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Abstract

In an effort to improve security by preventing users from picking weak passwords,
system administrators set password-composition policies, sets of requirements that
passwords must meet. Guidelines for such policies have been published by various
groups, including the National Institute of Standards and Technology (NIST) in
the United States, but this guidance has not been empirically verified. In fact, our
research group and others have discovered it to be inaccurate.

In this thesis, we provide an improved metric for evaluating the security
of password-composition policies, compared to previous machine-learning
approaches. We make several major contributions to passwords research. First,
we develop a guess-calculator framework that automatically learns a model of
adversary guessing from a training set of prior data mixed with samples, and
applies this model to a set of test passwords. Second, we find several enhancements
to the underlying grammar that increase the power of the learning algorithm and
improve guessing efficiency over previous approaches. Third, we use the guess-
calculator framework to study the guessability of passwords under various policies
and provide methodological and statistical guidance for conducting these studies
and analyzing the results. While much of this thesis focuses on an offline-attack
threat model in which an adversary can make trillions of guesses, we also provide
guidance on evaluating policies under an online-attack model, where the user can
only make a small number of guesses before being locked out by the authentication
system.
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Chapter 1

Introduction

There are three actors that we can consider in the password-authentication
ecosystem. There are users who create passwords, adversaries who want to
impersonate users, and system administrators who try to block adversaries and
protect users’ passwords. Among the tools that system administrators have at
their disposal are password policies. Password policies are sets of constraints on
passwords, e.g., that they must contain a number or will expire every 90 days.

A subset of password policies are password-composition policies,! which are
requirements on the literal passwords created by users. For example, a password-
composition policy might require some number of symbols or force the password
to pass a dictionary check. The purpose of password-composition policies is,
presumably, to make passwords harder to guess, but we do not have a good
understanding of how effective these policies are at protecting users. This is the
motivation behind my thesis: to improve upon existing metrics for evaluating the
strength of password-composition policies.

These policies are important because they impose costs on users. We have
found that when password-composition policies get more complex, users get
more frustrated and have a harder time remembering their passwords [128]. We
have also found evidence that security and usability are not always optimized.
Our research, based partly on methods developed in this thesis, suggests that
policies that mandate long passwords are more secure and more usable than
policies that mandate shorter passwords with more complexity requirements [128].
These apparently suboptimal decisions are not the fault of system administrators—
guidance in this area is simply lacking. In 2006, the National Institute of Standards
and Technology (NIST) published guidelines for setting password policies [21].
This guidance was based on many assumptions about user behavior that our

LA note on presentation: we identify terms that we define in this thesis in italics, and terms
from other sources with quotation marks. This convention is followed throughout the thesis.
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2 INTRODUCTION

research group subsequently found to be inadequate [129] which led to inaccurate
estimates of password strength [67,76]. The guidelines were revised in 2011 to
remove many of the earlier recommendations [19], and new guidance was not
inserted in its place. The initial NIST guidelines had broad impact, however,
and were cited as an authority in choosing the password policies of several
organizations, including Carnegie Mellon University [95,129]. Based on NIST’s
guidance, CMU mandated shorter, 8-character passwords with many complexity
requirements instead of longer passwords with fewer requirements.

Passwords compared with other schemes

System administrators are justified in trying to improve the security of their users’
passwords. Like many information-security schemes, password authentication
relies on a secret for its security. Possession of a password is often all that is
needed to authenticate a user?

As a point of comparison, consider SSL certificates. They also rely on a secret
for security. When you interact with a website over SSL, your browser verifies
that the domain name you visit matches the domain name on the website’s SSL
certificate. The certificate is trusted if it is signed by a certificate authority (CA)3
This signature is created using a “private key.” Were another party to obtain this
key, they could masquerade as the certificate authority. Possession of the secret
private key is enough proof to convince you, and any other users, of the website’s
identity.

A crucial difference between the CA’s private key and a password is in the
guessability of these keys. The CA’s private key is an algorithmically generated,
large number that is extremely hard to guess, i.e., the probability that an attacker
with no special knowledge of the key will guess it is nearly zero, even with
trillions of guesses. Passwords are chosen by humans who must expend a great
deal of effort to remember random strings [10]. As we will show, trillions of
guesses are sometimes enough to guess more than 89% of passwords. This is
especially worrisome given the number of high-profile password breaches in recent
years [32,68,70,71,82,103,112,122,131,141]. Even though the passwords in these
breaches were hashed, they are still vulnerable to a “guessing attack” in which

the adversary generates guesses and can verify these guesses using the password
file [99].

2 Authentication can be defined as “the act of establishing confidence in the identities of
users” [20]. Claiming a specific identity usually begins with a non-secret token, such as a username
or email address.

3For a detailed description of what is commonly referred to as SSL, see http://security.sta
ckexchange.com/a/20847.
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1.1. THREAT MODEL 3

The insecurity of passwords is well known, at least in the security community,
but passwords are still a popular form of authentication. One might wonder
whether passwords are still relevant, or will be replaced by other technologies
soon. A wide array of alternative forms of authentication have been proposed, such
as biometrics [2], graphical password schemes [4], multi-factor authentication [108],
schemes that use a smartphone [91], keystroke dynamics [104], and so on, but
simple text passwords are still used extensively on websites and in the enterprise.
Given the various hurdles that must be overcome for alternative authentication
systems to be adopted, some researchers argue that the need for users to create
and use text passwords will not be going away any time soon [8,58]. We agree
with this claim, but hope that this thesis will emphasize the need for alternative
authentication systems that are not solely reliant on human memory.

Section 1.1 presents our threat model. In Section 1.2, we explain what makes
studying passwords challenging. In Section 1.3, we present our thesis statement,
which describes our high-level goals and approach. In Section 1.4, we list the
contributions of this thesis. In Section 1.5, we provide a list of previous papers
where these contributions have appeared before and describe how this thesis
relates to that material. In Section 1.6, we provide a detailed outline of this thesis.
Finally, in Section 1.7, we provide links to the software developed in this thesis
along with guidance on reproducing our experiments.

1.1 Threat model

Before we can discuss protecting users, we need to specify what we are protecting
them from. In this section, we present our threat model, which is a set of
assumptions about our adversary. First we introduce some terminology, then
we list and discuss the main assumptions of our model.

When adversaries try to guess a set of passwords, we say that they are making
guesses against a target policy, where the target policy is the password-probability
distribution of the target.* When a password is guessed successfully, we say that
password has been cracked. Guessing efficiency refers to the rate of success of a
guessing attack per guess, i.e., the average proportion of passwords cracked per
guess.

4Password-probability distributions are described in Section 1.2.
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Assumption: Passwords must be cracked

Our threat model assumes that the adversary can only identify users” passwords
by guessing potential passwords and then invoking some process to determine if
a guess matches a user’s password. The typical example of this is cracking a file
of hashed passwords. To identify passwords, the adversary must generate guesses,
hash them, and compare the resulting hashes to the hashed passwords in the file.
This is also known as a “guessing attack” [99].

We believe this assumption is realistic. Many websites have recently had hashed
password files stolen [32,68,70,71,82,103,112,122,131,141], which suggests that
adversaries can sometimes obtain these files.

That said, there are plenty of scenarios in which passwords do not need to
be cracked. Bonneau and Preibusch found that many authentication systems
store or transmit passwords in cleartext [9]. On the user side, there are many
classes of attacks that can obtain passwords in cleartext such as shoulder-surfing,
malware, and social engineering attacks [4]. In all of the above cases, the strength
of passwords is irrelevant. The adversary has no need to guess the password if
it can be retrieved in cleartext from the user, authentication client, server, or in
transit. These scenarios are clearly important and should be addressed by system
administrators and system designers, but they are not covered by our threat model.

012

Assumption: The adversary can make > 10 guesses

We assume that the adversary can make over one trillion guesses without being
caught or blocked.

Professional password crackers use tools that can make at least 350 billion
guesses per second for certain hashing algorithms [54], and there is nothing
preventing an adversary from having an equivalent level of computational power.

Assumption: Limited knowledge

The adversary’s knowledge is limited to: the password-composition policy of the
target; datasets of passwords; and other relevant data, such as dictionaries. We
assume this data is not orders of magnitude larger than datasets we know about.

This assumption has a few implications. First, the adversary has no special
knowledge of individual users or their passwords, and so cannot launch targeted
attacks on individual passwords. Second, since we assume that the adversary
does not have a dataset with trillions of passwords with which to make guesses,
we expect adversaries to adopt some strategy for generating new passwords.
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General data
about passwords

large number of
guesses

o /A
Target policy —— —
Samples from the cracked Hashed
target (optional) passwords passwords

Smart adversary

Figure 1.1: Overview of the threat model we assume in this thesis. The adversary
makes a large number of guesses based on data and knowledge of the target password-
composition policy. The smart adversary cares about guessing efficiency and will try to
optimize their guessing strategy to crack passwords as quickly as possible. Guesses are
made against a file of hashed passwords.

We believe this is a more realistic model than in some previous work such as
Bonneau [7], discussed in Section 2.5.2.

Assumption: Guessing efficiency

Finally, we assume that the adversary cares about efficiency and will try to optimize
their guessing strategy to crack passwords as quickly as possible.

Since each unsuccessful guess wastes computational effort and this effort has
some cost to the adversary, if only an opportunity cost, we assume that the
adversary is concerned with efficiency.

Figure 1.1 provides a visual summary of our threat model: our adversary makes a
large number of guesses against hashed passwords, based on limited knowledge,
and is concerned with the efficiency of these guesses.

The concepts developed in this thesis could be applied in other scenarios, such
as an “online attack” where the adversary can only make a small number of
guesses before being locked out, but we did not specifically target such a scenario
in this thesis.

Plaintext passwords Our threat model allows the adversary to learn from
datasets of plaintext passwords, but they are forced to make guesses against
hashed passwords. Obviously, if the adversary had plaintext passwords, they
would not need to make guesses! Therefore, it might be surprising that the
approach we develop in this thesis requires plaintext passwords to be evaluated. In
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other words, our approach requires that we (researchers) use a test set of plaintext
passwords to model how the adversary would perform if they were cracking hashed
passwords.

Having plaintext passwords allows our approach to model many more guesses
in the same amount of computation time than would be required if we needed to
crack hashed passwords. This aspect of our implementation allows us to emulate
adversaries with far more computational power than we have, using techniques
described in Chapter 4.

1.2 Probability distributions of passwords

Currently, system administrators do not have proper guidance in choosing among
password-composition policies. The goal of this thesis is to improve upon previous
work in this area, so that administrators can make more informed choices. One
might ask, however, why are existing approaches insufficient to the task? Why are
complex approaches required at all? The answer lies in the probability distributions
of passwords. These distributions are sparse, meaning that most of the probabilities
are near zero. This makes passwords difficult to study empirically.

Under our threat model of a guessing attack, where the adversary only
has general data about the passwords of the target, the most accurate way to
characterize password strength for a given policy is by looking at the probability
distribution of passwords. The most secure probability distribution has a uniform
shape, where all passwords are equally likely. Figure 1.2 plots a probability
distribution from the RockYou dataset of leaked passwords, and shows that real
password data is far from uniform. The most common passwords in this dataset,
which happen to be “123456” and “password,” are orders of magnitude more
likely than almost all other passwords.

This illustrates why user-chosen passwords are much less secure than
algorithmically generated secrets. If an adversary guessed “123456” and then
“password” if the first guess failed, they could crack over 1% of passwords! To
fix this, one might try banning common passwords. However, it is not clear that
the resulting distribution would be more secure than the original. Theoretically,
users who previously chose “123456” and “password” might choose “1234567”
and “passwordl” respectively, creating a distribution that is less uniform than
before! We need to measure the new distribution to evaluate its strength.

Once we have measured a distribution, the evaluation is theoretically
straightforward. We can derive a simple metric parameterized by the number of
guesses that the adversary will make, provided we are given a distribution that is
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Figure 1.2: The top 10,000 passwords in the RockYou dataset ranked by probability. For
each password, its observed probability with 95% confidence interval is plotted as a single
vertical line. The combination of these produces a thick curve, widening to the right. As
password frequency decreases, confidence in its true probability also decreases, resulting
in larger confidence intervals. We cleaned this dataset as described in Appendix B.4.3.

ordered by decreasing probability. This metric is defined by way of example: given
two policies with two probability distributions, A and B, if the adversary makes
ten guesses, we can sum the top ten probabilities in .A and the top ten probabilities
in B and compare the sums. The distribution with the lower sum is more secure
against a guessing attack, because a smaller percentage of users” passwords are
cracked. Given two password-probability distributions and a number of guesses,
we can use this metric to decide which distribution is more secure.

However, this approach falls apart in practice when we increase the number of
guesses we expect the adversary to make and draw confidence intervals around the
probabilities that we have measured. Figure 1.3 shows confidence intervals around
the top twenty passwords from Figure 1.2. Suppose we increase the number of
guesses to one million. The RockYou dataset has over 14 million distinct passwords,
yet our adversary would only have 95% confidence in the first seven guesses! As
shown in Figure 1.3, the eighth and ninth guesses have overlapping confidence
intervals, so we are unsure which password has a higher true probability. In other



8 INTRODUCTION
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Figure 1.3: Zoom-in on the top 20 passwords from Figure 1.2. Note that as soon as we
reach passwords 8 and g we are unsure of the true ranking of passwords by probability.

words, we do not have confidence that the eighth password (“rockyou”) will truly
crack more accounts than the ninth password (“12345678").

Let us ignore that issue for the moment and accept that their ordering might be
incorrect. We at least have confidence that they are both more probable than the
tenth password (“abc123”). We run into a new problem, however, once we reach
the 193,068th entry in the list. Remember that our dataset of passwords is just a
sample from a distribution. It does not represent the universe of all passwords.
Consider all the passwords that are not in our sample. If we could collect one
more password from this distribution, there is a 36.5% chance that it would be a
password we have not seen before.> The 14,151,104 lowest probability passwords
in our sample all have confidence intervals that overlap. The confidence interval
for our new password would also overlap with these passwords. Therefore, we
cannot rule out all of the passwords we have not seen yet from our list. In other
words, we cannot make more than 193,067 guesses with 95% statistical confidence.
At a 75% confidence level, we reach this point after 328,013 guesses.

5This is based on a concept called simple Good-Turing estimation [51]. We have 31,630,845

total passwords and 11,884,429 appear only once in the sample: é%ggégig = 36.5%.
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The takeaway from this exercise is that accurately characterizing password
distributions requires more samples than are feasible to collect. This issue is
discussed in more depth in Section 2.5.1. The current state of the art, which relies
on probability estimates, suffers from a lack of data when considering attacks that
make more than a handful of guesses.® This lack of data hampers the selection
of new password policies. When evaluating new policies for the purpose of
selecting one that might increase security, it is not feasible to collect statistics on
millions of passwords, so there is a need for metrics that are applicable to relatively
small samples. Few metrics of this type have been published previously, and
many researchers find those that have been published, such as entropy heuristics,
unsatisfying [6,145].

1.3 Thesis statement

The goal of this thesis is to provide an improved metric for evaluating password
policies, to help administrators make better policy decisions. We claim that:

Our automated approach to evaluating password-composition policies
can model a more efficient and more powerful adversary than previous
machine-learning approaches, assuming an offline-attack threat model.

We accomplish this by modeling guesses using a formal grammar that can assign
probabilities to passwords, even ones that we have not seen before. In the process,
we build heavily on the work of Weir et al. who previously modeled passwords
using a probabilistic context-free grammar [146].

An advantage of machine-learning approaches, over those that rely on
probability estimates, is that we can see inside passwords to find common
structures. A password-probability distribution is a list of opaque items
(passwords) and their associated probabilities. In contrast, a formal grammar
is a much richer model of password construction.

We also believe that a machine-learning approach can be realistic. It is
reasonable to assume that adversaries also lack knowledge of the true distribution
of passwords, given the amount of data that would be required to gain such
knowledge, but they still attempt to guess large numbers of passwords as
accurately as possible given the data available. It is known that professional,
or “white-hat,” crackers incorporate experience and intuition into their attacks,
manually identifying patterns in passwords in order to crack them more

®Note that probability is still the ideal metric if one is concerned with a small number of
guesses and enough data is available to get reasonable probability estimates.
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efficiently [54]. This thesis, in contrast to a manual approach, uses machine
learning to learn password patterns automatically. We hope that this provides a
framework for studying passwords in a more principled way that is also more
reproducible than manual techniques.

Our approach can also partially address the data issue in two ways. First,
following Weir et al. [146], we supplement password data with data from other
sources. For example, we include all alphabetic strings from the Google Web
Corpus [15] as an input to our grammar. This allows the grammar to insert words
from this large corpus in place of words of the same length in passwords. Second,
we modify the grammar so that it can produce unseen terminals, strings that have
not been seen before.

That said, there are plenty of sources of error that can affect our approach. The
automatic nature of our framework might not model true adversaries well, and
selecting appropriate training data is crucial for the accuracy of our models. Even
with perfect training data, we can only provide a lower-bound on the strength
of adversaries—manual techniques, or other techniques outside the scope of this
thesis, might find that adversaries can be much more powerful than we think. We
show that our approach can crack more passwords than previous PCFG modeling
techniques, but we do not know how much further there is to go. In Section 8.2,
we discuss many limitations of our approach.

1.4 Contributions

The contributions of this thesis can be grouped into three areas. Section 1.6
contains an outline of this thesis that shows where each of these contributions are
presented.

The guess-calculator framework We develop a system that automatically learns
a guessing model for passwords, based on a configurable mix of training data, and
applies the model to a plaintext test set. It does this using a process that can be
significantly faster than generating guesses explicitly.

The model learned is Weir’s probabilistic context-free grammar (PCFG) [146]
with some modifications. Our implementation takes advantage of unique features
of the grammar to evaluate passwords in a manner that operates much faster than
explicitly enumerating individual guesses—sometimes 100 times faster on the
same hardware. In addition, it can handle grammars that include huge lists of
strings, such as lists of multiword phrases (such as [15]).
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Improvements to the guessing model We make several improvements to Weir’s
PCFG to model a more sophisticated adversary, increasing the guessing efficiency
of our models.

These improvements include learning probabilities for strings, generating
unseen terminals, linguistic tokenization, and hybrid structures. We also present a
negative result with an unsupervised-tokenization approach, though we do not
attempt a thorough examination of this topic.

Methodological guidance We provide guidance on the analysis of data collected
using the guess-calculator framework, and start-to-finish examples of its use in the
form of case studies.

The guidance includes an examination of existing statistical methods, including
methods from survival analysis, and their use in comparing guessing results from
different policies. We show how the improvements we have made to the calculator
affect the evaluation of policies, finding that we can produce significantly better
guessing models than our previous methods for a wide range of policies. We
also provide a number of case studies that show how the calculator should be
configured and how evaluations can be performed. We provide a total of four case
studies: leaked datasets, eight-character policies, a long-password policy, and the
application of survival analysis to password data.

1.5 Previous work

Some of our contributions appeared in papers previously published by our research
group. In this section, I list these papers and explain how they relate to this thesis.
In particular, I list contributions that were part of the development of this thesis.

[67] Kelley, P. G., Komanduri, S., Mazurek, M. L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L. F, and Lopez, J. Guess again (and again and again):
Measuring password strength by simulating password-cracking algorithms.
In Proceedings of the 2012 IEEE Symposium on Security and Privacy, Oakland
12, IEEE Computer Society (Washington, DC, USA, 2012), 523-537.

This paper introduces the guess-number calculator, an early version of the guess-
calculator framework, built on “Weir” and “brute-force Markov” models. These
were two separate systems. I built the calculator based on the Weir guessing model,
and this included many special-purpose algorithms I developed that are described
in Chapter 4. I also introduced the uppercase nonterminal in this paper, described
in Section 5.4.1, which was suggested by discussions within our research group.
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The paper also presents experiments on the selection and weighting of training
and test data that I conducted. We revisit some of these experiments with an
improved framework in Section 6.2 as part of our methodological guidance.

[95] Mazurek, M. L., Komanduri, S., Vidas, T., Bauer, L., Christin, N., Cranor,
L. E, Kelley, P. G., Shay, R., and Ur, B. Measuring password guessability for
an entire university. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS 13, ACM (New York, NY, USA,
2013), 173-186.

In this paper, we conducted an evaluation of users” passwords at Carnegie Mellon
University (CMU). For security, this evaluation was conducted on machines to
which we did not have access. Therefore, we developed a more mature version
of the guess-number calculator that can run experiments in an automated and
independent way. I contributed to the development of this calculator, a further step
toward the guess-calculator framework described in Chapter 4. Other members of
our group: Michelle L. Mazurek and Timothy Vidas, also contributed to the guess-
number calculator at this time, and many of their design decisions influenced the
current version of the guess-calculator framework.

The paper also introduces the use of survival analysis in passwords research. I
developed the methodology for this analysis. This methodology is a contribution
of this thesis and is described in Section 6.1.4. We did not invent any new
statistical techniques, but we provide guidance on selecting among several available
techniques.

Finally, the paper presents results on correlations between demographic
and behavioral variables and password strength. It also compares CMU users’
passwords to those from leaked datasets. Both of those results are presented in
this thesis as a case study in Section 7.4.

[128] Shay, R., Komanduri, S., Durity, A. L., Huh, P. S., Mazurek, M. L., Segreti,
S. M., Ur, B, Bauer, L., Christin, N., and Cranor, L. E. Can long passwords
be secure and usable? In Proceedings of the 2014 Annual ACM Conference on
Human Factors in Computing Systems, CHI "14, ACM (New York, NY, USA,
2014), 2927-2936.

This paper evaluates several password-composition policies with passwords of
twelve characters or more. We do not claim any of the results of this paper as
contributions to this thesis. Rather, I made two improvements to the Weir guessing
model for this paper: linguistic tokenization (Section 5.5.2) and learning alphabetic
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string frequencies (Section 5.2). This thesis presents these improvements in much
more detail than the paper.

[135] Ur, B., Segreti, S. M., Bauer, L., Christin, N., Cranor, L. F., Komanduri, S.,
Kurilova, D., Mazurek, M. L., Melicher, W., and Shay, R. Measuring real-
world accuracies and biases in modeling password guessability. In Proceedings
of the 24th USENIX conference on Security symposium, USENIX Security "15,
USENIX Association (Washington, D.C., Aug. 2015), 463-481

This paper explores different cracking tools and compares them with results from
a professional cracking firm. I present some of these results starting in Section 3.3.
They are used as an external point of comparison, and the analyses including them
are new, but the results are not claimed as a contribution of this thesis.

I contributed an improved version of the guess-calculator framework to this
paper as well, with the unseen terminals improvement presented in Section 5.3.
As with the other improvements to the guessing model, we present these
improvements in much more detail here than in the paper.

1.6 Thesis outline

In this section, we present a high-level overview of each thesis chapter and describe
how the chapters relate to one another and the contributions of this thesis.

Chapter 1 presents our high-level goals, introduces some necessary background
concepts, and discusses how the thesis chapters relate to each other and previous
work. We also provide links for downloading artifacts of this thesis, such as
the source code for the guess-calculator framework and configuration files for
experiments.

Chapter 2 begins by discussing background concepts in more detail, such as
policies and Weir’s PCFG. The rest of the chapter is a survey of related work.

Chapter 3 introduces the core concepts of password-strength evaluation with
a simple, automated algorithm we call Simpleguess. The output of this algorithm
is a mapping of passwords to guess numbers that we call guessing data. We
compare our guessing data to data provided by a professional security firm and to
Weir’s original PCFG method. These other methods provide an external point of
comparison for our approach.

Chapter 4 is a system description for one of the contributions of this thesis:
the guess-calculator framework. Our framework takes training data, test data,
and configuration parameters as inputs and outputs guessing data. We explain
how we improved on the usability of Weir’s PCFG. We make evaluations more
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time-efficient by not enumerating guesses explicitly, and we allow training data to
be specified in a more fine-grained way.

Chapter 5 presents another contribution of this thesis: improvements to the
guessing model. All of these improvements are aimed toward producing greater
guessing efficiency, and succeed at doing so in many situations. This chapter
presents many results showing the incremental increase in guessing efficiency
produced by each improvement.

Chapter 6 aims at providing methodological and statistical guidance, to help
researchers perform and analyze password-strength evaluations. The first half of
the chapter describes various useful metrics identified by Bonneau [7] for use with
probability distributions, and provides formulas for computing these metrics given
guessing data. It stands relatively independent from the rest of the thesis. The
second half of the chapter presents the results of a few experiments we performed
to understand how varying inputs to the guess-calculator framework can affect
its output. For example, we look at the effect of adding more training data and
changing the weights of training data. There is much more work to be done in
this area, and we provide only some initial results.

Chapter 7 provides case studies. This chapter, along with Chapter 6,
together present the third contribution of this thesis: methodological guidance in
performing password-strength evaluations. We present results, such as evaluations
of long passwords and passwords with complexity requirements, that other
researchers could copy and modify to perform their own evaluations. We believe
these results are of general interest even to those that do not plan to use the
guess-calculator framework.

Chapter 8 concludes this thesis with a summary of findings, limitations, ideas
for future work, and a discussion of societal impact.

1.7 Artifacts

We make several artifacts of this thesis available for download: the guess-calculator
framework, experiment configurations, scripts used for preparing and cleaning
datasets, and scripts used for performing evaluations with other guessing models
such as the Simpleguess algorithm.

You can download the guess-calculator framework from https://gith
ub.com/cupslab/guess-calculator-framework/releases/tag/v1.0.0. We pro-
vide a list of requirements in https://github.com/cupslab/guess-calculato
r-framework/blob/v1.0.0/INSTALL.md and there are extensive usage instruc-
tions at https://github. com/cupslab/guess-calculator-framework/blob/v1.0.
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0/USAGE.md. The framework also includes a plotting library that was used to
produce most of the graphs in this thesis.

Experiment configurations are encoded in files that you can find
at https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs
/wiki/Wiki. Each experiment has its own set of parameters and is identified in
this thesis by a name, e.g., Experiment 1. The repository is organized by experiment
name, with one folder per experiment. It also contains those public datasets that
we can distribute publicly.

We do not provide public links to many of the datasets used in our experiments,
but instructions for preparing these datasets can be found in Appendix B.4. The
instructions there refer to scripts that can be found at https://cups.cs.cmu.edu/
chilisvn/passwords-gcf-thesis-configs/standard’20input’20files/.

Finally, we provide a few scripts for performing password-strength evaluations
with other guessing models. These are provided in the same repository as the
guess-calculator framework, but in a newer revision. Using these scripts requires fa-
miliarity with the guess-calculator framework. See https://github.com/cupslab
/guess-calculator-framework/blob/v1l.1.1/USAGE.md#6-emulating-the-guess
ing-model-from-weir-2010 for instructions on using the Simpleguess algorithm
and https://github.com/cupslab/guess-calculator-framework/blob/v1l.1.1/
USAGE.md#7-using-weirs-original-pcfg-guessing-model for guidance on us-
ing Weir’s original PCFG code [143] to create data that is compatible with the
plotting tools provided in the guess-calculator framework.
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Chapter 2

Background and Related Work

In this chapter, I define terms and introduce concepts that will be used often in
this document. I also provide a review of related work.

2.1 Policies and probabilities

The probability distribution of a set of passwords can be affected by many different
elements.

Password-composition policies impose constraints on users that they cannot
avoid. We call these requirements. For example, a policy might require that
passwords meet a minimum length, have a particular number of symbols, or pass
a dictionary check.

The password-creation environment might constrain users as well. When
creating or entering a password on a mobile device, for example, there is a
usability cost associated with using special characters. It is possible to use them,
but some users might prefer not to. Melicher et al. studied passwords created
on mobile devices and found that mobile users include fewer special characters
and uppercase letters in their passwords, compared to users on desktops and
laptops [98]. The impact of such implicit constraints is generally unstudied, but is
significant since it could produce passwords that are less secure than expected. In
fact, Melicher et al. found evidence that mobile passwords are less secure than
traditional passwords under an offline-attack threat model [98].

For simplicity, we call the complete set of constraints that passwords are created
under a target policy even if this includes things like implicit constraints which are
not set by the system administrator. Implicit constraints can affect the distribution
of passwords, so an intelligent adversary should be expected to take advantage of
them when attacking passwords.

17
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It is also helpful to classify policies as simple or complex. Previous work focused
on datasets that were created under very simple policies: policies with a 6-8
character minimum length requirement and possibly one other requirement such
as a digit, symbol, or uppercase letter. Leaked password sets have given us insight
into simple policies by providing us with millions of passwords, but the same
cannot be said of complex policies, where this amount of data is unavailable.
Measuring the strength of passwords that users create under complex policies
is an open problem, as is understanding how implicit constraints might affect
passwords. We focus on the former in this thesis, but the methods we present are
applicable to both types of problems.

2.2 Collecting data from Mechanical Turk

In some parts of this thesis, we seek to evaluate policies that are quite far from
standard password policies. For example, less than 1% of passwords in the
RockYou dataset [139] have 16 characters. Evaluating a minimum-16-character
policy using a non-random sample from RockYou raises concerns about ecological
validity. In other words, would all users creating passwords under this policy
make similar passwords to those in our non-random sample?

To mitigate these concerns, we use a methodology we developed in which
passwords are collected from Amazon’s Mechanical Turk (MTurk) using a
hypothetical scenario. In this scenario, participants are asked to create new
passwords under policies that we select, removing the need to select passwords
out of a larger sample.

We recruit participants by posting HITs, which are advertised tasks, on MTurk.
Participants first complete a consent form, and then are given instructions for
completing the task. Each participant is paid $0.55 to create a password. We
tell her that her password will be needed in a few days to complete the study
and obtain another payment. If she returns, she is paid $0.70. Because we want
participants to behave realistically, we give them the following instructions before
they create their passwords:

Imagine that your main email service provider has been attacked, and
your account became compromised. You need to use a new password
for your email account, since your old password may be known by the
attackers.

Because of the attack, your email service provider is also changing its
password rules. Instead of choosing your own password, one will be
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assigned to you. We will ask you to use this password in a few days to
log in again so it is important that you remember your new password.
Please take the steps you would normally take to remember your email
password and protect this password as you normally would protect the
password for your email account. Please behave as you would if this
were your real password!

We compared this wording to other forms of instructions, and found that
passwords created with this wording were significantly stronger than those created
with a wording that did not contain a hypothetical scenario [76].

After a participant sees these instructions, we present her with a password-
composition policy and ask her to create a password. We do not ask her to create
a username. Instead, we use her Amazon “Worker ID,” a random identifier, to
keep track of her in our database and pay her via MTurk.

The creation form includes a confirmation box so the password must be entered
twice. In all cases, passwords are entered in a standard form with dots or asterisks
obscuring the password.! After creating a password, the participant is given
a survey about her password habits. Slightly different surveys were used at
different times during data collection. An example of this survey can be found
in Appendix B of [127]. Once the survey is complete, the participant must enter
her password correctly to complete the first day of the task. We pay her using the
MTurk APL

Note that the password-creation task is not a memory test. We ask participants
to behave as they would with a real password, so we do not mind if participants
write down the password or store it in a password manager. Instead, our focus
is on the password itself and how well it compares with passwords used for
real-world services. As shown in Section 7.4, we find that passwords collected
from MTurk are reasonably similar to passwords in use at a university.

After two days, we use MTurk to notify participants that part two of the survey
is available. The URLs we send out are tailored to each participant so that we can
identify them without usernames. After successfully entering a password, we give
the participant a final survey. On completion of this survey, she is paid a bonus
payment using the MTurk API. An example of the second survey, called the “Day
Two” survey, can be found in Appendix C of [127].

We use a between-subjects design, so that each participant is randomly assigned
a single policy. We also use Amazon Worker IDs to prevent participants from
participating more than once, even across multiple research studies.

1Passwords are entered in an HTML input field with type “password.” The choice of dots,
asterisks, or other characters that obscure the password is determined by the user’s browser.
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2.3 Using formal languages to model text passwords

In this thesis, we model passwords with a formal, probabilistic grammar. Our
framework uses this grammar to generate guesses in order of estimated probability.
In other words, guessing starts with those passwords that are assigned the highest
probability by the grammar.

Passwords datasets are dominated by singletons, passwords that only appear
once in the data set. In samples of 1,000 passwords, it is common for the incidence
of singletons to be greater than 95% of the sample, and for the size of the
intersection between two samples to be very small. Therefore, a useful guessing
algorithm must be able to produce guesses that do not appear in its training data,
otherwise low-probability passwords, such as singletons will never be guessed.
Traditional password crackers achieve this with “mangling rules” [93]. These
are rules that can be applied to words from an input dictionary to generate new
guesses outside of the dictionary.

Mangling rules can be used to produce a large number of guesses, but they
might have a very low rate of success, stemming from the lack of an underlying
probability model for mangling. Both Narayanan et al. and Weir et al. proposed
probabilistic models of guessing [106,146]. In these models, guesses can be assigned
probability values—including guesses that do not appear in the training data.
When guesses are made in probability order, these models can provide a significant
advantage in guessing efficiency over traditional password crackers [146].

Some of the models used in previous work are still relatively crude, however.
A first-order, character-level Markov model, as proposed by Narayanan and
Shmatikov [106], will rarely generate intelligible text (for an example of this,
see [57]). Higher-order Markov models have shown promise for simple policies [88],
though the performance of such models on complex policies has not been reported.
In contrast, probabilistic context-free grammars have been used previously with
good results [146,151].

2.3.1 Probabilistic context-free grammars

The probabilistic context-free grammars (PCFGs) used by Weir et al. are a key
component of this thesis. Following is a review of PCFGs, a discussion of the form
of Weir’s PCFG, and the introduction of two terms that are important to this thesis:
structures and patterns.

A probabilistic context-free grammar can be defined as a 5-tuple of finite sets
(X,N,S,R,0), where ¥ is a set of terminals, N is a set of nonterminals, S is
a special element of A called the start symbol, and R is a set of rules having
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the form A — ¢ with A € M and ¢ € (XUN)*. Each rule (A —¢) € R is
called a production of the nonterminal A, and each rule is assigned a probability
04—¢ € [0,1]. The final element ©® = {64,z | (A — ) € R} is the set of all
probabilities assigned to rules so that:

VA e N, Y, base=1 (2.3.1)
{el(A=C)eR}
Equation (2.3.1) says that for each nonterminal A in NV, the sum of the probabilities
of all of its productions must sum to 1. See [26] for more background on
probabilistic context-free grammars.

2.3.1.1 Weir’s PCFG

With the above definition in mind, we find that the PCFG used by Weir et al. is
relatively simple. Define Q = (N '\ S) as the set of nonterminals minus the start
symbol. All production rules in Weir’s PCFG are in one of two forms:

S—Q QeQ” (2.3.2)
A—=T AcQTex (2.3.3)

An example of a Weir PCFG is provided in the following section in Figure 2.1
on page 22. The grammar is non-recursive; aside from the start symbol, no
nonterminal produces nonterminals. The start symbol only produces strings of
nonterminals (Form 2.3.2), and nonterminals only produce strings of terminals
(Form 2.3.3). Even in a non-recursive grammar, it is possible for a nonterminal to
produce other nonterminals, but Weir’s PCFG is simpler than this. In fact, Weir
PCFGs can always be expressed as weighted, deterministic finite-state machines
(FSMs). This indicates that they have much less expressive power than other
PCFGs.

Weir PCFGs have an additional constraint. All terminals that replace a
particular nonterminal are the same length, and each character in a terminal
is of the same character class. Formally, we can write Q = {L;, D;,S;},Vi € [1, M]
for some maximum length M, where L represents alphabetic strings, D digits, S
special characters, and i the string length of replacement terminals. For example,
L, is an acceptable nonterminal in a Weir PCFG that would produce alphabetic
strings of length 4: that, with, this, from, etc., and § — L4D; is an acceptable
rule that would produce strings like: that7, withi, this2, from4, etc.

2.3.1.2 Producing guesses

We can derive a PCFG from a training corpus. For example, a training set of
passwords password!, password!, baseball!, and baseball123! can be parsed to
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Y. {password, baseball, 123, !} (terminals)
N:{Lg, D3, 51} (nonterminals)
R:S — LgS (structures)
S — LgD35q
Lg — password (terminal productions)
Lg — baseball
D3 — 123
51— !
O: 05145, = 0.75 (probabilities)

s 14Dss, = 0.25
OLgﬁpassword =05
05— basebal = 0.5
0,123 = 1.0
05,1 = 1.0

Figure 2.1: Example PCFG of the form used by Weir et al. [146] for modeling passwords

produce the simple PCFG shown in Figure 2.1. The mapping from training corpus
to PCFG is not one-to-one; there are other possible training corpora that could
produce this PCFG.

Beginning with the start symbol, one can repeatedly apply the rules of a
grammar until a string with only terminals is produced. The set of all strings
that can be produced in this way is called a “language” [26], and each string
in the language has an associated probability equal to the product of all rules’
probabilities used in its production. To produce guesses using a PCFG, we want
to produce strings in the language in descending order of probability. Weir et al.
provide an algorithm for doing this using a priority-queue that stores potential
“next” guesses [144].

Weir et al. use the term structure to refer to the string of nonterminals on the
right-hand side of Rule (2.3.2). Our example grammar contains two structures
that represent strings of length 12 and 9, LgD3S; and LgS;. Structures are specific
to Weir’s PCFG and are an essential, high-level component of how we model
passwords. Only guesses that match a previously learned structure can be
produced by Weir’s PCFG, but a single structure can produce thousands or
millions of guesses.
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The guesses produced by our simple PCFG from Figure 2.1 are shown in
Table 2.1. This PCFG is only capable of producing four guesses. Note that guess 3
did not exist in the training data, and the probabilities of all strings, e.g., password!,
are different from their observed probabilities in the training data. This is expected,
and is a result of encoding the original dataset into a PCFG, which introduces
assumptions about how strings are composed.

Note that the first two and last two pairs of guesses share the same probability
and the same structure. We define a pattern as a representation of a group of
guesses that share the same structure and the same probability. Representing
groups of guesses as patterns allows us to store guesses in a more compact form.
This fact is used in generating the lookup table that is an essential component of
this thesis (see Section 4.3).

Guess # Guess Probability Probability derivation

1 password! 0.375 95—>L351 : eLgﬁpassword : 951—>!

2 baseball! 0.375 05145, - OLg—baseball - 05,1

3 password123! 0.125 95—>L8D351 : 9Lg%password : 9D3—>123 : 951~>!
4 baseball123! 0.125 05 15D35; * OLg—baseball * OD3 123 * 05, 1

Table 2.1: Guesses produced by the example PCFG of Figure 2.1.

2.4 Properties of passwords

Information about the properties of passwords comes from three types of sources:
analysis of leaked datasets, analysis of passwords in use at an organization, and
self-reported data (surveys). In cases where the original passwords come from
similar policies, all three sources tend to discover similar trends. In this section, I
organize previous work on the composition of passwords based on the policy of
the passwords being studied: simple or complex. We call a password-composition
policy simple if it requires a length of 8 characters or less and at most one special
character, and complex if its requirements are more strict.

It should be noted that one should only draw conclusions about password
distributions from sets where all frequency information is retained. For example,
after the LinkedIn breach, the file of hashes that was publicly released did not
include the 57% of passwords that had already been cracked by the original
attackers [62]. Any inferences about LinkedIn passwords made from only the
released hashes would ignore the weakest and most frequent passwords in the
distribution. This can lead to an underestimate of the policy’s guessability.
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2.4.1 Simple policies

To date, there has not been a public password leak from an organization with
a complex policy, though many password sets from organizations with simple
policies have been leaked to the Internet. Many of these password sets have been
analyzed by researchers. As investigated by Floréncio and Herley, commercial
websites often have simple password policies [47] so the abundance of data from
simple policies is not unusual. Sets associated with different websites tend to have
many passwords in common: password, password1l, 123456, 12345789, iloveyou,
princess, angel, and others [40,61,121].

Thirty percent of RockYou passwords consist of letters followed by numbers,
and in both MySpace and RockYou, the most popular suffix digit is “1” [40,125].
Over time, we see a trend of increasing use of numbers, and sometimes symbols,
in passwords. Zviran and Haga reported on a study of users at a U.S. Department
of Defense installation in 1999, where passwords had no requirements. They
found an average password length of six characters, with 14% including numbers
and less than 1% including symbols [152]. Surveying students in an information
systems course about their email passwords in 2006, Bryant and Campbell found
an average length of eight characters with around 65% using numbers and 3%
using symbols [17]. In a survey of healthcare workers in 2008, Medlin et al.
found an average length of seven characters with 87% using numbers and 16%
including symbols [97]. And in 2010, Korkmaz and Dalkilic analyzed 2,500
plaintext passwords from a Turkish university with no composition requirements
and found that 73% included at least one digit, while only 1% included at least
one symbol [79].

