
Cognitive Framework for Preference
Adaptation in Human-AI Interaction

Feiyu “Gavin” Zhu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Advised by:
Reid Simmons

Submitted in partial fulfillment of the requirements
for the School of Computer Science Honors Research Thesis.

Copyright © Feiyu “Gavin” Zhu

Keywords: Human-AI Interaction, Preference Learning, Cognitive Architectures

For my family and friends who supported me through everything.

iv

Abstract
Previous work on preference learning focuses extensively on using rewards as proxies.

Despite fitting into the reinforcement learning paradigm nicely, reward-based machine learn-
ing approaches face the difficulty of fully representing personal preferences as rewards and
the challenge of updating the policy with few samples. In this study, we aim to take an al-
ternative rule-centric approach - drawing inspiration from cognitive science and building a
decision-making framework centered around production rules. The production rules in the
cognitive framework are abstract, modular, interpretable, and composable - all important fea-
tures in human-AI interactions. Therefore, we propose a framework that combines the gen-
eral knowledge of large language models and the adaptable nature of cognitive architectures.
More concretely, we formally define a cognitive architecture, show how we can bootstrap its
rules with a large language model and minimal human input, collect a set of human pref-
erences in the real world, and show how the architecture we proposed can adapt to those
preferences in one shot. We hope that this work will inspire more future work in rule-centric
agent policies in the future.

vi

Acknowledgments
First and foremost I would like to thank my Advisor Prof. Reid Simmons for letting me

explore the topic of my interest, asking thought-provoking questions, and reviewing my work
in great detail. This thesis would not be possible without his consistent support ranging from
high-level idea discussion to edits in the thesis document.

I am grateful to be part of the RASL lab and the HRI community at CMU. Special thanks
to Daphne Chen for running a fun course project together, Mike Lee for providing great feed-
back on presenting my work, Michelle Zhao for spending time proofreading my writing, Fern
Limprayoon for the discussion at the early stage of my thesis work, Pat Callaghan for helping
with my graduate school application, and Arnav Mahajan for introducing me to human-AI
collaboration.

Many other faculties have also contributed profoundly to my undergraduate experience. I
want to thank Prof. Yonatan Bisk for all the valuable research and life advice, Prof. Alexan-
der Mathis for allowing me to explore Switzerland and the medical applications of machine
learning, Prof. Stephanie Rosenthal for being a great course instructor that I TA for, and Prof.
Pat Virtue for answering random questions I have for AI.

I am also fortunate to have some incredible friends. Molly Wang has been my best friend
of all time who supports me through snack boxes and random chats. Mike Li has been my
amazing roommate who I can talk to about literally anything from commenting on arxiv
papers to tedious tax deductions. I also won’t forget how Micheal Zhou saved me from
running out of OpenAI credits when I needed it the most.

Special thanks to Ihita Mandal who has been incredibly understanding, cheerful, and
entertaining. All of which enabled my undergraduate degree to end on a high note.

Last but perhaps most importantly, I am immensely thankful for my parents, who have
provided me with unconditional support even if they are on the other side of the earth. Know-
ing that I will always have them on my side gives me the courage to pursue my interests
instead of blindly following the trend. To mom and dad, thank you for everything.

viii

Funding
This work was partly supported by the Summer Undergraduate Research Fellowship from

CMU and AI-CARING Institute (NSF IIS-2112633).

x

Contents

1 Introduction 1

2 Related Work 3
2.1 Human-AI Interaction . 3
2.2 Cognitive Architecture . 4
2.3 Large Language Models . 5

3 Lixr Framework 7
3.1 Formulation . 7
3.2 Agent . 13
3.3 Summary . 16

4 Bootstrapping World Knowledge 17
4.1 Curriculum and Task Instances . 18
4.2 Production Rule Generation . 18
4.3 Declarative Knowledge Integration . 20
4.4 Experiment . 21
4.5 Summary . 25

5 Personalized Adaptation 27
5.1 Preference Collection . 27
5.2 Production Rule Modification . 28
5.3 Results . 29
5.4 Summary . 31

6 Discussion 33
6.1 Limitations . 33
6.2 Future Work . 33

7 Conclusion 35

Bibliography 37

Appendix 45
A Comparison to Other Agent Frameworks . 45
B Sample Environment Memory . 46
C Bootstrapping Examples . 47

xi

D User Preferences Collection Details . 50

xii

List of Figures

1.1 High-level interaction overview . 1

3.1 Object representation with timelines . 8

4.1 Overview of the bootstrapping process . 17
4.2 Screenshots of the AI2THOR simulator . 21
4.3 Token usage statistics during the bootstrapping process 23
4.4 The hierarchy of tasks learned . 24
4.5 Stylistic differences between the bootstrapped agent and the baseline 25

5.1 Complete view of the linear kitchen environment . 28
5.2 Breakdown of participant preferences category . 29
5.3 Preference adaptation success rate by category . 30

B.1 Sample memory layout of an agent . 46
C.2 Examples of transitions graphs for cycle detection . 48

xiii

xiv

List of Tables

4.1 Results of experiments on household tasks . 22

5.1 Failure cases for preference adaptation . 29

A.1 Comparison between Lixr and other agent frameworks 45

xv

xvi

Chapter 1

Introduction

The pursuit of developing an assistive household robot has a long history and still remains largely unre-
alized [90]. At the same time, with the rise of large language models comes a surge of work in building
more intelligent AI agents. However, as each household is unique and different people have different pref-
erences, there is no one-size-fits-all solution. Thus, having agents that comply with different preferences
will yield more coherent human-AI interaction than agents that fit the “average” human and environment.

Figure 1.1: High-level interaction overview

Previous works have mainly relied on using rewards as a proxy for preferences, which often suffer
from data inefficiency, misalignment issues, and other limitations [19]. More recently there has been a
trend of developing generally capable agents [80] with the rise of large, foundation models. However,
they aim to develop a single policy with wide capabilities instead of being optimized for being adaptable
to individual needs.

In this work, we aim to develop an agent policy that is generally capable of doing each task and
can perform quick and persistent adaptation to new preference requests. The general overview is shown
in Figure 1.1 where the robot first bootstraps some skills in a weakly supervised fashion before being
deployed into people’s individual environments where the robot can still continuously improve given the
users’ feedback. This general framework is similar to some of the existing works [30] that try to perform
personalized adaptation based on existing trained models, but we are going to propose a more efficient
agent framework using this paradigm.

1

We base our work on the main motivation: preference should be treated as a set of fixed routines.
Building on top of this idea, we incorporate research in cognitive architecture with the empirically power-
ful large language models to construct an agent framework that supports quick and persistent adaptations.

Thesis Contribution

In this thesis, we present a cognitive architecture-based solution to the problem of personalization in
human-AI interaction. Specifically, we first propose to formulate preferences as rules instead of rewards.
We develop a bootstrapping process that can extract procedural knowledge from large language models
and convert them into an agent running a custom cognitive architecture. Then we run a pilot study on
collecting user preferences in the wild and show how our approach can successfully accommodate more
than 80% of them with a simple one-step query. In the end, we provided a rough sketch of future work in
this direction.

2

Chapter 2

Related Work

2.1 Human-AI Interaction

As AI technologies are becoming more ubiquitous, many research efforts explore how humans and AI
should co-exist. Some topics of interest are how AI can learn more efficiently from humans [13], how
human-AI teams should collaborate [23], and how to address the explainability and safety concerns dur-
ing these interactions [60]. As our work focuses on preference adaptation and requires starting from a
generally capable agent, we mostly review learning from humans and preference learning.

Human-in-the-loop Learning

Naive supervised machine learning separates data collection and model training [96]. By contrast, human-
in-the-loop learning assumes access to a human teacher during the learning process. The human teacher
can give demonstrations, critiques, comparisons, and additional annotations as feedback to aid the agent’s
learning [12, 22]. This is especially beneficial for many real-world reinforcement learning problems
where the reward function is hard to be fully specified but instead is easier to be reconstructed by human
feedback. However, most work in this direction focuses on using human feedback to learn a task in general
(e.g., landing a lunar lander in a game [22]), instead of learning personal preferences.

Preference Learning

Early work in preference learning revolves around recommender systems where the system tries to learn
the preference of the viewer based on their viewing history and suggests new content. Collaborative fil-
tering [16] builds on the assumption that people who viewed the same content in the past will prefer the
same content in the future. Later this has been extended to modeling the content’s latent representation
for representing the content [2]. With the rise of deep learning models, other works formulate the recom-
mender system as a reinforcement learning problem where the reward is defined as the user’s response to
the content recommended [88].

Contemporary work investigates preference in more complex settings such as cooperative games or
tasks. One of the preference learning paradigms is to generate a library of all possible human preference
models and match the specific model to the observation of the human. The library could be generated by
clustering on the existing human data [95], or by analyzing the environment from a game-theoretic point
of view [75]. Although these show good results in collaborative games such as Hanabi [10], they are hard
to work in real-world scenarios where the preferences are more diverse.

3

Other works actively query the user for their preference [18, 39, 63]. Instead of trying to infer the
user’s preference from passively observing the user’s behavior, these works actively ask questions to
narrow down the user’s internal reward function. Active query and feedback are essential as the user’s
actions don’t necessarily reflect their true preference (e.g., a person can prefer a tidy room but has a messy
room themselves because they are too lazy to tidy it). Therefore, in this work, we examine how the agent
can adapt its policy based on active, verbal feedback.

2.2 Cognitive Architecture

Cognitive architectures are frameworks designed by the cognitive science community to model the human
cognition process. Many cognitive scientists, including Allen Newell [56], believe that the human mind is
like a computer with its architecture, and the skills and memories we have are like programs and data that
run on this brain computer.

Alternative Approach to Deep Learning

Cognitive architectures have been one approach in the pursuit of artificial general intelligence that at-
tempts to unify all aspects of human cognition computationally [57]. Despite the variety of architectures
developed, most of them share the same central components, consisting of declarative memory reflecting
knowledge of the world, procedural memory dictating the agent’s behavior given certain scenarios, and
short-term working memory that assists reasoning and planning [45].

The procedural memory is represented by a set of production rules, each with a precondition and an
effect. Agents operate in perceive-plan-act cycles, dynamically matching relevant features of the environ-
ment to the production rules and applying their effects. Unlike operators in symbolic planning, production
rules do not represent alternative actions but instead reflect different contextual knowledge [43]. These
rules can be reinforced and modified throughout the agent’s learning process.

We base our work on cognitive architectures mainly because they are abstract and modular. The pro-
duction rules are abstract as they contain variable placeholders that dynamically bind to the environment.
This allows the agent’s policy to generalize to novel environments or novel objects. For example, consider
the rule “if a room is not in use and lights are on, then turn off the light". The “room" is abstract as in
it can be applied to any room, even the unseen ones. With the strong generalization capability, the user
only has to specify their preferences in terms of general instructions such as “put things back to where the
belong" instead of specific instance-based instructions such as “put the mug in the cabinet".

On the other hand production rules are modular because each production rule only represents one step
of reasoning in one task. It allows the user to update part of the agents’ policy with the guarantee that the
agent’s behavior in other tasks won’t change. This ensures the agent policy can be updated according to
multiple preference specifications without suffering from catastrophic forgetting as in the deep learning
approaches [51].

