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Abstract

It is hard to statically check a system's conformance to its runtime archiectural structure. Previous ap-
proaches address the code architecture, change the language radically, mandate implertegion frameworks,

or use dynamic analyses that cannot check all possible program runs.

We propose a static approach that supports existing object-oriented implemetations, but relies on program
annotations to encode architectural intent. We statically extract a hierarchical view of the runtime object

graph from the annotated program and map it into an as-built runtime archit ecture. We then check and
measure the structural conformance of the as-built and the as-designed architectures.

An evaluation on several systems showed that the approach can identify intergé®g structural non-

conformities.

1This technical report supersedes the earlier technical rep ort CMU-ISRI-07-119, entited ~Checking and Measuring the Ar-

chitectural Structural Conformance of Object-Oriented Sy  stems.
This work was supported in part by NSF CAREER award CCF-0546550, DARPA contr act HR00110710019, the

Department of Defense, and the Software Industry Center at Carnegie M ellon University and its sponsors, especially
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1 Introduction

Many architectural views are needed to describe a software system. Aode architecture or module view
organizes code entities in terms of classes, packages, layers and modules. Atesyss runtime architecture or
runtime view models runtime entities and their potential interactions [L0].

Developers have a conceptual model of their architecture that is mostly accurate, but thismodel may
be a simpli cation of reality [33] 8]. Thus, checking the conformance of the mplementation to its desired
architecture is a practically relevant problem [33,[8]. Previous research addregd the conformance of the
code architecture [33,/35]. But checking the conformance of runtime architecturesemains challenging for
object-oriented systems, where a runtime view may bear little resemblance to anodule view.

Some approaches delay conformance checking until runtimé 37, 136], but a dynamic alyais can only
check a few program runs. To meet certain quality attributes, even an atypical syeem execution must not
introduce a critical architectural violation. A dynamic analysis cannot prove that a program always satis es
a particular property. That requires a static analysis, ideally, one that is sound and reveals all entities and
relations that could possibly exist at runtime.

This paper describes an iterative multi-stage approach to statically check he conformance of a system to
an architectural description. We extend the extract-abstract-check strategy [33[ 2], and: (a) add annotations
to the code to clarify the architectural intent; (b) extract a representation of the as-built runtime structure;
(c) abstract a representation of the runtime architecture suitable for comparison; and (d) run an analysis to
establish the key di erences between the as-built and the as-designed architectures, bothsdally and through
conformance metrics. The approach uncovered a number of unexpected facts about the implentation of
several real representative object-oriented systems.

The approach builds on some of our previous work. First, we use a static angsis that extracts a
hierarchical representation of the runtime object graph from an annotated progam [4]. This paper abstracts
that representation into a standard Component-and-Connector (C&C) runtime view [10]. Second, we adapt
a structural comparison algorithm [6] to conformance checking. Unlike synchonizing two views to make
them identical, conformance checking allows an as-built view to contain low-levetietails, and does not carry
them over into the as-designed view. To preserve soundness, the analysis still accoarfor communication
in the as-built view that is not in the as-designed view.

This paper's contribution is a semi-automated static approach to check the cordrmance of a system's
runtime architecture. The approach uses program annotations instead of radicaldnguage extensions[]8]
or implementation frameworks [29]. It relates a hierarchical object graph,that represents the instance
structure of source code entities, to an as-designed hierarchical runtime view. Thipaper also introduces
runtime architectural conformance metrics, quali ed by annotation metrics.

Outline. The rest of this paper is organized as follows. Sectidl 2 describes the overaltategy. Section[3
discusses abstracting an as-built runtime architecture. Sectiol 4 discusses checking amdeasuring the
structural conformance. In Section[®, we evaluate the approach. A discussion and reked work (Section[1)
round out the paper.

2 Positioning and Background

As a running example, we use Aphyds, an 8-KLOC Java system. Its original developer @w an as-designed
architecture (Fig. [). User interface components are in the upper half. Acircuit and computational elements
are the lower half. An Architecture Description Language (ADL) can model an informal boxes-and-lines
diagram such as the above. In a runtime view, atier or group is a conceptual partitioning of functionality
[10]. For example, Aphyds follows a Document-View architecture and has two ties.

Re exion Models. Conformance checking relates source code entities to entities in a high-level model
[33]. Re exion Models (RM), a standard in conformance checking the code architectur [21], works as follows.

In RM, a third-party tool extracts a source modelfrom the source code. A developer posits an as-designed
high-level modeland a map between the source and high-level models. RM pushes each interaction described
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Figure 1: Aphyds as-designed architecture.

in the source model through the map to infer edges between high-level model entities. RM theoompares
the inferred edges with the edges stated in the high-level model and shows the di erences. A devpler can
iteratively: (a) modify the high-level model; (b) modify the source model; (c) modify the map; (d) trace a
conformance nding to code; and (e) optionally, change the code to avoid an architecturhviolation.

The Java RM tool, jRM [L7], can map classCircuit to a circuit high-level element in a code architecture.
Assume brie y that RM supports tiers and quali es an element by its tier using the :: symbol.

class Circuit to MODEL::circuit.

Let us hypothetically apply RM to runtime architectures to better understand the issues that would
arise. For a runtime architecture, the source model must re ect theruntime structure of the source code
entities. A class is not a runtime entity. Hypothetically, the above could indicate that all instances of the
Circuit class map tocircuit . But in an object-oriented system, there is usually more than one instance
of any given class, and each instance can map to a di erent element in a runtime iew.

Instead of mapping a class or all of its instances, we need to map runtime objecisstead. But a static
analysis knows only about eld or variable declarations in a program, whichdenote references to runtime
objects. For example, Main.circuit , a circuit  eld declared in class Main, points to an instance of the
Circuit class at runtime. Hypothetically, assume we extend jRM and map:



field Main.circuit to MODEL::circuit.

This introduces the issue of the map's correctness. In an object-oriented system, uttiple code elements
could map to the same element in a runtime view. A reference of type&ircuit and one of typelCircuit
an interface that Circuit implements, could alias and point to the same object at runtime. It would be
incorrect to map the same runtime object to multiple high-level elements. Somehow, & must map all the
references thatmay alias (i.e., refer to the same object), to the same element in the runtime \@w. In
addition, one must be able to map one code entity to multiple elements in a runtine view. To support
this feature, a previous system de nes a context parameter using an annotation in the codeand binds that
parameter to di erent actual contexts using additional annotations [24]. But that system supports neither
inheritance nor hierarchy.