In an attempt to characterize the frequency distribution of passwords (ignoring
the passwords themselves), Malone and Maher looked at a few leaked datasets and
found that they almost follow a Zipfian distribution, but it is not truly Zipfian [89].
Similarly, Bonneau looked at the frequency distribution of 69 million Yahoo!
passwords and found that he could fit a Sichel distribution to the data, but a
Kolmogorov-Smirnov test rejected the hypothesis that the sample data was drawn
from the modeled distribution [7]. Nevertheless, I believe it is useful to think
of passwords as having a Zipfian distribution even if their true distribution is
slightly different. Like Zipfian samples, password samples are dominated by
low-frequency items such as singletons.

Jakobsson and Dhiman studied how dictionary words are modified and used as
part of passwords. They examined “leet” transformations and found that less than
0.2% of passwords in various leaked password sets used leet substitutions [64].
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2.4.2 Complex policies

In a survey of users who recently transitioned to a complex policy, our research
group reported that participants often made passwords that exceeded minimum
composition requirements, contrary to expectations [129]. We also found, however,
that many users place required symbols, digits, and uppercase characters in
predictable locations [76,129].

Zhang et al. studied how users modify passwords under a complex policy
when a previous password expires, finding that up to 17% of new passwords can
be cracked in under five guesses if the old password is known [151]. Common
transformations included incrementing a number, replacing one symbol with
another, and moving digits from the end to the beginning of the password. The
authors also examined single-character leet transformations, but do not report the
proportion of users that employ them.

2.4.3 Linguistic elements

Many analyses of passwords have found that most passwords contain linguistic
elements [22,97,123,152]. Names, dictionary words, place names, and keyboard
patterns have been found in password sets [61,63]. Perhaps explaining the
prevalence of linguistic elements in passwords, Carstens et al. found that passwords
constructed from meaningful “chunks” were more memorable than passwords
constructed using more traditional advice [25].

Bonneau and Shutova examined Amazon payphrases by taking advantage
of the fact that users are restricted from selecting a payphrase that has already
been selected by another user [11]. This allowed for querying the set of selected
payphrases. The policy required two or more words and no digits or symbols,
which likely encourages linguistic elements. They found that many users selected
noun bigrams found in the British National Corpus and the Google Web Corpus,
and that movie and book titles provided effective guessing dictionaries.

2.4.3.1 Tokenizing

Tokenizing, as used in this thesis, is the process of breaking a password into
common elements. The particular application to passwords has not been studied,
but related work exists in the field of natural language processing. Tokenizing has
been studied in the context of Web URLs [29], segmentation of Chinese text [83],
and breaking of compound words for machine translation [16]. The most common
approach is to develop a language model from existing data, where words are
separated by spaces, and apply this model to find likely splits in unseparated text.
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A similar approach is applied in this thesis, largely influenced by the tools made
available by Wang et al. [142] who base their models on data from the Bing web
crawler.

A downside of using an existing language model for tokenizing is that
passwords can have tokens not typically found in natural language. For example,
we have found that “p@$$” is a common token, but it would not be found
in a typical language model. Liang and Klein introduced an algorithm for
unsupervised word segmentation that was subsequently improved in Berg-
Kirkpatrick et al. [3,85]. This algorithm is designed to determine word boundaries
from unbroken sentences, given no ground truth about the underlying vocabulary
of the language. We investigate the usefulness of this approach to password
research in Section 5.5.3.

2.4.4 Policy names

We follow a convention, begun in previous papers [76], for naming password-
composition policies in an abbreviated way. For example, basic8 defines a simple
policy with only an 8-character length requirement, and basic6 defines a policy
with only a 6-character length requirement. The abbreviated name always ends
in a number that identifies the minimum length allowed by the policy. There
are two common policy families discussed in this thesis: basic policies, such as
basic8, where the only requirement is a minimum length, and nclass policies,
such as 3class12, where a password must contain at least 3 character classes and
meet a minimum-length requirement of 12. In nclass policies, the set of character
classes is always lowercase alphabetic ASCII characters, uppercase alphabetic
ASCII characters, digits, and symbols, where symbols are any other allowed
character not within the previous three classes. A 4class policy must contain at
least one character from each of the four character classes.

In addition, we sometimes discuss two other policies: comp8 and andrews8.
These two policies share the requirements of 4class8 but have an additional
dictionary check requirement. The dictionary check is case-insensitive and applied
to a password after all non-alphabetic characters have been removed? The
andrew8 policy mirrors the password-composition policy in use at Carnegie Mellon
University from 2010 onwards, and uses a dictionary of 241,497 words provided to

2This is just one way to apply a dictionary check. One could check all contiguous alphabetic
sequences within a password, or one could check the whole password against a dictionary of
common passwords. The effect of dictionary checks on the strength of passwords is outside the
scope of this thesis.
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us by the CMU Information Security Office The comp8 policy also mirrors the
CMU policy, but used a much larger dictionary of 2,977,223 words from the freely
available wordlist at http://download.openwall.net/pub/wordlists/all.gz?
The comp8 policy was tested before the andrew8 policy, before we requested the
dictionary from the Information Security Office.

2.5 Security metrics

The most comprehensive study of password strength metrics thus far was
conducted by Joseph Bonneau for his Ph.D. thesis published in 2012 [6]. Bonneau
also proposes several new metrics, and a brief survey of these and other relevant
metrics follows.

2.5.1 Password distributions and entropy

A common metric for key strength used in security research is entropy, a concept
from information theory [126], but applying this concept to passwords has been
problematic. An accurate measure of entropy requires knowledge of the entire
probability distribution of passwords. Since the distribution has a very heavy
tail, its true distribution is unknown—Bonneau found, after collecting about 69
million passwords (the largest password collection analyzed to date) 42.5% were
unique in the dataset [7]. Standard entropy estimates produced from a sample
that incompletely reflects the distribution, even a sample of 69 million, are biased
toward an underestimate of the true entropy [24]. Further, when Bonneau fit
a parametric model to the frequency distribution of the data, this model was
significantly different from the observed distribution [7]. In other words, even
a complex model with several parameters is unable to model the shape of a
password-probability distribution. A large number of samples must be collected
to measure the distribution accurately.

With respect to entropy, Carlton suggests that the number of samples required
to get an accurate estimate of entropy is related to the smallest probability in the
underlying distribution. If the smallest observed probability is py, then N > # is
required [24]. Paninski quantified the required number of samples more rigorously,

3This dictionary can be downloaded from https://cups.cs.cmu.edu/chili/projects/passw
ords-gcf-thesis-configs/repository/raw/dictionaries/andrew8_dict.txt.

% Since the dictionary check is case-insensitive and alphabetic, all words were lowercased
and only alphabetic words were included in the dictionary. This wordlist has since been
updated and contains many more words. The original wordlist we used can be downloaded
from https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repositor
y/raw/dictionaries/comp8_dict.txt.


http://download.openwall.net/pub/wordlists/all.gz
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/raw/dictionaries/andrew8_dict.txt
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/raw/dictionaries/andrew8_dict.txt
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/raw/dictionaries/comp8_dict.txt
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/raw/dictionaries/comp8_dict.txt
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and found that a reasonable estimate can found with a number of samples based
on the number of “categories” in the underlying distribution [110]. For passwords,

this would be the cardinality of the set of possible passwords. With m categories,
2

(log m)?

samples than is feasible to collect. Using Paninski’s formula and Bonneau'’s

Paninski suggests samples. In either case, this appears to be far more

identification of 33,895,873 distinct passwords in his sample, around four trillion
samples are required. This is likely an underestimate of the space of possible
passwords, making the true number of required samples higher still.

In 2010, our research group published an alternative method for estimating
password entropy given a limited sample [76,129]. Rather than estimate entropy
based solely on the probability distribution of whole passwords, the algorithm
measures the entropy of several features of each password and sums them to
estimate the entropy of the distribution of the whole. In order to have enough
samples to accurately estimate the entropy of the features, 1,000 samples from a
given policy are recommended. This metric is not intended to provide an accurate
measure of true password entropy. Rather, it is intended to provide an alternative
metric that can be used to compare sets of passwords created under various
policies with limited samples.

It should be noted that even with an accurate measurement, entropy might not
be predictive of other security metrics. If the true metric of interest is guessing
difficulty, for example, or a probability measure for the weakest passwords of
a policy, one can posit a family of distributions in which these measures are
held constant while entropy is made arbitrarily large. Bonneau discusses this
issue extensively [6,7]. It is possible that real-world password distributions are
constrained in some way that makes these theoretical results inapplicable, but this
question has not been thoroughly studied. Recently, our research group provided
some evidence that our entropy estimate might be more closely correlated with
guessing difficulty than naive metrics based solely on policy requirements, such as
those proposed by NIST [67].

2.5.2 Metrics based on password prediction

For a given password and guessing algorithm, “guessability” measures the number
of guesses needed by the algorithm to guess that password. This particular
definition of guessability is parametrized by the guessing algorithm, which means
that very different measures of guessability can be obtained when using different
algorithms.
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To avoid this problem, Bonneau characterizes guessability based on an
adversary who makes guesses in probability order, with perfect knowledge of
the true distribution of passwords [7]. This obviates the details of the guessing
algorithm. Examining the Yahoo! dataset that he collected, one estimates that after
200,000 guesses, 25% of passwords are guessed. In about 3,000,000 guesses, an
adversary would guess 50% of passwords. Using Bonneau’s approach, we could
extrapolate the shape of a probability distribution out to trillions of passwords,
and then compute the percentage of passwords cracked. However, an adversary
cannot make guesses based purely on the shape of the distribution. Bonneau’s
approach is elegant, but it assumes that the adversary knows the true distribution
of passwords and their probabilities even though we do not. If this assumption
were incorrect, then we could not trust its estimates of the real-world security
resulting from a given policy.

In 2009, Weir et al. presented a generative model for text passwords in which
guesses are made in probability order [146]. The authors found their technique
to be more effective than John the Ripper, an open-source password cracking tool
that does not base its guessing on probability [39]. In a separate study, Zhang
et al. found Weir’s algorithm to be the most effective among the techniques they
used [151]. Weir also made his tool and source code available online for other
researchers [143].

Narayanan and Shmatikov introduced a password-cracking technique based
on Markov models in 2005 [106]. While each guess of this algorithm is assigned
a probability, the paper does not present an algorithm for producing guesses in
probability order. However, Marechal [92] and Weir [144] both examine this model
and find it more effective than John the Ripper. Further, the paper introduces the
idea of quantizing probabilities, which the authors call “discretizing,” to reduce
memory usage at the cost of accurate password probabilities. We use quantization
for a similar purpose in this thesis.

van Oorschot et al. have also studied password prediction in the context of
graphical passwords. They introduce the idea of “weak password subspaces”: out
of all possible passwords, users typically choose passwords from a small subset of
the total space [137]. They then attack password prediction from two angles: by
constructing attacks based on “heuristics” which are educated guesses about what
types of passwords users will choose [136], and by learning from a small sample
of user passwords using a first-order Markov model [138].

This thesis primarily adopts the latter approach of learning primarily from
samples of user passwords, but allows the user of our framework to include other
data sources if desired. For example, we typically include dictionaries of English
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text as inputs to our algorithm, because we believe that users are likely to choose
words from these dictionaries even if our samples do not contain them. In this
way, we provide support for policy evaluators who want to incorporate their own
heuristics for how users will choose passwords into the guessing model.

It is also possible to generate guesses in a wholly different way, by collecting
guesses from real adversaries using honeypots [120]. This approach might be
used to find additional parts of the password space that are underrepresented in a
guessing model. We do not consider this approach in this thesis, but data collected
in this way would be useful for validating our guessing model.

2.6 Methodology of password strength measurement

Having a good metric is not sufficient to estimate the guessability of passwords
accurately. In this section, I discuss work related to methodological issues of
password strength measurement. The methodology used to collect data used in
this thesis is described in Section 2.2.

2.6.1 Machine learning methods

The basic approach used in this thesis for estimating the guessability of a policy
is a subjective Bayesian approach [46]. In other words, policy evaluators are
able to combine samples of passwords with other data sources that they believe
will improve the guessing model. It is not feasible to collect enough samples
from a complex policy to estimate guessability using previous methods, but
one can still generate estimates using a subjective Bayesian approach. The new
data (samples from the target policy) and prior data (other data sources) can be
weighted as desired based on how informative the prior data is expected to be,
or the appropriate weights could be selected based on the performance of the
resulting model.

Methodological issues in model generation and estimation have been studied
extensively in the machine learning literature [5, 44, 56,75]. The best practices
include:

Holdout data
Separate test data (on which the quantity is estimated) and training data (on
which the model is trained). If additional parameters of the model need to
be selected (such as weights), hold out additional training sets to prevent
overfitting.
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Cross validation
Rotate training and test data throughout the sample so all data is used an equal
number of times in training and testing.

Randomization
Both training and test sets should match the underlying distribution as closely
as possible. With password datasets, the original data might be ordered in some
non-random way, e.g., chronologically or alphabetically. Naively partitioning
data of this form into training and test sets can produce samples that do not
accurately reflect the underlying distribution.

2.6.2 Data collection and representative samples

A proper study of password policies requires a randomized experiment, in which
participants are randomly assigned a password policy. Organizations could
conduct such experiments, but it does not appear that an experiment of this
type has been reported. Instead, password researchers have turned to conducting
user studies in which participants create passwords used for the duration of the
study.

However, this can create concerns of ecological validity. As we said in our 2011
paper “Of Passwords and People” [76]:

It is difficult to demonstrate ecological validity in any password study
where participants are aware they are creating a password for a study,
rather than for an account they value and expect to access repeatedly
over time. Ideally, password studies would be conducted by collecting
data on real passwords created by real users of a deployed system.

Our methodology is described in more detail in Section 2.2.

Fahl et al. conducted a study on the ecological validity of passwords by
comparing passwords created by users for a study to their real passwords [45].
They find a number of differences between the two datasets. They also find
that participants who self-reported behaving differently for the study than they
would in real life were more likely to create unrealistic passwords. The difficulty
of studying passwords used for high-value accounts has consistently limited
password research, and acquiring quality password samples from a complex
policy is a non-trivial task.

Researchers have made various attempts to improve the validity of passwords
created for user studies. In studying a new authentication mechanism, Karlof
et al. made use of a financial incentive to add value to users” accounts. They
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conducted a user study involving deception where participants’ compensation
(from $20-$41) was stored in an account that users created for the study [66]. They
recruited over 200 participants at a cost of over $4,000. This approach would be
prohibitively expensive for larger-scale studies. In contrast, many user studies
have asked participants to create passwords that protect simulated accounts, small
monetary amounts, a chance to win an iPod in a raffle, or access to university
course materials including homework and grades [30,37,81,150].

Many researchers have examined the use of Mechanical Turk workers as
participants in human-subjects research. Buhrmester et al. found that American
workers are slightly more representative of the U.S. population than other types
of internet samples, and significantly more diverse than samples used in typical
lab-based studies that heavily favor college-student participants [18]. This study,
and others, found that Mechanical Turk tasks with appropriate screening criteria
can provide high-quality user-study data [18,43,72,111,133].

Rather than conduct a new study to collect passwords, some researchers have
studied complex policies by using conforming passwords extracted from existing
sets. Weir et al. used such an approach with the RockYou set of leaked passwords,
taking a subset that conformed to strict character-class requirements [145]. One of
the methodological contributions of this thesis is to examine the accuracy of such
an approach.

2.7 Extending probabilistic context-free grammars

Some researchers have worked on extending the grammar designed by Weir et
al. in various ways to improve its guessing efficiency. Veras et al. added a large
number of nonterminals to Weir’s PCFG to represent parts of speech, names,
and many other semantic classifications [140]. In contrast, we take the ability to
generate trillions of guesses as a priority, so we do not add very much complexity
to our grammar and instead focus on efficient guess-number generation and the
ability to generate unseen terminals.

Replacing Weir’s PCFG with a more powerful class of grammars might also
improve guessing efficiency. In particular, the context-freeness of the grammar
might be a hindrance in modeling passwords. Different elements of a password
might be related to one another, but the current grammar treats these elements
as independent. Researchers in computational linguistics have examined this
flaw of PCFGs and various approaches have been developed to mitigate it. Early
efforts in extending context-free grammars focused on context-sensitive grammars,
more powerful grammars that can easily support the inclusion of contextual
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information [65]. However, parsing the strings of a context-sensitive language is
computationally expensive, so researchers have moved on to extensions of PCFGs
that still contain context-free rules yet can capture dependencies between elements.
These approaches are broadly called “lexicalized” grammars [33]. By adding a
large number of non-terminals to the grammar, one for each tuple of dependent
elements, dependencies can be captured while parsing remains computationally
tractable. The most promising recent work in this field is the work of Petrov et
al. [115,116] called a Hierarchical State-Split Probabilistic Context-Free Grammar
(HSSPCEG). HSSPCFGs use an iterative algorithm to steadily increase the number
of non-terminals in the grammar until accuracy no longer improves.

Unfortunately, there is a quite a distance between these grammars and Weir’s
PCFG. Research in computational linguistics works at the sentence level, with the
individual tokens representing words. In passwords, we do not know where the
spaces are between words, so the tokenization problem needs to be tackled before
a more advanced grammar can be applied.






Chapter 3

Evaluating Password Strength with
Guess Numbers

In this chapter, we introduce methods for evaluating password strength and
contrast two types of approaches: automated evaluations that anyone can perform,
and a manual approach performed by a professional security firm. We compare
these approaches informally using “guessing curves,” which are introduced here
and are used throughout this thesis. Most importantly, we motivate our work by
showing that Weir’s PCFG model shows promise as an automated approach when
applied to complex policies.

3.1 The Simpleguess algorithm

The goal of this thesis is to provide an improved metric for password strength
over previous machine-learning approaches. Specifically, we improve upon the
probabilistic context-free grammar approach introduced by Weir et al. in 2009 [146].
However, the simplest way to guess passwords is to avoid complex algorithms
altogether and learn just the passwords in the training data. This approach was
taken by Weir et al. in 2010 [145], who found it to be very successful. Since the
number of guesses made is limited by the available training data, we can only
generate a small number of guesses. Even so, it is still quite useful to compare this
approach to other approaches that can generate many more guesses.

We call this approach Simpleguess and an algorithm for it is given in Algorithm S
below. We are far from the first to suggest this approach, but it was not named
by Weir et al. and details of the algorithm were not provided [145]. We do not
claim our algorithm is optimal, but it is reasonably fast for the small data sets we
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use. We also make our implementation publicly available,! where it can be used to
construct plots like those in this thesis, such as Figure 3.1 on page 38.

Presentation We present our algorithms in the style of Knuth from The Art of
Computer Programming. Our goal is to describe our algorithms in enough detail
that one could implement them based solely on our description. We hope that the
syntax we use is obvious, but if not, see page 2 of [73] for a detailed explanation.
Algorithms are labeled with single letters. When an algorithm is referred to in
another section, we use either letter and section number, such as Algorithm 3.1S,
or a sufficiently descriptive name, such as Simpleguess.

Algorithm S (Simpleguess). Given lists of training passwords P and test passwords T,
output guess numbers for each password in T. Guess numbers are determined by
a probability-based ranking of passwords in P. If a password does not exist in P, a
guess number cannot be assigned.

This algorithm makes use of hash tables denoted FREQ and TEST that are both
initially empty.

S1. [Tabulate frequencies in P.] For each password p in P, check FREQ[p]. If it
exists, increment its value by 1. If not, set FREQ[p| <— 1. (FREQ will contain all
passwords in P and their frequencies. The number of entries in FREQ is equal
to the number of distinct passwords in P.)

S2. [Sort by frequency.] Construct a new list, SORTEDGUESS, with two columns:
password and frequency. The list contains each password in FREQ and is sorted
by frequency in decreasing order. Ties may be broken arbitrarily. (The most
frequent passwords in P are at the beginning of SORTEDGUESS, and the least
frequent are at the end.)

S3. [Tabulate frequencies in T.] Perform the procedure from step S1 with T, storing
frequencies in TEST. (TEST will contain all passwords in T and their frequencies.)

S4. [Number rows.] Number the rows in SORTEDGUESS starting with 1 on the first
row and incrementing on each following row. These numbers are called guess
numbers. (The most frequent password from P has guess number 1 because
it is the first guess the model will try. The second-most-frequent password
has guess number 2, and so on. The actual frequencies in the list can now be
discarded.)

S5. [Assign guess numbers where possible.] Traverse SORTEDGUESS in order. For
each password p and guess number g, check TEST[p]. If it exists, output

!Download the repository at https://github.com/cupslab/guess-calculator-framework/t
ree/1.1 and follow the instructions at https://github.com/cupslab/guess-calculator-frame
work/blob/1.1/USAGE.md#6-emulating-the-guessing-model-from-weir-2010.


https://github.com/cupslab/guess-calculator-framework/tree/1.1
https://github.com/cupslab/guess-calculator-framework/tree/1.1
https://github.com/cupslab/guess-calculator-framework/blob/1.1/USAGE.md#6-emulating-the-guessing-model-from-weir-2010
https://github.com/cupslab/guess-calculator-framework/blob/1.1/USAGE.md#6-emulating-the-guessing-model-from-weir-2010
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(p, g) TEST [p] times and then delete p from TEST.

For example, if p = "x", g = 7, and TEST[p] = 2, output ("x", 7), ("x", 7)
since "x" appeared twice in T and has guess number 7.

(The only entries remaining in TEST will be those with no matching entry in
SORTEDGUESS.)

S6. [Output remaining passwords.] For each password t in TEST, output (t, ) or
some other indicator that the guess number cannot be assigned, e.g., a negative
number. As in step S5, do this TEST[t] times. (The total number of items
output by steps S5 and S6 must equal |T|.) |

We can use the Simpleguess algorithm to evaluate a basic8 policy? We
use RockYou as a source of both training and test data. Information on how
we prepared this dataset is provided in Appendix B.4.3. We first filter the
dataset to remove all non-basic8-compliant passwords, then randomly select
1,000 passwords and set these aside as the test data T. The remaining basic8
passwords comprise the training data P. The results of this evaluation are shown
in the following section.

3.2 Guessing curves and guessing data

The output of Algorithm S is a set of guessing data for various policies. Guessing
data contains a guess number for all cracked passwords in the test data, within
some maximum number of guesses known as the guess cutoff. In the case of
Algorithm S, the guess cutoff is the number of distinct passwords in the training
data. We can use guessing data to determine the percentage of passwords that
were cracked by the cutoff, as well as for any smaller threshold of guesses.

A “guessing curve” (a term we borrow from Bonneau [6]) is built directly from
guessing data, and plots the percentage of passwords cracked over a range of
guesses. Figure 3.1 shows the guessing curve resulting from our evaluation of the
basic8 policy. We measure guesses in log scale on the x-axis and the percentage
of cracked passwords on the y—axis.3 The guess cutoff was 9,609,791 guesses.

From the guessing data, we can construct a table like Table 3.1 which tells us
how many passwords were cracked for various numbers of guesses. As shown,
almost 2% of passwords were cracked after 10 guesses, and over 50% of passwords

2Qur convention for naming policies is described in Section 2.4.4.

3Note that this is flipped from the curves introduced by Bonneau, because we feel it is more
natural to measure the adversary’s actions (guesses) on the x-axis and the outcome on the y-axis.
It also corresponds to an ECDF (empirical cumulative distribution function) plot of the guessing
data, truncated at the guess cutoff, which can be produced by standard statistical software such as
R. See https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ecdf.html.


https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ecdf.html
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Figure 3.1: Guessing curve for a basic8 policy using the Simpleguess guessing model.
1,000 passwords were randomly held out from the RockYou dataset for testing. The
remainder were used for training. A total of 9,609,791 guesses were made.

Condition 10t 102 10° 104 10° 106 Cutoff

basic8 (Simpleguess) 1.8% 4.2% 9.7% 18.1% 28.7% 39.7% 50.3%

Table 3.1: Percent of test data cracked by the Simpleguess model at various numbers
of guesses. The approach is extremely effective with the basic8 policy. The cutoff is
9,609,791 guesses.

were cracked after about 9 million guesses. We can also determine the number
of guesses needed to crack a given percentage. With this guessing data, we find
that 4 guesses are needed to crack 1% of passwords, and 14 guesses are needed
to crack 2% of passwords. 25% of passwords are cracked after 53,902 guesses.
Chapter 6 provides guidance on how to interpret these numbers and compare sets
of guessing data.

Now let us apply the Simpleguess model to a more difficult case. Consider the
3class12 policy. Only 0.6% of passwords in the RockYou dataset comply with this
policy. We were concerned that such a small subset of passwords would not be
representative of the passwords users would create under such a policy, so we
collected 3class12 passwords from Mechanical Turk using the methodology of
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Figure 3.2: Guessing curve for a 3class12 policy using the Simpleguess guessing
model. 2,774 passwords were collected from Mechanical Turk for testing. All 3class12
passwords from the RockYou dataset were used for training. Note the y-axis limit is at
10% cracked. The guess cutoff, i.e., the total number of guesses made by the Simpleguess
algorithm, is 200,809.

Section 2.2. We used these passwords as our test data T. For training data, we used
the subset of RockYou that complies with this policy.

Figure 3.2 shows the result of this evaluation. Less than 0.5% of the
passwords in the test set were cracked! In the following sections we compare this

with guessing data from professional password crackers and other automated
approaches.

3.3 Professional crackers

The underlying data for this section was collected for the paper “Measuring Real-World
Accuracies and Biases in Modeling Password Guessability” authored by several members
of our research group [135]. My contribution to this paper was the guess-calculator
framework developed in this thesis and guidance on its confiquration. The analysis
presented here, including the comparison with other guessing models, is my own and has
not been published previously. I thank Sean M. Segreti and Blase Ur for coordinating
with KoreLogic Security to collect this data.
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As shown in Figure 3.2, 3class12-compliant passwords from a large dataset
like RockYou matched less than 0.5% of our test set. This was found using the
Simpleguess model, where passwords from the training set are tried verbatim
against passwords in the test set. There are two obvious options for improving
our guessing model: gathering more training data, or modifying our learning
algorithm to produce a more effective model. This thesis focuses on the latter
approach.

An obvious question is: what do real-world adversaries do? We do not
have a definitive answer to this question, but we know that publicly available
cracking tools primarily employ “mangling” to create new passwords [54], and
that professional crackers use these tools as well. Mangling is a generic term used
to describe various transformations that can be applied to an input password set,
such as appending random numbers or substituting letters [93]. The space of
possible manglings is huge, and guidance is sparse and of dubious merit, so it
is difficult for a researcher to know which manglings should be applied in what
order.

Rather than attempt to explore this space ourselves, members of the CMU
passwords-research group coordinated with a professional security consulting
firm, KoreLogic Security. To quote from our 2015 paper [135]:

An open question in measuring password guessability using off-the-
shelf, automated tools is how these attacks compare to an experi-
enced, real-world attacker. Such attackers manually customize and
dynamically update their attacks based on a target set’s characteristics
and initial successful cracks. To this end, we contracted an industry
leader in professional password recovery services, KoreLogic ... We
believe KoreLogic is representative of expert password crackers because
they have organized the DEF CON “Crack Me If You Can” password-
cracking contest since 2010 [77] and perform password-recovery
services for many Fortune-500 companies [78]. For this study, they
instrumented their distributed cracking infrastructure to count guesses.

Like most experienced crackers, the KoreLogic analysts used tools
including JTR and Hashcat with proprietary wordlists, mangling rules,
mask lists, and Markov models optimized over 10 years of password
auditing. Similarly, they dynamically update their mangling rules
(termed freestyle rules) as additional passwords are cracked.... An
experienced password analyst wrote freestyle rules for each set before
cracking began, and again after 10'® guesses based on the passwords
guessed to that point. They made more than 10'* guesses per set.
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[basic16] and [3class12] approaches are rare in corporate environ-
ments and thus relatively unfamiliar to real-world attackers. To mitigate
this unfamiliarity, we randomly split each set in two and designated
half for training and half for testing. We provided analysts with the
training half (in plaintext) to familiarize them with common patterns in
these sets. Because we found that automated approaches can already
crack most [basic8] passwords, rendering them insecure, we chose not
to have the professionals attack [basic8] passwords.

KoreLogic Security were compensated for their efforts and for time used on their
cracking grid. It is worth noting that the tools used by KoreLogic and other
professional crackers do not normally assign guess numbers when passwords are
cracked. In order to perform their evaluation, KoreLogic staff advocated strongly
to the Hashcat developers that they add the ability to assign guess numbers as an
optional feature* This feature is now available in Hashcat version 1.20 and up.
We were also given a preview release of this version of Hashcat which we used to
confirm the accuracy of the guess numbers it produces.

To compare KoreLogic’s results to our own, we need to restrict our test set to
the same passwords that they used. This is a much smaller set than before, only
495 passwords, because we had only collected 990 3class12 passwords at the time
the evaluation was performed and gave KoreLogic half of them to use as training
data.

Figure 3.3 shows Simpleguess and KoreLogic’s (hereafter referred to as
professionals) results on this smaller test set. All 3class12 passwords from
the RockYou dataset were used for training the Simpleguess model, while the
professionals were given 495 3class12 passwords from Mechanical Turk to learn
from and were permitted to use whatever additional data they wanted. Just as
in Figure 3.2, the Simpleguess algorithm does not perform well. It only cracks a
single password! In contrast, the professionals are able to crack over 32% of the
passwords, though it takes several hundred billion guesses before they crack the
tirst password. As we will show in the next section, a PCFG approach is able to
strike a balance between these two approaches; we can crack many passwords
early on while continuing to crack passwords as the number of guesses grows
large.

“Hashcat (which is sometimes called *hashcat because of the OpenCL and CUDA varieties
called oclHashcat and cudaHashcat respectively) seems to be the most popular tool for cracking
password hashes using GPUs [54]. It is freely available but closed source, unlike JtR [39] which is
open source, so all features must be agreed upon by a small group of developers.
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Figure 3.3: Guessing curves for the 3class12 policy for both the Simpleguess guessing
model and professional crackers. The test set consists of 495 passwords collected from
Mechanical Turk. The Simpleguess model only cracks one password and makes a total
of 200,809 guesses. The professionals do not crack their first password until guess
456,884,372,152 but eventually crack 32.7% of passwords by guess 114,602,338,907,833.

3.4 Guessing with a PCFG

We next look at how Weir’s PCFG guessing model [146] performs on the same
training and test data. This model was first described in Section 2.3.1, and lays the
groundwork for our approach. In this section, we describe how Weir’s original
implementation can be used to generate guessing data for our training and test
sets.

Figure 3.4 shows a high-level overview of Weir et al.’s approach to generating
guess numbers [146]. Unfortunately, the code released by Weir [143] cannot be used
on arbitrary training and test data in a straightforward way. We have redistributed
this code® along with helper scripts that allow experiments to be run easily. We
do not consider this to be a major contribution of this thesis, but we believe it will
help other researchers compare their approaches to Weir et al.’s. This code can
be found at https://github.com/cupslab/guess-calculator-framework/tree/
v1l.1.1/weir2009.

SWeir’s original implementation was released publicly under a GPLv2 license (http://www.gn
u.org/licenses/gpl-2.0.html).


https://github.com/cupslab/guess-calculator-framework/tree/v1.1.1/weir2009
https://github.com/cupslab/guess-calculator-framework/tree/v1.1.1/weir2009
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
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Figure 3.4: Approach to guess number generation employed by Weir et al. [146]. An
explanation is provided in the text. Only steps 2 and 3 (orange boxes with sharp
corners) are automated in the implementation provided by Weir [143]. We provide code
for automating step 4 (blue ellipse) as well. The framework developed in this thesis
automates the entire process and provides additional features. It is described in Chapters
4 and 5.

Let us describe the process illustrated by Figure 3.4 in detail. There are two sets
of inputs: passwords and cracking dictionaries. Cracking dictionaries are sets of
words, also called “wordlists,” which are the traditional form of input for cracking
tools such as JtR® Independently, a PCFG is learned from those passwords that
comply with the target policy. The cracking dictionaries and PCFG are used
together to generate guesses, with strings from the dictionaries substituted in for
alphabetic strings in the grammar. More formally, the cracking dictionaries are
the only source of terminals for the alphabetic nonterminals (L;) in the grammar.
Each cracking dictionary can be assigned a weight, but string probabilities within
a dictionary are ignored.”

Weir’s implementation is notable in that it can produce guesses in probability
order. It does this by maintaining a list of all potential next guesses in a priority
queue. As each guess is produced, it adds that guess’s successors to the queue [146].

®http://www.openwall.com/wordlists/

"Note that Weir’s implementation does not require that the cracking dictionaries contain only
alphabetic strings. However, Weir provides command-line switches to remove any non-alphabetic
strings from the dictionary inputs and recommends that they be used [143].


http://www.openwall.com/wordlists/
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Figure 3.5: Approach to guess number generation used in this section. Compare with
Figure 3.4. For simplicity, we use a single set of pruned input passwords from which we
learn both a grammar and alphabetic strings. This makes it comparable with guessing
models derived using the Simpleguess algorithm, which also takes a single set of input
passwords. Orange boxes with a thick outline come from Weir’s original implementation.
Blue ellipses are provided by our implementation.

The size of the queue is unbounded and can grow to an impractically large size
over time, so we provide a script for terminating the generation process when a
threshold amount of free RAM on the machine is exceeded.

Once the list of sorted guesses is produced, we can use it to assign guess
numbers. This operation is encapsulated in the final ellipse in Figure 3.4. We
implement this with a straightforward modification of the Simpleguess algorithm
on page 36: skip steps S1 and S2 and let SORTEDGUESS be our generated list of
guesses. The remaining steps of the algorithm can then be followed without
modification. The final output of the algorithm is a set of guessing data.

3.4.1 Comparison with other models

To make a comparison between Simpleguess and Weir’s PCFG model more fair,
we should isolate the algorithm from its training data. Our Simpleguess evaluation
used a single source of training data: 3class12 passwords from the RockYou
dataset. To use the same input with Weir’s PCFG approach, we need to modify
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Figure 3.6: Guessing curves for the 3class12 policy generated using the Simpleguess
algorithm, Weir’s original 2009 PCFG implementation [146], and professional crackers.
Training data, test data, and the Simpleguess and Professionals curves are the same as
in Figure 3.3. Curve labels are aligned to the right of the graph to prevent labels from
colliding with curves. The Weir 2009 curve represents 801,985,812 guesses and cracks
5.3% of passwords. Like Simpleguess, it is an automated approach, and uses only the
3class12 passwords from RockYou as training data.

the process in Figure 3.4 slightly so that cracking dictionaries are not needed. This
is shown in Figure 3.5. We only need to replace the cracking dictionary input with
alphabetic strings extracted from the password set.

Figure 3.6 shows the result of this approach applied to our training and test
data, compared with the Simpleguess and professional approaches. Even in this
simple example, we can begin to see the power of the PCFG model. Using an
automated, machine-learning approach, Weir’s PCFG model cracks passwords
before the professionals and continues to crack passwords until the guess cutoff
at 801,985,812 guesses. However, it suffers from two major problems. First, its
tirst crack is at guess 1,017,168 compared to Simpleguess which cracked its first
(and only) password at guess 198,686. In this thesis, we will show that this is
a persistent problem with this PCFG model, and in Section 5.5.1 we will show
why it happens and how it can be overcome. Second, we are not able to come
anywhere close to the professionals in terms of the number of guesses made—the
professionals made 114,602,338,907,833 guesses. In Chapter 4, we will show how
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Figure 3.7: Experiment 12 — Guessing curves for the 3class12 policy generated

using the Simpleguess algorithm, Weir’s original 2009 PCFG implementation [146], our
improvements to Weir’s PCFG approach, and professional crackers. Our approach
represents 16,903,290,362,610 guesses and cracks 21.4% of passwords. The configuration
for this experiment is provided on page 233.

the PCFG model can be modified so that we can calculate guess numbers within
an order of magnitude of this number, provided the test set is in plaintext.

As a preview of the contributions that will be presented in the next two chapters,
Figure 3.7 shows how the previous guessing curves compare with the approach
developed in this thesis. Our approach cracks passwords faster than any of the
other approaches, including Simpleguess, though it should be noted that it takes
advantage of a larger set of training data. While we do not outperform the
professionals at large guess numbers, we do outperform them up to the guess
cutoff for our approach at 16,903,290,362,610 guesses. We believe that this is a
significant improvement over Weir’s PCFG model and represents a new benchmark
in automated password-strength evaluation. The configuration for our approach is
provided on page 233 and will be explained in detail over the next two chapters.



Chapter 4

Efficient Guess-Number Calculation

Our tool for studying password policies is the guess-calculator framework, a system
that calculates guess numbers for passwords of a target policy. The framework
incorporates a probabilistic context-free grammar that builds on the grammar
developed by Weir et al. [146]. We first introduced this system as the “guess-
number calculator” in [67] where it was built using Apache Hadoop on top of
a modified version of Weir’s original code. In [95], we made the system more
automatic and removed the dependency on Hadoop. Finally, in order to enable the
improvements to the guessing model implemented in Chapter 5, we rewrote the
system from scratch. However, most of the algorithms described in this chapter
were developed for the early versions of the guess-number calculator.

In this chapter, we explain how we extended the methods of Weir et al.
to create a framework for automatic, efficient guess-number generation. We
discuss several aspects of our implementation. Most of these aspects are aimed
at reducing the amount of time required to perform an evaluation, holding
computational constraints constant. Some also reduce the amount of space required
for intermediate processing. Other aspects make the framework more usable. For
example, having the framework create a holdout set automatically prevents the
researcher from having to perform this step manually. This saves researcher time
and makes evaluations easier to reproduce. Finally, some aspects are aimed at
increasing the richness of our models. Weir’s PCFG produces a finite language
and is constrained by the structures and terminals that it has learned. Our changes
to how the grammar is trained enable it to produce a larger language. This can
increase the guessing efficiency of the resulting model.

47
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4.1 Improving on previous approaches

We use flowcharts to provide an overview of the steps taken by the guess-calculator
framework to produce guess numbers. Figure 3.4 on page 43 showed how this
is done using Weir’s original implementation. Figure 4.1 on page 49 shows an
early version of our framework, which illustrates the process used in many of
our previous papers [67,95,128,134]. Finally, Figure 4.2 shows the approach
developed in this thesis. The three blue boxes correspond to the improvements to
the guessing model described in Chapter 5. The rest of the boxes will be described
in this chapter.

A downside of the approach of Weir et al. is the need to enumerate all guesses in
probability order. This is a time-consuming process that limits the guess numbers
that can be assigned. In Weir’s dissertation he examines guess numbers up to 1
billion [144], but modern cracking approaches can now make several hundred
billion guesses per second [54]. A further limitation of his implementation is in
the quantity of training data that can be used. Due to implementation issues, Weir
was only able to train the grammar on a few million passwords.

In contrast, our guess-calculator framework has been trained on hundreds of
millions of input elements, and can assign guess numbers in the hundreds of
trillions. In Section 3.4, we described how Weir’s implementation uses a priority
queue approach to generate guesses in probability order, at the cost of an ever
expanding data structure. We take a very different approach, first described in
Section 4.3, and expanded over the rest of the chapter. We are able to reach large
guess numbers because we move the generation of guesses out of RAM and onto
the disk, and employ various techniques to reduce the amount of data we need to
store.

4.1.1 Implementation minutiae

The guess-number calculator was built on top of code originally released by
Matt Weir under a GPLv2 license.! This code was entirely rewritten using an
object-oriented approach, and incorporates many new features that the original
code did not possess which are covered in this chapter. We also removed some
implementation limitations.

Since guess numbers have the potential to overflow a long integer, the
GNU Multiple Precision Arithmetic Library? was introduced and many integer
operations are replaced with their respective operations from the library. Since we

Ihttp://www.gnu.org/licenses/gpl-2.0.html
*https://gmplib.org/
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Figure 4.1: Approach to guess number generation we employed in the guess-number
calculator [67], a precursor to the guess-calculator framework. The orange box with a
thick outline indicates that this step was performed by a modified version of the original
implementation by Weir. We developed the rest of the implementation.
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want to support much larger grammars than before, terminals are kept on disk
and accessed via memory-mapped files, instead of being loaded into RAM. This
allows for an arbitrarily large collection of terminals. Only structures and some
metadata about terminals are stored in RAM.

The framework was written in C++ and many memory leaks were found and
plugged with Valgrind 3

4.2 Richer models

In this chapter, we are only concerned with Weir PCFGs, whose main components
are terminals and structures* There are three types of terminals: letter strings,
digit strings, and special character strings. An example structure is LgD1S; which
describes guesses composed of an eight-character letter string, a single digit, and a
single special character. For example, “passwordl!” is a guess that might be made
under the LgD;S7 structure.

