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Abstract 
 

The Link Probability Model (LPM) can be used as an alternative to Exponential Random 
Graph Models (ERGM) to simulate network data.  The LPM characterizes the networks 
in terms of link probabilities based on historical frequencies.  In this paper, the LPM is 
presented, compared and contrasted with the ERGM.  The relative utility of the two 
approaches is examined by applying both to four longitudinal data sets.  The relative 
strengths and weaknesses of the two approaches in terms of data requirements, scalability, 
and assumptions are described. 
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Introduction 

Social networks often exhibit stochastic behavior.  For example, an agent in a network might 
communicate with a friend several times during a given day and not at all during another day.  In 
this example, the underlying relationship remains the same; however, the observed network ties 
fluctuate.  This is an intuitive example, however the accuracy of observed network data has been 
well documented in the literature (Killworth, et al, 1976, 1979; Bernard, et al, 1977, 1980, 1982; 
Krackhardt, 1990; Kashy and Kenny, 1990; Wasserman and Faust, 1994).  Furthermore, it is 
possible that the underlying relationships in a social network may change (Carley, 1991; Doreian 
and Stokman, 1997; Snijders, 2007).  This relatively common behavior will also cause 
fluctuations in observed network data.  Therefore statistical models of social networks are 
necessary for any kind of meaningful inference on network data. 

 
A necessary prerequisite for statistical inference of social networks is an underlying 

probability structure for the presence of links in the network.  Detecting changes over time, 
comparing multiple networks, or evaluating a wide range of potential hypothesis all depend upon 
a method to estimate the probability of links occurring in an observed network.  Several 
statistical models have been proposed.  The p* model was introduced by Frank and Strauss 
(1986).  This model describes the distribution of a Markov random graph.  Many others have 
contributed to developing this family of models (Strauss and Ikeda, 1990; Wasserman and 
Pattison, 1996; Anderson, et al, 1999; Wasserman and Faust, 1994), especially in the area of 
parameter estimation.  A common approach to describe the link probability is the Exponential 
Random Graph Model (ERGM) (Krackhardt, 1998; Handcock, 2002, 2003; Hunter, 2006; 
Goodreau, 2007; Robins, et al, 2007; Hunter, et al, 2008).  The ERGM is based on a regression 
of structural variables in the network that may explain the probability of links occurring in the 
network.  Several have used the ERGM to simulate many instances of a given network and then 
estimate statistical properties of various network measures (Handcock et al, 2006, 2007, 2008; 
Handcock, 2008).  I introduce an alternative approach with the Link Probability Model (LPM) 
that uses the historical presence of links to estimate the link probability.  I demonstrate both 
simulation approaches on a range of empirical data and show that for a limited number of 
longitudinal data sets, the LPM provides a better fit to the data than the ERGM. 
 

The ERGM is a family of statistical models that describe the probability of a link being 
present between two nodes and is a common statistical model for social network analysis.  The 
models are based on logistic regression, where model terms are usually structural variables in the 
network.  The model is used to explore statistically significant properties of networks.  The 
ERGM notation is also flexible, allowing it to represent a wide range of network variables.  
Unfortunately, many ERGM models are degenerate, meaning that observed data might be highly 
improbable given the model (Handcock, 2003, 2002).  The ERGM is not typically used for over-
time network analysis, however Mark Handcock presented an application of the ERGM for 
simulating networks at the 28th Sunbelt Conference (2008).   

 
The Link Probability Model (LPM) is not a statistical model, but rather a matrix of 

probabilities of a link being present between ordered pairs of nodes.  The LPM is estimated from 
longitudinal networks based on the frequency of links being present over time.  The LPM avoids 
issues of model degeneracy because the model is not dependent upon highly correlated terms and 
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there are more data points than parameter estimates.  The LPM is particularly useful for our 
application, because we are only interested in modeling over-time data. 

