
April 27, 2024
DRAFT

Rage Against the Context Switch

Tony Yu

April 2024

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Undergraduate Thesis Committee:
Dimitrios Skarlatos, Chair

Submitted in partial fulfillment of the requirements
for the SCS Honors Undergraduate Research Thesis.

Copyright © 2024 Tony Yu

April 27, 2024
DRAFT

Keywords: Operating Systems, Hardware-Software Co-Design

April 27, 2024
DRAFT

For my parents, who have been wonderfully supportive at every step of my journey here at CMU

April 27, 2024
DRAFT

iv

April 27, 2024
DRAFT

Abstract
Modern computers must have the capability to handle hundreds of processes. A

core component of this capability is the context switch, wherein the state of a pro-
cess is saved so that execution can be paused and resumed at a later point, freeing the
CPU for use by another process. Context switches allow processes to share CPUs
and help computers to hide stalls from blocked processes. However, context switches
are computationally intensive, and typically have a negative impact on system per-
formance. Despite this, context switches are extremely prevalent in all computer
systems, as they are necessary to handle I/O interrupts, system calls, VM-exits, core
scheduling and preemption, and other multiprocessing operations.

A key design paradigm is that core scheduling and preemption is a responsibility
delegated to the operating system. Using user-space instrumentation, we quantify
the consequent context switching and kernel thread preemption overheads and show
that they are significant in common multiprocessing settings. We also present Nemo,
a novel CPU simulator for the Structural Simulation Toolkit. We also propose means
by which such overheads can be eliminated from modern computing systems.

April 27, 2024
DRAFT

vi

April 27, 2024
DRAFT

Acknowledgments
Thank you to my advisor Dimitrios Skarlatos for his seemingly limitless pa-

tience, and to Kevin Xue and Kaiyang Zhao of the CMU CAOS group for their
technical support.

April 27, 2024
DRAFT

viii

April 27, 2024
DRAFT

Contents

1 Introduction 1
1.1 Thesis Contributions . 1

2 Background 3
2.1 Threading in Modern Multiprocessor Systems 3
2.2 Scheduling and its Pitfalls . 4
2.3 Communication in Multiprocessing Systems . 4

3 The Nemo CPU Simulator 5
3.1 The QEMU TCG frontend . 6
3.2 The Nemo Core backend . 6

3.2.1 Pipeline Stages . 6

4 Methodology 9
4.1 Kernel Modifications . 9
4.2 Adaptation of LEBench . 10
4.3 Selected Workloads and Experimental Conditions 10
4.4 QEMU Experiment Methodology . 11
4.5 Real System Experiment Methodology . 11

5 Results 13
5.1 Analysis of LEBench Results . 13
5.2 Analysis of QEMU Workload Results . 14
5.3 Analysis of Experiments on Real System . 17

6 Conclusion 21
6.1 Future Work . 22

6.1.1 Evaluation of the Nemo Core . 22
6.2 Limitations of Instrumentation and Results . 22

Bibliography 23

ix

April 27, 2024
DRAFT

x

April 27, 2024
DRAFT

List of Figures

3.1 Nemo simulation dataflow . 5
3.2 An example configuration of the Nemo core . 7

5.1 Context switching data from the modified LEBench benchmark 13
5.2 Overheads of varying configurations of memcached on QEMU. 15
5.3 Overheads of varying configurations of nginx on QEMU. 16
5.4 Overheads of varying configurations of httpd on QEMU. 17
5.5 Overheads of varying configurations of redis on QEMU. 17
5.6 Overheads of varying configurations of memcached on a real system. 18
5.7 Overheads of varying configurations of nginx on real system. 19
5.8 Overheads of varying configurations of httpd on real system. 20
5.9 Overheads of varying configurations of redis on real system. 20

xi

April 27, 2024
DRAFT

xii

April 27, 2024
DRAFT

List of Tables

4.1 Specification of the entropy server . 12

xiii

April 27, 2024
DRAFT

xiv

April 27, 2024
DRAFT

Chapter 1

Introduction

Distributed systems are the foundation on which many of the services we rely on today are built
on. Search engines, cloud computing, and databases are just a few examples of services that
would be impossible without efficient distributed computing. In all of these applications, perfor-
mance is critical not just for user satisfaction, but for basic functionality. Historically, a reliance
on Moore’s law to compensate for ever-increasing demands on high performance computing ser-
vices has largely paid off in the favor of software engineers. However, with the death of Moore’s
law, our overreliance on hardware improvements to solve performance woes has become a sig-
nificant liability.

This hunt for performance gains in software has inspired a recent interest in hyper-optimized
scheduling algorithms in distributed computing. Some improvements, such as Caladan [3] and
Shinjuku [6], are implemented at the operating system (OS) level. Although such systems are
highly effective at improving preemption latencies and performance in distributed systems, they
can be technically difficult to deploy. Moreover, these schedulers may require additional fine-
tuning based on the application, which can lead to service downtimes and lost productivity. On
the other hand, user-space modifications to the scheduler core, such as ghOSt [5], are easier to
deploy and tune, but perform slightly worse than kernel-level custom schedulers.

