
Published in:
CMU-ITC-85-039

ProceedinRs of the Tenth ACM

Symposium on Operating Svstems

Principles

Orcas Island, Washington

The ITC Distributed File System- 1-4 December 1985

Principles and Design Volume 19, Number5

M. Satyanarayanan

John H. Howard

David A. Nichols

Robert N. Sidebotham

Alfred Z. Spector

Michael J. West

INFORMATION TECHNOLOGY CENTER

CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PA 15213

Abstract

This paper presents the design and rationale of a distributed file

system for a network of more than 5000 personal computer

workstations. While scale has been the dominant design influence,

careful attention has also been paid to the goals of location

transparency, user mobility and compatibility with existing operating

system interfaces. Security is an important design consideration, and

the mechanisms for it do not assume that the workstations or the

network are secure. Caching of entire files at workstations is a key

element in this design. A prototype of this system has been built and

is in use by a user community of about 400 individuals. A refined

implementation that will scale more gracefully and provide better

performance is close to completion.

1. Introduction of information between workstations. We have adopted a

distributed file system with a single name space spanning all the

A campus-wide network of personal computer workstations has workstations on campus as the sharing mechanism.

been proposed as an appropriate solution to the long-term

computing needs of Carnegie-Mellon University (CMU)[8]. An In this paper we present the ITC distributed file system as a

overview paper [14] presents the rationale for this decison, along solution to a system design problem. Sections 1.1 and

with other background information. Most pertinent to this paper 1.2 characterize the usage environment and discuss the

is the requirement that there be a mechanism to support sharing consioerations which led to our design. Given this context,

Sectio.,s 2 and 3 describe the solution and the reasons for

specific design decisions. Section 4 is retrospective in nature
Permission to copy without fee all or part of this material is granted
provided that the copiesare not made or distributed for direct and discusses certain general principles that emerged during the

commercial advantage, the ACM copyright noticeand the title of the course of the design. Section 5 describes our experience with a
publication and its date appear, and notice is given that copying is by
permissionof the Associationfor Computing Machinery. To copy prototype implementation. To place our design in proper

otherwise,or to republish, requiresa feeand/or specific permission, perspective, Section 6 compares it with a representative sample

of other distributed file systems. Finally, Section 7 reviews the

© 1985 ACM-0-8979 I- 174- I - 12/85-0035 $00.75 highlights of the paper.

1.1. Usage Environment and sottware on their workstations in arbitrary ways. Hence

CMU is composed of approximately 6,000 individuals, each of workstations cannot be called upon to play any trusted role in

whom could eventually own a workstation. In addition there will preserving the security of the system.

be some workstations at public facilities such as libraries. These
We believe it important to be able to support many different kinds

observations bound the scale of the system to be between 5,000
of workstations, and regard heterogeneity as the rule rather than

and 10,000 network nodes.
the exception. Therefore, although we have focussed on a

It is usually the case that individuals confine their computational homogeneous environment for initial implementation and _:

activities to a specific physical area. For example, we expect a deployment experience, our design is extensible to an .,

faculty member to typically use the workstation_'n his office, environment with diverse workstation hardware and operating

Students, on the other hand, will tend to use workstations in their systems.

dormitories. However, it is not acce_)tabl_._ to insist that an

individual restrict his activities to one work.station. The sharing 2. High-level Design
mechanism we provide should not inhibit natural and

spontaneous movement of users. 2.1. The Sharing Mechanism

Why did we choose a distributed file system as our sharing
Most computing at CMU is related to education or research and mechanism?
typically involves text-processin.q or pro qr_=mming activities. The

use of computers for electronic mail a_zd bulletin boards is also The design alternatives for sharing in a network fall into three

conlmon. There is some numerical!y-oriented computation broad classes, ordered below according to decreasing degrees of

related to simulaSon in departments such as physics, chcmistr/ transparency, complexity and communication requirement:

and electrical engineering Finally, computers play a small but • Distributed operating systems such as the V

increasing role in the administration of the university, kernel [4] and Accent [10] provide total network
transparency for a substantial fraction of their
primitives. In particular, they provide transparent

While we expect our sy,_tem usage to be initially consistent with access to remote files.
this profile, widespread use of a campus-wide personal computer

• Distributed tile systems such as the Cedar file systemnetwork may change established usage patterns. To meet these
[15] and IBIS [17] allow application programs to use

changes, a certain degree of system evolution will be inevitable, remote files exactly as if they were stored locally.
Such network transparency does not, however,
extend to other resources such as processes and

1.2. Design Considerations virtual memory.
The most daunting aspect of this system is its scale. The

projected final size of 5,000 or more nodes is at least an order of • Loosely-coupled networks, such as the Arpanet, do
not offer network transparency at all. Sharing in

magnitude larger than any existing distributed file system, such a system involves explicit user actions to

Concern for scalability has strongly motivated many key aspects transfer data.

of our design. Given our desire to make sharing as effortless as possible, we

The physical compactness of the CMU campus makes it possible rejected a _oosely.coupled network approach. On the other

to use local area network (LAN) technology. A larger or more hand, we found the constraints on our design in more serious
conflict with a distributed operating system approach than aphysically fragmented institution might have had to resort to

lower-bandwidth networking technology, distributed file system approach. A number of considerations led
us to this conclusion:

The size of the system and its distribution across a campus make
Complexity Since a file system is only one component of

it impossible to make the entire system physically secure. It is an operating system, dislributing it is likely to

reasonable to require that a small number of selected be easier than distributing the entire
operating system.

components of the system be located in physically secure areas.
Scale A distributed operating system is likely to

However, cross-campus LAN segments will be exposed, and
require more frequent interactions between

user-owned workstations will be outside our administrative its components for resource management.

control. Further, individual ownership of workstations carries The anticipated scale of the system makes
even the design of a distributed file system a

with it the risk that owners may choose to modify the hardware formidable task. Its implications for a

distributed operating system are more severe.

3_

Security Workstations are not trustworthy. The Integrity The probability of loss of stored data should
be at least as low as on the currentbuilding of a distributed operating system

from untrustworthy components is a much timesharing systems at CMU. Users should
harder problem, not feel compelled to make backup copies of

their files because of the unreliability of the
Heterogeneity It seems a more difficult proposition to span a system.

spectrum of workstations with a distributed
operating system than with a distributed file Heterogeneity A variety of workstations should be able to
system, participate in the sharing of files via the

distributed file system. It should be relatively
simple to integrate a new type of workstation.Further encouragement for adopting a distributed file system

approach comes from the fact that the most common and well. A system that successfully meets these goals would resemble a

understood mode of sharing between users on timesharing giant timesharing file system spanning the entire CMU campus.
systems is via the file system.