ADLs support the hierarchical decomposition of a component into a nested sub-arckécture [30]. For
example, the Aphyds as-designed architecture showsodeand net inside circuit's sub-structure (Fig. [@). We
would like to model secondarynode and net objects aspart of the primary circuit object. So we create a
DB tier inside circuit, and map a eld node to an element nested inDB
field Circuit.node to MODEL::circuit.DB::node.

In summary, this paper generalizes previous maps [33, 24], accounts for inheritan@nd aliasing, and
relates a hierarchical high-level model to a hierarchical representation of the runtne structure of source code
entities.

2.1 Conformance Strategy.

We extend the extract-abstract-check strategy [33/12]. The steps are:
1. Document the as-designed runtime architecture;
2. Abstract an as-built view from the implementation:
(a) Add annotations to the code;
(b) Extract a hierarchical representation of the runtime object graph, ideally, one that is sound;
(c) Abstract that representation into an as-built view;
3. Structurally compare the as-built and the as-designed architectures to check their confonance; and
4. Compute a measure of their structural conformance.
In the terminology of Murphy et al. [83], the conformance check identi es:
Convergence: a node or an edge that is both in the as-built view and in the as-designed view;
Divergence: a node or an edge that is in the as-built view but not in the as-designed view;
Absence: a node or an edge that is in the as-designed view but not in the as-built view.

2.2 Abstraction Strategy

At runtime, an object-oriented program can be represented as arbject graph nodes correspond to objects,
and edges correspond to relations between objects. Previous static analyses thdd not use annotations
produce low-level non-hierarchical object graphs[[16]. Such representations explain rume interactions in
detail but convey little architectural abstraction ((Fig.2)]

We follow Re exion Models and avoid reverse engineering abstractions that archiécts do not recognize
[33]. In our approach, a developer guides the architectural abstraction by adding anrtations to clarify the
architectural intent in the code. The annotations specify object encapsulation, logtal containment and tiers,
which are not explicit constructs in general purpose programming languages. Thesenaotations support
abstract reasoning about data sharing and make the extracted architecture re ect an echitect's design intent
rather than a tool's heuristic.

The annotations specify and enforce the sharing of state between objects, a key cleige in extracting
a runtime architecture. This state sharing is often not explicit in object-oriented programs but instead, is
implicit in the structure of references created at runtime.

Annotations. The annotations assign each object to a singl®wnership domainthat does not change at
runtime. An ownership domain is a conceptual group of objectswith an explicit name and explicit policies



Figure 2: Thumbnail of the Aphyds object graph obtained at compile-time by Womble [16]. Some node
labels become semi-readable after zooming in by 6400%.
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class Circuit {
public domain DB // Declare public domain DB
domain OWNED/ Declare private domain OWNED
DB Node node; // Declare Node reference in DB
/I Outer annotation is for container; inner one for its elements
OWNEBHashtable<String, DB Node> nodes;

}
class Viewer<M> { // Declare domain parameter M

M Circuit circuit; /I Declare Circuit reference in M
}

class Main {
domain MODELUI; // Declare top level domains
MODEICircuit circuit;
// Bind domain parameter M to actual domain MODEL
Ul Viewer<MODEL viewer;

}

Figure 3: Partial Aphyds annotations.

that govern how it can reference objects in other domains[]7].

Fig. B shows the annotations that a developer might add to some Aphyds classe3he actual annotation
system uses existing language support for annotations. But here, we use a simpli egyntax that extends
the language. A developer indicates what domain an object is part of by annotating edtreference to that
object in the program (Lines 4,6). One typically chooses domain names to conveyrehitectural intent. We
use capital domain names to distinguish them from other program identi ers.

Ownership domains may be declared at the top level of the application (Line 12) or vthin an object
(Lines 2,3). Each object can declare one or morpublic or private domains to hold its internal objects. The
domains within an object express a sub-structure within the object, one that consistof other domains and
objects that represent its parts. Objects inside a private domain such a®WNE®De encapsulated But having
access to &Circuit object gives the ability to access instances oNodeand Net inside its public domain DB
An instance of the Viewer class accesses other objects in thelODEHomain, by declaring a formal domain
parameter Mon the Viewer class, andbinding that parameter to domain MODE(Line 15).

Although a domain is declared inside a class, each instance of that class has itsvio runtime domain,
and whenever our analysis distinguishes two objects, it also distinguishes the donra they contain.

A typechecker validates the annotations, identi es where the annotations are inconstent, or where the
code violates an annotation. For instance, one cannot have gublic method that returns an alias to an
object inside a private domain. This instance encapsulation is stronger than makig a eld private to
restrict its module visibility.

Object Graph. A static analysis scans the annotated program's abstract syntax tree and psduces a
sound hierarchical representation of all possible runtime object graphs, the Onership Object Graph (OOG).

Compared to non-hierarchical object graphs, an OOG provides abstraction by ownershignierarchy and by
types [4].

Collapsing many nodes into one is a classic approach to shrink a graph. Howevyean OOG collapses
nodes based on the actual runtime and ownership structure, not according to where objectsese declared
in the program, some naming convention or a graph clustering algorithm.

An OOG is a graph with two node types, domains and objects. The nodes form a hierahy where each
object node has a unique parent domain, and each domain node has a unique parent object. Eddestween
objects correspond to eld references or usage relations. The OOG uses a nested-box vismation. Dashed-
border white- lled boxes represent domains, and grey- lled boxes represent objects. A pxate domain has a
thicker dashed border. Field references are shown as solid edges. We label each objeith one of its types.
A (+) symbol indicates an elided sub-structure.



Example.  One Aphyds OOG shows two top-level domainsMODEand Ul, and objectsCircuit and Viewer
in those domains (Fig.[4(a)). In an OOG, aCircuit refers to a runtime entity, not the class Circuit , even
when we refer to an object by its type.

Key Properties. We highlight several properties of the OOG and their relevance to conformance checking.

Object Abstraction. Di erent executions may generate a di erent number of objects. The OOG
summarizes multiple runtime objects with a canonical object. For instance, there cald be many Nodeobjects
at runtime, but only one appears in the DBdomain. In a runtime view, one component can represent many
instances at runtime.