1.1 Thesis Contributions
Recently, there has been a paradigm shift towards moving functionality out of the operating sys-
tem and into hardware. Hardware accelerators such as Intel’s Infrastructure Processing Unit have
been shown to bring large performance benefits and are also economically viable. In the spirit
of this shift, we investigate hardware-level solutions to scheduling inefficiencies. We believe
that the slow pace of hardware performance improvements has biased research away from in-
vestigating hardware-level optimizations to task scheduling in modern multiprocessing systems.
However, a key obstacle is that there is no recent study on the performance of the Linux kernel
under heavy loads. Such a study is crucial for motivating future hardware design.

In this thesis, we demonstrate the overhead of scheduling and interrupts under four different
webs-server workloads using user-space instrumentation of the Linux kernel. We use both

1

April 27, 2024
DRAFT

QEMU full system emulation and real system benchmarking to demonstrate these overheads.
We also present progress on Nemo, an out-of-order CPU simulator that we hope to apply to fu-
ture work in this direction. We also use the results of our benchmarking to propose methods by
which context switch latency can be decreased.

2

April 27, 2024
DRAFT

Chapter 2

Background

We now provide some background on threading, scheduling, and their associated overheads.

2.1 Threading in Modern Multiprocessor Systems

Modern processors have the ability to work on multiple programs at once. A program is merely
a set of instructions that the user wants the computer to execute. When a program is run, it
spawns a process, which is an instance of a program. Within each process, there exists one or
more threads, which are the smallest unit of sequential execution that can be managed by the OS
scheduler. These threads are known as software threads, since they simply represent a stream of
code execution.

While programs and processes are simply abstractions that assist programmers in reasoning about
what happens “under the hood,” threads are firmly grounded in the hardware implementation of
processor units. Each CPU supplies at least one execution context on which a software thread
can run; this execution context is often referred to as a hardware thread. Figure ?? illustrates
a hardware execution context. Modern CPUs can provide over 32 hardware threads in a single
unit [], which are organized and grouped to form cores. Despite this low number of hardware
threads, even single-processor systems can support hundreds or thousands of software threads at
once despite having a much smaller amount of physical cores. The ability to multiplex software
threads onto hardware threads is the linchpin of multiprocessing.

To facilitate the multiplexing of software threads onto individual hardware threads, it must be
possible for the execution of any software thread to be paused and the corresponding architectural
state to be saved and loaded. The process of saving one thread’s state and loading another is
known as a context switch. In current state-of-the-art OS and hardware implementations, context
switches represent an unavoidable source of performance degradation, the magnitude of which
depends on the underlying instruction set architecture and threading implementation. In general,
context switches are considered expensive events, due to both the direct processing demands and
the architectural side-effects of context switching.

3

April 27, 2024
DRAFT

2.2 Scheduling and its Pitfalls
Scheduling is the process by resources are partitioned to facilitate processing of different tasks.
It is well-known that CPU scheduling is an NP-hard problem [9], therefore, any optimal solu-
tion requires non-polynomial runtime. Consequently, scheduler software cannot make optimal
decisions in real time. Typically, schedulers adhere to a scheduling discipline, a set of rules or
heuristics that are applied to approximate the optimal solution to the scheduling problem. Com-
mon disciplines include first in, first out; priority scheduling; and fair scheduling.

Scheduler software is usually implemented in the kernel and typically operates with a limited
set of algorithms. There is also typically little flexibility for the user to customize or fine-tune
the scheduling algorithm to a particular use case. In this thesis, we are primarily concerned with
the Linux scheduler, as Linux is the operating system most commonly used in large datacenter
applications. Since Linux kernel version 2.6 [1], the Completely Fair Scheduler (CFS) has been
the default scheduler in Linux. The CFS tracks a virtual runtime for each thread and maintains a
red-black tree that represents an ordering of future tasks to be run. Whenever a process reaches
either a maximum runtime or is stopped by any means, the process is reinserted into the tree, and
the process with the least virtual runtime is selected to run.

The CFS functions well in a the typical consumer use-case. However, for applications with heavy
performance demands, the CFS performs poorly compared to more specialized algorithms, pri-
marily due to a combination of poor preemption latencies and suboptimal resource partitioning.
The default timeslice length used by the Linux scheduler is 100 milliseconds, therefore, if a par-
ticular load balancing decision is made poorly or otherwise negatively impacts performance, the
issue cannot be fixed until the impacts of the scheduling decision are felt by the end-user.

2.3 Communication in Multiprocessing Systems
A critical component of multiprocessing systems is the ability for processes and cores to com-
municate with one another. In Linux, this is typically performed through UNIX signals or inter-
processor interrupts (IPIs). In this thesis, we focus on IPIs, since these interrupts are responsible
for expensive events such as TLB flushes and task preemption. Linux IPIs come in three flavors:

1. RESCHEDULE_VECTOR - instructs another CPU to make a call to schedule(), thereby
preempting whatever task is currently running on the CPU.

2. CALL_FUNCTION_VECTOR - instructs another CPU to make a call to a function, and
clears any pending IPI function callbacks.

3. CALL_FUNCTION_SINGLE_VECTOR - as of Linux 6.2.0-rc7, this interrupt is handled
the same way as CALL_FUNCTION_VECTOR.

4

April 27, 2024
DRAFT

Chapter 3

The Nemo CPU Simulator

Nemo is an out-of-order CPU simulator that is compatible with the Structural Simulation Toolkit
(SST). Nemo is comprised of a frontend using the QEMU Tiny Code Generator and a backend
core that is connected to SST. The data flow of the Nemo simulator is illustrated in 3.1. The goal

Figure 3.1: Nemo simulation dataflow

of the Nemo simulator is to provide an easy interface on which binaries can be directly instru-
mented in simulation without needing conversion to a trace. This presents a significant advantage
in comparison to other well-established CPU simulators, such as gem5, as trace generation can
be a slow, expensive process that detracts from software engineer and researcher productivity.

