
The Essence of Program Semantics
Visualizers: A Three-Axis Model

Josh Pollock∗ Grace Oh† Eunice Jun‡
Philip J. Guo§ Zachary Tatlock‡

November 2020
CMU-ISR-20-115D

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper was presented at PLATEAU 2020:
The 11th Annual Workshop on the Intersection of HCI and PL

November 2020, Co-located with SPLASH 2020

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, USA

†International School, Bellevue, WA, USA
‡Paul G. Allen School of Computer Science Engineering, University of Washington, Seattle,

WA, USA
§Department of Cognitive Science, University California, San Diego, La Jolla, CA, USA

Keywords: program semantics visualizer, CS1, notional machine, abstract machine, term
rewriting system, Python Tutor

Abstract

A program semantics visualizer (PSV) helps illuminate a language’s semantics by explaining the
runtime execution of programs. PSVs are often used in introductory programming (CS1) courses
to help introduce a notional machine, an abstraction of the computer that executes the language.
But what information should PSVs present to fully explain such notional machines?

In this paper we propose a three-axis model to assess the design of PSVs that visualize ex-
ecution traces. PSVs should help users by clearly answering three questions: What is the
machine’s configuration at each execution step? Why did an execution step take place? How did
an execution step change the machine’s configuration? We demonstrate our model’s utility for
assessing PSVs by explaining why, in actual classroom use, instructors have resorted to manually
extending Python Tutor’s visualizations.

The Essence of Program Semantics Visualizers:
A Three-Axis Model
Josh Pollock
MIT CSAIL, USA
https://joshmpollock.com
jopo@mit.edu

Grace Oh
International School, Bellevue, WA, USA
https://github.com/Gracesoh
grace27sw.oh@gmail.com

Eunice Jun
University of Washington, USA
https://homes.cs.washington.edu/~emjun
emjun@cs.washington.edu

Philip J. Guo
UC San Diego, USA
https://pg.ucsd.edu
pg@ucsd.edu

Zachary Tatlock
University of Washington, USA
https://ztatlock.net
ztatlock@cs.washington.edu

Abstract
A program semantics visualizer (PSV) helps illuminate a language’s semantics by explaining the
runtime execution of programs. PSVs are often used in introductory programming (CS1) courses to
help introduce a notional machine, an abstraction of the computer that executes the language. But
what information should PSVs present to fully explain such notional machines?

In this paper we propose a three-axis model to assess the design of PSVs that visualize execution
traces. PSVs should help users by clearly answering three questions: What is the machine’s
configuration at each execution step? Why did an execution step take place? How did an execution
step change the machine’s configuration?

We demonstrate our model’s utility for assessing PSVs by explaining why, in actual classroom
use, instructors have resorted to manually extending PSV output. In particular, we study instructors’
additions to visualizations generated by Python Tutor, the most popular PSV.

2012 ACM Subject Classification Human-centered computing → Visualization theory, concepts
and paradigms

Keywords and phrases Program Semantics Visualizer, CS1, Notional Machine, Abstract Machine,
Term Rewriting System, Python Tutor

Funding This material is based upon work supported by the National Science Foundation under
Grant No. 1836813. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

1 Introduction

Students struggle to form accurate mental models of program execution. For example, in a
study of an introductory Java programming course, only 17% had an accurate mental model

© Josh Pollock, Grace Oh, Eunice Jun, Philip J. Guo, and Zachary Tatlock;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

https://orcid.org/0000-0001-5141-0999
https://joshmpollock.com
mailto:jopo@mit.edu
https://github.com/Gracesoh
mailto:grace27sw.oh@gmail.com
https://orcid.org/0000-0002-4050-4284
https://homes.cs.washington.edu/~emjun
mailto:emjun@cs.washington.edu
https://pg.ucsd.edu
mailto:pg@ucsd.edu
https://orcid.org/0000-0002-4731-0124
https://ztatlock.net
mailto:ztatlock@cs.washington.edu
https://creativecommons.org/licenses/by/3.0/

23:2 The Essence of Program Semantics Visualizers

Listing 1 Factorial in Python. Understanding this five-line function requires mastering (at least)
four semantic concepts: expression evaluation, variable lookup, function entry, and loops.
def fact(n):

product = 1
for i in range(n):

product = product * (i + 1)
return product

print(fact (6))

of object reference assignment [?].
Yet developing an accurate mental model is essential, since even understanding simple

programs demands mastery of several crucial semantic concepts. For example, consider the
Python program in Listing 1. Understanding this code involves (at least) four aspects of
Python’s semantics: expression evaluation, variable lookup, function entry, and loops.