The ownership domains type system guarantees that two references in di erent domainsan never alias.
If two variables within the same domain may refer to the same object at runtime, the OOG shows them as
one. A runtime architecture would be deceptive if it showed one runtime entity as tvo components. For
instance, an architectural security analysis could assign one runtime entity wo di erent values for a key
trustLevel property.

Object Lifting. The OOG transitively lifts objects from formal domains into actual domains, to
show all the objects in a given domain, not only those that were declared directly inthat domain. Indeed,
the Circuit object in Viewer's domain parameter Mis the same as theCircuit object in the MODEtier.
Lifting allows mapping multiple code elements to one runtime element. By binding onedomain parameter
to di erent actual domains, lifting can also map one code element to multiple desig elements.

Hierarchy. Conformance checking must distinguish between objects that are architecturallyrrelevant,
and objects that exist in the implementation but are missing from the as-designedview. Typically, in an
OOG, only primary objects appear in the top-level domains. And each of those objecthiave more domains
and objects, until low-level objects are reached. For example, &ircuit object encompasses other objects
that are of type Node and Net. Hierarchy enables varying the abstraction level [[38], to obtain an as-built
view that a tool can structurally compare to an-designed architecture.

Edge Lifting. Re exion Models shows an edge fronViewer to FloorPlanUl , only if Viewer declares a
reference to aFloorPlanUl object. In an OOG, a Viewer references aisplayer , and Displayer references
a FloorPlanUl . Viewer holds Displayer in a public domain since it is not a primary object. When Viewer's
sub-structure is elided, the OOG lifts that relation to Viewer, and shows asummary edgefrom Viewer to
FloorPlanUl , shown as a dotted edge in the OOG (Figs| 4(3),_ 4(H)).

Traceability. =~ Each OOG element can be traced to a set of nodes from the program's abstract synta
tree.

Soundness. The OOG is proven sound [4].

3 Architectural Abstraction

C&C De nitions. We document the as-designed C&C view in the Acme general purpose ADLT14]. Most
other ADLs also support the following elements [[30]. AComponentis a unit of computation and state. A
Port is a point of interaction on a Component A Connectorrepresents an interaction amongComponens. A
Systemis a con guration of Componens and Connectos. Acme also supports the hierarchical decomposition
of a Componentinto a nested sub-architecture. A Property is a hame and value pair, associated with an
element. A Groupis a hamed set of elements, such as a tier.

Architectural Types. We enrich the base architectural model with types and properties, which improve
the precision of the structural comparison [6]. Two genericComponentand Connectortypes, CompT and
ConnT, respectively, hold properties for the conformance analysis.

A Port that provides services has typeProvideT, and a Port that requires services has typeUseT. The
structural comparison uses the type information to avoid matching a ProvideT Portto a UseT Port for
example.

Mapping an OOG to a C&C View. We represent the as-designed architecture as a C&C view. We
also convert an OOG into an-built C&C view for comparison with the as-designed view We later re ne
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the conversion to generate a more abstracted as-built C&C view, but for now, the bas conversion works as
follows.

The root object of an OOG is often an instance of a class that only declares the top-l&f domains and
objects inside them. So the root object maps to aSystem and the top-level domains map to the top-level
tiers in the System

Each object in the OOG maps to aComponent An ownership domaind in the OOG maps to a Group
g. If an object o in a domain d, the corresponding Componentis in Groupg. The OOG hierarchy creates
architectural decomposition. If an OOG object declares domains and descendent objects, the rtesponding
Componenthas a sub-architecture.

References between objects creatorts as follows, while excluding uninteresting self-edges. If objedA
has a eld reference of typeT to object B, the correspondingComponentA has aPort of type UseTand name
B. The Componentcorresponding to B has aPort of type ProvideT and nameT. And a Connectorconnects
A to B.

Structural Constraints. To be structurally comparable, both the as-built and the as-designed views
follow similar conventions. In Acme, aComponentcan be included in more than oneGroup But in ownership
domains, an object is in exactly one domain and that domain never changes. So a predi@atnforces that
a Componentor Connectoris in exactly one Group If Connectorc connects two Componens that are in the
sameGroupg, ¢ must be also ing.

Port Directionality. An Acme Port has no built-in directionality. Its type speci es whether it provides
services ProvideT) or uses services JseT). In some cases, the as-designed view may have @onnector
between two Componens, but the connection in the as-built view may be in the reverse direction. The
conformance check could make th€onnectorbi-directional, by assigning to the connection's endpoints both
the ProvideTand UseTtypes. But this does not t with showing divergences and absences. Instead, we adopt
unidirectional ports, i.e., the type can be ProvideT or UseT, and never both. For the above example, the
analysis shows aConnector and ProvideT and UseT Pors, for the communication in the opposite direction.
Such a stylized use of ports also seems easier to understand [8].

Other conventions are possible, as long as both the as-designed and as-built viewdopt them. For
example, to reduce clutter, one could have a singl®rovideT Portand a singleUseT Port per Component

Abstraction and Conformance. An as-designed view is often an abstracted view of the system's archi-
tecture. However, to avoid misleading developers, an as-designed view must stikpresent all communication
that could possibly exist in the as-built system. As long as a program is fuly annotated and the annotations
typecheck, its OOG is a sound approximation of its runtime structure. And by congruction, so is the as-built
C&C view.

To enable structural comparison, the as-designed and the as-built views must have a silar number
of top-level tiers, a similar hierarchical decomposition, and a similar numker of components and tiers at
each hierarchy level. One achieves the desired number of components in the as-built vidoy re ning the
annotations, controlling the OOG or adjusting its conversion to a C&C view.

One re nes the annotations by pushing secondary objects underneath primary objects using the gtit
encapsulation of private domains, or the logical containment of public domains. One controls the OOG
abstraction by ownership hierarchy and by types. We do not discuss here in detail astraction by types in
an OOG [4]. For instance, we did not use that feature for Aphyds.

Additional Abstraction. For comparison with a manually generated as-designed view, we control the
conversion of an OOG into a C&C view, in the following ways:

Add types and properties. A developer optionally maps implementation types to architectural
types, to get a richer as-built view with types and properties.

Elide private domains. A developer optionally elides private domains, which typically contain
implementation details. For Aphyds, we elide the OWNEd@bmain on Circuit , which stores Hashtable s of
Nodeand Net objects (Fig.. The conversion analysis adds summary edges to account faommunication
through elided objects.
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Figure 5: Displaying conformance.