5

April 27, 2024
DRAFT

3.1 The QEMU TCG frontend

The frontend of the Nemo simulator is an instance of the QEMU full-system emulator with a
custom TCG plugin. For more information on QEMU TCG plugins, we refer the reader to [].
The user can run an application of their choosing in the QEMU emulator. The TCG plugin
installs callback functions to instruction execution events and memory access events. In the case
of an instruction execution event, the raw bytecode is sent to the Capstone disassembly engine [],
where the original x86 assembly instruction is extracted. These instructions are then translated
to NemoCommands, which hold information on how the instruction should be executed. In the
case of a memory access event, the QEMU plugin intercepts the salient details of the memory
access (such as the physical and virtual address of the accessed memory) and packages those
in a NemoCommand. Finally, the NemoCommands are sent through a shared memory buffer
to the Nemo core backend, where simulated execution occurs. This mechanism is similar to
micro-operation generation on modern processor units.

Nemo is designed with ease of instrumentation in mind. A common way to model ISA extensions
and instrumentation is through special non-functional no-ops, or ”magic operations” [7]. Nemo
implements these in an extensible way. Our QEMU TCG plugin considers xchg instructions on
the infrequently used r12 register to be magic operations. This instruction is selected due to its
rarity in compiler-optimized code. When the plugin intercepts xchg r12, r12, it discards
this instruction and instead reads the value of the r12 register. It then uses this value to select
a magic operation, and forwards the message to the simulator backend. The magic operation is
then handled in a simulator-defined method.

3.2 The Nemo Core backend

The Nemo core simulator models an out-of-order CPU, and is loosely modeled off of the gem5
O3CPU model [2] and the Ariel CPU simulator [8]. Using SST allows us to parameterize our
CPU model with a user-supplied python configuration file, which allows the user to specify
fetch width, decode width, instruction queue size, load/store queue size, and reorder buffer size,
among other CPU characteristics. Figure 3.2 shows an example configuration for the Nemo CPU.

3.2.1 Pipeline Stages

The Nemo Core models six pipeline stages: fetch, decode, rename and issue, execute, writeback,
and commit:

1. Fetch - In the fetch stage, NemoCommands are received from the TCG plugin and added
to the fetch queue (similar to a prefetch queue). Magic operations are directly handled in
the fetch stage, which allows for maximum flexibility in magic operation usage. This stage
also handles branch prediction.

2. Decode - In the decode stage, NemoCommands are read off of the fetch queue and trans-
lated into decode entries. Read and write events are also spawned in the decode stage.

6

April 27, 2024
DRAFT

nemo = sst.Component("N0", "nemo.nemo")
nemo.addParams({

"branchMispredPenalty" : "5",
"clock" : "2GHz",
"max_insts" : "2000000000",
"max_cycles" : "0",
"verbose" : "0",
"fetch_width" : "5",
"decode_wdith" : "5",
"maxcorequeue" : "512",
"maxtranscore" : "256",
"iq_size" : "160",
"rob_size" : "352",
"maxissuepercycle" : "4",
"lq_size" : "128",
"sq_size" : "72",
"int_ports" : " 2",
"int_mul_ports" : "1",
"int_div_ports" : "1",
"fp_mul_ports" : "2",
"fp_div_ports" : "1",
"load_ports" : "6",
"store_ports" : "6",
"pipetimeout" : "0",
"nemomode" : "1",
"defaultlevel" : "0",
"shmem_file_name": "simulator_interface_tonyy_0"

})

Figure 3.2: An example configuration of the Nemo core

3. Issue - In the issue stage, decode entries are converted into reorder buffer (ROB) entries
and instruction or load/store queue entries. Register renaming also occurs in this stage.

4. Execute - In the execute stage, instruction and load/store queue entries are dispatched to
their corresponding functional units. No actual instruction execution is done; instructions
have fixed latency depending on functional units except for memory operations.

5. Writeback - In the writeback stage, completed instructions propagate their results to any
registers which might be waiting on their results. Also, read events are directly executed
in this phase.

6. Commit - In the commit stage, architectural updates made by instructions are committed
in-order. Also, write events are executed once committed.

Our CPU model does not explicitly implement reservation stations or similar hardware constructs
for Tomasulo’s algorithm, similar to gem5. Instructions are directly updated and marked ready
in the instruction queue.

7

April 27, 2024
DRAFT

8

April 27, 2024
DRAFT

Chapter 4

Methodology

4.1 Kernel Modifications
All experiments were executed on a modified version of Linux kernel version 6.2.0-rc7.
Typically, application instrumentation is concerned with hardware performance metrics which
can be obtained by reading from performance counters. In our study, we are primarily focused on
the performance overhead measured in time. Therefore, kernel-level time APIs like the ktime
API are almost completely sufficient for our instrumentation. We address some limitations of
this instrumentation below.

To implement the instrumentation, we wrap the code associated with the Linux CFS scheduler
core and Linux SMP IPI send and handle functions with calls to ktime_get_ns() and take
the difference between the measured start time and the measured end time as the runtime of
the corresponding function. This instrumentation carries minimal overhead as compared to an
unmodified kernel. Moreover, we only measure the time elapsed after initialization of the in-
strumentation and before the post-processing necessary to generate data, further minimizing the
performance impact of our kernel modifications. With this in mind, we reasonably anticipate that
the instrumentation is faithful to real-system performance.