Development of Cognitive Architectures

Psychology-focused research aims at developing cognitive architectures using an iterative process [5].
They start with some very primitive architecture based on our understanding of the functions of different
brain regions. Each function is abstracted into components in the architecture: similar to having CPU
and memory hierarchy in a computer architecture, there are perception, goal, and imaginary modules in
a cognitive architecture. Then experiments are conducted to compare the human performance with the

4

prediction of the model (program) complying with the architecture. During an experiment, behavior data,
such as reaction time and task performance, and physiological data, such as functional magnetic resonance
imaging (fMRI) and electroencephalogram (EEG) signals, are recorded to be compared with the estimates
of the model. When there is a misalignment between human data and the estimation from the model,
new features or components are introduced to the architecture to accommodate the difference [26]. A
variety of tasks including classic psychology experiments [4], algebra [65], and video games [6] are used
to validate and refine cognitive architectures. As a result of these developments, cognitive architectures
align well with the actual functioning of human brains and are capable of hosting a wide range of tasks.
There are more than 20 cognitive architectures developed and used in the research community, with subtle
differences between each other [41]. The most well-known examples are ACT-R [5] and SOAR [43].

Despite some pioneering work on data-driven cognitive model creation [29], almost all previous work
generate their initial set of production rules manually, limiting their application to simple environments
such as blocks world or psychology experiments [61]. Therefore, to alleviate the demand for human labor
and make use of cognitive architectures in complex environments such as the household domain, we first
develop a bootstrap process that utilizes large language models to initialize a cognitive model.

Applications of Cognitive Architectures

Interactive Task Learning [44] aims at learning the underlying concepts of a task through teacher-student
interactions. Many works utilize cognitive architecture as the backbone for the student model to make use
of its multiple learning mechanisms. The most distinctive difference of using a cognitive agent instead
of a statistical deep learning model is that the cognitive agent is self-aware of whether it is capable of
representing the instructions from the teacher. When it fails to learn a specific instruction, it can query
the instructor for further clarification or rephrasing. Previous works had focused on how to efficiently use
LLM as the instructor in the interactive task learning setting [36, 37].

More recently, there is a rising interest in formulating generally capable agents as a combination of
cognitive architectures and large language models [76] and trying to combine them [69]. Many works
acknowledge that neither the symbolic reasoning architecture nor large language models by themselves
can lead to generalist agents. However, these existing works all stay at the conceptual level, while our
work gives a concrete implementation.

2.3 Large Language Models

Emergent behavior has been discovered for language models where pre-trained models demonstrate a
sharp and unexpected increase in performance [85]. One explanation for this phenomenon is that the
human language is sparse in high dimensional space and thus becomes easier for the language models
to learn when the context is longer. In addition to the language domain, similar emergence behavior has
also been shown in the vision domain [35] where the model can segment unseen and irregular objects
such as dough or even shadow. Many current works are trying to explore the emergent behavior in the
manipulation [33] and science domain [14]. Note that we use large language models and foundation
models interchangeably.

In this work, instead of trying to build a new large foundation model or using it as a backbone for
decision-making, we make use of the existing large language model to 1) replace human labor by providing
knowledge of the world, and 2) bridge natural language and executable code.

5

Prompting Techniques

Training a large language model could be extremely costly, therefore many other works explore how to
get the most out of a pre-trained model in a zero-shot fashion by strategically prompting the model. We
make use of these prompting techniques to extract general knowledge of the world when bootstrapping
our cognitive agent.

Chain-of-thought [86] prompts the large language model to generate a response step-by-step, breaking
a complex problem into subparts. This often leads to better results as the large language model can be seen
as a noisy knowledge retriever and the easier the (sub)problem the better its result. Later work extends
this to a search tree [89]. Meta prompting [79] makes use of system prompts to assign different roles to
the same large language model. There is a conductor model that interacts with the human and synthesizes
information from other expert or critic models.

Foundation Models for Embodied Agents

It has been well-acknowledged that large language models by themselves have limited capabilities when
deployed to embodied tasks due to their limited context length, having different embodiment models, etc.
Therefore, many works explore combining them with other components to create an embodied agent.

There are several popular schemes for integrating large language models with other components. The
most common one is to have a separate memory module to regulate prompting [61, 92]. The prompts
depend on the memory of the past or other factual knowledge, conditioning the content generation of the
large language models. This allow the model to have more relevant information in its limited context
window. Work in this direction can be seen as retrieval augmented generation [27].

Other work has looked at post-processing the output of the large language models to ensure the actions
they propose respect the affordance of the embodied agent. It could be a separate, learned affordance
model [3], or simply just another large language model with a different prompt as a critic [84]. As most
large language models are trained using human data, they assume human affordance (e.g., two hands,
bipedal, etc.). These integration techniques aim to reshape the action to fit the specific task environments.

Another popular approach is to combine the code generation capability of large language models and
existing compilers or domain-specified language [77, 83, 93, 94]. These approaches use code to represent
a plan for solving the current task and make up for the weak reasoning capabilities of the large language
models. Other work extended this to use other tools such as existing deep learning models [62]. Our
work is most similar to this approach where we use large language models to generate code running in
a cognitive architecture. However, unlike the situation-grounded code produced by these methods, our
approach generates parameterized productions with learnable weights. This allows more generalization
capabilities and choosing the best plan among multiple applicable plans.

Concerns Regarding Large Language Models

The most well-acknowledged issue is hallucination [31] where the language model generates factually
false or illogical responses. This is because large language models are fundamentally statistical models
so there is no mechanism to ensure the soundness of the output. Because of this, we introduce post-
processing techniques during the bootstrapping process to ensure the production rules generated by the
large language models are desirable.

Other works have shown data leak [55] and revealing unethical information [98], which all suggest
that an agent’s decision-making cannot rely entirely on large language models but have to be combined
with some other components, such as a cognitive architecture.

6

Chapter 3

Lixr Framework

This chapter describes the mathematical formulation of the proposed Lixr1 framework, and give a high-
level overview of its working process. It is heavily inspired by existing cognitive architectures, especially
SOAR [43] and ACT-R [5]. The main conceptual difference lies in alleviating many of the constraints
imposed by human cognition (e.g., need explicit retrieval to long-term memory) and the main implemen-
tation difference is the choice of using Python as the backend for more expressive precondition functions
and better code generation from existing large language models.

3.1 Formulation

We use Σ∗ to represent the set of all possible value encodings. Note that the empty string is also part of
this set: ε ∈ Σ∗. We also assume time is discrete and can be represented as Z where 0 is present, negative
numbers are in the past, and positive numbers are in the future 2.

Variable Timeline

We define a variable timeline as T : Z→ Σ∗, which function that maps some time to some value. Concep-
tually each timeline is a function that records the value of a variable in the past and gives some prediction
of the future. Let Tε be the empty timeline that is ∀t,Tε(t) = ε . Let the set containing all timelines be T.

We define two higher-order function interfaces for timelines. An advance function:

Adv(T)(t) = T (t +1) ∀t ∈ Z (3.1)

that represents moving the timeline forward for one step in time. And a compose function that merges two
timelines (whose implementation depends on the internal representation of the timelines):

T = T1 ◦T2 (3.2)

In this work, each timeline is implemented as a dictionary that maps time steps to values. When
querying for the value of the variable at some given time, it returns the value at the closest time less than

1Language-instructed and executable rules.
2Note that this is different from the actual implementation where the agent keeps track of the absolute time (i.e., 0 represents

the time when the agent was boot up instead of present). This chapter uses 0 to describe the present to avoid keeping track of the
current time as part of the agent, which is practically useful but conceptually redundant.

7

OCountertop

coordinates -50→ (0,0,1)

hosting -50→{OKnife} 0→{OKnife,OTomato}

OTomato location -10→ OFridge 0→ OCountertop

(other objects and relations omitted)

Figure 3.1: Object representation with timelines. It shows that 50 time steps ago only the knife was on the
countertop. 10 time steps ago the tomato is found in the fridge. And at present the tomato is moved to the
countertop. This makes it easy to reason about the past (e.g., where the tomato was 5 steps ago).

or equal to the query. For example, we can represent “the location of the robot” as:

Tlocation = {-10→ “fridge", -1→ “stove", 0→ “sink"} (3.3)

which means the robot was at the fridge 10 time steps ago, moved to the stove 1 time step ago, and is
currently at the sink. If we want to know where the robot is at 5 time steps ago, we will get

Tlocation(-5) = Tlocation(-10) = “fridge" (3.4)

Using this definition, composing two timelines is the same as taking the union of the two corresponding
dictionaries. If there is a conflict between the two (i.e., having different values for the same timestamp),
then the value of the timeline on the right hand side is taken.

For the sake of simplicity, we use the following to denote a constant timeline

Tbrand = {“Hello Robot Stretch"} (3.5)

This can be extended to incorporate other interpolation or extrapolation functions, but the concept
remains the same and we leave that to future work. For the rest of the section, we will use the dictionary
notation as shown in Equation 3.3.

Object

Building on top of timelines, we can represent an object as O : Σ∗ → T which maps attribute names to
their timeline. For a value v ∈ Σ∗ that is not an attribute of the object O, we let O(v) = Tε . Let the set of
all objects be O. Representing each object as a set of attribute timelines makes it easier to reason about
the past and future state of the object.

We assume access to an ID function ID : O→ Z that assigns each object instance with a unique ID.
This function exists because the objects are encodable. Note that O⊆ Σ∗, and an object can be a value in

8

a timeline. Also similar to the timelines, objects can be advanced:

Adv(O)(v) = Adv(O(v)) ∀O ∈O,v ∈ Σ
∗ (3.6)

We can represent a variety of instances as an object. Most naively we can represent the atomic objects
observed in the world (i.e. the objects detected by a general purpose object detector [35]). For example,
we can represent a plate in the kitchen as:

Oplate =

{
“color" →{-50→ “white"}
“carrying" →{-50→ ε, -20→ Oapple}

Note that we assume access to ground truth information of the relationship between objects (e.g., “apple
is on the plate"), which can be obtained by scene graph generation models such as [91].

Since objects can be values in the timeline, we can also represent reference objects that are not tech-
nically observed from the perception but are useful to reason about conceptually. For example, we can
represent a utensil drawer by:

Outensil drawer =

{
“name" →{“utensil drawer"}
“drawer" →{Odrawer}

Where Odrawer is the actual drawer segmented from the perception, but the utensil drawer is just a reference
wrapper that makes further reasoning and policy transfer easier.

We can also exploit the object structure and use it to represent a goal. For example, the pick and place
goal can be specified as:

Gpick and place =

“type" →{“pick and place"}
“target" →{Ofork}
“location" →{Odrawer}
“condition" →{(Ofork(“location")(0) = Odrawer)}

Let the set of all goals be OG ⊆O. Within OG, we assume that the agent already comes with some basic
action primitives that it knows how to solve. Let the set of atomic actions be OA ⊆OG. Similar to having
an empty string, we can also have an “empty action" Aε ∈ OA that represents the “do nothing" action.
Also let OG =O\OG to represent the set of non-goal objects.

Object Snapshot

An object snapshot O′ : Σ∗→ Σ∗ represents the attribute values of an object at a specific time step. It can
be seen as an observation of an object. Therefore, its range is not timelines of attribute values but the
values themselves. Let O′ denote the set of all object snapshots.

We also assume access to an ID function for object snapshots (ID′ : O′ → Z) that can associate an
object snapshot with the ID of the object it belongs to. This is used to associate new observations with
existing objects. We can define the compose function between an object O and its corresponding snapshot
O′ as:

(O◦O′)(v) =
{

O(v)◦{0→ O′(v)} : v ∈ Σ
∗} (3.7)

This represents incorporating the observation O′ into O to create a new object. By the definition of conflict
resolution in objection composition, we always use the value of the observation when there is a conflict.