Noticeably absent from the above list o(goals is the ability to

2.2. File System Goals support large databases. As mentioned in Section 1.1, there is

The observations presented earlier motivate the following goals currently little use of such databases at CMU. The design

of our system: described in this paper is suitable for files up to a few megabytes

Location Transparency in size, given existing LAN transfer rates and workstation disk
There should be a single name space for all
shared files in the system. Given the size of capacities. Experimental evidence indicates that over 99% of the

the system, we consider it unacceptable to files in use on a typical CMU timesharing system fall within this
require users to remember details such as the
current location of a file or the site where it class[12]. In the future, we do expect large campus-wide

was created. Consequently, the naming databases to become increasingly important. A separate

scheme should not incorporate any distributed database design will have to address this issue.
information pertaining to the location of files.

Further, the resolution of file names to

network storage sites should be performed by 2.3. Vice and Virtue

the file system. Figure 2-1 presents a high-level view of the entire system. The

User Mobility Users should be able to access any file in the large amoeba-like structure in the middle, called Vice 1, is a

shared name space from any workstation, collection of communication and computational resources. A
The performance characteristics of the
system should not discourage users from Virtue is an individual workstation attached to Vice. Software in

accessing their files from workstations other Virtue makes the shared files in Vice appear as a integral part of

than the one at which they usually work. the workstation file system.
Security The file system cannot assume a benevolent

user environment. To encourage sharing of There is a well-defined file system interface between Vice and

files between users, the protection Virtue. This interface is relatively static and enhancements to it
mechanism should allow a wide range of
policies to be specified. Security should not occur in an upward-compatible manner as the system evolves. A

be predicated on the integrity of workstations, stable interface is the key to supporting heterogeneity. To

Performance Acceptable performance is hard to quantify, integrate a new type of workstation into the distributed file

except in very specific circumstances. Our system, one need only implement software that maps the file
goal is to provide a level of file system
performance that is at least as good as that of system interface of that workstation to the Vice interface.
a lightly-loaded timesharing system at CMU.
Users should never feel the need to make Vice is the boundary of trustworthiness. All computing and

explicit file placement decisions to improve communication elements within Vice are assumed to be secure.
performance.

This guarantee is achieved through physical and administrative
Scalability It is inevitable that the system will grow with control of computers and the use of encryption on the network.

time. Such growth should not cause serious
disruption of service, nor significant loss of No user programs are executed on any Vice machine. Vice is

performance to users, therefore an internally secure environment unless Trojan horses

Availability Single point network or machine failures are introduced by trusted system programmers.
should not affect the entire user community.
We are willing, however, to accept temporary
loss of service to small groups of users.

lit isrumoredthatVicestandsfor"VastIntegratedComputingEnvironment"

37

I VIRTUE I

i

I I
Each Virtue is an individual workstation. Vice has fine structure that is sho_.n in detail

in Figure 2-2. This diagram is certainly not to scale, since Vice will encompasJ an entire

campusl

Figure 2-1: Vice and Virtue

Virtue, however, is under the control of individual users and is Viewed at a finer granularity than Figure 2-1, Vice is composed of

never trusted by Vice. After mutual authentication Vice and a collection of semi-autonomous Clusters connected together by

Virtue communicate only via encrypted messages. It is a backbone LAN. Figure 2-2 illustrates such an interconnection

encryption that maintains security in spite of the fact the network scheme. Each cluster consists of a collection of Virtue

is not physically secure, workstations and a representative of Vice called a Cluster Server.

Backbone Ethernet

c:Sc,u::,Sc,,,ste,
B-

Cluster 0 Cluster 1 Cluster2

EachWSis a Virtueworkstation.We expecta clustertocontainbetween50 and100
workstations.ThefinalsystemthatspanstheCMUcampuswillhavea totalof about
100clusters

Figure 2-2: Vice Topology

38

Each of the workstations in Figure 2-2 logically posseses a local • How do network nodes access files? What are the

disk. Whether this logical disk is physically associated with the inter-machine primitives available?

workstation or is provided by a disk server is an issue that is • How is security enforced in the system? Can the
nodes on the network trust each other?. Can the

orthogonal to the design presented here. Using a disk server may
network be assumed immune from eavesdropping?

be cheaper, but will entail performance degradation. Scaling to

5000 workstations is more difficult when these workstations are • What is a feasible implementation strateg,/ for the

paging over the network in addition to accessing files remotely, design?

Further, security is compromised unless all traffic between the This list is by no means exhaustive, but it does characterize a

disk server and itsclients is encrypted. We are not confident that core of design issues that any distributed lile system design must

paging traffic can be encrypted without excessive performance address either explicitly or by default. No single set of answers to

degradation. Finally, nontechnical considerations such as the these questions can be considered optimal for all situations. The

need to allow students to take their workstations away from CMU choice depends on the goals of the design and the external

during vacations and upon graduation have further motivated our constraints placed upon it.

requirement that workstations possess physical disks.
In Sections 3.1 to 3.5 we describe our design by examing the

The Bridges which connect individual clusters to the backbone in choices that we have made in answering the questions listed

Figure 2.2 serve as touters. It should be emphasised that the above. This organization is exactly mirrored in Section 6, where

detailed topology of the network is invisible to workstations. All of we compare our system to other distributed file systems.

Vice is logically one network, with the bridges providing a uniform

network address space for all nodes. 3.1. Naming and Location

From the point of view of each workstation, the space of file
Vice is decomposed into clusters primarily to addresses the

names is pz,rtitioned into a Local name space and a Shared name
problem of scale. For optimal performance, Virtue should use the space. Figure 3-1 i)lustrates this partitioning. The shared name

server on its own cluster almost all the time, thereby making space is the same for all workstations, and contains the majority
cross-cluster file references relatively infrequent. Such an of files accessed by users. The local name space is small, distinct

access pattern balances server load and minimizes delays for each workstation, and contains files which typically belong to
through the bridges. This problem of localizing file references is one of the following classes:
reminiscent of the problem of localizing virtual memory

1. System files essential for initializing the workstation
references in hierarchically structured multiprocessors such as and for its functioning prior to connection to Vice.

Cm* [6].
2. Temporary files, such as those containing

intermediate output from compiler phases. PlacingPhysical security considerations may dictate that cluster servers
such files in the shared name space serves no useful

be co-located in smaB groups in machine rooms, even though purpose.

each c_uster server is logically associated with the work: 'ations in
3. Data files that the owner of the workstation considers

its cluster, so sensitive that he is unwilling to entrust them to the
security mechanisms of Vice. In practice we expect
few such files. Since these files cannot be accessed

3. Detailed Design from any other workstation they hinder user mobility.

In designing adistributed file system one hasto answer anumber 4. A small number of frequently used, but rarely

of fundamental questions. Chief among these are: updated, system programs. Such programs may be
stored locally to improve performance and to allow at

• How are files named? Is the location of a file in the least a modicum of usability when Vice is unavailable.
network apparent from its name? If not, how are files
located in the system? Shared files are stored in Vice in a hierarchically structured name

space, similar to Unix [11]. It is the responsibility of Virtue to map
• Can multiple copies of a file be stored at different this hierachical structure to a format consistent with the local

sites? How are these copies updated and kept
consistent? name space. To simplify exposition, we assume throughout this

section that Virtue is a Unix workstation.
e What are the primitives available to application

programs to operate on remote files? Are they In Unix terminology, the local name space is the Root File System
identical to the primitives provided for local files?

