CMU-ITC-86-045

TUTORIAL. MATERIALS
- USENIX TECHNICAL. CONFERENCE
Denver;. Colorado: January 15-17,.1986

LARITIIN LB AT AL AR AR AL e o A KA AR

-WMIXN.’- [X Sl 54

AL s LB - T) Y RIEATN a §SE

Windowing
- Systems
Implementations

i

)

d

Window System Implementations

Denver Usenix Course Notes

David S. H. Rosenthal

Sun Microsystems
2550 Garcia Ave.
Mountain View CA 94043

ABSTRACT

Notes for a course given at the 1986 Winter Usenix meeting in
Denver, CO. It covers window systems for Unix, primarily those for
4.2BSD, from the point of view of an application developer wishing to
use one (or more).

1. Introduction

This course covers the implementation and facilities of window systems for 4BSD
UNIX.t It is not intended for someone intending to implement a new window system,
but rather for an application developer needing to understand the range of facilities avail-
able, the strengths and weaknesses of the current systems, and techniques that can be
used to write programs which are easier to port between window systems.

1.1. To the Course
The course is organized roughly as follows:

« Survey — in which we examine some typical examples of the genre, for use as exam-
ples in the discussion. The systems in question are:
e The Sun window system
« Oriel, from Whitechapel Computer Works
o Andrew, from Camegie-Mellon University
« X, from MIT.

Others, such as the Blit, the LucasFilm system and those developed at Stanford will
also be touched on.

« Programmer’s Model — in which the surveyed systems are used to illustrate a generic
model of a window system for Unix. The model covers three main areas:
e Output
e Input
o User’s Interface

 Implementation — in which a grab-bag of techniques that have proven useful in
implementing window systems, and a range of common problems, are described.

« Writing Portable Programs — in which the diversity of programming interfaces
among the systems is re-examined and some hints for survival in this world set out.

1.2. To the Author

This course represents a personal view of the range of window managers for 4BSD, and

the opinions expressed are my own. To provide some insight into why I take these posi-
tions, here is a brief curriculum vitae:

I started computer graphics in 1968 on a PDP-7 with a DEC 340 display attached to
Cambridge University’s late lamented TITAN. I went on from there to doaPh.D.onan
application of hidden-line removal on a CDC 274 display driven via a CDC 1700 from
the University of London’s CDC 6600. :

Next came research in the University of Edinburgh’s Architecture Department, using
Tektronix terminals driven initially from a PDP-10 and later (oh, joy!) from a PDP-11/60
running (hurrah!) UNIX Version 6-and-a-bit. Better graphics, more complex UNIX sys-
tems, and a VAX gradually came along to make our life better. However, I solved this
problem by getting involved with the development of the GKS graphics standard, rising

t UNIX is a trademark of Bell Laboratories.

-3.

through the ranks to become the chairman of the British standards committee dealing
with GKS.

I had also been working on window-manager style graphics systems using the Tek termi-
nals, inspired by some film Alan Kay showed of Smalltalk in action. All these attempts
really showed was that to do these things you needed better hardware so, when Sun
started up and the Stichting Mathematisch Centrum in Amsterdam ordered some, I

moved there for a year to write a window manager for them. A year later I had lots of
good ideas, butno Suns!

I returned to Edinburgh for a while and then moved to Carnegie-Mellon. IBM had
funded the Information Technology Center to spread high-powered workstations across
the campus and at last I had found somewhere that really had machines (Suns) on which I
could write a window manager. But the ITC also had someone else who thought it would
be a good idea to write a window manager, so I got to kibitz while James Gosling wrote
one. Ineffect, I was the user of the system for a while.

Two years later, James had moved to Sun to write the next generation of window

managers. As it was starting to come together, he discovered a need for a user to test it,
and so.......

1.3. To the Sources

The material for this course was assembled from a number of sources, and a bibliography
will be provided. However, there are a few sources that deserve special attention:

* In December 1984 Usenix sponsored a workshop on Unix and Graphics at Monterey,
CA. It led to some fruitful discussions but, unfortunately, the proceedings were
never published. A second workshop was held in December 1985 (after the copy
deadline for these notes), and these proceedings are available from Usenix.