Figure 3.4 on page 43 showed how inputs are processed to produce guesses
in Weir’s original approach. Only two types of inputs can be provided: a file of
passwords, and “cracking dictionaries” with alphabetic strings [143]. Looking more
deeply into the implementation, we find that structures, digit strings, and special
character strings are all learned from the file of passwords, and the letter strings
come solely from the cracking dictionaries. A notable aspect of this approach is
that the cracking dictionaries can be independent of the passwords—they can come
from other password sets, strings collected from the Internet, or even randomly
generated strings. The only constraint is that there must be a corresponding
length string for each letter nonterminal in the grammar. For example, if a string
composed of 16 letters exists in the passwords input, there must be a string of 16
letters in a cracking dictionary or the program will fail.

We took this idea to its logical conclusion. As Figure 4.1 shows, we allowed
four types of input to the grammar: sources of structures, digits, special characters,
and alphabetic strings (letters). Input datasets were processed into four different
corpora, and each corpus was used to produce the corresponding component of the
grammar. We use the term corpus to refer to a single file produced from multiple
input files. In Section 5.4.2, we allow the grammar to contain mixed-class terminals
and nonterminals, removing the restriction that terminals must come from a single
character class. To accommodate this, we no longer split the inputs across three

Shttp://valgrind.org/
4For a reminder on the form of a Weir PCFG, examine the set of production rules R in Figure 2.1
on page 22.


http://valgrind.org/

52 EFFICIENT GUESS-NUMBER CALCULATION

terminal types. Instead, we produce a single corpus for terminals and rely on the
user to populate it as they see fit. This change can be seen in Figure 4.2. We make
it easy for users to emulate the old approach and split their terminal sources into
alphabetic strings, digits, and special characters, but this is not required.

Users specify training data using a configuration file. The configuration file
has separate sections for structure and terminal-input datasets, which are listed
by file name. Users can also specify an optional weight and filter for each dataset.
Filters are executable scripts that can be used to prune an input dataset to a target
policy, pull out strings of interest, or otherwise modify the input.> For example,
a user could specify a filter that extracts only alphabetic strings from the data
source. Weighting will be described in the Section 4.2.1. Our corpora record the
weighted frequency for each string, and a list of identifiers of datasets where a
string was seen. A string, its weighted frequency, and any identifiers comprises a
single record in a corpus.

Our algorithm for building a corpus is straightforward. We always maintain
a running corpus that is initially empty. For each dataset, convert it to a new
corpus by tabulating frequencies and multiplying the frequencies by a weight
if specified.6 Optionally, attach an identifier to each record that identifies this
dataset. For each record in the new corpus, check if its string matches a record
in the running corpus. If so, sum the frequency values and take the union of the
identifiers, then replace the record in the running corpus with these values. Else,
simply add in the new record. This merge is complete when all records in the
new corpus have been processed. The running corpus is complete when all input
datasets have been processed.

Motivation

It is important that we separate structures training, which determines the password-
composition policy of the guesses made by the model, from terminals. We need
to be careful about what passwords we allow in our structures training data, lest
we make guesses with a structure that does not match the target policy. In all
cases, we perform structures training with the most representative data source, e.g.
real passwords that match the target policy. In contrast, the terminals corpus can
include anything that might help the model. This makes the model richer, because
a model with more terminals can produce more guesses.

SWe use filters to replace the “Prune structures to match target policy” box in Figure 4.1.
®We tabulate frequencies with a hash table as in step S1 of the Simpleguess algorithm on
page 36, and weighting is described in Section 4.2.1.
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Splitting the training data also allows us to choose different sources for different
terminal types. A source of alphabetic strings, like a dictionary in the colloquial
sense, will probably not be a good source for digits or special characters, but it
might still be useful for filling in words that do not appear in the structures data.
Pruning a password file to a target policy is often performed to prepare a datset
for structures training, but this will usually throw away most of the data. We can
reuse this data, however, as a source of digits and special-character terminals. This
tailoring of sources to terminal types has the potential to increase the guessing
efficiency of the model.

One final note: the constraint in Weir’s approach still holds. For each nonterminal
found in the structures corpus, there must be a corresponding terminal. To
prevent users of the framework from producing invalid grammars by accident,
we automatically include the structures corpus in the terminals corpus. Since
structures are learned from the most representative data, we do not expect this to
be undesirable behavior.

4.2.1 Weighting sources

When users specify a dataset, they can also specify an optional weight. We identify
two types of weighting that a user might want, P-weighting and S-weighting.
For each type, we walk through an example where that type of weighting is
appropriate.

Mixing probability distributions

Consider two datasets, A and B, where we believe B is more representative of our
target policy than A. We want B to have a greater influence on our final model
than A because we think it is a better match to our target policy. Therefore, we
want to attach a higher weight to B when we specify our training data.

However, simply multiplying the frequencies in B by a larger weight than A is
not enough. This is because we build up our corpora by summing the frequencies
across datasets. Assume that dataset A has ten million passwords. Now imagine
that B has only ten thousand passwords. If we simply combine these corpora
without weighting, B will have very little impact on the model, because A is so
much larger. This is not what we want! Even with a seemingly large weight,
like 100, B is still overwhelmed by the frequencies in A.

What we want is to mix their probabilities, rather than their frequencies, and
apply a weight to the normalized datasets. We emulate this with the P-weighting
scheme, which adjusts the frequencies in B based on the ratio in size between A
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and B. A user-specified weight of “1x” would multiply the frequencies in B by
1,000; A has ten million samples and B has ten thousand, so we equalize them by
treating each sample in B as if it represented 1,000 samples.

The guess-calculator framework uses a simple algorithm to accomplish this.
Let S be the sum of frequencies in the current dataset. For 13, we have S = 10,000.
Compute P to be the sum of frequencies in the current running corpus. Assume
that we specified A first without a weight, so P = 10,000,000. Now multiply the
frequencies in the current dataset by k * g, where k is the user-specified weight.
Since we believe that B is more representative than .4, we might specify a weight
of “10x” or “100x,” which would multiply the frequencies in B by 10 * g = 10,000
or 100 % = 100,000. This accomplishes our goal of causing B to have 10 or 100
times more effect on our final model than A. We call this P-weighting because the
actual applied weight is based on the cumulative frequencies of all previous data
sources.

Mixing similar distributions

In contrast to the previous approach, consider two datasets, A and C, where we
believe the two datasets come from the same distribution. We have no reason to
believe C is more representative than A. For example, we use two leaked datasets
extensively in this thesis: RockYou and Yahoo! Voices. RockYou has over 32
million passwords, while Yahoo! Voices has around 450 thousand. We do not use
P-weighting to combine them. Instead, we simply merge them without a multiplier.
This has the effect of treating the 450 thousand passwords in the Yahoo! Voices
set as if they are just another 450 thousand samples from the same distribution as
RockYou. This is the default weighting scheme in the guess-calculator framework.

We call this S-weighting. When it is used, we simply multiply the frequencies of
the current dataset by the user-specified weight. For example, if the user specifies
a weight of “100,” we multiply the frequency of each string in the data source by
100 before merging it with the running corpus.

Limitations

Our implementation of weighting covers what we believe to be the common case,
where several datasets are combined using S-weighting, and then one or two
datasets are heavily weighted using P-weighting. For example, we might want our
training data to include datasets A, BB, C, and D, where we want B to have the
effect of A and C combined, and D to have equal effect to B and A + C.” We can

7We use + to represent combining the datasets with S-weighting.
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accomplish this by specifying our data sources in the following order: A: weight 1,
C: weight 1, B: weight 1x, D: weight 0.5x3

However, there are many potential combinations of datasets that it does not
cover, e.g., B+ D having an equal effect to A + C. Our interface for specifying
weights is not expressive enough to cover such cases.

Weighting is an unexpectedly tricky subject, because it forces us to consider how
representative we believe each dataset is. When we are unsure, we use S-weighting
and let the sizes of each sample speak to how much they should affect our model.
If we have confidence in a particular dataset, however, we can apply P-weighting.
We examine the effect of weighting, in a limited experiment, in Section 6.2.2. We
also use P-weighting with good results in Section 7.1, though we do not compare
it with other weighting schemes.

4.3 Generating patterns instead of guesses

Referring to Figure 4.1, the next step after learning a PCFG is to generate a lookup
table. In this section we describe the “Generate lookup table” boxes in Figures 4.1
and 4.2 in detail. These boxes are the same in both figures, expect that the
latter system uses compacted patterns, which will be described in Section 4.5. The
purpose of the lookup table is to provide a data structure that can efficiently store
a large number of passwords in probability order, and allow one to lookup the
guess number of a particular password using binary search.

First, we remove the limitation described in Section 3.4 that requires an
ever-expanding priority queue in RAM to generate guesses in probability order.
Instead, we generate records of guesses with probabilities, and then sort these
records on disk. The total number of guesses a Weir PCFG can produce can be
enormous—108° strings is not unusual. Therefore, we make a crucial change to
Weir’s implementation: you must provide the guess-calculator framework with a
probability cutoff. The framework generates only those records whose probability is
above or equal to this cutoff.

In order to save space and time while iterating over the PCFG, we make another
crucial change to Weir’s implementation: we generate patterns instead of explicit
guesses. These are the same patterns introduced in Section 2.3.1.1, and we will
describe patterns in more detail in Section 4.3.1. A pattern covers multiple guesses
where each guess has the same probability, and a record of each found pattern is

8This is unintuitive, but half of the running corpus represents B since it was P-weighted with

A+C.



56 EFFICIENT GUESS-NUMBER CALCULATION

written to disk. Each record includes the probability and number of guesses for
that pattern.’

Once all patterns have been found and recorded, we sort the records on disk in
decreasing probability order.!? This means that after sorting, the first record is the
highest probability pattern, the second record is second highest, and so on.

After sorting, we number the records. Recall that in step 54 of the Simpleguess
algorithm,!! we numbered our list of sorted guesses starting at 1 and counting up
to label guesses with guess numbers. We do something similar with our sorted
list of patterns, though each pattern represents multiple guesses. The first record
is numbered 1, and the second record is numbered 1 4 a; where a4 is the number
of guesses covered by the first record. The third record is numbered 1 + a; 4 a
where a5 is the number of guesses covered by the second record, and this continues
for all records. This is called a “running total” or a “prefix sum” [148].

Once the running totals have been computed, we have our lookup table. The
running total assigns a guess number to each record equal to the first guess number
covered by that record.> Using the lookup table, we can exactly determine the
guess number of any password that is above the probability cutoff, using a process
described in Section 4.7.

Storing patterns rather than explicit guesses in the lookup table saves both time
and space when generating the table. This allows us to generate tables that can
assign guess numbers in the trillions and beyond, in the same amount of space
that could only hold billions of guesses.

The lookup table could also be used to produce guesses explicitly in probability
order, but we have not implemented this.

4.3.1 Patterns

The records in our lookup table contain patterns instead of explicit guesses, where
a pattern represents a set of guesses that all share the same probability and the
same terminal groups in order. In this section, we clarify what these terms mean.
Figure 4.3 presents a PCFG specification with a single structure (LgD3) and
several terminals. When we produce guesses from this PCFG, we choose an

9We also use intelligent skipping, which will be described in Section 4.4, and pattern compaction,
which will be be described in Section 4.5, to save even more space and time while iterating over
the PCFG.

19This can be terabytes of data. In an earlier version of the framework we used Apache Hadoop
to generate the lookup table, but we found that this was not portable and was also difficult to work
with and debug.

11See page 36.

12 An example of this can be seen in Figure 4.5 on page 59, and is discussed in Section 4.3.1.
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Structures
O: I
98—>L8D3 — 10

Alphabetic terminals (T7) Digit terminals (Tp,)

[ 04— password = 0.2 0pD; 5123 = 0.5 ]
Ors—baseball = 0.2 0Dy—000 = 0.05 ]

| Org—iloveyou = 0.2 0D;—111 = 0.05

[ O1g—princess = 0.15 03222 = 0.05

| 014—ssunshine = 0.15 0D;—333 = 0.05

[ 014 superman = 0.1 OD;—444 = 0.05

| 01g—swhatever = 0.1 0D, 555 = 0.05

0D;—666 = 0.05
9D3%777 = 0.05

0p, 888 = 0.05

9D3%999 = 0.05_

Figure 4.3: Weir PCFG example with many terminals. For brevity, we show only the
set of probabilities O, since the other elements of the grammar: terminals, nonterminals,
start symbol, and production rules can all be inferred from the left-hand side of each
assignment. The square brackets to the left and right of the terminals columns denote
terminal groups. A terminal group is a set of terminals that have the same probability and
are produced by the same nonterminal (Lg or Dj3 in this case).

alphabetic terminal from the list T7, to replace the Lg nonterminal in the structure,
and a digit terminal from the list Tp, to replace the D3 nonterminal. There are
7 elements in T, and 11 elements in Tp, so there are 77 total guesses that this
PCFG can produce. The goal of building a lookup table is to sort these guesses by
probability.

Let us begin by recording explicit guesses: for each terminal ¢; in Ty, and for
each terminal f, in Tp,, we record the guess t1||t; where || is the concatenation
operator. The left table in Figure 4.4 shows the guesses we get in this manner. Note
that these guesses are not sorted. We need to sort them to produce our lookup
table, which is the table on the right in Figure 4.4.
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Probability Guess Probability Guess Guess
number
0.1 password123 0.1 1 password123
0.01 passwordooo 0.1 2 baseball123
0.01 password111 0.1 3 iloveyou123
. 0.075 4 princessi23
0.1 baseball123
0.01 baseballooo 0.01 8 passwordooo
. 0.01 9 password111
0.075 princess123 0.01 10 password222
0.0075 princessooo 0.01 11 password333
0.01 12 password444
0.01 13 passwordss5
0.01 14 password666
0.01 15 passwordyyy
0.01 16 password888
0.01 17 passwordggg
0.01 18 baseballooo

Figure 4.4: Example records produced by iterating over the PCFG of Figure 4.3 to produce
explicit guesses. On the left, we show the initial records produced by iterating over the
grammar. On the right, we show the lookup table after sorting. Both tables contain 77
rows. For brevity, several entries in each table are skipped.

We can notice immediately that the lookup table on the right has many guesses
with the same probability: guesses 1 through 3, for example. Guesses 8 through 37
also all have the same probability, and we know this even though guesses past 18
are not shown. How do we know this? We can inspect the grammar in Figure 4.3
and see that the first three elements in T;, combined with the last ten elements in
Tp, produce thirty guesses. Since the three T7, terminals have the same probability,
and the ten Tp, terminals share a probability, these thirty guesses will also share a
probability.

The key insight that makes generating patterns over guesses worthwhile is that
we can know this fact before recording any guesses, with much less work than
would be required to record guesses. Let |T;,| be the number of terminals in Tj,
and let |Tp,| be defined the same way. The number of explicit guesses we record
is |Tr4| X |Tp,| = 77. However, the total number of terminals we need to inspect
to find groups of terminals that share a probability is |Tr,| + |Tp,| = 18. We need
to sort the terminal lists to find terminal groups, but again this is much less work
than sorting the list of explicit guesses.

We call a group of terminals that have the same probability and are produced
by the same nonterminal a terminal group. The five terminal groups in the grammar
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Probability ~Size of Pattern Probability Guess Pattern
pattern number

0.1 3 LgD5(0,0) 0.1 1 LgD5(0,0)
0.01 30 LgD5(0,1) 0.075 4 LgD5(1,0)
0.075 2 LgDs3(1,0) 0.05 6 LgD3(2,0)
0.0075 20 LgD5(1,1) 0.01 8 LsD3(0,1)
0.05 2 LgD5(2,0) 0.0075 38 LgDs5(1,1)
0.005 20 LgD5(2,1) 0.005 58 LgD5(2,1)

Figure 4.5: Example records produced by iterating over terminal groups in a PCFG. See
Figure 4.3 to find the relevant terminal groups. In contrast with Figure 4.4, which has
77 rows in each table, recording patterns allows us to only need 6, yet we cover all 77
guesses. On the left, we show the initial records produced by iterating over the terminal
groups. On the right, we show the lookup table after sorting. We identify each pattern
by the structure and ranks of the terminal groups that produced it. The terminal-group
ranks are shown in angle brackets, ordered from left to right based on the nonterminals
in the structure. They are zero-based so that the highest-probability terminal group in a
list has rank o. The size of a pattern is the number of guesses it produces. The probability
of a pattern is not the cumulative probability of all of its guesses, but the probability of an
individual guess. This is required so that our lookup table represents the correct ordering
of explicit guesses.

are identified in Figure 4.3 by square brackets. There are three terminal groups in
T1, and two terminal groups in Tp,.

Knowing where the terminal groups are, we can iterate over terminal groups
instead of terminals, and produce patterns instead of explicit guesses. We show
this with our example PCFG in Figure 4.5. This requires only six records to be
produced and sorted, as opposed to 77. Instead of storing an explicit guess in each
record, we store an identifier for the pattern that points at a specific structure and
terminal groups.

Surprisingly, we have lost no information by doing this. Every explicit guess in
Figure 4.4 is covered by a pattern in Figure 4.5. Further, no guesses are placed out
of order. The order of the sorted patterns in Figure 4.5 matches the ordering of
explicit guesses in Figure 4.4.13

We can also produce all guesses from a given pattern easily: simply iterate over
all terminals within each terminal group and concatenate the terminals together.

131t is possible for two guesses to have the same probability yet be produced by different
structures, so it is possible for the guesses of one pattern to be interrupted by the guesses of
another pattern, depending on the order in which they are generated. However, we assume that
the ordering of guesses beyond probability does not matter, so we can choose to put all of the
guesses from a single pattern together in a contiguous block.
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Thus, if needed, we could expand the lookup table of patterns into a lookup table
of explicit guesses. In Section 4.7, we show how we can look up a password
without having to expand the table.

Increasing advantage

The advantage of patterns over explicit guesses increases as the size of a structure
increases. For example, a pattern with two nonterminals covers a number of
guesses that is a product of two numbers. This was the case with the PCFG
in Figure 4.3. If a pattern contains five nonterminals, it covers a number of
guesses that is the product of five numbers. Thus, patterns allow us to represent
thousands, or potentially far more, guesses with no reduction in the accuracy of
our model. In the worst case, all terminals have distinct probabilities, and patterns
provide no gain in efficiency, but this is not much worse than generating guesses
explicitly. In Section 5.2, we introduce the concept of quantization, which replaces
the probabilities of a group of terminals with their average probability. This trades
accuracy for space, allowing us to artificially increase the advantage of patterns
over explicit guesses.

4.4 Intelligent skipping

In Section 4.3, we explained that it is not feasible to iterate over the space of strings
in a Weir PCFG, because the space is too large. So, we require that the user choose
a probability cutoff. In this section, we explain how one can use a probability cutoff
to iterate over a Weir PCFG in an efficient manner. Such an algorithm is needed
because the space of patterns in a PCFG can also be very large. We find that a
PCFG trained for a basic8 policy* produces over 10?? patterns. Naively iterating
over this space to find all patterns above the cutoff is not practical.

We call this algorithm intelligent skipping. To illustrate the algorithm, we use the
example grammar of Figure 4.3 from Section 4.3. It is assumed that the reader has
read Section 4.3 and understands the concept of terminal groups.'”> The inputs to
the algorithm are a PCFG, a particular structure from that PCFG, and a probability
cutoff. The algorithm identifies all patterns descended from the input structure
that are above or equal to the given cutoff.

4Our convention for naming policies is described in Section 2.4.4.
15Even though we present and implement our algorithm using terminal groups, it could be
applied to the explicit terminals of a grammar as well by simply forcing each terminal into its own

group.
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Figure 4.6: Sorted structure-tree for the PCFG of Figure 4.3. An edge from parent to child
indicates that a nonterminal in the parent has been substituted in the child for a terminal
group. Each node contains two elements: a partial pattern and a probability value (see
text for more details). The nonterminal to be substituted is underlined in each internal
node. Labels on edges indicate probabilities of substitution and come from the right-
hand-side values in Figure 4.3. Note that the leaf probabilities match the probabilities in
the left-most column of Figure 4.5.

The actual algorithm used by the guess-calculator framework is presented in
Section 4.4.4, but its operation is unintuitive. To make its operation more clear,
we first present a similar, parallel algorithm that uses a special tree structure and
modified depth-first traversal. After the fundamental concepts of this tree-based
algorithm have been explored, we present our final algorithm and show how it
maps back to the tree.

The tree-based algorithm is presented starting in the next section.

4.4.1 Sorted structure-trees

First, we introduce the data structure that underlies our algorithm. We call it a
sorted structure-tree. It is a tree with a variable number of children per node, where
each node contains two elements: a partial pattern and a probability value. A partial
pattern is formed by taking a structure and substituting zero or more nonterminals
in it with corresponding terminal groups. Examples of partial patterns include:
LgD3; LgD3(0, ) which represents the LgDj3 structure with the highest probability
terminal group of Lg substituted in; and LgD3(0,1) where both nonterminals have
been substituted. Both structures and patterns are instances of partial patterns.
We use the shorthand Pr[n] to represent the probability of a node n.
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Construction

We can use the following algorithm to construct an SST.

Algorithm C (Construct an SST). Given a Weir PCFG G and a structure S, construct
a tree by expanding the leftmost nonterminal in each node until there are no
nonterminals left to expand.

Let n be the number of nonterminals in the input structure and let N[0], ...,
N[n-1] index those nonterminals from left to right.

C1. [Create the root.] The root node contains S and the probability 0s_,5 from G.
C2. [Initialize at root.] Set depth d < 0.

C3. [Expand nonterminal in each leaf.] Iterate over the terminal groups in N[d]
in decreasing probability order. Starting with the highest probability group,
for each terminal group T in N[d] and each node x at depth d, add child c to x
with the following values.
The weight of the edge from x to c is the probability of T.16
The partial pattern in c is the partial pattern from x with N[d] replaced with T.
The probability of c is given by Pr[c]= Pr[x] - Pr[T].
(Let |T| be the number of terminal groups in N[d]. If there are k leaves in the
tree before this step, there will be |T| - k new leaves created.)

C4.[Go down a level.] If d <n —1, set d - d 41 and return to step C3. 1

The SST produced from our example grammar of Figure 4.3 is given in
Figure 4.6.
Properties

All SSTs must satisfy the following properties:

1. The probability of each node is equal to the product of the root-node
probability and the probabilities along the edges on the path from the root.

2. All edge weights are in (0, 1].

3. Sibling nodes are sorted from left to right in order of decreasing probability.
In other words, all right siblings of a node n have a probability less than or
equal to Pr[n].

4. At a given tree depth d, where d is less than the tree height h, all nodes
substitute the same nonterminal to produce children. For example, the root

16Remember that all terminals within a terminal group have the same probability, so we define
Pr[T] as the probability of any terminal in T: g, Where t € T.
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node in Figure 4.6 produces children by substituting the first nonterminal in
the structure, Lg. All nodes at depth 1 in Figure 4.6 (the middle layer) replace
the second nonterminal to produce their children. The bottom layer of leaf
nodes have no nonterminals to substitute.

5. The SST is complete. The only leaves are at the bottom layer of the tree and
this layer is completely filled.

These properties follow logically from how the SST was constructed in
Algorithm C. You can verify them in Figure 4.6. We will cite these properties when
proving the correctness of our algorithm.

4.4.2 Naive algorithm

Now that we have introduced the sorted structure-tree, we can present a naive
algorithm for traversing it to find patterns above or equal to our probability cutoff.
We will improve upon this algorithm in Section 4.4.3.

Our naive algorithm simply performs a preorder traversal of the SST with
the following modification. If a node’s probability is below the cutoff, we do not
need to explore its children. Since we know from SST properties 1 and 2 that the
probability of a node can never be greater than any of its ancestors, we do not
need to search further down the tree.

Algorithm P (Preorder traversal with early return). Given a root node n of an SST
and a probability cutoff cut, record all patterns with probability above or equal to
cut.

This algorithm is recursive. If a n’s probability is below the cutoff, return.
Otherwise, call this algorithm recursively on the children of n with the same cutoff.

P1. [Base case: Early return.] If Pr [n] < cut, return.

P2. [Base case: Leaf node.] If n is a leaf node, record n. (If n has no children then it
has no nonterminals to substitute. In other words, it contains a pattern. Since
we did not return in P1, our probability is above or equal to cut and we should
record this pattern.)

P3. [Recurse on children.] Call Algorithm P with cut for each child of n. 1

Figure 4.7 shows the result of applying Algorithm P to our example SST with
cut equal to 0.01. The algorithm behaves as expected and two patterns are not
recorded. Figure 4.8 shows what happens with cut equal to 0.08. Even though the
algorithm has the ability to return without visiting child nodes, it is forced to visit
all nodes in this case. Since none of the internal nodes have a probability less than
the cutoff, the early return is not triggered.
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Figure 4.7: SST after applying Algorithm P with a probability cutoff of 0.01. Visited nodes
are outlined, nodes whose patterns were recorded are shaded, and nodes whose patterns
were rejected (below the cutoff) are crossed out. Two patterns were not recorded.
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Figure 4.8: SST after applying Algorithm P with a probability cutoff of 0.08. Visited nodes
are outlined, nodes whose patterns were recorded are shaded, and nodes whose patterns

were rejected (below the cutoff) are crossed out. Only one pattern was recorded, but all
nodes were visited because no internal node had a probability less than the cutoff.
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4.4.3 Intelligent algorithm

We can observe that Algorithm P has an obvious inefficiency. SST property 3,
which requires that all siblings are sorted, implies that once a node is rejected, we
can reject all of its siblings on the right without even visiting them. This is the first
improvement to our naive algorithm. Surprisingly, SST property 4 allows us to go
even further. If the node we reject happens to be the leftmost (highest probability)
child, we can reject all of its siblings and all of its parent’s right siblings! We call
this intelligent skipping. Later in this section, we provide a proof that this behavior
is safe.

First we present our algorithm, then we show how it applies to our example
SST.

Algorithm I (Preorder traversal with intelligent skipping). Given a root node n of an
SST and a probability cutoff cut, record all patterns with probability above or
equal to cut. Like Algorithm P, this algorithm is recursive. Unlike Algorithm P,
however, the algorithm returns a Boolean value. This value indicates to a node’s
parent whether or not to continue.

I1. [Base case: Early return.] If Pr[n] < cut, return FALSE. (This node is below the
cutoff, so its parent should ignore its remaining siblings.)

I12. [Base case: Leaf node.] If n is a leaf node, record n and return TRUE. (Record
this pattern and return, telling parent to continue.)

I3. [Initialize pointer to first child.] Set c to be the leftmost child of n. Set fc <— TRUE.
(We start with the highest probability child of n, and set the first-child flag fc
to TRUE.)

I4. [Recurse on child.] Set r to the return value of Algorithm I called with c and
cut.

I5. [Continue?] If r = TRUE, go to step I6. Otherwise, go to step 17. (If c’s
probability is above or equal to the cutoff, we can move to the next child and
continue. Otherwise, we terminate.)

I6. [Update pointer and repeat.] If c is the rightmost child of n, return TRUE.
Otherwise, set c to be the immediate right sibling of n, set fc <— FALSE, and
go to step I4. (If we reached here and n has no more children, return TRUE.
Otherwise, recurse on the next child.)

I17. [First child?] If fc = TRUE, return FALSE. Otherwise return TRUE. (In either case
we terminate, since we encountered a child below the cutoff. However, if the
tirst child is below the cutoff, we return FALSE to indicate to our parent that
all of our children were skipped, and all of our parent’s right siblings can be
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Figure 4.9: SST after applying Algorithm I with a probability cutoff of 0.08. Visited nodes
are outlined, nodes whose patterns were recorded are shaded, and nodes whose patterns
were rejected (below the cutoff) are crossed out. Once a node is rejected, we do not visit
its right siblings. If the node is a leftmost child, we reject the parent and do not visit its
parent’s right siblings. The middle node in the middle layer of the tree was first visited
and then later rejected when its leftmost child was rejected. Compare with Figure 4.8—
the outcome is the same, that only one pattern is recorded, but we are able to skip four
nodes.

skipped. Otherwise, we skip all remaining children but our parent proceeds as
usual.) |

Figure 4.9 shows the result of applying Algorithm I to our example SST with
cut equal to 0.08. We are now able to skip four of the nodes and terminate before
even visiting the rightmost branch of the tree.

Though this example is simple, intelligent skipping allows us to iterate over a
huge space of patterns in a reasonable amount of time. For large trees with many
layers, we are able to skip almost all nodes, since many nodes are below the cutoff.

Correctness

Intelligent skipping differs from Algorithm P in two ways. First, we skip all right
siblings of a node below the cutoff. This follows logically from SST property 3.
Second, if a leftmost sibling is below the cutoff, we skip all of its parent’s right
siblings. The correctness of this second property is not obvious, so we provide an
informal proof of it here.

Theorem I. Given an SST, if a node’s probability is below the cutoff, and it is a
leftmost child, all children of its parent’s right siblings are below the cutoff.
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Proof. By SST property 4, all nodes at a given depth expand the same nonterminal.
Therefore, the edge weight from a node to its leftmost child will be the same
weight as on the edge from any right sibling to that right sibling’s leftmost child.
Let us call the node n, its leftmost child n;, a right sibling r, and that right sibling’s
leftmost child r. SST property 4 ensures that:

Pr(n — n;] =Prlr — r] (4.4.1)

By SST property 3, we know that Pr[n] > Pr[r]. In other words, the right sibling
has probability less than or equal to our node, since siblings are sorted. Thus, we
can derive the following;:

Pr[n] > Pr(r]

Pr[n — np] -Prin] > Prlr] -Prin — nr] by SST property 2
Pr[n — np] -Prn] > Prlr] -Prir — r1] by (4.4.1)
Prn.] > Prlr.] by SST property 1

Therefore if we reject n;, we should also reject ry, the right sibling’s leftmost child,
since Pr[n.] > Pr[ry]. By SST property 3, we can also reject all siblings of n,
and r. Finally, since we did not specify a particular right sibling for r, the proof
applies to all right siblings of n. |

4.4.4 Using mixed-radix numbers

Instead of using a tree to represent all of the possible patterns produced by a
structure, we use a mixed-radix number.!” In fact, you have already seen this
number in the form (2,0) in Figure 4.5 and the various SST diagrams, such as
Figure 4.9.

We describe how this number works with an example, which you can follow on
Figure 4.9. Take the mixed-radix number (2,0). To reach the node with this index,
start at the root, and move to the third child from the left (which happens to be
the rightmost child), and then to the leftmost child of that node. This places us at
the leaf with index (2,0). To clarify, we took the third-highest-probability terminal
group for the first nonterminal in the structure, and then the highest probability
terminal group for the second nonterminal. Since the mixed-radix number is
zero-indexed, a 0 corresponds to the leftmost child on an SST. Remember that

7https://en.wikipedia.org/wiki/Mixed_radix
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the leftmost child is special in our intelligent skipping algorithm, so a 0 in our
mixed-radix number is special in the same way.

A mixed-radix number is defined by two quantities: the number itself and the
radices that correspond to each position in the number. For example, the number
(2,0) has radices [3, 2]; the root node has three children, and each node at depth
1 has two children. Each position in the mixed-radix number corresponds to a
nonterminal in the structure, and a branch taken in the SST. The mixed-radix
number serves to index the leaves in the SST, and the number of possible values of
the number is equal to the number of leaves in the tree.

We can increment the mixed-radix number to move to the next leaf in the
tree that we would reach using preorder traversal. For example, incrementing
(2,0) gives (2,1) which is the immediate right sibling of (2,0). Incrementing (1, 1)
gives (2,0), the leftmost child of (1,1)’s parent’s right sibling. Algorithms for
incrementing mixed-radix numbers are well known and easy to implement.!®

The mixed-radix number does not model any of the internal nodes of the tree.
Instead, our algorithm skips directly from a leaf below the cutoff to the next leaf
that we need to evaluate. We present the algorithm and then some short examples
to provide an intuition into how it works.

Algorithm M (Intelligent skipping with a mixed-radix number). Given a Weir PCFG G,
a structure S, and a probability cutoff cut, print all patterns with probability above
or equal to cut.

Let n be the number of nonterminals in S and let N[0], ..., N[n-1] index those
nonterminals from left to right. Let p, =[IN[0] |, ..., IN[n-1]|], where IN[i]|
is the number of terminal groups produced by N[i]. (These are the radices of our
mixed-radix number.)

M1. [Initialize mixed-radix number.] Set p < (0,...,0), such that p has n digits.
(This step initializes our mixed-radix number to the highest probability pattern
that can be produced by the structure. In SST terms, 0 corresponds to the
leftmost child of a node, so p points at the leftmost child of the leftmost child,
etc. down the tree.)

M2. [Check probability.] Compute:
n—1

Pripl =Pr[S]- [ [Pr[N[i]l(p[il]]
i=0

where N[i] [j] is the j* terminal group of the nonterminal N[1i].
If Pr[p] is above or equal to cut, go to step M3. Otherwise, go to step M5.

180ne such algorithm is Knuth’s Algorithm 7.2M [74].
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MB3. [Record pattern.] Record p.

M4. [Move to next pattern.] Increment p and go to step M2. If p cannot be
incremented, terminate. (Move to the next leaf and check its probability. If
there are no more leaves, then we are done traversing the structure.)

MB5. [Skip ahead.] Scan p from right to left for the first nonzero value. Set this

digit to its maximum value and do the same for all digits to its right. Then go
to step M4. If p has no nonzero values, terminate.
(Let i be the position of the first nonzero value in p. pl[i]’s maximum
value is py [1] — 1. We set p[i] < (py[i] — 1), p[i+1] « (p [i+1]1 —1), ...,
pln-11 < (pr[n-11 —1). This sets p to the last leaf whose probability is
known to be below cut. We then go to step M4 to increment p and continue.
A more detailed explanation of what is happening in this step is provided
below. ) |

Intelligent skipping is implemented in step M5. A few examples will help to
clarify how this step works. Take p = (0,1) with radices [3,2] as in Figure 4.9.
Scan p from right to left for the first nonzero value; it is found immediately in the
rightmost digit: 1. Step M5 sets this digit to its maximum value, which is also 1.
Therefore, we have not changed the value of p.

Now imagine that the radices of p are [3,5]. In other words, (0,1) has a left
sibling: (0,0), and three right siblings: (0,2), (0,3), and <0,4>.19 Step M5 sets
p to (0,4), the rightmost sibling. We will next go to step M4 and increment p,
which sets p to (1,0). Thus, we skip all the right siblings of (0,1). This is the same
approach Algorithm I would have taken.

Since we were not at a leftmost child, we did not skip any higher set of siblings.
Next, we see an example of that behavior. Take p = (0,0, 1,0) with radices [3,3, 5, 5].
The first nonzero value is found in the second digit from the right. Step M5 sets
p to (0,0,4,4). Since we are at a leftmost child, identified by a 0 in the last digit,
we want to skip all of our parent’s right siblings. Therefore, we set the third digit,
which represents the second layer from the bottom of the SST, to its maximum
value. After incrementing, we have p = (0,1,0,0).2

Conclusion

Our algorithm maps a mixed-radix number onto the leaves of an SST, indexing
all patterns for a given structure. It starts with (0,...,0), which is the highest

YTry imagining each node in the middle layer of Figure 4.9 with five children. We are currently
on the second one.

20Note that we are now set up nicely in case Pr[p] is below the cutoff, since we are at the
leftmost child of a leftmost child. If we need to skip again from here, we would be at p = (1,0,0,0).
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probability pattern that a structure can produce. When the algorithm encounters a
pattern below a given probability cutoff, it skips ahead along the tree, past patterns
whose probability can be logically deduced to be below the cutoff. It is possible
that the algorithm can be optimized further, but we have found that it is able to
record patterns from an enormous possible space in a reasonable amount of time.

In Section 4.7, we will explain how our lookup process acts as a check on
Algorithm M. If a password in the test set has a probability above the cutoff
and a pattern that was not recorded, the lookup process returns an error and
flags this password. We have been using Algorithm M as part of the guess-
calculator framework for a few years. In that time, we have looked up several
thousand passwords without seeing an error. We believe that, given the same
inputs, Algorithm M will record the same patterns as Algorithm I composed with
Algorithm C, though its correctness is not intuitive. It is also much easier to
implement.

4.5 Pattern compaction

In this section, we introduce an optimization to the way we record patterns. We
call it pattern compaction. We discovered the need for it after examining the entries
in our lookup table and noticing that many of them share the same probability
and the same structure. For some structures, pattern compaction allows some
patterns descended from this structure to be collapsed into a single pattern in a
way that is deterministic and still allows these patterns to be looked up later. First,
we present a PCFG where this optimization can be applied, then we explain how
the algorithm works.

The PCFG shown in Figure 4.10, which has a modified structure compared
to our previous example PCFG in Figure 4.3, produces patterns that can be
compacted. The structure D3LgD3 has the D3 nonterminal repeated, once at the
beginning of the password and once at the end. This will produce passwords like
123password000. The patterns produced by this PCFG are shown in Figure 4.11.

The pattern that covers 123password000 is D3LgD3(0,0,1) using our mixed-
radix notation. As you can see from Figure 4.11, this pattern covers 30 guesses
and its probability is 0.005. Let us say that our probability cutoff is below or
equal to this number. We record the pattern D3LgD3(0,0,1). Our key insight is
that, by the definition of a context-free grammar, the password 123password000
has the same probability as 000password123. The ordering of the terminals in
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Structures
O: I
98—>D3L8D3 — 10

Alphabetic terminals (T7) Digit terminals (Tp,)

[ 04— password = 0.2 0pD; 5123 = 0.5 ]
Ors—baseball = 0.2 0Dy—000 = 0.05 ]

| Org—iloveyou = 0.2 0D;—111 = 0.05

[ O1g—princess = 0.15 03222 = 0.05

| 014—ssunshine = 0.15 0D;—333 = 0.05

[ 014 superman = 0.1 OD;—444 = 0.05

| 01g—swhatever = 0.1 0D, 555 = 0.05

0D;—666 = 0.05
9D3%777 = 0.05

0p, 888 = 0.05

9D3%999 = 0.05_

Figure 4.10: Weir PCFG example with a repeated nonterminal (D3). The repeated
nonterminal causes the patterns produced by this structure to have repeated probabilities
as shown in Figure 4.11.

a password does not alter its probability.2!

Of course, the model is simpler
than reality, where the passwords 123password000 and 000password123 probably
have different probabilities. Of the models we have discussed thus far, only the
Simpleguess model from Section 3.1 can capture such subtleties. Our Weir PCFGs

do not??

The passwords 123password000 and 000password123 have two different mixed-
radix numbers associated with them: D3LgD3(0,0,1) and D3LgD3(1,0,0). We use
the notation Lg(0) to identify the first terminal group produced by the nonterminal

21 Our model captures some orderings, but not others. The string password123 will probably
have a different probability than 123password because the two strings have different structures.
The former password has structure LgD3 and the latter D3Lg. Digits are more likely at the end
of a password than in the middle, so LgD3 probably has a higher probability than D3Lg. Only
reorderings of terminals that do not change the structure will share the same probability.

22Hybrid structures, which are introduced in Section 5.5.1, will be able to capture this as well.
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Probability  Size of Pattern Probability ~ Guess Pattern
pattern number

0.05 3 D5;LgD3(0,0,0) 0.05 1 D3LgD5(0,0,0)
0.005 30 D;LgD3(0,0,1) 0.0375 4 D3LgD5(0,1,0)
0.0375 2 D5;LgD3(0,1,0) 0.025 6 D3LgD5(0,2,0)
0.00375 20 D;LgD3(0,1,1) 0.005 8 D3LgD5(0,0,1)
0.025 2 D3LsD3(0,2,0) 0.005 38 D3LgD5(1,0,0)
0.0025 20 D;LgD3(0,2,1) 0.00375 68 D3LgD5(0,1,1)
0.005 30 D3LgD3(1,0,0) 0.00375 88 D3LgD3(1,1,0)
0.0005 300 D5;LgD3(1,0,1) 0.0025 108 D3LgD5(0,2,1)
0.00375 20 D;LgD3(1,1,0) 0.0025 128 D3LgD5(1,2,0)
0.000375 200 D;LgD3(1,1,1) 0.0005 148 D3LgD5(1,0,1)
0.0025 20 D3;LgD3(1,2,0) 0.000375 448 D3LgD5(1,1,1)
0.00025 200 D5;LgD3(1,2,1) 0.00025 648 D3LgD5(1,2,1)

Figure 4.11: Pattern records produced by iterating over the PCFG of Figure 4.10. On the
left, we show the records produced by Algorithm 4.4M with no probability cutoff. Notice
that the mixed-radix number associated with each pattern is incremented in each entry.
On the right, we show the lookup table after sorting. The lookup table has 12 entries and
covers 847 guesses. Notice that lookup-table entries 4 and 5 have the same probability,
as well as 6 and 7, and 8 and 9. We can know that this repetition will occur a priori, and
compact these repetitions into single patterns. This is shown in Figure 4.12.