9

This can be used to represent the agent updating its belief. This is because having a conflict indicates the
agent’s prediction based on the existing object differs from the actual value from the new observation. We
also define an instantiate function that converts an object snapshot into an object:

Inst(O′)(v) = {0→ O′(v)} ∀v ∈ Σ
∗ (3.8)

State

We represent a state S ⊆ O as a set of objects. This is consistent with previous work in task and motion
planning [53] and many object-centric approaches in perception [73]. Note that the goal objects can also
be part of the state. Let S denote the state space (which is the power set of O). Note that a state doesn’t
have to be a state of the environment. It can also represent the internal state of the agent. Again we can
define the advanced function for a state as:

Adv(S) = {Adv(O) : O ∈ S}. (3.9)

We use S⇒ α to indicate a query α (e.g., (Ofork(“location")(0) = Odrawer)) is true given the state.

Observation

We assume the world is partially observable so we separate the representation of an observation and the
representation of a state. We represent an observation S′ ⊆ O′ as a set of object snapshots. Let S′ denote
the observation space (which is the power set of O′). Similar to the composition of objects and object
snapshots, a state S can incorporate a new observation S′ by

S◦S′ =
{

O◦O′ : O′ ∈ S′ | ∃O ∈ S, s.t.ID(O) = ID′(O′)
}

(update existing objects)

∪
{

Inst(O′) : O′ ∈ S′ | ∀O ∈ S, ID(O) ̸= ID′(O′)
}

(create new objects) (3.10)

World

We model the world as a tuple ⟨W0,T ,Obs⟩ where W0 ∈ S is the initial state of the world (unknown),
T : S×OA → S is the (non-deterministic) state transition function (known), and Obs : S→ S′ is the
observation function that emits an observation given a world state (known).

Production

A production is defined as P = ⟨V,Pre,Eff,u⟩. It is very similar to an operator in PDDL [25], where
V ∈ (Σ∗)n is a list of (local) variable names; Pre :O|V |→{0,1} is a precondition function dictating whether
a given variable combination passes the precondition check (i.e., whether the production is applicable);
Eff : O|V |→ O defines the effect of the production on given the variable combinations; and u ∈ R is the
estimated utility of applying the production, which can be seen as the probability of success (bounded in
[0,1]). In the current formulation, both the Precondition and Effect functions are deterministic. Let the
set of all productions be P. For the sake of simplicity, we use |P| to denote |V (P)|, i.e., the number of
variables involved in the precondition and effect functions.

A production is a subgoal proposing production if its Eff function returns a goal object OG. These
productions represent context-dependent task decomposition. For example, we can have a production for

10

the “slicing" task as (for the sake of simplicity, we use O.attr to denote O(attr)(0)):

V =⟨“object",“task"⟩ (3.11)

Pre(object, task) =(task.type= “slice"∧task.target= object) (3.12)

∧ (object.location= “unknown") (3.13)

Eff(object, task) ={“type"→ “find", “target"→ object} (3.14)

which represents that if the current task is to slice an object (Line 3.12) and the location of the target
object is unknown (Line 3.13) then propose a subgoal for finding the corresponding object (Line 3.14).
The context used in this production is that the target object is at an unknown location. Note that the Pre
function can be any function, not just logical symbol testing.

On the other hand, a production is a compositional object production if its Eff function returns a non-
goal object OG. These productions represent the rules for compositional objects. For example, we can
have a production for defining the “sandwich":

V =⟨“bottom",“stuffing",“top"⟩ (3.15)

Pre(bottom, stuffing, top) =(bottom.category= top.category= “bread”) (3.16)

∧ (∃O1,O2, . . . ,Ok, s.t.O1 = stuffing∧Ok = top∧Oi.on= Oi−1)
(3.17)

∧ (∃O1,O2, . . . ,Ok, s.t.O1 = bottom∧Ok = stuffing∧Oi.on= Oi−1)
(3.18)

Eff(bottom, stuffing, top) ={“type"→ “sandwich", “name"→ stuffing.category+ “sandwich"}
(3.19)

which represents that if there is a stack of objects (Lines 3.17, 3.18) where the top and bottom are both
bread (Line 3.16) then name the stack a sandwich by its stuffing (Line 3.19).

As shown in the previous examples a production is abstract in nature: the object could be anything
in the subgoal proposing production and the “sandwich" production can represent a chicken sandwich,
tuna sandwich, etc. by binding stuffing to different objects. This enables it to exploit the locality and
sparsity [52] in the environments and support systemic generalization. Additionally, productions are also
modular as different production defines different aspects of the policy. They are composable as the effect
of a production can be used in another production (e.g., it can represent “slice a sandwich" by chaining the
two productions above). Note that each production should only represent a single step of reasoning and it
is through chaining them the agent can achieve longer horizon planning. This is important for a concise
representation of the agent policy because it allows productions to be reused as much as possible. It is
also easier for the large language model to generate such a production rule due to their simplicity.

Meta-Production

A production produces a new object upon application, while a meta production produces a context-
dependent comparison between objects. A meta production is defined as P′ = ⟨V,Pre,Cmp⟩ where V and
Pre are the list of variables and the precondition function just like in a production. The Cmp : O×O→C
(where C is {=,<,>}) is a function that takes in two objects and returns a symbolic comparison on
whether one is better than another or both are equally good. We use P′ to denote the set of all meta
productions.

11

This can also be used to effectively disable some (sub)goal in the agent by specifying the “do nothing"
action (Aε) is better than the (sub)goal. For example, the following can be used to represent one should
never put metal objects into the microwave:

V =⟨⟩
Pre() =True

Cmp(P,Q) =

< if P.material= “metal”∧Q= Aε

> if Q.material= “metal”∧P= Aε

= otherwise

(3.20)

Support

We say a pair of object combination and a production ⟨v,P⟩ is a support of an object O if

Pre(P)(v)∧Eff (P)(v) = O (3.21)

Similarly, we say a pair of object combinations and a meta production ⟨v,P′⟩ is a support of a prefer-
ence O1 < O2 if

Pre(P′)(v)∧Cmp(P′)(O1,O2) =
′<′ (3.22)

We denote these as ⟨v,P⟩ 7→ O and ⟨v,P′⟩ 7→ (O1 < O2) respectively. We also define a supported set
of objects of a state-production pair to be

supported(⟨S,P⟩) = {O ∈O | ∃v ∈ S s.t. ⟨v,P⟩ 7→ O} (3.23)

This concept is used when defining the environment knowledge graph in the agent.

Heuristics

The heuristics of the agent are based on the utility of its productions. When some subgoal proposing
production P is applicable for a goal G and produces a new subgoal G1, that is (∥ denotes concatenation)

⟨v ∥ G,P⟩ 7→ G1 for some v (3.24)

then we can estimate that the agent has u(P) probability of success in G if it attends to G1 as a subgoal.
Intuitively, production P represents a strategy for G under context v. For example,e this can represent
in order to “open a package" (G) when “the agent has no tool" (v), a good strategy is to “find a pair of
scissors" (G1) first. In this case, the probability of “open a package" given “a pair of scissors is found" is
u(P). We denote this as

HG(G1 | v,P) = u(P) (3.25)

As we noted earlier, productions can be chained, so the probability of success can be computed by
taking the product of different productions in the chain. For example, if we have two productions P1, P2
such that

⟨v1 ∥ G,P1⟩ 7→ G1∧⟨v2 ∥ G1,P2⟩ 7→ G2 for some v1,v2 (3.26)

12

then we can estimate the contribution of G2 (a second degree subgoal of G) to G as

HG(G2 | v1,v2,P1,P2) = u(P1) ·u(P2) (3.27)

If there are no such chain between G and G2, then we let HG(G2) = 0. And naturally HG(G) = 1.
If there are multiple chains, we take of sum of the heuristics to reflect that a second-degree subgoal can
contribute in multiple ways. More formally if

⟨v1 ∥ G,P1⟩ 7→ G1∧⟨v2 ∥ G1,P1⟩ 7→ G2

∧ ⟨w1 ∥ G,Q1⟩ 7→ G3∧⟨w2 ∥ G3,Q2⟩ 7→ G2 (3.28)

then

HG(G2 | v1,2,w1,2,P1,2,Q1,2) = u(P1) ·u(P2)+u(Q1) ·u(Q2) (3.29)

For example, one strategy for opening a package (G) is to use a pair of scissors (P1) and to find a pair
of scissors the agent needs to go to the drawer (G2). At the same time,e there is another strategy which is
to use an exacto knife (Q1), which also requires going to the drawer (G2). Therefore going to the drawer
should be a preferred action for the original goal of opening a package.

We can extend this concept to accommodate multiple goals and estimate the contribution of a single
action A as

HG(A | S,P) = ∑
G∈G

HG(A | S,P) (3.30)

3.2 Agent

Components

An agent is defined as ⟨KE ,KW ,P,P ′,γ⟩. Where the KE is a directed bipartite graph KE = ⟨VE ,RE ,EE⟩
that represents the environment knowledge where

VE ∈ S∪P∪P′ (3.31)

is the set of objects, productions, and meta-productions involved in the working memory,

RE =
{(

v ∥ P ∥ O
)

: P ∈ P,v ∈
(
VE)|P| | ⟨v,P⟩ 7→ O

}
(3.32)

∪
{(

v ∥ P′ ∥C
)

: P′ ∈ P ′,v ∈
(
VE)|P′| | ⟨v,P⟩ 7→C

}
(3.33)

is a set of relations between them (each relation involves one production or meta-production, a list of
objects for the context, and a final outcome which can be either a new object or a comparison result).
Essentially each relation tuple represents a support between (meta)productions, objects, and the outcome.
And

EE = {(v,r) ∈ VE ×RE | v ∈ r:-1}∪{(r,v) ∈RE ×VE | v = r-1} (3.34)

represents that for each relation r representing ⟨v,P⟩ 7→O there are edges pointing from elements in v and
P to r, and there is an edge pointing from r to O. Note that when P and P′ are given, G depends only on
VE , therefore there exists a function

Expand⟨P,P ′⟩(VE) =KE (3.35)

13

that takes the objects from the environment and expand it to the entire directed bipartite graph.
GE is similar to the working memory in previous cognitive architecture work. It accumulates all the

previous observations of the environment, keeps track of all the (sub)goals, and represents the information
as a (internal) state. Unlike SOAR [43] which has a separate module for episodic memory, in this work,
we take advantage of the timelines and just represent the episodic information in the working memory In
addition to the objects in the environment, environment knowledge also contains the (sub)goals that the
agent is attending to. Appendix B is an example of the environment knowledge in an agent.

The world knowledge KW is similar to the declarative memory in ACT-R [5] that encodes the general
knowledge about the world. Unlike the environment knowledge that depends on the specific environment
and experience of agents, the world knowledge can be shared across all agents. The advantage of having
a separate world knowledge instead of directly encoding the knowledge into production rules is to have
a more condensed knowledge representation since the same piece of world knowledge can be reused by
multiple production rules. The separation of world knowledge and environment knowledge is mainly for
the benefit of conceptual clarity.

The procedural knowledge P defines what the agent will do under certain conditions and is assumed
to respect the agent’s affordances. The meta-production rules P ′ are mainly used for conflict resolution
and we will show in a later chapter that they are useful in updating the agent policy in few-shots.