of a workstation and the shared name space is mounted on a

39

.... -_. iiii _-

0_

unS e uo "esodJnd s!4), JoI anu!A u! s_fu!-t O!/oqLM_S esn

al!| e JO}u_!po_sno 84_ pu!} ol s_4 uo!}_s_JOt_ V '_! Jo| s_sgnbaJ e M 'suo!|e_s_Jot_ }o _ad/_ _ueJall!p woJ| _essaooe al!l |oaJ!paj

jo 6u!3!AJeSaq) pu_ el!j _)41jo 06_o1s Jo; ,_]!l!Cl!suodsaJalaldmoo _l|R!J,uoJa}j!p Ol ms!UELIOemE oq O),SELle]OLll 'eoeds eWRU peJe4s

Saq |_LI_JaMes Jalsn)3 aq_S! at!j _)o u_!polsno a41 "sue!po_sno a4_ u! peJo_s aJR saUEu!q ma_s/_s esaq_ Jl ",,u!q/,, s! ameu4_ed

o:1sa)4 sdem 1_ql es_qe_ep uoq_3o I e jo _doo alatdmo3 e e_JOq,_.kloloaJ!p eut seu_ulq mols_s pu40lSloadxa xlun 'uo un] ;,

su!e)uo3 JeAJesJa_snp 4oe3 "ws!ue43_m uo!_eoo| el!| _essaoau _.!|1aJeMpJeH a4_ jo ssalpJe6a _ 'x!un 6u!uun_ q]loq 'suo!_E%s_Jot_ , !

'l
Bql sap!AOJd 1eLI1ao!A s! 11 "Bill a41 Io auJeu aql 6u!u!mexe XeA pue uns to 6u!ls!suoo lua_uuo_!^ua ue 'aldmexa

/4oJam ,_q pa.lols s! 01!j paget.Is e qo!qt_ uo Ja^Jas a4_ a::)i3pap JOj 'Jap!suoO "otJuaqos 6U!meU all], U! UO!:(eo!ldmo0 IEUO!l,!ppR

,ouueo an_J,A 'sleo5 _no }o auo s, _oua_dsue_l uo,leOOl aou,s ue saonpo,,u, suo!lels_,ot_ ,o sadfq luaJa|,,p ,o aauasa,d aql i[[lt:l

"|UaLUUOJ!AUasnoeuaSoJalaq e 5u!uoddns "aoed8 leOOleq_ u! Sal!j o| JajaJ sameu JaLl|Onv "aoeds paJeq8 !i;

u! anIR^ lea J8 jo snq| s! s_lu!l O!loqm_s _q pap!AOJd uo!l::)eJ!pu! aq| u! Sal!J o] puodsaJJO3 x!ja_d _u!pea t aq| se ,,eO!A/,, LI|!M

e S! ,,u!q/,, 'xeA e uo :,,u!q/uns/x!un/ao!^/,, ,_Jo]oa.l!p alomaJ uo /_oloeJ!p aq_ 5u!eq ,,aO!A/,, q]!_ 'uo!iem!s s!q] s]o!dap _-£ I;I

aq_ O1_U!I ::)!lOqW/_Se S! ,,u!q/,, /_Jo)oaJ!pwa_s_Sle:)Olel!claqlaq_'UO!_e]s_lJO_jo_',a!A s,uo!le:ls_lJo/v_eJn6!"-Ix!url'U°!)ez!le!:l!u!y:_-_ aJn6!-Iuo!]e_s_J°/_6u!Jnp /,Jo|oaJ!p jea I u_ou_ IiJlill

'5UO!IEIS_IJO_ Jgqlo Ol alq!ssa3::)Ru! _JR Sel!J IR3Ol Jeq|o IIV ' ,;a3!^/,, o]u! s_lu!l 3!lOqlJuAs

gJ_ ',,q!l/., pub ..u!q/,, s_ _3ns 'ao_tds aLLIRUIIE3OI ell| u9 Sal!J pUR Se!JO|3_!p u!EiJa'-j

•u_l|s/_s all{ u{ SUO!l_lS_Jo_ aql lie ol uouJLuoo _JE _)aJlqns ,.eo{^/,, eq| u9 sal!l aN1

Sel!_-JpaJeqs !

'!

G::){A sal{-I le°°-I t

/

saoeds aLueN leoo7 pue paJeqs : L-E:aJn6!..I

'SUOT_8IS_JO_

a| t_R JO| _3!|Ue_3_ S! pu_ 'I.Ua_S/[S at4_ Ul Sa_! | |O _as pa_E4s a4_ O_ spuodsaJ_o3 pa_eq S

-1_uogi_|s)lJO_ |uaJ_j#!p _aJH| |o _lua]s/_s _I!# ll_Ool _)ql ui _at!J o| puodsaJJo3 S/e_o_

pue "Eleoo'/ "_le,;'o'/ saDltds aI.URU p;)JltLIS pile I_'_01 5U!|:)" tap I_RJ_]e!p UUa A 1E'S! S!q I

before operating on it. tf a server receives a request for a file for application program on a workstation opens a file in the shared

which it is not the custodian, it will respond with the identity of the name space, Virtue locates the appropriate custodian, fetches

approprtate custodian. The size of the replicated location the file, and stores it in the cache. This fetch is avoided if the file

database is relatively small because custodianship is on a subtree is already present in the cache. After the file is opened, individual

basis. If all files in a subtree have the same custodian, the read and write operations are directed to the cached copy. Virtue

location database has only an entry for the root of the subtree, does not communicate with Vice in performing these operations.

When the file is closed, the cache copy is transmitted to the
File subtrees of individual users are assigned to custodians in a

appropriate custodian. Note that all interactions with Vice are
manner that balances server load and minimizes cross-cluster

transparent to application programs. Other than performance,
references. A faculty member's files, for instance, would be

there is no difference between accessing a local file and a file in
assigned to the custodian which is in the same cluster as the

the shared name space.
workstation in his office. This assignment does not affect the

mobility of that individual, because he can still access his files Cache validation involves communication between the custodian

from any other part of the campus, albeit with some performance of a file and the workstations which have that file cached. This

penalty, may either be initiated by Virtue before each use of the cached

copy, or by Vice whenever the file is modified. The choice trades

An important pro erty of the location database is that it changes longer file open latencies and increased server loads in the
relatively slowly. There are two reasons for this. First, most file

former case, for larger server state and slower updates to files in
creations and deletions occur at depths of the naming tree far the latter case. Since files tend to be read much more frequently
below that at which the assignment of custodians is done. Hence

than written, better performance is likely with the latter. Our
normal user activity does not alter the location database.

current design uses check-on-open to simplify implementation

Second, the reassignment of subtrees to custodians is infrequent and ,reduce server state. However, experience with a prototype
and typically involves human interaction. For example, if a

has convinced us that the cost of frequent cache validation is
student moves from one dormitory to another he may request that

high enough to warrant the additional complexity of an invalidate-
his files in Vice be moved to the cluster server at his new location.