Elide singleton tiers. In an OOG, each object is in a domain, so a systematic conversion would
create eachComponentin a Group Architects typically de ne tiers only at the top-level, and those map to
the top-level domains. For example, requiring a singléDB tier inside circuit would be counterintuitive. Unless
the developer requests otherwise, the conversion does not create a singleton tier idgia Component Unlike
eliding private domains, the conversion still creates sub-components for the okfts in those unmapped
domains. When skipping the private OWNE@&omain inside Circuit , the conversion createsnode and net
directly inside circuit, and does not create aDB tier (Fig. £3).

Merge objects. Detecting split or merged nodes is di cult and currently unsupported [6]. A de-
veloper optionally merges selected objects in the OOG into one component, and the coession merges the
corresponding edges.

Skip objects beyond a certain depth. The mapping converts the OOG up to a user-selected depth,
typically the hierarchical decomposition depth in the as-designed view. Reducing the as-bliiview size speeds
up the comparison. Restricting the hierarchy depth does not a ect conformance, because sunmeny edges
account for the elided substructures in a depth-restricted OOG.

4 Architectural Conformance

A system conforms to its as-designed architecture if the latter is a conservatie abstraction of the system's
runtime structure. The communication integrity principle stipulates that each component in the imple-
mentation may only communicate directly with the componerd to which it is connected in the architecture

[32,127].

Assumptions.  We compare the as-designed and the as-built architectures using a structural comparison
that works with hierarchical views, does not assume unique identi ers, detects renameand restricted moves
and allows forcing or preventing matches([[6]. These assumptions closely matdhe problems of post-hoc
view synchronization and conformance checking.

Displaying Conformance. Unlike view synchronization, conformance checking does not actually modify
the as-designed view. Instead, the conformance analysis producescanformance view of the as-designed
architecture, which shows convergences and absences graphically. It represents divergencesshpwing

additional Connectos that are present in the as-built view but are missing from the as-designed view.

Conformance Properties. All elements have a nding property, set to Convergent), Divergent(+) or
Absent (). An element's visual display is based on its properties.

All elements have atraceability property, a set of lename and line number pairs. The conversion of an
OOG to an as-built C&C view sets each element'straceability property. For an element with a Convergent
or Divergentvalue for its nding property, the analysis sets itstraceability property in the conformance view
based on its matching element in the as-built view. Based on this information, aleveloper can trace directly
to the pertinent lines of code, and not have to potentially review the entire code bas.

10



4.1 Checking Conformance

In conformance checking, the as-designed view is more authoritative than the as-blione. First, it is
an architect's abstracted view, in that the components she included may be more relvant than those she
omitted. Second, she may have chosen names that convey her architectural intent. The analis works as
follows:

Highlight diering connections: the analysis matches the components in the as-built view to
those in the as-designed view, and shows di ering connections as divergences or absences. Rstance, if
the as-built view has a connector betweerFloorPlanUl and Viewer, and the latter match the as-designed
components oorplanUl and viewerU] the analysis shows as divergences the addition&orts and Connectos
between oorplanUl and viewerUl

Use as-designed view names: element names in the as-designed and the as-built views may not
match exactly. The structural comparison can detect renames[[6]. E.g., the check crectly matches as-
built Viewer component to as-designed componenviewerUl Unlike view synchronization, however, the
conformance analysis does not propagate the as-built view names to the as-designed vielror example, it
matches oorplanUl to FloorPlanUl and viewerUIto Viewer, and shows communication betweenoorplanUl
and viewerU| without renaming them.

Summarize divergent components: If there are components in the as-built that are not in the as-
designed view, the analysis does not directly add them (Fid.15), to avoid clutteringthe as-designed view with
low-level implementation details. To enforce communication integrity, however the analysis still accounts
for any communication in the as-built view that is not in the as-designed view, includhng communication
through these unmapped components.

In an as-built view, Nodeconnects to Terminal and Terminal to Net (Fig. p(c)). The as-designed view
hasnodeand net, but has no component matchingTerminal (Fig. . The analysis matchesnodeto Node
and net to Net, respectively. It then shows aDivergent Connectofrom nodeto net in the as-designed view,
since one does not already exist (Fi)). For emphasis, we decorate a summagGonnector which can be
either Divergentor Convergentwith the # symbol.

Viewed di erently, a summary Connectorrepresents any objects in the as-built view that do not have
counterparts in the as-designed view. This allows an as-designed view to have a cear granularity of
components, and optionally abstract multiple interacting objects with a connectar.

Check matching sub-structures: As-designed views are often hierarchical. An OOG provides
abstraction primarily through ownership hierarchy by folding low-level objects into higher-level component
instances. Typically, as-built components will have more detailed sub-structures tha their as-designed
counterparts. But the conformance check does not analyze the additional substructures, tavoid generating
many false positives. This preserves soundness because both the OOG and the as-builkC view have
summary connectors that represent any communication through any elided or skipped sulbgictures.

For instance, the as-designedviewerUldoes not de ne a substructure. So the analysis ignores any sub-
structure in the corresponding as-built Viewer. But the as-designedcircuit has substructure and matches
the as-built Circuit . In that case, the analysis recursively checks the substructures ofircuit and Circuit
When converting an OOG into a C&C view, we excluded private domains, such a<ircuit 's OWNEBince
OWNEBat the same level aDB the analysis would have otherwise processeOWNEAhd generated undesired
divergences.

For each metric, we de ne: (a) base measures(b) any derived measures (c) indicators on how to interpret
those measures; and (d) the overall value or risk'[Z28].

4.2 Measuring Conformance

Similarly to Re exion Models (RM), we count edge convergences CE), divergences DE) and absences AE).
However, in RM, if the map generates a node that is not the as-designed view, RM autoatically adds it to
the as-designed view. As a result, RM has no divergent or absent nodes, and does not computarsnary
edges. We count summary edgesSE), as well as node convergencesCN), divergences DN), and absences
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(a) Graph ga . (b) Graph gg . (c) Editing ga.
Figure 6: Graph edit distance (GED).

(AN). In our approach, AN and DN indicate that the as-designed view omits components from the as-built
view, or uses a di erent system decomposition (Table1L).

To explain the source of the divergences and summary edges, the conformance check can omaity
show eachDivergent Componentn the conformance view, but does not showConnectos to such divergent
components.