We also provide an interface through which a user can easily toggle if instrumentation is desired
and retrieve results. This is done through an extension to procfs. Users can write() to
virtual files located in /proc to start instrumenting relevant sections of the code. The corre-
sponding read() stops the instrumentation, and any text editor or the cat utility can be used
to retrieve the data.

There are some limitations to the instrumentation as implemented. First, ktime_get_ns()
is not always strictly monotonic. Therefore, some data points are discarded since the measured
start time is actually later than the measured end time. Experimentation in QEMU shows that this
occurs extremely infrequently relative to the total number of data points; therefore, we do not
anticipate this issue significantly impacting our results. Secondly, our instrumentation measures
all context switches and interrupts in a given execution interval. This means that our results are
prone to being influenced by system noise. Finally, this instrumentation does not capture the
overhead of transitions between kernel and user modes.

9

April 27, 2024
DRAFT

4.2 Adaptation of LEBench

We also evaluate context switching latencies using the LEBench context switch microbenchmark
[], and adapt this microbenchmark into a simple toy benchmark to demonstrate the degradation
of context switch performance when complex states are involved. The basic LEBench context
switch benchmark is described in Algorithm 1. The key to this microbenchmark is that the

Algorithm 1 LEBench Context Switch Instrumentation
Process 1:

Open pipe 1
Open pipe 2
read from pipe 1
write to pipe 2
read from pipe 1
...

Process 2:
Open pipe 1
Open pipe 2
write to pipe 1
read from pipe 2
write to pipe 1
...

read() and write() are blocking when used on pipe file descriptors. Thus, stalling on these
system calls forces the processes to yield to each other, invoking a context switch. The advantage
of this microbenchmark is that it captures the cost of transitions between CPU privilege levels.
However, it does not accurately capture context switching latency in real applications, since there
is no meaningful state being manipulated between context switches.

In order to better test context switching under complex states, we slightly change the code of this
microbenchmark, as shown in Algorithm 2 (only relevant code is shown). Process 1 performs
blocked matrix multiplication, with the timer signals forcing context switches to process 2 by the
same mechanism as in LEBench. Process 2 then immediately returns control to process 1. The
matrix multiplication function heavily utilizes registers, including the xmm vector/float registers.
The register usage means that a complex architectural state may arise between context switches,
which better models the behavior of real applications. We discuss the results of both LEBench
and our modified microbenchmark on the entropy server in Section 5.1.

4.3 Selected Workloads and Experimental Conditions

For our experiments, we selected four common webserver applications as workloads: nginx,
httpd, memcached, and redis. We benchmarked the performance of nginx and httpd
with siege[4]. We benchmarked the performance of redis with redis-benchmark and
memcached using memtier-benchmark. Of our workloads, only httpd was run and in-
stalled as a daemon, all other applications were run as programs compiled from source.

10

April 27, 2024
DRAFT

Algorithm 2 Matrix Multiplication Context Switch Instrumentation
Process 1:

void handler1(int signo) {
struct timespec startTime, endTime;
char w = 'a', r;
clock_gettime(CLOCK_MONOTONIC, &startTime);
write(fds1[1], &w, 1);
read(fds2[0], &r, 1);
clock_gettime(CLOCK_MONOTONIC, &endTime);
add_diff_to_sum(&sum, endTime, startTime);
itrs++;
alarm(INTERVAL);

}
...
// Open pipe 1
// Open pipe 2
struct sigaction act = { 0 };
act.sa_handler = &handler1;
retval = sigaction(SIGALRM, &act, NULL);
// Initialize random matrix of floats and do multiplication
alarm(INTERVAL)

Process 2:

// Open pipe 1
// Open pipe 2
while(true) {

read(fds1[0], &r, 1);
write(fds2[1], &w, 1);

}

4.4 QEMU Experiment Methodology
For experiments done in QEMU, the qemu-system-x86_64 emulator was used with Linux
Kernel-based Virtual Machine (KVM) acceleration. The CPU fall-through option was used to
avoid ISA compatibility issues. For all experiments, an SMP system with two single-core CPUs
was simulated by QEMU. The workloads and benchmarking programs were run together on the
same instance of QEMU.

4.5 Real System Experiment Methodology
For experiments on real systems, the custom kernel was installed on Parallel Data Laboratory’s
entropy server. The specs of the entropy server are listed in Table 4.1. The applications and
benchmarks were then run together on the server.

11

April 27, 2024
DRAFT

CPU Intel Xeon Gold 5320 (2 threads/core, 26 cores/socket, 2 sockets)
L1 dcache 48 KB per core, 12-way associativity
L1 icache 32 KB per core, 8-way associativity
L2 cache 1.28 MB per core, 20-way associativity
L3 cache 39 MB per socket, 12-way associativity
DRAM 509 GiB total memory

OS Ubuntu 22.04 (Linux kernel 6.2.0-rc7)

Table 4.1: Specification of the entropy server

12

April 27, 2024
DRAFT

Chapter 5

Results

We now discuss the results of our experiments.