 
First, I briefly review the ERGM.  Then the LPM is described and presented as an 

alternative model to the ERGM.  Then the LPM and ERGM are both used to model four data 
sets: the Sampson (1969) Monastery data, the Newcomb (1961) Fraternity data, and then two 
sets of data from Fort Leavenworth (Graham, 2005; Baller, et al, 2008).  These are four 
interesting data sets because they all have a temporal component and have been well documented 
in the literature.  The fit of each of these models is compared to the data.  I find that the ERGM is 
degenerate for the Fort Leavenworth data and that the LPM provides a better fit in the other two 
data sets under certain conditions. I conclude by discussing the strengths and limitations of LPM 
and its general usefulness to network analysts.   
 
 
Exponential Random Graph Model 
 

The ERGM is used in social network analysis as a statistical model that enables an 
analyst to conduct inference on dependent relational data (Goodreau, 2007; Robins, et. al., 2007).  
The ERGM is therefore less restrictive than the Holland and Leinhardt (1981) p1 model that 
assumed dyadic independence.  In many social network applications the relationship between 
two individuals depends on relationships between the individual and others in the network; 
cognitive limits on the number of relationships that can be maintained; similarity between 
individuals; and more.  The ERGM framework for relaxing the dyadic independence assumption 
is thus essential for accurate inference in many data sets.   
 

Exponential random graph models (ERGM) have been studied a great deal in the 
literature as a model for the probability of links occurring in a social network.  The ERGM was 
first proposed in 1986 (Frank and Strauss) as a very general model.  The ERGM can thus be used 
to model a wide range of explanatory variables.  The basic ERGM is given by, 
 

)()()( 2211 yggygYP kkθθθ +++∝   (1) 
 
where Y is a graph, θ‘s are model coefficients, and g(y) is a covariate or term in the model. 
Covariate terms are general and can represent many features of a graph.  These terms are often 
structural properties of the graph such as the number of links, dyadic relations, and transitive 
properties, among others. 
 

Estimating ERGM terms and parameters can be computationally challenging in large 
networks (Snijders, 2002; Pattison and Robins, 2002).  Markov chain Monte Carlo estimation of 
ERGM has been used to fit these models to data (Goodreau, 2007; Robins, et. al., 2007; 
Handcock, 2003, 2002; Snijders, 2002; Pattison and Robins, 2002).  The Markov dependence in 
these models leads to problems of degeneracy, which is discussed in detail by Handcock (2003, 
2002).  Essentially, model degeneracy occurs when the observed data is almost impossible under 
the specified model.  This often occurs when explanatory terms are highly correlated and there is 
insufficient data to construct an appropriate model.  Many of the terms used in ERGM are 
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correlated and it is difficult to define enough terms to preclude networks that do not represent the 
data, when they spuriously satisfy the ERGM terms.  Several advances in ERGM have been 
proposed to include curved exponential family models (Hunter and Handcock, 2006) and 
neighborhood models (Pattison and Robins, 2004).  However, these advances have not 
completely removed issues of model degeneracy. 
 
 
Link Probability Model Formulation 
 

The LPM framework for viewing the probability space of a social network avoids issues 
of model degeneracy, while preserving flexibility for modeling dyadic relationships.  It provides 
researchers with an improved means to understand the probability space of the network, under 
certain conditions.  The LPM is a square matrix where the rows and columns correspond to the 
nodes in a social network.  The entries are the link probabilities of the directed link from the row 
node to the column node.  This is not to be confused with an adjacency matrix, where the entries 
are either zero or some number representing the strength of a relationship between nodes.  The 
link probability is a number between 0 and 1, and determines the likelihood of a link being 
present in an observed adjacency matrix.    
 