To get one conformance metric, we combine edge divergences and absences, using the notiograph edit
distance (GED) (Fig. €). GED models inconsistencies by transforming one graph into aother [11]. Typical
edit operations include the deletion, insertion and relabeling of nodes and edges. Each ediperation is
assigned an application-dependent cost. Here, renames have a zero cost. The edit distance wb tgraphs
oga and gg is the sequence of edit operations with the minimum cost that transformga into gs . Fig.
transforms ga into gz with 2 edge insertions (I) and 1 edge deletion (D) in dotted lines, i.e.,GED = 3.

Computing the GED is NP-hard, except for graphs with unique node labels[[I], whichs not the case
for architectural views. Having a mapping between the nodes in the two graphs, whichwe obtain using
structural comparison, is like having unique labels.

CCM. The Core Conformance Metric (CCM) counts the number of unique edge deletions (D) and
insertions (1), i.e., the absences AE) and divergences DE), respectively, that would make the as-built view
account for all communication in the as-designed view. To get a percentage, we dividey the total number
of edges and subtract from 100%. It is better to have fewer absences and divergences. So ahbigCCM
value indicates a higher structural conformance.

AE+ DE
M =1 e —
cc CE+ AE+ DE
Annotation Metrics. Re exion Models tracks unmapped entries in the source model. Similarly, we

qualify our conformance metrics with measurements of the program annotationsTo measure the percentage
of the program that lacks annotations, we use a derived measurd/ARN, namely the number of annotation
warnings that the annotation typechecker generates. Except for some defaults formmutable objects, such
as those of typeString , every eld, variable declaration, or method return, that is a reference to an object,
and has a missing or incorrect annotation, generates a warning (we mostly avoidhultiple warnings due to
one missing annotation). The metric WARN% normalizes WARN by the number of object references the
program declares.WARN% is an indicator of how many annotations are missing to make the OOG soundly
represent the as-built runtime architecture. A lower WARN% is better. For a program without annotations,
WARN% will be high. As valid annotations are added, WARN% decreases. For AphydsWARN% is 5%.

All the subject systems we studied still have warnings that require refactoringthe code or increasing the
type system's expressiveness. We manually examined the warnings and believe thep not contribute to
missed architectural violations.
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5 Evaluation

The evaluation aimed to answer the research questionCan the approach identify interesting architectural
structural non-conformities in real object-oriented systens?

5.1 Tool Support

We developed several Eclipse plugins to relate C&C views, OOGs and Java source les:
AcmeStudio is an Acme modeling environment[[14];
ArchDomJ typechecks the annotations;
ArchRecJ recovers an OOG from annotated code;
ArchCog maps an OOG to a C&C view (Section[3);
ArchConf checks the conformance between two C&C views and computes the metrics (Sectid); 4
CodeTraceJ loads the traceability of an element selected in a C&C view, opens the corneending Java
les, and highlights the appropriate lines of code;
ArchMod modi es the original as-designed view to actually add a selectedConnectormarked asDiver-
gent, or delete aConnectormarked asAbsent

5.2 Methodology

Typically, the developer iterates one or more steps in the process. In Eclipse, the deloper uses the AcmeStu-
dio perspective to build the as-designed architecture. She then switches to the Java develment perspective,
loads the implementation project, adds ownership domain annotations to the code agava 1.5 annotations,
and invokes ArchDomJ. She double-clicks on a warning in the Eclipse problem window tgo to the o ending
line of code. Once the program is mostly annotated, she uses ArchRecJ to extract an OOGnd re nes
the annotations until the OOG has a number of top-level components roughly comparable @ that in the
as-designed view.

The developer then invokes ArchCog to convert the extracted OOG into an as-built C&C view. ArchCog
allows her to map implementation types to architectural types, elide private domains and restrict the projec-
tion depth. She then points ArchConf to the as-built and as-designed views, and examineshé comparison
results.

In ArchConf, the developer accepts the comparison results or manually forces or prewnts matches between
the two views and reruns the comparison. ArchConf then creates a conformance view of thas-designed
architecture, and displays the conformance metrics in an output window. In the AcmeStudioperspective, the
developer examines the conformance view, and investigates unexpected divergences. She uses Qudel
to con rm a convergence or trace a divergence to the code. If the divergence is critical, sheay modify the
implementation to eliminate the architectural violation.

ArchConf does not modify the original as-designed view, but creates a conformance viewsa copy. A
developer can use ArchMod to commit a selected divergence or absence to the as-designed view.

In some cases, it may be dicult to nd a documented as-designed runtime architecture for an existing
system. In that case, getting an abstracted as-built C&C view may have value in tiself. If a manually
generated as-designed view is missing or out-of-date, the developer could take an as-b@W&C view, elide
unwanted detail from it, and treat it as an as-designed view.

Experience Overview We evaluated the end-to-end approach on three representative real systems to-
taling 38 KLOC. The study's subject (one of us, hereafter \we") developed several of thetools, but none
of the subject systems. We iteratively annotated the code, extracted as-built viewsand related them to
diagrams drawn by the original developers. The as-designed architectures we studiezmitted connections,
components or entire subsystems.
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Figure 7: Aphyds conformance results.
5.3 Extended Example: Aphyds

We now complete the evaluation of the Aphyds system.

As-Designed Architecture. We based the Aphyds as-designed architecture on the informal diagram
(Fig. ), but iterated it a few times. We initially forgot to add a Connectorjoining two Componens inside
a Group g to that same Groupg. This resulted in badly matched connectors. We also forgot to reverse
the direction of arrows in the developer's diagram when adding some connectors][8, pl92]. Because the
structural comparison does not detect splitting or merging, we represented one componttabeled \Place +
Route" in the informal drawing (Fig. 1) as two separate components,placeRouteUland channelRouteUl

Annotations. We also iterated the program annotations, the OOG extraction, the conversion b a C&C

view, and the conformance check. Tabld]l shows how the conformance metrics evolved Wween the two
iterations.

Iteration 1. We initially organized the Aphyds objects into two top-level domains. Ul holds a Viewer
object and several subsidiary user interface objectsMODEholds aCircuit object and computational objects
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that act on it, such as Floorplanner . We also de ned several private domains to hold objects encapsulated
by their parent, such as Hashtable objects inside aCircuit object.

