ω/𝑃) represents a process 𝑃 communicates

along the channels in Γ and Δ and has an exception handling context Ω. During the

transition of the program, the meta variables in the process object may change accordingly.

Lastly, the join combines two configuration into one configuration.

14
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To avoid the situation of bad programs, where one channel receives a label message

and has a unit continuation, we establish the typing judgment for configuration of form

Φ ⊢ C :: Φ′. The configuration C uses channels in Φ and provides channels Φ′. For instance,
if a configuration 𝐶 uses channel 𝑎 : 𝐴 and provides channel 𝑏 : 𝐵, then Φ, 𝑎 : 𝐴 ⊢ C :: 𝑏 :

𝐵,Φ holds. We provide the relevant rules in Figure 3.2.

[empty]

Φ ⊢ · :: Φ

[join]

Φ ⊢ C1 :: Φ′ Φ′ ⊢ C2 :: Φ′′

Φ ⊢ C1, C2 :: Φ′′

[object]

Φ, Γ ⊢ proc(Γ/Δ/Ω/𝑃) :: Δ,Ω,Φ

Figure 3.2: Typing judgment of configuration

[empty] states that an empty configuration does not use any channels and provides

the same channels. We add an arbitrary context Φ on both sides to generalize the [object]
rule, since there may be channels that are not used by process 𝑃 . [join] combines two

configurations C1 and C2 into one configuration C by some certain order. This may

contradict with the intuition that the configuration is an unordered set where C1, C2 should
be as same as C2, C1. Here, we require that there exists an ordering of the configuration

such that it is well-typed. Such ordering is not unique, apparently. Consider an example

where C1 = proc(·/𝑎 : 𝐴/·/𝑃) and C2 = proc(𝑏 : 𝐵, 𝑐 : 𝐶/·/·/𝑄). We can join these two

configurations in two ways: C = C1, C2 and C = C2, C1 where 𝑏 : 𝐵, 𝑐 : 𝐶 ⊢ C :: 𝑎 : 𝐴.

Using the [object], we can find such Φ′ = 𝑎 : 𝐴,𝑏 : 𝐵, 𝑐 : 𝐶 for the first way and Φ′ = ·
for the second way. However, if we change C2 into proc(𝑎 : 𝐴,𝑏 : 𝐵/·/·/𝑄), the overall
configuration 𝑏 : 𝐵 ⊢ C :: · still type checks, but the ordering is unique. It cannot be the
case that C = C2, C1, and the reason for that is because C1 provides channel 𝑎 that is used
by C2. By this observation, two configurations can be swapped if none of the channels

provided by the first configuration are used by the second configuration.

Besides the configuration, we also need a globally defined set to store the channels that

are cancelled during the execution, call it S. The main reason why we need to keep track of

this set is because the cancellation of a channel may affect the execution of other processes.

Every channel can be viewed as a segment that has two endpoints. In the original execution,

one endpoint will send a message and the other endpoint is a continuation that waits for

this message. However, if one endpoint is cancelled, the other endpoint should also be

cancelled accordingly. We call this procedure cancellation propagation.
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To conclude, the state of the computation is a pair of current configuration and cancelled

set ⟨C,S⟩.

3.2 Recursion

Recursion is a very practical tool in programming, and we also want such a feature in our

system. However, the formalization of recursion has little to do with logics. We achieve

such equirecursion by having a signature Σdecl and a structure Σdefn, whose syntax is

defined in Figure 3.3.

Σdecl ::= ·
| 𝑡

| 𝑝 : (𝑋,𝑌 )
| Σdecl1, Σdecl2

Σdefn ::= ·
| 𝑡 = 𝐴

| 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑃
| Σdefn1, Σdefn2

Figure 3.3: Syntax of signature and structure

A type declaration 𝑡 states that the identifier 𝑡 refers to a type, while a process decla-

ration 𝑝 : (𝑋,𝑌 ) specifies a process identifier 𝑝 whose input channel types are stored in

a list 𝑋 and output channel types in a list 𝑌 . Such a signature can be determined when

scanning through the whole program. We want to ensure that all the definitions in the

program are well-defined based on the declarations. This structure records both type and

process definitions. A type definition has the form 𝑡 = 𝐴, where 𝑡 is a type identifier and

𝐴 is a proposition. A process definition has the form 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑃 .
The identification includes a process name 𝑝 , a list of output channels 𝑦1, 𝑦2, . . . , 𝑦𝑚 , and a

list of input channels 𝑥1, 𝑥2, . . . , 𝑥𝑛 . The process such identification represents is 𝑃 . We use

the judgment Σdecl ⊢ Σdefn struct to represent that Σdefn is a valid structure given all the

declarations in Σdecl. We present the rules for signatures in Figure 3.4. The judgments for

well-formed types Σdecl ⊢ 𝐴 type and well-formed processes Σdecl ⊢ 𝑃 proc can be defined

by looking at the signature, and thus we omit the rules here.
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[empty]

Σdecl ⊢ · struct

[typedef]

Σdecl ⊢ Σdefn struct Σdecl ⊢ 𝐴 type

Σdecl ⊢ Σdefn, 𝑡 = 𝐴 struct

[procdef]

Σdecl ⊢ Σdefn struct Σdecl ⊢ 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦1, 𝑦2, . . . , 𝑦𝑚) proc
Σdecl ⊢ Σdefn, 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑃 struct

Figure 3.4: judgment of well-formed structure

We present some examples of recursive types that will be used in future examples.

• Natural number nat
nat ≜ ⊕{zero : 1, succ : nat}

The definition of natural number is a choice type of two labels zero and succ, where
zero represents the number 0 and succ represents the successor of a natural number.

This looks similar to the inductive type 𝜇 (𝑡 .1 + 𝑡).

• List of natural numbers list

list ≜ ⊕{nil : 1, cons : nat ⊗ list}

List of natural numbers is also a choice type of two labels nil and cons. In the

cons label, it contains multiplicative product of nat and list. To ensure list is

well-defined, we need to have a type definition for nat in the signature.

To utilize recursing processes, we add a new process expression call to activate another

process in Figure 3.5. A process can call itself to achieve self recursion.

Processes 𝑃,𝑄 ::= . . .

| call 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛]

[call]

Σdecl ⊢ 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑃 struct

𝑝 : ( [𝐴1, 𝐴2, . . . 𝐴𝑛], [𝐶1,𝐶2, . . .𝐶𝑚]) ∈ Σdecl

Γ ⊢ call 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛] :: Δ;Ω

where Γ = 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, . . . , 𝑥𝑛 : 𝐴𝑛 and Δ = 𝑦1 : 𝐶1, 𝑦2 : 𝐶2, . . . , 𝑦𝑚 : 𝐶𝑚

Figure 3.5: Extended syntax and static semantics of the type system
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The call process looks up the signature Σdecl and finds the process defined by identifier

𝑝 . Moreover, we need to check the types for each variable matches with the signature of

the process. There should be no future processes after the call, thus we require process 𝑃

takes all the channels in Γ and Δ. The exception handling context Ω is inherited from the

original process.

3.3 Reduction

In future discussions, we will distinguish channels using 𝑎, 𝑏, 𝑐, . . . for allocated ones and

use 𝑥,𝑦, 𝑧, . . . for ones are variables that require substitution during the execution. For

instance, 𝑎 ← 𝑃 (𝑎); 𝑄 (𝑎) should not be allowed since channel 𝑎 should be a variable

instead of a created channel. Similarly, 𝑥 is invalid since we cannot cancel a channel that

is not allocated.

The reduction of the configuration is based on linear inference. New process objects

are created when a new process is spawned. Correspondingly, process objects may be

destroyed when the process is finished or evolves to another process. A reduction step

is represented by ⟨C;S⟩ −→ ⟨C′;S′⟩. The reduction rules only examine parts of the

configuration. The untouched parts are preserved in the new configuration. We first

present the standard reduction rules without exceptions in Figure 3.6.