The link probabilities can be derived from empirical data in several ways.  Given network 
data collected over multiple time periods on a group of subjects, the link probabilities can be 
estimated by the proportion of link occurrences, lij, for each cell in the adjacency matrix, aij.  In 
the case of communication networks, statistical distributions can be fit to the time between 
messages for each potential link in the network.  For a specified period of time, t, the link 
probability p for each set of entities i and j can be found. Let xij be the time between messages in 
a communication network.  The probability density function for any x can then be defined as fij 
( x | θij ), where θij  is the set of parameters for the density function.  Then, the probability, p, of a 
link occurring within some time period t is the probability that x < t, which can be expressed as,  

 

   (2) 
 

In practice, the function fij ( x | θij ) must be estimated using techniques such as maximum 
likelihood estimation from empirical data collected on the group being studied. It may be 
desirable to construct a network based on a restriction such as, “two emails within a time period 
demonstrate a relationship, but one does not.” In this case, it is necessary to compose a function 
of random variables. If hij (2 | t, θij ) represents the probability density function of time between 
two sets of two emails and fij ( x | θij )  represents the probability density function of time between 
one set of two emails, then the following is true under certain assumptions: 
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It is possible to generalize this idea; if hij (x | t, θij ) is the probability that x or more 
communications occur within time t, then the following is true: 
 

  (4) 
 

The LPM is an important improvement over some traditional models.  Individuals in a 
social network are not connected to other individuals with uniform random probability.  The 
probability structure is much more complex.  Intuitively, there are some people whom a person 
will communicate with or be connected more closely than others.  In a study of email 
communication conducted at the U.S. Military Academy (McCulloh et al, 2007) one subject 
emailed his wife more than ten times per day on average, while other people that he worked with 
received an email from him once or twice per month.  For this reason, real-world networks tend 
to have clusters or cliques of nodes that are more closely related than others (Newman, 2003; 
Topper and Carley, 1999; Carley, 1996).  This can be simulated by varying the probabilities that 
certain nodes will communicate.  In this way, stochastic behavior in dynamic social networks can 
realistically be simulated. 
 

The LPM is a desirable model due to its ability to accurately model empirical data and its 
ability to avoid degeneracy.  The accuracy of the LPM will be discussed in the Results section.  
The LPM can avoid issues of model degeneracy because the only parameters for the model are 
the link probabilities.  As long as there are at least two time periods for estimating parameters, 
there are more data points than there are parameters.  Each link is treated independently of other 
links in the model; therefore, none of the terms are correlated.  The naïve assumption of 
independence between links is corrected by the historic presence of links over time.  Intuitively, 
links have some dependence.  For example, if an individual chooses to communicate with 
another, the likelihood of that person reciprocating the communication increases.  If we assume a 
dynamic equilibrium in the underlying relationships of individuals in the network, these patterns 
of dependent communication will be apparent over time.  If node i has a high link probability 
with node j, it may be likely that node j has a reciprocal high link probability with node i. It is 
not necessary to directly account for this in the model.  If the relationship is true, there will be a 
high expected occurrence of i to j and j to i links in the networks over time.  The LPM will model 
these links with high link probability due to their over time frequency, and not directly from their 
structural dependency.  In this way, the LPM can never be over specified, have high variance 
inflation, or be degenerate.  Thus, the LPM may provide an attractive alternative to the ERGM 
for modeling longitudinal degenerate networks. 
 
Data for Comparison 
 

Four data sets are used to demonstrate the efficacy of the LPM.  The first and second are 
longitudinal data sets that are well established in the SNA literature, namely the Sampson (1969) 
Monastery data and the Newcomb (1961) Fraternity data.  The third and fourth data sets are 
larger in size.  For the reader’s convenience, Table 1 summarizes the similarity and difference 
among the data sets. All four are explained in more detail. 

 

xt
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Table 1. Data Summary. 
 

Name of data set Monastery Fraternity Leavenworth ‘05 Leavenworth ‘07 
Author Sampson Newcomb Graham Schrieber 
Number of nodes  18  17  156  68 
No. of time periods  3  15  8  9 
Method of collection Observation Survey Survey& 