Initially VE
0 =KW ∪P ∪P ′∪G represents that the only working knowledge the agent has is its prede-

fined world and procedural knowledge (we will show in later chapter on how to acquire these) along with
a set of predefined goals. And as the agent explores the environment, the agent updates its environment
knowledge by

VE
t+1 =Adv

(
VE

t
)
◦ Inst

(
S′t+1

)
(3.36)

KE
t+1 =Expand⟨P,P ′⟩(VE

t+1) (3.37)

Action Selection

Conceptually, at each step with agent state ⟨KE
t ,KW ,P,P ′,γ⟩, the agent’s policy is defined as

π(S′t) =argmax
A∈OA

HG(A | VE
t) ·Acc(A | VE

t) (3.38)

where Acc(A | ·) evaluates whether the action A is acceptable given the context. More formally:

Acc(A | S,P,P ′)⇔¬
(
∃A′ ∈OA,v ∈ S,P′ ∈ P ′,

s.t. HG(A′ | S,P)> 0 ∧ ⟨v,P′⟩ 7→ (A < A′)
)

(3.39)

In plain English, A is acceptable if and only if no other action is preferable than A given all the applicable
meta-production rules. The overall policy of the agent finds the acceptable action with the best heuristic
value.

Implementation-wise we can compute the heuristics of each object using dynamic programming on
the bipartite graph (R-2 is the corresponding production of the relation and R-3 is the corresponding goal
of the production).

HG(A | KE) =

{
IA∈G if Parent(A) =∅
∑R∈Parent(A) u(R-2) ·HG(R-3) otherwise

(3.40)

Hence, the process of finding the immediate action for one step reduces to an informed tree search.
Where the state space is the objects in environment knowledge VE , the starting frontier is the objects with

14

no parents Inst(S′t+1)∪G (object directly instantiated from observation or pre-specified goals), the goal is
to reach an object that is an atomic action and acceptable A ∈OA∧Acc(A | VE).

The overall action sequence returned towards the goal can be seen as the exploration process of a
learning real-time A* search with one successor [40] where the heuristic update is done by changing the
applicability of each production and meta productions given the new observations.

Production Reinforcement Learning

Following previous work in visual navigation [7], the agent has to explicitly choose the special done action
to indicate that it has completed the current task. We further extend this and give the agent a quit option
to indicate that it believes the given task is impossible in the given environment. This is important as we
allow the architecture to choose to attend to any subtask as it wants, and it should be able to realize when
a task is impossible.

We give a unit reward whenever the agent decides it is done with a task. The reward propagates back
through the shortest path to the starting state. For example, if the state transition is

KE
0

P1−→KE
1

P2−→KE
2

P3−→KE
0

P4−→KE
4

P5−→KE
5

Pdone−−→

where KE
0 is the start state and Pdone is the production that yields the done action. Then the shortest

path is

KE
0

P4−→KE
4

P5−→KE
5

Pdone−−→

Therefore only P4,P5,Pdone will receive a utility update, using the Bellman update [78].

uafter(P)←
1

N(P)+1
(
N(P) ·ubefore(P)+ γ

∆t
)

(3.41)

Where u(P) is the utility of production P, N(P) is the number of times P gets applied, ∆t is the time
difference from production application to the done action, and γ is the discount factor.

When a subtask is involved, the utility is updated with respect to each task. This is to ensure that the
utility of production is stable during the course of training. The utility of the subtask production should
not be penalized just because it is embedded in a longer-horizon task. For example, if the state transition
is

A0
P1−→ A1

P2−→ B3
Q3−→ B4

Q4−→ B5
Qdone−−−→︸ ︷︷ ︸

a subtask initiated by P2

A6
Pdone−−→

Where A and P correspond to the states and productions of the original task respectively and B and Q
correspond to the states and productions of the subtask respectively. This will be treated as two separate
utility update pathways

A0
P1−→ A1

P2−→ A6
Pdone−−→ and B3

Q3−→ B4
Q4−→ B5

Qdone−−−→

If a subtask ends up with quit then there will be no utility update on its productions, not even negative
ones. Because the task might be impossible due to environmental constraints, which has nothing to do
with the production rules. Intuitively, the closer a production brings the agent to choose done for its
current task, the higher its utility is.

15

Explainability

This framework touches upon all three aspects of explainability as defined in [54]. The preconditions of
the productions directly specify the feature that is being used (feature importance). Each weight update
corresponds to an exact trajectory which helps determine the training points that influence the learned
policy the most (learning process). Lastly, the production application process can be easily converted to a
verifiable decision tree by merging the precondition checks of productions (policy-level explainability).

3.3 Summary

In this chapter, we first formally define the building blocks of the agent framework - how attribute values
are encoded as timelines, how production applications are tested, and how the world model is partially
observable. Then using these definitions we explain how an agent is constructed, what its policy is, and
how it can perform reinforcement learning based on experiences. Appendix A compares the proposed
framework with other agent architectures.

16

Chapter 4

Bootstrapping World Knowledge

This chapter 1 illustrates how general knowledge of the world and the subgoal proposing productions
can be extracted from large language models. Extending from previous work that generates plans for
specific tasks [47, 74], defines the goal predicates for a task [36, 48], translates specific tasks into PDDL
configurations [49, 87], or leverages existing learning capabilities of cognitive architecture [37, 69], our
approach focuses on generating parameterized production rules that represent different chunks of context-
dependent knowledge. Preliminary experiments show that it is hard to generate desirable production rules
relying purely on prompt engineering. Therefore, we developed a bootstrapping framework (Figure 4.1)
that generates abstract production rules from specifically grounded scenarios step-by-step and revises them
through post-processing.

Curriculum
...

find a/an <object>

slice a/an <object>
...

1

Task Instances

slice a tomato

2

Simulated
Interactions

3

4

Production Improvement

Production Generation

{[action]
find a tomato

[production]
IF empty gripper AND ...
THEN attend to subtask ...

[code]
class Find1(Production):

def precondition() -> bool:
...

def effect() -> action:
...

Figure 4.1: Overview of the bootstrapping process. It starts with a curriculum. For each family of tasks
in the curriculum, a list of specific tasks is instatianated (1). Then the agent is set to interact with the
environment attempting the specific task (2). When the agent does not know what to do, it queries the
large language model to acquire a new production rule (3). And when the agent has accumulated sufficient
knowledge, it does post-processing for production improvement (4).

1This chapter is based on [97], and uses a simplified version of the architecture described in the previous chapter where only
one subtask is allowed for such (sub)task.

17

4.1 Curriculum and Task Instances

Following previous work on agent learning [84], we start with a curriculum, which is a list of task families.
The advantage of using a curriculum is threefold: 1) it encourages a modular learning paradigm as the
task learned first can be re-used for later tasks, 2) it ensures the consistency between the name of the tasks,
and 3) it ensures task-decomposition respects the affordance of the robot as the agent is instructed to only
use previously learned skills. This is similar to algebra education for human students where they start
with simple arithmetics, then gradually move on to calculus where the later topics build on previously
learned materials. Despite the same name, this is slightly different from “curriculum learning” in machine
learning [11] as “curriculum learning” refers to training the model to do a single task with exemplars with
increasing difficulty while the curriculum in our bootstrapping process consists of multiple families of
tasks.

The most important feature of the curriculum in our framework is that it only needs the the name
of the task families. No goal conditions or potential strategies are needed. The bootstrapping process
will extract all those information from the large language model and this is the key to minimizing human
effort. Concretely, we follow the SOAR syntax and keep all variables in angle brackets (e.g., find a/an
<object> represents the family of finding tasks).

Analogous to how human students learn the principles of algebra with practice problems, specific task
instances are used to bootstrap more generalized productions. We make extensive use of a simulator to
randomly generate training tasks for the agent. For example, given the family of tasks in the pre-defined
syntax (e.g., find a/an <object>), the environment randomly replaces the placeholder with a specific
instance in the environment (e.g., find a tomato). Note that the task instance does not have to be
achievable, as we want the agent to learn not only how to perform the task successfully but also how to
identify when a task is impossible.

The agent might not fully learn every scenario of a task before moving on to the next one, it can still
query the LLM later on to generate a production rule for a previously learned task. The training of a task
is considered complete as long as the agent has sufficient experience with the task to generate a reasonable
end condition (i.e., when the task is considered completed) such that future tasks can reuse the previously
learned tasks.

4.2 Production Rule Generation

Action Prompting

The first step2 of generating a production rule is to pick a specific action in a given concrete scenario. The
LLM is prompted with the current task, a summary of the current state, and a list of options available to
the robot, which include both motor actions on the environment (e.g., moving to a specific location) and
internal actions (e.g., attending to a new subtask). For each previously trained subtask, we provide the
end condition generated by the critic for the LLM to evaluate its relevance (details described later in this
section). Like the task names, the actions can also be parameterized (e.g., move to <receptacle>), and
the LLM has replaced <receptacle> with a specific item as it sees fit.

We use chain-of-thought prompting [86], which explicitly instructs the LLM to respond to the prompt
in a step-by-step manner, probing it to make the most informed decision. The LLM is instructed to reflect
on common strategies for approaching the task, analyze the current situation, and evaluate the usefulness

2Examples of each step can be found in Appendix C.

18

of each action before suggesting one option for the robot to take. The LLM is also prompted to state the
purpose of the chosen action, which will inform the production rule generation later.

Production Prompting

Although the production rules are generated based on the current state, we represent them not as plans
for the current task, but instead as underlying decision-making principles for all similar scenarios. For
example, if the current task is to find a/an egg, instead of suggesting the action sequence of exploring
every cabinet in the current environment, a desirable production rule would suggest “whenever you need
to find something, you should first explore the unexplored places where that object is commonly stored”.
This is a systematic generalization that can be applied to finding any objects, not just eggs, and also can
be applied to novel environments with different layouts and receptacle types.

To generate desired production rules, we use a two-step process. The first step summarizes the action
selection process and generates the English description of the production rule; the second step then con-
verts it into executable Python code.This separation is inspired by how human beginners are instructed to
build cognitive models [42], and has two benefits: 1) it allows each query to the LLM to be of reasonable
length (∼ 5k tokens), preventing LLMs from losing focus on lengthy prompts [50]; and 2) it facilitates a
modular design, which enables generating code from English descriptions generated from other sources,
including human feedback and post-generation self-reflection.

For each step, we also use the chain-of-thought prompting technique. For English description genera-
tion, the LLM is given the entire history of the action selection process and is instructed to take four steps:
1) identify relevant information that leads to choosing the action; 2) generate a specific production rule
that describes the current situation; 3) identify the potentially generalizable components in the specific
rule and how they can be generalized; and 4) replace the components to form the generalized production
description.

Code Generation

For code generation, the LLM is given the Python interface of querying declarative memory and the
current task, and is instructed to take another four steps: 1) plan what variable bindings are needed; and
how their values should be assigned, 2) analyze the predicates in the precondition and associate them with
relevant variables; 3) plan how each predicate should be tested using the provided function interfaces; and
4) fill in the production template. The code snippet is parsed from the response and imported into the
agent.

Similar to the iterative prompting design in Voyager [84], the agent replays the generated production
rule on the state from which it was generated, and ensures that its precondition check passes the current
conditions. This fixes most function interface mismatches, as the generated production has to comply with
a specific naming scheme and the interface of the declarative knowledge.

Cycle Detection

Over-generalization happens when important features are left out of the production’s precondition. For
example, for the pick and place task, the LLM might generate a production rule that says:

IF task is pick and place <object> AND <object> in field of view AND gripper is empty
THEN pick <object>

19

This will make the robot pick up the object even when the object is already in the target receptacle. To
prevent the agent from being stuck in an infinite loop, it will keep a state transition graph during the
execution process and query the LLM for an alternative action once a cycle is detected using a depth-first
search on the transition graph. Coupled with the production reinforcement (described in the previous
chapter), the agent will prioritize loop-breaking productions.