5.1 Analysis of LEBench Results

In our expeirments using LEBench, we ran the same matrix multiplication workload with increas-
ing intervals between forced context switches. The results are summarized in Figure 5.1. The
data show that as the interval between forced switches increases, the latency of a context switch
increases as well. This implies that the more complex the state of the thread is, the longer a con-
text switch takes, down to some minimum. We conclude from this that there is some baseline cost
of a context switch that cannot be avoided, and points towards predictive hardware-implemented
scheduling as the solution to the issue of scheduling-related overheads. Furthermore, this indi-
cates that further optimization would require completely removing the need for context switching
through hardware means.

0

2

4

6

8

10

12

14

16

1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

C
on

te
xt

 sw
itc

h
la

te
nc

y
(µ

s)

Interval between forced switch (ns)

Matrix. Multiplication Benchmark Data

Figure 5.1: Context switching data from the modified LEBench benchmark

13

April 27, 2024
DRAFT

5.2 Analysis of QEMU Workload Results

Our experiments on QEMU served as both a proof of concept as well as demonstrating that
context switching and interrupt delivery/handling represents a significant overhead in modern
applications. The memcached workload demonstrated overheads of around 8% or more under
all configurations tested. Roughly 99% of this overhead is attributable to context switching, as
shown in Figures 5.2a and 5.2b. For the experiments in Figure 5.2c, 20 threads and 524288
requests per client were used across all conditions, and the number of clients per thread was the
only configuration variable that was manipulated. For the experiments in Figure 5.2d, 20 clients
per thread and 524288 requests per client were used across all conditions, and the number of
threads was the only configuration variable that was manipulated.

As can be seen from the data, the percent overhead does not necessarily strictly increase as the
server load increases. However, as the thread count increases, the overhead incurred comprised
a larger percentage of the total runtime (from around 9% to around 10%), and the percentage
of the overhead attributable to interrupts decreases as well (from around 0.3% to around 0.2%).
This confirms our expectation that the amount of context switches should increase if the thread
count increases. However, we expected the increase to be more substantial. We also anticipated
a substantial increase in the overall overhead. The data show that this is clearly not the case.
This discrepancy is likely due to the single-threaded nature of the memcached application. The
single memcached thread is unlikely to be ”booted” off of an active core, since it is always busy
handing connection requests from the benchmarking application. The benchmarking application
is similarly unlikely to be forced to yield to a different thread or process, since the only blocking
call in the benchmark is socket connection. Thus, we expect low rates of preemption outside of
regular scheduler preemption, and hence we don’t anticipate many interrupts relative to the total
number of context switches.

Experiments on nginx showed very low overheads in comparison to memcached. The same
pattern of overhead composition was observed, with an outlier point at 8 worker threads, as seen
in Figures 5.3a and 5.3b. Neither the worker thread count nor the number of total requests re-
ceived by the server seemed to affect the observed overhead nor the constitution of the observed
overhead, as seen in 5.3. This is an unexpected result; we would anticipate extra worker threads
for nginx to cause additional overheads. This is especially true when running multithreaded
web applications on QEMU, since our QEMU emulator only simulated two-core SMP. The rea-
sons for the lack of overhead is unclear. It is possible that siege did not generate enough
requests to force contention between the threads, or that the number of concurrent threads used
by siege was too much for the QEMU environment. It is also possible that the ”optimal” dis-
tribution of processor time (as decided by the Linux CFS) was simply to let each core run until
its virtual timeslice was consumed or the currently running process was no long the most in need
of runtime, and then to handle preemption at the scheduler tick instead of using an intercept.
Overall, the behavior of the nginx in QEMU is not particularly easy to handle.

Experiments on httpd also showed very low overheads. Interestingly, interrupts composed
more of the overheads (roughly 25%) associated with httpd, as shown in Figure 5.8a. This
is most likely due to the application having four worker threads which are each doing priority

14

April 27, 2024
DRAFT

0

20

40

60

80

100

120

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Clients/Thread

Composition of Overhead vs. Clients per
Thread - memcached

Context Switch Interrupt

(a) Composition of overhead vs clients/thread

0

20

40

60

80

100

120

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Threads

Composition of Overhead vs. Benchmark
Thread Count - memcached

Context Switch Interrupt

(b) Composition of overhead vs thread count

7.4
7.6
7.8

8
8.2
8.4
8.6
8.8

9
9.2

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Clients/Thread

Percent Overhead vs. Clients per Thread -
memcached

(c) Percent overhead vs clients per thread

8.8
9

9.2
9.4
9.6
9.8
10

10.2
10.4

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Percent Overhead vs. Benchmark Thread
Count - memcached

(d) Percent overhead vs threads

Figure 5.2: Overheads of varying configurations of memcached on QEMU.

tasks with potentially poor load balancing. This may necessitate extra communication between
processors to force preemption and allow faster, more efficient tasks to execute first. Once again,
the total number of requests had no influence on the percent overhead or on the composition of
the overhead. One interesting feature of the httpd workload is that it was substantially slower
than nginx even while using more threads than nginx.

The inefficiency of httpd may have contributed to scheduling difficulties and therefore a higher
demand for interrupts. It is possible that individual worker threads of httpd must be preempted
in the middle of performing expensive computation, which would require an extra signal deliv-
ery and an expensive context switch event. It is possible that poor individual thread performance
leads to poor load balancing outcomes in the CFS, which would also lead to excessive preemp-
tion. These hypotheses are supported by the fact that the overhead increases as the number of
requests processes increases, as shown in Figure 5.4. This implies that as the number of requests
increases, the ability of the CFS to make close-to-optimal scheduling choices that minimize the
amount of preemption necessary is degraded.