Figure 1 Python Tutor visualization of the factorial program in Listing 1.

These and other semantic concepts compose a notional machine, “an idealized abstraction
of computer hardware and other aspects of the runtime environment of programs” [?].
Program semantics visualizers (PSVs), like Python Tutor [?], visualize traces of program
execution to help explain notional machines by example [?] (Figure 1).

Getting a PSV’s design “right” is vital for helping users develop accurate mental models.
But how can we assess whether a PSV explains everything a student needs to comprehend
the necessary semantic concepts?

Leveraging abstract machine formalizations (section 2), we contribute a three-axis model
for assessing PSV design. Specifically, we identify three key questions (section 3) a PSV
should clearly answer:

1. What is the machine’s configuration at each step of execution? (subsection 3.1)
2. Why did an execution step take place? (subsection 3.2)
3. How did an execution step change the machine’s configuration? (subsection 3.3)

We demonstrate the utility of this model by accounting for instructors’ manual extensions
to Python Tutor’s visualizations. More specifically we study extensions from the first few

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:3

lectures of three CS1 courses, whose content comprises the four semantic concepts necessary to
understand Listing 1. Our model accounts for extensions that explain expression evaluation,
variable lookup, and function entry. For extensions concerning loops, we found that our
model does not elegantly account for instructors’ explanations we observed in practice. We
conclude that our model is sufficient for visualizations of single executions steps. Future
work will need to build on the foundation established in this paper with additional axes to
account for explanations that visualize multiple steps simultaneously. We speculate how such
extensions may be developed (section 5) and urge others to develop tools that clearly answer
PSV users’ “What, Why, How” questions automatically (section 6).

In the spirit of PLATEAU, our work repurposes insights from programming languages (PL)
to advance visualization design and ultimately help democratize programming. Specifically,
our three-axis model leverages formal semantics to address the needs of three user groups:
(i) it suggests how learners may develop accurate mental models of programs, (ii) it provides
guidelines for visualization authors who customize PSVs, and (iii) it provides design criteria
for PSV tool builders.

More precisely to create an expressive PSV, we must be able to construct a mapping from
a machine model to a visual domain. Since we are doing this in a language-agnostic way,
we will not use a specific machine model example, but rather grab some language-agnostic
definition. Programming Languages offers many possibilities, but the one that suits our
needs best is the abstract machine.

2 Abstract Machines

By definition a PSV visualizes program semantics. Thus to understand the information a
PSV should explain, one must study the information intrinsic to the semantics themselves.
In this section we explain our choice of abstract machines as the formal basis for our study
of program semantics.

To the best of our knowledge, Berry [?] was the first to explore the role of formal semantics
in PSVs. That early work relied on big-step and small-step operational semantics. While
this proved to be a useful formalism, operational semantics are generally not conducive
to visualizations, since their inference rules often rely on the evaluation of subterms. The
ordering of subterm evaluation is implicit, requiring additional animation steps that do not
correspond to operations in the original machine rules. Sirkiä [?] introduced Jsvee, a language-
agnostic DSL for creating PSVs. Jsvee provides roughly 50 high-level semantic building
blocks, called “operations,” which are shared among many programming languages. These
primitives are useful in practice for quickly developing PSVs. Our approach is complementary,
establishing a simpler, more general model of PSV design that we believe could inform the
design of Jsvee’s semantic blocks.