on-modification approach in our next implementation.
Alternatively, we may install mechanisms in Vice to monitor long-

term access file patterns and recommend changes to improve Changes to a cached file may be transmilted on close to the

performance. Even then, a human operator will initiate the actual corresponding custodian or deferred until a later time. In our

reassignment of custodians, design, Virtue stores a file back when it is closed. We have

adopted this approach in order to simplify recovery from
Changing the location database is relatively expensive because it

workstation crashes. It also results in a better approximation to a
involves updating all the cluster servers in the system. The files

timesharing file system, where changes by one user are
whose custodians are being modified are unavailable during the

in]mediately visible to all other users.
change. As explained in the previous paragraph, our design is

predicated on the assumption that such changes do not occur The caching mechanism allows complete mobility of users. If a

frequently. This assumption does not compromise our goal of user places all his files in the shared name space, he can move to

allowing user mobility with reasonable performance because a any other workstation attached to Vice and use it exactly as he

different mechanism, described in the next section, addresses would use his own workstation. The only observable differences

this issue, are an initial performance penalty as the cache on the new

workstation is filled with the user's working set of files and a

3.2. Replication smaller performance penalty as inter-cluster cache validity

Caching is the main form of replication in our design. Virtue checks and cache write-throughs are made.

caches entire files along with their status and custodianship
The caching of entire files, rather than individual pages, is

information. Caching and whole-file transfer are key mechanisms
fundamental to our design. It has a strong positive influence on

in meeting the design objectives of performance, mobility and
performance for a number of reasons. First, custodians are

scalability.
contacted only on file opens and closes, and not on individual

Part of the disk on each workstation is used to store local files, reads and writes. Second, the total network protocol overhead in

while the rest is used as a cache of files in Vice. When an transmitting a file is lower when it is sent en masse rather than in

41

a series of responses to requests for individual pages. Finally, are highly encouraged by our experience in attaching Unix

disk access routines on the servers may be better optimized if it is workstations to Vice. Though we have no experience as yet in

known that requests are always for entire files rather than for attachnng other kinds of workstations, we do not forsee any

random disk blocks, fundamental problems on account of our design.

The use of whole-file transfer may also simplify the support of Besides the need to bridge the semantic gap between the file

heterogeneous workstations. It is likely to be easier for Virtue to system interfaces of Vice and Virtue, there is also an assumption

transform a file from the form in which it is stored in Vice to a form in our design that workstations possess adequate resources tO

compatible with the native file system of the workstation when the effectively use Vice. For example, workstations need to have

entire file is available in the cache. For instance, a directory disks (real or virtual) large enough to cache a typical working set

stored as a Vice file is easier to interpret when the whole file is of files. They also need a high-performance hardware interface !

available, to the campus-wide LAN. It would be desirable to allow i

workstations that fail to meet these minimal resource i

In addition to caching, Vice also supports read-only replication of requirements to access Vice, perhaps at lower performance or

subtree3 at different cluster servers. Files which are frequently convenience.

read, but rarely modified, may be replicated in this way to
An approach we are exploring is to provide a Surrogate Serverenhance availability and to improve performance by balancing

server loads. The binaries of system programs are a typical running on a Virtue workstation. This surrogate would behave as

example of this class of files, a single-site network file server for the Virtue file system. Clients
of this server would then be transparently accessing Vice files on

In our prototype, described in Section 5, the updating of a read- account of a Virtue workstation's transparent Vice attachment.

only subtree is performed asynchronously by its custodian. Our The software interface to this server would be tailored to meet the

revised implementation will make read-only subtrees truly specific needs of the low-function workstations in question and it

immutable. The creation of a read-only subtree is an atomic could run on a machine with hardware interfaces to both the

operation, thus providing a convenient mechanism to support the campus-wide LAN and a network to which the low-function

orderly release of new system software. Multiple coexisting workstations could be cheaply attached. Work is currently in

versions of a subsystem are represented by their respective read- progress to build such a surrogate server for IBM PCs. We

only subtrees. Caching of files from read-only subtrees is believe that this approach is also applicable to machines such as

simplified since the cached co_:ies can never be invalid, the Apple Macintosh.

3.3. Functionality of Interfaces 3.4. Security;i

n: There are two distinct programming interfaces in this design: the Voydock and Kent [18] classify breaches of security in a network

Vice-Virtue interface, which is primarily of concern to as the unauthorized release of information, modification of

implementors wishing to attach new types of workstations to Vice, information, or denial of resource usage. In this design we only

and the Virtue file system interface, which is visible to application address release and modification of information. Resource

programs, denial is trivial when a user can modify the hardware and

Vice provides primitives for locating the custodians of files, and software of a workstation. For example, a workstation on an

for fetching, storing, and deleting entire files. It also has Ethernet can be made to generate collisions whenever a packet is

primitives for manipulating directories, examining and setting file transmitted by any other workstation. This would effectively deny

and directory attributes, and validating cached copies of files, network services to all other workstations. We believe that peer

pressure and social mores are the only effective practical
The interface provided by Virtue is workstation-specific. In the

weapons to deal with, such situations in our environment.
prototype discussed in Section 5, the primitives supported are the

_'i Fortunately, most cases of resource denial are relatively easy to

standard Unix file system primitives, supporting directory detect.
manipulation and byte-at-a-time access to files,

In this section we describe how our design provides
In an ideal implementation, Virtue will provide identical interfaces

authentication, access control and secure network transmission.
for shared and local files. The degree to which this ideal is met is

These components jointly provide the mechanism needed to
one measure of quality of workstation attachment software. We

42

prevent the unauthorized release or modification of files stored in of the rights specified for all the groups that he belongs to, either

Vice. directly or indirectly. This subset of groups is referred to as the

Current Protection Subdomain (CPS) of the user. A user may be
Vice uses encryption extensively as a fundamental building block

given access to an object either by making him a member of a
in its higher level network security mechanisms. To build a truly

group that already has appropriate access rights on that object,
secure distributed environment, we are convinced that encryption

or by explicitly adding that user to the access list.
should be available as a cheap primitive at every network site.

Fortunately, VLSI technology has made encryption chips Access is revoked by removing a user from all groups which have

available at relatively Iowcost. access to the object in question. Because of the distributed

nature of the system and the recursive membership of groups,
The authentication and secure transmission functions are

this operation may be unacceptably slow in emergencies. We
provided as part of a connection-based communication package,

therefore support the concept of Negative Rights in access lists.
based on the remote procedure call paradigm. At connection

The union of all the negative rights specified for a user's CPS is
establishment time, Vice and Virtue are viewed as mutually

subtracted from his positive rights. To revoke a user's access to
suspicious parties sharing a common encryption key. This key is

an object, he can be given negative rights on that object.
used in an authentication handshake, at the end of which each

Negative rights are intended as a rapid revocation mechanism for
party is assured of the identity of the other. The final phase of the

limiting the damage caused by a user who has been discovered
handshake generates a session key which is used for encrypting

to be untrustworthy.
all further communication on the connection. The use of per-

session encryption keys reduces the risk of exposure of In our prototype the protected entities are directories, and all files

authentication keys. within a directory have the same protection status. Per-directory

protection reduces the storage overheads of access lists and also
When a user initiates activity at a workstation, Virtue

reduces the amount of protection state that users have to keep
authenticates itself to Vice on behalf of that user. Since the key

track of mentally. The rights associated with a directory control
used for this is user-specific it has to be obtained from the user.

the fetching and storing of files, the creation and deletion of new
One way to do this is by transformation of a password. Note that

directory entries, and modifications to the access list. For
the password itself is not transmitted, but is only used to derive

reasons discussed in Section 5, we will incorporate a hybrid
the encryption key. Alternative approaches, such as equipping

scheme with access lists on directories and additional per-file
each workstation with a peripheral to read encryption keys from

protection bits in our reimplementation of the file system.
magnetically encoded cards carried by users, are also possible.