These annotations produce an OOG that is hierarchical, as the (+) sign indicates (Fig[4(a)). But that
OOG still has many objects in the top-level domains, and so does the C&C view that ArbCog generates
from that OOG su ers.

Conformance Metrics. The conformance check does not produce good conformance metrics (Taljle 1).
For example, becauseCircuit , Nodeand Net are at the same level in the as-built C&C view, the conformance
check marks asAbsentthe nodeand net components insidecircuit (2 node absences).

The as-built C&C view has many more components in the top-level tiers than the as-degined view,
hence the high node divergences. Moreover, the conformance analysis generates many sumn@nnectors
to account for possible transitive communication, and this accounts for the higp number of edge divergences.
For example, Displayer communicates with Terminal , and Terminal with Placer . In reality, Terminal is
part of Circuit , and Circuit already communicates with Placer . Ideally, the analysis should just mark as
convergences the connection betweebDisplayer and Circuit , and the one betweenCircuit and Placer .
Instead, since the analysis lacks information about logical containmentjt shows a divergent summary con-
nector from Displayer to Placer , and many others (97 in total). This almost turns the conformance view
into a fully-connected graph and makes it unreadable.

Iteration 2. Using the as-designed architecture as a guide (Fid.J1), we de ned several public domains.
Some of these domains contain objects that we are trying to hide from the top-les tiers. For example,
Viewer has aDISPLAYpublic domain to hold a Displayer object that other Ul objects, such ag-loorPlanUl ,
reference. ButDisplayer is not in the developer's diagram (Fig.[d).

Public domains can also abstract low-level objects into higher-level components. df example, Circuit
holds objects such asNode and Net inside its DB public domain, to re ect the as-designed architecture
(Fig. ). Re ning the annotations to de ne public domains required mostly local and incremental changes
to the annotations.

With the revised annotations, many objects that were in the MODEtop-level domain, such asNode Net
and Terminal , moved into public domains of other objects, such a<Circuit (Fig. . This OOG has
a system decomposition close to one in the desired architecture (Fi@l 1), andybconstruction, so does the
as-built C&C view.

Conformance Check. Iteration 2 matched the components better, with 0 node absences and 1 node
divergence, which corresponds toTerminal . The analysis now marks asConvergent both node and net
inside circuit, as well as the connectors between them (Fig—5l3). In the as-built systemmode and net do
not communicate directly, but only do so through Terminal . So the two Convergent Connectsrinside circuit
have the summary decoration# (the earlier explanation and example of summary connectors in Figll5 were
in fact adapted from this part of Aphyds).

Study Findings. The as-designed architecture (Fig[l) is only about 60% accurate, based on the CCM
metric. Indeed, there are several divergences betweeriewerUland other Ul components, betweenUl and
MODEL components, and amongMODEL components. Many uni-directional arrows turned out to be bi-
directional in reality. A developer could use ArchMod to update the as-designed archiecture with some of
the divergent connectors.

One divergence that crosses tiers, fronplacerin MODEL to placeRouteUlin Ul, was a red ag (the dark
colored connector in Fig.[5.8). As a multi-threaded application, Aphyds must respect cerin framework-
speci ¢ conventions to call back from a worker thread executing a long-running operatin into the user
interface thread. We used CodeTraceJ to trace this divergence to #laceRouteUl eld inside class Placer ,
and inspected the code to make sure that it handled the callback correctly.

15



Table 1: Aphyds conformance metrics.
Iteration CN |DN |[AN |CE |DE |AE | SE |CCM
1 11 | 11 2 2318 | 0 | 97| 21%
2 13 1 0 16 | 11 1 2 57%

Performance.  For Aphyds, the OOG extraction takes around 10 seconds, and the structural compariso
takes between 57 seconds (lteration 1) and 33 seconds (Iteration 2). We measuretieise times on an
Intel Core 2 Quad Processor (2.40GHz) with 4GB of RAM running Windows XP.

Discussion.  Aldrich et al. previously studied Aphyds, and identi ed similar architectural vi olations, but
only after they re-engineered it to ArchJava [E]. They manually de ned, in code, over 20component classes
and over 80port s, refactored the program to neither take as argument nor return any reference to aimstance
of a component class, and inadvertently injected several defects|[8].

In a C&C view extracted from ArchJava, Componenta appears insideComponentb if a instantiates b
as one of its elds. So it may not be enough to simply convert a Javeclass into an ArchJava component
class : one may need additionalcomponent classes just to capture the intended system decomposition.
Using our annotation-based approach, one can achieve the desired decomposition wifltivate and public
ownership domains, and without de ning additional classes. During our Aphyds evaluation, we just added
annotations to the original Java program, without refactoring it, and fol lowed the rest of the approach.

Adding ownership annotations to an existing system is less invasive than re-engeering it to ArchJava
to expose its architecture [5]. The annotations, unlike ArchJava, do not chang the system's runtime seman-
tics. The annotations also support common object-oriented idioms, including pasag references to objects.
Moreover, an ArchJava component class cannot have public elds. When using ownership annotations,
such legal Java elds can be placed in public domains. Aldrich et al. added ownership fyes to 3,500 lines
of Aphyds in 4 hours, a quarter of the time they spent re-engineering Aphyds to ArchJaa [8].

We also conducted a eld study to more reliably estimate the annotation e ort. The rst author spent
35 hours adding annotations to extract an OOG from a 30-KLOC module of a 250-KLOC systm (WARN is
still high, however). The architects did not provide us with an as-designed runtimearchitecture, however,
so we could not check its conformance [3]. We could not have re-engineered that module ta¢hJava in the
same few days. So, for existing systems, annotations seem more adoptable thiEamguage extensions.

5.4 Extended Example: JHotDraw

JHotDraw (Version 5.3) has around 200 classes and 15,000 lines of JavdHotDraw is a signi cant example
in the object-oriented community, that is open source, rich with design patterns,uses both composition and
inheritance heavily, and has evolved through several versions.

As-Designed Architecture. As is the case for many legacy systems, we were unable to nd a documented
execution architecture for JHotDraw. We did nd however a documented abstracted code achitecture [2,
Fig.6]. Of course, the execution architecture may be signi cantly di erent from t he code architecture. We
used the code architecture as an estimate to be re ned by the conformance checking stepotFeach class in
the code architecture, we created a component instance. Then, for each association ihe class diagram, we
created a connection between the corresponding components.