In contrast to the approaches above, Pollock et al. [?] suggest that abstract machines could
play a central role in formally reasoning about PSVs. Abstract machines present machine
models close to existing semantics visualizations and provide a well-defined notion of time step.
Starting here and continuing through the next section, we will incrementally present a formal
definition of an abstract machine based on Abstract Evaluation Systems [?]. Intuitively, an
abstract machine is a combination of (1) a set of possible machine configurations, including
both initial configurations corresponding to a program beginning execution on a given
input and also final configurations corresponding to program results, and (2) a transition
relation that explains how configurations evolve over time as the machine executes. For
brevity, we depart from Abstract Evaluation Systems by eliding the details of initial and final

CVIT 2016

23:4 The Essence of Program Semantics Visualizers

configurations. Together these properties comprise a labeled transition system:

I Definition 1. A labeled transition system is a triple 〈C, Λ,→〉 where C is a set of
configurations, Λ is a set of labels, and → ⊆ Λ× C × C is a labeled transition relation. One
often writes the label above the arrow: L−→ ⊆ {L} × C × C.

We can think of the labels as different rules that combine to fully describe the machine’s
execution.

3 The Three-Axis Model

Beginning with our basic abstract machine formalization, we simultaneously motivate each
of our model’s three axes and refine our machine description.

3.1 Trace: Answering What? Questions
Ben-Bassat Levy et al. [?] propose completeness as a design goal for PSVs: “Completeness
means that every feature of the program must be visualized, for example, a value such as a
constant may not appear from nowhere.” We reformulate this definition of completeness as a
question about notional machines that PSVs must help users answer:

What is the machine’s configuration at each step of execution?

A PSV can answer What? questions if it can present all intermediate configurations to
the user in detail. We formally model this information as a trace: the transitive closure of
configurations reached by the transition relation starting from an initial configuration and
ending in a final configuration. For simplicity, we assume execution is deterministic. Most
PSVs operate on specific linear traces, so this is a reasonable restriction. The trace from
initial configuration c0 to final configuration cn is the sequence c0, c1, . . . , cn such that the
abstract machine relates ci to ci+1 by some rule Li. That is, ci

Li−→ ci+1.
This formalism suggests What? questions are not sufficient, since they say nothing

about the Li. In the next two subsections, we will explore design principles and questions
that address relations between states.

3.2 Pattern Match: Answering Why? Questions
Nelson et al. [?] argue that students must also understand “the causal relationship between
syntax and machine behavior”. That is, why does a syntax fragment cause a particular
evolution in the machine? Rather than providing an explicit definition, the authors define
causality using an implicit virtual machine model with syntax, bytecode instructions, and
machine configurations. We reformulate this definition of causality as a question about
notional machines that PSVs must help users answer:

Why did an execution step take place?

To address this question, we must refine our model. Configurations alone do not contain
the information necessary, rather, we must look to the machine’s transition relation for
answers. In our general abstract machine formalism, each execution step is driven by a label.
Definition 1 merely characterizes the relation as a collection of opaque rules. Presenting the
relevant rule to the user could help provide an answer to this question, but an abstract rule
is no better than the formal semantics themselves. We need to refine our definition.

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:5

3.2.1 Term Rewriting

In practice, abstract machine rules exhibit common structure. By refining our definition to
reflect this structure, we can provide a more detailed answer to Why?. We follow Hannan
and Miller [?] and refine our labeled transition relation definition to a term rewriting system:

I Definition 2. A term is a Node consisting of a name, na, and list of subterms, ns. We
denote the term by Node(na, ns).

I Definition 3. A pattern is either a variable name, Var(x), or a constructor consisting of
a name, ca, and subpatterns, ps. We denote a construct pattern by Cnstr(ca, ps).

I Definition 4. A rewrite rule is a pair 〈LHS, RHS〉 of patterns. To rewrite a configuration
c into a new configuration c′ using a rewrite r, we match the LHS against c to get a
substitution map from variables in the pattern to values, then apply that substitution to RHS

to build c′. We stylize a rewrite as LHS RHS.