Observation 
Survey 

Link weight Dichotomous Weighted Dichotomous Dichotomous 
Link Relationship Interpersonal 

relationship 
Preference 

ranking 
Self Reported 

Communication 
Self Reported 

Communication 
Change in density 0.17974- 

0.18301 
0.50000- 
0.50000 

0.01431- 
0.02906 

0.04473- 
0.04628 

Change in average 
betweenness 

0.05556- 
0.05556 

0.33574-
0.41176 

0.00880-  
0.00994 

0.02009-  
0.01909 

Change in average 
closeness 

0.40158- 
0.02485 

0.66510-
0.39859 

0.03759-  
0.05172 

0.05739-  
0.08186 

Change in average 
eigenvector cent 

0.23428- 
0.23247 

0.79907-
0.74891 

0.23591-  
0.22963 

0.2125- 
0.22243 

 
 
The first data set was collected in a monastery by Samuel F. Sampson (1969).  The 

participants included 18 monks, and data was recorded on their interpersonal relationships.  This 
is a directed network, where relationships are not necessarily reciprocal.  Data was collected over 
three time periods, representing the time in which a new cohort joined the monastery.   
 

The second data set was collected by Theodore Newcomb (1961) at the University of 
Michigan.  The participants included 17 incoming transfer students, with no prior acquaintance, 
who were housed together in fraternity housing.  The participants were asked to rank their 
preference of individuals in the house from 1 to 16, where 1 is their first choice.  Data was 
collected each week for 15 weeks, except for week number nine.  The relational data recorded 
between agents were ranks.  Both the ERGM and LPM require dichotomous networks to 
construct a model.  I chose to adopt the binarization scheme proposed by David Krackhardt 
(1998).  He dichotomized the network data by assigning a link to preference ratings of 1-8 and 
having no link for ratings of 9-16.  Krackhardt also fit an ERGM to the Newcomb Fraternity data 
which will be used for comparison with the LPM. 
 

The third data set was collected from an Army war fighting simulation at Fort 
Leavenworth, Kansas in 2005, by Craig Schreiber and Lieutenant Colonel John Graham.  The 
participants were mid-career U.S. Army officers taking part in a brigade level staff training 
exercise.  This data set contains 156 individual agents that were monitored over the course of 
four and a half days.  Data consists of communication ties between individuals as measured from 
self reported communications surveys. Surveys were completed at the end of each morning and 
at the end of the day before the officers went home.  Therefore there are nine longitudinal time 
periods.  
 

The fourth data set was also collected from an Army war fighting simulation at Fort 
Leavenworth, Kansas by Craig Schreiber; this time in April, 2007.  There were 68 participants in 
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this data set, who served as staff members in the headquarters of the brigade conducting a 
simulated training exercise.  The data contains the communication between agents in the network 
which were collected through self reported communications surveys.  Data was collected over a 
period of four days, twice per day.  Thus, there were eight time periods. 

  
 

Method of Comparison 
 

The ERGM and LPM are investigated for their strengths and weakness in modeling 
longitudinal data.  For the Sampson (1969) Monastery data, I use the ERGM that was fit to the 
data by Hunter et al (2008).  The Akaike Information Criterion (AIC) is 302.61 and the Bayesian 
Information Criterion (BIC) is 436.65.  The Hunter (2008) ERGM of the Sampson (1969) data 
was chosen for this study based on its more favorable AIC and BIC compared to other models 
found in the literature.  I feel that this model is therefore an appropriate benchmark for 
comparison with the LPM.  An ERGM is also fit to the Newcomb (1961) fraternity data.  Again, 
I have chosen an ERGM accepted in the literature; this time the model proposed by Krackhardt 
(1998).  An LPM is fit to both the Sampson and Newcomb data sets.  Monte Carlo simulation is 
used to generate instances of the Sampson Monastery social network and the Newcomb 
Fraternity social network under the ERGM and LPM.  In addition, an LPM is also fit to the two 
Fort Leavenworth data sets (Graham, 2005; Baller, et. al., 2008).  For the two Fort Leavenworth 
data sets, the ERGM was degenerate.  The ERGM were not degenerate for the Sampson or 
Newcomb data sets.  The LPM is successfully used to model all data sets. 
 