15

April 27, 2024
DRAFT

0

20

40

60

80

100

120

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Threads

Composition of Overhead vs. Thread Count
- nginx

Context Switch Interrupt

(a) Composition of overhead vs thread count

0

20

40

60

80

100

120

250000 500000 750000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Composition of Overhead vs. Total
Requests per Thread - nginx

Context Switch Interrupt

(b) Composition of overhead vs total requests

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Percent Overhead vs. Thread Count -
nginx

(c) Percent overhead vs thread count

0

0.5

1

1.5

2

2.5

3

250000 500000 750000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Percent Overhead vs. Total Requests -
nginx

(d) Percent overhead vs total requests

Figure 5.3: Overheads of varying configurations of nginx on QEMU.

Experiments on redis showed moderate overheads on the order of roughly 3.5%. The data
indicate that the benchmark thread count had little effect on the overhead, as shown in Figure
5.5. Of the four workloads, redis had the highest proportion of overhead accounted for by
interrupts. This is most likely due to redis writing information to disk (i.e. self-interrupts) and
not due to scheduling-related interrupts. We would not expect the redis to demand a particu-
larly large amount of signals for preemption purposes, since it is a single-threaded workload. We
would not expect the redis thread to be preempted frequently since it is always doing critical
tasks such as accepting and servicing connection requests from the benchmarking utility. If the
redis application was multithreaded, it would be unclear if the interrupt overhead was primar-
ily due to excessive preemption of threads with complex state or purely due to I/O devices and
self-interrupts. This is supported by the data in Figure ??, which shows that the threads used in
redis-benchmark does not affect the overhead at all. Since the primary side effect of in-
creasing the thread count is increased contention for CPU compute resources, it is safe to assume
that the effects of preemption, if there are any, are minimal.

16

April 27, 2024
DRAFT

0

20

40

60

80

100

120

250000 500000 750000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Composition of Overhead vs. Total
Requests per Thread - httpd

Context Switch Interrupt

(a) Composition of overhead vs total requests

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100000 250000 500000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Overhead vs Total Requests - httpd

(b) Percent overhead vs total request count

Figure 5.4: Overheads of varying configurations of httpd on QEMU.

0

20

40

60

80

100

120

5 10 15 20

Pe
rc

en
t O

ve
rh

ea
d

Threads

Composition of Overhead vs. Thread Count
- redis

Context Switch Interrupt

(a) Composition of overhead vs thread count

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

5 10 15 20

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Overhead vs Thread Count - redis

(b) Percent overhead vs thread count

Figure 5.5: Overheads of varying configurations of redis on QEMU.

5.3 Analysis of Experiments on Real System
Our real system experiments were able to replicate our results from the controlled environment of
QEMU. Experiments on the entropy servers introduced the potential issue of background noise
from other process and opened more compute resources for threads, which substantially changed
the nature of the overheads. No benchmark showed less overhead in real system than on QEMU,
which partially validates our approach.

Experiments on memcached on the entropy servers demonstrated much higher overheads than
in QEMU, but the overhead was still dominated by the cost of context switching. As the total
work increased, the overhead percentage increased, as seen in Figures 5.6c and 5.6d. This is most
likely associated with the increase in the number of available cores on the entropy servers, which
inherently results in higher scheduling costs. This explains the increased overhead from context
switching. This is supported by the fact that as thread count increased, the overhead increased,

17

April 27, 2024
DRAFT

0

20

40

60

80

100

120

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Clients/Thread

Composition of Overhead vs
Clients/Thread - memcached

Context Switch Interrupt

(a) Composition of overhead vs clients/thread

0

20

40

60

80

100

120

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Clients/Thread

Composition of Overhead vs Benchmark
Thread Count - memcached

Context Switch Interrupt

(b) Composition of overhead vs thread count

0

5

10

15

20

25

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Clients/Thread

Percent Overhead vs Clients/Thread -
memcached

(c) Percent overhead vs clients per thread

0
5

10
15
20
25
30
35
40

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Percent Overhead vs Benchmark Thread
Count - memcached

(d) Percent overhead vs threads

Figure 5.6: Overheads of varying configurations of memcached on a real system.

indicating that contention for computing resources is the most likely origin of this overhead. The
increased core count also is able to account for the low incidence of signals; with more cores free,
it is more likely than not that each thread can get a core to itself, and that the active threads only
need to yield briefly to the kernel or other background jobs, making expensive thread migrations
unnecessary. This would correspond to a lower incidence of preemption and therefore a lower
incidence of signals.