In addition to authentication, a mechanism to control access is 3.5. Implementation Strategy

needed within Vice. Sharing in a large user community implies Since this paper focuses on high-level issues, we only briefly

that such a rnechanism must allow the specification of a wide touch upon how this design is implemented. The description in

range of protection policies and must provide for easy revocation, this section is organized around three basic questions pertaining

Our design uses access lists for this purpose, to implementation:

1. How does Virtue transparently interpose cached
Entries on an access list are from a protection domain consisting copies of files to application programs?
of Users, who are typically human beings, and Groups, which are

2. What is the structure of a server?.
collections of users and other groups. The recursive membership

of groups is similar to that of the registration database in 3. How do servers and clients communicate?

Grapevine [1]. It simplifies administr_'ion and leads to shorter AS we will be making some changes on the basis of experience

access lists at the cost of complicating the implementation of with a prototype, we indicate both our original approach and the

group manipulation primitives, modifications.

Information about users and groups is stored in a protection 3.5.1. File Intercept and Cache Management

database which is replicated at each cluster server. Manipulation Virtue is implemented in two parts: a set of modifications to the
of this database is via a protection server, which coordinates the

workstation operating system to intercept file requests, and a

updating of the database at all sites, user-level process, called Venus. Venus handles management of

The rights possesed by a user on a protected object are the union the cache, communication with Vice and the emulation of native

43

file system primitives for Vice files. The modifications to the storage of Vice files. Each Vice file is physically represented as

operating system are minimal since Venus provides much of the two Unix files: one containing uninterpreted data and the other,

needed functionality, the .admin file, containing Vice status information. The location
database in our prototype is not explicit but is rc "_resented by

It is possible to implement the interception of file system calls by stub directories in the Vice file storage structure.

recompiling or relinking application programs with a special
The reimplementation will use a separate data structure for the

library of input-output subroutines. Such a mechanism avoids
location database. We will still use the Unix file system to store

modifications to the workstation operating system. We have not
Vice files, but will modify Unix on the servers to allow us to access

adopted this approach because of our desire to support =

proprietary software for which only the executable binaries may files via their low-level identifiers rather than their full Unix +?
pathnames. Our observations of the prototype indicate that this

be available. Further, new releases of the file system software do i

not require us to relink any user or system software. This saves modification is likely to yield significant performance '}

us from a potential administrative nightmare in a 5000 node improvement. !

network. The prototype does not have a protection server, but relies on _

manual updates to the protection database by the operations
In our prototype, Venus uses a simple LRU cache management

staff. The reimplementation will incorporate a protection server.
algorithm with a directory in a workstation's local Unix file system

as cache storage. Since files are cached in their entirety, the 3.5.3. Client-Server Communication

amount of state needed to represent the cache contents is Virtue and Vice communicate by a remote procedure call

significantly smaller than in a typical virtual memory cache or in a mechanism (RPC) [2]. The prototype RPC implementation uses a

file cache where pages of files are individually cached. Venus reliable byte-stream protocol supported by Unix. Whole-file

limits the total number of files in the cache rather than the total transfer is implemented as a side effect of a remote procedure

size of the cache, because the latter information is difficult to call.

obtain from Unix. In view of our negative experience with this

approach, we will incorporate a space-limited cache To overcome Unix resource limitations and thus allow large

management algorithm in our reimplementation, client/server ratios, the revised RPC implementation uses an an

3.5.2. Server Structure unreliable datagram protocol supported by Unix. This

Our prototype implements a cluster server with a collection of implementation closely integrates RPC with the lightweight

Unix processes. On each server there is one Unix process to deal process mechanism mentioned in Section 3,5.2. This allows a

with each user on each client workstation communicating with Unix processs to concurrently perform and service multiple
remote procedure calls, while still maintaining the synchronousthat server. Due to the limitations imposed by Unix, these per-
semantics of RPC with respect to individual lightweight threads ofclient processes cannot share data structures in virtual memory.

File server functions which require such sharing are implemented control within that Unix process. Generalized side-effects are

using a single dedicated Unix process for each such function, supported, whole-file transfer being a particular kind of side.

For example, there is a single lock server process which effect.

serializes requests and maintains lock tables in its virtual memory. Mutual client/server authentication and end-to-end encryption

Experience with the prototype indicates that significant facilities are integrated into the RPC package. These functions

performance degradation is caused by context switching are an integral part of the overall security of Vice and Virtue.

between the per-client Unix processes. In addition, the inability
3.6. Other Design Issues

to share data structures between these processes precludes
Vice provides primitives for single.writer/multi-reader locking.

many strategies to improve performance. Our reimplementation
Such locking is advisory in nature, and it is the responsibility of

will represent a server as a single Unix process incorporating a
each application program to ensure that aft competing accessors

lightweight process mechanism to provide independent per-client
for a file will also perform locking. This decision is motivated by

threads of control Global data in that Unix process will be used
our positive experience with Unix, which does not require files to

to represent data structures shared by the lightweight processes.
be locked before use. Action consistency for fetch and store

The prototype file server uses the underlying Unix file system for operations on a file is guaranteed by Vice even in the absence of

44

lockS. A workstation which fetches a file at the same time that pathnames prior to retrieving the files. Our revised

another workstation is storing it, will either receive the old version implementation will require workstations to do the
pathname traversal themselves.

or the new one, but never a partially modified version.

• Localize if possible
An unfortunate side.effect of trying to emulate the timesharing

paradigm is the need to provide mechanisms to restrict and If feasible, use a nearby resource rather than a
distant one. This has the obvious advantage of

account for the usage of shared resources. The resource we are improved performance and the additional benefit that

most concerned with is disk storage on the cluster servers. We each part of the distributed system is less susceptible
to events such as overloading in other parts.

intend to provide both a quota enforcement mechanism and a file Potentially in conflict with this principle is the goal of
migration facility in our reimplementation; these facilities are not user mobility, which requires data to be easily

Iocatable. A successful design has to balance these
available in our prototype. As use of this system matures, it may two considerations.
become necessary to account for other resources, such as server

The decomposition of Vice into clusters is anCPU cycles or network bandwidth. Until the need for such
instance where we have tried to localize resource

accounting is convincingly demonstrated, however, we intend to usage. Another example is the replication of read-

treat these as free resouces, only subtrees, thereby enabling system programs to
be fetched from the nearest cluster server rather than
its custodian. Caching obviously exploits locality, but

Another area, whose importance we recognize, but which we
we discuss it separately because it is so fundamental

have not had the opportunity to examine in detail yet is the to our design.

development of monitoring tools. These tools will be required to
One may view the decision to transfer entire files

ease day-to-day operations of the system and also to recognize rather than individual pages as a further application

long-term changes in user access patterns and help reassign of this principle. Read and write operations are much
more frequent than opens and closes. Contacting

users to cluster servers so as to balance server loads and reduce Vice only on opens and closes reduces our usage of
cross-cluster traffic. [emote resources.