Most of the standard rules represent message reduction. For instance, in [label-r], one

process sends a label 𝑘 through channel 𝑎, and in another process, it waits for a label from

𝑎 and passes it to a branching continuation. Therefore, two processes can make progress

simultaneously. As the first process continues to execute the remaining process 𝑃 , the

second process chooses process 𝑃𝑘 to execute. By the duality of the propositions, each

reduction has two versions of rules, one for the right rule and one for the left rule.

In the [linking] rule, the process fwd 𝑐 𝑎 passes information from channel 𝑎 to

channel 𝑐 . We achieve this effect by replacing all usages of channel 𝑎 by channel 𝑐 in the

continuation process. Since the invariant that every channel has two endpoints holds, we

know there is only one such process where we need to do the substitution. The [spawn]

rule splits the original object into two process objects. The first object contains the new

process 𝑃 , and the second object contains the original process 𝑄 . A new channel 𝑎 is

created and put into the relevant context. We require that the channel 𝑎 is globally fresh

to avoid naming conflicts. Moreover, the contexts are split based on the metavariables in

each process. According to the static rules, there must be a valid splitting of the context

that maintains the typing of the configuration.
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[unit-r]

〈
proc(·/𝑎 : 1/Ω1/send 𝑎 ())
proc(Γ, 𝑎 : 1/Δ/Ω2/recv 𝑎 (() ⇒ 𝑃)) ;S

〉
−→

〈
proc(·/·/Ω1/·)
proc(Γ/Δ/Ω2/𝑃)

;S
〉

[unit-l]

〈
proc(𝑎 : ⊥/·/Ω1/send 𝑎 ())
proc(Γ/𝑎 : ⊥,Δ/Ω2/recv 𝑎 (() ⇒ 𝑃)) ;S

〉
−→

〈
proc(·/·/Ω1/·)
proc(Γ/Δ/Ω2/𝑃)

;S
〉

[channel-r]

〈
proc(Γ1, 𝑎 : 𝐴/𝑐 : 𝐴 ⊗ 𝐵,Δ1/Ω1/send 𝑐 𝑎; 𝑃)
proc(Γ2, 𝑐 : 𝐴 ⊗ 𝐵/Δ2/Ω2/recv 𝑐 (𝑥 ⇒ 𝑄 (𝑥))) ;S

〉
−→

〈
proc(Γ1/𝑐 : 𝐵,Δ1/Ω1/𝑃)
proc(Γ2, 𝑎 : 𝐴, 𝑐 : 𝐵/Δ2/Ω2/𝑄 (𝑎))

;S
〉

[channel-l]

〈
proc(Γ1, 𝑐 : 𝐴 O 𝐵/𝑎 : 𝐴,Δ1/Ω1/send 𝑐 𝑎; 𝑃)
proc(Γ2/𝑐 : 𝐴 O 𝐵,Δ2/Ω2/recv 𝑐 (𝑥 ⇒ 𝑄 (𝑥))) ;S

〉
−→

〈
proc(Γ1, 𝑐 : 𝐵/Δ1/Ω1/𝑃)
proc(Γ2/𝑎 : 𝐴, 𝑐 : 𝐵,Δ2/Ω2/𝑄 (𝑎))

;S
〉

[label-r]

〈
proc(Γ1/𝑎 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ1/Ω1/send 𝑎 𝑘 ; 𝑃)
proc(Γ2, 𝑎 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿/Δ2/Ω2/recv 𝑎 (𝑙 ⇒ 𝑄𝑙 )𝑙∈𝐿)

;S
〉

−→
〈
proc(Γ1/𝑎 : 𝐴𝑘 ,Δ1/Ω1/𝑃)
proc(Γ2, 𝑎 : 𝐴𝑘/Δ2/Ω2/𝑄𝑘)

;S
〉

[label-l]

〈
proc(Γ1, 𝑎 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿/Δ1/Ω1/send 𝑎 𝑘 ; 𝑃)
proc(Γ2/𝑎 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ2/Ω2/recv 𝑎 (𝑙 ⇒ 𝑄𝑙 )𝑙∈𝐿)

;S
〉

−→
〈
proc(Γ1, 𝑎 : 𝐴𝑘/Δ1/Ω1/𝑃)
proc(Γ2/𝑎 : 𝐴𝑘 ,Δ2/Ω2/𝑄𝑘)

;S
〉

[linking]

〈
proc(𝑎 : 𝐴/𝑐 : 𝐴/Ω1/fwd 𝑐 𝑎)
proc(Γ/𝑎 : 𝐴,Δ/Ω2/𝑃 (𝑎))

;S
〉

−→
〈
proc(·/·/Ω1/·)
proc(Γ/𝑐 : 𝐴,Δ/Ω2/𝑃 (𝑐))

;S
〉

[spawn]

〈
proc(Γ1, Γ2/Δ1,Δ2/Ω/𝑥 ← 𝑃 (𝑥); 𝑄 (𝑥))
Γ1 ⊢ 𝑃 (𝑥) :: 𝑥 : 𝐴,Δ1; ·
Γ2, 𝑥 : 𝐴 ⊢ 𝑄 (𝑥) :: Δ2;Ω

;S
〉

−→
〈
proc(Γ1/𝑎 : 𝐴,Δ1/·/𝑃 (𝑎))
proc(Γ2, 𝑎 : 𝐴/Δ2/Ω/𝑄 (𝑎))

;S
〉

[call]

〈
proc(Γ/Δ/Ω/call 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛]) ;S

〉
−→

〈
proc(Γ/Δ/Ω/𝑃) ;S

〉
[end]

〈
proc(·/·/·/·) ;S

〉
−→

〈
· ;S

〉
Figure 3.6: Standard reductions of configuration
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In the [call] rule, we assume the signature is well-formed, thus there exists a process

declaration for 𝑝 . We find such a definition 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑚) [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑃 and execute

the process 𝑃 . We can drop a process object when the process is finished and use · to
represent an empty process. It must be the case for any empty process, there are no

remaining channels unused. The formalization is referred to the [end] rule.

Now let’s examine the reduction rules in channel cancellation as listed in Figure 3.7.

The cancellation process removes a channel from the context and adds it to the cancellation

set. We have two different rules for right and left cancellation for the channel 𝑎 in the

contexts Γ and Δ, respectively. The channel propagation rule states that if a channel 𝑎

is cancelled, then the process whose prefix is 𝑎 should also be cancelled. The prefix of a

process is the channel that the process directly communicates with. We list the prefixes of

a process below:

prefix(send 𝑥 𝑀) = 𝑥
prefix(recv 𝑥 𝐾) = 𝑥
prefix(fwd 𝑦 𝑥) = 𝑦

If the process is not included in the above list, then it does not have a prefix channel.

Cancelling a process is achieved by replacing the process with a process that cancels all

the channels in the context.

[cancel-r]

〈
proc(Γ/𝑎 : 𝐴,Δ/Ω/𝑎 ; 𝑃) ;S

〉
−→

〈
proc(Γ/Δ/Ω/𝑃) ;S ∪ {𝑎}

〉
[cancel-l]

〈
proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑎 ; 𝑃) ;S

〉
−→

〈
proc(Γ/Δ/Ω/𝑃) ;S ∪ {𝑎}

〉
[cancel-prop-r]

〈
proc(Γ/𝑎 : 𝐴,Δ/Ω/𝑃)
prefix(𝑃) = 𝑎 ;S ∪ {𝑎}

〉
−→

〈
proc(Γ/Δ/Ω/Γ ;Δ ) ;S ∪ {𝑎}

〉
[cancel-prop-l]

〈
proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑃)
prefix(𝑃) = 𝑎 ;S ∪ {𝑎}

〉
−→

〈
proc(Γ/Δ/Ω/Γ ;Δ ) ;S ∪ {𝑎}

〉
Figure 3.7: Cancellation reductions of configuration

Lastly, we examine the exception reductions in Figure 3.8. The [try-catch] rule

spawns two processes, very similar to [spawn]. Additionally, it creates another channel

𝑎 of type exn to serve as the exception handling context for 𝑃 . The exception handling
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process 𝑄 uses channel 𝑎 to wait for exception activation and channel 𝑐 to communicate

with process 𝑃 . When a process raises an exception, we activate the exception handling by

creating a new process object that sends a label act through channel 𝑎. Similarly, when a

process finishes without any exceptions and there is an exception handling channel, we

send a label sil through channel 𝑎 to terminate the exception handling process.