Experiments on nginx on the entropy servers demonstrated significantly higher overheads than
on QEMU. Moreover, much more of the overhead was due to interrupts than on QEMU. There
was no clear relation between the total number of requests and the overhead. Interestingly,
as the thread count increased, the overhead due to scheduling and interrupts decreased. This
is explained by the fact that we actually observed slowdowns from adding worker threads to
nginx. Oddly, this was not observed in QEMU, where even less cores were available. This
leads us to speculate that somehow the nginx load balancer failed to partition the work in
a reasonable fashion, resulting in the kernel scheduler intervening via task preemption in an
attempt to load-balance the cores. This would result in a higher proportion of signal overhead as

18

April 27, 2024
DRAFT

0

20

40

60

80

100

120

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Composition of Overhead vs Worker
Thread Count - nginx

Context Switch Interrupt

(a) Composition of overhead vs thread count

0

20

40

60

80

100

120

250000 500000 750000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Composition of Overhead vs Total
Requests - nginx

Context Switch Interrupt

(b) Composition of overhead vs total requests

0

5

10

15

20

25

30

35

2 4 8 16

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Percent Overhead vs Worker Thread Count
- nginx

(c) Percent overhead vs thread count

0

20

40

60

80

100

120

250000 500000 750000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Composition of Overhead vs Total
Requests - nginx

Context Switch Interrupt

(d) Percent overhead vs total requests

Figure 5.7: Overheads of varying configurations of nginx on real system.

well as a degradation in performance with higher thread counts. Although the exact reasons for
this phenomenon are unclear, this is clearly application-specific behavior that could be explored
further using code tracing and execution analysis.

Experiments on httpd on the real system yielded similar results as on QEMU, but with higher
overheads. The results are summarized in Figure 5.8. The overheads due to signals increased by
about two-fold on the entropy servers. Moreover, the total requests sent seem to have no relation
to the overhead observed. This is likely because all of the httpd worker threads were able
to work simultaneously on the real machines due to the higher number of cores available, and
siege was not able to generate enough requests at once to place the server under significant
strain. This would also suggest that the increase in interrupt traffic is due to cross-thread com-
munication on the real system, since in QEMU, at most one httpd worker thread was running
at once due to the limitation on the number of cores available.

Experiments on redis on the real system had roughly double the overhead and significantly less
interrupt overhead compared to the experiments on QEMU. This is most likely due to a combina-

19

April 27, 2024
DRAFT

0

20

40

60

80

100

120

250000 500000 750000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Total Requests

Composition of Overhead vs Total
Requests - httpd

Context Switch Interrupt

(a) Composition of overhead vs total requests

26.5

27

27.5

28

28.5

29

29.5

30

30.5

100000 250000 500000 1000000

Pe
rc

en
t O

ve
rh

ea
d

Ttoal Requests

Percent Overhead vs Total Requests - httpd

(b) Percent overhead vs total requests

Figure 5.8: Overheads of varying configurations of httpd on real system.

0

20

40

60

80

100

120

5 10 15 20

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Composition of Overhead vs Benchmark
Thread Count - redis

Context Switch Interrupt

(a) Composition of overhead vs thread count

0

1

2

3

4

5

6

7

8

9

5 10 15 20

Pe
rc

en
t O

ve
rh

ea
d

Thread Count

Percent Overhead vs Benchmark Thread
Count - redis

(b) Percent overhead vs benchmark thread count

Figure 5.9: Overheads of varying configurations of redis on real system.

tion of instrumentation noise and a higher efficiency in writing to the disk in real systems, since
writing to disk in QEMU is much slower than writing to main memory on a real machine. This
would explain why the interrupt overhead decreased almost 10-fold. The results are summarized
in Figure 5.9.

A holistic view of the data indicates that scheduling and communication-associated overheads
originate from a variety of sources, and that no one algorithm “fits the bill.” This emphasizes the
need for adaptive algorithms that respond dynamically not just to virtual runtimes and process
timeslices, but also to architectural side-effects of process execution, such as cache interference
and expected execution times of threads. We discuss potential approaches to this problem in our
concluding remarks.

20

April 27, 2024
DRAFT

Chapter 6

Conclusion

Our data shows that overheads due to context switching and interrupts are significant in four
common web applications. We also showed that the majority of these overheads are due to
context switching and not due to scheduler-related interrupt handling. Moreover, the data show
that these overheads and their causes are not predictable by simple heuristics, i.e. giving each
thread or process a ”fair” slice of time is not sufficient to minimize these overheads. Therefore,
specialized scheduling algorithms that take into account the architectural side effects of a task,
as well as its expected runtime, are essential for achieving higher performance.

We propose that CPUs have on-board scheduler modules which prefetches instruction streams
and estimates their runtime. Moreover, this scheduler module should be able to dynamically
assign priorities to tasks either independently or following some kernel policy and grant resource
guarantees to high-priority processes. This extension to modern CPU architectures would not be
particularly expansive: instruction pre-fetchers already exist, and runtime estimation need not be
more complicated than a series of opcode lookups in a latency table. The primary changes would
be at the hardware thread level and ISA level, where hardware threads will require additional
state registers to denote their status as either a high-priority or low-priority thread. This state
must be preserved by context switching. One possible solution to this issue would be to reserve
a rarely-used general-purpose register to mark process priority.

In order to decrease context switching latencies in such an architecture, it would be prudent for
each core to have additional hardware threads that can hold idle high-priority threads. This can
completely eliminate the need to context switch between a small number of threads with complex
states, which can save a significant amount of overhead. Modern CPUs already provide multiple
hardware threads on each core, typically for the purposes of simultaneous multithreading (SMT).
With the multitiude of attacks exploiting insecurities in SMT, it may be time to do away with a
security liability and use the extra hardware threads to find performance benefits elsewhere.

Although our data indicate that interrupt latencies are significant, they do not make up a mean-
ingful proportion of the scheduling-related overheads we have instrumented. Therefore, while
inter-core communication and handware interrupts are areas where significant optimizations can
be realized, we do not consider them to be high-priority areas of study at the moment.