• Exploit class-specific file properties.

4. Design Principles
It has been shown[13] that files in a typical file
system can be grouped into a small number of easily-

A few simple principles underlie the design presented in this identifiable classes, based on their access and

paper. It should be emphasised these are being presented a modification patterns. For example, files containing
the binaries of system programs are frequently readposteriori, and that the design did not proceed by stepwise
but rarely written. On the other hand temporary files

refinement of these principles. Rather, the principles evolved containing intermediate output of compiler phases

during the course of the design. In the rest of this section we are typically read at most once after they are written.
These class-specific properties provide an

discuss each of these principles and point out instances of their opportunity for independent optimization, and hence
application in our design, improved performance, in a distributed file system

• Workstations have the cycles to burn. design.

The fact that system binaries are treated as
Whenever there is a choice between performing an replicatable, read-only files is a case where this
operation on a workstation and performing it on a priniciple is being used. We may further exploit this
central resource, it is preferable to pick the former.
This will enhance the scalability of the design, since it principle by allowing a subset of the system binaries
lessens the need to increase central resources as to be placed in the local file systems of individual
workstations are added, workstations. Since such files change infrequently,

explicit installation of new versions of these files by

Vice requires that each workstation contact the users is acceptable. The storage of temporary files in
appropriate custodian for afilebeforeoperatingon it. the local, rather than shared, name space of a
There is no forwarding of client requests from one workstation is another instance of a file-specific
cluster server to another. This design decision is design decision.
motivated by the observation that it is preferable to
place the burden of locating and communicating with • Cache whenever possible.
custodians on workstations rather than servers.

Both the scale of the system and the need for user

We will further exploit this principle in the second mobility motivate this principle. Caching reduces
implementation of the system. Currently, contention on centralized resources. In addition, it
workstations present servers with entire pathnames transparently makes data available wherever it is

of files and the servers do the traversing of being currentlyused.

45

comfortable with per-directory access list protection. However,
Virtue caches files and status information about
them. It also caches information about the we have encountered certain difficulties in mapping the per.file

custodianship of files. Though not discussed in this protection supported by Unix to the per.directory protection
paper, our reimptementation will use caching
exten,_ively inthe servers, semantics of Vice. A few programs use the per-file Unix

protection bits to encode application-specific information and are

o Avoidfrequent, system-wide rapid change, hence unable to function correctly with files in Vice. The

The more distributed a system is, the more difficult it reimp_ementation will have per-file protection bits in addition to

is to update distributed or replicated data structures access lists on directories, i
in a consistent manner. Both performance and +
availability are compromised if such changes are

frequent. Conversely, the scalability of a design is The prototype fails to emulate Unix precisely in a few other areas =
enhanced if it rarely requires global data to be t
consistently updated, too. Two shortcomings that users find particularly irksome are

the inability to rename directories in Vice, and the fact that Vice
As discussed earlier, the replicated custodian does not support symbolic links 2. These limitations are subtle
database in Vice changes slowly. Caching by Virtue,
rather than custodianship changes in Vice, is used to consequences of the implementation strategy we chose in the

deal with rapid movement of users, prototype, and will be rectified in our revised implementation.

Another instance of the application of this principle is
the use of negative rights. Vice provides rapid 5.2. Performance
revocation by modifications to an access list at a

For a rapid prototyping eflort, performance has been surprisinglysingle site rather than by changes to a replicated
protection database, good. The prototype is usable enough to be the system on which

all further development work is being done within our user

5. The Protot y pe community.

Measurements indicate an average cache hit ratio of over 80%

Our intent in implementing a prototype was to validate the design during actual use. Server CPU utilization tend._ to be quite high:
presented in this paper. The implementation was done by 4 nearly 40% on the most heavily loaded servers in our

individuals over a period of about one year. In this section we environment. Disk utilization is lower, averaging about 14% on

describe the current status of the system, its performance, and the most heavily loaded servers. These figures are averages over

the changes we are making in the light of our experience, an 8-hour period in the middle of a weekday. The short-term

resource utilizations are much higher, sometimes peaking at 98%

5.1. Status server CPU utilization! It is quite clear from our measurements

The prototype has been in use for about a year, and has grown to that the server CPU is the performance bottleneck in our
a size of about 120 workstations and, 6 servers. More than 400 prototype.
individuals have access to this system at the present time. The

prototype meets the goals of location transparency and user A histogram of calls received by servers in actual use shows that

mobility unequivocally. Our initial apprehensions about relying cache validity checking calls are preponderant, accounting for

solely on caching and whole-file transfer have proved baseless. 65% of the total. Calls to obtain file status contribute about 27%,

Application code compatibility has been met to a very high while calls to fetch and store files account for 4% and 2%

degree, and almost every Unix application program is able to use respectively. These four calls thus encompass more than 98% of

files in Vice. None of these programs has to be recompiled or the calls handled by servers. Based on these observations we

relinked to work in our system, have concluded that major performance improvement is possible

if cache validity checks are minimized. This has led to the

The mechanisms for authentication and secure transmission are alternate cache invalidation scheme mentioned in Section 3.2.

in place, but await full integration. We are awaiting the

incorporation of the necessary encryption hardware in our To assessthe performance penalty caused by remote access, we

workstations and servers, since software encryption is too slow to ran a series of controlled experiments with a benchmark. This

be viable, benchmark operates on about 70 files corresponding to the

source code of an actual Unix application. There are five distinct

The access list mechanism has proved to be a flexible and

convenient way to specify protection policies. Users seem quite 2Notethat symboliclinksfromthelocalnamespaceintoVicearesupported.

46

phases in the benchmark: making a target subtree that is identical In order to simplify day-to-day operation of the system, we will

in structure to the source subtree, copying the files from the introduce the concept of a Volume in Vice. A volume iS 3

source to the target, examining the status of every file in the complete subtree of files whose root may be arbitrarily relocated

target, scanning ever,/byte of every file in the target, and finally in the Vice name space. It is thus similar to a mountable disk

compiling and linking the files in the target. On a Sun workstation pack in a conventional file system. Each volume may be turned

with a local disk. the benchmark takes about 1000 seconds to offline or online, moved between servers and salvaged after a

complete when all files are obtained locally. Our experiments system crash. A volume may also be Cloned, thereby creating a

show that the same benchmark take about 80% longer when the frozen, read-only replica of that volume. We will use copy.on-

workstation is obtaining all its files from an unloaded Vice server, write semantics to make cloning a relatively inexpensive

operation. Note that volumes will not be visible to Virtue
In actual use, we operate our system with about 20 workstations

application programs; they will only be visible at the Vice.Virtue
per server. At this client/server ratio, our users perceive the

interface.
overall performance of the workstations to be equal to or better

than that of the large timesharing systems on campus. However, Finally, the revised implementation will allow closer emulation of

there have been a few occasions when intense file system activity Unix by providing features such as symbolic links, directory

by a few users has drastically lowered performance for all other rename and per-file protection.

active users.