JHotDraw's architecture posed another challenge. From a previous study, we knewhat a Drawing was
actually implemented as aFigure , contrary to the as-designed code architecture|1]. So the OOG, and thus by
transformation, the as-built view, represented both Drawing and Figure with one runtime component. Had
we modeledDrawing and Figure as separate in the as-designed view, the structural comparison would not
have detected the splitting or merging [6]. This led us to mergeDrawing and Figure into one DrawingFigure
component in the as-designed view.
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Figure 8: JHotDraw as-designed architecture documented in Acme.

Annotation Process. An often cited article discusses how JHotDraw follows the Model-View-Contrdler
design pattern [18]. The JHotDraw package structure does not reveal that factsince all the core types are
in the same package. We added annotations to JHotDraw without refactoring, ad organized objects into
the following domains [4]:

Model: consists of Drawing, Figure , Handle objects, etc. A Drawing is composed ofFigure s. A

Figure hasHandles for user interactions;

View: consists of DrawingEditor , DrawingView, etc.;

Controller: Tool , Commandnd Undoable objects. DrawingView uses aTool to manipulate the

Drawing.

Results.  ArchConf detected many renames and a few missing components, such as &mdoable in
Controller and an UndoManagerin Model Many connections, we thought to be unidirectional, such as
between componentsDrawingView and DrawingEditor , turned out to be bi-directional (Fig. 10J.

There was however one big surprise: there were no callbacks froModel into Controller ! In the base
MVC pattern, a controller registers itself with the model and receives noti catio ns. Since there is no controller
component, we suspected that the view acts also as controller, a common implemtation optimization.
Indeed, in the JHotDraw \CRC Cards View", the designers mention that DrawingView \handles input
events" [13, Slide #10], a controller responsibility.

We looked more closely at the as-built C&C view and noticed a connection betweeiidandle in Model
and Undoable in Controller . But since Undoable did not connect to Tool, the conformance check did not
add a summary connector betweerHandle and Tool. This example justi es the need for richer conformance
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Table 2: JHotDraw conformance metrics.
System CN |[DN |[AN |CE |DE |AE | SE | CCM
JHotDraw 9 8 0 23 | 49 0 | 72| 32%
JHotDraw (no summaries) 9 8 0 16 | 7 0 0 70%

metrics that re ect the entire as-built view and not just divergences

In fact, the as-designed architecture focused on thelomain model and ignored the application model
which includes UndoManagerand Undoable. These components are a later addition, part of a somewhat
independent subsystem to implement undo, not mentioned in the documentation

Metrics.

The low CCM indicates a large proportion of divergences and absences (Tablé 2). Thisas to

be expected because of how we obtained the as-designed view. Moreover, the as-designed v#emissing
several top-level components, in each of the tiers
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5.5 Extended Example: HillClimber

HillClimber is a 15,000 line Java application that was originally develbped by undergraduates. HillClimber
is interesting because it uses a framework, and its architectural structure had degded over the years[[2].

As-Designed Architecture. We based the as-designed HillClimber architecture on available documen-
tation. In HillClimber, the application window uses acanvasto display nodesand edgesof a graph to show
the output of a computational engine Based on a hint from one of the original framework developers, we
posited that the engine component need not connect towindow or canvas.

Annotation Process. The ownership annotations organized objects into adata domain to store the
graph, a ui domain to hold user interface objects, and dogic domain to hold the engine, search objects,
and associated objects. While adding annotations to HillClimber, we refactoed the code to reduce coupling
betweenui and data objects [2]. The refactoring however did not a ect the relationships between object in
the logic and ui tiers.

Results.  The conformance check con rms thatengine connects to both window and canvas, contrary to
the as-designed architecture (Fig[Ih).

Metrics.  The CCM is high since very few edges were a ected (Tabl€]l3). The high node divergence is due
to an as-designed view that has fewer elements at the top-level than the as-built view. Theeveloper must
either enrich the as-designed view by representing additional components in théogic tier, or re ne the
annotations to push more components in thelogic tier into engine's substructure.
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Table 3: HillClimber conformance metrics.
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Figure 13: HillClimber as-built view.
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Figure 14: HillClimber conformance results.

6 Limitations

We discuss some limitations of the approach.
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Annotations. Ownership inference is a separate problem and an active area of ongoing research [2@)].
Previous ownership inference techniques can infer encapsulated objects in private domainsich unaliased
objects [25]. But they do not infer public domains, do not infer domain parameters [25)or infer too many
parameters. So we used medium-sized programs under 50KLOC that we annotated manually.

Until there are better tools for adding annotations, our approach does not have he characteristic of
Re exion Models that third-party users can easily run on large bodies of code [33]As a result, a study with
an outside developer would be di cult given the nature of the approach. It may take a novice participant a
least a week to learn the technique, add the annotations mostly manually, and applyhe rest of the approach
on a medium-sized system.

Architectural Extraction. The extracted C&C view is an approximation of the actual execution struc-
ture, one that is conservative and may show more communication than any systenexecution may have, by
virtue of using a sound static analysis. Our evaluation indicates that the extracted architectures do not
su er from too much or too little abstraction [4]. However, our approach handles neither heterogeneous or
distributed systems, nor dynamic architectural recon guration [34].

Structural Comparison. If the views are very di erent, the structural comparison may fail to match any
components in the as-built view to the as-designed view. In that case, the comparisowill not be useful
since all components will be absences. One can then manually match the as-built and thes-designed view
elements at the cost of additional e ort. Finally, the algorithm is quadrati ¢ in the view sizes. So, while it
scales to up to a few thousand nodes [6], very large architectures may be intradsée.

7 Related Work

Hierarchical Views. Re exion Models (RM) uses non-hierarchical high-level models and maps. Koschke
et al. extended RM with hierarchical models [22]. The OOG is hierarchical and so is thas-built C&C view.

Edge Lifting. Many approaches that handle hierarchical models also account for substructure by liing
edges [22]. For example, in a code architecture, a summary edge is lifted from a funeoh call to a module
[39]. We use edge lifting in several places. By construction, an OOG lifts objectalations from child objects
to their parents. Converting an OOG to a C&C view also lifts some relations.

For example, an OOG can have an edge fronDisplayer to Nodeinside Circuit 's public domain DB
But the C&C view lifts that relation to circuit and shows a connector fromDisplayerto circuit.