Ls. The probability of D3LgD3(0,0,1) is:

Pr[D3LgDs] - Pr[D3(0)] - Pr[Lg(0)] - Pr[D3(1)]
and for D3LgD5(1,0,0):

Pr[D3LgDs] - Pr(Ds(1)1 - PriLg(0)1 - Pr[D3(0)]

Therefore, both patterns have the same probability.

When a structure contains a repeated nonterminal, and that nonterminal has at
least two terminal groups, we can anticipate patterns that have the same probability.
Notice that lookup-table entries 4 and 5 in Figure 4.11 have the same probability,
as well as 6 and 7, and 8 and 9. We can identify such entries by looking for
permutations of terminal-group indices under repeated nonterminals. Consider
the partial pattern D3LgD3(0,—,0), where we ignore the second digit since the
Lg nonterminal is not repeated. This pattern has only a single permutation,
because exchanging the Os does not produce a new number. However, the
pattern D3LgD3(0,—,1) has two permutations: D3LgD3(0,—, 1) and D3LgD3(1,—,0).
Therefore, when we encounter a pattern descended from D3LgD3(0,—,1), such as
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entries 4, 6, and 8 from Figure 4.11, we can anticipate the existence of additional
patterns with the same probability.

Consider a more complex example: LiDiL1D1L1D1L1D+(-0,-,0,-0,—,1).
This partial pattern can produce passwords like alb2c3d4. It has four permutations,
because the 1 can be moved around to any of the D; spots. We can do
even better when the terminal-group indexes do not repeat. For example,
L1D1L1D1L1D1L1D1(-,0,-,1,-,2,—,3) has 24 permutations:

L1DyL1D1L1D1L1D+(-,0,-,1,-,2,-,3)
L1D1L1D1L1D1L1D4( ,0, -1,-,3,-2)
LiD1L1D1L1D1L1D4(-,0,-,2,-,1,-,3)
LiD1L1D1L1D1L1D+(-,0,-,2,-,3,-,1)

The previous example, has two repeated nonterminals: L1 and D;. Therefore,
we can also consider the pattern L1D1L1D1L1D1L1D1(0,-,1,—-,2,—,3,—-), where we
ignore the indices of the D; nonterminal. This can produce up to another 24
permutations:

Therefore, if we encounter the single pattern LyD,L1D,L1D1L1D1(0,0,1,1,2,2,3,3),
we can anticipate 575 patterns with the same probability?® To compute the number
of patterns to anticipate, we use a standard formula for the number of permutations
of a multiset, computed independently for each repeated nonterminal** This is
utilized in the updated version of Algorithm 4.4M for compacted patterns given
below.

Algorithm M (Intelligent skipping with pattern compaction). Given a Weir PCFG G,
a structure S, and a probability cutoff cut, print all compacted patterns with
probability above or equal to cut.

Let n be the number of nonterminals in S and let N[0], ..., N[n-1] index those
nonterminals from left to right. Let p, =[IN[0] |, ..., IN[n-1]|], where IN[i]|
is the number of terminal groups produced by N[i].

2324 .24 = 576. After seeing the first one, we expect 575 more.
24This formula is given in Appendix A.1.
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Mi1.
Ma2.

M3.

M4.

MS5.

Me.

M?7.
MS.

[Initialize mixed-radix number.] Set p <— (0,...,0), such that p has n digits.

[Check probability.] Compute:

n—1

Prip] =Pr[s]- | [Pr[N[il([p[il]]
i=0

where N[i] [j] is the j* terminal group of the nonterminal N[1i].
If Pr[p] is above or equal to cut, go to step M3. Otherwise, go to step MO.

[Can p be compacted?] For each repeated nonterminal in S, check if its
corresponding positions in p contain more than one value. If so for any
repeated nonterminal, go to step M4. Otherwise, go to step M7.

(If there are no repeated nonterminals in p, do not worry about pattern
compaction and go to step M7. If there are repeated nonterminals, we still
have to check for the possibility of compaction. For example, a pattern
that matches D3LgD3(0,—,0) cannot be compacted. Since the positions of
p corresponding to the D3 nonterminal all contain the same value, “0,” we
cannot anticipate another pattern with the same probability. It has only one
permutation. We also record this as a simple pattern by going to step M7.)

[Should p be recorded?] For each repeated nonterminal in S, check if the
corresponding digits in p are in nondecreasing order. If so for all repeated
nonterminals, go to step M5. Otherwise, go to step M8.

(Compacted patterns reduce the number of records that we produce, but we
still visit the same number of leaves. If we encounter a leaf that represents a
pattern that has already been recorded, we skip it by going to step M8. For
any set of permutations, there is only one permutation where the values are
nondecreasing, so this is the one we record.)

[Count permutations.] Set x <— 1. For each repeated nonterminal in S,
construct a multiset from the values of the corresponding positions in p.
Let y be the number of permutations of this multiset, computed using the
standard formula in Appendix A.1. Set x - x -y and move to the next
repeated nonterminal. (At the end of this step, x contains the total number of
permutations of p.)

[Record compacted pattern.] Let m be the original size of p. Record p, but
replace its size with m - x, where x is the number of permutations from step
M5. Go to step MS.

[Record simple pattern.] Record p.

[Move to next pattern.] Increment p and go to step M2. If p cannot be
incremented, terminate.
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Probability ~ Size of Pattern Probability ~ Guess Pattern
pattern number

0.05 3 D5;LgD3(0,0,0) 0.05 1 D3LgD5(0,0,0)
0.005 60 D;LgD3(0,0,1) 0.0375 4 D3LgD5(0,1,0)
0.0375 2 D5;LgD3(0,1,0) 0.025 6 D3LgD5(0,2,0)
0.00375 40 D;LgD3(0,1,1) 0.005 8 D3LgD5(0,0,1)
0.025 2 D3LsD3(0,2,0) 0.00375 68 D3LsD3(0,1,1)
0.0025 40 D;LgD3(0,2,1) 0.0025 108 D3LgD5(0,2,1)
0.005 - D53LgD3(1,0,0) 0.0005 148 D3LgD3(1,0,1)
0.0005 300 D5;LgD3(1,0,1) 0.000375 448 D3LgD5(1,1,1)
0.00375 - D;LgD5(1,1,0) 0.00025 648 D3LgD5(1,2,1)
0.000375 200 D5;LgD3(1,1,1)

0.0025 - D3;LgD3(1,2,0)

0.00025 200 D5;LgD3(1,2,1)

Figure 4.12: Compacted patterns produced by iterating over the PCFG of Figure 4.10
using Algorithm 4.5M. Contrast with Figure 4.11 on page 72, which used Algorithm 4.4M.
The patterns in gray on the left are still encountered, but we recognize the opportunity
for pattern compaction and use it to avoid storing the additional records. The lookup
table has g entries and still covers 847 guesses.

M9. [Intelligent skip ahead.] Scan p from right to left for the first nonzero value.
Set this digit to its maximum value and do the same for all digits to its right.
Then go to step M8. If p has no nonzero values, terminate. |

We present the result of running our updated Algorithm M in Figure 4.12.
Compare the records produced in the left side of Figure 4.11 with those in the
left side of Figure 4.12. Those patterns which could be compacted, identified by
the partial pattern D3LgD3(0,—, 1) had two permutations each, so we multiply
their size by 2 when recording. D3LgD3(0,—,1) is an increasing sequence, so those
patterns are recorded. We skip the redundant patterns that are encountered later
on, identifying that the partial pattern D3LgD3(1,—,0) does not have increasing
values.

The takeaway is that taking advantage of repeated nonterminals can greatly
reduce the amount of space that the guess-calculator framework needs on
disk, with no sacrifice in accuracy. However, it comes with a significant
increase in implementation complexity as shown in the previous algorithm
and Algorithm 4.7.2C which is needed on lookup. We also recognize that
this optimization is extremely specific to our application and might be hard
to generalize to other problem domains.
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4.6 Parallel computation

4

A few of the boxes in Figures 4.1 and 4.2 are labeled with “Parallel computation.’
A major improvement of our approach over Weir’s implementation and many other
approaches is the use of parallel algorithms. This aspect of our approach increases
the usability of the framework, by allowing the entire process to complete in a
reasonable amount of time, but does not decrease the total amount of computation
performed or the amount of space needed.

In all cases, we use parallelization where the underlying problem is embar-
rassingly parallel?’ In this section, we explain where we have employed parallel
algorithms.

Quantizing terminal probabilities This improvement will be discussed in more
detail in Section 5.2. It is standard practice to run the algorithm that we use [87]
a large number of times with randomly selected initial values, and take the best
performing iteration. We run these iterations in parallel, each with a different set
of initial values. We do this using the mclapply command in R.2°

Generating patterns We parallelize the generation of patterns by running
instances of Algorithm 4.5M in parallel, each working on a different input structure
from the PCFG. The records produced by each instance are written to separate
files.

Sorting We sort these files in parallel by invoking separate instances of the GNU
sort utility. The sort utility has a parallel mode, but can only utilize up to 8 cores
at the time of this writing. We use it in non-parallel mode, one process per core.
Once this is done, we merge the sorted files into a single sorted file. This merge
sort is not parallelized and is a significant bottleneck of the framework.

Assigning guess numbers FEach password in the test set can be looked up
independently. We divide the test set into n chunks, where n is the number
of cores to parallelize over, and look up these chunks in parallel.

ZThis is a term of art that refers to problems that can be parallelized easily because the
individual processes do not need to coordinate. See https://en.wikipedia.org/wiki/Embarras
singly_parallel.

2ohttps://stat.ethz.ch/R-manual/R-devel/library/parallel/html/mclapply.html
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4.7 Assigning guess numbers

The output of the guess-calculator framework is the assignment of guess numbers
to an input set of test passwords. In this section, we explain how this assignment
is performed. Using a PCFG and a lookup table built from that PCFG, we can
either assign a guess number to a password, or identify a reason why a guess
number cannot be assigned. A guess number cannot be assigned if the PCFG
cannot produce the password, or if the lookup table does not extend far enough to
assign a guess number.

You have already seen a lookup table in the right side of Figure 4.12 on page 75,
and we first described its creation in Section 4.3. The lookup table stores patterns
in decreasing probability order, and each record in the lookup table contains three
fields: probability, the guess number of the first password in the pattern, and a
pattern identifier.

There are many steps involved in assigning a guess number and some of them
are complex in and of themselves. We first present our algorithm at a high-level,
then we describe some of the steps in more detail. For simplicity, we assume that
each password can only be parsed in one way, or not at all. This is true of the Weir
PCFGs that we have discussed so far. In Chapter 5, we introduce grammars that
can parse a password in multiple ways. The only change needed to accommodate
this is to make step Al below nondeterministic, such that Algorithm A returns a
record with the lowest guess number found across all possible parses.

Algorithm A (Assign guess number to password). Given a Weir PCFG G, a lookup
table L, and a password p, return a record for p that includes its guess number, or
return a reason why a guess number could not be assigned.

The algorithm makes use of the functions PARSE and PATTERN-OFFSET that
are described later in this chapter. PARSE is described in Section 4.7.1, and
PATTERN-OFFSET is described in Section 4.7.2. It also uses the SINGLE-RADIX
function presented in Appendix A.3.

Al. [Parse password.] Call PARSE(p,G). If the function is successful, set
pr,pat, t,ids <— PARSE(p,G). Otherwise, return “Not in PCFG” and terminate.
(If p can be produced by G, PARSE will determine its probability pr, pattern
identifier pat, terminal ranks t, and source identifiers ids. The pattern
identifier looks like LgD3(2,1), which encodes both the structure and terminal
groups.
A pattern covers many passwords, so we need an additional variable t that
indexes the given password p within pat. This is another mixed-radix number
provided by the PARSE function.
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Recall that in Section 4.2 we wrote optional source identifiers into the PCFG
for each structure and terminal. These are returned in the ids variable.)

A2. [Compute offset from pattern compaction.] Set fpat, c <— PATTERN-OFFSET (pat).
(fpat is the permutation of pat which was recorded in step M6 of
Algorithm 4.5M, i.e., for each repeated nonterminal, the corresponding digits
in fpat are nondecreasing. If pat is a compacted pattern, we will not find it in
the lookup table. Therefore, we need fpat so we can use it as a lookup key.)

A3. [Scan lookup table.] Using pr and fpat as keys, search L for a record that
matches both keys. First perform a binary search with pr to find the first
matching record. Then do a linear scan down the following records until a
record matching both fpat and pr is found. Let r be the record found in this
way. If r exists, go to step A5. Otherwise, go to step A4.

(If pr is not found, then the search fails. If the linear scan encounters a record
whose probability is not pr, then the search also fails, since L is sorted by
probability.)

A4. [Check for serious error.] If pr is within the bounds of L, i.e., it is greater than

or equal to the probability cutoff used to create L, fail the lookup process and
return a serious error. Otherwise, return “Password below probability cutoff”
and terminate.
(If the probability is above the cutoff, then Algorithm 4.5M should have
produced a corresponding pattern. If fpat was not found, this indicates an
issue with the lookup table creation process and should be taken seriously.
During development, this alerted us to issues in the parallel pattern-generation
process that we would have otherwise missed. If the probability is below the
cutoff, then it will not be found in L.)

A5. [Compute guess number.] Let rgy be the guess number from the lookup-table
record r. Set tgy < SINGLE-RADIX(t), which is the rank of this password
within its pattern. Set ¢ < 0 if it is not already set. Let the guess number of
the password be g < r¢y + tey + c.

(ren is the guess number found in the lookup table, which is the first password
produced by fpat. We need to add two offsets:

All permutations of fpat are guessed one after another after fpat, which is
fine because they all share the same probability. The compaction offset, c,
accounts for pat being a compacted pattern that is a later permutation of fpat.
It tells us how many guesses to skip to get to pat, so rey + ¢ points at the first
password produced by pat.

tgy counts from the start of pat to p.
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Both offsets, c and tgy, can be zero. c is zero if pat is not compacted, or if
pat = fpat. tgy is zero if p is the first password produced by pat.)

A6. [Return record.] Return a record including p, g, fpat, pr, and ids. |

Algorithm A has four outcomes for each input password:

e The password was parsed successfully and an appropriate pattern was found
in the lookup table. We return the guess number of the password.

e The password was parsed and its probability is below the cutoff of the
lookup table. We cannot return a guess number in this case, so we record an
appropriate code.

e The password was not parsed. This means it cannot be produced by the
PCFG, so we do not even need to search the lookup table. We record an
appropriate code.

e The password was parsed, its probability is above or equal to the cutoff, and
it was not found in the lookup table. This indicates a serious error, and all
results should be discarded. This can happen if there was an error during
the creation of L, or if the input PCFG G is not the same grammar that was
used to generate L.

Recording a guess number or code for all passwords from the test set allows us
to look at the output alone and compute percentages of cracked passwords. Our
framework is able to take this output and produce guessing curves as introduced
in Section 3.2. In previous versions of the framework, we output only the cracked
passwords. It quickly became apparent that this makes the analysis more complex.

In the following subsections, we describe the PARSE and PATTERN-OFFSET
functions in more detail. Feel free to skip these sections if you are not interested in
details of the implementation.

4.7.1 Parsing

Used in step Al of Algorithm 4.7A, PARSE is a function that takes a password p
and a PCFG G, and returns either failure, or a tuple of the password’s probability
pr, pattern identifier pat, terminal ranks t, and source identifiers ids. In this
section, we present an algorithm that implements PARSE.

The simple form of a Weir PCFG makes it easy to parse strings, since the
structure of a string can be determined from its length and character-class
composition. For example, we know that password123 matches the structure
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LgD3, though the given PCFG might not contain this structure. It can also match
the structure L4L4D3, and such structures are introduced in Section 5.5.2. When
a password can be parsed in multiple ways, we simply allow PARSE to return
multiple tuples.

If we can parse p, we can assign it a probability under G, which is simply the
product of the probabilities of all rules used in its production. We can also take the
union of all identifiers attached to these rules to get the list of source identifiers
(ids) to return. The computation of pat and t are less obvious, but are given by
Algorithm P below.

Algorithm P (Parse password). Given a Weir PCFG G and a password p, return
failure or a tuple comprised of the password’s probability pr, pattern identifier
pat, terminal ranks t, and source identifiers ids.

We assume that G is annotated such that each terminal-producing rule is labeled
with the index of the terminal group that it belongs to.

P1. [Initialize structure.] Set S to the first structure in G. (We will iterate over the
structures in G one at a time, though we could parallelize here as well.)

P2. [Initialize nonterminals and ids.] Let n be the number of nonterminals in S,
and let N[0], ..., N[n-1] index those nonterminals from left to right. Set ids
to be the value of the identifiers attached to S in G. If there are no identifiers,
set ids < @.

P3. [Check p against S.] Compare the length and composition of p with S. If
they match, go to step P5. Otherwise, go to step P4. (If S might produce p,
continue, otherwise, go to the next structure.)

P4. Set S to be the next structure in G and go to step P2. If there are no more
structures in G, terminate.

P5. [Tokenize p.] Tokenize p into po, ..., pa-1] such that the length of each p;
matches the length represented by N[i]. (Each nonterminal in a Weir PCFG
encodes its length, e.g., Lg represents eight characters. Thus, we can simply
tokenize p from left to right based on the lengths of each N[1i].)

P6. [Initialize cursor and pattern.] Set i <— 0. Construct four arrays of size n: tq,
ty, patg, and paty.
(Recall that a mixed-radix number is defined by two quantities: digits and
radices. t is a mixed-radix number that will contain terminal indices t4 and
corresponding radices t, equal to the number of terminals in each group. pat
is a mixed-radix number that will contain terminal group indices patqy, with
pat, containing the corresponding radices. i is a cursor that points at our
current position in S.)
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P7. [Find matching terminal.] Find p; in the terminals of N[i]. If not found, go to
step P4. Otherwise, update the mixed-radix numbers as follows. Let j be the
index of p;’s terminal group, and let N[i] [j] represent that group. Perform
the following assignments:

Set t4[i] to the index of p; within N[i] [j].

Set t,[i] < IN[i] [j] |, which is the number of terminals in N[i] [j].

Set patq[i] < j.

Set pat, <— IN[i] |, which is the number of terminal groups in N[i].

Set ids to the union of itself with the source identifiers attached to p;.
(For example, in Figure 4.10 on page 71, superman is produced by the Lg
nonterminal. It is the first terminal of the third terminal group, so its index is
0 within its terminal group, which has index 2. Therefore, if p; = superman
and N[i] = Lg, we would set: tq[i] < 0; t.[i] + 2, since there are two
terminals in its terminal group; patq[i] < 2, for the third terminal group;
and pat, < 3, since there are three terminal groups in Lg.)

P8. [Increment cursor.] Set i <— i+ 1. If i > n, go to step P9. Otherwise, go to

step P7.
P9. [Compute probability.] Set:
n—1
pr < Pr(S] - [ [ Pr[N[i] [patq[il]]
i=0

where N[i] [j] is the j** terminal group of the nonterminal N[i].

(If we are here, the password has been parsed. Compute its probability based
on the current structure and the terminal groups recorded in step P7. This
is the same probability formula used to generate patterns in step M2 of
Algorithm 4.4M.)

P10. Return a tuple containing: pr; a pattern identifier composed of S and pat; t;
and source identifiers ids. (If multiple parses are possible, go to step P4 and
return more tuples if found.) |

4.7.2 Accounting for pattern compaction

In this section, we describe the PATTERN-OFFSET algorithm. This algorithm was
called in step A2 of Algorithm 4.7A and is required to compensate for pattern
compaction.

The lookup table tells us how many guesses are needed to get to the start of a
password’s pattern. The quantity tey, computed in step A5 of Algorithm 4.7A, told
us how many guesses are produced from the start of a password’s pattern to a given
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password. It is a simple matter to add these two numbers, and this would give us
the password’s guess number if we were not using pattern compaction. However,
pattern compaction means the lookup table points at the first permutation of a
password’s pattern, and PARSE might return results for a different permutation.
This means we need to compute an additional compaction offset that tells us how
many guesses are between the two permutations. We also find the lexicographically
tirst permutation, which is used for scanning the lookup table by step A3 of
Algorithm 4.7A. Both of these values are computed by Algorithm C, given later,
but first we describe the problem in more detail.

Multiple permutations

We make use of several functions in the computation of PATTERN-OFFSET. Since
we did not develop these functions, we devote minimal space to describing them,
and do so in Appendix A. In this section, we provide some context for why
Algorithm C is so complex. We examine a small part of the algorithm—computing
the rank of a pattern identifier.

In order to compute the compaction offset, we need to be able to rank a pattern
identifier in some consistent order. Recall that a pattern identifier is composed of
a structure and a mixed-radix number, such as:

D3LgD3(0,0,1)

The numbers in the angle brackets are the digits of the mixed-radix number. Its
radices are not shown explicitly but can be derived based on the PCFG and given
structure.

Recall from Section 4.5 that pattern identifiers can be very complex, for example:
LyD;L1D,L1D1L1D4(0,0,1,0,2,3,3,2) (4.7.1)
The latter identifier actually contains two permutations:

LyD1LiD1L1D1L1D4(0,-,1,-,2,-,3,-) (4.7.2)
L1D1L1D1L1D1L1D1(-,0,-,0,-,3,-,2) (4.7.3)

We can provide either (4.7.2) or (4.7.3) to the function PERM-RANK-M, described
in Appendix A.2, to receive a ranking of the given permutation within its space
of possible permutations. Calling PERM-RANK-M on (4.7.2) would yield 0, since it
is the first permutation when permutations are ordered lexicographically. It is
also the only permutation whose digits are in nondecreasing order, so it is the
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permutation that was recorded when generating the lookup table in step M6 of
Algorithm 4.5M. It is always the case that we record the permutation with rank 0
in the lookup table. For (4.7.3), calling PERM-RANK-M would yield 1, since it is the
second permutation in lexicographic order.?’

This gives us a rank for each permutation, but we want a rank for the entire
pattern identifier. We do this by assigning significance to the permutations from left
to right. The leftmost permutation, (4.7.2) in our example, is the most significant.
We create a mixed-radix number out of these permutation ranks: the ranks are the
digits of the number, and the radices are the number of possible permutations for
a given permutation. The radices are computed using the PERMS-TOTAL function
described in Appendix A.1. To get the final rank of a pattern identifier, we convert
this mixed-radix number to a single radix using the SINGLE-RADIX function given
in Appendix A.3.

We now present Algorithm C which implements the PATTERN-OFFSET function.

Algorithm C (Compute compaction offset and first permutation). Given a Weir PCFG G
and a pattern identifier pat, compute the compaction offset ¢ and pat’s first
permutation fpat.

Let paty and pat, be the digits and radices of the mixed-radix number in pat,
and let S be its structure. Let n be the number of nonterminals in S and let N[0],
..., N[n-1] index those nonterminals from left to right.

C1. [Collect repeated nonterminals.] Scan S for repeated nonterminals and create
an array R such that R[0] = RNy, R[1] = RNy, ..., where RN; are different
repeated nonterminals in S. For each repeated nonterminal, we find the
minimum index with which it appears in S, and ensure that R is sorted in
ascending order by each repeated nonterminal’s minimum index.

(We store the repeated nonterminals in R so we can refer to them later. We
also store their order of appearance in S to provide a consistent ordering of
permutations.)

C2. [Collect permutations.] Create an empty hash table called PERMS. For each
repeated nonterminal in R, create an empty list p, then:
Scan S in order from N[0] to N[n-1]. Where N[j] = R[i], append pat [j]
to p. After S has been scanned, set PERMS[R[i]] « p.
(PERMS is populated with each repeated nonterminal in S and their associated
permutations. For example, if pat were the mixed-radix number from (4.7.1),
we would store PERMS[L1] < [0, 1, 2, 3] and PERMS[D+] <« [0, 0, 3, 2].)

?’The first is L D;L{D1L;D;L1D;(-,0,-,0,-,2,-,3).
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[Compute ranks and total number of permutations.] Let k be the length of
R. Construct a mixed-radix number ranks of length k. Let ranksq and ranks,
stand for the digits and radices of ranks, respectively, and let ranksq4 [0] and
ranks, [0] point at the most significant digit and radix in ranks, respectively.
For each positioniino0, ...,k —1:

Set ranksq[i] <— PERM-RANK-M(PERMS[R[i]]).

Set ranks, [1] <— PERMS-TOTAL (PERMS[R[i]]).
(If there were only one repeated nonterminal RN in S, we could simply return
PERM-RANK-M(PERMS [RN]) and return. Since there can be many repeated
nonterminals, however, and each one might have a different set of possible
permutations, we use a mixed-radix number to represent them. We use their
order of appearance in S, as previously collected in R, to determine the ordering
of permutations from most to least significant.)

[Compute rank across permutations.] Set rank <— SINGLE-RADIX(ranks).
(This computes a rank for our pattern-identifier, across any number of
permutations that it might contain.)

[Compute guesses per permutation.] Let N[i] [j] represent the j! terminal
group of the nonterminal N[i] in G, and let IN[i] [j]| represent the number
of terminals in that group. We can compute the number of guesses covered by
a single permutation of a pattern with:

n—1

size = H IN[i] [patq[i1] |
i=0

[Compute compaction offset.] Set ¢ <— rank - size.

[Construct first permutation.] Set fpat < pat. For each nonterminal RN; in
PERMS, sort its array values in ascending order, then replace the corresponding
values in fpat with the values in PERMS [RN;].

(Recall that for the mixed-radix number L1D,L1D1L1D1L1D+(0,0,1,0,2,3,3,2)
(4.7.1) we would have stored PERMS[L{] < [0, 1,2, 3] and PERMS[D4] <
[0,0,3,2]. We now sort these arrays, and rewrite fpat. So we have:
PERMS[Lq] « [0, 1, 2, 3] and PERMS[D7] « [0, 0, 2, 3], which when written
back to fpat yields fpat = L1D1L1D1L1D1L1D1(0,0,1,0,2,2,3,3). Each of the
permutations in fpat are now in nondecreasing order, which means they have
rank 0. fpat is the pattern identifier recorded in the lookup table.)

[Return.] Return ¢ and fpat. |

As you can see, computing the compaction offset is complex and requires

coordinating between multiple data structures: the string of nonterminals that
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comprises the structure of the pattern, a mapping of nonterminals to their
corresponding values in a pattern identifier, and several mixed-radix numbers. As
we explained in Section 4.3.1, the advantage of pattern compaction increases as
passwords with more complex structures are modeled.

Though this complexity pays off in reduced size of the lookup table, it
introduces numerous opportunities for failure. In retrospect, another approach to
reducing the size of the table, such as a compression scheme, might have been a
better choice over pattern compaction in terms of time spent versus space saved.






Chapter 5

Improvements to the Guessing Model

A guessing model assigns probabilities to passwords. As such, it describes a
particular distribution of passwords. The previous chapter introduced a number of
algorithms used to assign guess numbers efficiently, but the underlying guessing
model is the same model presented in Section 3.4 and introduced by Weir in
2009 [146]. In this chapter, we make a number of improvements to the guessing
model to improve its guessing efficiency. Making these improvements is intended
to give us a more accurate metric of password strength, given our threat model
from Section 1.1.

Many of the improvements are inspired by techniques used in popular
cracking tools, such as mask attacks and brute-forcing when dictionary entries are
exhausted [54]. We make four major improvements: 1) learning string frequencies,
2) generating unseen terminals, 3) hybrid structures, and 4) linguistic tokenization.
We perform experiments and use guessing curves throughout the chapter to
evaluate these improvements.

5.1 Experiments

The improvements described in this chapter are evaluated in various experiments.
Reproducing any of these experiments requires three things: the framework,
parameters, and data. You can download the framework from https://gi
thub. com/cupslab/guess-calculator-framework/releases/tag/v1.0.0 and we
provide a list of requirements for running it in https://github.com/cupslab/gue
ss-calculator-framework/blob/v1.0.0/INSTALL.md.

Each experiment has its own set of parameters and is identified in this thesis
by a name, e.g., Experiment 1. Appendix B contains tables with these parameters,
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organized by name. Each graph built from experimental results will contain the
experiment names in its caption.

These parameters are encoded in configuration files that you can download
from https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-confi
gs/wiki/Wiki. We do not provide a link to the leaked password sets used in our
experiments, or our datasets collected from Mechanical Turk, but instructions for
preparing these datasets for use in experiments can be found in Appendix B.4.
Datasets collected from Mechanical Turk are available for research purposes by
contacting the author.

5.2 Learning string frequencies and quantization

We begin by examining the first improvement we made to the Weir 2009
guessing model: learning string frequencies. Weir’s original system did not learn
alphabetic string probabilities from training data. Instead, it assigned all alphabetic
terminals a uniform probability. This is described by Weir as an “implementation
convenience” [144]. It greatly decreases the number of terminal groups,1 and this
greatly reduces the memory required to store groups when strings are produced in
probability order. This memory limitation is not a concern with the guess-calculator
framework because we use intelligent skipping, as described in Section 4.4, to
produce patterns above a particular cutoff out of order and sort them later.

Unfortunately, learning string frequencies still poses a significant challenge to
the framework because we are still concerned with limiting the number of terminal
groups. Using precise string frequencies reduces the advantage of storing patterns
over explicit guesses, since terminal groups become much smaller. While this can
increase guessing efficiency, it makes it infeasible for us to produce the hundreds
of trillions of guesses that real adversaries are believed to generate [54].

To counteract this, we add a quantizer to the framework that can be used
to reduce the number of unique terminal probabilities.?> Figure 5.1 shows how
quantization can limit the number of terminal groups. Quantization reduces
accuracy. It changes empirically observed probabilities to different values, to
increase the numbers of terminals that share probabilities. As we described in
Section 4.3.1, decreasing the number of terminal groups increases the speed with
which we can search the space of strings produced by the PCFG.

To mitigate the negative impact of quantization, we use a two-step procedure.

!Described in Section 4.3.1.
2The quantization module is shown in the context of the rest of the framework in Figure 4.2 on
page 50.
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Structures
®: =5— —
68—}L8D3 = 10

Before quantization After quantization
Alphabetic terminals  Digit terminals Alphabetic terminals  Digit terminals
[ OLs—password = 0.21 0p; 123 = 0.520] [ 014 —spassword = 0.20 0D, 123 = 0.520]
[ Org—sbaseball = 0.20 D3 000 = 0.280] 0Ly sbascball = 0.20 0D; 000 = 0.048 ]
[ O1s5—siloveyou = 0.19 OD; 111 = 0.060] | Org—siloveyou = 0.20 Op;—111 = 0.048
[ Org—sprincess = 0.16 Op;—220 = 0.058 ] [ Org—princess = 0.15 0D, 220 = 0.048
[ Ors—sunshine = 0.14 Ops—333 = 0-028:| | 015 ssunshine = 0.15 OD;—333 = 0.048
OLg—superman = 0.10  ODs—4aa = 0.028 [ OLgsuperman = 010 ODs—a4s = 0.048
[Gwahatever =0.10 0D, 555 = 0.013] | Og—whatever = 0.10 OD; 555 = 0.048
0p;—666 = 0.007 ] 0p;—666 = 0.048
Op; 777 = 0.004] Op; 77y = 0.048
0p, 888 = 0.001 Op, 888 = 0.048
OD; 999 = 0.00J OD; 999 = 0.048 |

Figure 5.1: Weir PCFG example with quantization. The square brackets to the left and
right of the terminals columns denote terminal groups. A terminal group is a set of
terminals that have the same probability and are produced by the same nonterminal
(Lg or Ds in this case). Notice that the number of terminal groups after quantization, on
the right, is greatly decreased compared to the naturally occurring terminal groups on
the left. This allows patterns to represent a larger set of guesses. Alphabetic terminals
were quantized using the Lloyd-Max algorithm with 3 levels requested. Digit terminals
were quantized with two levels requested.

Nonterminals

At the nonterminal level, we use the Lloyd-Max quantization algorithm [87,94].
Given a set of values to quantize and a given number of quantization levels, i.e., a
desired number of terminal groups, the Lloyd-Max algorithm is a standard way to
minimize the amount of error introduced by the quantization. Error is measured
by the Mean-Squared Error (MSE) between the quantized and original values.
Allocating more levels can decrease quantization error, but also decreases the
efficiency of our framework.

A natural consequence of attempting to minimize MSE is that large probability
values are not quantized. In other words, they are not altered by the algorithm.
Changes to large probability values affect MSE more than changes to small ones, so
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the algorithm tries to avoid doing this. Consider the digit terminals in Figure 5.1.
While the intuitive choice might be to cluster the two large values, 0.520 and 0.280,
into one cluster, the Lloyd-Max algorithm does not do this. Instead, it leaves
the 0.520 value alone and clusters the remaining values. This is the optimal
solution for minimizing quantization error, since disturbances to large probability
values have more impact than disturbances to small ones.

The Lloyd-Max algorithm is not guaranteed to find an optimum, so we run it
1,000 times with random initialization values. After all iterations are complete, we
take the quantization with the lowest MSE. As explained in Section 4.6, we run
these iterations in parallel across multiple cores in the host machine.

Structures

The structure level is where we decide how many quantization levels to allocate
to a given nonterminal. Assume we have already chosen some overall number of
levels to allocate across the entire grammar. We assign levels from this global pool
to each nonterminal based on their probability of appearance across structures.
This is similar in spirit to how the Lloyd-Max algorithm minimizes the error on
high-probability items; by allocating more levels to high-probability nonterminals,
we hope to reduce error. In testing, we found that this worked far better than a
naive assignment of a fixed number of levels to each nonterminal. The Lloyd-Max
algorithm is run for each nonterminal, using its assigned number of levels.

Next, we discuss how we choose the overall number of levels. Figure 5.2
shows the total distortion over a range of levels using this method with a basic8
policy?® Based on these results, we use a minimum of 500 quantization levels for
all experiments since this seems to provide a good trade-off between speed (fewer
levels) and accuracy (more levels).

Our allocation strategy works in practice but has a number of shortcomings.
For example, a high probability nonterminal might have just a single production
rule, so assigning more than one level to this nonterminal is wasteful, when these
levels could be allocated to other nonterminals. Our algorithm does not take this
into account. We also have not tested different strategies for allocation of levels,
beyond a fixed number of levels per nonterminal and simple, probability-weighted
allocation. We do not address these shortcomings in this thesis.

30ur convention for naming policies is described in Section 2.4.4.
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Figure 5.2: Total MSE (mean squared error) for a range of global levels from 120 to 2,400.
More quantization levels decrease the efficiency of the guess-calculator framework.
Notice the elbow in the graph which indicates a good trade-off between levels and
accuracy.

5.3 Producing unseen strings

The next improvement to the guessing model is the ability to guess terminals that
were not seen in the training data. We have found that cracking tools like John the
Ripper and Hashcat are better than the guess-calculator framework at guessing
passwords that are all digits, because they can brute force all-digit strings. In
contrast, our PCFG approach is constrained to those terminals in the grammar, i.e.,
those terminals in the training data.

To address this issue, we added the ability to produce unseen terminals to
the guess-calculator framework. We do this by adding a special symbol to the
grammar that can represent a group of unseen terminals. Figure 5.3 shows the
result of using this improvement on a basic8 policy.

When this improvement is enabled, the framework uses a “Good-Turing
estimator” [52] during the learning phase to assign a probability to unseen
terminals* To provide an intuition into how this works, we present a simple
example. Details about our implementation will be provided later.

4Good-Turing estimation is one of a general family of techniques known as smoothing, which
model the probabilities of unseen events. For a survey of these techniques see [27].
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Figure 5.3: Experiment 2 — Evaluating unseen terminal generation for a basic 8-character
policy. The basic8ut curve shows the performance of the guess-calculator framework
with unseen terminal production enabled. The basic8 curve starts to plateau after 101
guesses as it runs out of strings in its training data and moves to less successful structures.

Say the training data contains 5,500 of the 10,000 possible four-digit numbers.
This means that there are 4,500 four-digit numbers that will never be guessed by
the grammar. These are unseen terminals, and we want to estimate their probability.
A Good-Turing estimator does this by using the probability of singletons as a guide.
Singletons are items that have only been seen once.

Imagine that we could collect one more sample of a four-digit number. Let us
call this sample s. There is some probability X that s is a number we have not seen
before. If that happens, we now have a new number s that we previously had not
seen before, but have now seen once. Therefore, s is now a singleton! To estimate
the probability of seeing a new singleton, we use the total probability mass of
existing singletons: if 10% of the samples we have seen turned out to be singletons
(as opposed to being seen more often), we estimate the probability X of any new
singleton as 10%. Since any new singleton is a previously unseen terminal, this
means that we estimate the total probability of unseen terminals as 10%.

Of course, the observed probabilities for all seen terminals already adds up
to 100%. To make space for the unseen terminal group, we multiply the existing
probabilities by 90% and allocate the remaining 10% for unseen terminals. We
add the unseen terminals to the grammar as a new terminal group that has a
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probability of 10% /4500 = 0.00222% per terminal. For simplicity, we assume
that all unseen terminals have the same probability, so they can go into a single
terminal group.’

5.3.1 Good-Turing estimation within the guess-calculator
framework

Unfortunately, our implementation of Good-Turing estimation is not as straight-
forward as the previous example. In this section, we describe the issues that
we encountered and how we chose to deal with them. The rules that follow are
conservative and intended to ensure that the framework is robust in the presence
of difficult inputs, but they might result in unseen-terminal probabilities that are
much lower than they should be. These decisions were made out of expedience and
are certainly not optimal. The ability to guess unseen terminals at all constitutes
a huge improvement to the framework, as already shown in Figure 5.3, and just
getting it to work was our main focus. Changes to the following rules, or our
unseen-terminal estimation process in general, might yield better guessing models.

It is also worth noting that unseen-terminal estimation happens before the
quantization step from Section 5.2. The unseen terminal group is marked and
excluded from quantization.

No singletons

In Section 4.2, we described how a user can specify many different data sources
and weightings and the guess-calculator framework will combine them into a
single corpus. Unfortunately, this makes it unclear what should be considered
a singleton. If a singleton is defined as an item with frequency 1, then it is
entirely possible for the corpus to have no singletons if every source was assigned
a fractional weight, or a weight larger than 1. Similarly, singletons might appear in
the corpus, but come from small, minor datasets with weight 1, while the datasets
we care about, which are assigned larger weights, do not have their singletons
counted.

It is also possible for a dataset not to have singletons, yet have unseen items.
This can happen by chance, or when items below a particular frequency are
excluded from the dataset.® We believe it is incorrect not to assign unseen terminals
in this case.

5This does not hold across nonterminals. The unseen terminals for three and five-digit strings
can have different probabilities than unseen four-digit strings. Each terminal list is handled
separately.

®This is the case with the Google Web Corpus [15].
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Figure 5.4: Symbol set for unseen terminal generation

To account for these situations, we take as singletons the items with the most
common frequency. This ensures that some unseen-terminal probability is assigned.
In our experience, this tends to be a good proxy for the items that we care about.

Fixed domain

In our application, we know the total number of possible terminals. For example,
if we are dealing with four-digit strings, we know that there are 10,000 of them.
This leads to some unexpected situations. For example, if we have seen 9,999
four-digit strings, and 1,000 of them are singletons, the Good-Turing estimator for
unseen strings is ~10%. This would give the remaining unseen string a probability
of 10%, since there is only one unseen string remaining! To account for this, we cap
the probability of an unseen terminal to 80% of the probability of a seen terminal.
If the Good-Turing estimator comes out higher than this, we cap it to the lower
amount and adjust the total unseen-probability mass (and the amount that we
adjust the existing probabilities) accordingly. The 80% value was chosen arbitrarily.

Symbol generation

Though it is trivial to brute-force alphabetic and digit strings, symbol strings are
more difficult because there are a large space of potential symbols to try. We chose
to brute-force symbol strings using only a subset of the possible symbols, taken
from the set in Figure 5.4. These are the printable symbols on a US keyboard. This
avoids wasting guesses on symbols that are rarely encountered, but it means that
we cannot brute-force many symbol strings, such as unseen UTF-8 sequences.