5.3. Changes 6. Relationship to Other Systems

Based on our experience, a redesign and reimplementation effort
A number of different network file system designs have been

is currently under way. While retaining the design at the level o|
proposed and implemented over the last few years, We consider

abstraction presented inthis paper, we will introduce many lower-
a representative sample of such systems here and contrast their

level changes to enhance performance and scalability, and to
design with ours. Due to constraints of space we provide only

allow a more accurate mapping of Unix file system semantics on
enough detail to r_ake the differences and similarities apparent.

Vice, The survey by Svobodova [16] provides a more comprehensive

Some of these changes have been mentioned in Sections 3.5 and and detailed comparative discussion of network file systems.

3.2. These include: The systems we compare are:
• a modified cache validation scheme, in which servers

*Locus[9, 19]. designed and implemented at the
notify workstations when their caches become
invalid. University of California at Los Angeles.

• The Newcastle Connection [3], from the University of
• a single-process server structure, with a low-level Newcastle-upon-Tyne.interface to Unix files.

• The ROE file system [5], currently being implemented
• a revised RPC implementation, integrated with a at theUniversityofRochester.

lightweight process mechanism,

• IBIS [17], which has been partially implemented at
e a space-limited cache management algorithm in Purdue University.

Venus.

• The Apollo system [7], which is a commercial system
Another noteworthy change is the use of fixed-length unique file marketed by Apollo Computers. Inc.

identitiers for Vice files. In the prototype, Venus presents entire • The Cedar File System [15], implemented at the
pathnames to Vice. In our revised implementation, Venus will Xerox Pal• Alto Reseach Center.

translate a Vice pathname into a file identifier by caching the
We compare Vice-Virtue to these systems by presenting their

intermediate directories from Vice and traversing them. The
approach to each of the fundamental design issues mentioned in

offloading of pathname traversal from servers to clients will
Section 3. Such a comparison brings into focus the position that

reduce the Utilization of the server CPU and hence improve the
Vice.Virtue occupies in the distributed file system design space.

scalability of our design. In addition, file identifiers will remain
We do realize, however, that a comparison along specific

invariant across renames, thereby allowing us to support
attributes may omit other interesting features of the systems

renaming of arbitrary subtrees in Vice.
being compared.

4"7

6.1. Naming and Location hence caches individual pages of files, rather than entire files.

All the systems in question support a hierarchical name space,
Systems which cache data need to ensure the validity of their

both for local and remote files. In many cases the naming cache entries. In the Cedar File System cached data i.,; always
structure is identical to Unix. Roe and the Cedar File System

valid, because files are immutable. Higher-level actions by a
provide, in addition, a version number component to names.

workstation user, such as an explicit decision to use a new
Vice-Virtue and Roe provide a Unix-like name structure at the

version of a subsystem, are the only way in which a set of cached
client-server interface and leave open the naming structure on tiles is rendered obsolete. In the Vice-Virtue prototype, a cache
the workstations.

entry is validated when a file is opened, by comparing its

Location transparency is a key issue in this context. In Locus, timestamp with that of the copy at the custodian. Apollo uses a

Vice-Virtue, Apollo and Roe it is not possible to deduce the similar approach, comparing timestamps when a file is first

location of a file by examing its name. In contrast, the Cedar File mapped into the address space of a process. No validation is

System and the Newcastle Connection embed storage site done on further accesses to pages within the file, even though

information in pathnames, IBIS intends to eventually provide these may involve movement of data from the site where the file is

location transparency, though it currently does not do so. stored. For reasons mentioned earlier, Vice-Virtue intends to

reverse the order of cache validation, requiring servers to
Location transparent syst ms recluire a mechanism to map invalidate caches on updates.
names to storage sites. In Vice.Virtue. there is clear distinction

between servers and clients. Every server maintains a copy of a Replication can take forms other than caching. In Locus, for

location database which is used to answer queries regarding file instance, entire subtrees can be replicated at different sites.

location. Clients use cached location information as hints. Roe Updates are coordinated by only one of these sites. In case of

logically provides a single server which maps names to storage network partition, updates are allowed within each of the

sites, but this server may be implemented as a collection of partitioned subnets. A conflict resolution algorithm is used to

processes at different nodes. The Apollo system uses a merge updates after the partition is ended. Vice-Virtue also :

collection of heuristics to locate objects. Looking up a pathname provides read-only replication of subtrees, but does not allow i
in a directory yields a low-level identifier which contains a hint replicated copies to be updated during partition, i

regarding the location of the object, Locus does not distinguish
ROE uses weighted voting to verify the currency of replicated

between servers and clients, and uses a location database that is
data and to determine whether a copy of a file can be updated in

replicated at all sites.
the presence of network or server failure. IBIS supports

replication, but the published literature does not provide details
I 6.2. Replication
I: of the mechanism.

The replication of data at different sites in a distributed system

offers two potential benefits. First, it offers increased availability,
6.3, Functionality of Interfaces

by allowing alternate copies to be used when the primary copy is
All the systems being compared provide application programs

unavailable. Second, it may yield better performance by enabling with the same interface to local and remote files. One may, in
data to be accessed from a site to which access time is lower.

fact, view this as the defining property of a distributed file system.
1he access time differential may arise either because of network There is considerable latitude, however, in the manner in which
topology or because of uneven loading of sites.

this interface is mapped into the inter-machine interface.

The Cedar File System and Vice-Virtue use transparent caching In systems such as Locus and the Newcastle Connection, the

of liles at usage sites to improve performance. In Vice-Virtue inter-machine interface is very similar to the a_oplication program

'ii caching is also important in meeting the goal of user mobility, interface. Operations on remote files are forwarded to the

i:!I ROE and a proposed extension of IBIS support both caching and appropriate storage site, where state information on these files is

I,,(migration of files. Migration differs from caching in that it is maintained. The current implementation of IBtS is similar.

explicitly initiated by users and involves only data movement, not

replication. IBIS views cachability as a file property, thereby The Apollo system maps files into virtual memory. Its remote

providing the opportunity for users tO mark frequently updated interface is essentially a page fault/replace interface, with

shared files as being not cachable. Apollo integrates the file additional primitives for cache validation and concurrency

system with the virtual memory system on workstations, and control. ROE's intermachine interface support caching and

z_8

migration, but it is also possible to have a file opened at a remote is provided by a user-level cache manager process. Vice is

site and have individual bytes from it shipped to the local site. implemented with user-level server processes, As mentioned

earlier, the reimplementation will have a small number of kernel
Cedar and Vice.Virtue are similar in that their inter-machine

modifications, solely for pertormance reasons,
interfaces are very different from their application program

interface. Cedar uses a predefined file transfer protocol to fetch
7. Conclusion

and store files on network servers. This has the advantage of

portability, and allows existing file servers to be used as remote The highlights of this paper are as follows:
sites. Vice-Virtue has a customized interface at this level.