End Condition Summarization

To re-use previously learned tasks as subroutines, we use a critic LLM to summarize the end condition
of the learned tasks. The LLM is given all the production rules that condition on the selected task and
is instructed to generate a one-sentence end condition based on all the supplied production rules whose
effect is the ’done’ action.

The end condition will be included in the future prompts such that when selecting an action in the
future, the LLM knows what each subroutine is capable of. The advantage of this approach is twofold: 1)
the agent can generate the end condition by itself without relying on human input, and 2) the end condition
actually reflects what the agent actually does when attending to the subtask instead of what the human
thinks the agent should do. For example, the bootstrapped agent actually defines an object being found as
when the agent is holding it in its gripper instead of in its field of view.

Production Improvement

The end condition generated can also be used to guide batch post-processing on the production rules
generated. This is important as the productions are individually generated so not necessarily constitute a
coherent group.

As the LLM has access to accumulated observations from the past during the action selection process,
it might include unnecessary conditions that happen to be true in the production’s precondition, over-
constraining it. This is handled by a critic LLM that provides suggestions on the existing productions
through another step-by-step prompting.

The critic LLM will be given the name of the task, the summary of the end condition (as generated
previously), and the list of all the English descriptions of the production rules related to the task. Then it
is instructed to 1) list some common cases and intermediate steps of the task, 2) for each of the existing
production rules, decide whether it should be kept as is, removed, or modified, 3) if any production rules
need modification, generate the revised English description, 4) generate production rules for the missing
cases. Using the code generation described previously, we can update the production rules or generate
new production rules based on the revised English descriptions.

4.3 Declarative Knowledge Integration

In addition to bootstrapping the production rules as the procedural knowledge of the agent, we also need
to extract the knowledge about the world from the large language model. These can be used in the pre-
condition functions of the production rules.

For the sake of simplicity, our implementation stores declarative knowledge in a dictionary. The
dictionary maps sentences in natural languages to a Boolean value representing whether that statement is
true or not. For instance

Knifes are commonly stored in the fridge → False

20

Note that unlike many early symbolic works that assume the absence of a predicate implies the nega-
tion of the predicate [25], we explicitly represent the truthfulness of a statement. An absence in the
knowledge base implies that the agent has no knowledge on whether the statement is true or false.

4.4 Experiment

Setup

Following previous works in the embodied agents domain [70, 82], we evaluate our method in kitchen
environments in the AI2THOR simulator [38]. As shown in Figure 4.2b, the agent has access to classi-
fication labels and attributes (e.g., “is opened") for objects that are close enough (within 1.5m) or large
enough (more than 5% of the frame). We also assume the agent already knows the names and locations
of the large receptacles (e.g., cabinets, fridges, etc.) but does not know what objects are in the receptacles
until it actively explores them.

We use three different tasks for evaluation:
• find a/an <object>: the goal is to have the specified object in the robot’s field of view. This is

a fundamental skill that is often directly assumed in many of the previous works [74]. We want to
show that our framework can bootstrap very basic skills, in addition to composite actions.

• slice a/an <object>: the goal is to use a knife to slice an object. Because the robot can hold at
most one item at a time, slicing involves a sequence of actions including finding the target object
and the knife, putting them in the same place, and the final slice action. We want to show that our
framework can handle tasks that involve multiple steps and tool use.

• clear the countertops: the goal is to have all the objects on the countertops moved to suitable
storage places. This is a common household task that has also been investigated in previous work [8,
70]. We want to show that our framework can handle tasks that involve repeating similar subtasks.

The goal conditions listed above are used only for evaluation purposes, but are not provided to the LLM
during training or testing. The LLM has to infer the goal condition from the task description only.

For find and slice, 5 target objects are chosen for each task, and we run 3 trials for each object
where the initial locations of the objects are shuffled. For clear the countertops we run 3 trials each
with 5 objects on the countertops that need to be put away. The specific objects and locations vary between
trials, and the success of the agent is evaluated based on how many objects originally on the countertops
have been relocated to other places. This results in 15 specific goal instances for each task family.

We use GPT4-0613 [59] for our experiments as previous works have shown that GPT3.5 is insufficient
for code generation [58, 84]. We set temperature to the 0 for the most deterministic response.

(a) ego-centric view (b) object segmentation (c) training floor plan (d) testing floor plan

Figure 4.2: Screenshots of the AI2THOR simulator

21

Task Agent Success (w/o LLM) ↑ Steps ↓ Tokens ↓

find a/an <object>

action-only 14(−)/15 15.67 54754.20

bootstrapped no RL (ours) 15(12)/15 20.67 901.93

bootstrapped (ours) 15(12)/15 15.80 916.87

slice a/an <object>

action-only 15(−)/15 28.20 102806.60

bootstrapped no RL (ours) 15(15)/15 33.27 0.00

bootstrapped (ours) 15(15)/15 29.13 0.00

clear the countertops

action-only 15(−)/15 5.13 18924.87

bootstrapped no RL (ours) 15(15)/15 7.53 0.00

bootstrapped (ours) 15(15)/15 7.47 0.00

Table 4.1: Results of experiments on household tasks. Completion steps and tokens are averaged over all
task instances. The success rate was measured both with the assumption that the agent still has access to
LLM during test time (numbers on the left) and without access (numbers in the parenthesis).

Bootstrapped Agent

For the experiment condition, we bootstrapped our agent with the following curriculum in the training
floor plan:

1. explore <receptacle>
2. find a/an <object>
3. pick and place a/an <object> in/on a/an <receptacle>
4. slice a/an <object>
5. put things on the countertop away

For each task family, random instances are chosen from the environment to instantiate 10 specific
tasks. This process generated 27 production rules in total. Empirically it is shown that 10 instances is
sufficient for learning the policy for each new task family.

During test time, the agent can query the LLM for an immediate action if it does not have an applicable
production rule for the current situation, but it cannot learn new production rules. In the result section we
report both with or without access to LLM during test time.

Baseline Condition

For the baseline condition of using LLMs to query only the actions, we omit the production generation
steps and only use the action selection process within our framework. This ensures the prompts used by
both conditions are the same, so LLM should suggest actions of similar quality. If the action proposed by
the LLM leads to an affordance error, we query LLM another two times, and if none of the actions are
viable by the agent, then it is considered to have failed the task.

22

Figure 4.3: Token usage statistics during the bootstrapping process

Quantitative Results

Table 4.1 shows the quantitative results of different types of agents performing each kitchen task. The
action-only baseline successfully completes all tasks but one, where it assumes find a/an mug is equiv-
alent to find a/an cup and ends the search prematurely without exploring the sink where the mug is
actually located. On the other hand, our bootstrapped agent is able to finish most tasks completely using
its learned production rules. The only exceptions are when it is tasked to find an object that was not part
of its training environment. But with very limited additional queries, the bootstrapped agent is able to
successfully complete those tasks as well. This shows that the knowledge in the bootstrapped agent can
be easily transferred to new objects in new environments.

The success rate and number of query tokens show two advantages of our framework. First, because
the precondition function is deterministic, there won’t be unexpected false assumptions (e.g., a mug is the
same as a cup). Second, it is much more efficient to be deployed into new environments as the production
rules it learns can be easily transferred and require minimal further assistance from the LLM, saving
computations and costs.

We use a paired sample t-test with Dunnett correction for multiple hypothesis testing to compare
the number of steps taken by both agents. No significant evidence suggests that the two agents perform
differently in find or slice tasks (p-values 0.446 and 0.347, respectively). This is not surprising as the
knowledge source of both agents is the same LLM.

However, the number of steps taken for the baseline agent to complete the clear task is less than the
bootstrapped agent with significance (p-value less than 0.001). This is analyzed in the next section.

Another notable difference is between using and not using reinforcement learning. We found that
there is a statistically significant difference in the number of steps taken in the find (p-value 0.025) and
slice (p-value 0.004) tasks between the baseline and no reinforcement learning on the production rules.
This shows that learning the utility of the production rules is important for the efficiency of the cognitive
agent. Without sampling based on the learned utility, the agent is more likely to execute redundant actions
before choosing the done action.

Figure 4.3 shows that the number of tokens needed to train each task is roughly the same. So as the
curriculum expands, the number of tokens needed will only grow linearly. Additionally, the number of
tokens needed to train one task is less than one single trial of slicing objects of the action-only agent as
reflected in Table 4.1. This shows that our framework is much more cost-effective. At the time of the
experiment, the testing experiments on the baseline action-only agent cost around $120 in total while the

23

close open move to location pick up put down

explore

find

slice in view pick and place

clear countertops slice

Figure 4.4: The hierarchy of tasks learned. Gray nodes denote the built-in functions of the robot, and
white nodes represent the tasks learned from the curriculum. Arrows represent performing one task (tail)
depending on using the other (head) as a subroutine. For built-in actions that involve an object (e.g., close),
the object has to be within the field of view for the action to be taken. Special actions (i.e., done and quit)
are omitted in the interest of space.

bootstrapping of our framework costs less than $40.

Qualitative Analysis

The following are some learned productions:
• IF the current task is to find a/an <object> AND the <object> is located on <location> AND

the robot is not at <location> THEN choose motor action: move to <location>.

• IF the current task is to slice a/an <sliceable> AND the robot is holding a/an <sliceable> AND
there is no <tool> in the spatial knowledge or object knowledge THEN choose ’attend to subtask:
find a/an <tool>’.

• IF the current task is to clear objects from a/an <receptacle_type>AND all the <receptacle_type>
are empty THEN choose special action: ’done’.

These show that the agent is able to represent different aspects (atomic step, task decomposition,
task end condition) of the given tasks using production rules. The first represents a common strategy for
finding things, namely how to find things with a known location. The second represents decomposing
complex tasks and reusing previously learned tasks. The third is a correct termination condition, which is
not directly provided, for the exploration task from the LLM.

Figure 4.4 shows the dependencies between different tasks after the bootstrapping process. It is shown
that the agent learns to break down more complex tasks into easier tasks as desired. It works for both se-
quential decomposition (the slice action involves a sequence of finding the knife, the object, navigating,
etc.) and repetitive decomposition (the clear action involves doing the same pick and place procedure
for all the objects). Note that despite there is no explicit loop structures in the agent architecture, loops

24

(a) ours on clear (b) baseline on clear (c) ours on slice (d) baseline on slice

Figure 4.5: Stylistic differences between the bootstrapped agent and the baseline

can be represented as recursive applications of production rules. This complements the statistics in Figure
4.3 and together they demonstrate the scalability of our approach.

Additionally, we also noticed some stylistic differences between the bootstrapped agent and the base-
line agent, which is essentially why the bootstrapped agent is taking longer in the clear task. As shown
in Figures 4.5a and 4.5b, the bootstrapped agent will put each individual item in its own cabinet while the
LLM-only baseline will put everything in the same cabinet. This is because the baseline makes individual
decisions at each time step and optimizes towards the total number of steps. In contrast, the bootstrapped
agent will re-use the knowledge it learned as much as possible - when it learned to put one item in its own
cabinet, it will do the same for the other items. Specifically, the production rule it has is “if there is an
object on the countertop and there is an empty receptacle, attend to the subtask pick up the object, and
place it into the empty receptacle”.

This is more apparent for the slice task where the agent would place the object to be sliced on
the countertop before slicing it (Figure 4.5c) as it learns the proper action sequence of slicing, while the
baseline agent will just slice the object wherever it is currently (Figure 4.5d).