For example, the rule x + x 2× x has LHS as x + x and RHS as 2× x. To apply this
rule to 1 + 1, we first match the LHS against the term, yielding the substitution x 7→ 1.
Then we apply the substitution to RHS, yielding the new term 2× 1. In our case, rewrites
will always match on the entire program configuration, not on any nested subterms.

I Definition 5. A term rewriting system is a pair 〈C, R〉 where C is a set of configurations
and R is a set of rewrite rules. If a rewrite rule Ri matches a configuration ci and produces
a configuration ci+1, we write ci

Ri−−→ ci+1.

Though rewrite systems refine transition systems, they are still general [?], neatly representing
many common abstract machines including CEK, SECD, Krivine, and CAS-based semantics.1

3.2.2 Using Patterns to Answer Why Questions

To answer Why? questions, a PSV must help students understand why one pattern matched
and others did not. We describe the match phase (introduced in Definition 4) of rewriting in
pseudocode, to study how this decision is made.

To keep our causal analysis simple, we assume a common restriction on rewrite rules:
orthogonality [?]. A collection of rewrite rules is orthogonal if it satisfies two properties. First,
the rules must be left-linear : variables can only appear once in the left-hand pattern. The
example rewrite rule above is not left-linear, but a rule such as x + y → y + x is. Second, the
rewrites must be non-overlapping: for any term, only a single rewrite rule in the collection
will match. Left-linearity makes the pattern matching algorithm straightforward and could
be relaxed. Non-overlapping rules are easier to reason about causally as we will see below
and also ensure deterministic execution.

1 Language features such as machine arithmetic and capture-avoiding substitution require special treatment
in this model; however, neither of these posed issues in our analysis. We believe this model can be
extended to support those features without fundamentally changing the axes.

CVIT 2016

23:6 The Essence of Program Semantics Visualizers

input : pattern and configuration
output :A substitution if the pattern

matches.

match(p, n):

switch (p, n) do
case (Var(x), _) do

return Some([(x, n)])
end
case (Cnstr(ca, ps), Node(na, ns))
do

if ca == na then
return match(ps, ns)

else
return None

end
end

end

input : patterns and configurations
output :A substitution composed of the match

on each pair only if they all succeed.

match(ps, ns):

switch (ps, ns) do
case ([], []) do

return Some([])
end
case ([p, . . . ps], [n, . . . ns]) do

switch (match(p, n), match(ps, ns))
do

case (Some(s), Some(ss)) do
return Some(s ++ ss)

end
case _ do

return None
end

end
end

end

The match function contains the logic for determining which rule fires, since it only
returns a mapping if the match succeeds. To determine whether or not a particular rewrite
rule fires, match compares the left-hand pattern of that rule against the current machine
configuration. If the pattern is a constructor that matches the configuration’s constructor,
we visit its children and repeat, otherwise the match fails. If the pattern is a variable, we
add the corresponding piece of the configuration to the substitution map.

To discuss the cause of a particular rule firing, we use the notion of counter-factual or
“actual” causality [?]. Roughly, we define causality to mean that A causes B iff A precedes
B and if A didn’t happen then B didn’t happen. Though this definition poses philosophical
issues in general settings, in our restricted case we can apply it in a fairly straightforward
way. We wish to “blame” some pieces of the machine configuration for a rule firing. If we
look at the Cnstr case of match, we see that changing the contents of a Node will directly
change whether or not that rewrite rule fires. Thus the pieces of config that match Cnstr
nodes cause a particular rewrite rule to fire.

For example, imagine we have the rewrite rules x + y → y + x and x× y → y × x and
we evolve the configuration 1 + 2 to 2 + 1. + causes this transition, because the pattern
x + y that matched the configuration contains a single constructor, +. Changing it to ×
would result in the other rule firing. However, changing 1 + 2 to 1 + 3 does not change which
rule fires, because it is not changing part of the configuration that is matched by a Cnstr.
Notice this definition relies on the non-overlapping assumption to ensure that changing data
matched by the variable components of a pattern will never cause a different rule to match.