o Our primary concern is the design of a sharing
mechanism for a computing environment that is a

6.4. Security synthes_s of the personal computer and timesharing
paradigms.

With the exception of Vice-Virtue, all the systems discussed here

trust tile hardware and system software on the machines they run • We support sharing via a campus-wide location

on. User processes authenticate themselves at remote sites transparent distributed file system which allows users
to move freely between all the workstations in the

using a password. Tile acquisition and forwarding of the system.

password is done by trusted software on the client sites. The
• Scale, security and performance are the hardest

remote site is trusted without question by the client, problems in this system. The need to retrofit our
mechanisms into existing operating system

The IBIS description mentions a connection setup procedure that interfaces and the need to support a heterogeneous
environment are additional constraints on our design.

prevents stealing of connections by malicious processes.

However, the procedure assumes the presence of a trusted • Whole-file transfer and caching are important design

process at each end, with an existing secure channel of features that jointly address the issues of
performance and scale. Clustering to exploit locality

communication between them. of usage and the replication of read-only system files
are two other design features motivated by the same

Since workstations are not trusted in Vice-Virtue, mutual issues.

authenticity is established by an _.ncryption-based handshake
• The design incorporates mechanisms for

with a key derived from user-sup lied information. Once a authentication and secure transmission that do not

connection is established, all further communications on it is depend on trusted workstations or a secure network.

encrypted. A flexible access control mechanism is also provided.

• We have implemented a prototype of this design and
For access control, Locus, the Newcastle Connection and IBIS it is in day-to-day use by a small user community.
use the standard Unix protection mechamsm. Apollo, Vice- Experience with the prototype has been positive, but

Virtue, Cedar and ROE use more general access lists for has also revealed certain inadequacies. These
shortcomings arise on account of certain detailed

specifying protectionpolicies, implementation decisions in our prototype rather
than tundamental design deficiencies.

6.5. Implementation Strategy • A comparison with other distributed file systems
In IBIS and the Newcastle Connection the interception of file reveals that although this design has individual

system calls is done by linking application programs with a features in common with some el tile other systems,
it is umque in the way it combines these features to

special library of routines. The intercepted calls are forwarded to produce a total design. It is further distinguished
user-level server processes at remote sites. Irom all the other systems in that it does not rely on

the trustworthiness of all network nodes.

In contrast, Locus is implemented as an extensive modification of
The success of our prototype has given us confidence in thea standard Unix system. The operating system itself does the
viability of the design presented in this paper. Our currentinterception of remote file system calls and handles file requests
reimplementation effort is essentially a refinement of this design.from remote sites. Apollo uses a customized operating system,
We anticipate our user population to grow by an order of

with buittin remote access capability. The available literature on
magnitude and span the entire CMU campus in the next two

ROE does not provide implementation details.
years.

File system interception in Virtue is done by the kernel, hut most

of tile functionality needed to support transparent remote access

49

[10] Rashid, R.F. and Robertson, G.R.

Accent: A comrnunication oriented network operating
Acknowledgements system kernel.

In Proceectmgs of the Eighth Symposium on Operating
Dave Gifford and Rick Rashid played an System Principles. December, 1981.
important role in the early discussions

[11] Ritchie, D.M. and Thompson, K,
that led to the design described here. The UNIX Time-Sharing System.

Dave King was part of the team that Bell System Technical Journal57(6), July-August, 1978, {

implemented the prototype. Richard [12] Satyanarayanan, M.

Snodgrass provided valuable comments A Study of File Sizes and Functional Lifetimes.
In Proceedings of the Eighth Symposium on Operating

on an initial draft of this paper. System Principles. December, 1981.

This work was funded by the IBM [13] Satyanarayanan, M.
A Synthetic Driver for File System Simulation.

Corporation. In Proceedings of the International Symposium on
Modelling Techniques and Performance Analysis,
INRIA, Paris. North-Holland, 1984.

[14] Satyanarayanan, M

a e f e re n c e s The ITC Proiect: A Large-Scale Experiment in Distributed
Personal Computing.

[1] Birrell. A, Levin, R., Needham, R. and Schroeder, M. In Proceedings of the Networks 84 Conference, Indian
Grapevine: An Exercise in Distributed Computing. Institute of Technology, Madras, October 1984. North-
In Proceedings of tt_e Eighth Symposium on Oper,lting Holland, 1985 (to appear).

System Principles. December, 1981. Also available as ITC tech report CMU-ITC-035.

[2] Birrell, A.D. and Nelson, B.J. [15] Schroeder, M.D., Gifford, D.K. and Needham, R.M,
Implementing Remote Procedure Calls. A Caching File System for a Programmer's Workstation.
ACM Transactions on Computer Systems 2(1):39-59, In Proceedings ot tne Tenth Symposium on Operating

February, 1984. System Principles. December, 1985.

[3] Brownbridge, D.R., Marshall, L.F. and Randell, B. [16] Svobodova, L.
The Newcastle Connection. File Servers for Network-Based Distributed Systems.

Sottware Practice and Experience 12:1147-1162, 1982. Computing Surveys 16(4):353-398, December, 1984.

[4] Cheriton, D.R. and Zwaenepoe;, W. [17] Tichy, W.F. and Ruan, Z.Towards a Distributed File System.The Distributed V Kernel and its Performance for Diskless
Workstations. Technical Report CSD-TR.480, Computer Science

Department, Purdue University, 1984.
In Proceedings of the Ninth Symposium on Operating

System Principles. October, 1983. [18] Voydock, V.L. and Kent, S.T.

[5] Ellis. C.A. and Floyd, R.A. Security Mechanisms in High-Level Network Protocols.
The ROE File System. Computing Surveys 15(2):135-171, June, 1983.

In Proceedings of ttTe3rd Symposium on Reliability in [19] Walker, B., Popek, G., English, R., Kline, C. and Thiel, G.
Distributed Software an_f Database Systems. October, The LOCUS Distributed Operating System.
1983. In Proceedings of the Ninth Symposium on Operating

[6] Jones. A.K. and Gehringer, E.F. (Editors). System Principles. October, 1983.
The Cm ° Multiprocessor Prelect: A Research Review.
Technical Report CMU-CS-80-131, Department of

Computer Science, Carnegie.Mellon University, July,
1980.

[7] Nelson, D.L. and Leach, P.J.
The Architecture and Applications of the Apollo Domain.
IEEE Computer Graphics and Applications, April, 1984.

[8] The Task Force for the Future of Computing, Alan Newell
(Chairman).
The Future of Computing at CarnegieMellon University.
February 1982.

[9] Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C.,
Rudisin, G. and Thiel, G.
LOCUS: A Network Transparent, High Reliability

Distributed System.
In Proceedings of the Eighth Symposium on Operating

System Principles. December, 1981.

5O