A distance measure is required to compare the similarity between the dichotomous 
networks generated using the ERGM, the LPM, and the empirical data.  Hamming distance 
(1950) evaluates a distance between dichotomous networks.  If the data were weighted networks 
and the models generated weighted networks as well, then a Euclidean distance would be 
appropriate.  The quadratic assignment procedure (QAP) (Krackhardt, 1987b) could be used to 
compare the correlation between networks; however, we focus on network distance, because we 
intend to demonstrate that the LPM can generate simulated models that are very similar to the 
original networks in terms of actual distance and not simply a structural isomorphism.   

 
The ERGM and LPM are evaluated on how well they model empirical data using a t-test.  

I illustrate the method with the Sampson Monastery data.  Let the three networks in the 
Monastery data be labeled N1, N2, and N3.  An ERGM is used to simulate networks and they are 
labeled E1, E2, E3, … E100,000.  The LPM is also used to simulate networks and they are 
Labeled L1, L2, L3, … L100,000.   The Hamming distances are calculated between each 
empirical data set to every simulated ERGM network and I use the following notation, 

 
DistERGM,1,1 = Hamming(N1,E1) 
DistERGM,1,2 = Hamming(N1,E2) 

… 
DistERGM,i,j = Hamming(Ni,Ej) 

… 
DistERGM,3,100000 = Hamming(N3,E100000). 
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The Hamming distances are also calculated between each empirical data set and every simulated 
LPM network and its notation is given by, 
 

DistLPM,i,j = Hamming(Ni,Lj). 
 
The Hamming distances are calculated between each empirical data set and every other empirical 
data set and its notation is given by, 
 

Distempirical,i,j = Hamming(Ni,Nj), where i ≠ j. 
 
This last set of Hamming distances are a measure of noise or observation error inherent in the 
data. 
 
 The ERGM and LPM are compared using a two-sample T-test between the Hamming 
distances from the empirical network, Ni, and all of the simulated networks from the ERGM and 
the LPM.  The test statistic is given by, 
 

 
 
where, 
 

 
 

 
 
and SP,i is the pooled standard deviation between the ERGM and LPM Hamming distances 
(Montgomery, 1991).  This is repeated for each time period, i. 
 

Results 
 

An ERGM was fit to the Sampson (1969) Monastery data according to the model 
specification laid out by Hunter, et. al. (2008).  Four model terms were used: links, sender, 
receiver, and mutual.  A summary of the model fit is shown in Table 2.   
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Table 2. Fit Summary for Sampson ERGM. 
 

Model Parameter Coefficient Standard Error MCMC S.E. p-value 
Links -2.5131 0.3361 0.005 0.0000 
sender2 -0.7356 0.6854 0.015 0.2842 
sender3 -0.2146 0.7274 0.017 0.7682 

… output edited for length … 
receiver17 -1.2015 0.8191 0.018 0.1436 
receiver18 -1.0562 0.7193 0.015 0.1432 
Mutual 3.6816 0.6731 0.011 0.0000 

 
 
The Hamming distance from each of the three empirical data sets to each of the ERGM 

simulated networks was calculated.  The Hamming distance from each of the empirical data sets 
to each of the LPM simulated networks was calculated.  The mean and standard deviation of 
these Hamming distances are displayed in Table 3.  A two-sample t-test for each time period 
illustrates that the networks simulated using the LPM have a smaller average hamming distance 
to the empirical data sets than the networks simulated using the ERGM.  This indicates that the 
LPM models the Sampson data more accurately than the ERGM model. 

 
Table 3. Sampson Data Hamming Distances and T-test for ERGM and LPM. 

 
 

 
Time 

Period 

 
μERGM,i 

ERGM 
Hamming 
Distance 
Standard 
Deviation  

 
μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation  

 
 
 

Ti 
t-test 

 
 
 
 
p-value 

1 98.70   5.6970 27.67 3.5922 39.43 0.0006 

2 99.10 6.2263 24.99 3.5935 37.64 0.0007 

3 103.70 6.2902 24.66 3.5945 39.74 0.0006 
 

 
The Newcomb (1961) Fraternity data was also fit with an ERGM.  Three model terms 

were used: mutual, Simmelian ties, and balance.  A summary of the model fit is shown in Table 
4.  The AIC is 308.93 and the BIC is 319.75, which are more favorable than similar variations of 
the ERGM.   