4.5 Summary

This chapter describes the bootstrapping process of generating a cognitive agent using a large language
model. It addresses the challenge of production rules being too tedious to generate. The experiments
have shown that the bootstrapped agent can perform tasks in the same amount of steps as a large language
model alone but requires much less computation in terms of tokens generated. And the production rules
are also scalable to more complex and long-horizon tasks.

25

26

Chapter 5

Personalized Adaptation

This chapters illustrates a pilot study on showing how the existing production rules in the agent can be
adapted with respect to different user’s preferences.

5.1 Preference Collection

Linear Kitchen Environment

Despite the existence of many household simulators [1, 8, 38, 64], to the best of our knowledge none
are very suitable for our purpose of collecting preferences, mainly because they lack object diversity in a
specific environment (e.g., kitchen) or do not support object state changes (e.g., slice an object). Thus, to
enable the users to provide more fine-grained preferences, we developed a toy kitchen environment named
LinearKitchen1. It sacrifices more fine-grained object shapes and physics for the benefit of having more
diverse objects.

Many of the previous environments are based on physics engines such as Unity [28] or Mujoco [81]
because they are originally designed to simulate accurate manipulation or locomotion. This makes it hard
to add new objects to the existing environment as defining a new object requires defining a 3D mesh and
its appearances. As we assume access to ground truth perception and do not need an accurate physics
model, we implemented a very naive rendering pipeline. This makes adding a new object very simple - all
it needs is some screenshots from different views.

Another important design choice is to have object-centric representations as opposed to having a
centralized data structure that keeps track of all the objects. This is to ease the process of rendering. The
rendering process is reduced to a DFS on object appearances since the position of objects is represented
by their support and the receptacles are at the root level.

Figure 5.1 shows the full rendering of the entire kitchen, with the robot resembling stretch [34].

Pilot User Study

Although many of the previous works discussed using their method for preference adaptation, the “pref-
erences” they used are made up of templates and have human annotators to describe them in their own
words instead of querying human users for their actual preferences [71, 72]. In this work, we want to
collect the actual personal preferences in their own words instead.

1As the name implies it is a 2D kitchen with all the receptacles lining up in a line.

27

Figure 5.1: Complete view of the linear kitchen environment

Preliminary pilot studies and other research [24] have shown that people are not good at introspect-
ing their preferences when the question is completely open-ended. Therefore we start by showing the
annotators a video of the robot making breakfast (defined by a set of 28 hand-coded production rules to
make a sandwich and a bowl of cereal) and then asking them what they would like the robot to have done
differently to reflect their preference.

We collected a total of 46 utterances from 7 participants (3 male, 4 female, age 21-24) during the
pilot study. We adopted an in-person interview setting where each participant is shown the sequence of
the robot making breakfast and is instructed to reflect on what they would like the robot to change. The
participant can rewind the video freely after the first pass. As shown in Figure 5.2, different participants
care about different aspects of the breakfast - some want other items for breakfast, some are okay with
sandwiches but want it to be done differently, some have spatial preferences on where things are located,
etc. This verified that people have diverse preferences.

5.2 Production Rule Modification

Given the modular approach in the previous chapter for generating new production rules, we can assume
that given a production description in the form of IF ... THEN ..., GPT-4 is capable of translating
it into code. Therefore, the production rule modification only needs to happen in the language domain,
which is desirable since currently large language models like GPT-4 are mainly trained using natural
language datasets. In this work, we also update the preferences one utterance at a time to make it easy for
the large language models.

To do so we again use the chain-of-thought prompting technique where we instruct the model (GPT4-0613,
same model as in the previous chapter with temperature 0) to first categorize the type of the preference into
one of the given predefined categories (Breakfast Item, Variation, etc.), then plan how the preference can
be expressed using proposing production rule, and finally go through the list of existing production rules
and make edits to the relevant ones. The language model is also instructed to “give up" on the preference
that it believes cannot be expressed using production rules. This has been shown empirically to reduce
hallucinations.

The overall production modification procedure is relatively simple compared to the bootstrapping
process described in the previous chapter. This is intentional as one of the core ideas of the architecture is
to make it easy to update to fit different preferences.

28

Figure 5.2: Breakdown of participant preference category. “Menu Item" refers to wanting other items
for breakfast that are not sandwiches and cereal (e.g., “I want fruits in my breakfast"). “Item Variation"
refers to having their sandwich or cereal be prepared differently (e.g., I want less milk in my cereal).
“Spatial Preference" refers to having objects placed in specific locations (e.g., put back the ketchup bottle).
“Temporal Preference" refers to having a specific order of the breakfast (e.g., cutting two slices of bread
before assembling it). The only “Unclassified" preference is “don’t burn the kitchen". Each utterance is
assigned a unique category.

Failure Type Misunderstanding Incorrect Precondition Irrelevant Edit No Attempt Affordance Error

Occurrences 3 2 1 1 1

Table 5.1: Failure cases for preference adaptation

5.3 Results

Evaluation Criteria

All the production rules generated by GPT were manually inspected for correctness and we adopted a
very lenient evaluation criteria. When the preference is ambiguous, it is considered correct as long as
the updated production meets the preference. For example, when the preference is “I want a smaller
breakfast", we consider the updated productions to be correct if they make an open-face sandwich instead
of the original sandwich (the new sandwich is one piece of bread smaller than the original).

Additionally, we assume a new task can be learned from the bootstrapping process as described in
the previous chapter. Therefore, when the user wants a new item for their breakfast (e.g., a pancake),
the update productions are considered correct if they successfully update 1) the subtask proposing (e.g.,
propose making a pancake when the task is to make breakfast) and 2) the end condition (e.g., making
a breakfast is considered done if there is a pancake). It is irrelevant whether the new productions can
actually make a pancake.

Quantitative Analysis

Figure 5.3 shows the success rate of preference adaptation grouped by preference category. Overall 38
out of 46 (82.6%) utterances were successfully expressed by the updated productions. The chi-square test

29

Figure 5.3: Preference adaptation success rate by category

shows that there is no evidence suggesting that the agent can adapt to one category of preference better
than others (p-value 0.618).

Qualitative Analysis - Failure Cases

Table 5.1 categorizes the type of failures made by the model. The most common category is misunder-
standing the user’s preference expression. For example, one of the users said “bread should be in cabinets"
and GPT4 treated it as a precondition that directs the robot to look into cabinets for bread instead of putting
the bread into the cabinet. The other two misunderstanding cases are where the user says “I want fruit, I
want berries" but the model fails to realize berries are a type of fruit and proposes to make a fruit bowl
and have another bowl of berries. These failures are due to the natural language processing capabilities of
the language model.

Another common mode of failure is when the modifications are on the right track but have some minor
issues with the productions. For example, one of the incorrect production rules generated is
IF the task is to heat up milk AND the milk is not hot
THEN DONE heat up milk

This might originate from the hallucination issue of language models. This also happens to the irrelevant
edit case where the model updates the preference of cereal-making when the user wants something warm.

The large language model also gave up on one of the preferences of “cut two pieces of bread in
one go", stating that it cannot be expressed using the production rules. This showed that with few-shot
prompting the large language model cannot conjure more complex production rules to represent strategies
that are not already in the agent. And lastly, there is a case where the model incorrectly assumes the robot
can directly melt the cheese on the sandwich without putting it in an oven.

Qualitative Analysis - Success Cases

Most edits to the breakfast menu are optimal, which is likely attributed to having direct examples in the
existing policy on how to propose new subtasks and update the end conditions of making a breakfast. The
model is also very good at making reasonable edits to meet the user’s needs. Examples include replacing
the ham slices with tomato slices for vegetarians or using the toaster to toast the bread.

However, GPT4 is not currently good at making use of comparison productions. Instead of specifying
the user’s preference as comparisons, it just codes the preference directly into the production rules. This is

30

likely caused by having only one comparison production example in the prompt. Similarly, when dealing
with vegetarian preference, GPT4 will replace the ham slice with a tomato slice but not explicitly encode
the vegetarian preference. It technically produces the behavior that fits the user’s preference but is less
ideal as it leads to production rules with poor modularity.

5.4 Summary

This chapter describes the pilot user study we ran to demonstrate how the architecture can adapt to the
user’s needs in one shot. We constructed a new environment to support more detailed breakfast prefer-
ences. Then using a video clip generated in the environment, we gathered user preferences of different
types. We showed that with a simple prompting pipeline in the language space, the agent can successfully
accommodate more than 80% of the preference requirements.

31

32

Chapter 6

Discussion

6.1 Limitations

Although we allow the precondition function of each production to be more than symbol testing, currently
it is restricted to give a binary output on the applicability of the production. This limits the agent’s
capability to capture many of the nuances in the real world. Additionally, the current bootstrapping process
and preference adaptation require procedural knowledge to be articulable as the language space bridges
the human preference and the code executed by the agent. This might be hard for motor skills such as
sculpting.

The preference adaptation is still in a very primitive stage where there is only a single round of inter-
action and the preference is being interpreted very loosely. Additionally, the current adaptation process
goes through all the existing production rules in the agent which could be computationally expensive.
Moreover, the preferences are collected from a specific population (i.e., college students) which might
have limited external validity.

6.2 Future Work

Integrated System

Previous chapters described the essential components of such a framework - the architecture, how the
production rules can be bootstrapped, and how an existing set of production rules can be adapted w.r.t
human input. However, in this work, we didn’t put everything together to form an integrated system yet.
So here we provide a brief sketch of what other components are needed to form a holistic adaptable agent.

Perception-wise one can make use of existing object-centric segmentation models [73] coupled with
ongoing work in open-vocabulary attribute detection models [15] to acquire the structuralized perception
input assumed in the framework. In terms of execution, there have been many works in low-cost robot
teleoperation pipelines for behavior cloning [20, 32]. These can be used to define the action primitives
used in our framework when deploying the architecture on physical robots. And finally, existing speech
recognition tools [67] can be used for taking users’ feedback as input.

We believe all the components needed for a physically interacting robot have been developed by the
research community. With some engineering efforts, an integrated system that interacts and adapts to a
user’s use case should be feasible.

33

User Acceptance Study

In this work, we focused primarily on the technological part of the architecture but didn’t explore how
other people would perceive such an agent. The hypothesis is that agent running production rules in
a cognitive architecture would be more interpretable and thus more trustworthy than large foundation
models by themselves. But to test the hypothesis would require more long-term user study.

Additionally, user acceptance also depends on many other factors. Potential complaints could be the
system is not flexible enough or it is too much burden to correct the agent’s behavior once in a while. Or
simply a layperson might not perceive it to be as astonishing as a large foundation model [68].

Neural Production Rules

In the long run, we believe having neural production rules that operate in the continuous domain is nec-
essary for the agent to adapt to the edge cases in the real world and eventually incorporate motor skills.
Despite some existing work exploring neural production rules [9] and integrating neural sampler into sym-
bolic planners [53], the existing works stay in toy domains (e.g., 2D grid world). And it remains an open
question of how to build a lifelong learning agent that can pick up a wide range of skills.

Here we introduce a very rough idea for the future direction. First train multiple generic feature
functions (e.g., color, sharpness etc.) using diffusion models [21] or other weakly supervised models.
Then we can represent objects as indexable production rules (i.e., each production rule will be associated
with an embedding vector), where the precondition for atomic objects is a set of classifiers based on
the previously trained diffusion models [46] and the composite objects will have other atomic objects as
preconditions. Next, we should also train the embedding space of the production such that semantically
similar objects have production embedding close to each other and ideally have the space aligned with the
language space using CLIP style training [66]. This ensures that when building up new concepts (objects
or policies), we can easily retrieve relevant prior knowledge and reuse them.