Summing up, a PSV can answer Why? questions if it can explain how match decided to
execute a given rewrite rule. It can do this by identifying what pieces of configuration were
matched by constructors in the pattern.

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:7

3.3 Pattern Application: Answering How? Questions
Just as students must understand the causes of a rule firing, they must also understand
its effects. Ben-Bassat Levy et al. [?] suggest the principle continuity as a design goal for
PSVs: “Continuity means that the animation must make the relations between actions in the
program explicit. For example, Jeliot 2000 [(the authors’ PSV)] shows how the values of the
subexpressions of an expression contribute to its value. This means that the visual objects
that represent subexpressions must remain visible until all of them have been evaluated;
then these objects are animated to form the expression.” We reformulate this definition of
continuity as a question about notional machines that PSVs must help users answer:

How did an execution step change the machine’s configuration?

A PSV can answer How? questions if it can explain how the abstract machine uses
information from the previous configuration to construct the next configuration. PSVs can
do this by identifying what pieces of the previous configuration this step’s rewrite retains,
where those pieces go, and which pieces of the configuration the rewrite simply drops. As
with Why? questions, we formalize this principle by analyzing rewrite rule pseudocode:

input : substitution and pattern
output :A new term created by plugging the substitutions into the pattern.

apply(s, p):

switch p do
case Var(x) do

return s.lookup(x)
end
case Cnstr(c, ps) do

return Node(c, ps.map(apply(s)))
end

end

Just as match encodes information about why a rule executed, apply encodes information
about how data is constructed in the new state. apply uses the substitution map and the
right-hand side pattern of a rule to build a new program configuration. If the right-hand side
pattern is a variable, we look it up in the substitution, which copies data from the previous
configuration. If it is a constructor, we use that data to build a node and visit its children.

apply fails if a variable does not exist in the substitution map. We assume that all
rewrite rules will be “well-formed” in the sense that this lookup will never fail (all variables
in the right-hand side pattern must also exist in the left-hand side pattern). This ensures
that only match makes decisions about which rule succeeds.

apply constructs data in two ways. In the Var branch it copies data from the previous
state. In the Cnstr branch it creates data based on the contents of the RHS pattern. These
two actions encode the effects of a rewrite. Data can also be destroyed in two ways. If
a variable is matched in the LHS pattern, but not used in the RHS pattern, that data
disappears. Similarly, concrete pieces matched in the LHS pattern are not in the substitution
map and thus completely “forgotten” during the rewrite.

Thus PSVs can answer How? questions by illustrating how apply introduces, moves, or
eliminates information from the previous configuration to construct the next configuration.

CVIT 2016

23:8 The Essence of Program Semantics Visualizers

4 Case Study: An Assessment of Python Tutor in the Wild

Motivated by formal abstract machines and existing informal PSV design principles, the
previous sections detailed our three-axis model of the information PSVs should encode to
help students develop accurate mental models of notional machines. To demonstrate the
utility of our model, we use it to explain instructors’ manual extensions of Python Tutor
visualizations.

4.1 Method

To assess a PSV in the wild, we used our three-axis model to analyze uses of Python Tutor
in introductory programming (CS1) courses. We focused on Python Tutor because it has
attracted millions of users during its first 10 years [?] and because several university courses
and textbooks rely on it. Crucially, though many instructors use Python Tutor as a PSV, it
was originally designed to be a visual debugger. This means that rather than using Python’s
semantics as its ground truth, Python Tutor aims to visualize the information encoded in
PDB [?], a line-level debugger. Instructors bridge the gaps between Python Tutor’s PDB-
based visualizations and Python’s underlying semantics with visual annotations, auxiliary
explanations, and completely custom diagrams. We call these augmentations instructor
additions, and they highlight information gaps we hypothesized our model could explain.

Corpus. We first assembled a corpus of instructor additions. We examined all 81 CS1
courses at the 40 most prominent CS departments in the U.S. [?] and identified three that
used Python Tutor. Within these courses, we identified slides with explanations of the four
semantic concepts we identified in Listing 1 and that comprise the majority of early content
in CS1 courses: expression evaluation, variable lookup, function entry, and loops. For each
semantic concept, we collected visually distinct additions, totalling 18 unique slides, which
are listed by concept in Appendix A.