[try-catch]

〈
proc(Γ/Δ/Ω/𝑦 ↞ try 𝑃 (𝑦) catch 𝑄 (𝑦)) ;S

〉
−→

〈
proc(Γ1/Δ1, 𝑐 : 𝐴/𝑎 : exn/𝑃 (𝑐))
proc(Γ2, 𝑎 : exn, 𝑐 : 𝐴/Δ2/Ω/erecv 𝑎 𝑄 (𝑐))

;S
〉

[activate]

〈
proc(Γ/Δ/𝑎 : exn/raise 𝑃) ;S

〉
−→

〈
proc(Γ/Δ/·/𝑃)
proc(·/𝑎 : exn/·/send 𝑎 act; send 𝑎 ()) ;S

〉
[silent]

〈
proc(·/·/𝑎 : exn/·) ;S

〉
−→

〈
proc(·/𝑎 : exn/·/send 𝑎 sil; send 𝑎 ()) ;S

〉
Figure 3.8: Exception reductions of configuration
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3.4 Safety theorems

To ensure the safety of the system, we first need to show the typing of the configuration is

preserved as the computation proceeds. Such property is stated in Theorem 3.4.1.

Theorem 3.4.1 (Session Fidelity). Given a state ⟨C,S⟩, if Φ ⊢ C :: Φ′ for some Φ,Φ′ and
⟨C,S⟩ −→ ⟨C′,S′⟩, then Φ ⊢ C′ :: Φ′.

The proof of the theorem is casing over the forms of reduction. We show a few cases

to demonstrate how proof proceeds in Appendix A.1.

Showing every reduction sequence terminates is not possible in our system because

of recursion. For instance, a process foo can call itself such that the execution will never

terminate. However, we are able to show that well-typed configurations never get stuck.

In other words, a configuration is either final, which means all process objects attempt to

communicate along an external channel, or it can reduce to another configuration. We

formalize this property in Theorem 3.4.2.

Theorem 3.4.2 (Deadlock Freedom). Given a state ⟨C;S⟩ such that · ⊢ C :: Φ, then either
C is final, or ⟨C;S⟩ −→ ⟨C′;S′⟩ for some C′,S′.

We require the configuration does not take any input channels. Otherwise, the config-

uration may get stuck because the messages from the input channel may not be available.

The collection of external channels is represented by Φ. Such channels have only one

endpoint. In other words, if C satisfies · ⊢ C :: Φ, then C is a closed configuration because

it does not depend on any channels. We sketch the proof with a few cases in Appendix A.2.
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Interpreter

Experimenting with the proposed type system, we implement a simple interpreter in

OCaml. We name the source language EPass, an abbreviation for Exceptional Message

Passing. We don’t have a target language; instead, we simulate the execution in OCaml

and make observations that output to the console screen. There are four main phases in

the interpreter: parsing, elaboration, type checking, and runtime simulation. A complete

implementation of the interpreter can be found here
1
.

4.1 Grammar

We present the grammar of the EPass language in Appendix B.1. There are a few remarks

about the grammar.

• We use type t = . . . for type definition and proc p (. . .) [. . .] = . . . for process
definition. exec 𝑝 executes a closed process, a process without any input channels,

and prints out the observation of the external channels.

• We keep⊸ as the linear implication in our language. Although we do not include it

in our system, we have shown 𝐴 ⊸ 𝐵 can be derived in our system. Thus, 𝐴 ⊸ 𝐵 is

viewed as a syntactic sugar that is elaborated to 𝐴⊥ O 𝐵. We do not include ⊥, since

we can derive it by putting 1 in the other side of the context.

• There is not a suitable Unicode character to represent O. We use @ to represent the

multiplicative disjunction.

• We modify the try-catch process such that creating a new channel is not necessary.

This can be used when the main process and the exception handling process are in-

1
https://github.com/cekington/ePass
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dependent from each other. Therefore, 𝑦 ↞ try 𝑃 (𝑦) catch𝑄 (𝑦) and try 𝑃 catch 𝑄

are both valid try-catch processes.

• We distinguish identitiers and labels by putting a ’ character in front of labels. So

the type nat looks like

nat ≜ ⊕{’zero : 1, ’succ : nat}

As checked by Menhir, a LR(1) parser generator for OCaml, there are no ambiguity in the

grammar. So every source code that follows the grammar can be parsed into the external

language properly.

4.2 Elaboration

During the elaboration, we transform the external language into internal language.

• We first remove the recursive definitions for types in the external language, which

means types have at most one layer. This helps to simplify comparing the equality

of two types. When we compare two types, we need to compare the outermost layer,

and, if necessary, we can always expand the type by the newly created identity.

For example, type definitions of nat and list in the external language

type nat = +{'zero : 1, 'succ : nat}
type list = +{'nil : 1, 'cons : nat * list}

will be elaborated to the internal language as

type tp_0 = 1
type nat = +{'zero : tp_0, 'succ : nat}
type tp_1 = nat * list
type list = +{'nil : tp_0, 'cons : tp_1}

Besides type elaboration, we also remove the usage of linear implication and dis-

tinguish between allocated channels and channel variables. Before executing any

processes, all the channels should be variables.

• After elaboration, we ensure that every definition is well-formed by checking

Σdecl ⊢ Σdefn. We extract the declarations by scanning the whole program and

build the definitions during the elaboration. Type checking errors are reported

for any ill-defined processes or types. Additionally, some syntax that may confuse

the runtime semantics is also rejected. For instance, executing open processes and

having duplicate labels in either type definition or branching continuation are ruled

out.
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4.3 Runtime simulation

The type checking phase for the interpreter follows the static semantics described in

Figure 2.4. We don’t have type inference for channels since the grammar enforces type

annotations for every channel variable. The runtime simulation essentially follows the

reduction rules we discussed before. However, we’d like to make a few remarks on how

observations of external channels are made during the reduction.

First, we will demonstrate the reason why we need to make observations. Consider

the following example of two processes 𝑃1 and 𝑃2 where 𝑎 is an external channel and 𝑃 is

some process.

𝑃1 ≜ send 𝑎 𝑘 ; send 𝑏 ()
𝑃2 ≜ recv 𝑏 (() ⇒ 𝑃)

According to the definition of external channels, channel 𝑎 has only one endpoint which

occurs in process 𝑃1. Therefore, this configuration cannot be further reduced because the

interaction between 𝑃1 and 𝑃2 via channel 𝑏 is blocked by channel 𝑎. Considering this as a

final configuration in runtime isn’t appropriate because process 𝑃 may have other effects

that are not observed. Thus, we need to make observations when the reduction of the

configuration gets stuck. In other words, the final configuration in the implementation

must be an empty configuration.

We illustrate the output of the programwith the following example process that returns

the addition of two natural numbers. The type definition can refer to earlier code.

proc add (n : nat) [n1 : nat, n2 : nat] =
recv n1 (

'zero => recv n1 (() => fwd n n2)
| 'succ => send n 'succ; call add (n) [n1, n2]

)

proc add_test_1 (n : nat) [] =
n1 : nat <- (send n1 'succ; send n1 'zero; send n1 ());
n2 : nat <- (send n2 'succ; send n2 'succ; send n2 'zero; send n2 ());
call add (n) [n1, n2]

exec add_test_1

The output has the following form:

Typecheck successful
Executing process add_test_1:
#0 -> 'succ.'succ.'succ.'zero.()
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Executing process add_test_1 will generate a fresh variable #0 for the external channel n.
The rest represents the message sequence that is sent through the channel. A message

sequence is a sequence of observed messages separated by dots, which can be a channel

#𝑖 , a label ′𝑙 , a unit (), or a waiting −. If a channel is in one of the message sequences, then

it must have its own sequence. A channel sequence ends with either a unit, a waiting, or a

cancellation.