5.3.2 Assigning guess numbers to unseen strings

From the perspective of the high-level modules of the guess-calculator framework
shown in Figure 4.2 on page 50, terminal groups containing unseen terminals are
treated no differently from any other terminal groups. The number of strings
they contain can be determined based on the size of the candidate terminal space
and the number of seen terminals. For example, if the unseen terminal is a 6-
character alphabetic string, and we have seen 1,500 strings of this type, then the
size of the unseen terminal group is 26°—1,500= 308,914,276. This makes it easy
to determine the total number of guesses represented by a pattern that includes



5.3. PRODUCING UNSEEN STRINGS 95

unseen terminals, so our intelligent skipping and pattern compaction algorithms
require no changes.

When we look up a password containing unseen terminals, however, we need
to determine its rank within its pattern as part of determining its guess number.
This is required by the PARSE function implemented by Algorithm 4.7.1P. We make
a small modification to step P7 of Algorithm 4.7.1P when unseen terminals are
involved. Instead of failing when a terminal is not found, we invoke Algorithm U
below to determine an unseen-terminal rank, if possible.

Algorithm U computes the rank of an unseen terminal by first computing the
terminal’s lexicographic rank in the space of terminals with the same composition,
and then subtracting the number of seen terminals that come before it. It uses the
SINGLE-RADIX function presented in Appendix A.3 to compute the rank.

Algorithm U (Rank unseen terminal). Given a terminal p; that could be produced
by a nonterminal N[i] in a Weir PCFG G. Return failure or the index of p; within
N[i] [j1, where j is the unseen terminal group produced by N[i]”

Let n be the length of p;.

U1l. [Check for symbols outside our chosen set.] Scan p; for symbols (characters
that are neither alphabetic nor digits) outside of the set shown in Figure 5.4.
If any are found, return failure. (We can only brute-force terminals with
alphabetic characters, digits, or symbols from that set.)

U2. [Initialize mixed-radix number.] Let r be a mixed-radix number of length n
with digits rq and radices r,. For each position k in r, set r to the following
values:

If p; [k] is alphabetic:
Set r, [k] < 26.
Set rq[k] < pi (k] — ‘a’.
If p; [k] is a digit:
Set ry [k] < 10.
Set rq[k] < pi[k] —0.
If p; [k] is a symbol:
Set ry [k] < [SYM].
Set rq[k] <— SYM.indexof (p; [k]).
(This step sets the digits and radices of the mixed-radix number to the
appropriate values based on the character class and value of p; [k]. Note
that p; is assumed to be lowercase. This will be discussed in Section 5.4.1. SYM

7Since the unseen terminals are constrained to have lower probability than any seen terminals,
they always comprise the last terminal group produced by a nonterminal.
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is the array of characters from Figure 5.4, and the indexof () method returns
the position of the given character in the array, where 0 is the first position.)

U3. [Compute lexicographic rank.] Set rankp; <— SINGLE-RADIX(r).
(You can think of the previous step as bookkeeping. We categorized each
character in p; and set r appropriately. This step distills that process into a
single rank.)

U4. [Count seen terminals.] For each seen terminal t produced by N[i], check step
Ul. If step Ul fails, ignore that terminal and move to the next. Set count to
the number of seen terminals that come before p; in lexicographic order.

U5. [Compute corrected rank.] Return (rankp; — count). |

As a simple example of Algorithm U, consider the following. The terminal
abcd has lexicographic rank 731 (aaaa is rank 0.) We iterate over all seen terminals,
counting up all terminals with lower rank, and subtract this number from the
lexicographic rank. We can recognize these terminals because they come before
abcd in lexicographic order. For example, aaaz, abau, abcc, etc. If 100 four-letter
strings were seen that come before abcd, the rank of abcd returned by Algorithm U
would be 731 — 100 = 631. This is because once the guessing model reaches the
unseen-terminal group of N[i], the 631 guess would be abcd. All of the seen
terminals will have been part of previous guesses so we do not want to reproduce
them again.

5.4 Using a more complex grammar

The original grammar of Weir et al. used a restricted set of nonterminals which
only produced terminals of a single character class. For instance, the nonterminal
D, produces only four-digit strings, nonterminal L4 produces strings of 4 letters,
etc.

We first describe our modifications to the grammar and then discuss general
issues with making models more complex.

5.4.1 Uppercase nonterminal

We first modified the grammar to account for uppercase characters in the set of
nonterminals. This changes the set of nonterminals Q described in Section 2.3.1
into Q = {{U,L},D;,S;}. For example, where the terminal Password would
correspond to the nonterminal Lg in the original grammar, it corresponds to the
nonterminal (U;Ly) in our framework. This is a single symbol that represents
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terminals where the first letter is uppercase and the next seven letters are lowercase,

e.g., Password.

To implement this modification, we store terminals in lowercase but keep track
of their case in nonterminals. We store a single list of Lg nonterminals that is
updated regardless of case. So if password, Password, and PaSsWoRd are observed,
we count it as seeing the terminal password three times, and nonterminals Lg,
(U1Ly), and (U;L U3 LU L U L) each once. This allows us to compose strings
like BaSeBaLl even if we have seen them in a different case and attach probabilities
to different casing patterns.

We made this modification based on previous observations. Through surveys
and examination of user-created passwords under complex policies, we found that
case in passwords is usually used to comply with requirements rather than to
convey meaning [76,127]. In other words, the case of a word is usually not tied to
the specific word being used. Therefore, we felt that encoding this information in
the structure made more sense, because it allows any terminal to be uppercased.
Anecdotally, we have found that this modification is a positive improvement.
However, we have never formally evaluated it, so it is possible that it is less
efficient than the original model.

5.4.2 Mixed-class nonterminals

The next modification to the grammar involves allowing nonterminals to represent
a mix of character classes. Recall our restricted set of nonterminals Q =
{{u, L}, D;,S;}. This restriction causes nonterminals to map only to terminals in
which all characters have the same character class: alphabetic strings, digits, or
symbols.

Since we are using a probabilistic context-free grammar, any relationship
between terminals produced by different nonterminals is lost. This means that
we cannot learn, or reproduce, any relationship between parts of a password that
change character class. Under the original Weir grammar, when password123! is
encountered in the learning phase, it must be learned as three separate terminals:
password, 123, and !. The fact that these strings might appear together is lost. If
password123! is the most probable password in our training data, this is a serious
failure of the model. This is discussed in more detail in Section 5.5.

To address this issue, we would like a PCFG that can produce strings like
password123! with high probability. The simplest way to do this is to allow
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password123! to be a single terminal® To fit such a terminal into the Weir
model, we greatly expand the set of possible nonterminals to Q = {{U, L, D, S}i},
where i is still the string length of replacement terminals. For example, the single
nonterminal corresponding to password123! can be represented by (LgD3S;). This
nonterminal is replaced by all strings of eight letters, three digits, and one symbol
found in the training data, and optionally unseen terminals of this form as well.
This is used in the hybrid structures and unsupervised tokenization improvements
presented in Section 5.5, but could potentially be used with more sophisticated
learning algorithms.

5.4.3 Increasing model complexity

The original Weir grammar defined a relatively small set of possible nonterminals
Q ={L;, D;,S;}, where L represents alphabetic strings, D digits, S symbols, and
i the string length of replacement terminals. Note that, for practical reasons,
there is a cap on the maximum string length. In our implementation, we set the
maximum string length, M, to 40, so the size of the set of possible nonterminals
is |Q| = 3% Ty = 2460.° This quantity is O(M?). When we added mixed-class
nonterminals to the grammar, we greatly expanded the set of possible nonterminals
to |Q| = YL, 4" ~ 10%*. This is O(4"), i.e., it is exponential in the size of strings.

Adding complexity to the grammar, as with any model, is a double-edged
sword. We might improve our ability to capture fine-grained trends in the data,
but this can result in a model that does not generalize as well as a simpler
model. For a trivial example, consider the addition of uppercase to the set of
nonterminals as described in the Section 5.4.1. Suppose that our input data consists
of two passwords: Password12 and 12passworD. Because the new model captures
the dependency between uppercase letters and password structure, the model
cannot generate any other passwords besides Password12 and 12passworD. In
the original Weir model, however, this input creates a model that can generate
two additional passwords: passworD12 and 12Password. The probabilities of
the original passwords have to be reduced to make room in the model for the
additional guesses.

Is this better? It depends. If the true policy contains the additional passwords,
then the Weir model better represents the passwords of the true policy. Given a
larger and more representative sample, our model would learn these additional

8 Another solution is to retain password, 123, and ! as separate terminals, but have them
produced by dedicated nonterminals that appear together in higher-level production rules.
Techniques such as this were discussed in Section 2.7. In this thesis, we try the simple approach
first and leave more complex approaches to future work.

T, = w is the sum of numbers from 1 to i.
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passwords and assign them appropriate probabilities, but the size of a sample
cannot be guaranteed. Conversely, it might be the case that the additional
passwords generated by the original Weir model do not correspond to high-
probability passwords in the true policy, in which case we reduced probabilities
unnecessarily to make room for them.

Typically, there is some amount of training data beyond which complex models
perform better than simple models. In this work, we provide some evidence for
or against the various improvements that we have made. A more thorough
investigation of these improvements, given substantially more data or other
datasets, remains a topic for future work.

5.5 Tokenization

Allowing nonterminals to represent an arbitrary mix of character classes makes the
grammar more powerful, because it increases the grammar’s ability to learn from
the data. Recall our previous example where password123! is the most common
password. Weir’s original implementation learns this as password, 123, and !.
These three elements are called tokens and the splitting of the original string into
parts is known as tokenization.!®

Because nonterminals in Weir’s grammar are specified based on a single
character class, tokenization has to take place at character-class boundaries. Our
improved PCFG is more flexible, so it can contain the nonterminal (LgD3S1), for
which password123! is the highest-probability terminal. By encoding password,
123, and ! together within a single terminal, we retain the information that they
occur together. This information is known as a dependency.

Learning dependencies is important, especially for high-probability passwords.
Weir’s implementation is unable to learn the fact that these particular tokens
all occur together, so it is unable to put these tokens back together with high
probability.!! By learning this dependency, we have the potential to learn more
efficient guessing models.

We can look back at the original Weir PCFG as an instance of our expanded
grammar that uses a character-class tokenizer. We call such a tokenizer a Weir
tokenizer, since Weir et al. [146] had the original insight to tokenize passwords in
this way. To learn more complex grammars, we can insert other tokenizers into
the guess-calculator framework.

10See  nttps://en.wikipedia.org/wiki/Tokenization_(lexical_analysis) or http:
//opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.tokenizer.intr
oduction.

'We discuss this issue further in Sections 5.5.1 and 7.2.1.
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We will see that this is an open problem. Though we have expanded
the grammar with mixed-case nonterminals (and one could imagine further
expansions) learning a complex grammar is difficult. Intuitively, this makes
sense. The Weir tokenizer can only parse a given password in a single way, but
a mixed-class tokenizer has an exponential number of tokenizations to choose
from—any partition of a string is a potential tokenization. Choosing the best
tokenization from among these alternatives is hard. The unsupervised approach of
Berg-Kirkpatrick et al. [3] provides a potential solution to this, but we were unable
to apply to our domain successfully. This is described in Section 5.5.3.

5.5.1 Hybrid structures

An easy way to capture dependencies within passwords is to learn whole
passwords as single tokens. For example, if we encounter password123! as
a password, we add the production rules: & — (LgD3S1) and (LgD3S;) —
password123! to our grammar. We call this an untokenized structure and such
structures are both trivial to learn and work well to reproduce passwords from the
training data with accurate probabilities.

This solves the problem of reproducing training data which has high-probability
mixed-class passwords. Unfortunately, if we only learn untokenized structures,
we completely lose the ability to generate strings that were not seen in the training
data. To address this, we adopt a hybrid approach: learning untokenized and
tokenized structures simultaneously. Perhaps surprisingly, this automatically
favors untokenized structures over tokenized ones. Strings produced by tokenized
structures tend to have much lower probability than untokenized ones, because
more tokens leads to more probabilities being multiplied. This provides the nice
property that early guesses match the most probable passwords in our training
set. If desired, we could weight tokenized structures even lower than untokenized
ones, so that low-probability passwords from the training set are favored over high-
probability tokenized passwords. For this thesis, we stick with equal weighting,
but the results from Section 5.5.3.2 will suggest that an additional penalty on
tokenized structures would improve performance.

To illustrate a PCFG that includes hybrid structures, we reuse the example
from Figure 2.1 in which our training data consists solely of the four passwords:
password!, password!, baseball!, and baseball123!. The resulting PCFG under
a hybrid approach can be seen in Figure 5.5 and the resulting guesses in Table 5.1.
As shown in Table 5.1, we can still produce the unseen guess password123!, but
passwords from the training set are preferred. This is because they additionally
derive from untokenized structures.
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Y.: {password!, baseball!, baseball123!, (terminals)
password, baseball, 123, !}

N: {(LgS1), (LsD3S1), Lg, D3, S1} (nonterminals)
R:S — (LgS1) (structures)
S — (LsD351)
S — Lg5q
S — LgD35
(LgS1) — password! (terminal productions)

(LgS1) — baseball!
(LgD3S1) — baseball123!
Lg — password

Lg — baseball

D3 — 123

51 —!

QF 93—>(L851) = 0.375 (probabilities)
s (1sDs5,) = 0.125
05145, = 0.375
0s14ps5, = 0.125
9(L851)—>password! = 0.666
0(LgSy)—baseballl = 0.333
9(L8D351)—>baseball123! = 1.0
9L3%password =05
QLgﬁbaseball = 0.5

9D3%123 =10
951_>| — 1.0

Figure 5.5:  PCFG under the hybrid approach—both tokenized and untokenized
structures—produced from a corpus that consists solely of the passwords: password!,
password!, baseball!, and baseball123!. Compare with Figure 2.1 on page 22.
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Guess # Guess Probability Probability derivation
1 password! 0.4375 05— (LsS1) * O(Ls5,)—password!
05155, * OLg—spassword * 05,1
2 baseball! 0.3125 055 (Lssy) - O(Ls51)—sbaseball
05155, * OLs—sbaseball * 05,1
3 baseball123! 0.1875 05 (LsDs51) * O(LsD3S1)—sbaseballiz3!
05—14D55, * O1g—sbaseball * OD3—s123 * 05, 1
4 password123! 0'0625 98—>L8D351 ’ 9Lg—>password ’ 9D3—>123 ’ 951 —!

Table 5.1: Guesses produced by the PCFG of Figure 5.5. Compare with Table 2.1 on
page 23.

Guess Empirical Weir tokenized Untokenized Weir hybrid
password! 0.5 0.375 0.5 0.4375
baseball! 0.25 0.375 0.25 0.3125
baseball123!  0.25 0.125 0.25 0.1875
password123! — 0.125 — 0.0625

Table 5.2: Comparison of probabilities for strings produced by PCFGs trained using
various schemes. with a corpus that consists solely of the passwords: password!,
password!, baseball!, and baseballl23!. Empirical probabilities are the observed
probabilities in the input corpus. Weir-tokenized probabilities are the result of character-
class tokenization (values from Table 2.1). Untokenized probabilites are based on learning
untokenized structures only. The Weir hybrid approach learns both untokenized and
character-class-tokenized structures with equal probability (values from Table 5.1).

Probabilities for strings produced by PCFGs, trained using various schemes,
are summarized in Table 5.2. The untokenized probabilities exactly match the
empirical probabilities from the training data, but no other strings can be generated.
In contrast, a Weir-tokenized PCFG can produce new guesses, but loses information
about which whole strings were present in the training data. The hybrid approach
averages the empirical and Weir-tokenized probabilities. Thus, it balances the
need to reproduce high-probability strings from the training data with the need to
generate new strings.

Evaluation

We illustrate the hybrid approach on two policies: basic8 and 4class8. The
basic8 policy requires an 8-character minimum length, but has no character-class
requirements. The 4class8 policy also requires an 8-character minimum length,
but also requires that the password contain uppercase, lowercase, digit, and symbol
characters, at least one of each. Figure 5.6 shows how cracking performance using
hybrid structures compares with Weir-tokenized structures on these policies. As
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Figure 5.6: Experiment 3A (basic8) & Experiment 3B (4class8) — Each graph shows
guessing curves comparing the hybrid structures approach developed in this thesis and
Weir-tokenized structures. Hybrid structures are significantly better at cracking mixed-
class passwords, particularly in the early part of the curve crucial to online guessing,
but do not help with cracking basic passwords. PCFGs were trained using public data
and tested on a random holdout set of 1,000 RockYou passwords that conformed to each
policy. Other improvements of the guess-calculator framework, such as string frequencies
and unseen terminal generation, are enabled for all curves.

shown, hybrid structures have significantly better cracking performance than
Weir-tokenized structures when cracking 4class8 passwords (p < 0.001 measured
with G! test).!? The difference between the models is particularly evident in the
early part of the guessing curve.

While cracking basic8 passwords however, performance is not significantly
better (p = 0.162, G! test). This is likely because high-probability passwords are
often composed of a single character class in basic8. The highest-probability
passwords are shown in Table 5.3. This means they are not tokenized by a Weir-
tokenizer, so their probabilities are not penalized by the resulting guessing model.
This is in contrast to 4class8 passwords, which are split into a minimum of three
chunks by a Weir-tokenizer (recall that case is ignored when tokenizing passwords
and is retained only in structures.) The tokenization penalty is stronger on passwords
with multiple character-class transitions, such as the highest probability 4class8
password: P@sswOrd, which is split into five chunks.

5.5.2 Linguistic tokenization

Besides tokenizing passwords based on strings of the same character class, another
way to tokenize passwords is to try to divide them into linguistic elements,

12This statistical test is explained in Section 6.1.4.
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1 123456789 18 elizabeth 35 princessl
2 password 19 tinkerbell 36 carolina

3 iloveyou 20 samantha 37 alejandro
4  princess 21 danielle 38 brittany

5 12345678 22 jonathan 39 alejandra
6 babygirl 23 987654321 40 patricia

7 michelle 24 computer 41 tequiero
8 sunshine 25 whatever 42 stephanie
9 chocolate 26 spongebob 43 blink182
10 passwordl 27 softball 44 victoria
11 butterfly 28 princesa 45 fernando
12 liverpool 29 alexandra 46 cristina
13 football 30 estrella 47 babygurl
14 jennifer 31 beautiful 48 baseball
15 1234567890 32 poohbear 49 greenday
16 superman 33 alexander 50 november
17 basketball 34 christian

Table 5.3: 50 most popular basic8 passwords in the RockYou password set. Most
passwords are composed of only one character class (all letters or all digits).

Password Ranking Linguistic Tokenization

iloveyou 5 1ilove you
lovely 15 lovely
iloveu 22 iloveu
loveme 38 love me
loveyou 52 love you

Table 5.4: This table demonstrates how tokenization can find common semantic elements
within passwords. The top five passwords containing the substring “love” from the
RockYou dataset are shown along with their ranking in the overall dataset and the result
of running these passwords through our linguistic tokenizer.

such as words. Passwords seem to be composed of linguistic elements (see
Section 2.4.3), and tokenizing passwords based solely on character class does
not reveal these elements. For example, Table 5.4 shows the five most frequent
passwords containing “love” from the RockYou dataset. The string “love” is very
common in passwords, but a Weir tokenizer would never learn this fact because it
parses passwords based solely on character class. All of the passwords in Table 5.4
are treated as single tokens by simple parsers, because they have no way to break
them down further.
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We use the term unbroken for text that has had the spaces between words
removed. We can break long strings of unbroken text using a linguistic model built
on text with spaces. An n-gram, in this context, is a string of n broken words. When
strings of text are found in passwords, we can break them by identifying unbroken
n-grams in the text. For example, if we are aware of the n-gram “i love you,” we
can remove the spaces from it and identify the token iloveyou in passwords. If
found, we can break it into the separate tokens i, love, and you.

We built a simple linguistic tokenizer to do this using the Google Web Corpus
(GWC) as a dataset. The GWC was published in 2006 and contains “English word
n-grams and their observed frequency counts” [15] based on a corpus of one
trillion words from web pages. Only n-grams with frequencies above 40 were
kept by the publishers and the maximum n-gram length is five—this means the
GWC contains sequences of five words or less. Unfortunately, the GWC is only a
good tokenization source for strings of letters and digits. Strings of symbols are
tokenized so that each symbol is a separate token, and digits are tokenized separate
from letters. Using this tokenizer, we can find common words in passwords and
tokenize based on word boundaries.

Linguistic models The tokens that we discover using our linguistic tokenizer
are still simple letter strings, e.g., “iloveyou” would get tokenized to an L1L4L3
structure. Recently, other researchers have looked at more complex linguistic
tokenization including part-of-speech tagging and name identification, which
greatly increases the variety of nonterminals in the PCFG [140]. We do not
evaluate these models in this work.

Figure 5.7 shows how the use of linguistic tokenization improves cracking for
large guess numbers. Just as Weir tokenization allows us to guess passwords we
have not seen before by combining terminals in new ways, linguistic tokenization
allows us to combine words in new ways to produce new guesses. Conversely,
breaking passwords up into many tokens imposes a tokenization penalty that
decreases guessing performance for low guess numbers compared with Weir
tokenization. This effect can be mitigated through the use of hybrid structures,
and we explore this issue in Section 7.3.

Our approach

We first provide a high-level overview of our linguistic tokenizer and then provide
more detail on the data structures that it uses. The algorithm is greedy and we do
not claim that its behavior is optimal, but we find that it works well for policies
with long passwords, as shown in Figure 5.7.
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Figure 5.7: Experiment 4 — Guessing curves for a basic 16-character policy. Using
linguistic tokenization cracks many more passwords as guess numbers grow large, but is
slightly worse in early guessing.

Current string Tokenized prefix Tokenized string

correcthorsebatterystaple correct horse correct
horsebatterystaple horse battery correct horse
batterystaple battery correct horse battery
staple staple correct horse battery staple
thenoodles the noodles the
noodles noodles the noodles

Table 5.5: Example of our tokenizer operating on the string correcthorsebatterystaple,
which does not appear in the Google Web Corpus, and thenoodles, which appears 77,281
times. Accepted tokens are shown in bold. After each iteration, the accepted token is
removed from the string’s prefix and added to the final tokenization. A greedy tokenizer
that was not data driven would select “then oodles” instead of the more popular phrase
“the noodles.”



5.5. TOKENIZATION 107

Given a string s, we wish to find a reasonable tokenization of s based on a
corpus of language. We assume that we have processed the corpus into two data
structures: a trie,!> and a token table. We will explain how we produced these data
structures later.

The operation of the algorithm is shown in Table 5.5. First, we find the longest
prefix of s for which we have a tokenization. We do this by looking up s in the
trie and taking the longest match. Next, we find the most frequent tokenization of
this prefix using the token table, which gives us a broken version of the prefix, i.e.,
it splits the prefix into words. We accept the first word of the broken prefix as part
of our tokenization of s. We then repeat this process on the remainder of s, each
time taking the first word of the most frequent tokenization, until s is empty.

Building the trie and token table

We build the token table first. We remove all non-alphabetic n-grams from the
corpus, then downcase and aggregate duplicates from the remaining n-grams. We
assume that words in passwords may not have the same case as they do in the
corpus, so we ignore case when tokenizing. For each n-gram, we create a record
containing its unbroken version (removing spaces between tokens), its broken
version, and its frequency in the corpus. We collect and sort these records, and
call the resulting table a token table. The token table is sorted by unbroken strings,
which are used as keys to find records in the table. Thus, for any unbroken text in
the corpus, we can look up the text in our token table and examine the frequencies
of all tokenizations. Our token table contains 1.35 billion rows.

However, it is sometimes necessary to tokenize text which does not appear in
the corpus. This is because longer passwords, such as passwords with sixteen
characters or more, might contain strings of many tokens. Passwords also might
contain random letters suffixed or prefixed to a known n-gram. In both cases, these
passwords would go untokenized if our algorithm did nothing more than look up
text in the token table. In order to tokenize text which does not appear explicitly
in the corpus, we populate a trie with all of the unbroken n-grams from the token
table. Tries are optimized for performing prefix searches: given an arbitrary string,
we can quickly find the longest prefix of that string in the trie. We use a Python
library, marisa-trie, which implements the trie building and lookup operations. It
also has a native serialization format so we can keep the trie on disk along with
the token table for future lookups.

Bnttps://en.wikipedia.org/wiki/Trie
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5.5.3 Unsupervised tokenization

As described in Section 5.5.1, we can choose to learn untokenized structures from
whole passwords, such as password123!. However, this does not address password
sets which contain common substrings, especially when these substrings contain a
mix of character classes. For example, if the substring p@sswOrd appears in many
passwords, it would not be learned by any of the tokenization methods discussed
so far. Using a Weir PCFG, it would be tokenized by character class into p, @, ssw, 0,
and rd, and the linguistic tokenizer does not handle mixed-class strings. p@sswOrd
is also a good example of a token which is unique to the password domain and is
not a proper word in any language.

Substrings of this form are common when users add symbols to their passwords.
In the subset of the RockYou corpus where passwords have minimum length 8 and
contain a digit, a symbol, and an uppercase letter, the most common password
is P@sswOrd. You also find 74 variations of this including P@sswOrd1, P@sswOrd5,
P@sswOrd!, MyP@sswOrd!, P@sswOrdi1l, etc. We would like to be able to make
guesses that fit these patterns, but that do not appear in the training data, such
as POsswOrd3. We could achieve this by tokenizing the above passwords so that
POsswOrd appears as a single token.

Finding common substrings is a nontrivial task that needs to be well defined.
If there is no restriction on length, the most common substrings are always single
characters, since these will have higher frequencies than any longer substrings that
contain them. Imposing a minimum length is not a satisfactory solution either.
A longer token such as password will never be chosen because pass (assuming a
minimum length of 4) will always be more frequent, and tokens like i and ! are
best left as single characters.

5.5.3.1 Word segmentation

To address this issue, we borrow the algorithm first introduced by Liang and
Klein [85] and refined in Berg-Kirkpatrick et al. [3]. The algorithm searches for the
most likely “segmentations” (tokenizations) in a corpus of unbroken sentences.
The advantage of this algorithm is that it is “unsupervised.” In other words, you
do not have to provide it with a corpus of language to produce a solution, so it
can be applied to languages where we do not know the underlying vocabulary.
Rather than finding common substrings directly, the algorithm tokenizes the
inputs using a probability model, where the likelihood of a tokenization is a
product of the probabilities of its tokens. Maximizing likelihood, when likelihood
is a product of token probabilities, results naturally in a preference for longer
tokens. For example, the tokenization [p@sswOrd, 1] is more likely than [p, @, ssw,
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Figure 5.8: Experiment 11 — Guessing curves comparing unsupervised tokenization with
hybrid-Weir structures and Weir structures only. The model learned using unsupervised
tokenization performs best in early guessing, but this is entirely due to guessing based on
untokenized structures. Less than 6% of passwords cracked by the unsupervised-hybrid
model were cracked as a result of the unsupervised tokenization approach.

0, rd, 1], because the former multiplies two probabilities and the latter multiplies
six.!4 This is in spite of the fact that the six tokens have much higher individual
probabilities than the two. In fact, this effect is so powerful, that using such an
algorithm without alteration actually favors a tokenization where all passwords
are single tokens. Therefore, the authors imposed a penalty on token length so
that long tokens are exponentially less likely than shorter ones [3]. We made a
number of changes to this algorithm to support our passwords use case. We do
not describe the algorithm in detail, but we describe these changes in Appendix C.

5.5.3.2 Results

Figure 5.8 shows the result of our evaluation of the word segmentation algorithm
on 4class8 passwords. We produced three guessing models for evaluation.
The first model uses Weir structures, i.e., we tokenize passwords based on
character class. The second model uses hybrid structures, i.e., Weir structures plus

14This use of joint probabilities to constrain the number of tokens per password is similar to the
hybrid approach from Section 5.5.1 that prefers untokenized structures to tokenized ones.
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untokenized structures as described in Section 5.5.1. The third model was built
using unsupervised-hybrid structures, i.e., untokenized structures plus structures
learned using unsupervised tokenization. We enabled unseen terminal generation
and quantized string frequencies for all three models.

Surprisingly, the unsupervised-hybrid model performed even better in early
guessing than the Weir-hybrid model which was previously the best model for
4class8. However, its performance drops off sharply after ~ 600,000 guesses,
picking up again after ~ 10° guesses. Analyzing the guesses made by the
unsupervised-hybrid model, we find that its performance is almost entirely owed
to the use of untokenized structures. Over 94% of the passwords cracked in this
condition were cracked using an untokenized structure, and ~ 600,000 guesses is
where the model starts to guess tokenized structures almost exclusively. After 10
guesses, the model begins to guess unseen terminals in untokenized structures. In
other words, it begins to brute-force entire passwords. The passwords it cracks in
this manner are all short passwords.

Conclusion Though the unsupervised-hybrid curve performs well in early
guessing, we find that this is entirely owed to untokenized structures and not to the
unsupervised tokenization algorithm. We selected parameters for the algorithm
that are similar to the original work [3], and found that this did not produce good
results. Therefore, we do not recommend the use of our implementation of this
algorithm for password modeling.

Instead, we suggest using the Weir-hybrid approach, with a penalty applied
to tokenized structures. The difference in probability between the untokenized
and tokenized structures in the unsupervised model are greater than in the other
models, so the untokenized guesses are made first, which seems to be very
beneficial in this case. Applying a penalty should help the Weir-hybrid model
achieve similar performance in early guessing to the unsupervised-hybrid model,
yet continue to perform well after the untokenized structures have been exhausted.

That said, the unsupervised algorithm has a number of parameters and it
might be successful if configured differently. We might also be failing during
maximization of the algorithm’s likelihood function. The tokenizations produced
by the algorithm are based on a complex likelihood model that is optimized over
the entire input corpus. Anecdotally, we noticed that tokenizations seemed much
better on small datasets than on larger, more realistic ones. We do not know if the
fault lies with the likelihood model itself when confronted with a large dataset,
or if the algorithm is simply failing to find a good solution with its optimization
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method.!” Issues of this type are common in machine learning, and investigating
them is outside the scope of this work.

15The optimization method used is L-BFGS [3, 86].






Chapter 6

Analysis of Guessing Data

The result of the guess-calculator framework is a set of guessing data for various
policies. Guessing data contains a guess number for all cracked passwords in a
test set, within some maximum number of guesses that is known (the guess cutoff).
We can use this data to determine the percentage of passwords that were cracked
within the cutoff, as well as for any smaller threshold of guesses.

A “guessing curve” (a term we borrow from Bonneau [6] and introduced
in Section 3.2) is built directly from guessing data, and plots the percentage
of passwords cracked after some number of guesses, over a range of guesses.
Figure 6.1 shows a guessing curve for a simple eight-character policy that we
call basic8, in which the only requirement was that passwords be at least eight
characters long. The guessing data plotted in Figure 6.1 come from 1,000 passwords
collected from Mechanical Turk using the procedure described in Section 2.2. We
will use this curve as an example for much of the chapter, and show how various
statistical metrics can be related to it.

This chapter is split into two main sections. In Section 6.1, we discuss metrics
for the guessing data produced by the guess-calculator framework, how guessing
curves can provide a more accurate description of guessing data than summary
statistics, and statistical tests that can be used with guessing data. In Section 6.2, we
present methodological issues that can arise when conducting policy evaluations
using the framework, and provide some guidance on dealing with these issues.

6.1 Metrics and statistical techniques for guessing
data

Many metrics have been proposed for guessing data, and Bonneau provides a
comprehensive survey of these metrics [7]. The most relevant of these are “partial

113
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Figure 6.1: Experiment 1 — Guessing curve for the basic8 policy showing percentage of
passwords cracked over a range of guesses.

guessing metrics” where it is assumed that an adversary is willing to exert a fixed
amount of effort, i.e., a maximum number of guesses, against each account. We
describe these metrics and show how they can be applied to guessing data in this
section. Because the guess-calculator framework can only generate guess numbers
up to the guess cutoff, partial guessing metrics are most appropriate. The metrics
are described in Section 6.1.1 and illustrated using guessing curves. Guidance on
comparing policies using the metrics starts in Section 6.1.2. Finally, section 6.1.4
covers survival analysis, a suite of statistical techniques for analyzing guessing
data.

Interpretation

Partial guessing metrics were originally intended to be used with true probabilities,
not empirically observed ones [7,13,117]. When used in this way, the values
computed are true values, with no statistical error. Though it is fairly easy to
compute these metrics using guess numbers, we also need to account for error.
In this thesis, we only consider the error that comes from having a sample of
guess numbers as opposed to having the whole distribution of guess numbers for a
particular policy. In statistical parlance, we consider guess numbers to be sampled
measurements of an independent variable, where our dependent variables are
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the proportion of cracked passwords after some number of guesses, or the rate
at which passwords are cracked per guess. The common statistical techniques
discussed in this chapter account for this type of error.

However, there are other sources of error that it would be prudent to consider,
such as error in the guess numbers themselves. This type of error can arise from
many sources: a mismatch between our guessing algorithm and the algorithm of a
true adversary, a lack of training data, poorly chosen training data, a weakness in
our algorithm, etc. We make an effort to select our training data well, and model
techniques that we know are used by professionals [54], but statistical techniques
cannot mitigate deficiencies in our model, especially because we do not have data
to model the mismatch between our guesses and that of a true adversary. In
Chapter 7, we show that the improved guessing model introduced in this thesis is
able to model passwords better than previous PCFG models, and thus crack more
passwords. This suggests that our models are closer to approximating a more
sophisticated adversary, though we are not sure how much further we might have
to go.

It is important to keep this in mind when interpreting any password-strength
results. As we stated in Section 1.2, we do not have sufficient data to compare
the true probability distributions induced by two password policies, and samples
from two policies are typically not large enough to compare directly. Instead, we
assign guess numbers to passwords and compare guess numbers between samples.
These guess numbers are generated by specific guessing models that may or may
not reflect the behavior of real-world adversaries.

6.1.1 Partial guessing metrics

There are three partial guessing metrics, as described by Bonneau [7], that we
consider in this section. We provide formulas for each metric, and also show how
each metric corresponds to a function of a guessing curve. The original formulas
Bonneau provides [7] are not directly applicable to our guessing data, because
they are based on probabilities from a known, ideal probability distribution and
not guess numbers. Luckily, formulas that are based directly on guess numbers
are quite simple, as seen below.

B-success-rate (A4(7)) measures the expected proportion of accounts cracked for
an adversary that makes a fixed number of guesses (B) per account against a given
policy (P) [7,13]. In the original papers, P is simply a probability distribution.
We can substitute a policy for P here, because a policy induces some probability
distribution over passwords.



116 ANALYSIS OF GUESSING DATA

80% 1

65.8%

60%

40%

20% A

Percent cracked (B-success-rate)

5.4%

0% . '
10° 10° 10° 10° 10"
Guesses(B)

Figure 6.2: Experiment 1 — Guessing curve for the basic8 policy, annotated for g = 10°
and B = 10'2 guesses. The percentages above each point show the estimated B-success-
rate for the corresponding number of guesses, based on the test sample.

_ 1 N
Ap(P) = & Z% lg,<p (6.1.1)

Equation (6.1.1) presents a formula for estimated p-success-rate (Xﬁ,) based
on a set of guessing data, where g; is the guess number assigned by the guess
calculator to test password i, N is the number of test passwords, and 1 is the
indicator function, which is 1 when its condition g; < f is true and 0 otherwise.
Note that this is exactly the same formula as is used to compute the empirical
CDF over guess numbers, so it can be computed easily using standard statistical
libraries, such as the “ecdf” function in R.

Recall that a guessing curve plots the percentage of passwords cracked in a
sample, over a range of guesses. Therefore, our estimate of B-success-rate is simply
the value of the guessing curve at 8 guesses. For example, as shown in Figure 6.2,
the estimated B-success-rate for B = 10° is about 5.4% and for B = 10'2 about
65.8% for the shown policy P. If the curve is vertical at a given B, i.e., at least one
account was cracked at this guess, we take the maximum proportion on the curve
at the given value.
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Figure 6.3: Experiment 1 — Guessing curve for the basic8 policy, annotated for « = 10%
and a = 50% as the desired percentage cracked. The numbers beside each point show the
estimated a-work-factor, or the required number of guesses, based on the test sample.

a-work-factor (u,(P)) measures the expected number of guesses needed per
account to crack some desired proportion of accounts («), for a given policy
(P) [7,117]. 1t is the inverse of B-success-rate on a guessing curve.

i, (P) = m].in(xj(P) > a) (6.1.2)

Equation (6.1.2) presents a formula for estimated a-work-factor based on
finding the inverse of the B-success-rate. Like B-success-rate, it can also be
computed easily using standard libraries, such as the “quantile” function in
R using “inverse of the empirical cumulative distribution function” mode. As
shown in Figure 6.3, the a-work-factor for & = 10% is 4., ~ 15 thousand guesses
and 75, ~ 2.7 billion guesses.

a-guesswork (G,(P)) measures the expected number of guesses needed per
account to crack some desired proportion of accounts (x), accounting for the
fact that an adversary can stop immediately after cracking an account [7]. In other
words, it is unnecessary to make the maximum number of guesses per account if
an account is cracked earlier. This is a very practical metric, since it measures a
value proportional to the average effort that would be expended by an adversary.
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Figure 6.4: Experiment 1 — The area above the guessing curve and up to a maximum
number of 15,347 guesses. The total shaded area approximates the a-guesswork needed
to crack 10% of passwords. Note that the x-axis is in log-scale, so the area as shown is
not the true area of the region.
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Equation (6.1.3) presents a formula for an estimate of x-guesswork, based on
an estimate of a-work-factor. It cannot be computed using standard libraries,
but the computation is fairly easy. The intuition behind this formula starts by
summing over the guess numbers up to the a-work-factor. For example, when
y = psgo(basic8) & 2.7 x 10'2, we can sum over all guess numbers up to and
including y to obtain the total number of guesses used to crack 50% of accounts.
To complete the calculation, we assume the adversary makes ps5q9, guesses per
remaining account, quitting when the account is not cracked.

We can visualize this value from the guessing curve, by assuming that the
curve represents guessing data from an infinite number of samples. As shown
in Figure 6.4, the a-guesswork for & = 10% can be seen as the area between the
y-axis and the guessing curve up to y = a and then the area above the curve from
« to 100% (to account for all the guesses made on accounts that were not cracked).
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Figure 6.5: Two policies whose guessing curves cross. At 10° guesses, the percentage of
the sample that was cracked (also known as the B-success-rate) is the same for both curves.
However, the guesswork required for the dashed curve is less than for the solid curve,
indicating that the dashed policy is weaker for an adversary restricted to 10° guesses.
Note that the x-axis is in log-scale, so the areas shown are not the true areas of the
regions.
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Figure 6.6: Experiment 1 — Guessing curve (B-success-rate, solid black line) compared
with guesswork curve (x-guesswork, dotted blue line) for the basic8 policy.

Figure 6.5(a) shows our basic8 policy, and a fabricated policy which has
equivalent B-success-rate and a-work-factor at 10° guesses, but requires less a-
guesswork. As seen in Figure 6.5(b), if the a-guesswork of two policies are
compared at a point where both policies” guessing curves cross, a-guesswork can
identify one of the policies as weaker, since it requires fewer guesses in expectation
to reach the same proportion of cracked accounts. This can be seen visually as the
top curve having a smaller shaded region than the bottom curve would have.

The a-guesswork for a policy tends to be very close to the a-work-factor for
relatively low values of a. Figure 6.6 shows a “guesswork curve” that plots the
computed guesswork for a spectrum of « values, using similar axes to our standard
guessing curves. Because a-guesswork is a mean score, it is easily skewed by the
uncracked accounts at low values of «, which require the adversary to expend a
maximum number of guesses. For larger values of «, differences become more
pronounced.

Guessing curves

We generally prefer to work with curves rather than summary statistics. The
metrics we have discussed all require the specification of a parameter, « or 8, and
it is usually not apparent which value to choose. As we have shown, a guessing
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curve can plot any of the above statistics over a range of a or 8 values. This allows
for policy evaluations based on much more information than a single statistic.

Section 6.1.4 discusses hypothesis tests that can be used to compare policies
across entire guessing curves. When guessing curves cross, as shown in
Figure 6.5(a), it can be argued that neither curve is strictly better than the
other, unless one prefers particular values of a or B. In these cases, one could
select specific points at which to compare metrics. This approach is discussed in
Section 6.1.2.

6.1.2 Comparing f-success-rates at specific points

In previous work [67,134] our research group focused on the B-success-rate, or
the percentage of passwords cracked after some number of guesses, for various
values of B and between various policies. For example, we wanted to determine if
one policy has significantly more, or fewer, cracked passwords after 10°, 10'2, or
the cutoff number of guesses. Comparing the B-success-rates between policies is
relatively easy: we can view guessing data for a single policy as a sample from a
binomial distribution, where each password is either cracked or not cracked after
B guesses. This produces an 1 x 2 contingency table, on which we can run a x>
test (chi-square) to determine if two or more policies are significantly different. If
more than two policies are being compared and the overall, or “omnibus,” test
is significant, we compute pairwise x? tests corrected for multiple comparisons
using Holm-Bonferroni correction [60,124].