21

April 27, 2024
DRAFT

6.1 Future Work

6.1.1 Evaluation of the Nemo Core
We do not present results on our evaluation of the Nemo core because we deem it to still be out of
acceptable performance ranges. In future work, we hope to bring the performance of the Nemo
core within tolerance so that we can implement and evaluate a simulated hardware scheduler.

Over the course of the year, we have continuously benchmarked and refined the accuracy and
functionality of the Nemo CPU simulator using the SPEC2017 benchmark suite. Benchmarks
were compiled using gcc, gfortran, and g++ using -march=x86-64 -mtune=generic
flags. The configuration of the simulation exactly matches that of the entropy servers given in
Table 4.1. Benchmarks were adapted for use in the simulator framework by the injection of start
simulation and end simulation magic operations. Afterwards, benchmarks were run in simulation
for 200 million instructions, and IPC data was recorded. As a baseline, real processor perfor-
mance was measured by using the PAPI library to instrument program performance. The same
SPEC2017 benchmarks (excluding the magic operations) used in simulation were compiled us-
ing the same Makefile configurations. The benchmarks were then run on the entropy servers.
Each benchmark was pinned to a core, which was throttled to 2 GHz using the Linux userspace
CPU frequency governor. Afterwards, the benchmarks were run for 200 million instructions and
statistics collected. The benchmarks were terminated after the specified number of instructions
were executed. The IPC was then computed and compared to the simulation IPC.

To our current understanding, there are a number of limitations of the Nemo core backend, which
are intimately connected to the memory system and vectorized operations available in the x86
architecture. First, there is no support for an instruction cache There are a number of limita-
tions of the Nemo core backend. Thus, all memory operations are directed to the data cache,
which can cause inaccurate cache behavior as well as limiting the data cache memory band-
width. Also, the register renaming system requires further verification, due to the fashion by
which NemoCommands are generated and communicated to the backend. This affects the level
of instruction-level parallelism, which also affects the simulation accuracy of the Nemo simula-
tor. Finally, vectorized memory accesses, such as the rep movs instruction, are not properly
optimized in the Nemo core, which leads to large performance degradation in simulation.

6.2 Limitations of Instrumentation and Results
Our instrumentation does not discriminate between processes of interest and background pro-
cesses. This means that background noise or other processes running on the system could affect
the measurement of the overhead associated with a given application. We argue that this is not
a substantial downside, as real servers have hundreds of jobs running simultaneously which will
all affect any given application one wishes to instrument.

22

April 27, 2024
DRAFT

Bibliography

[1] Cfs scheduler. https://docs.kernel.org/scheduler/sched-design-CFS.
html. 2.2

[2] O3 cpu. https://www.gem5.org/documentation/general_docs/cpu_
models/O3CPU. 3.2

[3] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan: Mitigating
interference at microsecond timescales. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 281–297. USENIX Association, November
2020. ISBN 978-1-939133-19-9. URL https://www.usenix.org/conference/
osdi20/presentation/fried. 1

[4] Jeffrey Fulmer. Siege. https://github.com/JoeDog/siege. 4.3

[5] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden, Josh Don,
Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis. Ghost: Fast & flexible
user-space delegation of linux scheduling. SOSP ’21, page 588–604, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450387095. doi: 10.1145/3477132.
3483542. URL https://doi.org/10.1145/3477132.3483542. 1

[6] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and
Christos Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail latency. In 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages
345–360, Boston, MA, February 2019. USENIX Association. ISBN 978-1-931971-49-
2. URL https://www.usenix.org/conference/nsdi19/presentation/
kaffes. 1

[7] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s gen-
eral execution-driven multiprocessor simulator (gems) toolset. 33(4):92–99, nov 2005. ISSN
0163-5964. doi: 10.1145/1105734.1105747. URL https://doi.org/10.1145/
1105734.1105747. 3.1

[8] NTESS. sst-elements. https://github.com/sstsimulator/sst-elements.
3.2

[9] Vairavan and Demillo. On the computational complexity of a generalized scheduling prob-
lem. IEEE Transactions on Computers, C-25(11):1067–1073, 1976. doi: 10.1109/TC.1976.
1674556. 2.2

23

https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://www.gem5.org/documentation/general_docs/cpu_models/O3CPU
https://www.gem5.org/documentation/general_docs/cpu_models/O3CPU
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://github.com/JoeDog/siege
https://doi.org/10.1145/3477132.3483542
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1145/1105734.1105747
https://github.com/sstsimulator/sst-elements

	1 Introduction
	1.1 Thesis Contributions

	2 Background
	2.1 Threading in Modern Multiprocessor Systems
	2.2 Scheduling and its Pitfalls
	2.3 Communication in Multiprocessing Systems

	3 The Nemo CPU Simulator
	3.1 The QEMU TCG frontend
	3.2 The Nemo Core backend
	3.2.1 Pipeline Stages

	4 Methodology
	4.1 Kernel Modifications
	4.2 Adaptation of LEBench
	4.3 Selected Workloads and Experimental Conditions
	4.4 QEMU Experiment Methodology
	4.5 Real System Experiment Methodology

	5 Results
	5.1 Analysis of LEBench Results
	5.2 Analysis of QEMU Workload Results
	5.3 Analysis of Experiments on Real System

	6 Conclusion
	6.1 Future Work
	6.1.1 Evaluation of the Nemo Core

	6.2 Limitations of Instrumentation and Results

	Bibliography