A waiting label is used for an external channel that has a recv process which cannot

proceed. In the above example, the message sequence ’succ.’succ.’succ.’zero.() for

channel #0 represents the natural number 3. In the remainder of this chapter, we’ll go

through a few examples to see how cancellation and exceptions work.

4.4 Cancellation example

We first demonstrate how to drop resources in the example of returning a length of a list.

proc length (len : nat) [l : list] =
recv l (

'nil => recv l (() => send len 'zero; send len ())
| 'cons => recv l (x =>

cancel x;
send len 'succ;
call length (len) [l]

)
)

The ’nil case is straightforward, where we send 0 through the channel len. In the ’cons
case, l has type nat * list. While calculating the length, we do not care the element

stored in the list. Therefore, we cancel the channel x and recursively call the process.

Since x is not an external channel in the above example, we cannot see how it is

cancelled by observation. Below is an example that simulates a choice of output. We first

demonstrate how to drop resources in the example of returning a length of a list.

type bool = +{'true : 1, 'false : 1}

proc choice (left : 1, right : 1) [x : bool] =
recv x (

'true => recv x (() => cancel right; send left ())
| 'false => recv x (() => cancel left; send right ())
)

proc choice_true (left : 1, right : 1) [] =
tt : bool <- (send tt 'true; send tt ());
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call choice (left, right) [tt]

proc choice_false (left : 1, right : 1) [] =
ff : bool <- (send ff 'false; send ff ());
call choice (left, right) [ff]

exec choice_true

exec choice_false

Since we know the output forms disjunction, we know exactly only one of the left and
right will provide an output. Which channel provides the output is decided by whether

channel 𝑥 is ’true or ’false. Processes choice_true and choice_false tests the choice
process. We present the output of the program below.

Typecheck successful
Executing process choice_true:
#1 -> cancelled
#0 -> ()

Executing process choice_false:
#1 -> ()
#0 -> cancelled

As we can see, in choice_true process, the left channel (#0) receives a unit and the

right channel (#1) is cancelled. The output is reversed in choice_false process, which

matches with the expected behavior.

4.5 Exception example

The next example demonstrates how exceptions can be raised and handled. The subtraction

of n1 and n2 in natural numbers is not defined if n2 is bigger than n1. We deal such case

by raising an exception and dropping all the unused resources.

proc subtract (n : nat) [n1 : nat, n2 : nat] =
recv n1 (

'zero => recv n1 (() =>
recv n2 (

'zero => recv n2 (() => send n 'zero; send n ())
| 'succ => raise (cancel n; cancel n2)
)

)
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| 'succ => recv n2 (
'zero => recv n2 (() => send n 'succ; fwd n n1)

| 'succ => call subtract (n) [n1, n2]
)

)

proc wrap_subtract (n : nat, n_exn : nat) [n1 : nat, n2 : nat] =
try call subtract (n) [n1, n2]
catch send n_exn 'zero; send n_exn ()

We provide a wrapper process wrap_subtract to invoke the subtract process, as we

don’t allow exceptions without any handling process. Since the process is for example

usage, we don’t perform any significant action in the catch branch. Instead, we simply

return 0 from another external channel n_exn.
Information can also be exchanged between the main process and the exception han-

dling process by creating a new channel. A comprehensive example will be zipping two

lists of different length. The first attempt to call the process zip will raise an exception

and pass the difference in lengths of the lists to the second attempt, which handles the

exception. The second attempt can then adjust for the length difference and reattempt

zipping the remaining parts of the lists. Such code can be found in Appendix B.2.
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Other features

In this chapter, we delve into advanced features and remove some constraints in the system

to enhance the language’s capabilities in various situations. We study uncaught exceptions

and non-exhaustive matching in our system. To accommodate these changes, we revisit

the typing judgment and the reduction rules. Moreover, we restate the safety theorem to

align with the new system. Related work and future plans are also included in the last part

of this chapter.

5.1 Uncaught exception

In most programming languages, uncaught exceptions cause runtime crashes and are

reported from the top level. For example, the following expression

let x = 1 / 0 in
x + 1

aborts the program and print the following information into console.

Uncaught exception:

Division_by_zero

Raised at ... in file "...", line ..., characters ...
Called from ... in file "...", line ..., characters ...

Such behavior is prohibited in our system, since we require every exception to be caught

by a process. Otherwise, the program fails at the typing checking phase. However, we can

29
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relax this constraint by allowing uncaught exceptions. We modify the [raise] rule.

[raise’]

Γ ⊢ 𝑃 :: Δ; ·
Γ ⊢ raise 𝑃 :: Δ;Ω

We relax the constraint that Ω must be a singleton set. In [raise’] rule, Ω can be either

an empty set or a singleton set. The premise does not change since raise 𝑃 uses the

exception channel no matter whether it is in Ω or not. A key observation is that under

such relaxation, judgment Γ ⊢ 𝑃 :: Δ;𝑥 : exn is provable if and only if Γ ⊢ 𝑃 :: Δ; ·. Thus, it
seems that the Ω context is useless and can be omitted in the typing judgment. However,

we can utilize Ω during the type checking phase and output a warning message if an

exception does not have a direct handling process. For instance, the following code

proc foo (x : 1) [] =
raise (cancel x)

will output the following message to the console.

Warning: In process foo, raise (cancel x) does not have
a corresponding exceptional handler

However, the warning message is conservative in some sense. For example, if another

process bar calls the process foo. No matter whether bar catches the exception or not,

the warning message still prints to the console. Only handling exceptions directly like

proc foo' (x : 1, y : 1) [] =
try raise (cancel x) catch send y ()

will not produce the warning message.

We adapt the same industry standard for uncaught exceptions. If an exception is not

caught by any process, the program will abort. We define an error configuration Λ in

Figure 5.1 to indicate that the program is terminated unexpectedly.

Configuration C ::= . . .

| Λ error configuration

[error]

Φ ⊢ Λ :: Φ′

[uncaught]

〈
proc(Γ/Δ/·/raise 𝑃) ;S

〉
−→

〈
Λ ;S

〉
Figure 5.1: Extended syntax, typing judgment, and reduction of the configuration
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The typing judgment for the error configuration does not matter. Therefore, Λ is

well-typed for any input context Φ and output context Φ′. We add a new rule [uncaught],

which is another case of the [activate] rule where Ω is empty. When an exception is

raised with no handling channels, the configuration steps to the error configuration Λ
directly. This avoids the problem of concurrent top-level exceptions where it is not clear

which exception should be raised. In our system, the configuration reduces to the only

error configuration, and other processes are stopped.

To account for the new reduction rule, we revisit the safety theorems and their proofs.

There is no major change in the proofs of Theorem 3.4.1, because if a configuration reduces

to an error configuration, we know such configuration is still well-typed by [error]. We

revise Theorem 3.4.2 as follows.

Theorem 5.1.1 (Deadlock Freedom Revisited). Given a state ⟨C;S⟩ such that · ⊢ C :: Φ,
then either C is final, ⟨C;S⟩ −→ ⟨Λ;S⟩ or ⟨C;S⟩ −→ ⟨C′;S′⟩ for some C′,S′.

Proof. The proof of this theorem extends the original proof by adding the case of uncaught

exception.

[raise’] In this case 𝑃 = raise 𝑃 ′ and Ω = ·. By reduction, we know ⟨C;S⟩ −→ ⟨Λ;S⟩.

□

In the interpreter, we abort the program simulation when we face with an uncaught

exception. For example, in the following tiny example,

proc foo (x : 1) [] =
raise (cancel x)

proc foo1 (x : 1) [] =
send x ()

exec foo1

exec foo2

we get the following message from the console.

Executing process foo1:
Uncaught exception, process aborted

Executing process foo2:
#0 -> ()
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It is worth noting that execution of processes are independent of each other, thus a crash in

foo1 does not affect the execution of foo2. The next feature builds on the idea of uncaught

exceptions.