Analysis. We attempted to explain the information in each addition using our three
axes. We analyzed both visual and textual information.

What: Does the addition include machine configuration data or execution steps that are
present in Python’s semantics, but not in Python Tutor?
Why: Does the addition explain why a rule executed?
How: Does the addition show how data moves from one configuration to the next?

Additions that could not be fully explained with our axes were marked Other.

4.2 Results

Table 1 summarizes our collection of instructors’ explanations. For the first three concepts
we analyzed, we found that additions for the same concept usually employed similar axes.
Expression evaluation explanations added What information about how expressions become
values (Appendix A.1). Variable lookup explanations added Why information to explain how
Python chose what scopes to look for variables (Appendix A.2). Function entry explanations
added How information to show how arguments move from a function call to a function body
(Appendix A.3). We believe this correlation between semantic concepts (which are further
linked to semantic rules of the abstract machine) and axes indicates our model reasons about
semantic content rather than surface-level choices about how information is presented.

Other. While we could explain most of the additions for the first three concepts, some
parts of those explanations and all of the loop explanations did not use our three axes

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:9

ID Course School Topic What? Why? How? Other
S1 CS61A UC Berkeley Expr Eval 4 - - 4

S2 CSE160 Univ. of Washington Expr Eval 4 - - 4

S3 CSE160 Univ. of Washington Var Lookup - 4 - -
S4 CSCI0040 Brown University Var Lookup - 4 - -
S5 CS61A UC Berkeley Var Lookup - 4 - -

S6 CS61A UC Berkeley Func Entry - - 4 -
S7 CSCI0040 Brown University Func Entry - - - 4

S8 CSCI0040 Brown University Func Entry - - 4 4

S9 CSCI0040 Brown University Func Entry - - 4 -
S10 CSCI0040 Brown University Func Entry 4 - 4 -

S11 CS61A UC Berkeley Loops - - - 4

S12 CSE160 Univ. of Washington Loops - - - 4

S13 CSE160 Univ. of Washington Loops - - - 4

S14 CSCI0040 Brown University Loops - - - 4

S15 CSCI0040 Brown University Loops - - - 4

S16 CSCI0040 Brown University Loops - - - 4

S17 CSCI0040 Brown University Loops - - - 4

S18 CSCI0040 Brown University Loops - - - 4

Table 1 We analyzed 18 slides from three courses that used Python Tutor visualizations. We
labeled each addition with the axes used by the instructor to improve Python Tutor’s output and
marked additions with unexplained components as “Other.” Axes used are strongly correlated
within semantic concepts, which suggests our model identifies the additional information required to
understand these concepts rather than changes in visual presentation. Additions to loop visualizations
answered global questions across multiple execution steps rather than the local, single-step questions
in our model. We propose extensions to our model that could incorporate this information in
section 5.

of information. Nine of the slides2 (six from loops) presented information from multiple
execution steps at once. Our three axes formalize the information encoded in a single
execution step. We discuss extensions of our model to multiple execution steps in section 5.

S12 and S13 rewrote more complex code into simpler code students already had a mental
model of. For example, S13 unrolled while loops to straight-line code that students already
knew how to execute. This deviates from the underlying semantics of Python; however, this
visualization could be modeled by a different, but equivalent, abstract machine. Finally, S7
explained why information did not appear rather than why it did; and S17 represented the
program as a flowchart to explain loops.

Implications. These results suggest that our three-axis model is useful for identifying
the information required to understand single steps of program execution. Our analysis of
loop additions suggests instructors use multi-step explanations to provide intuition for more
complex semantic concepts.

2 S1, S2, S8, S11, S14, S15, S16, S17, S18

CVIT 2016

23:10 The Essence of Program Semantics Visualizers

5 Future Work: Towards Higher-Level Semantic Explanations

Abstract Interpretation. We hypothesize that abstract interpretation could formalize
multi-step visualizations, such as those used to describe loops. For example, Lerner [?]
connects loop summary visualizations to collecting semantics, which, for each location in
the source program, “collects” the configurations the machine executes through while at
that location. This prompts further questions about the role abstraction plays in PSVs.
We believe our model, with its connections to PL and its granular treatment of individual
execution steps, is well-suited to these kinds of extensions.