 
Table 4. Fit Summary for Newcomb ERGM. 

Model Parameter Coefficient Standard Error MCMC S.E. p-value 
Mutual -1.5745 0.2304 0.0070 0.0000 
Simmelian Ties 0.6581 0.0006 0.0001 0.0000 
Balance 0.2333 0.0364 0.0010 0.0000 
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The Hamming distances from each of the fourteen empirical data sets to each of the 
ERGM simulated networks and each of the LPM simulated networks were calculated.  The mean 
and standard deviation of these Hamming distances are displayed in Table 5.  A two-sample t-
test for each empirical data set illustrates that the networks simulated using the LPM have a 
smaller average hamming distance to the empirical data sets than the networks simulated using 
the ERGM.  This indicates that the LPM models the Newcomb fraternity data more accurately 
than the ERGM model. 
 

Table 5. Newcomb Data Hamming Distances and T-test for ERGM and LPM. 

Time 
Period μERGM,i 

ERGM 
Hamming 
Distance 
Standard 
Deviation  μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation  

Ti 
t-test p-value 

1 139.7 8.3938 91.9 5.1913 18.0147 0.0353 

2 138.9 8.1847 75.1 5.2128 24.6573 0.0258 

3 137.3 8.2872 48.3 5.2226 33.9732 0.0187 

4 135.5 9.3363 49.7 5.2340 29.0460 0.0219 

5 134.1 8.9870 50.1 5.2319 29.5558 0.0215 

6 136.3 8.5251 45.5 5.2440 33.6983 0.0189 

7 133.9 9.0609 47.3 5.2397 30.2202 0.0211 

8 134.1 7.2946 51.9 5.2591 35.6377 0.0179 

10 133.7 5.1865 64.2 5.2223 42.3990 0.0000 

11 132.7 6.0562 53.4 5.2074 41.4119 0.0006 

12 136.3 8.4466 51.1 5.2147 31.8930 0.0200 

13 134.9 9.0117 46.6 5.2311 30.9989 0.0205 

14 133.9 5.4457 46.1 5.2230 50.9574 0.0000 

15 133.1 5.7242 47.2 5.2378 47.4518 0.0004 
 
 

The LPM is further investigated using the Fort Leavenworth data.  ERGM’s with only a 
single term were found to be degenerate for several common parameter choices; therefore, they 
are not included in the analysis of this section.  For both of the Fort Leavenworth data sets, the 
Hamming distance between the simulated LPM networks and each empirical network, DistLPM,i,j 
= Hamming(Ni,Lj), was compared to the Hamming distance between each empirical network to 
the other empirical networks within the data set, Distempirical,i,j = Hamming(Ni,Nj), where i ≠ j.  
Two-sample t-tests were used to determine if there was a significant difference in mean 
Hamming distance between the empirical networks and the LPM.  The t-tests were properly 
adjusted for heteroscedasticity and unequal sample sizes.  Table 6 displays the Hamming 
distances and the results of the two-sample t-tests for the 2005 Fort Leavenworth data, and Table 
7 displays this information for the 2007 Fort Leavenworth data.  In all cases the Hamming 
distance is less for the LPM.  The low p-values show a statistically significant difference in mean 
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Hamming distance of the empirical to empirical comparison versus the LPM to empirical 
comparison.  Additionally, since 0,, >− iLPMiemperical µµ  it is shown that the simulated LPM 
networks have, on average, less Hamming distance from each of the empirical data sets than the 
empirical data sets have from each other.  This means that networks generated using the LPM are 
closer to the original data than the observed empirical networks are to each other.  While the t-
tests for 2005 Fort Leavenworth time periods 6, 8, and 9 are only marginally significant, they 
have the same positive trend as the other 14 empirical networks in the 2005 and 2007 data sets. 