Fisher’s exact test Fisher’s exact test can be substituted for the x? test if the
cell counts are not too high to prevent Fisher’s test from being used. It should
be substituted if any cell counts are low, as this can cause the x? test to be
inaccurate. We have encountered at least one reviewer who disagreed with this
method, claiming that since Fisher’s test was designed under an assumption of
fixed marginals, it is not appropriate to this application.! However, it is accepted
practice that Fisher’s test can be used in these situations [96], and that attempts
to construct new tests that relax this assumption are dangerous [35]. In our own
testing, we have found that the x? test and Fisher’s exact test agree in all cases
where we have compared them, but we prefer to use the more exact Fisher’s test
where possible.

IThe “fixed marginals” assumption refers to a situation in which the total number of each
outcome is fixed, e.g., the total number of cracked and uncracked passwords is known in advance,
but we do not know which policy might “choose” more or fewer cracked passwords than the other.
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6.1.3 Comparing policies using resampling

Alternatively, we could consider how much work an adversary would require
to crack some percentage of passwords, and compare this between policies. In
other words, we might want to compare the a-work-factor or a-guesswork between
policies. There are no standard statistical tests for this, but relevant procedures
exist for computing confidence intervals. Once confidence intervals have been
computed, we can say that two policies are significantly different if their confidence
intervals are disjoint.

Example: comparing a-guesswork

Let us consider how a-guesswork might be used to compare policies. Recall that
in the a-guesswork metric, our threat model is an adversary that makes some
maximum amount of guesses per account, but does not waste effort on accounts
once they are already cracked. We might want to compare polices based on some
threshold of guesswork, e.g., the adversary is willing to make an average of 10°
guesses per account. Given this threshold, we would like to know if the percentage
of passwords cracked is significantly higher for one policy compared with another.
In other words, we choose an a-guesswork value of interest and want to compare
the corresponding as for each policy.

This is very similar to the scenario in which we compared p-success-rates
between policies, with one important difference. When comparing B-success-
rates, our B was chosen by us as 10° or 10!, independent of the data. However,
guesswork is computed in a way that explicitly includes the values of other guess
numbers in the sample? so a-guesswork values are not independent observations.
This violates the underlying assumptions behind many standard statistical tests,
so using them on guesswork measures would be inappropriate. A resampling
technique, as described below, could be used instead.

Constructing confidence intervals with resampling

We have previously used the “basic bootstrap” technique [23,38] to construct
confidence intervals for mean password length, mean composition factors (number
of digits, symbols, etc.), and estimated entropy values [95]. Though it is easy to
construct confidence intervals for mean length using, e.g., standard error, this
implicitly assumes a normal distribution. In contrast, password length is heavily
left-skewed, since most users will create passwords with minimum length. We can
use the bootstrap technique to construct more appropriate intervals.

2See Equation (6.1.3) on page 118.
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To compare x-guesswork between policies, we could create confidence intervals
for a for each policy, using a resampling technique [28]. The resulting confidence
intervals can then be compared. This technique (or other resampling techniques)
can be applied to many password metrics, though it is computationally intensive.
Computing an interval involves creating a number of “replicates” through
sampling from the original dataset and computing the metric of interest on the
replicate. In our work, we typically compute 1,000 replicates. See Good [53]
for a thorough discussion of resampling methods and their use in constructing
confidence intervals.

Comparing a-work-factor

Confidence intervals for a-work-factor can be computed without resampling. The
a-work-factor estimate for a policy is equivalent to the a quantile of the guessing
data. The quantile is computed by ordering the guess numbers, with uncracked
passwords assigned a guess number of oo, and finding the guess number at rank
[Na|, where N is the size of the sample. There are methods for computing
confidence intervals for quantiles that are simple and computationally trivial, such
as inverting the binomial confidence interval [34]. Resampling methods can also
be used, but they require significantly more computation.

Comparing policies using permutation tests

Another approach to comparing policies is permutation testing. Permutation
testing requires an additional assumption of exchangeability but can be more
powerful than the bootstrap approach [53]. It is an alternative to constructing
confidence intervals. Instead, a metric of interest is used to test the null hypothesis
that two policies are drawn from the same distribution. The original procedure
involved exchanging data points between two samples, computing the metric of
interest on both samples, noting the absolute value of the difference, and repeating
for all permutations of the two samples [28]. In practice this is not feasible, so
random sampling without replacement from the space of all permutations is used
instead. The p-value of a permutation test is the fraction of all differences that
meet or exceed the difference between the original two samples.

For example, imagine two samples A and B with sample means of 0 and 10,
respectively. Take the case where the samples are drawn from populations with
true means 0 and 10, respectively. By exchanging data points between the samples,
we expect to bring their means closer together, so the fraction of differences greater
than 10 will be very low. Conversely, if the true means are the same yet the sample
means are still 0 and 10, then we expect that the original distribution (and the
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samples) have high variance. Exchanging data points between these samples will
sometimes yield new samples that are further than 10 apart. If this happens more
than 5% of the time, i.e., p > .05 we will not reject the null hypothesis that the two
means are the same.

We can execute the same procedure with samples from password policies. We
have done this previously using estimated entropy as our metric of interest [76].
To illustrate the procedure, imagine that the estimated entropy of sample A is
E(A) = 25.0 bits, and the estimated entropy of sample 5 is E(B) = 26.0 bits. Their
difference is 1.0 bits. We then exchange passwords between the samples creating
two new “mixed” samples A and B, and compute the entropies of A and B and
their absolute difference: |E(B) — E(A)|. We repeat this process hundreds of times,
careful that we do not construct the same pair of samples more than once. Finally,
we calculate a p-value equal to the fraction of absolute differences greater than 1.0
bits.

6.1.4 Survival analysis

To compare the guessability of policies using partial guessing metrics, we must
tirst choose parameters of interest. For example, if we want to compare the B-
success-rate between two policies, we might be interested in a strong adversary
and choose B = 10'2. We could then use a Fisher’s exact test to compare the
proportion of passwords cracked after 10'2 guesses for each policy.

However, it might be unclear what value of B to choose. One could run
statistical tests with multiple B values, but this shifts the problem from selecting a
single value to selecting a candidate set of 8 values. Running multiple tests also
requires multiple testing correction, which decreases the power of the analysis.

Another approach is to compare guessing curves over the full range of available
values. Suppose we have guessing data for two policies A and B as shown in
Figure 6.7. Policy A appears to be stronger, but this might not be statistically
significant. In other words, the observed difference between the two policies might
be due to randomness in our samples, and we would like some confidence that
one policy is better than another.

Two tools that we can use, the G! test and Cox regression, come from the
literature of survival analysis. This family of techniques was designed to discover
factors that influence mortality, and works with datasets in which we record times
at which fatal events happen to subjects. A nice feature of survival analysis is that

3These curves are provided for demonstration and were both generated from the same policy,
rather than two different policies. To produce a difference between the curves, one was generated
with hybrid structures (Section 5.5.1) and one without.



6.1. METRICS AND STATISTICAL TECHNIQUES FOR GUESSING DATA 125
40%
Policy B

30% A Policy A

20% A

Percent cracked

10% A

L ———— , ,
10° 10° 108 10° 1012
Guesses

Figure 6.7: Experiment 3C — Example guessing curves for two policies that are close in
performance.’

it was designed to be used in a setting where a study might end before fatal events
are observed. When this occurs, the data notes the time that each subject was last
“seen.” In the context of passwords, we can consider cracking a password to be
a fatal event and mark time using the number of guesses before a password is
cracked. The guess cutoff is the censoring point, after which we no longer record
observations.

Unlike most of the partial guessing metrics described previously, survival
analysis was not designed around the concept of adversary effort. In a-guesswork,
we assume that the adversary will reallocate resources after cracking a password
so that energy is not wasted on guesses after that point. The survival analysis
techniques described here are not compatible with such an assumption. They are
most similar to examining the B-success-rate over a large range of guess numbers.

G! test

The Wilcoxon test, also known as a Mann-Whitney U test, is a popular
nonparametric test of whether one sample is significantly greater than another [59,
90,149]. A modification of this test for survival analysis exists under various
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names: the Peto-Peto generalization of the Wilcoxon test [114] and the G! test?
For simplicity, we refer to this test using the latter term.

The G! test can be used to compare two sets of guessing data under a null
hypothesis that both data sets were drawn from the same distribution. It has
the additional property of weighting differences in early parts of the curve more
heavily than later parts. This is an important feature of the test. Consider a sample
of 100 passwords. If 50% of these passwords are cracked by time ¢, there are only
50 passwords left on which an event might occur. In other words, for times greater
than t, our sample size is effectively cut in half. The G! test accounts for this and
has less statistical power for differences in later parts of the curve than earlier
parts.5

The G! test computes p = 0.28 on the two samples in Figure 6.7. This means
that we cannot reject the null hypothesis that both samples were drawn from the
same distribution. In other words, we cannot say that the two policies we tested
are different. Consider what we get by comparing p-success-rates at specific points:
X tests are significant for g € {10%,10°,10°} but not for B = 10'?, which creates
confusion about whether the two curves are significantly different. A comparison
of values across the available range of Bs using a G! test gives us a single p-value
with which to interpret our results. If we are not at all interested in events beyond
some guess number, say 10*, we could modify our guessing data so that only
password cracks before B < 10* are counted as “fatal” events. This allows us to
get the benefit of comparing curves over a range of values with a single test, while
restricting that range only to values of interest.

The computation of the G! test also provides us with scores for each policy
that tell us the direction of any observed effect. Based on a null hypothesis that
both curves are drawn from the same distribution, the test computes an expected
number of passwords cracked for each policy. We can then examine the difference
between the observed and expected number of cracks for the two policies. One
policy will have an observed count greater than expected, while the other policy
will have less. The policy with fewer observed cracks than expected is observed to
be stronger, and the other policy is observed to be weaker.

Cox regression

A similar approach to the G test is Cox regression. Unlike the G! test, which is
nonparametric, Cox regression is considered “semi-parametric” [147]. It treats each

4This name comes from a family of tests known as GF tests where setting p = 1 yields the
Peto-Peto test [55].

SNote the terms early and late as used here refer to the proportion of passwords remaining in
each policy and not time.
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Factor Coef. Exp(coef) SE p-value

Policy B 0.0361 1.04 0.0384 0.35

Table 6.1: Cox regression results for the two guessing curves of Figure 6.7. Policy B is
1.04 times easier to crack than Policy A, but this difference is not significant.

guessing curve as a function of a nonparametric “arbitrary and unknown function
of time” [36] and independent variables which are represented by regression
coefficients. This means that the guessing curves of Figure 6.7 can take any shape
and the Cox regression will only look at differences between the curves.

We explain Cox regression in more detail using the guessing curves of Figure 6.7.
The result of a Cox regression on these curves is shown in Table 6.1. To run the
regression, we take the policy as a categorical variable with two values, A and
B, which is dummy coded with Policy A as the 0 value, also called the baseline.
Table 6.1 shows the effect of the policy on cracking. Based on the data, the
regression estimates that Policy B is 1.04 times easier to crack than Policy A. In
other words, over a given interval, e.g. 1,000 guesses, Policy B will have 1.04
times as many cracked passwords as Policy A. However, this is not statistically
significant given the data (p = 0.35).

Like other regression methods, we can use Cox regression to analyze results
from many experiments at once. For example, we could collect guessing data from
four policies: basic8, basic12, 4class8, and 4class12. This is known as a 2-by-2,
full-factorial design, where the factors are length and class. Using Cox regression,
we could analyze all four experiments at once and estimate the individual effects
of length and class on password strength. Another application of Cox regression
is in comparing several guessing curves to a single baseline curve at once using a
single test.

Differences between methods

Reducing differences down to a single coefficient can oversimplify the relationship
between two policies. Unlike the G' test, Cox regression estimates a parameter (a
regression coefficient) that represents the average difference between policies. This
coefficient represents a constant effect which might not represent any real behavior
of the guessing curves. Using the example policies A and B from Figure 6.7, there
might not be any region of the curves where Policy B has 1.04 times as many
passwords cracked as Policy A. It is even possible that Policy B has far fewer
passwords cracked than Policy A over the majority of guesses, so long as there are
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Figure 6.8: Example guessing curves for two policies where Cox regression and the G!
test produce contradictory results.

some regions where Policy B is bad enough to be estimated as worse overall. In
these cases, the result of the G! test can differ from that of Cox regression.

Figure 6.8 shows two hypothetical guessing curves where Policy D is worse
than Policy C over the majority of the curve, but Policy C is considered worse
under Cox regression. The sudden jump in cracks at guess number 4,500 causes
Cox regression to estimate that policy C is 1.09 times easier to crack than policy
D (p < 0.001). In contrast, the G! test produces the opposite result: policy D is
weaker than policy C (p = 0.028). This is a consequence of the G test weighting
early cracks more than later ones.

It should not be surprising that different methods produce different results for
Figure 6.8. Whenever guessing curves do not strictly dominate one another, it is
unclear which curve should be recommended. In these cases, statistical methods
can still be used to test for significant differences, but it is up to the researcher to
interpret these results carefully before making a recommendation.

6.2 Conducting policy evaluations

As explained in Chapter 4, generating guess numbers for a given test set is mostly
an automated process with the guess-calculator framework. However, there are
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still many decisions that need to be made by the policy researcher: training data
still needs to be selected and weighed, and proxy test sets might be required if
passwords created under the target policy are not available. Our goal in this section
is to cover some of the methodological issues that might arise when conducting
policy evaluations.

6.2.1 Additional training samples

In our previous work (Kelley et al. [67]), we found that additional samples made a
significant difference when training a complex policy, like comp8,6 but not when
training a simple policy, like basic8. With the improvements to the guess-calculator
framework made in this thesis, this is no longer the case. Given a large and diverse
set of public passwords, such as the RockYou dataset, we can achieve results with
public data close to those with additional samples.

Figure 6.9 shows the performance of models trained with only public data
compared with models trained with additional samples from the target policy.
For each policy, we plot a guessing curve using public data including RockYou
(shown in black) plus 500 to 2,500 additional samples in increments of 500. We
also show our previous finding from Kelley et al. (shown in grey), in which we
trained on the Openwall [39] and MySpace [125] datasets.” The Openwall dataset
is “a huge list of all the common passwords and words from all the languages
with word mangling rules applied” [109]. It has far fewer comp8 structures than
RockYou, which was previously a useful trait—the released implementation of
Weir et al. [143] was unable to store all of the structures learned from RockYou in
memory, and the Openwall dataset was an available source of comp8 passwords.

For basic8, additional samples from the target policy do not seem to help at all
with guessing. Compare this with comp8, where each addition of 500 passwords
increases the percent guessed by about 0.5% at the cutoff, though this is unlikely to
be statistically significant. This suggests that the RockYou dataset is a fine source
of data for basic8, but does not have enough data for comp8. Our results also
indicate that the training data used in Kelley et al. [67] was a poor source of data
for comp8 but was reasonable for basic8. More details on this dataset are provided
in Appendix B.4.4.

®Qur convention for naming policies is described in Section 2.4.4.
“Statistics on these datasets can be found in Sections B.4.3 and B.4.4.
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Figure 6.9: Experiment 5A (top) & Experiment 5B (bottom) — With the improved
guess-calculator framework, a guessing model produced entirely from public data is
competitive with one given 2,500 additional samples. The condition labels on the right of
the graph are ordered based on percentage cracked by the guess cutoff.
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Figure 6.10: Experiment 6 — Guessing curves for six conditions where we manipulated
the weight of password samples from the target policy (3class12). We find that weighting
has little effect on guessing performance in this case, though weighting is generally better
than building models with only public data (the 0 curve). See the text for an explanation
of the weighting schemes we used.

6.2.2 Weighting training data

In the previous section, samples were scaled so that their cumulative probability
was equal to the cumulative probability of other training data. In Section 4.2.1 we
called this P-weighting. We also introduced the concept of S-weighting, which is a
more straightforward weighting scheme. In this section, we examine the impact
of different S and P-weighting schemes. We evaluated a baseline scheme with no
sampled data, labeled 0. We also evaluated two S-weighting configurations with
weights 1 and 100, labeled 1S and 100S respectively. Finally, we evaluated three
P-weighting configurations: 1P, 10P, and 100P. In this particular evaluation, 1P was
approximately equal to an S-weighting with weight 105.7, due to the size of the
input datasets. We did not measure this before performing the evaluation.

We performed this evaluation using the 3class12 target policy. We selected this
policy because it is novel enough that public data would not be an adequate source
of training data. Samples were collected from Mechanical Turk as described in
Section 2.2 and combined with data from public sources as listed in Appendix B.13.

Guessing curves are presented in Figure 6.10 and Cox regression results are
shown in Table 6.2. Though the 10P model results in significantly more passwords
cracked than the baseline 0 model, evidence in favor of the 10P weighting
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Factor Coef. Exp(coef) SE p-value

100P  0.1821 1.20 0.0942 0.053
100S  0.1409 1.15 0.0952 0.140
10P 0.1999 1.22  0.0939 0.033
1P 0.0887 1.09 0.0960 0.360
1S 0.0906 1.09 0.0956 0.340

Table 6.2: Experiment 6 — Cox regression results comparing the guessing curves of
Figure 6.10 with public data only (“0”) as the baseline. The exponential of the coefficient
(Exp(coef)) indicates how strongly that factor being true affects the probability of cracking
compared to the baseline category. For example, the 10P scheme cracks 22% more
passwords than the 0 scheme, on average. Though this is the only scheme that is
significantly better for & = 0.05, other weighting schemes are similar in performance.

scheme over other weighting schemes is not very compelling. An examination of
Figure 6.10 finds that many of the schemes have curves that cross, so there is no
single weighting scheme that is clearly better than all others.

However, the 0 scheme is clearly worse than all others. This suggests that for
unusual policies like 3class12, models should be built using collected samples, as
this seems generally better than building models with only public data. However,
we do not find that particular non-zero weightings have very much effect on
guessing performance.

This experiment was limited to a single policy and a small set of weightings, so
these findings should be approached cautiously. In Section 7.1, we find favorable
results with the 10P weighting scheme, though we did not try other weightings in
that evaluation.

6.2.3 Comparing subsets

We also examine the performance of passwords collected under the 3classi2
policy to passwords found in public data that meet the 3class12 requirements.
This examination is important for those studying complex policies who lack a
source of samples from the target. Weir et al. use a subset of passwords from
public data as a proxy in their evaluation of strict policies [145]. Note that the
public data sources used by Weir et al., and that we use here, consist of passwords
collected under much simpler policies: a five or six-character minimum length
with no other requirements.

We use the RockYou and Yahoo datasets as inputs to the guess-calculator
framework for training. We configure the framework to hold out 1,000 3class12
passwords from each of these sets for testing and use the remainder for training.
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Figure 6.11: Experiment 7A (left) & Experiment 7B (right) — Comparison of subsets from
the RockYou and Yahoo datasets to samples collected from Mechanical Turk (MTurk) for
the 3class12 policy. Models were trained on the RockYou and Yahoo datasets, with the
10P model (right) trained on additional samples from MTurk using 10P weighting (as
described in Section 6.2.2).

We evaluate two models, one built with only public data and one built with
MTurk passwords in the training data. Mturk samples are weighted using the 10P
weighting scheme introduced in Section 6.2.2, so we call this the 10P model. In
this model, we used 2,000 passwords for training and test on the remaining 773
passwords. As usual, details on how these models were trained can be found in
Appendix B.

Figure 6.11 shows the results of our examination. For a model trained only
on public data, we find that passwords created under the 3class12 policy are
significantly stronger than passwords found in a 3class12 subset of public data
(Cox regression, p < 0.001). With the 10P model however, the gap between
the MTurk and other test sets becomes smaller. The RockYou guessing curve is
significantly weaker than the MTurk curve (p = 0.008) but the Yahoo curve is not
significantly different. Therefore, we make no claim that subsets of public data are
weaker or stronger than collected passwords. Instead, it is possible that we simply
do not have enough training samples to guess MTurk passwords as efficiently as
those from large, public datasets.

Discussion This result challenges our findings from previous work. In Kelley et
al. [67], we found that subsets of passwords from weaker policies were significantly
stronger than passwords collected under a target policy. In an experiment
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described in Section 7.4, and previously published in Mazurek et al. [95], we
find a similar result: subsets of passwords from leaked datasets can sometimes
be significantly stronger than passwords from a target policy. However, we also
found that the RockYou set did not seem to exhibit this property. There are at least
three methodological differences between this evaluation and previous studies.

First, we use the 3class12 policy, because it can be modeled perfectly by a
Weir PCFG. In contrast, previous studies looked at the comp8 policy that includes
a dictionary check, among other requirements. A Weir PCFG makes a large
number of noncompliant guesses against such a policy, because it has no way of
only generating guesses that pass a dictionary check. This creates inefficiency in
cracking the comp8 policy that might affect different datasets to varying degrees.

The second difference between this and prior studies is the use of improvements
to the guess-calculator framework. As we have shown in Chapter 5, the
improvements we introduced to the guess-calculator framework can crack policies
much more effectively than previous work, and this might also have a different
impact on different datasets.

The third difference is in training data. Prior studies included the Openwall
dataset [109] in their training data, but we found in Section 6.2.1 that this is a poor
data source, at least for the comp8 policy. Use of this dataset might have created a
bias in our results that does not accurately reflect true differences between datasets.

We are unable to draw conclusions about subsets of public data. We find
that these subsets can be significantly weaker than passwords collected from
Mechanical Turk, but our results also suggest that significant differences might
be due to a lack of training data suited to the target policy. This is indicated by
the fact that a model trained with 2,000 samples from the target policy cracks our
Mechanical Turk test set almost as well as subsets of public data. With even more
samples from Mechanical Turk, it is possible that the trend from Figure 6.11(a) to
Figure 6.11(b) would continue and the curves would converge. It is even possible
that the MTurk curve would overtake the other curves and prove to be weaker
than subsets of public data.

Even though we have studied a different policy here than in previous work, our
current results challenge the general hypothesis that passwords in the field, which
we proxy with passwords from Mechanical Turk, are weaker than subsets of public
data. One point in favor of our current results is that their explanation is relatively
simple: a lack of training data for cracking Mechanical Turk passwords. In contrast,
the explanations for previous results rely on complex user behaviors such as users
making weaker passwords for online studies, or that the subset of users who make
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complex passwords under a simple policy use a stronger algorithm to generate
passwords than the general population. Further research is needed to investigate
these explanations in depth, and to improve our ability to address these factors
when collecting test data so that we can evaluate policies more accurately.






Chapter /

Case Studies

This chapter presents several case studies in which the guess-calculator framework
and the statistical analysis techniques of Chapter 6 are used to evaluate password
policies.

In Section 7.1, we use leaked passwords to evaluate policies from a U.S.-based
service and Chinese service. In Section 7.2, we look at mixed-class passwords that
are a traditional weakness of PCFG modeling. We find that our improvements to
the guess-calculator framework greatly improve our models of these passwords. In
Section 7.3, we look at policies involving long passwords, which we have previously
found to be strong [67] but might just be difficult targets for our guessing models.
We find that our improvements to the framework greatly improve our ability to
crack these passwords, though they are still much stronger than shorter password
policies.

Finally, in Section 7.4, we describe our use of an older version of the guess-
calculator framework in the field to evaluate passwords from Carnegie Mellon
University, compare them to various leaked password sets, and use survival
analysis techniques to identify factors correlated with password weakness.

The Public set We provide the same set of input datasets to the guess-calculator
framework to train many of our models. Because structures are pruned as
appropriate for the target policy, we can train multiple models with the same
input yet produce different PCFGs for each policy.! We call this collection of input
data the Public set, and it is used in many of our evaluations. It is comprised
of the RockYou [139] and Yahoo! Voices [31] password sets, supplemented with
alphabetic strings from the public-domain Webster’s 1934 dictionary [107], the
Automatically Generated Inflection Database [1], and unigrams (single words)

!Please refer to Figure 4.2 on page 50 which describes how input datasets are processed and
used by the framework.
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from the Google Web Corpus [15]. We provide details on all experiments in
this chapter in Appendix B and configuration files for each experiment can be
downloaded from https://cups.cs.cmu.edu/chili/projects/passwords-gcf-t
hesis-configs/wiki/Wiki.

7.1 Analyzing leaked password sets

In this section, we compare the strength of leaked passwords from a U.S.-based
service (Yahoo!) to those from a Chinese service (CSDN). Unlike most analyses
in this chapter, this analysis uses only leaked datasets and does not utilize the
Public set. A similar analysis was performed by Ma et al. [88] and it is hoped
that this analysis can be easily reproduced by other password researchers using
other password cracking algorithms. It should be noted, however, that leaked
datasets are not necessarily good training data for one another if their policies are
not similar. This issue is discussed below.

The datasets examined in this set of experiments were RockYou, Yahoo! Voices,
and CSDN. Statistics on these datasets can be found in Appendix B.4.3.

7.1.1 Target policy

We trained the PCFGs for these experiments so that only six-character or longer
guesses were made. We call this a basic6 policy. This is in contrast to Ma et al.
who enforce a minimum length of four except in one experiment [88].

Selecting a target policy for leaked password data is not straightforward.
Leaked password sets can combine data from multiple policies, and often have
strings that are too short to comply with any realistic policy. As shown in
Figure 7.1, the CSDN dataset has a range of string lengths with a small peak
at six characters, yet the plurality of passwords are eight characters. There are a
few potential explanations for this: noise in the data; password reuse, i.e., users
reusing passwords from other websites with more strict policies; or the addition
of an eight-character minimum requirement at some point after some users had
already created accounts. RockYou had a five-character minimum policy, but
the majority of passwords in the dataset are six characters, and eight-character
passwords are more frequent than seven-character passwords. The Yahoo! dataset
seems to conform to a six-character minimum policy, but, like CSDN, the plurality
of passwords are eight characters.

These differences between password sets illustrate that training on one set,
such as RockYou, might not be ideal when the target policy is another set, such as
CSDN. A model based on RockYou will guess many more six and seven-character
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Figure 7.1: Distribution of password lengths across leaked datasets

passwords that it should when CSDN is the target. A more in-depth examination
of the two sets would find other differences, such as many more passwords
consisting solely of digits in CSDN. The work of Bonneau and Xu suggests that
CSDN users were constrained by the lack of platform support for characters in
their native language, which caused many of them to pick passwords that are all
digits [12]. Li et al. found that other Chinese datasets have the same property,
and specialized their training data to include generated date and digit strings [84].
From an adversary’s perspective, this is an attractive policy to attack.

In this section, we will show how different models perform on these datasets,
and how the improvements to the framework introduced in this thesis can produce
better models. In particular, we show how a small amount of weighted training
data can be used by the guess-calculator framework to produce a model tuned for
the CSDN policy.

7.1.2 Results

The four experiments in Figure 7.2 demonstrate the effects of training data
and framework improvements on models. The left column is trained only on
the RockYou dataset, using basic6-compliant passwords for structures and all
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(a) Weir 2009 model trained only on RockYou (b) Weir 2009 model trained on all three datasets
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(c) Improved model trained only on RockYou (d) Improved model trained on all three datasets

Figure 7.2: Experiment 8A (top left), Experiment 8B (top right), Experiment 8C (bottom
left), & Experiment 8D (bottom right) — An evaluation of RockYou, Yahoo!, and CSDN
passwords using various models. The top row (Weir 2009) shows models trained using
settings akin to Weir’s original approach for learning a PCFG [146], while the Improved
model in the bottom row incorporates improvements from this thesis. The left column
is trained only on RockYou, while the right column is trained on all three datasets. Test
data consisted of 1,000 randomly selected held-out passwords from each dataset.

passwords for terminals. The right column adds Yahoo! and CSDN passwords to
the training data. No other data sources were used in this experiment.

Figures 7.2(a) and 7.2(b) contain Weir 2009 models, which were learned using
a methodology similar to that of Weir et al. [146]. To produce the Weir 2009
curves, we ran the guess-calculator framework without unseen terminal generation,
using only a character-class tokenizer. In addition, we modify the framework so
that alphabetic strings are all assigned the same frequency, as in Weir’s original
approach [146]. We use the guess-calculator framework, instead of Weir’s original
implementation, because it allows us to quickly reach trillions of guesses. The
Improved model in Figures 7.2(c) and 7.2(d) incorporate improvements from this
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10° 10! 102 10 10* 10° 10° 107 108 10° 100 1011 1012

Weir 2009 model trained on all three datasets

CSDN 40 87 87 92 93 93 95 344 362 390 450 527 576
RockYou 03 14 14 14 15 25 167 453 59.1 689 740 759 77.2
Yahoo 0o 05 06 o7 o7 12 86 287 418 547 618 672 720

Improved model trained on all three datasets

CSDN 0.2 107 11.1 11.4 127 14.5 159 31.3 46.5 551 648 727 80.5
RockYou 1.6 24 45 105 186 273 372 574 719 773 821 86.6 893
Yahoo 05 08 25 6.5 145 23.0 301 46.0 59.2 657 724 76.9 81.5

Table 7.1: Experiment 8B (top) & Experiment 8D (bottom) — Percent of sample cracked
by Weir 2009 and Improved models trained on all three datasets after a given number of
guesses.
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Figure 7.3: Guessing curves for CSDN passwords across all four experiments from
Figure 7.2 (wl = with Improved model, wT = with additional training data)

thesis that were discussed in Chapter 5: quantized string frequencies, hybrid
structures, and unseen terminal generation. A table of percent cracked for each
condition is given in Table 7.1.

To get a better understanding of our results, we pull out the CSDN curves
from Figure 7.2 into Figure 7.3. It is clear that both additional training data and
framework improvements help with cracking CSDN passwords. Using pairwise
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G! tests, all curves are significantly different except for the CSDNwI and CSDNwT
curves (p = 0.85).

The wT models add all CSDN and Yahoo! passwords except for the 1,000 in
the training set and this clearly outperforms the base condition after about 107
guesses. Interestingly, the CSDNwI model starts out slightly worse than the other
models because it favors guessing RockYou passwords verbatim, but eventually
overtakes the CSDNwT curve by guessing unseen terminals. The CSDNwIwT
curve generally outperforms all other curves over the range of guess numbers.

Tuning for CSDN

CSDN is an interesting dataset. It has very different passwords, compared to
English datasets like RockYou, since a large proportion of its passwords are all-
digit strings [12,84]. This leads to poor performance in early guessing across all
four experiments, relative to RockYou and Yahoo!, as shown in Figure 7.2.

A noticeable aspect of our CSDN models is the sudden jump in cracked
passwords around two million guesses. This is caused by training on RockYou and
Yahoo!, which have many more six and seven-character passwords than CSDN,
previously shown in Figure 7.1. Around two million guesses is where the guessing
models start to guess eight-character passwords. This is a consequence of how we
ran our experiment using a combination of different policies. CSDN has some six
and seven-character passwords that get cracked, but our guessing model based on
RockYou is not as efficient as it could be when attacking CSDN. This is realistic
if we assume that our adversary has no knowledge of CSDN passwords, but
even a modest sample would show that passwords less than eight characters are
infrequent. An intelligent adversary might try to combine this information with
their prior knowledge of passwords to mount a more powerful attack, perhaps
by adjusting the guesses they make to better match the distribution of password
lengths seen in their sample.

We can account for this using the guess-calculator framework. Figure 7.4
shows the curves of Figure 7.3 with one additional model: CSDN5000wI. This
is an Improved model trained with RockYou and Yahoo! passwords and 5,000
additional CSDN passwords added only to the structures corpus? This is much
less training data than was given to the wIwT model, whose training data included
over six million CSDN passwords, but with one crucial difference—we configured
the framework to weight the 5,000 passwords so that their combined probability

2As described in Section 4.2, the structures corpus defines the length and character-class
composition of a guessing model, while the terminals corpus describes the actual strings used to
compose passwords.
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Figure 7.4: Guessing curves for CSDN passwords across all four experiments from
Figure 7.2 (wl = with Improved model, wT = with additional training data) plus data from
Experiment 8E (5000wl = with 5,000 additional CSDN passwords, see text for complete
description).

mass was 10 times that of all other passwords in the training data. This refines
the model, tailoring it for CSDN passwords. Surprisingly, this small addition
produces a model that is significantly better than all other models including the
wIwT model (G! test, p < 0.002).

While the CSDN5000wI model might not be as efficient as a model built from
training data that was manually curated, we believe this demonstrates that a more
general, less manual approach to password strength evaluation can be useful.

Cracking Yahoo! Voices passwords

We also pull out the Yahoo! curves from Figure 7.2 into Figure 7.5. It is apparent
that additional training data does not help to model Yahoo! passwords. This
suggests that RockYou is a reasonable match for the Yahoo! dataset. In contrast,
framework improvements help produce a significantly better model than the base
or wT model (p < 0.001, G! test). Pairwise differences between all four curves were
significantly different, with p < 0.001, except for the base and wT curves, and wT
and wTwlI curves, which were not significantly different (p = 1.000, G! test).

3In Section 6.2.2, we found that this performed best of the values we tried.
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Figure 7.5: Guessing curves for Yahoo! passwords across all four experiments from
Figure 7.2 (wl = with Improved model, wT = with additional training data)

100 10 102 10° 104 10° 100 107 108 10°

Yahoo 0.4% 0.7% 0.8% 08% 08% 1.6% 11.0% 32.7% 43.7% 54.4%
Yahoowl 0.4% 0.9% 2.5% 7.1% 15.7% 23.2% 30.0% 47.1% 59.6% 64.7%

Table 7.2: Experiment 8A (top) & Experiment 8B (bottom) — Percent of sample cracked by
each model for early guesses. For both models, guesses are made in probability order, but
the model with improvements (YahoowlI) cracks many more passwords early on because
it has a better probability model.

The models with improvements are particularly strong in early guessing, below
10 guesses. Table 7.2 shows the y-axis values for Figure 7.5 for the Yahoo and
YahoowI models. The Improved model clearly outperforms the Weir 2009 model
—- after 32,175 guesses, the Weir 2009 model cracks 0.8% of passwords while the
Improved model cracks 20.1%, over 25 times more. This gap narrows substantially
as the number of guesses increases, since the Weir 2009 model eventually makes a
large number of successful guesses. Note that if we had applied the Simpleguess
algorithm from Chapter 3 we might have done even better at early guessing, but it
is doubtful that we would have cracked more passwords overall.
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Conclusion

In both the Yahoo! and CSDN datasets, we find that using improvements to the
guess-calculator framework results in significantly better models over previous
PCFG techniques. Given training data based on a single leaked password set,
models built using framework improvements seem to outperform more naive
models built with substantially more training data. This suggests that we have
found a more powerful learning algorithm, one that can make better use of data
to produce more accurate models.

7.2 Evaluating standard-length passwords

In this section, we examine how the improvements we have made to the guess-
calculator framework affect the evaluation of a complex, mixed-class policy that
we call 4class8, and compare this with a simple policy called basic8* We
show that the learning algorithm of Weir et al. [146] is not suited for mixed-class
passwords and does a poor job of modeling early guesses correctly, i.e., high-
probability passwords in the training data are not selected with high-probability
by the resulting PCFG. In contrast, the improvements we have described to the
guess-calculator framework produce a more accurate model of these passwords.
Test sets for both policies were taken from a random sample of the subset
of RockYou that complied with the target policy. Both models were produced
by training on our Public set with the test passwords held out. We provide
configuration information for these experiments in Appendices B.21 and B.22.

7.2.1 Results

Figure 7.6 shows guessing curves for two PCFG models given the same training
and test data: a model that mimics the Weir 2009 learning algorithm, and an
Improved model that incorporates the improvements from this thesis.

With the Improved model, using hybrid structures enables correctly learning
the highest probability password in the training data. P@sswOrd is the first guess
made by this model and was the highest probability password in the training
data. In contrast, the Weir 2009 model splits this password into 5 tokens, which
lowers its probability enough that it does not try this password until guess number
350,584,956,955. The Weir 2009 model does not crack any passwords in the test
set until guess number 1,499,611, because the tokenization penalty creates an
inaccurate probability model. This issue is described below in more detail.

4See Section 2.4.4 for the naming convention we use to describe password-composition policies.
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Figure 7.6: Experiment gA — Evaluating two 4class8 models. The Weir 2009 model used
settings akin to Weir’s original approach [146] when learning a PCFG, while the Improved
model incorporates improvements from this thesis: quantized string frequencies, hybrid
structures, and unseen terminal generation.

Recall from Section 5.4.2 that a tokenization penalty is applied based on the
number of tokens in a password. For example, Password is parsed as a single
token by a character-class tokenizer while P@sswOrd is split into five tokens: P, @,
ssw, 0, rd. Table 7.3 shows the fifty highest-probability 4class8 passwords from
the RockYou dataset. The minimum number of tokens in a 4class8 password is
three, yet almost all of the passwords in Table 7.3 contain four or more tokens.
This is what causes them to be inaccurately modeled by a standard character-
class tokenizer. On the other hand, hybrid structures allow each password in
the training data to be represented by a single token. The tradeoff is that these
passwords are guessed twice, once by an untokenized structure and once by a
tokenized structure. However, this experiment shows that the tradeoff is clearly
worth it.

We can also examine the effect of our framework improvements on a basic8
policy. This is shown in Figure 7.7. Again we see that the Improved model has
much better performance than the Weir 2009 model. In this case, however, the
improvements come mostly from the use of accurate string frequencies in learning
the PCFG. Unseen terminal generation improves the model slightly as shown
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19
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24
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28
29
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31
32
33
34

3edc#EDC
#EDC4rfv
12qw!@QW
2wsx@WSX
Password1!
Jesusis#1
P@55w0rd
1941.Salembbb.41
@WSX2wsx
1Qaz2wsx
Blink-182
ZAQ!xsw?2
#EDC3edc
zaqlZAQ!
Babygirl#1
IQ@W3edr
Raiders#1

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

ZAQ!zaql
Hottie#1
PasswOrd!
@WSX3edc
'@QW12qw
7uym&UJM
P@ssw0rd1
0okm)OKM
iydgTvméd;yo
@WSXxsw2
1g2w!Q@W
ZSE$5rdx
BHU*8uhb
YJOKMOijn
0ki6;iil
Abcl123!@#
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50 most popular 4class8 passwords in the RockYou password set. Most
passwords are composed of more than two character-class transitions.

10°

10°

Improved

Weir 2009

10° 10°
Guesses

1612

Figure 7.7: Experiment gB — Evaluating two basic8 models created in the same manner
as Figure 7.6.
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in Figure 5.3 and page 92, while hybrid structures seem to have little effect (see
Figure 5.6(a) on page 103).

Conclusion

As described in Section 5.5, modeling high probability passwords in a 4class8
policy is quite difficult for a Weir PCFG, and the results here show that to be
true. Note that, aside from unseen terminals generated by the Improved model,
both models have the same language. That is, they both produce the same set of
strings. Our framework improvements simply enable a better probability model
for multiclass strings, as measured by the efficiency with which passwords from
the test set are cracked. Figures 7.6 and 7.7 suggest that an approach similar to
that used in this thesis is critical to evaluating the performance of both multiclass
and simple policies in early guessing, where adversaries make a relatively small
number of guesses.

7.3 Evaluating long passwords

In previous work, we found that password policies that require long passwords
increase password strength more than complicated requirements, while also being
more usable [67,76]. In this section, we show how the improvements we have
made to the guess-calculator framework affect our evaluation of these policies.
Specifically, we take advantage of different tokenization schemes and the ability
to load large lists of n-grams (multiword strings collected from the web) into the
guess-calculator framework. We find that, over most of the guessing curve, a model
built with a linguistic tokenizer provides similar or slightly worse performance
compared to a model built on n-grams from the Google Web Corpus. However,
after 10'? guesses the linguistic tokenizer model is superior. More appropriate
sources of n-gram data might exist that perform better.

We examine the basic16 policy, which requires a minimum of sixteen
characters. This is a novel policy so we test only on passwords collected from
Mechanical Turk. We collected these passwords using the methodology described
in Section 2.2.

7.3.1 Results

Figure 7.8 shows how the improvements to the guess-calculator framework affect
cracking with a basic16 policy. Surprisingly, the use of many improvements
that were helpful with other policies, such as unseen terminal generation and
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Figure 7.8: Experiment 4 — Evaluating the basic16 policy using various configurations
of the guess-calculator framework. The Weir 2009 model used settings akin to Weir’s
original approach [146]. The other models enable various improvements: SF = quantized
string frequencies, U = unseen terminal generation, LT = linguistic tokenization, and H =
hybrid structures. The improvements are described in Chapter 5.

more accurate string frequencies, provide only modest improvements with long
passwords.