5.2 Non-exhaustive match

Pattern matching is commonly used for matching on algebraic data types in functional

programming languages. The label message reduction in our system resembles pattern

matching. For instance, when receiving messages from a channel of type nat, we need to

provide a branch for each label in the type definition. Currently, we require that every

label must have its own branch as restricted by the [⊕𝐿] and [&𝑅] rules. Non-exhaustive

matching is a common warning or error in most programming languages. Such matching

will halt program execution if the expression does not match any of the branches. A

good programming practice is to use a wildcard case to handle all remaining, possibly

uninteresting cases. However, it is difficult to achieve with affine typing. We choose to

represent non-exhaustive matching by raising an exception when a label does not have its

corresponding branch. To relax such constraints, we modify the [⊕𝐿] and [&𝑅] rules in

Figure 5.2. The branching label collection 𝐿′ is a subset of the original label collection 𝐿,
which means in the original rule, 𝐿′ = 𝐿.

[⊕𝐿′]
Γ, 𝑥 : 𝐴𝑙 ⊢ 𝑃𝑙 :: Δ;Ω 𝐿′ ⊆ 𝐿 (∀𝑙 ∈ 𝐿′)
Γ, 𝑥 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿 ⊢ recv 𝑥 (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿′ :: Δ;Ω

[&𝑅′]

Γ ⊢ 𝑃𝑙 :: 𝑥 : 𝐴𝑙 ,Δ;Ω 𝐿′ ⊆ 𝐿 (∀𝑙 ∈ 𝐿′)
Γ ⊢ recv 𝑥 (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿′ :: 𝑥 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ;Ω

Figure 5.2: Revisited typing judgment allowing non-exhaustive match

The original reduction rules for labels no longer hold. In [label-l] and [label-r] rules,

we need to ensure that 𝑘 ∈ 𝐿. To handle the possibility of 𝑘 ∉ 𝐿, we add two new reduction

rules in Figure 5.3. The intended behavior is to raise an exception and channel all channels

prepared for the recv process.
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[label-r’]

〈
proc(Γ1/𝑎 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ1/Ω1/send 𝑎 𝑘 ; 𝑃)
proc(Γ2, 𝑎 : ⊕{𝑙 : 𝐴𝑙 }𝑙∈𝐿/Δ2/Ω2/recv 𝑎 (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿)

(𝑘 ∉ 𝐿);S
〉

−→
〈
proc(Γ1/𝑎 : 𝐴𝑘 ,Δ1/Ω1/𝑃)
proc(Γ2, 𝑎 : 𝐴𝑘/Δ2/Ω2/𝑎 , Γ2 ,Δ2 )

;S
〉

[label-l’]

〈
proc(Γ1, 𝑎 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿/Δ1/Ω1/send 𝑎 𝑘 ; 𝑃)
proc(Γ2/𝑎 : &{𝑙 : 𝐴𝑙 }𝑙∈𝐿,Δ2/Ω2/recv 𝑎 (𝑙 ⇒ 𝑃𝑙 )𝑙∈𝐿)

(𝑘 ∉ 𝐿);S
〉

−→
〈
proc(Γ1, 𝑎 : 𝐴𝑘/Δ1/Ω1/𝑃)
proc(Γ2/𝑎 : 𝐴𝑘 ,Δ2/Ω2/𝑎 , Γ2 ,Δ2 )

;S
〉

Figure 5.3: Extended standard reduction rules of configuration for non-exhaustive match

In the runtime simulation, a warning message will be printed to the console any

branching continuation misses a label. A non-exhaustive match, if not handled, will raise

an uncaught exception and behaves as described in the previous section. We demonstrate

the non-exhaustive match by the following simple example.

type choice = +{'a : 1, 'b : 1, 'c : 1}

proc choose (x : bool) [c : choice] =
recv c (

'a => send x 'true; fwd x c
| 'c => send x 'false; fwd x c

)

proc test_choose1 (x : bool) [] =
c : choice <- (send c 'a; send c ());
call choose (x) [c]

proc test_choose2 (x : bool) [] =
c : choice <- (send c 'b; send c ());
call choose (x) [c]

exec test_choose1

exec test_choose2

The output of the program is as follows.

Warning: In process choose, choice type of channel c
has non-exaustive match, missing label: 'b
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Executing process test_choose1:
#0 -> 'true.()

Executing process test_choose2:
Uncaught exception, process aborted

A warning message is printed for the process choose because the label ’b is missing. In

the process test_choose2, an uncaught exception is raised because the label send through

channel c is ’b and the program is aborted. Such feature can also be used to simulate a

process assertion. If we are certain that some label should never be sent through a channel,

for instance ’true or ’false, we can omit such cases in branching. We refer to an example

of implementing sets using tries in Appendix B.3.

5.3 Related work and future work

We divide the related work into two parts: channel cancellation and exception handling.

Channel cancellation was first proposed to model channel interruption [MV14]. We

utilize this idea and refine it as the proof term of explicit weakening rules. The refinement

provides a better way to understand channel cancellation and connects the relation between

processed and sequent proof terms.

In the work of Conversation Calculus, the model provides a simple mechanism by

supporting two primitives, throw, and try catch, to handle exceptional situations [VCS08].
Compared with our work, we provide a typed language where exceptions are generalized.

For instance, we can simulate server timeout and client reconnect examples studied by

Brun and Dardha [BD23].

Adjoint logic generalizes the usual session types by supporting multiple modes of

communication [PP19]. The current system works under affine logic, which is one layer of

adjoint logic. It remains interesting how exception handling can be generalized to adjoint

logic. In other words, how to pass exceptions from one mode to another mode while both

have the correct intended behavior and maintain the safety of the language. Meanwhile,

previous works model data layout using semi-axiomatic sequent calculus [DP23]. Memory

access errors such as writing to a freed memory cell or dereferencing an invalid address.

In future work, we plan to study exceptions under a shared memory interpretation.



Appendix A

Proofs

A.1 Session fidelity proof

Proof. We induct on the forms of reduction.

[channel-r] In this case, C = (C𝐿, proc(Γ1, 𝑎 : 𝐴/𝑐 : 𝐴 ⊗ 𝐵,Δ1/Ω1/send 𝑐 𝑎; 𝑃),
proc(Γ2, 𝑐 : 𝐴 ⊗ 𝑏/Δ2/Ω2/recv 𝑐 (𝑥 ⇒ 𝑄 (𝑥))), C𝑅).
Here we have taken advantage to restrict ourselves to the case where the two process

objects are immediately adjacent in the typing derivation. If they are not, we can

always exchange the order of the configuration to make them adjacent.

We assume the following typing judgments hold.

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 ⊢ proc(Γ1, 𝑎 : 𝐴/𝑐 : 𝐴 ⊗ 𝐵,Δ1/Ω1/send 𝑐 𝑎; 𝑃),

proc(Γ2, 𝑐 : 𝐴 ⊗ 𝐵/Δ2/Ω2/recv 𝑐 (𝑥 ⇒ 𝑄 (𝑥))) :: Φ𝑅
Φ𝑅 ⊢ C𝑅 :: Φ′

By the reduction rule, we know

C′ = C𝐿, proc(Γ1/𝑐 : 𝐵,Δ1/Ω1/𝑃), proc(Γ2, 𝑎 : 𝐴, 𝑐 : 𝐵/Δ2/Ω2/𝑄 (𝑎)), C𝑅
S′ = S

We can apply inversion to the typing judgment

Φ𝐿 ⊢ proc(Γ1, 𝑎 : 𝐴/𝑐 : 𝐴 ⊗ 𝐵,Δ1/Ω1/send 𝑐 𝑎; 𝑃),
proc(Γ2, 𝑐 : 𝐴 ⊗ 𝐵/Δ2/Ω2/recv 𝑐 (𝑥 ⇒ 𝑄 (𝑥))) :: Φ𝑅