 
Table 6. 2005 Fort Leavenworth Data Hamming Distances and T-test for LPM. 

Time 
Period μempirical,i 

Empirical 
Hamming 
Distance 
Standard 
Deviation μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation   

 
Ti 

t-test p-value 
1 1445.000 84.774 1284.338 23.747 3.467 0.001 
2 1394.750 67.487 1239.647 23.703 3.765 0.000 
3 1296.125 85.436 1151.946 23.671 3.287 0.001 
4 1315.875 153.533 1169.665 23.718 2.421 0.015 
5 1191.250 112.324 1058.990 23.667 2.732 0.006 
6 1204.875 207.944 1071.116 23.623 1.912 0.056 
7 1167.375 190.431 1037.713 23.695 1.980 0.048 
8 1159.625 204.465 1030.815 23.732 1.888 0.059 
9 1170.125 195.266 1040.142 23.618 1.953 0.051 

 
 

Table 7. 2007 Fort Leavenworth Data Hamming Distances and T-test for LPM. 

Time 
Period μempirical,i 

Empirical 
Hamming 
Distance 
Standard 
Deviation μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation   

 
Ti 

t-test p-value 
1 409.286 38.560 358.094 12.775 3.755 0.00 
2 365.857 18.298 320.097 12.739 7.073 0.00 
3 365.857 29.043 320.164 12.793 4.450 0.00 
4 377.857 38.247 330.674 12.773 3.489 0.00 
5 375.286 36.100 328.377 12.796 3.675 0.00 
6 349.857 38.159 306.078 12.785 3.245 0.00 
7 373.857 48.451 327.073 12.826 2.731 0.01 
8 362.429 55.635 317.151 12.775 2.302 0.02 
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Discussion 
 

The LPM has been used to model longitudinal social network data for four different data 
sets.  In those data sets, the LPM generates simulated networks that are more like the original 
data than networks generated using the ERGM.  In addition, it is generally the case that the 
networks generated using the LPM are more similar to the original data than any prior time 
period.   The LPM avoids issues of model degeneracy due to its formulation.  The probability of 
link occurrence is based on the historic presence of links and does not use a Markov assumption 
or over specify a statistical model.  For these reasons, the LPM provides an alternative method 
for modeling and conducting longitudinal social network analysis. 
 

Monte Carlo simulations can be generated using the LPM.  Each cell, aij., in the LPM can 
be compared to a uniform (0,1) random variable to determine the presence of a link in a 
simulated adjacency matrix.  As demonstrated earlier, these simulated adjacency matrices are 
very similar to the empirical data as demonstrated by the low Hamming distance between 
simulated networks and empirical networks.  Statistical distributions can then be fit to any social 
network measures calculated on the simulated networks.  These statistical distributions can then 
be used for inference using traditional statistical methods.   
 

The LPM cannot be used in place of the ERGM in all situations, however.  Multiple 
networks are required to estimate the LPM for a given empirical data set.  The ERGM on the 
other hand, can be estimated from a single observed network.  The approach to adding and 
removing nodes is different for the ERGM and LPM.  For the LPM, a missing node would be 
included in the model with a 0 recorded for all column and row entries of the missing node.  
Finally, the LPM is formulated based on the assumption that there are fixed probability 
structures under-laying social networks that do not change significantly over time.  The observed 
social networks based on the LPM will fluctuate between time periods, but the general patterns 
of connections remain the same. Table 8 illustrates some differences and similarities between 
LPM and ERGM data requirements. 

 
Table 8. Comparison of LPM and ERGM. 

Data characteristics LPM ERGM 
Link weighting Dichotomous Dichotomous 
Number of links No limit Probability of degeneracy 

increases with number of links 
Min. no. time period 2 1 

Practical no. time period 5+ 1 
Assumed cause of 

stochasticity 
Dynamic equilibrium Evolves due to structural 

properties of the network. 
 