Transitive Relations. Ommering et al. create a second module view that displays the transitive closure of
a relation in one module view [39]. We compute the transitive closure of olgct relations, in the conformance
view, and show them as summary connectors. Such a connector summarizes several connected olsjedgth
an edge. Similarly, when converting an OOG into a C&C view, we may add transitive edges to account for
elided private domains.

Automated Mapping. Koschke et al. proposed semi-automated clustering algorithms to build an RM
map [9]. In an evaluation on a code architecture, the engineer spent signi cant e ot to derive a good
partial mapping, and ne-tune the clustering parameters. An automated clustering may not always derive
an architecture that is structurally comparable to a manually generated one. Our Aphyds evaluation showed
how crucial that can be for a meaningful conformance check (21% vs. 57% CCM in Tabl1).

Although better algorithms are needed, ownership annotations are amenable to typ&éference [25]. With
precise and scalable inference tools, we believe our approach can scale to largstems.
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Graph Comparison. Few conformance checking approaches compare the as-built and the as-designed
view using a structural comparison. For instance, RM assumes that node names and optial token types
match exactly. Unigue node identi ers simplify the graph comparison considerably[11]. But without that
assumption, our analysis can detect renames between the as-built and the as-designed viewshis feature
ensures that the conformance check is not sensitive to object labels. For example, abject in the OOG
merges several eld or variable declarations in the program. Each object referendhat the program declares
could have a di erent name or type. And the OOG nondeterministically selects a label fora given objecto
based on the name or the type of one of the object references thatrepresents.

Code Architecture. Several approaches capture various structural constraints on the code architecture.
Sangal et al. enforce constraints on a module view using package dependency rules [35¢ij$-et al. check
rules such as cycles [12] in a code architecture. Lague et al. compute metrics that conmeathe layers in the
as-designed and the as-built code architectures [23]. Our approach is complementary,cigses on the runtime
architecture, and computes metrics to relate the as-designed and the as-built runtime ahitectures.

Architectural Recovery. No previous technique recovers a hierarchical runtime view from a program in
a general purpose language, entirely statically. Most approaches use a mix of dgmic and static analysis.
As mentioned earlier, a dynamic analysis cannot prove that a program alwaysatis es a particular property.
Our approach relies on machine-checkable ownership annotations, which enable it to sodly approximate
the runtime instance structure, at compile-time.

In many approaches, the architectural abstraction is based on information gch as directory structures,
naming conventions, or various clustering algorithms [19], which take paameters that a developer can adjust.
In our approach, a developer nely controls the abstraction with user-speci ed annotatons. When we convert
an OOG into an as-built C&C view, we exploit features such as the ownership hierarch and the semantic
distinction between private and public domains. In ARMIN, scripts can aggregate information, usually based
on naming conventions, and produce higher-level views [20]. Currently, merging orplitting OOG objects
into as-built C&C view components requires user interaction. More general user absgction rules, similar
to ARMIN, could be added in future work.

Language Solutions. Language-based solutions enforce conformance to a runtime architecture using a
type system [8]. Similarly, the C2 ADL mandates a speci c architectural framework [29]. But without
following style guidelines, developers can still introduce architectural vioations.

Conformance By Design. Generating an implementation from an architecture guarantees initial con-
formance [32]. Maintaining conformance requires always changing the speci caih then re-generating the
implementation from the updated speci cation. Such approaches are often too resictive and do not handle
legacy code. Our post-hoc conformance checking handles legacy systems.

Object Graphs. Several analyses extract non-hierarchical object graphs statically without annotaions
[16]. Such an object graph does not convey architectural abstraction, and cannot be awerted into an
as-built view that is structurally comparable to an as-designed view.

Several dynamic analyses infer hierarchical object graphs without using annotationslp], but their results
describe only the structure for those program runs. They also adopt a restrictiveform of ownership. In
ownership domains, an annotation can push almost any object underneath any other gbct in the ownership
hierarchy. This expressiveness is crucial to avoiding an architecture with manybjects in the top-level tiers.
Our evaluation showed how crucial that can be for a meaningful conformance check.

Lam and Rinard proposed a type system and an analysis (which we call LR)hat uses non-ownership
annotations to extract a design from code [24]. LR extracts non-hierarchical olgct graphs that do not
convey architectural abstraction. For Aphyds, LR would produce an object graph wih even more top-level
objects than Fig. 4(a).
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Dynamic Analyses. DiscoTect [36] recovers from a running system an as-built C& view with archi-
tectural types. DiscoTect does not require annotations, but its results re ect only the particular inputs
and exercised use casediscoTect generates non-hierarchical C&C views that show one component for
each instance created at runtime. Our OOG extraction and OOG-to-C&C conversion produce hierechical
as-built views that represent all possible program runs, as long as the annotadtihs typecheck. DiscoTect
does not check the conformance of the extracted views. The rest of our approach could agpio C&C views
produced by DiscoTect

Even though the cost of adding annotations is high, it is incurred once. In contrast, he cost of a dynamic
analysis is incurred each time the analysis is run. The annotations can remainhte program, and evolve with
it. As the developers add new code or modify existing code, they can incrementally add annations to the
new code, and ensure that the annotations still typecheck.

View Synchronization. Our conformance analysis specializes our view synchronization work [6]. The
key changes include processing the view di erences asymmetrically (Section 4) and computing imrmance
metrics. For instance, even though the structural comparison detects renames, the conforance analysis
rolls back the detected renames, to represent additional communication in the as-built iew in terms of the
as-designed view.

The hierarchical data used by the structural comparison now includesGrougs, i.e., a Componentor
a Connectoris a child of its owning Group This extra level of hierarchy improves the precision of the
comparison, and enables it to distinguish better between theConnectos within a given tier (which would
belong to the sameGroup and the ones that cross tiers (which would not be inside aGroup.

8 Conclusion

We presented a semi-automated approach for statically checking the conformanceebween an as-designed
and an as-built runtime architecture. The approach found interesting structural non-conformities in several
real systems.

The approach uses annotations, supports existing object-oriented languages and dgss, and does not
require language extensions or implementation frameworks.

Acknowledgments. Larry Maccherone, William Scherlis and Mary Shaw gave us helpful advice on the
approach. Nenad Medvidovic and Brad Myers gave us helpful comments on earlier dradtof this paper.
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