35



36 Proofs

to find that for some Φ′
𝐿
, we must have

Φ𝐿 = (Φ′𝐿, 𝑎 : 𝐴, Γ1, Γ2)
Γ1 ⊢ 𝑃 :: 𝑐 : 𝐵,Δ1;Ω1

Γ2, 𝑎 : 𝐴, 𝑐 : 𝐵 ⊢ 𝑄 (𝑎) :: Δ2;Ω2

Φ𝑅 = (Φ′𝐿,Δ1,Δ2,Ω1,Ω2)

Now we can construct a typing derivation for C′

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 = (Φ′𝐿, 𝑎 : 𝐴, Γ1, Γ2)

Φ′𝐿, 𝑎 : 𝐴, Γ1, Γ2 ⊢ proc(Γ1/𝑐 : 𝐵,Δ1/Ω1/𝑃) :: (Φ′𝐿, 𝑎 : 𝐴, 𝑐 : 𝐵,Δ1,Ω1)
Φ′𝐿, 𝑎 : 𝐴, 𝑐 : 𝐵,Δ1,Ω1 ⊢ proc(Γ2, 𝑎 : 𝐴, 𝑐 : 𝐵/Δ2/Ω2/𝑄 (𝑎)) :: (Φ′𝐿,Δ1,Δ2,Ω1,Ω2)

Φ𝑅 = (Φ′𝐿,Δ1,Δ2,Ω1,Ω2)
Φ𝐿 ⊢ C𝑅 :: Φ′

This concludes this case of type preservation.

[spawn] In this case, C = (C𝐿, proc(Γ/Δ/Ω/𝑥 ← 𝑃 (𝑥); 𝑄 (𝑥)), C𝑅) for some C𝐿 and C𝑅 .
Moreover, we assume the following typing judgments hold.

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 ⊢ proc(Γ/Δ/Ω/𝑥 ← 𝑃 (𝑥); 𝑄 (𝑥)) :: Φ𝑅
Φ𝑅 ⊢ C𝑅 :: Φ′

We can split the context Γ and Δ into Γ1, Γ2 and Δ1,Δ2 based on the condition given

in the reduction rule such that we can reconstruct the typing judgment for the

configuration successfully. By the reduction rule, we know

C′ = C𝐿, proc(Γ1/𝑎 : 𝐴,Δ/·/𝑃 (𝑎)), proc(Γ2, 𝑎 : 𝐴/Δ2/Ω/𝑄 (𝑎)), C𝑅
S′ = S

where 𝑎 is a globally fresh channel. To build the typing judgment for the new state,

we apply inversion to the typing

Φ𝐿 ⊢ proc(Γ/Δ/Ω/𝑥 ← 𝑃 (𝑥); 𝑄 (𝑥)) :: Φ𝑅
We find that for some Φ′

𝐿
and 𝐴, using the new channel 𝑎, we must have

Φ𝐿 = (Φ′𝐿, Γ1, Γ2)
Γ1 ⊢ 𝑃 (𝑎) :: Δ1, 𝑎 : 𝐴; ·

Γ2, 𝑎 : 𝐴 ⊢ 𝑄 (𝑎) :: Δ2;Ω

Φ𝑅 = (Φ′𝐿,Δ1,Δ2,Ω)
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Now we can construct a typing derivation for C′

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 = (Φ′𝐿, Γ1, Γ2)

Φ′𝐿, Γ1, Γ2 ⊢ proc(Γ1/𝑎 : 𝐴,Δ/·/𝑃 (𝑎)) :: (Φ′𝐿, Γ2,Δ1, 𝑎 : 𝐴)
Φ′𝐿, Γ2,Δ1, 𝑎 : 𝐴 ⊢ proc(Γ2, 𝑎 : 𝐴/Δ2/Ω/𝑄 (𝑎)) :: (Φ′𝐿,Δ1,Δ2,Ω)

Φ𝑅 = (Φ′𝐿,Δ1,Δ2,Ω)
Φ𝐿 ⊢ C𝑅 :: Φ′

This concludes this case of type preservation.

[cancel-l] In this case, C = (C𝐿, proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑎 ; 𝑃), C𝑅). We assume the following

typing judgments hold.

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 ⊢ proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑎 ; 𝑃) :: Φ𝑅
Φ𝑅 ⊢ C𝑅 :: Φ′

By the reduction rule, we know

C′ = C𝐿, proc(Γ/Δ/Ω/𝑃), C𝑅
S′ = S ∪ {𝑎}

We can apply inversion to the typing judgment

Φ𝐿 ⊢ proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑎 ; 𝑃) :: Φ𝑅

to find that for some Φ′
𝐿
, we must have

Φ𝐿 = (Φ′𝐿, Γ)
Γ ⊢ 𝑃 :: Δ;Ω

Φ𝑅 = (Φ′𝐿,Δ,Ω)

Now we can construct a typing derivation for C′

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 = (Φ′𝐿, Γ)

Φ′𝐿, Γ ⊢ proc(Γ/Δ/Ω/𝑃) :: (Φ′𝐿,Δ,Ω)
Φ𝑅 = (Φ′𝐿,Δ,Ω)
Φ𝑅 ⊢ C𝑅 :: Φ′

This concludes this case of type preservation.
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[silent] In this case, C = (C𝐿, proc(·/·/𝑎 : exn/·), C𝑅). We assume the following typing

judgments hold.

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 ⊢ proc(·/·/𝑎 : exn/·) :: Φ𝑅
Φ𝑅 ⊢ C𝑅 :: Φ′

Applying the inversion, we must have Φ𝑅 = Φ𝐿, 𝑎 : exn. By the reduction rule, we know

C′ = C𝐿, proc(·/𝑎 : exn/·/send 𝑎 sil; send 𝑎 ()), C𝑅
S′ = S

We can construct a typing derivation for C′ as

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 ⊢ proc(·/𝑎 : exn/·/send 𝑎 sil; send 𝑎 ()) :: Φ𝐿, 𝑎 : exn

Φ𝑅 = Φ𝐿, 𝑎 : exn

Φ𝑅 ⊢ C𝑅 :: Φ′

This concludes this case of type preservation.

[cancel-prop-l] In this case, C = (C𝐿, proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑃 (𝑎)), C𝑅), prefix(𝑃 ) = 𝑎, and
𝑎 ∈ S. We assume the following typing judgments hold.

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 ⊢ proc(Γ, 𝑎 : 𝐴/Δ/Ω/𝑃 (𝑎)) :: Φ𝑅
Φ𝑅 ⊢ C𝑅 :: Φ′

By the reduction rule, we know

C′ = C𝐿, proc(Γ/Δ/Ω/Γ ;Δ ), C𝑅
S′ = S

We can apply inversion to the typing judgment

Φ𝐿 ⊢ proc(Γ/Δ/Ω/Γ ;Δ ) :: Φ𝑅

to find that for some Φ′
𝐿
, we must have

Φ𝐿 = (Φ′𝐿, Γ)
Γ ⊢ Γ ;Δ :: Δ;Ω

Φ𝑅 = (Φ′𝐿,Δ,Ω)
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Now we can construct a typing derivation for C′

Φ ⊢ C𝐿 :: Φ𝐿
Φ𝐿 = (Φ′𝐿, Γ)

Φ′𝐿, Γ ⊢ proc(Γ/Δ/Ω/Γ ;Δ ) :: (Φ′𝐿,Δ,Ω)
Φ𝑅 = (Φ′𝐿,Δ,Ω)
Φ𝑅 ⊢ C𝑅 :: Φ′

This concludes this case of type preservation.

□

A.2 Deadlock freedom proof

Proof. We prove this theorem by induction on the structure of the configuration, right to

left. Since the typing of the configuration requires some ordering, a right to left induction

provides useful induction hypothesis. If C = ·, then C is trivially final and the theorem

holds. Now we assume the followings:

C = (C𝐿, proc(Γ/Δ/Ω/𝑃))
· ⊢ C𝐿 :: Φ′

Φ′ ⊢ proc(Γ/Δ/Ω/𝑃) :: Φ
· ⊢ C :: Φ

for a process object proc(Γ/Δ/Ω/𝑃) and Φ′. By induction hypothesis, we know that C𝐿
is either final or can reduce to another configuration C′

𝐿
. If it reduces to ⟨C′

𝐿
;S′⟩, then

⟨C;S⟩ −→ ⟨(C′
𝐿
, proc(Γ/Δ/Ω/𝑃));S′⟩.