Comparing the Weir 2009 and SF models, the SF model performs better but the
difference is not striking. The SF model learns string frequencies, so this suggests
that string frequencies used in long passwords that were cracked are more uniform
than we observed with shorter passwords.

Enabling unseen terminal generation, shown in the SF+U model, seems to
provide no improvement over learning string frequencies. This suggests that
random terminals outside of the training data have a low probability of cracking
long passwords. There are two factors that affect this. First, long passwords
tend to have much longer terminals than short passwords. This is illustrated in
Figure 7.9. This is important because the number of possible terminals increases
exponentially with terminal length. Second, the amount of training data available
for long terminals tapers off as terminals get longer, as shown in Figure 7.10. This
illustrates that we do not have a corresponding exponential increase in training data
for long terminals. Rather, we have a decrease in training data! The combination
of these factors causes the space of unseen terminals to be exponentially larger
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Figure 7.9: Comparison of token-length distributions for Weir-tokenized passwords from
basic8 and basicl16 policies. basic16 passwords contain a larger proportion of very
short and very long tokens than basic8.
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Figure 7.10: Number of distinct terminals available in Public training data per token
length.
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for long passwords compared to short passwords, with an expected reduction in
cracking gains by brute-forcing unseen terminals.

Linguistic tokenization

The use of linguistic tokenization, shown in the SF+LT model, significantly
improves cracking over other models (G!, p < 0.001). Linguistic tokenization,
described in Section 5.5.2, breaks long alphabetic strings into smaller tokens using a
corpus of word n-grams. This enables the model to generate many more passwords
than character-class tokenization. However, this also incurs a tokenization penalty,
seen in the lagging curve of the SF+LT model in Figure 7.8. This curve cracks
fewer passwords than other improved models until about 10'° guesses, when it
overtakes those models. Using hybrid structures seems to mitigate the effect of the
tokenization penalty, producing a model that is competitive with all other models
in early guessing but also able to crack more passwords at large guess numbers.

We also evaluated a model with all improvements (SF+LT+H+Unseen). This
model performed slightly better than the SF+LT+H curve, but not significantly so.
For clarity, this curve is omitted from Figure 7.8.

7.3.2 Training with concatenated n-grams

Another approach to cracking long passwords is to try to overcome the decrease
in training data depicted in Figure 7.10. To simulate how an adversary might
do this, we return to the Google Web Corpus (GWC), a public set of n-grams
scraped from the web [15]. The GWC contains phrases up to a length of five
words that were seen 40 or more times, and each phrase is assigned a frequency.
We take all alphabetic n-grams and concatenate them to create single strings like
“allineedisyou.”

We can use this corpus of strings as an input to the guess-calculator framework,
replacing the unigrams in the Public training set described on page 137. In this
experiment, we limited the strings to a length of 20 or less. We believe this provides
enough training data for a proper experiment, without making the training set so
large that it makes the experiment overly slow to run. The distribution of distinct
tokens by length in this dataset is shown in Figure 7.11. The number of distinct
strings in this corpus is 823,775,338.

The performance of this model is shown in Figure 7.12. Surprisingly, the model
does not perform significantly better than other models we tested, suggesting that
some sets of phrases scraped from the web might not be very good sources of
training data for long passwords.
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Figure 7.11: Number of distinct terminals available per token length after concatenating
each n-gram in the Google Web Corpus. Only strings of length 20 or less were used (see
text) but the x-axis is shown to length 30 for comparison with Figure 7.10.
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Figure 7.12: Experiment 4 & Experiment 10 — Three guessing curves from Figure 7.8
along with a guessing curve based on concatenated n-grams from the Google Web Corpus.
We used all alphabetic n-grams whose concatenation was 20 letters or less in the SF+U+GS
model.
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1qaz2wsx3edcdrfv fenderbabylovel23 nintendosixtyfour
1g2w3e4r5t6y7usi martinmaaswilliam JessikaRocks1234
zaq12wsxZAQ!@WSX callielouprincess ronniekarennicholas
passwOrdpasswOrd virginiacaponera vanessadebbie621
asdfghjklqwertyu supernaturalpops jenniferannnichols
passwordformoney christinehalfmann matthewisadoctor
passwordforturks jillsarahchelsea ElizabethDuthinh
lovelovekingking stephanieringbauer shelleyboockholdt
buttmunchbuttmunch asdfghjklpoiuytr passwordbreakeryes
stupidpasswordss dhanalakshmikumar dawnmichellespencer
featherwoodangel cheryllynnharris tootsieamberizzy
superlongpassword jacquelineangelica iloveandrewkiefer
november(04052005 Samantha07161999 longislandmedium
december12121988 pangurbancricket waltdisneymouses
tabathamartinezl hellodollydarling annaclairewagner
elizabethzagurski cherryberrybanana monkeyloveusmc20
hermionegrangerd sixteenwordpassword

Table 7.4: Experiment 4 — 50 passwords cracked by the SF+LT+H model and not by
the SF+U+GS model after making 10 trillion guesses with each model. Passwords are
arranged in columns, with the earliest passwords in the leftmost column, in the order
that they were cracked. In contrast to Table 7.5, most passwords are names or nonsense
phrases.

To help understand the differences between a model using linguistic tokeniza-
tion and one based on a large corpus of n-gram training data, we consider two
particular models: SF+LT+H and SF+U+GS. We examine the first 50 passwords
cracked by each model that were not cracked by the other model. These passwords
are presented in Tables 7.4 and 7.5. We find that the SF+LT+H model is able to
crack passwords built with nonsense phrases, like “featherwoodizzy,” or names
that do not exist in the GWC, like “cheryllynnharris.” In contrast, the SF+U+GS
model is able to crack passwords that include recognizable phrases, like “hail to
thevictors,” or place names, like “hobokennewjersey.”

Conclusion

Overall, we find that adding concatenated n-grams to the training data does not
significantly improve cracking performance over a more naive approach involving
linguistic tokenization. This was the case even though we added a huge number
of n-grams, over 823 million, where each n-gram had been seen 40 or more times
on the web [15]. It is possible that web n-grams are a particularly poor source of
training data for passwords. We did not experiment with other sources of n-grams.
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Qwertyuiopasdfg! onethingaboutmusic mypetsaregreat24
utahsaltlakecity myfavoriteanimeare irunlikethewind!
hailtothevictors iliveinphiladelphia alvinstonflyers11

hobokennewjersey helpmeouthereplease Fearisthemindkiller

cannedgreenbeans thisisfuckingstupid Iamwritingaproposal
thatswhatshesaid youmakeallthingsnew boysetsfireboysets1
thatiswaytoolong stuyvesanthighschool accenturemumbail(
neckneckneckneck freeonlinefreeonline ramyasrinivasan(01
lutefiskandlefse fairbanksmorseengine thetimehascome666
allofthemaremine pawcatuckconnecticut Swagtastic123456
becauseweseparate shamikghosh12345 harristeeter1111
thebrowncowjumped threebeansalad12 itstherealthing87
tampabaybuccaneers =~ BINGHAMTONBEARCATS  spiderman5908577
everymanforhimself jovanjovanovic123 gruetlilaager2010
surveysurveysurvey shantanusharma123 christopherbeckham3
bitemebitemebiteme hotchilipeppers123 hamburgerhotdog32
thisistotallycrazy actuaryactuaryl1?7

Table 7.5: Experiment 10 — 50 passwords cracked by the SF+U+GS model and not by
the SF+LT+H model after making 10 trillion guesses with each model. Passwords are
arranged in columns, with the earliest passwords in the leftmost column, in the order that
they were cracked. In contrast to Table 7.4, many passwords are places or recognizable
phrases.

Nevertheless, the n-gram model was superior for some parts of the guessing
curve. A more complex hybrid approach might work best on long passwords,
in which concatenated n-grams are employed for early guesses but structures
learned from linguistic tokenization are also available to the model to construct
more exotic passwords. We have not evaluated such an approach.

7.4 Applying survival analysis to passwords

The data and results for this section were drawn from the paper “Mea-
suring password guessability for an entire university” authored by several
members of our research group [95]. The data was collected on machines
to which we did not have direct access, and was subsequently destroyed.
Therefore, we are unable to reevaluate this data using the improvements to
the guess-calculator framework.

My contributions to this paper included writing, work on what would
eventually become the guess-calculator framework developed in this thesis,
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and scripts for performing automated statistical analysis. The following
material will not appear in the thesis of any other student.

In collaboration with our Information Technology division, we were provided
with the opportunity to evaluate a complex password policy currently in use at
Carnegie Mellon University (CMU). Though we did not have direct access to the
passwords themselves, we could perform statistical analyses on them, compare
them to other password sets of our choosing, evaluate them with the guess-
calculator framework and publish the results of our findings. The experiments
we selected compared passwords used at CMU to password subsets from leaked
datasets and passwords collected from online studies. An important feature of our
analysis is the use of survival analysis to compare guessing curves, and to discover
demographic and behavioral factors that are correlated with password strength.

First we describe our training and test datasets, then we discuss two analyses:
evaluating password sets under a complex policy, and identifying factors that are
correlated with password strength.

7.4.1 Target policies

All of the policies we evaluated share a similar password-composition policy. It
can be described in the following way:

This policy requires a minimum of eight characters including an uppercase
and lowercase letter, a symbol, and a digit. The letters in the password, when
concatenated together, must not equal a dictionary word.

When collecting password samples from Mechanical Turk, we described the policy
using this language.

We refer to the set of passwords that we evaluated at Carnegie Mellon as
CMUactive. We also had indirect access to inactive passwords from the Carnegie
Mellon database, and we refer to this set as CMUinactive. We used the latter
set only for training. We compared the CMUactive set to the following sets of
passwords:

MTsim
1,000 passwords collected from an MTurk experiment designed to simulate
CMU password creation as closely as possible, both in policy requirements and
website design. This matches the andrew8 policy we described in Section 2.4.4.

MTcomp8
1,000 passwords collected from MTurk, matching the comp8 policy we described
in Section 2.4.4.
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RYcomp8
1,000 plaintext passwords from the RockYou dataset described in Ap-
pendix B.4.3. These passwords were sampled from 42,496 andrew8-compliant
passwords.

Ycomp8
1,000 plaintext passwords from the Yahoo! Voices dataset described in
Appendix B.4.3, sampled from 2,693 andrew8-compliant passwords.

CSDNcomp8
1,000 plaintext passwords from the Chinese Developer Network dataset de-
scribed in Appendix B.4.3, sampled from 12,455 andrew8-compliant passwords.

SFcomp8
1,000 cracked passwords from Strategic Forecasting, Inc., also known as
Stratfor, described in Appendix B.4.3, sampled from 8,357 andrew8-compliant
passwords.

Gcomp8
896 cracked passwords from the Gawker dataset described in Appendix B.4.3.
There were only 896 andrew8-compliant passwords.

Only one dataset, MTcomp8, differed from the others in using a larger dictionary
for its dictionary check.

7.4.2 Evaluating potential proxies

We first examine the password datasets described above to see how closely they
match the CMUactive set. This is an important investigation. Password-policy
evaluation requires samples from the target to evaluate, but it is unclear where to
get these samples. Most organizations do not have access to cleartext passwords
as we did in this experiment. Therefore, we used our access to these passwords
to see how well other password sets compare. This provides evidence in favor of
potential proxies.

Our evaluation has two parts. First, we examine guessing curves for our
datasets to see how closely they match. Second, we compare statistics on password
composition, such as length and mean numbers of digits and symbols.
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Figure 7.13: Experiment CMU-1 & Experiment CMU-2 — Guessing curves for each of the
policies described in Section 7.4.1. The graph on the left represents an adversary with
only public data. The graph on the right represents an adversary with many passwords
from the target policy.

Comparing guessing curves

We examine guessing curves under two guessing models.” The limited-knowledge
guessing model was trained using the Public dataset, plus the non-free Openwall
dataset [109], and the remaining passwords from the CSDN, Stratfor, and Gawker
datasets after holding out passwords for testing. Details of the configuration of
this training set are provided in Appendix B.26. The extensive-knowledge model
started with the training data for the limited-knowledge model and added 20,000
CMUactive passwords and 15,000 inactive CMU passwords. This configuration is
detailed in Appendix B.27.

This analysis was performed before we developed the improvements in
Chapter 5. However, the analysis methodology could easily be applied to guess
numbers collected using newer guessing models. We use the G! test from
Section 6.1.4 to compare the guessing curves of these datasets.

Figure 7.13 shows the results of our evaluation with the limited-knowledge
and extensive-knowledge models. Holm-Bonferroni corrected p-values from the
G! test find that the Yahoo!, Stratfor, and Gawker sets are all significantly different
for the limited-knowledge model, and the MTsim and CSDNcomp8 sets are
also significantly different under the extensive-knowledge model. These results
suggest that the RockYou set and MTcomp8 can be used as a reasonable proxy
for passwords from the target policy. The evaluation also confirms the negative
utility of datasets of cracked passwords for policy evaluation—both Gcomp8 and
SFcomp8 were much easier to guess than the target policy. While this might be an
obvious finding, there are many sets of passwords that are released to the Internet

SWe actually evaluated several different models that are discussed in our paper [95], but for
the purpose of this section we consider two models on either end of the spectrum of training data.
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Figure 7.14: Aggregate password-composition statistics, by password set, with 95%
confidence intervals. The confidence interval for CMUactive is shaded green. MTsim
is generally the closest match for CMUactive.

Observed probability of nth most popular password

1 2 3 4 5 6 7 8 9 10
CMUactive 0.094% 0.051% 0.043% 0.039% 0.035% 0.035% 0.031% 0.027% 0.024% 0.024%
MTsim 0.200%t  0.100%7f  0.100%7T  0.100%t  0.100%7f  0.067%7T  0.067%F  0.067%t  0.067%7T  0.067%T
MTcomp8 0.233%t  0.100%T  0.067%7T  0.067%t  0.067%t  0.067%T  0.067%F  0.067%t  0.067%T  0.067%T
RYcomp8 0.513% 0.304% 0.242% 0.214% 0.134% 0.115% 0.101%T  0.099%T  0.068%7T  0.066%7t
Ycomp8 0.520% 0.149%t  0.149%t  0.149%tF o0.111%f o0.111%F o0.111%7T  0.111%7T 0.111%T  0.111%F
CSDNcomp8  2.529% 1.429% 0.715% 0.426% 0.241% 0.233% 0.225% 0.217% 0.161% 0.128%
SFcomp8 0.191%t  0.191% 0.191% 0.191% 0.179% 0.168% 0.096%7t  0.096%7T  0.084%7T  0.084%ft
Gcomp8 4.911% 0.893% 0.893% 0.893% 0.670% 0.670% 0.670% 0.558% 0.558% 0.558%

Table 7.6: Empirical probabilities for the 10 most popular passwords. Probabilities that
are not significantly different from CMUactive for a given password rank are grayed out
and marked with a t (Holm-Bonferroni-corrected x? test, p < 0.05). All other policies are
weaker than CMUactive, but MTsim and MTcomp8 are the closest on this metric.

without provenance. In other words, it might not be clear whether a particular
dataset consists of cracked passwords or passwords that were stored in plaintext.
The Gcomp8 and SFcomp8 curves underscore the importance of having a set of
reliable passwords for policy evaluation.

Comparing aggregate statistics

We also examine several aggregate password statistics across the datasets.
Figure 7.14 shows how the average length and number of digits, symbols, and
uppercase characters per password for each dataset compares to that of the
CMUactive policy. Confidence intervals in the figure were produced using the
bootstrapping technique described in Section 6.1.3. Examining these properties,
we find that MTsim is consistently close to CMUactive. Surprisingly, RYcomp8 is
quite far from CMUactive, despite having a very close guessing curve.

Finally, Table 7.6 presents the probabilities of the top 10 most frequent
passwords in each dataset. This metric indicates the strength of the 10 weakest
passwords in each dataset, and is a small measure of the password-probability
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distribution® We compared the probabilities for each dataset to the CMUactive
set using a Holm-Bonferroni corrected x? test. This is not a rigorous comparison;
it merely provides us with additional data on which datasets are similar to
CMUactive. We find that all other datasets are weaker than CMUactive, but
the MTsim and MTcomp8 datasets are consistently close.

Conclusion

Our analysis finds that the RYcomp8, MTsim, and MTcomp8 datasets seem to be
reasonable choices to use as proxies, though none are a perfect match for the target.
In the future, we hope that other researchers will repeat this analysis with other
policies to expand our knowledge of appropriate password sources.

7.4.3 Factors correlated with password strength

We were fortunate to have demographic information available for the users
of CMUactive passwords. Using the Cox regression technique discussed in
Section 6.1.4, we can identify factors that seem to be correlated with password
strength.

The same care should be taken with Cox regression as with other regression
analysis methods. In the absence of a randomized, controlled experiment, we
cannot make causal conclusions. Further, since many of the independent variables
in our data set are correlated with other independent variables, there might
be factors correlated with password strength that did not get identified by the
regression.

This last point is especially true since we employed a model selection technique.
Model selection, also called feature selection, reduces the number of factors used in
a model when some factors do not improve the model very much. This is intended
to reduce overfitting and present a model with greater external validity. There
were a large number of demographic factors available to us in this study, so we
used model selection to decrease the number of factors selected by the regression.
We use a method known as stepwise backward elimination with BIC (Bayesian
Information Criteria) to select between models [119]. This approach has been
superseded by more advanced approaches, however, so we no longer recommend
it. Instead, we recommend a regularized regression technique in which cross
validation is used in producing the final model. Packages that implement this
method are readily available in R [50,130].

®Recall from Section 1.2 that we cannot get a good picture of the entire distribution. We only
have confidence in the most frequent passwords.
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Factor Coef. Exp(coef) SE p-value
login count <0.001 1.000 <0.001 <0.001
password fail rate -0.543 0.581 0.116  <0.001
gender (male) 0.078 0.925 0.027 0.005
(college) engineering -0.273 0.761  0.048 <o0.001
(college) humanities -0.107 0.898  0.054 0.048
(college) public policy 0.079 1.082  0.058 0.176
(college) science -0.325 0.722  0.062 <0.001
(college) other -0.103 0.902  0.053 0.051
(college) computer science  -0.459 0.632  0.055 <0.001
(college) business 0.185 1.203  0.054 <0.001

Table 7.7: Experiment CMU-3 — Cox regression results for personnel with consistent
passwords. Negative coefficients indicate stronger passwords. The exponential of the
coefficient (Exp(coef)) indicates how strongly that factor being true affects the probability
of cracking compared to the baseline category, which is implicitly coded as false. The
baseline category for gender is female and for college is fine arts. For example, the fourth
line indicates that, with other factors held constant, engineering personnel are 76.1% as
likely to have their passwords guessed as fine arts personnel.

Results

We performed our analysis on the subset of active CMU users who kept the same
password for several months. We call these consistent personnel. We make this
restriction so that password-related factors such as fail rate and login count can be
tied to the specific password whose guess number we assigned. We explore other
subsets of CMU personnel in our paper [95].

Table 7.7 shows the result of our Cox regression analysis on these users. We find
that various colleges and gender are strongly correlated with password strength.
Our results for gender, that men have slightly stronger passwords than women,
was also found by Bonneau in his analysis of Yahoo! passwords [7]. We also find
that users who make more password errors (password fail rate) have stronger
passwords than other users, and users who log in more often have slightly weaker
passwords. An additional password error per login attempt is associated with
a password only 58% as likely to be guessed. Each additional login during the
measurement period is associated with an estimated increase in the likelihood of
guessing of 0.026%. Though this effect is statistically significant, we consider the
size of this effect to be negligible.
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Conclusion

The regression results highlight some interesting correlations between password
strength and demographic and behavioral factors that had not been measured
previously. Though we should be careful not to draw causal conclusions, we hope
that other researchers will use survival analysis methods to uncover more insights
into how various factors are related to the strength of user-selected passwords.






Chapter 8

Conclusion

In this chapter, we provide a summary of our main contributions in Section 8.1,
discuss the limitations of our work in Section 8.2, and present some ideas for
future work in Section 8.3. Since our work might enable malicious parties to crack
passwords more quickly, we conclude this thesis with a discussion of its potential
societal impact in Section 8.4.

8.1 Contributions

The contributions of this thesis are described below.

The guess-calculator framework

We developed a system that automatically learns a guessing model for passwords
based on a training set, and uses this model to assign guess numbers to passwords
in any number of test sets. The model is learned using Weir’s probabilistic context-
free grammar (PCFG) [146]. Our implementation takes advantage of unique
features of the grammar to assign guess numbers in a manner that operates
much faster than explicitly enumerating individual guesses. We provide detailed
algorithmic descriptions of the novel parts of the framework in Chapter 4 and also
make the source code publicly available.!

Improvements to the guessing model

In Chapter 5, we make several improvements to Weir’s PCFG to model a more
sophisticated adversary. These improvements include more accurate probabilities
for strings, generating unseen terminals, linguistic tokenization, and hybrid

Ihttps://github.com/cupslab/guess-calculator-framework/tree/vi.0.0
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structures. In addition, we improve the implementation of the guess-calculator
framework so that it can handle large grammars, including large lists of word
n-grams. We find that these improvements greatly increase the efficiency of our
guessing models, especially with complex policies. In contrast to previous work,
we show that a PCFG-based model using hybrid structures can crack a significant
proportion of passwords even at low guess numbers. This makes this methodology
potentially relevant to online as well as offline-attack threat models.

In Chapter 3, we examine other approaches to password cracking. We find that,
for a particular policy, our automated approach compares favorably to the results
of professional password crackers.

Methodological guidance

In Section 6.2, we show how the above improvements to the framework affect
the evaluation of policies, which provides insights into what training data should
be used and how the framework should be configured for various policies. We
tind that leaked password sets seem to be good sources of training data, and
synthetic datasets like those produced by Openwall [109] are poor. We also find
that including samples from the target policy in our training data improves the
efficiency of the resulting models, and that different weightings do not affect the
result very much.

In Section 6.1, we provide guidance on the analysis of data collected using
the guess-calculator framework. This guidance includes an examination of
existing statistical methods, including methods from survival analysis, and their
applicability to guessing data.

Case studies

Finally, we use the guess-calculator framework to evaluate various policies in
Chapter 7. We find that we can produce significantly better guessing models than
previous PCFG methods, for a wide range of policies. In Section 7.1, we present
one of our key results—guessing models can be easily tuned to a specific target
using a few thousand samples. Finally, in Section 7.4, we show how survival
analysis can be used together with guessing data, demographic, and behavioral
data to compare datasets and examine correlations between password strength
and other factors.
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8.2 Limitations

Guess-calculator framework

Our framework requires a plaintext sample of passwords to use as a test set, though
authentication systems should never store passwords in this way. This introduces
a barrier to use of the framework by researchers and system administrators who
might only have hashed passwords to evaluate. The framework was not designed
for this use case. Removing this limitation would require that guesses be made
explicitly against a password file in order to evaluate a policy, and this would
require significantly more time to run than using the framework.

Guessing models

Our methodology assumes a very specific threat model, described in Section 1.1.
Other threat models are not modeled in this thesis, such as online attacks. The
Simpleguess algorithm, presented in Section 3.1, is a better choice than our
technique for modeling online-attack scenarios, and even better methods might
exist.

Our threat model also has some limitations that might not be evident at first
glance. We assume that the adversary does not have information about specific
passwords that could be used to tailor guesses against specific users. We are
also unable to model password policies accurately if they cannot be captured by
our restricted PCFG. Such policies might forbid specific passwords or particular
substrings within passwords. These policies can still be evaluated by generating
strings directly and removing guesses which are forbidden by the policy, but this
rules out the lookup improvements described in Chapter 4.

Password policies might also be modeled better by specialized approaches
outside the scope of this thesis. This thesis models passwords using a
restricted probabilistic context-free grammar (PCFG). Markov models [88], more
sophisticated grammars [115], or deep learning approaches [100] might produce
more accurate models than our approach. However, even these learning algorithms
might be limited in their ability to model the true knowledge of adversaries.

Similarly, professional crackers use cracking tools that primarily employ
“mangling” to create new passwords [54]. Mangling is a generic term used to
describe various transformations that can be applied to an input password set,
such as appending random numbers or substituting letters [93]. While many of
these techniques could be modeled with a probabilistic context-free grammar, they
would not be captured by the limited grammar used in this thesis. Therefore, it
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might be possible for an adversary to crack passwords that would not be cracked
efficiently by the guess-calculator framework.

Other attacks

Passwords are vulnerable to many other types of attacks besides guessing. Many
organizations store passwords in plaintext [9], so when these password files are
stolen the adversary does not need to guess passwords. Passwords can also be
revealed through phishing attacks [41]. These attacks completely ignore password-
composition policies and require other security processes that are not covered by
this thesis.

Relevance

We assume that password disclosure is an important problem and will continue
to be so for the foreseeable future. However, we do not attempt a rigorous
examination of this question. Password strength might be irrelevant in the near
future, e.g., through the widespread adoption of two-factor authentication systems.
Password disclosure itself might have a low risk or low value to others so that
interventions are unnecessary. Finally, even though a large number of data breaches
have been reported, it is possible that adversaries do not spend much effort on
guessing attacks against password data. Instead, they might be more interested
in other details of users that can be recovered during a breach, such as email
addresses, real names, or social security numbers.

8.3 Future work

There are many ideas related to this thesis that we did not have time to address or
are outside the scope of this work. We list many of these ideas below, as pointers
to those interested in expanding this work in the future.

8.3.1 Inputs to the framework

Our framework evaluates password policies using a training set that represents
adversary knowledge about a target policy, and a test set of passwords from
the target policy. For both sets, we explored only a small number of the possible
choices. The methodology used in this thesis could be used to conduct experiments
aimed at finding training sources that crack more passwords for given test sets.
For common policies like basic8, we found in Section 7.2 that leaked datasets like
the RockYou and Yahoo! Voices datasets work well. In Section 7.3, however, we
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found that rare policies like basic16 are difficult to collect training data for. We
explored using concatenated n-grams from the Google Web Corpus as an input,
but we have only scratched the surface with respect to sources of n-gram data and
there are many more sources that one could try.

When selecting a test set, the best option is to randomly sample passwords
from the target policy. In previous work, we found that passwords collected
from Mechanical Turk might be reasonable proxies for samples from the target
policy [95], but this work should be replicated with the improved guess-calculator
framework and other proxies should be investigated. To evaluate test sets, it would
be necessary to collect some samples from the target policy and compare these
samples to proxies from other sources. We suggest the methodology described
in Section 7.4 and previously published in Mazurek et al. [95] to perform this
comparison. It uses survival analysis to measure the similarity of guessing curves
(using the methods described in Section 6.1.4), and also compares other properties
of passwords as an additional check.

The framework also has a number of parameters that could be adjusted. Future
work could examine how changing weights of samples and public data affect the
resulting models, for a more diverse set of policies than we tested in Section 6.2.2.
One could also examine the addition of an explicit penalty on tokenized structures.
The findings of Section 5.5.3.2 indicate that cracking passwords with untokenized
structures is quite preferable to using tokenized structures, so penalizing tokenized
structures so that they are tried later might improve our guessing models.

In all of these cases, researchers should be cautious not to overtrain guessing
models to a particular test set. Standard practices from machine learning are
advisable, such as the use of multiple holdout sets.

8.3.2 Higher guess cutoffs

The current implementation of the framework stores patterns explicitly in a lookup
table. For large guess cutoffs, the size of this table can become restrictive. For
certain sets of inputs, a lookup table for 10'® guesses can require 2 terabytes of
space, so creating a lookup table for 10’ guesses would be prohibitively expensive
for a typical researcher or IT department, even though we know that professional
password crackers can easily reach this number of guesses.?

One could address this problem by altering the lookup table implementation
to trade accuracy for space. Rather than store patterns explicitly, one could alter

the table generation process to store the number of guesses in each of several

2While we expect that storage will become cheaper over time, the desired guess cutoff is also
likely to increase as adversaries take advantage of cheaper computing power.
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probability bins. For example, one could bin probabilities logarithmically so that
bins cover the intervals [1,0.5], (0.5,0.25], (0.25,0.125], and so on. The framework
would still iterate over all patterns using intelligent skipping but instead of storing
a separate record for each pattern, the framework would add the number of guesses
associated with that pattern to its respective bin. This would greatly reduce the
amount of space needed for the framework to run, allowing much higher cutoffs
to be reached. On lookup, the framework would assign every password in a bin
the lowest guess number for that bin, leading to a slight underestimate of security:
passwords would be considered cracked before they would actually be cracked by
a model. However, one could shrink the bin sizes as desired to increase accuracy,
or use interpolation to select a guess number within the range of a bin.

This approach has a few drawbacks. First, it will be less accurate with regard to
the guess numbers assigned to individual passwords. Second, it is not possible to
generate guesses explicitly from the lookup table. We can use the current lookup
table implementation to generate guesses explicitly, by enumerating the guesses
in each pattern, but this is no longer possible if patterns are not stored. We also
use patterns to detect errors in step A4 of Algorithm 4.7A, and we would lose
this ability if patterns were not stored. Nevertheless, altering the lookup table
implementation could be used to reach much higher guess cutoffs than we have
explored previously, and its accuracy could be checked against the current method
at shorter cutoffs.

8.3.3 Modifying the learning phase

Once input datasets are weighted and combined, the framework learns a guessing
model from the data. In the current framework, we learn a Weir PCFG from this
data, along with various improvements described in Chapter 5. There are many
ways that we could modity the learning step of the framework and potentially
improve our models.

Modified structures

Sticking with a Weir PCFG, one could look at new ways of parsing the input
data. For example, one could “mangle” the input passwords [93], e.g., substitute
numbers for letters, to allow the guessing model to crack a more diverse set of
passwords than it is currently capable of. While the unseen-terminal-generation
improvement allows our framework to crack passwords with unseen terminals, it
is still unable to crack passwords with unseen structures. Mangling structures is
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one way to address this issue, and matches a method used in popular cracking
tools.

In Section 7.3.2, we found that using concatenated n-grams in training data
helps in cracking certain passwords more quickly than the linguistic tokenization
approach, but is unable to crack passwords that contained combinations of words
not seen in the training data. An extension to this approach is to learn three-way
hybrid structures: untokenized structures, Weir-tokenized structures that would
get filled with concatenated n-grams, and structures learned using linguistic
tokenization. Such a model might be superior to the current models we produce
for long passwords.

Finally, we were unable to get good results from unsupervised tokenization. We
enumerate a few possible reasons for this at the end of Section 5.5.3.2, and future
work might include a return to this approach to find potential improvements.

Other linguistic models

Future work could also look at alternatives to a Weir PCFG. The Weir PCFG is a
restricted grammar, as described in Section 2.3.1.1, and one could consider more
complex PCFGs. The approaches referenced in Section 2.7 might produce better
models than current approaches. Unfortunately, the implementation used in this
thesis is highly optimized for a Weir PCFG, so it cannot be easily extended to more
complex grammars.

Recurrent neural networks (RNNs) have recently been used with success in
linguistic modeling [101,102,132], and they seem applicable to password modeling
as well. Markov-model approaches are similar, but RNNs are more powerful
because they can encode an arbitrarily large “history” [132]. This might be
especially useful with long passwords.

Finally, we are not aware of any use of ensemble methods in password modeling.
An ensemble method combines multiple probability models to produce a single
model that is often more accurate than any of the models alone [42]. Multiple
PCFGs, or PCFGs and other linguistic models, could be combined into an ensemble
whose performance might be better than current models.

The ideas above represent our intuition about how the guess calculator could be
improved or extended. Another important idea for future work is to collect data
about password guessing attacks in the wild. Many of our ideas about guessing
attacks come from anecdotes or professional password crackers, whose methods
might not match those of true adversaries. Collecting data about attacks in the



170 CONCLUSION

wild would help us move our research efforts closer to reality, and might uncover
holes in our methodology that have been missed.

8.4 Societal impact

If we assume that adversaries’” tools are not as good as what this thesis has
produced, adversaries might use this code to develop more efficient guessing
attacks. These attacks will still fail against users who use best practices when
it comes to passwords: different, randomly generated passwords of reasonable
length for every site. Unfortunately, we know that many users do not do this,
and researchers have made the case that users cannot do this without a password
manager [49]. Thus, this thesis could make users who do not follow these practices
more vulnerable. The impact of this thesis might then be largely negative: more
users getting hacked, or a huge cost in time as many users migrate to password
managers and replace their reused, easy passwords with randomly generated
ones. This is not necessarily the extent of the negative impact, as these password
managers might have unforeseen vulnerabilities that put people at more risk than
current password authentication systems.

However, exposing vulnerabilities can have an ultimately positive effect.
Remember that this thesis assumes that an adversary is making a guessing attack,
and these attacks are far more effective against offline targets than against online
ones. We hope that quantifying the vulnerability of passwords to guessing will
encourage organizations to rethink their password policies and improve their
authentication systems’ security. For example, should follow best practices with
regard to the storage of passwords. Some of these practices are summarized in [48]
and impose no cost on the user. Similarly, supporting two-factor authentication
can also reduce risk. This comes with a usability cost, but the security benefit can
be worth the tradeoff.

Since the guess-calculator framework can be used to quantify the strength of
many common password policies that rely on character-class requirements, system
administrators could take this information into account when making decisions
about the security and usability of their authentication systems. We found that over
10% of six-character-minimum CSDN passwords can be cracked in just 10 guesses.
We hope that system administrators can incorporate information like this into a
risk analysis framework to decide which security mitigations to put into place.
Administrators could also use the guess-calculator framework itself to analyze
security at their organization. Even though there are still many unanswered
questions, particularly with regard to more complex password policies, we hope
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that this thesis will expand the field of authentication research and help answer
these questions more definitively in the future.






Appendix A

Additional Functions

In this section, we present a few functions that we need to call in the course of
computing the guess number of a password. While we have tried to provide details
on all of the algorithms we developed, we played no part in the development of
these formulas so we do not devote much space to explaining them.

A.1 Permutations of a multiset

The standard formula for permutations of a multiset is given by:!

! (A.1.1)

m1!m2! .. .mk!

We define the function PERMS-TOTAL (a) which takes an array with a given
permutation, e.g., a = [0, 0, 2, 3], and uses (A.1.1) to compute the total number
of possible permutations. Let n be the length of a. Letm; ... my be the “multiplicities”
of a, which is an array of counts of each distinct value. For our example, m; = 2,
mp = 1, and m3 = 1, because 0 appears twice, 2 appears once, and 3 appears once.
k is the number of distinct values in a, which is 3 in our example. Once these
variables are assigned, we can simply apply (A.1.1) and return its value.

The actual values in a, e.g., 0, 2, and 3, are irrelevant; only their counts are
needed. 0, 2, and 3 could be replaced with any other three values and this would
not change the number of possible permutations. Likewise, the ordering of these
values, and the ordering of ms, my, and m3, are also irrelevant.

Ihttps://en.wikipedia.org/wiki/Permutation#Permutations_of_multisets
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A.2 Permutation rank of a multiset

Algorithm 4.7.2C involves an esoteric formula for computing the rank of a
permutation of a multiset, which we label PERM-RANK-M. The formula is given
by Knuth in the answer to Exercise 4 in Section 7.2.1.2 of [74]. It is difficult to find
a pure statement of the formula in a published work and it is often delegated to an
exercise for the reader as in page 65 of [80]. This is surprising because the formula
is not obvious. Luckily, Knuth provides answers for his exercises.

We do not reproduce the formula here since it has many terms that are
themselves complex and require further explanation. We direct the reader to
the aforementioned Section 7.2 of [74] or our implementation, with commented C
code, given in: https://github.com/cupslab/guess-calculator-framework/blo
b/v1.0.0/binaries/pattern_manager.cpp#L599-L780. The few published papers
in this arena seem to focus on permutations of sets [105], rather than multisets,
and those algorithms cannot be applied to this problem.

A.3 Converting a mixed-radix number to a single

radix

We define the function SINGLE-RADIX(r) which takes a mixed-radix number and
returns a single number that represents the same quantity. For example, the
mixed-radix number:

ra: ( 2 3 )

rr: [ 4 26 |
represents the number 2 x 26 43 = 55. We use the subscripts 4 and , to label
the digits and radices of the number respectively. The algorithm for computing
SINGLE-RADIX is given below.

Algorithm R (Convert mixed-radix number to single radix). Given a mixed-radix
number r with digits rq and radices r;, compute a single-radix quantity.

Let n be the length of r: n = |r4| = |r¢|. Let r be indexed such that rq [n — 1]
is the most significant digit of r and rq [0] is the least significant.

R1. [Initialize.] Set i <— n — 1. Set x < 0. (i will maintain our position in the
mixed-radix number, and x will store our final result.)

R2. [Count current radix.] Set x < x - ry[i].
R3. [Count current digit.] Set x <— x + rq[i].
R4. [Repeat.] Set i <— i — 1. If i < 0, then return x, otherwise go to step R2. |
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Appendix B

Experiment Configurations

Producing the results in this thesis involved running the guess-calculator
framework with many different sets of inputs. This appendix contains tables
which describe these inputs, ordered by experiment number. The experiment
numbers are roughly in chronological order, though we ran some experiments
concurrently with other experiments.

The organization of this appendix is as follows. Each experiment receives its
own section, e.g., Experiment 1 is in Appendix B.5. Each run within an experiment
receives its own page. In many cases, runs correspond to conditions within an
experiment. For example, Experiment 2 requires two runs, shown on page 186 and
the following page (ignore the details of the tables for now, they will be described
later.) The variation between the two conditions is a single learning parameter that
controls unseen terminal generation. This is printed under the “Generate unseen
terminals?” column. The conditions are plotted together in Figure 5.3 on page 92.

It is also possible to have a single run evaluate multiple conditions. Experiment
8A on page 222 has a single run that evaluates three different test datasets:
RockYou, Yahoo! Voices, and CSDN. We produced Figure 7.2(a) on page 140
from this experiment, which plots all three conditions on the same graph. We
can evaluate multiple conditions with a single run only when training data and
learning parameters do not vary between conditions.

CMU guessability experiments The results from Section 7.4 were produced by
an earlier version of the guess-calculator framework that did not include any of
the improvements from Chapter 5. While the tables in appendices B.5 through
B.24 were generated by a program given configuration files as input, the tables for
the CMU guessability experiments (which start at Appendix B.26) were entered
manually. The configuration file format for these experiments is now obsolete and
is sufficiently different from the current format that it was not worth developing a
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7

table generator. Some runs from these experiments have multiple “Training Data
tables, which means that each table was processed independently and then the
resulting corpora were concatenated together. This was used to produce complex,
arbitrary weightings among training sources. Unfortunately these weightings were
never empirically justified, so we do not recommend this approach in the future.

Columns in each configuration table are described in Appendices B.1, B.2, and
B.3. The datasets referenced in the tables are described in Appendix B.4. If any
column in a table is blank, then that parameter was not set in the framework. For
example, if the “Filter” column is blank for a dataset, then that dataset was not
filtered prior to inclusion as an input or output. Some columns are Boolean with
value “Y” if the parameter was set in the framework and blank if the parameter is
false.

B.1 Test data columns

Display name
The label used for the guessing curve associated with this dataset. If this
guessing curve appears in multiple graphs with different labels, the labels are
separated by forward slashes.

Name
The name of the dataset.

Source
MTurk, for datasets collected from Mechanical Turk using the methodology of
Section 2.2; public, for datasets that are freely distributable; leaked, for leaked
password sets; paid, for datasets that we paid for; or private, for datasets that
we obtained access to in confidence from private organizations.

Filter
A policy. If a filter was applied to this dataset, then only passwords that
comply with the named policy are included. Policies are identified using the
abbreviated names described in Section 2.4.4.

Random sample?
Was a random sample taken from the dataset? This is distinguished from using
the whole dataset after filtering. Random samples are drawn deterministically
so that the same sample is drawn on every run. This aids reproducibility.

Size
The final size of the test dataset, after filtering and sampling if applicable.
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B.2 Training data columns

Structure source?
Was this training source added to the “Structures” corpus? As shown
in Figure 4.2, the guess-calculator framework decouples the “structures”
(nonterminals) of the PCFG from its terminals.

Terminal source?
Was this training source added to the “Terminals” corpus? Note that structure
sources are always added to both structure and terminal corpora to prevent
the generation of an invalid PCFG.!

Name
The name of the dataset.

Source
See Section B.1 for a description of this column.

Weight
The weight applied to this source before adding it to the Structures and/or
Terminals corpora.