 
The LPM has several advantages over the ERGM for longitudinal social network 

analysis; however the ERGM has advantages over the LPM for other types of analysis.  Table 9 
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displays advantages and disadvantages of the LPM and ERGM models. The LPM requires 
multiple observed networks to estimate model parameters, where the ERGM can be estimated 
using a single observed network.  At a minimum, two observed networks are required to estimate 
an LPM, however, in practice; the variance of the estimate is proportionate to n/1 , where n is 
the number of observed networks.  We nominate five observed networks as a rule of thumb for 
fitting the LPM as most of the estimate variance is eliminated with this number.  The LPM is 
more computationally efficient than the ERGM.  The number of link probabilities for a network 
is quadratic with the number of nodes.  The LPM estimates are then linear with the number of 
observed networks.  The ERGM parameter estimates can be nn with number of nodes for each 
term.  Heuristics are often used to estimate ERGM model parameters.  In addition, the ERGM 
has problems with model degeneracy as previously discussed.  The LPM has been shown to 
provide a model that can be used to simulate data that is more similar to empirical data than data 
generated with ERGM simulations.   An additional benefit for the LPM is the ability to use link 
probabilities as dependent variables in regression models for homophily.  Homophily is an 
expression to describe the similarity between individuals in terms of certain attributes that the 
individuals have.  In more complex models, the parameters of link probability densities can serve 
as dependent variables in homophily regression.  Unfortunately, the LPM does not provide any 
explanation of likely structural causes for the stochastic behavior of networks.  Significant terms 
in an ERGM can be interpreted as the underlying mechanism for network evolution over time.  It  

 
Table 9. Advantages and Disadvantages of LPM and ERGM. 

Considerations LPM ERGM 
Required no. of 

observed networks 
Disadvantage: The LPM 

requires multiple observed 
networks to estimate the 

link probability of a 
network based on historic 
frequency of occurrence. 

Advantage: The ERGM 
requires only a single network 

Computational 
efficiency 

Advantage: The 
computational speed is 

quadratic with the number 
of nodes in the network. 

Disadvantage: The 
computational speed is nn 
which requires heuristic 
approximations of model 

parameters. 
Model quality Advantage: Stable and 

consistent model estimates. 
Disadvantage: Prone to 

degenerate models. 
Accuracy to real data Advantage: Shown to more 

closely resemble empirical 
data as measured by 
Hamming distance. 

Disadvantage:  Has not been 
shown to consistently model 
empirical data accurately as 

measured by Hamming 
distance. 

Explanation of social 
dynamics 

Disadvantage: Does not 
attempt to explain 

underlying social dynamics 
of the group or organization. 

Advantage: Model terms can 
be interpreted as underlying 

mechanisms for social 
dynamics within the modeled 

group or organization. 
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may be possible to develop similar explanations of behavior through future research in 
homophily regression using the LPM.  Further research is needed on both the ERGM and the 
LPM to illuminate strengths and limitations.  In the interim, there is strong evidence to suggest 
the use of the LPM whenever degeneracy is a problem among ERGM’s, or when the goal is to 
estimate the normal behavior of a social group that is in dynamic equilibrium. 

 
Another important area for future research is network periodicity.  Intuitively, social 

networks are subject to periodic trends.  An average person’s communication patterns may be 
different during the week, while they are at work, than during the weekend, when they are at 
home with their family.  Future research will hopefully expand both the LPM and ERGM to 
handle periodic trends in longitudinal data.  It will be interesting to compare the performance of 
the LPM and ERGM for modeling time dependent longitudinal social network data sets.   
 

This paper has introduced the Link Probability Model (LPM) for longitudinal social network 
analysis.  The primary strength of the LPM is its ability to accurately model longitudinal network 
behavior with better goodness of fit than competing models.  The LPM also avoids issues of 
model degeneracy due to the method of its construction.  Finally, the LPM is more 
computationally efficient than the ERGM for both estimation and simulation.  Using the LPM, 
accurate simulation of longitudinal social network data can be performed.  This opens the door 
for researchers to explore an entirely new approach for inference on social networks.   
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