Now assume C𝐿 is final, we distinguish the cases by the structure of process 𝑃 .

send In this case, 𝑃 = send 𝑐 𝑎; 𝑃 ′. If 𝑐 is an external channel, then all of C is final. Other-

wise, 𝑃 provides𝑎 and ends in either [⊗𝑅∗] or [O𝐿∗]. We assume it ends in [O𝐿∗], the
other case is similar. The typing derivation of Φ ⊢ proc(Γ/Δ/Ω/send 𝑐 𝑎; 𝑃 ′) :: Φ′
looks like

Γ′, 𝑐 : 𝐵 ⊢ 𝑃 ′ :: Δ;Ω
Γ′, 𝑐 : 𝐴 O 𝐵 ⊢ send 𝑐 𝑎; 𝑃 ′ :: 𝑎 : 𝐴,Δ′;Ω

[O𝐿∗]

Φ′ ⊢ proc(Γ/Δ/Ω/send 𝑐 𝑎; 𝑃 ′) :: Φ [object]

where

Γ = Γ′, 𝑐 : 𝐴 O 𝐵

Δ = 𝑎 : 𝐴,Δ′

Φ = (Φ𝑃 , 𝑎 : 𝐴,Δ′,Ω)
Φ′ = (Φ𝑃 , Γ′, 𝑐 : 𝐴 O 𝐵)
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for some Φ𝑃 .

Because · ⊢ C𝐿 :: Φ𝑃 , Γ
′, 𝑐 : 𝐴 O 𝐵, there must be a process object in C𝐿 providing

𝑐 : 𝐴O𝐵. In particular, it cannot be part of the antecedents of C𝐿 because these must

be empty. Moreover, since C𝐿 is final, this process must be trying to communicate

along 𝑐 , so such process must have form recv 𝑐 (𝑥 ⇒ 𝑄 (𝑥)). By [channel-l], we

know that the configuration can reduce to another configuration without changing

the set S.

spawn In this case, 𝑃 = 𝑥 ← 𝑃1(𝑥); 𝑃2(𝑥). By reduction, we know ⟨C;S⟩ −→ ⟨(C𝐿, proc(Γ1/𝑎 :

𝐴,Δ1/·/𝑃1(𝑎)), proc(Γ2, 𝑎 : 𝐴/Δ2/Ω/𝑃2(𝑎)));S⟩ with a proper split of the context

ensured by the condition.

cancel In this case 𝑃 = 𝑎 ; 𝑃 ′. We now case on whether 𝑎 is in the antecedent or succedent.

We assume Γ = Γ′, 𝑎 : 𝐴, while the case Δ = 𝑎 : 𝐴,Δ′ is similar. By reduction, we

know ⟨C;S⟩ −→ ⟨(C𝐿, proc(Γ′/Δ/Ω/𝑃 ′));S ∪ {𝑎}⟩.

□
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EPass and example code

B.1 EPass grammar

<idchar> ::= [a-zA-Z_0-9']*
<id> ::= [a-zA-Z_]<idchar>
<tag> ::= '<idchar>+

<tp> ::= <id>
| '1'
| '+' '{' <alts> '}'
| '&' '{' <alts> '}'
| <tp> '@' <tp>
| <tp> '*' <tp>
| <tp> '-o' <tp>
| '(' <tp> ')'

<altsfollow> ::= · | ',' <tag> ':' <tp> <altsfollow>

<alts> ::= <tag> ':' <tp> <altsfollow>

<procfollow> ::= · | ';' <proc>

<simpleproc> ::= 'send' <id> <msg>
| 'recv' <id> '(' <cont> ')'
| 'fwd' <id> <id>
| 'call' <id> '(' <args> ')' '[' <args> ']'
| 'cancel' <id>
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<spawnopt> ::= · | <id> ':' <tp> '<<-'

<proc> ::= 'send' <id> <msg> <procfollow>
| 'recv' <id> '(' <cont> ')'
| 'fwd' <id> <id>
| 'call' <id> '(' <args> ')' '[' <args> ']'
| 'cancel' <id> <procfollow>
| <spawnopt> 'try' <proc> 'catch' <proc>
| 'raise' <proc>
| <id> ':' <tp> '<-' <simpleproc> ';' <proc>
| <id> ':' <tp> '<-' '(' <proc> ')' ';' <proc>
| '(' <proc> ')'

<argsfollow> ::= · | ',' <id> <argsfollow>

<args> ::= <id> <argsfollow>

<annoargsfollow> ::= · | ',' <id> ':' <type> <annoargsfollow>

<annoargs> ::= <id> ':' <type> <annoargsfollow>

<contfollow> ::= · | '|' <msg> '=>' <proc> <contfollow>

<cont> ::= <msg> '=>' <proc> <contfollow>

<msg> ::= '(' ')'
| <tag>
| <id>

<defn> ::= 'type' <id> = <tp>
| 'proc' <id> '(' <annoargs> ')' '[' <annoargs> ']' '=' <proc>
| 'exec' <id>

<prog> ::= · | <defn> <prog>



List zip 43

B.2 List zip

type list = +{'nil : 1, 'cons : 1 * list}
type llist = +{'nil : 1, 'cons : (1 * 1) * llist}
type dir = +{'left : 1, 'right : 1}
type nat = +{'zero : 1, 'succ : nat}

proc dupone (r : 1 * 1) [l : 1] =
recv l (() =>

r1 : 1 <- send r1 ();
send r r1; send r ()

)

proc duplist (r : list * list) [l : list] =
recv l (

'nil => recv l (() => r1 : list <- (send r1 'nil; send r1 ());
send r r1; send r 'nil; send r ())

| 'cons => recv l (x =>
y : 1 * 1 <- call dupone (y) [x];
r' : list * list <- call duplist (r') [l];
recv y (y1 => recv r' (r1' =>

r1 : list <- (send r1 'cons; send r1 y1; fwd r1 r1');
send r r1; send r 'cons; send r y; fwd r r'

))
)

)

proc zero (z : nat) [] =
send z 'zero; send z ()

proc incr (n : nat) [m : nat] =
send n 'succ; fwd n m

proc length (len : nat) [l : list] =
recv l (

'nil => recv l (() => call zero (len) [])
| 'cons => recv l (lx =>

cancel lx;
len' : nat <- call length (len') [l];
call incr (len) [len']

)
)
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proc remove (l : list) [l' : list, len : nat] =
recv len (

'zero => recv len (() => fwd l l')
| 'succ => recv l' (

'cons => recv l' (l'x => cancel l'x; call remove (l) [l', len])
)

)

proc zip (result : llist) [l1 : list, l2 : list] =
recv l1 (

'nil => recv l1 (() => recv l2 (
'nil => recv l2 (() => send result 'nil; send result ()))

)
| 'cons => recv l1 (l1x => recv l2 (

'cons => recv l2 (l2y =>
xy : 1 * 1 <- (send xy l1x; fwd xy l2y);
send result 'cons; send result xy;
call zip (result) [l1, l2]

)
)

)
)

proc zip_exn (result : llist, remainInfo : nat * dir)
[l1 : list, l2 : list] =

recv l1 (
'nil => recv l1 (() => recv l2 (

'nil => recv l2 (() => cancel remainInfo;
send result 'nil; send result ())

| 'cons => recv l2 (l2x =>
raise (

len : nat <- call length (len) [l2];
realLen : nat <- call incr (realLen) [len];
cancel l2x;
cancel result;
send remainInfo realLen;
send remainInfo 'right;
send remainInfo ()

)
)

))
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| 'cons => recv l1 (l1x =>
recv l2 ('nil => recv l2 (() =>

raise (
len : nat <- call length (len) [l1];
realLen : nat <- call incr (realLen) [len];
cancel l1x;
cancel result;
send remainInfo realLen;
send remainInfo 'left;
send remainInfo ()