Programs As Term Rewriting Systems. We note that our definition of abstract
machine, while specific enough to identify three distinct kinds of information, is actually
general enough to apply to systems beyond low-level program semantics. In fact, a program
in a lazy functional language, like Haskell, may be interpreted as a rewrite system [?]. In
the words of the authors of one such system: “A Clean program basically consists of a
number of graph rewrite rules (function definitions) which specify how a given graph (the
initial expression) has to be rewritten” [?]. This connection suggests that explanations and
visualizations of programs more generally may also benefit from answering our What?,
Why?, and How? questions.

Implementation Challenges. Our work contributes a conceptual model to guide PSV
design, and our pseudocode formalization suggests that one could generate answers to the
three questions directly from abstract machine definitions or any other term rewriting system.
However, to put our axes into practice, PSV researchers must solve additional challenges.
PSVs inspired by our model may require new debuggers that track not only state information
at each execution step, but also how information flows between states. To visualize this
information, designers must also develop easy ways to render programs’ diverse collections of
data.

6 Conclusion

In this paper we proposed a three-axis model—What? Why? How?—for critiquing the
information presented in single-step PSVs. Based on our evaluation of instructor annotations,
we expect these axes can improve PSVs so that students can build more robust mental models
of notional machines.

Using term rewriting systems as a formal basis for our model, we have also suggested
these axes are applicable in more general contexts than teaching low-level program semantics.
We imagine a world in which, rather than poking around in the dark with a printf flashlight
to understand programs, formal systems can explain themselves.

References

A Appendix: Corpus of Instructor Additions

A.1 Expression Evaluation
A.2 Variable Lookup
A.3 Function Entry

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:11

Discussion Question 1 Solution

9

func min(...) 4

3

f(2, g(h(1, 5), 3))
3

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Another evaluation example

(72 – 32) / (9.0 * 5)
(40) / (9.0 * 5)
40 / (9.0 * 5)
40 / (45.0)
40 / 45.0
.888

7

Figure 2 Expression Evaluation Examples S1 [?], S2 [?]

CVIT 2016

23:12 The Essence of Program Semantics Visualizers

How to look up a variable
Idea: find the nearest variable of the given name

1. Check whether the variable is defined in the local scope
2. … check any intermediate scopes (none in CSE 160!) …
3. Check whether the variable is defined in the global scope

If a local and a global variable have the same name, the global variable is
inaccessible (“shadowed”)

This is confusing; try to avoid such shadowing

x = 22
stored = 100
def lookup():

x = 42
return stored + x

val = lookup()
x = 5
stored = 200
val = lookup()

def lookup():
x = 42
return stored + x

x = 22
stored = 100
val = lookup()
x = 5
stored = 200
val = lookup()

What happens if
we define stored
after lookup?

17

See in python tutor See in python tutor

• When the call to mystery2 is about to return:

Visualizing How Functions Work
pythontutor.com/visualize.html

Python looks for a
variable in the

current frame first,
so the local x will
be used instead of
the global x when
returning x + 1.

47

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def)
consists of one local frame, followed by the global frame.

!10http://pythontutor.com/composingprograms.html#code=def%20f%28x,
%20y%29%3A%0A%20%20%20%20return%20g%28x%29%0A%0Adef%20g%28a%29%3A%0A%20%20%20%20return%20a%20%2B%20y%0A%20%20%20%20%0Aresult%20%3D%20f%281,%202%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Figure 3 Variable Lookup Examples S3 [?], S4 [?], S5 [?]