Filter
If a filter was applied to this dataset, then only strings that comply with the
named policy are included. Policies are identified using either the abbreviated
names described in Section 2.4.4 or with the strings “alpha” or “digsym.” The
“alpha” filter extracts all contiguous alphabetic substrings from its input and
discards the remainder. For example, if an input line were “abc123!de,” the filter
would extract the separate strings “abc” and “de.” The “digsym” filter operates
in the same manner, but extracts all contiguous digit or symbol strings. For
example, given “abc123!de,” the filter would extract “123” and “!” separately.

Use remainder from test?
If a random sample was drawn from this dataset to produce a test set, then this
parameter signifies that only the remainder of the dataset, after filtering and
sampling, will be used for training. This remainder can be further filtered and
sampled to produce a training set.

Random sample?
If a random sample was taken from this dataset, this is the size of the sample,
after filtering if applicable.

1Structure sources inform the nonterminals of the PCFG, so a nonterminal with no
corresponding terminal is invalid.
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B.3 Learning parameters

Tokenizer
The tokenizer or tokenizers used to parse structures and terminals from the
input data. Tokenization is discussed in Section 5.5.

Probability cutoff
The probability cutoff for the guess-calculator framework. This parameter is
required for the intelligent skipping algorithm, presented in Section 4.4.

Generate unseen terminals?
This feature is described in Section 5.3.

Hybrid structures?
This feature is described in Section 5.5.1.

Ignore alphabetic string frequencies?
This parameter causes the framework to ignore string frequencies. It is used
for comparison with older methods only, such as Weir et al. circa 2009 [146].

B.4 Datasets

We categorize our input datasets by source: MTurk, public, leaked, paid, and
private. These categories are described in Appendix B.1. For each category, we
provide statistics for input datasets that can be used by researchers to confirm that
they have obtained the correct dataset.

B.4.1 MTurk

The MTurk datasets were collected using the methodology described in Section 2.2
and are named based on the policy used in collecting them. Policy names are
described in Section 2.4.4.

MTurk datasets are available for research purposes by contacting the author.

Name Lines MD5

basic8 3062 557fe9alf11d65819de55e49cffa2e06
basicl6 2054 9a2ab4d5c470dbalad69e5370bffOb1f
3class12} 2774  9dbbbed667c7608e4f3012daba50ec90
comp8 4239  a38b472057bb1147dcf72627ba73b0ef

MTcomp8 3000 93c63d7f0cd2a51422427df779a32c74
MTandrew8 3000 47040elce5c5f237a6369154d8f6fbda
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tThe file for this dataset is incorrectly named 3class12_2773.txt and experiments
were designed under the assumption that the file contained 2,773 passwords. For
example, Experiment 7B randomly selected 2,000 passwords for training and 773
passwords for testing, when the remaining 774 passwords should have been tested.
The error was with use of the wc command. The file did not end with a newline
on the last line, so wc only reported 2,773 lines.

B.4.2 Public

Public datasets, excluding the Google datasets, are available at https://cups.cs.
cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/show/sta
ndard%20input20files. This location also contains scripts used in cleaning and
processing these datasets prior to use with the guess-calculator framework. All
tiles were run through the program process_wordfreq.py, which compacts each
file before being used in the framework, as a final step. This saves time when a file
is used in many runs.

Though the Google Web Corpus is freely available to educational institutions
that are members of the Linguistic Data Consortium (LDC), their license does not
allow us to distribute it, or derived datasets, publicly> We did not realize this until
after all of the experiments for this thesis were completed.

Webster’s 2nd
Webster’s new international dictionary of the English language, Second Edition,
from 1934 [107]. This is a public-domain English-language dictionary. It was
processed to extract and lowercase all alphabetic strings.

Lines: 234,936
MDS5 of web2.gz: 982e63185celf22261dec1c016e08f5b

Infl. dictionary
Automatically Generated Inflection Database [1], developed for use with the
GNU Aspell spell checker (http://aspell.net/). The version used here was
developed in 2003. The original source can be download from http://sourcefo
rge.net/projects/wordlist/files/AGID/Rev’%204/agid-4.tar.gz/download. It
was processed in the same manner as Webster’s 2nd.

Lines: 252,337
MDS5 of inflection_dict.gz: OcOe24af86a9d5bcdb8a56delebcl1e9

’https://catalog.ldc.upenn.edu/license/web-1t-5-gram-version-1.pdf
3This is accomplished with egrep -o ¢[a-zA-Z]+’ | tr ¢[A-Z]’ ‘[a-z]’.


https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/show/standard%20input%20files
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/show/standard%20input%20files
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/show/standard%20input%20files
http://aspell.net/
http://sourceforge.net/projects/wordlist/files/AGID/Rev%204/agid-4.tar.gz/download
http://sourceforge.net/projects/wordlist/files/AGID/Rev%204/agid-4.tar.gz/download
https://catalog.ldc.upenn.edu/license/web-1t-5-gram-version-1.pdf
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Google unigrams RY
The unigrams from the Google Web Corpus, found in the file web_5gram_1/da
ta/1lgms/vocab.gz. The original file was filtered to remove any non-alphabetic
tokens. Precise commands are provided below.

$ gunzip -c vocab.gz | perl -CSD -nE‘print lc if /“[a-zA-Z]I+\t/’ | gzip -
c > temp.gz

$ ./process_wordfreq.py -n G -w 5.555284392621586e-05 -g temp.gz >
google_alphatokens_ryeq.gz

Since there are over 500 billion tokens covered by this data source, including it
without modification would cause it to drown out all other data sources.
Therefore, the frequencies in this source have been reduced so that its
total weight is equivalent to the total weight of the RockYou dataset,
which has approximately 32 million lines. This corresponds to the -w
5.555284392621586e-05 parameter in the code above which multiplies the
weight of this source by = 5.6 x 10~°. This choice is rather arbitrary but it gets
this source to within an order of magnitude of the other sources. The weight is
further reduced or increased by the “Weight” configuration parameter in the
framework, given in the tables that follow.

Lines: 4,926,386
MDS5 of google_alphatokens_ryeq.gz: bObef15465e9abb20aefa87bc1b585eb

Google n-grams RY
Alphabetic n-grams from the Google Web Corpus, with spaces removed, up to
20 characters in length. As with the Google unigrams, the frequencies in this
source were reduced so that its total weight is equivalent to the total weight of
the RockYou dataset.

# First, gunzip and cat ‘vocab.gz’, ‘2gmx*.gz’, ‘3gm*.gz’, etc. into a
single ‘allstrings.txt’ file.

$ cat allstrings.txt | perl -CSD -nE‘print 1lc s/[ 1//rg if /~[a-zA-Z J+\t
/’ | perl -nE°‘print if /~.{1,20}\t/’ | gzip -c > temp.gz

$ ./process_wordfreq.py -n G -w 2.352183e-05 -g temp.gz >
summed_alphagrams_upto20_ryeq.gz

Lines: 823,775,338
MDS5 of summed_alphagrams_upto20_ryeq.gz: ebffebde55d42d6c95dad7ebe253435¢

B.4.3 Leaked

We do not provide a copy of the leaked datasets used in this thesis. Though we
think it is ethical to use these datasets for research purposes, we do not want to be
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involved in distributing them. However, those who wish to reproduce the results
of this thesis will need to obtain these datasets for use as training data.

To assist in reproducibility, we provide statistics on these datasets, along
with a script we use to clean these datasets prior to use. The script simply
removes lines with invalid UTF-8 encodings. The script can be downloaded
from https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-confi
gs/repository/raw/standard’%20input%20files/remove_invalid_utf8.pl. For
each file, we provide statistics about the file before and after cleaning.

RockYou
Passwords from RockYou [139].

Lines before cleaning: 32,603,388
Size before cleaning: 289,836,298 bytes
MD?5 before cleaning: 188227b3e210bcc36c63bf9ac09b352a
Lines removed: 243
Lines after cleaning: 32,603,145
Size after cleaning: 289,833,959 bytes
MDS?5 after cleaning: 65978658e4bc3360867f4a250a53682d
Yahoo! Voices
Passwords from the Yahoo! Voices service [14].
Lines before cleaning: 453,488
Size before cleaning: 4,107,423 bytes
MD?5 before cleaning: c82f097842187b8d49613d5778531b7b
Lines removed: 0
CSDN
Passwords from the China Software Developer Network [118].
Lines before cleaning: 6,428,632
Size before cleaning: 67,227,626 bytes
MD?5 before cleaning: fcd2a818cf7338a1391c146b376a5d0d
Lines removed: 347
Lines after cleaning: 6,428,285
Size after cleaning: 67,221,263 bytes
MD?5 after cleaning: b309aeb574599a24dad5198789251dbb


https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/raw/standard%20input%20files/remove_invalid_utf8.pl
https://cups.cs.cmu.edu/chili/projects/passwords-gcf-thesis-configs/repository/raw/standard%20input%20files/remove_invalid_utf8.pl
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MySpace
This dataset consists of passwords obtained via a phishing attack on users of
myspace. com [125].

Lines before cleaning: 47,244
Size before cleaning: 418,603 bytes
MD?5 before cleaning: 96a30006328aelaf70a9fd0435360b98
Lines removed: 0
Stratfor
Passwords from Strategic Forecasting, Inc. [113]. This dataset consists of

passwords that were leaked only after being cracked, making them much
weaker than the other datasets.

Lines before cleaning: 804,041

Size before cleaning: 7,676,770 bytes

MD?5 before cleaning: 9e809b0£f65c3b0fd8453d968d{f873bf

Lines removed: 7

Lines after cleaning: 804,034

Size after cleaning: 7,676,718 bytes

MDS5 after cleaning: df7b4a4c1d88471ed4e7c374fb9al0a8
Gawker

Passwords used at gawker.com [69]. This dataset also consists of passwords
that were leaked only after being cracked.

Lines before cleaning: 694,076

Size before cleaning: 5,703,443 bytes

MD?5 before cleaning: 48e8a79edc1b47c264b3434c95cd2a42
Lines removed: 12

Lines after cleaning: 694,064

Size after cleaning: 5,703,359 bytes

MD?5 after cleaning: b083c5c589b72ad29£c7949136{86f8e


myspace.com
gawker.com

B.4. DATASETS 183

B.4.4 Paid

Only one paid dataset was used, the Openwall dataset [109]. This dataset is meant
to be used as a “cracking dictionary.” It contains common passwords that have
been modified or “mangled” [93] in many different ways.

We do not recommend this dataset. It seems to be a poor choice of data for
complex passwords (see Section 6.2.1), even though it contains many complex
passwords. Inspection of the dataset indicates that it was generated using a naive
application of a large number of mangling rules, without regard to empirical
probability. This means that the distribution of complex passwords in the dataset
is not representative of complex passwords in practice. It is also a poor choice in
terms of reproducibility—the version of the dataset that we used does not appear
to be available for download, because it has been updated since.

In addition to removing invalid UTF-8 with the script mentioned in Sec-
tion B.4.3, we ignored the first 25 lines of the file, which consist of comments. We
also removed all passwords with spaces from the dataset. This was done because
we planned to evaluate a policy that did not allow spaces, and we never rebuilt
the file when evaluating policies that allow spaces. The commands we use to build
the dataset follow.

$ tail -n +25 openwall.txt | grep -v ¢ ’ | perl remove_invalid_utf8.pl >
cleaned_openwall.txt

Statistics for this dataset are provided below.

Openwall
Lines before cleaning: 40,532,676

Size before cleaning: 457,210,158 bytes

MD?5 before cleaning: 53a645e34a0b74b1a74be10247925792
Lines removed: 683,553

Lines after cleaning: 39,849,123

Size after cleaning: 449,203,512 bytes

MD?5 after cleaning: 9c28c374c301ca24969f4360f28ae58¢

B.4.5 Private

The CMU guessability experiments in Sections B.26, B.27, and B.28 involve two
private datasets. These datasets were only available to us on machines that we
could not access. The datasets were also subsequently destroyed and we did
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not collect file sizes of MD5 hashes for them. We did collect statistics on their
passwords, however, and these statistics were used in the analysis of Section 7.4.2.

Both datasets were created under the andrew8 policy.

CMUactive
Passwords from active CMU user accounts, where active means that the user
had a relationship with the University at the time of data collection.

Passwords: 25,459

CMUinactive
Passwords for inactive CMU accounts, which were retained for archival

purposes.

Passwords: 17,104



B.5 Experiment 1

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
basic8 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1016 ‘ Y ‘
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B.6 Experiment 2

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
basic8 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Hybrid
structures?

Tokenizer Probability | Generate unseen Ignore alphabetic

cutoff

terminals? string frequencies?

character-class ‘ 10~17 ‘ ‘
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

basic8ut ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 1000
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 107 ‘ Y ‘
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B.7 Experiment 3A

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Weir structures ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Hybrid
structures?

Tokenizer Probability | Generate unseen Ignore alphabetic

cutoff

terminals? string frequencies?

character-class ‘ 1016 ‘ Y ‘
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

Hybrid | basic8 | MTurk | Y | 1000
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1016 ‘ Y ‘ Y

681 V¢ LNINWIIAIXHA “/°d



B.8 Experiment 3B

Display name

‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

Weir structures / Weir only ‘ RockYou ‘ leaked ‘ 4class8 ‘ Y

Training Data

‘ 1000

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 4class8 Y
Y Y Yahoo! Voices leaked | 1.0 4class8

Y RockYou leaked | 1.0 not 4class8 | Y

Y Yahoo! Voices leaked | 1.0 not 4class8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~14 ‘ Y
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Display name ‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

Hybrid / Weir hybrid ‘ RockYou ‘ leaked ‘ 4class8 ‘ Y

Training Data

‘ 1000

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 4class8 Y
Y Y Yahoo! Voices leaked | 1.0 4class8

Y RockYou leaked | 1.0 not 4class8 | Y

Y Yahoo! Voices leaked | 1.0 not 4class8

Y Webster’s 2nd leaked | 0.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1014 ‘ Y ‘ Y
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B.9 Experiment 3C

Structure
source?

Random
sample?

Y
Y

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Policy A ‘ comp8 ‘ MTurk ‘ ‘ 4239
Training Data
Terminal | Name Source | Weight | Filter Use remainder
source? from test?
Y RockYou leaked | 1.0 comp8
Y Yahoo! Voices leaked | 1.0 comp8
Y RockYou leaked | 1.0 not comp8
Y Yahoo! Voices leaked | 1.0 not comp8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 5e-15 ‘ Y ‘
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

Policy B ‘ comp8 ‘ MTurk ‘ ‘ ‘ 4239
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8

Y RockYou leaked | 1.0 not comp8

Y Yahoo! Voices leaked | 1.0 not comp8

Y Webster’s 2nd leaked | 0.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 5e-15 ‘ Y ‘ Y
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B.10 Experiment 4

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Weir tokenization / SF+U ‘ basic16 ‘ MTurk ‘ ‘ ‘ 2054

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16

Y RockYou leaked | 1.0 not basic16

Y Yahoo! Voices leaked | 1.0 not basic16

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | 0.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Hybrid
structures?

Tokenizer Probability | Generate unseen Ignore alphabetic

cutoff terminals?

string frequencies?

character-class ‘ 10712 ‘ Y ‘
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Display name

Test Data

‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

Linguistic tokenization ‘ basic16 ‘ MTurk ‘ ‘ Y ‘ 1000
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16
Y RockYou leaked | 1.0 not basic16
Y Yahoo! Voices leaked | 1.0 not basic16
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer | Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
linguistic ‘ 10-1 ‘ Y ‘
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Weir 2009 ‘ basic16 ‘ MTurk ‘ ‘ Y ‘ 1000
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16
Y RockYou leaked | 1.0 not basic16
Y Yahoo! Voices leaked | 1.0 not basic16
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~ ‘

\ Y
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
SF ‘ basic16 ‘ MTurk ‘ ‘ Y ‘ 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16

Y RockYou leaked | 1.0 not basic16

Y Yahoo! Voices leaked | 1.0 not basic16

Y Webster’s 2nd leaked | 0.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Hybrid
structures?

Tokenizer Probability | Generate unseen Ignore alphabetic

cutoff

terminals? string frequencies?

character-class ‘ 1071 ‘ ‘
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
SF+LT ‘ basic16 ‘ MTurk ‘ ‘ ‘ 2054
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16
Y RockYou leaked | 1.0 not basic16
Y Yahoo! Voices leaked | 1.0 not basic16
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer | Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

linguistic ‘ 10~
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

SF+LT+H | basic16 | MTurk | | | 2054
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16

Y RockYou leaked | 1.0 not basic16

Y Yahoo! Voices leaked | 1.0 not basic16

Y Webster’s 2nd leaked | 0.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer | Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

linguistic ‘ 10~

\ Y
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B.11 Experiment 5A

Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

Kelley et al. ‘ basic8 ‘ MTurk ‘ ‘ Y

Training Data

‘ 3062

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y Openwall paid 1.0 basic8
Y Y MySpace leaked | 1P basic8

Y RockYou leaked | 1.0

Y Openwall paid 1.0 not basic8

Y Webster’s 2nd | leaked | o.1 alpha

Y Infl. dictionary | leaked | o.1 alpha

Learning parameters

Hybrid
structures?

Tokenizer Probability | Generate unseen

cutoff terminals?

Ignore alphabetic
string frequencies?

character-class ‘ 1071 ‘ ‘

\ Y
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

Public only ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 3062
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
+500 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 2562
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8
Y Y basic8 MTurk | 1P Y
Y RockYou leaked | 1.0 not basic8
Y Yahoo! Voices leaked | 1.0 not basic8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1015
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

+1000 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 2062
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8
Y Y basic8 MTurk | 1P Y

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1015
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
+1500 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 1562
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8
Y Y basic8 MTurk | 1P Y
Y RockYou leaked | 1.0 not basic8
Y Yahoo! Voices leaked | 1.0 not basic8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1015
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

+2000 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 1062
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8
Y Y basic8 MTurk | 1P Y

Y RockYou leaked | 1.0 not basic8

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1015

114
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
+2500 ‘ basic8 ‘ MTurk ‘ ‘ Y ‘ 562
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8
Y Y Yahoo! Voices leaked | 1.0 basic8
Y Y basic8 MTurk | 1P Y
Y RockYou leaked | 1.0 not basic8
Y Yahoo! Voices leaked | 1.0 not basic8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1015
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B.12 Experiment 5B

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Kelley et al. ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 4239
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y Openwall paid 1.0 comp8
Y Y MySpace leaked | 1P comp8
Y RockYou leaked | 1.0
Y Openwall paid 1.0 not comp8
Y Webster’s 2nd | leaked | o.1 alpha
Y Infl. dictionary | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~ 14 ‘

\ Y
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Public only ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 4239
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8
Y RockYou leaked | 1.0 not comp8
Y Yahoo! Voices leaked | 1.0 not comp8
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~14
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

+500 ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 3739
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8
Y Y comp8 MTurk | 1P Y

Y RockYou leaked | 1.0 not comp8

Y Yahoo! Voices leaked | 1.0 not comp8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10-14 ‘
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
+1000 ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 3239
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8
Y Y comp8 MTurk | 1P Y
Y RockYou leaked | 1.0 not comp8
Y Yahoo! Voices leaked | 1.0 not comp8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10-14
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

+1500 ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 2739
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8
Y Y comp8 MTurk | 1P Y

Y RockYou leaked | 1.0 not comp8

Y Yahoo! Voices leaked | 1.0 not comp8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10-14 ‘
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
+2000 ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 2239
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8
Y Y comp8 MTurk | 1P Y
Y RockYou leaked | 1.0 not comp8
Y Yahoo! Voices leaked | 1.0 not comp8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10-14
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Test Data

Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size

+2500 ‘ comp8 ‘ MTurk ‘ ‘ Y ‘ 1739
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 comp8
Y Y Yahoo! Voices leaked | 1.0 comp8
Y Y comp8 MTurk | 1P Y

Y RockYou leaked | 1.0 not comp8

Y Yahoo! Voices leaked | 1.0 not comp8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10-14 ‘
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B.13 Experiment 6

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
0 ‘ 3classi2 ‘ MTurk ‘ ‘ Y ‘ 773
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3class12
Y RockYou leaked | 1.0 not 3class12
Y Yahoo! Voices leaked | 1.0 not 3class12
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10-1 ‘ Y ‘ Y
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Display name ‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

100S ‘ 3class12 ‘ MTurk ‘ ‘ Y ‘ 773
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3classi2
Y Y 3classi2 MTurk | 100.0 Y 2000

Y RockYou leaked | 1.0 not 3class12

Y Yahoo! Voices leaked | 1.0 not 3class12

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | 0.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1071 ‘ Y ‘ Y
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
100P ‘ 3class1i2 ‘ MTurk ‘ ‘ Y ‘ 773
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3classi2
Y Y 3classi2 MTurk | 100P Y 2000
Y RockYou leaked | 1.0 not 3class12
Y Yahoo! Voices leaked | 1.0 not 3class12
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | 0.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1071 ‘ Y ‘ Y
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Display name ‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

10P ‘ 3class1i2 ‘ MTurk ‘ ‘ Y ‘ 773
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3classi2
Y Y 3classi2 MTurk | 10P Y 2000

Y RockYou leaked | 1.0 not 3class12

Y Yahoo! Voices leaked | 1.0 not 3class12

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | 0.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1071 ‘ Y ‘ Y
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
1S ‘ 3class12 ‘ MTurk ‘ ‘ Y ‘ 773
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3classi2
Y Y 3classi2 MTurk | 1.0 Y 2000
Y RockYou leaked | 1.0 not 3class12
Y Yahoo! Voices leaked | 1.0 not 3class12
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | 0.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1071 ‘ Y ‘ Y
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Display name ‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

1P ‘ 3class1i2 ‘ MTurk ‘ ‘ Y ‘ 773
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3classi2
Y Y 3classi2 MTurk | 1P Y 2000

Y RockYou leaked | 1.0 not 3class12

Y Yahoo! Voices leaked | 1.0 not 3class12

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | 0.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1071 ‘ Y ‘ Y
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B.14 Experiment 7A

Test Data
Display name ‘ Name ‘ Source ‘ Filter Random sample? | Size
MTurk 3class12 MTurk Y 773
RockYou RockYou leaked | 3classi2 | Y 1000
Yahoo Yahoo! Voices | leaked | 3classi2 | Y 1000

Training Data

SNOILVINOIINOD INHAWIIAIXH ()¢

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2 Y
Y Y Yahoo! Voices leaked | 1.0 3class12 Y

Y RockYou leaked | 1.0 not 3classi2

Y Yahoo! Voices leaked | 1.0 not 3class12

Y Webster’s 2nd leaked | 0.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Probability Hybrid
cutoff terminals? structures?
character-class ‘ 10~ ‘ Y ‘ Y

Tokenizer Generate unseen Ignore alphabetic

string frequencies?




B.15 Experiment 7B

Test Data
Display name ‘ Name ‘ Source ‘ Filter Random sample? | Size
MTurk 3classi2 MTurk Y 773
RockYou RockYou leaked | 3classi2 | Y 1000
Yahoo Yahoo! Voices | leaked | 3classi2 | Y 1000
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3class1i2 Y
Y Y Yahoo! Voices leaked | 1.0 3classi2 Y
Y Y 3classi2 MTurk | 10P Y 2000
Y RockYou leaked | 1.0 not 3class1i2
Y Yahoo! Voices leaked | 1.0 not 3class12
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 1071 ‘ Y ‘ Y
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B.16 Experiment 8A

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? | Size
RockYou RockYou leaked | basic6 | Y 1000
Yahoo Yahoo! Voices | leaked | basic6 | Y 1000
CSDN CSDN leaked | basic6 | Y 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou | leaked | 1.0 basic6 Y
Y RockYou | leaked | 1.0 not basic6 | Y
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~15 ‘ ‘ ‘ Y
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B.17 Experiment 8B

Test Data
Display name Name ‘ Source ‘ Filter ‘ Random sample? | Size
RockYou RockYou leaked | basic6 | Y 1000
Yahoo / YahoowT | Yahoo! Voices | leaked | basic6 | Y 1000
CSDN / CSDNwT | CSDN leaked | basic6 | Y 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic6 Y
Y Y Yahoo! Voices | leaked | 1.0 basicé Y
Y Y CSDN leaked | 1.0 basicé Y

Y RockYou leaked | 1.0 not basic6 | Y

Y Yahoo! Voices | leaked | 1.0 not basic6

Y CSDN leaked | 1.0 not basic6

Learning parameters

Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10~15 ‘ ‘ ‘ Y
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B.18 Experiment 8C

Test Data
Display name Name ‘ Source ‘ Filter ‘ Random sample? | Size
RockYou RockYou leaked | basic6 | Y 1000
Yahoo / YahoowI | Yahoo! Voices | leaked | basic6 | Y 1000
CSDN / CSDNwI | CSDN leaked | basic6 | Y 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou | leaked | 1.0 basic6 Y
Y RockYou | leaked | 1.0 not basic6 | Y
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~15 ‘ Y ‘ Y

SNOILVINOIINOD INHAWIYAIXH F¢



B.19 Experiment 8D

Test Data
Display name Name ‘ Source ‘ Filter ‘ Random sample? | Size
RockYou RockYou leaked | basic6 | Y 1000
Yahoo / YahoowIwT | Yahoo! Voices | leaked | basic6 | Y 1000
CSDN / CSDNwIwT | CSDN leaked | basic6 | Y 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic6 Y
Y Y Yahoo! Voices | leaked | 1.0 basicé Y
Y Y CSDN leaked | 1.0 basicé Y

Y RockYou leaked | 1.0 not basic6 | Y

Y Yahoo! Voices | leaked | 1.0 not basic6

Y CSDN leaked | 1.0 not basic6

Learning parameters

Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10~15 ‘ Y ‘ Y
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B.20 Experiment S8E

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? | Size
RockYou RockYou leaked | basic6 | Y 1000
Yahoo Yahoo! Voices | leaked | basic6 | Y 1000
CSDNs5ooowl | CSDN leaked | basic6 | Y 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic6 Y
Y Y Yahoo! Voices | leaked | 1.0 basic6 Y
Y Y CSDN leaked | 10P basic6 Y 5000

Y RockYou leaked | 1.0 not basic6 | Y

Y Yahoo! Voices | leaked | 1.0 not basic6

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10712 ‘ Y ‘ Y
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B.21 Experiment 9A

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Weir 2009 ‘ RockYou ‘ leaked ‘ 4class8 ‘ Y ‘ 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 4class8 Y
Y Y Yahoo! Voices leaked | 1.0 4class8

Y RockYou leaked | 1.0 not 4class8 | Y

Y Yahoo! Voices leaked | 1.0 not 4class8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Hybrid
structures?

Tokenizer Probability | Generate unseen Ignore alphabetic

cutoff

string frequencies?
Y

terminals?

character-class ‘ 10~14
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Improved ‘ RockYou ‘ leaked ‘ 4class8 ‘ Y ‘ 1000
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 4class8 Y
Y Y Yahoo! Voices leaked | 1.0 4class8
Y RockYou leaked | 1.0 not 4class8 | Y
Y Yahoo! Voices leaked | 1.0 not 4class8
Y Webster’s 2nd leaked | 0.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 10~14 ‘ Y

\ Y
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B.22 Experiment 9B

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Weir 2009 ‘ RockYou ‘ leaked ‘ basic8 ‘ Y ‘ 1000

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8 Y
Y Y Yahoo! Voices leaked | 1.0 basic8

Y RockYou leaked | 1.0 not basic8 | Y

Y Yahoo! Voices leaked | 1.0 not basic8

Y Webster’s 2nd leaked | o.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters

Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10~ ‘ ‘ ‘ Y
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Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
Improved ‘ RockYou ‘ leaked ‘ basic8 ‘ Y ‘ 1000
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 basic8 Y
Y Y Yahoo! Voices leaked | 1.0 basic8
Y RockYou leaked | 1.0 not basic8 | Y
Y Yahoo! Voices leaked | 1.0 not basic8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10~ ‘ Y ‘ Y
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B.23 Experiment 10

Random
sample?

Test Data
Display name ‘ Name ‘ Source ‘ Filter ‘ Random sample? ‘ Size
SF+U+GS | basic16 | MTurk | | 2054
Training Data
Structure | Terminal | Name Source | Weight | Filter Use remainder
source? source? from test?
Y Y RockYou leaked | 1.0 basic16
Y Y Yahoo! Voices leaked | 1.0 basic16
Y RockYou leaked | 1.0 not basic16
Y Yahoo! Voices leaked | 1.0 not basic16
Y Google n-grams RY | leaked | o.1 alpha

Learning parameters

Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10~ ‘ Y

1€Z O INIWINEZAXd ‘¢7'd



B.24 Experiment 11

Display name ‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

Unsupervised hybrid ‘ RockYou ‘ leaked ‘ 4class8 ‘ Y

Training Data

‘ 1000

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 4class8 Y
Y Y Yahoo! Voices leaked | 1.0 4class8
Y RockYou leaked | 1.0 not 4class8 | Y
Y Yahoo! Voices leaked | 1.0 not 4class8
Y Webster’s 2nd leaked | o.1 alpha
Y Infl. dictionary leaked | o.1 alpha
Y Google unigrams RY | leaked | o.1 alpha
Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
unsupervised (structures) 0-15 Y Y

character-class (terminals)
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B.25 Experiment 12

Display name ‘ Name

Test Data

‘ Source ‘ Filter ‘ Random sample? ‘ Size

Our approach ‘ 3class1i2 ‘ MTurk ‘

Training Data

| 2774

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y Y RockYou leaked | 1.0 3classi2
Y Y Yahoo! Voices leaked | 1.0 3class12

Y RockYou leaked | 1.0 not 3class12

Y Yahoo! Voices leaked | 1.0 not 3class12

Y Webster’s 2nd leaked | 0.1 alpha

Y Infl. dictionary leaked | o.1 alpha

Y Google unigrams RY | leaked | o.1 alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?
character-class ‘ 10-15 ‘ Y ‘ Y
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B.26 Experiment CMU-1

Test Data
Display name | Name Source | Filter Random sample? | Size
CMUactive CMU Andrew | private 25459
MTcomp8 MTcomp8 MTurk 3000
MTsim MTandrew8 MTurk 3000
RYcomp8 RockYou leaked | andrew8 | Y 1000
Ycomp8 Yahoo! Voices | leaked | andrew8 | Y 1000
CSDNcomp8 | CSDN leaked | andrew8 | Y 1000
SFcomp8 Stratfor leaked | andrew8 | Y 1000
Gcomp8 Gawker leaked | andrew8 896
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random

source? source? from test? sample?

Y MySpace leaked | 1.0 4class8

Y Openwall paid 1.0 4class8

Y RockYou leaked | 1.0 4class8 | Y

Y Yahoo! Voices | leaked | 1.0 4class8 | 'Y

Y CSDN leaked | 1.0 4class8 | Y

Y Stratfor leaked | 1.0 4class8 | 'Y

Y Gawker leaked | 1.0 4class8 | Y
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Terminals were learned from both of the following lists of sources. The first list specifies sources from which digits and

symbols were learned, and alphabetic terminals were learned from the second list. Alphabetic string frequencies are

ignored, so weights are irrelevant for alphabetic sources.

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?

Y MySpace leaked | 1.0 digsym

Y Openwall paid 1.0 digsym

Y RockYou leaked | 1.0 digsym | Y

Y Yahoo! Voices leaked | 1.0 digsym | Y

Y CSDN leaked | 1.0 digsym | Y

Y Stratfor leaked | 1.0 digsym | Y

Y Gawker leaked | 1.0 digsym | Y

Y MySpace leaked alpha

Y Openwall paid alpha

Y RockYou leaked alpha Y

Y Yahoo! Voices leaked alpha Y

Y CSDN leaked alpha Y

Y Stratfor leaked alpha Y

Y Gawker leaked alpha Y

Y Webster’s 2nd public alpha

Y Infl. dictionary public alpha

Y Google unigrams RY | public alpha
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Tokenizer Probability

cutoff

Learning parameters

Generate unseen
terminals?

Hybrid
structures?

Ignore alphabetic
string frequencies?

character-class ‘ 1016

\ Y
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B.27 Experiment CMU-2

Test Data
Display name | Name Source | Filter Random sample? | Size
CMUactive CMU Andrew | private Y 5459
MTcomp8 MTcomp8 MTurk 3000
MTsim MTandrew8 MTurk 3000
RYcomp8 RockYou leaked | andrew8 | Y 1000
Ycomp8 Yahoo! Voices | leaked | andrew8 | Y 1000
CSDNcomp8 | CSDN leaked | andrew8 | Y 1000
SFcomp8 Stratfor leaked | andrew8 | Y 1000
Gcomp8 Gawker leaked | andrew$ 896
Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random

source? source? from test? sample?

Y MySpace leaked | 1.0 4class8

Y Openwall paid 1.0 4class8

Y RockYou leaked | 1.0 4class8 | Y

Y Yahoo! Voices | leaked | 1.0 4class8 | 'Y

Y CSDN leaked | 1.0 4class8 | Y

Y Stratfor leaked | 1.0 4class8 | 'Y

Y Gawker leaked | 1.0 4class8 | Y

Y CMUactive private | 1P Y

Y CMUinactive | private | 1.0 4class8 15000

/€7 T-NND INAWISHAXA /7’4



Terminals were learned from both of the following lists of sources. The first list specifies sources from which digits

and symbols were learned, and alphabetic terminals were learned from the second list. 1P weighting (described in

Section 6.2.2) applies to preceding sources in the current list only. Alphabetic string frequencies are ignored, so weights

are irrelevant for alphabetic sources.

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?

Y MySpace leaked | 1.0 digsym

Y Openwall paid 1.0 digsym

Y RockYou leaked | 1.0 digsym | Y

Y Yahoo! Voices | leaked | 1.0 digsym | Y

Y CSDN leaked | 1.0 digsym | Y

Y Stratfor leaked | 1.0 digsym | Y

Y Gawker leaked | 1.0 digsym | Y

Y CMUactive private | 1P digsym | Y

Y CMUinactive | private | 1.0 digsym 15000

SNOILVINOIINOD INHWIYAIXH Q¢



Training Data

Structure | Terminal | Name Source | Weight | Filter | Use remainder | Random
source? source? from test? sample?

Y MySpace leaked alpha

Y Openwall paid alpha

Y RockYou leaked alpha | Y

Y Yahoo! Voices leaked alpha | Y

Y CSDN leaked alpha | Y

Y Stratfor leaked alpha | Y

Y Gawker leaked alpha | Y

Y Webster’s 2nd public alpha

Y Infl. dictionary public alpha

Y Google unigrams RY | public alpha

Y CMUactive private alpha | Y

Y CMUinactive private alpha 15000

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1016 ‘

\ Y

6€7 T-NWD INTIWINAIXT °/7'd



B.28 Experiment CMU-3

This experiment consisted of three runs on the same training and test data sources. On each run, the test data was
one third of the CMUactive dataset, and the remaining two thirds were used for training. Tables for a single run are

provided here.

Test datasets with no display name were drawn randomly from the original datasets, but not used.

Test Data
Display name | Name Source | Filter Random sample? | Size
CMUactive CMU Andrew | private Y % of 25459
RockYou leaked | andrew8 | Y 1000
Yahoo! Voices | leaked | andrew8 | Y 1000
CSDN leaked | andrew8 | Y 1000
Stratfor leaked | andrew8 | Y 1000
Gawker leaked | andrew$8 896

SNOILVINOIINOD INANWIIAIXH (¢



1P weighting (described in Section 6.2.2) was used on the combination of CMUinactive and remaining CMUactive
passwords. This is denoted by a shared weight entry for both training sources.

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?
Y MySpace leaked | 1.0 4class8

Y Openwall paid 1.0 4class8

Y RockYou leaked | 1.0 4class8 | Y

Y Yahoo! Voices | leaked | 1.0 4class8 | 'Y

Y CSDN leaked | 1.0 4class8 | Y

Y Stratfor leaked | 1.0 4class8 | 'Y

Y Gawker leaked | 1.0 4class8 | 'Y

Y CMUactive private P Y

Y CMUinactive | private 4class8

I¥Z €-NND INAWINAIXT ‘Q7'd



Terminals were learned from both of the following lists of sources. The first list specifies sources from which digits and

symbols were learned, and alphabetic terminals were learned from the second list. 1P weighting applies to preceding

sources in the current list only. Alphabetic string frequencies are ignored, so weights are irrelevant for alphabetic

sources.

Training Data

Structure | Terminal | Name Source | Weight | Filter Use remainder | Random
source? source? from test? sample?

Y MySpace leaked | 1.0 digsym

Y Openwall paid 1.0 digsym

Y RockYou leaked | 1.0 digsym | Y

Y Yahoo! Voices | leaked | 1.0 digsym | Y

Y CSDN leaked | 1.0 digsym | Y

Y Stratfor leaked | 1.0 digsym | Y

Y Gawker leaked | 1.0 digsym | Y

Y CMUactive private P digsym | Y

Y CMUinactive | private digsym

SNOILVINOIINOD INHAWIYHAIXH CH¢



Training Data

Structure | Terminal | Name Source | Weight | Filter | Use remainder | Random
source? source? from test? sample?

Y MySpace leaked alpha

Y Openwall paid alpha

Y RockYou leaked alpha | Y

Y Yahoo! Voices leaked alpha | Y

Y CSDN leaked alpha | Y

Y Stratfor leaked alpha | Y

Y Gawker leaked alpha | Y

Y Webster’s 2nd public alpha

Y Infl. dictionary public alpha

Y Google unigrams RY | public alpha

Y CMUactive private alpha | Y

Y CMUinactive private alpha

Learning parameters
Tokenizer Probability | Generate unseen | Hybrid Ignore alphabetic
cutoff terminals? structures? | string frequencies?

character-class ‘ 1016

\ Y

€F7 €-NWD INTAWINAIXT 'Q7'd






Appendix C

Modifications to the Unsupervised
Tokenization Algorithm

We contacted Berg-Kirkpatrick et al. to obtain a copy of the code they used in their
paper, “Painless unsupervised learning with features” [3], and they graciously
shared it with us. The goal of their system is to identify words in unbroken text
based purely on an unsupervised learning algorithm. Passwords can exhibit the
properties of unbroken text, since most users do not use spaces to separate words.

We made a number of modifications to Berg-Kirkpatrick et al.’s code to allow
it to be used within our framework, and these modifications are described here.
Though we do not describe the algorithm in detail, we try to provide enough detail
to reimplement our modifications.

Inputs and outputs The original implementation read a flat file of strings, one
per line. We changed this to conform to our input format which stores strings along
with their weight and source identifiers. We also modified the output methods so
that tokenized strings were written out in the same standard format used by other
tokenizers in the guess-calculator framework.! When writing tokenized strings
back out, we do so along with the weight and source identifiers from the input.

The original implementation also expected the input to be in IPA (International
Phonetic Alphabet) format, which is not applicable to passwords. We moditied
the input reader to expect UTF-8.

Weighted strings The original implementation did not have support for weighted
input strings, which is a core feature of our framework. We changed their
implementation to weight examples based on the weight provided in the input

ISee https://github.com/cupslab/guess-calculator-framework/blob/v1.0.0/USAGE.md
#uriting-filters—-and-tokenizers.
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corpus. This is used in computing the likelihood function that the algorithm
maximizes. We weight the contribution to the likelihood function of each example
linearly based on its weight in the input corpus.

Features The Berg-Kirkpatrick et al. paper does not introduce the unsupervised-
tokenization algorithm. It was introduced in a previous paper by many of the same
authors [85]. Instead, it adds in the idea of using features of the input strings to
improve the performance of the algorithm greatly. For example, they use prefixes
and suffixes of tokens as features. This means that particular prefixes and suffixes,
like “th” or “nd,” can be used as signals of word boundaries. Their implementation
defines different “feature templates” that can be enabled or disabled as desired.
We follow them and enable the following features:

Indicator This is the basic feature that counts occurrences of a particular substring.
We modify this feature to make it case-insensitive.

Length Take the length of a potential token as a signal that it might be a word.
This is separate from the penalty applied to tokens based on their length,
which is also applied. This was described in Section 5.5.3.1 and the original

paper [3].

Prefix/Suffix Use prefixes and suffixes of lengths 2 to 4 as features. We modify
this feature to make it case-insensitive.

Shaped prefix/suffix In addition to trying to use the case-insensitive prefixes and
suffixes, we also use a phonetic transform of these strings. This is suggested
by Berg-Kirkpatrick et al. Since literal strings might not contain enough
information to work well as a feature, a simple phonetic transform can work
better. For example, the prefix th maps to the code cc, which indicates
two consonants in a row. Such patterns might be good indications of word
boundaries.

Unlike Berg-Kirkpatrick et al., our inputs are more diverse than consonants
and vowels. Therefore, we also assume that case might be a good indication
of word boundaries. Therefore, we record the following classes: uppercase
consonants, uppercase vowels, lowercase consonants, lowercase vowels,
digits, spaces, and symbols.
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