)
)
| 'cons => recv l2 (l2y =>

xy : 1 * 1 <- (send xy l1x; fwd xy l2y);
send result 'cons; send result xy;
call zip_exn (result, remainInfo) [l1, l2]
)

)
)

)

proc zip_main (result1 : llist, result2 : llist)
[l1 : list, l2 : list] =

l1l1 : list * list <- call duplist (l1l1) [l1];
l2l2 : list * list <- call duplist (l2l2) [l2];
recv l1l1 (l1' =>

recv l2l2 (l2' =>
d : nat * dir <<- try call zip_exn (result1, d) [l1', l2']
catch

recv d (len =>
recv d (

'left => recv d (() =>
l1mod : list <- call remove (l1mod) [l1l1, len];
call zip (result2) [l1mod, l2l2]

)
| 'right => recv d (() =>

l2mod : list <- call remove (l2mod) [l2l2, len];
call zip (result2) [l1l1, l2mod]

)
)

)
)



46 EPass and example code

)

proc list_zero (l : list) [] =
send l 'nil; send l ()

proc list_one (l : list) [] =
l0 : list <- call list_zero (l0) [];
x : 1 <- send x ();
send l 'cons; send l x; fwd l l0

proc list_two (l : list) [] =
l1 : list <- call list_one (l1) [];
x : 1 <- send x ();
send l 'cons; send l x; fwd l l1

proc list_three (l : list) [] =
l2 : list <- call list_two (l2) [];
x : 1 <- send x ();
send l 'cons; send l x; fwd l l2

proc test_zip_main (result1 : llist, result2 : llist) [] =
l1 : list <- call list_three (l1) [];
l2 : list <- call list_two (l2) [];
call zip_main (result1, result2) [l1, l2]

proc test_zip (result : llist, r : 1) [] =
l1 : list <- call list_three (l1) [];
l2 : list <- call list_two (l2) [];
try call zip (result) [l1, l2] catch send r ()

exec test_zip_main

exec test_zip
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B.3 Set as trie

type bool = +{'false : 1, 'true : 1}
type trie = +{'node : trie * bool * trie, 'leaf : 1}
type bin = +{'b0 : bin, 'b1 : bin, 'e : 1}

proc false (f : bool) [] = send f 'false; send f ()
proc true (t : bool) [] = send t 'true; send t ()
proc or (b : bool) [b1 : bool, b2 : bool] =

recv b1 (
'true => cancel b2; send b 'true; fwd b b1

| 'false => recv b2 (
'true => cancel b1; send b 'true; fwd b b2

| 'false => cancel b1; send b 'false; fwd b b2
)

)

proc fstTrue (b : bool) [b1 : bool, b2 : bool] =
recv b1 (

'true => recv b2 (
'true => cancel b2; send b 'false; fwd b b1

| 'false => cancel b2; send b 'true; fwd b b1
)

| 'false => cancel b2; send b 'false; fwd b b1
)

proc one (n : bin) [] =
send n 'b1; send n 'e; send n ()

proc two (n : bin) [] =
send n 'b1; send n 'b0; send n 'e; send n ()

proc empty (t : trie) [] = send t 'leaf; send t ()

proc singleton (t : trie) [x : bin] =
recv x (

'b0 =>
lt : trie <- call singleton (lt) [x];
b : bool <- call false (b) [];
rg : trie <- call empty (rg) [];
send t 'node;
send t lt;
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send t b;
fwd t rg

| 'b1 =>
lt : trie <- call empty (lt) [];
b : bool <- call false (b) [];
rg : trie <- call singleton (rg) [x];
send t 'node;
send t lt;
send t b;
fwd t rg

| 'e => recv x (() =>
lt : trie <- call empty (lt) [];
b : bool <- call true (b) [];
rg : trie <- call empty (rg) [];
send t 'node;
send t lt;
send t b;
fwd t rg

)
)

proc union (t : trie) [t1 : trie, t2 : trie] =
recv t1 (

'leaf => recv t1 (() =>
fwd t t2

)
| 'node => recv t1 (t1Left => recv t1 (t1b =>

recv t2 (
'leaf =>

cancel t2;
send t 'node;
send t t1Left;
send t t1b;
fwd t t1

| 'node => recv t2 (t2Left => recv t2 (t2b =>
tLeft : trie <- call union (tLeft) [t1Left, t2Left ];
tb : bool <- call or (tb) [t1b, t2b];
tRight : trie <- call union (tRight) [t1, t2];
send t 'node;
send t tLeft;
send t tb;
fwd t tRight
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)
)

)
)

)
)

proc diff (t : trie) [t1 : trie, t2 : trie] =
recv t1 (

'leaf =>
cancel t2;
send t 'leaf;
fwd t t1

| 'node => recv t1 (t1Left => recv t1 (t1b =>
recv t2 (

'leaf =>
cancel t2;
send t 'node;
send t t1Left;
send t t1b;
fwd t t1

| 'node => recv t2 (t2Left => recv t2 (t2b =>
tLeft : trie <- call diff (tLeft) [t1Left, t2Left ];
tb : bool <- call fstTrue (tb) [t1b, t2b];
tRight : trie <- call diff (tRight) [t1, t2];
send t 'node;
send t tLeft;
send t tb;
fwd t tRight

)
)

)
)

)
)

proc dup_bool (x : bool * bool) [y : bool] =
recv y (

'true => x1 : bool <- call true (x1) [];
send x x1; send x 'true; fwd x y

| 'false => x1 : bool <- call false (x1) [];
send x x1; send x 'false; fwd x y
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)

proc in (b : bool * trie) [t : trie, x : bin] =
recv x (

'b0 => recv t (
'leaf => b' : bool <- call false (b') [];
cancel x; send b b'; send b 'leaf; fwd b t

| 'node => recv t (tl => recv t (tb =>
res : bool * trie <- call in (res) [tl, x];
recv res (resb =>

send b resb; send b 'node; send b res; send b tb; fwd b t
)

))
)

| 'b1 => recv t (
'leaf => b' : bool <- call false (b') [];
cancel x; send b b'; send b 'leaf; fwd b t

| 'node => recv t (tl => recv t (tb =>
res : bool * trie <- call in (res) [t, x];
recv res (resb =>

send b resb; send b 'node; send b tl; send b tb; fwd b res
)

))
)

| 'e => cancel x; recv t (
'leaf => b' : bool <- call false (b') [];
send b b'; send b 'leaf; fwd b t

| 'node => recv t (tl => recv t (tb =>
bb : bool * bool <- call dup_bool (bb) [tb];
recv bb (b1 =>

send b b1; send b 'node; send b tl; send b bb; fwd b t
)

))
)

)

type set = &{'insert : bin -o set,
'delete : bin -o set,
'member : bin -o bool * set}

proc new_set (s : set) [] =
t : trie <- call empty (t) [];
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call trieset (s) [t]

proc trieset (s : set) [t : trie] =
recv s (

'insert =>
recv s (x =>

tx : trie <- call singleton (tx) [x];
t' : trie <- call union (t') [t, tx];
call trieset (s) [t']

)
| 'delete =>

recv s (x =>
tx : trie <- call singleton (tx) [x];
t' : trie <- call diff (t') [t, tx];
call trieset (s) [t']

)
| 'member =>

recv s (x =>
res : bool * trie <- call in (res) [t, x];
recv res (resb => send s resb; call trieset (s) [res])

)
)

proc test_trieset () [] =
tset : set <- call new_set (tset) [];
one1 : bin <- call one (one1) [];
one2 : bin <- call one (one2) [];
two1 : bin <- call two (two1) [];
two2 : bin <- call two (two2) [];
send tset 'insert; send tset one1;
send tset 'delete; send tset two1;
send tset 'member; send tset two2;
recv tset (b2 => recv b2 (

'true => cancel b2;
send tset 'member; send tset one2;

recv tset (b1 => recv b1 (
'true => cancel b1; cancel tset

)
)

)
)
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exec test_trieset
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