34

Chapter 7

Conclusion

In this work, we developed a framework for preference adaptation. Unlike the prevalent approaches that
use rewards as proxies, we were inspired by previous work in cognitive architecture to directly encode
preferences as production rules that define the agent policy based on the context. It takes advantage of the
abstraction, modularity, and composability aspects of production rules. We formally defined the agent’s
policy based on each component, explained a bootstrapping process so that the agent can acquire basic
skills from large language models with minimal human supervision, and finally demonstrated that it can
be used to adapt to more than 80% of the breakfast preferences collected in real life. In the end, we also
discussed the limitations of the current approach and how that informs future work in this direction.

We believe this work shows that it is possible to encode most human preferences as rules and per-
form adaptation easily. We hope it will inspire more future work in rule-centric models from preference
adaptation and more general human-AI interaction.

35

36

Bibliography

[1] Robohive – a unified framework for robot learning. https://sites.google.com/view/
robohive, 2020. URL https://sites.google.com/view/robohive. 5.1

[2] Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016. 2.1

[3] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022. 2.3, ??

[4] Erik M Altmann and J Gregory Trafton. Timecourse of recovery from task interruption: Data and a
model. Psychonomic Bulletin & Review, 14(6):1079–1084, 2007. 2.2

[5] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian Lebiere, and Yulin
Qin. An integrated theory of the mind. Psychological review, 111(4):1036, 2004. 2.2, 3, 3.2, ??

[6] John R Anderson, Shawn Betts, Daniel Bothell, and Christian Lebiere. Discovering skill. Cognitive
Psychology, 129:101410, 2021. 2.2

[7] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On evalua-
tion of embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018. 3.2

[8] Szot Andrew, Yadav Karmesh, Clegg Alex, Berges Vincent-Pierre, Gokaslan Aaron, Chang Angel,
Savva Manolis, Kira Zsolt, and Batra Dhruv. Habitat rearrangement challenge 2022. https://
aihabitat.org/challenge/rearrange_2022, 2022. 4.4, 5.1

[9] Goyal Anirudh, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas
Heess, Michael C Mozer, and Yoshua Bengio. Neural production systems. Advances in Neural
Information Processing Systems, 34:25673–25687, 2021. 6.2

[10] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020. 2.1

[11] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.
4.1

[12] Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In
Conference on robot learning, pages 519–528. PMLR, 2018. 2.1

[13] Dan Bohus, Sean Andrist, Ashley Feniello, Nick Saw, and Eric Horvitz. Continual learning about
objects in the wild: An interactive approach. In Proceedings of the 2022 International Conference
on Multimodal Interaction, pages 476–486, 2022. 2.1

[14] Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research

37

https://sites.google.com/view/robohive
https://sites.google.com/view/robohive
https://sites.google.com/view/robohive
https://aihabitat.org/challenge/rearrange_2022
https://aihabitat.org/challenge/rearrange_2022

with large language models. Nature, 624(7992):570–578, 2023. 2.3

[15] Maria A Bravo, Sudhanshu Mittal, Simon Ging, and Thomas Brox. Open-vocabulary attribute de-
tection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7041–7050, 2023. 6.2

[16] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. arXiv preprint arXiv:1301.7363, 2013. 2.1

[17] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023. ??

[18] Erdem Bıyık, Malayandi Palan, Nicholas C. Landolfi, Dylan P. Losey, and Dorsa Sadigh. Asking
easy questions: A user-friendly approach to active reward learning, 2019. 2.1

[19] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023. 1

[20] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without
in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024. 6.2

[21] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. Advances
in Neural Information Processing Systems, 32, 2019. 6.2

[22] Tesca Fitzgerald, Pallavi Koppol, Patrick Callaghan, Russell Quinlan Jun Hei Wong, Reid Simmons,
Oliver Kroemer, and Henny Admoni. Inquire: Interactive querying for user-aware informative rea-
soning. In 6th Annual Conference on Robot Learning. 2.1

[23] Riccardo Fogliato, Shreya Chappidi, Matthew Lungren, Paul Fisher, Diane Wilson, Michael Fitzke,
Mark Parkinson, Eric Horvitz, Kori Inkpen, and Besmira Nushi. Who goes first? influences of
human-ai workflow on decision making in clinical imaging. In Proceedings of the 2022 ACM Con-
ference on Fairness, Accountability, and Transparency, pages 1362–1374, 2022. 2.1

[24] Craig Fowler, Jian Jiao, and Margaret Pitts. Frustration and ennui among amazon mturk workers.
Behavior Research Methods, 55(6):3009–3025, 2023. 5.1

[25] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning do-
mains. Journal of artificial intelligence research, 20:61–124, 2003. 3.1, 4.3

[26] Wai-Tat Fu and John R Anderson. Extending the computational abilities of the procedural learn-
ing mechanism in act-r. In Proceedings of the Annual Meeting of the Cognitive Science Society,
volume 26, 2004. 2.2

[27] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv preprint
arXiv:2312.10997, 2023. 2.3

[28] John K Haas. A history of the unity game engine. 2014. 5.1

[29] Holly Sue Hake, Catherine Sibert, and Andrea Stocco. Inferring a cognitive architecture from multi-
task neuroimaging data: A data-driven test of the common model of cognition using granger causal-
ity. Topics in Cognitive Science, 14(4):845–859, 2022. 2.2

[30] Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop rl.

38

In Conference on Robot Learning, pages 2014–2025. PMLR, 2023. 1

[31] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023. 2.3

[32] Aadhithya Iyer, Zhuoran Peng, Yinlong Dai, Irmak Guzey, Siddhant Haldar, Soumith Chintala, and
Lerrel Pinto. Open teach: A versatile teleoperation system for robotic manipulation. arXiv preprint
arXiv:2403.07870, 2024. 6.2

[33] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multi-
modal prompts. In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. 2.3

[34] Charles C Kemp, Aaron Edsinger, Henry M Clever, and Blaine Matulevich. The design of stretch:
A compact, lightweight mobile manipulator for indoor human environments. In 2022 International
Conference on Robotics and Automation (ICRA), pages 3150–3157. IEEE, 2022. 5.1

[35] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Seg-
ment anything, 2023. 2.3, 3.1

[36] James R. Kirk, Robert E. Wray, Peter Lindes, and John E. Laird. Integrating diverse knowledge
sources for online one-shot learning of novel tasks, 2023. 2.2, 4

[37] James R. Kirk, Robert E. Wray, Peter Lindes, and John E. Laird. Improving knowledge extraction
from llms for task learning through agent analysis, 2024. 2.2, 4, ??

[38] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017. 4.4, 5.1

[39] Pallavi Koppol, Henny Admoni, and Reid Simmons. Iterative interactive reward learning. 2.1

[40] Richard E Korf. Real-time heuristic search. Artificial intelligence, 42(2-3):189–211, 1990. 3.2

[41] Iuliia Kotseruba and John K Tsotsos. 40 years of cognitive architectures: core cognitive abilities and
practical applications. Artificial Intelligence Review, 53(1):17–94, 2020. 2.2

[42] John E Laird. Soar 9.6.0 tutorial, Jun 2017. URL https://soar.eecs.umich.edu/articles/
downloads/soar-suite/228-soar-tutorial-9-6-0. 4.2

[43] John E Laird. Introduction to soar. arXiv preprint arXiv:2205.03854, 2022. 2.2, 3, 3.2

[44] John E Laird, Kevin Gluck, John Anderson, Kenneth D Forbus, Odest Chadwicke Jenkins, Christian
Lebiere, Dario Salvucci, Matthias Scheutz, Andrea Thomaz, Greg Trafton, et al. Interactive task
learning. IEEE Intelligent Systems, 32(4):6–21, 2017. 2.2

[45] John E Laird, Christian Lebiere, and Paul S Rosenbloom. A standard model of the mind: Toward
a common computational framework across artificial intelligence, cognitive science, neuroscience,
and robotics. Ai Magazine, 38(4):13–26, 2017. 2.2

[46] Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your diffusion
model is secretly a zero-shot classifier. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2206–2217, 2023. 6.2

[47] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and

39

https://soar.eecs.umich.edu/articles/downloads/soar-suite/228-soar-tutorial-9-6-0
https://soar.eecs.umich.edu/articles/downloads/soar-suite/228-soar-tutorial-9-6-0

Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022. 4

[48] James R Lindes and Wray Peter. Improving knowledge extraction from llms for robotic task learning
through agent analysis. arXiv preprint arXiv:2306.06770, 2023. 4

[49] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023. 4

[50] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023. 4.2

[51] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023. 2.2

[52] Jiayuan Mao, Tomás Lozano-Pérez, Josh Tenenbaum, and Leslie Kaelbling. Pdsketch: Integrated
domain programming, learning, and planning. Advances in Neural Information Processing Systems,
35:36972–36984, 2022. 3.1

[53] Jorge Mendez-Mendez, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Embodied lifelong learn-
ing for task and motion planning. In Conference on Robot Learning, pages 2134–2150. PMLR,
2023. 3.1, 6.2

[54] Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. A survey of explainable rein-
forcement learning. arXiv preprint arXiv:2202.08434, 2022. 3.2

[55] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023. 2.3

[56] Allen Newell. You can’t play 20 questions with nature and win: Projective comments on the papers
of this symposium. 1973. 2.2

[57] Allen Newell. Unified theories of cognition. Harvard University Press, 1994. 2.2

[58] Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Demystifying gpt self-repair for code generation, 2023. 4.4

[59] OpenAI. Gpt-4 technical report, 2023. 4.4

[60] Ravi Pandya, Zhuoyuan Wang, Yorie Nakahira, and Changliu Liu. Towards proactive safe
human-robot collaborations via data-efficient conditional behavior prediction. arXiv preprint
arXiv:2311.11893, 2023. 2.1

[61] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023. 2.2, 2.3

[62] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023. 2.3

[63] Top Piriyakulkij, Volodymyr Kuleshov, and Kevin Ellis. Active preference inference using language
models and probabilistic reasoning, 2023. 2.1

40

[64] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8494–8502, 2018. 5.1

[65] Aryn A Pyke, Jon M Fincham, and John R Anderson. When math operations have visuospatial
meanings versus purely symbolic definitions: Which solving stages and brain regions are affected?
NeuroImage, 153:319–335, 2017. 2.2

[66] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 6.2

[67] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR, 2023. 6.2

[68] Fred Reed. Promise of ai not so bright. The Washington Times, 2006. 6.2

[69] Oscar J Romero, John Zimmerman, Aaron Steinfeld, and Anthony Tomasic. Synergistic integration
of large language models and cognitive architectures for robust ai: An exploratory analysis. arXiv
preprint arXiv:2308.09830, 2023. 2.2, 4

[70] Gabriel Sarch, Zhaoyuan Fang, Adam W Harley, Paul Schydlo, Michael J Tarr, Saurabh Gupta, and
Katerina Fragkiadaki. Tidee: Tidying up novel rooms using visuo-semantic commonsense priors. In
European Conference on Computer Vision, pages 480–496. Springer, 2022. 4.4

[71] Gabriel Sarch, Yue Wu, Michael J Tarr, and Katerina Fragkiadaki. Open-ended instructable embod-
ied agents with memory-augmented large language models. arXiv preprint arXiv:2310.15127, 2023.
5.1

[72] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10740–10749, 2020. 5.1

[73] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for
complex and naturalistic videos. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=eYfIM88MTUE. 3.1, 6.2

[74] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. ProgPrompt: Generating situated robot task plans using
large language models. In International Conference on Robotics and Automation (ICRA), 2023.
URL https://arxiv.org/abs/2209.11302. 4, 4.4

[75] DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
humans without human data. Advances in Neural Information Processing Systems, 34:14502–14515,
2021. 2.1

[76] Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
for language agents. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=1i6ZCvflQJ. Survey Certification. 2.2

[77] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128, 2023. 2.3

41

https://openreview.net/forum?id=eYfIM88MTUE
https://openreview.net/forum?id=eYfIM88MTUE
https://arxiv.org/abs/2209.11302
https://openreview.net/forum?id=1i6ZCvflQJ

[78] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
3.2

[79] Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024. 2.3

[80] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended learn-
ing leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021. 1

[81] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109. 5.1

[82] Brandon Trabucco, Gunnar A Sigurdsson, Robinson Piramuthu, Gaurav S. Sukhatme, and Rus-
lan Salakhutdinov. A simple approach for visual room rearrangement: 3d mapping and seman-
tic search. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1C6nCCaRe6p. 4.4

[83] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for
robotics: Design principles and model abilities. Technical Report MSR-TR-2023-8, Mi-
crosoft, February 2023. URL https://www.microsoft.com/en-us/research/publication/
chatgpt-for-robotics-design-principles-and-model-abilities/. 2.3

[84] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023. 2.3, 4.1, 4.2, 4.4, ??