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:13

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

13

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Interactive Diagram
Visualizing How Functions Work
pythontutor.com/visualize.html

• At the start of the call to mystery2:

mystery2(3, 2) gets its own frame
containing the variables that belong to it.
mystery2's x isn't shown yet because

we haven't assigned anything to it. 46

Figure 4 Function Entry Examples S6 [?], S7 [?],

CVIT 2016

23:14 The Essence of Program Semantics Visualizers

 x y a b
def calculate(x, y): 3 2
 a = y ? ? ? ?
 b = x + 1 ? ? ? ?
 return a * b - 3

print(calculate(3, 2))

A. 5
B. 9
C. 4
D. 3
E. 8

The values in the function call are
assigned to the parameters.

In this case, it's as if we had written:
 x = 3
 y = 2

74

def f(x):
 return 11*g(x) + g(x//2)

print(demo(-4))

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

def g(x):
 return -1 * x

stack frame

Functions Calling Other Functions!

58

 demo f g

 x | ret x | ret x | ret

-4 | | |

Figure 5 Function Entry Examples S8 [?], S9 [?],

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:15

def f(x):
 return 11*g(x) + g(x//2)

def demo(x):
 return x + f(x)

demo
x = -4
return -4 + f(-4)

f
x = -4
return 11*g(x) + g(x//2)

def g(x):
 return -1 * x

These are distinct memory locations
both holding x's.

stack frame

stack frame

print(demo(-4))

Functions Calling Other Functions!

59

 demo f g

 x | ret x | ret x | ret

-4 | -4 | |

Figure 6 Function Entry Examples S10 [?]

CVIT 2016

23:16 The Essence of Program Semantics Visualizers

A.4 Loops

i = 1
print(i)
i = 4
print(i)
i = 9
print(i)

How a loop is executed:
Transformation approach

for i in [1,4,9]:
print(i)

State of the
computer: Printed output:

1
4
9

i: 1i: 4i: 9

Idea: convert a for loop into something we know how to execute

1. Evaluate the sequence expression
2. Write an assignment to the loop

variable, for each sequence
element

3. Write a copy of the loop after each
assignment

4. Execute the resulting statements

5

See in python tutor

Repeating a Repetition!

for i in range(3): # 0, 1, 2
 for j in range(4): # 0, 1, 2, 3
 print(i, j)

0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3

37

Figure 7 Loops Examples S13 [?], S14 [?],

J. Pollock, G. Oh, E. Jun, P. J. Guo, and Z. Tatlock 23:17

Index-Based for Loop

def sum(vals):
 result = 0
 for i in range(len(vals)):
 result += vals[i]
 return result

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

46

Element-Based for Loop

def sum(vals):
 result = 0
 for x in vals:
 result += x
 return result

vals = [3, 15, 17, 7]

x

45

Figure 8 Loops Examples S15 [?], S16 [?],

CVIT 2016

23:18 The Essence of Program Semantics Visualizers

for i in [1, 2, 3]:
 print('Warning')
 print(i)
print('That's all.')

Executing Our Earlier Example
(with one extra statement)

yes

no

does

more values?

assign the next value in
the sequence to i

[1, 2, 3] have
more? i output/action
yes 1 Warning
 1
yes 2 Warning

2
yes 3 Warning

3
no That's all.

print('That's all.')

print('Warning')
print(i)

yes

does

more values?
[1, 2, 3] have

26

a = 40
while a > 2:
 a = a // 2
 print(a - 1)

How many values does this loop print?

a > 2 a prints
40

True 20 19
True 10 9
True 5 4
True 2 1
False

A. 2
B. 3
C. 4
D. 5
E. none of these

25

Figure 9 Loops Examples S17 [?], S18 [?]

	Introduction
	Abstract Machines
	The Three-Axis Model
	Trace: Answering What? Questions
	Pattern Match: Answering Why? Questions
	Term Rewriting
	Using Patterns to Answer Why Questions

	Pattern Application: Answering How? Questions

	Case Study: An Assessment of Python Tutor in the Wild
	Method
	Results

	Future Work: Towards Higher-Level Semantic Explanations
	Conclusion
	Appendix: Corpus of Instructor Additions
	Expression Evaluation
	Variable Lookup
	Function Entry
	Loops