[85] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022. 2.3

[86] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022. 2.3, 4.2

[87] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural language
to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023. 4

[88] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. Self-supervised rein-
forcement learning for recommender systems. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, pages 931–940, 2020. 2.1

[89] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in Neural Information Processing Systems, 36, 2024. 2.3

[90] Sriram Yenamandra, Arun Ramachandran, Karmesh Yadav, Austin Wang, Mukul Khanna, Theophile
Gervet, Tsung-Yen Yang, Vidhi Jain, Alexander William Clegg, John Turner, et al. Homerobot:
Open-vocabulary mobile manipulation. arXiv preprint arXiv:2306.11565, 2023. 1

[91] Ce Zhang, Simon Stepputtis, Joseph Campbell, Katia Sycara, and Yaqi Xie. Hiker-sgg: Hierarchical
knowledge enhanced robust scene graph generation. arXiv preprint arXiv:2403.12033, 2024. 3.1

[92] Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin, Yitao Liang, and

42

https://openreview.net/forum?id=1C6nCCaRe6p
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/

Yaodong Yang. Proagent: Building proactive cooperative agents with large language models, 2024.
2.3, ??

[93] Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023. 2.3

[94] Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and
Joseph J Lim. Bootstrap your own skills: Learning to solve new tasks with large language model
guidance. arXiv preprint arXiv:2310.10021, 2023. 2.3, ??

[95] Michelle Zhao, Reid Simmons, and Henny Admoni. Coordination with humans via strategy match-
ing. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
9116–9123. IEEE, 2022. 2.1

[96] Z.H. Zhou and S. Liu. Machine Learning. Springer Nature Singapore, 2021. ISBN 9789811519673.
URL https://books.google.com/books?id=ctM-EAAAQBAJ. 2.1

[97] Feiyu Zhu and Reid Simmons. Bootstrapping cognitive agents with a large language model, 2024. 1

[98] Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models, 2023. 2.3

43

https://books.google.com/books?id=ctM-EAAAQBAJ

44

Appendix

A Comparison to Other Agent Frameworks

Table A.1 shows the comparison between the agent framework we proposed to some other contemporary agent frameworks.

ACT-R [5] BOSS [94] ProAgent [92] RT2 [17] SayCan [3] SOAR [37] Voyager [84] Lixr (ours)

Object-centric representation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Explicit procedural policy ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

Precondition function Symbolic Any - - - Symbolic Any Any

Episodic history Implicit None Explicit None None Explicit Explicit Explicit

Explicit declarative knowledge ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Explicit affordance model ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Unlimited working memory content ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Multiple strategies for the same task ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Image as direct input ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

Low-level action control ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Table A.1: Comparison between Lixr and other agent frameworks

45

B Sample Environment Memory

PickUpObjectAndPutItDownOnLocation(Knife, Drawer2)PickUpObjectAndPutItDownOnLocation(Knife, Drawer1)

PickUpObjectAndPutItDownOnLocation(Knife, SilverwareDrawer_Drawer2)

PutThingsAway

RejectionKnifeInCabinet

ElaborationSilverwareDrawer

SilverwareDrawer_Drawer2 target_drawer t@6

PutThingsOnTheCountertopAway()(PutThingsOnTheCountertopAway)

CounterTop hosting t@1 { }

Knife location t@1Drawer1 hosting t@1 UNKNOWN t@4 {-E-} Drawer2 hosting t@1 UNKNOWN t@5 { }

Fork location t@5

Robot
hosting t@1 {-E-}

location t@1

Mug
hosting t@2 {-E-}

location t@2 Cabinet1

ComparisonSilverwareDrawerComparisonSilverwareDrawer

Figure B.1: Sample memory layout of an agent.

46

C Bootstrapping Examples

Action Prompting Example

Below is an example of the final action generated and its purpose:

[Option Suggestion]
"motor action: open Cabinet_5c8637ba"

[Purpose]
The purpose of the suggested option is to open the cabinet that the robot is
currently in front of, so it can be explored for an egg.

Production Prompting Example

Below is an example of the English description generated for a production rule:

[Specific Rule]
IF the current task is to find an object AND the robot is in front of a closed
receptacle AND the robot’s gripper is empty THEN choose motor action: open the receptacle.

[Generalizable Constants]
* "Cabinet_5c8637ba" could be any closed receptacle that the robot is in front of.
* "Egg" could be any object that the robot is tasked to find.

[Generalized Rule]
IF the current task is to find a/an <object> AND the robot is in front of a closed
<receptacle> AND the robot’s gripper is empty THEN choose motor action: open <receptacle>.

Cycle Detection Examples

Figure C.2 illustrates when cycle detection are triggered.

End Condition Examples

The following are some examples of the end condition generated for different tasks.

• explore a/an <receptacle>: “the robot has fully explored the receptacle.”

• find a/an <object>: “the robot has found the object and has it in its gripper.”

• pick up and place a/an <object> in/on a/an <receptacle>: “the robot has successfully
picked up the specified object and placed it in/on the specified receptacle, and the robot’s gripper is
empty.”

• slice a/an <sliceable>: “the sliceable object is already sliced and the robot’s gripper is hold-
ing a knife.”

• put things on the countertops away: “all objects on the countertops have been put away in
the cabinets and there are no more unexplored countertops or cabinets.”

47

(a) cycle detection is triggered (b) cycle detection is not triggered

Figure C.2: Examples of transitions graphs for cycle detection. Each node represent a hash value of the
environment knowledge of the agent (current or past), and the directed edges represent applicable pro-
duction rules. A edge that points to nothing (marked by red) indicates that the corresponding production
has never been executed and thus the agent does not have the knowledge of the state after applying the
production.

Production Improvement Example

Below is an example of the LLM output for production improvement on the find task.

[Common Cases]
* The object is in plain sight and the robot just needs to move to it and pick it up.
* The object is inside a closed receptacle and the robot needs to open the receptacle
before picking up the object.
* The object is not in the robot’s field of view and the robot needs to explore the
kitchen to find it.

[Existing Productions]
* "IF the current task is to find a/an <object> AND the robot’s gripper has <object>
THEN choose special action: ’done’": This production is reasonable and covers the end
condition of the task. No changes needed.
* "IF the current task is to find a/an <object> AND the <object> is located in
<location> AND the robot is not at the location of the <object> AND the robot’s
gripper is empty THEN choose motor action: move to <location>": This production is
reasonable but overly constrained because it only applies when the robot’s gripper is
empty. The robot can still move to the location of the object even if its gripper is
not empty.
Suggestion: change it to "IF the current task is to find a/an <object> AND the <object>
is located in <location> AND the robot is not at the location of the <object> THEN
choose motor action: move to <location>".
[OTHER PRODUCTIONS OMITTED IN THE INTEREST OF SPACE]

[Uncovered Cases]
* Case1: The robot’s gripper is occupied and it needs to pick up the object

- The robot is at the location of the object
- The robot’s gripper is not empty

* Case2: The robot’s gripper is occupied and it needs to open a receptacle

48

- The robot is in front of a closed receptacle
- The robot’s gripper is not empty

[New Production Rule]
* IF the current task is to find a/an <object> AND the <object> is located in a/an
<receptacle> AND the robot is in front of the <receptacle> AND the robot’s gripper is
not empty THEN choose motor action: put down <object_in_gripper> and pick up <object>.
* IF the current task is to find a/an <object> AND the robot is in front of a closed
<receptacle> AND the robot’s gripper is not empty THEN choose motor action: put down
<object_in_gripper> and open <receptacle>.

Prompt for Declarative Knowledge

Whenever the agent needs to verify the correctness of a statement in natural language, it makes the fol-
lowing query to the LLM and parse the output into a boolean value.

Evaluate the correctness of the following statement: {STATEMENT}, reply only True,
False, or Unknown

49

D User Preferences Collection Details

Correct Update Examples

The following is GPT4’s response on the preference “Have a glass of water and it needs to be cold."

[Feedback Classification]
Change in the breakfast menu

[Preference Expression]
* add Task Proposing rule: IF the task is to ’make a Breakfast’ THEN propose task ’serve
a Glass of Cold Water’
* add Task Proposing rule: IF the task is to ’serve a Glass of Cold Water’ AND there is
NOT a Glass on Table AND there is a Glass on Countertop THEN propose task pick and place
Glass to Table
* add Task Proposing rule: IF the task is to ’serve a Glass of Cold Water’ AND there is a
Glass on Table AND there is NOT Water in Glass THEN propose task apply Water Bottle to Glass
* add Task Proposing rule: IF the task is to ’serve a Glass of Cold Water’ AND there is a
Glass on Table AND there is Water in Glass AND Water is NOT Cold THEN propose task apply
Ice Cube to Glass
* add Task Proposing rule: IF the task is to ’serve a Glass of Cold Water’ AND there is a
Glass on Table AND there is Water in Glass AND Water is Cold THEN propose task DONE: serve
a Glass of Cold Water

[Existing Rule Modification]
* "IF the task is to ’make a Breakfast’ AND there is a Sandwich on Table AND a Cereal on
Table THEN propose task DONE: make a Breakfast": Relevant to the user feedback and
inconsistent - should be changed to "IF the task is to ’make a Breakfast’ AND there is a
Sandwich on Table AND a Cereal on Table AND there is a Glass of Cold Water on Table THEN
propose task DONE: make a Breakfast"
* All other rules: Irrelevant to the user feedback - leave unchanged

[End]

50

	1 Introduction
	2 Related Work
	2.1 Human-AI Interaction
	2.2 Cognitive Architecture
	2.3 Large Language Models

	3 Lixr Framework
	3.1 Formulation
	3.2 Agent
	3.3 Summary

	4 Bootstrapping World Knowledge
	4.1 Curriculum and Task Instances
	4.2 Production Rule Generation
	4.3 Declarative Knowledge Integration
	4.4 Experiment
	4.5 Summary

	5 Personalized Adaptation
	5.1 Preference Collection
	5.2 Production Rule Modification
	5.3 Results
	5.4 Summary

	6 Discussion
	6.1 Limitations
	6.2 Future Work

	7 Conclusion
	Bibliography
	Appendix
	A Comparison to Other Agent Frameworks
	B Sample Environment Memory
	C Bootstrapping Examples
	D User Preferences Collection Details