* In April 1985 the Alvey Directorate, responsible for the British ‘5™ Generation’’
project, sponsored a useful workshop on window managers at Abingdon, near
Oxford. The proceedings of this workshop are being published by North-Holland.
Special thanks are due to the Rutherford Laboratory, for hosting the workshop,
David Duce, for recording the proceedings in readable form, and among the atten-
dees to Dominic Sweetman of Whitechapel Computer Works, Colin Prosser of ICL,

and Warren Teitelman of Sun Microsystems for volunteering their hardware and
software as sacrificial victims.

* During the development of the Andrew window system at C-MU, a vast amount of
feedback and many design suggestions were received from the application developers
trying to use it. Special thanks are due to the ITC’s user interface group, James Gos-
ling (who built the original server and editor), Fred Hansen, Bruce Lucas, Andy
Palay, Thom Peters, and Jim Peterson, to the Center for the Design of Educational
Computing (Bruce Sherwood, Tom Neundorffer, and Chris Koenigsberg), to Sandra
Bond of the Communication Design Center, to Dan Boyarski and his graphic design
students, and to the numerous groups on campus who are building educational
software in the Andrew environment.

* During the development of MIT’s X window manager, a series of discussions was
held between teams from MIT’s Project Athena and the ITC. Special thanks are due
to Jim Gettys of Project Athena, who participated in them all. The useful results are

(I hope) visible in the design of X.

A on 10808 b M oL M ALR D,

[T

PRRIRONN

TR

2. Survey

Window systems for UNIX have been implemented in two very different ways.

* Some give client applications the impression that the pixels on the screen are in their
address space, and can be manipulated directly. They use major kernel extensions,

and typically link large libraries of graphics operations into every client process. I
call these systems kernel-based .

* Some use the 4.2BSD socket mechanism to implement a network window service,
permitting clients to use remote procedure calls (RPCs) to operate on pixels which
are clearly not in their address space. I call these systems window servers.

The following survey covers two of each type in some detail, identifying the com-
ponents that are supplied, the facilities implemented by the library or server, the extent

of any kernel support required, and the portability of the system. We start with the
kernel-based systems.

2.1. SunWindows

SunWindows has been developed by Sun Microsystems to support their range of
4.2BSD-based workstations. The machines use the MC68010 and MC68020 processors
and a range of displays, some of which appear to be memory, and some of which have
various kinds of RasterOp support hardware. None have cursor support hardware.

The system was the first widely used window system for 4.2BSD. Among kernel-based
systems it is the most mature, and it is still evolving. This description refers primarily to
Release 2.0; Release 3.0 is in beta-test, it includes significant extensions to the upper
layers of the system, and several new clients. Steve Evans was very helpful in correct-
ing some of my misunderstandings of the system.

2.1.1. Components of the SunWindows System

SunWindows consists of a library, a set of client programs built using the library, a dae-
mon program, and a set of kernel modifications to support them. The system is imple-
mented as a set of layers:

* Windows - a hierarchy of overlapping rectangular regions of the screen, each capable
of manipulation as a unit. Each display is represented by a single root window.

* Sub-windows - a non-overlapping division of windows into areas that can be drawn
in and that can supply input events.

* Pixwins - overlapping rectangles with associated locking and clipping. The basic
level at which shared screen access is implemented.

¢ Pixrects - a device-independent representation of bitmaps and the operations on them.

A number of other components fit into this structure: h

¢ Windows, subwindows, and Pixwins are implemented using extensive kernel sup-
port. The kernel maintains the window placement tree, arbitrates access to shared

resources, and routes input to the /dev/win * files corresponding to the window
with the input focus.

The user interface to window manipulation uses special cursor icons, pop-up menus
and the mouse. It is implemented using subwindow-level code that is linked into

every client.

The user enters the SunWindows environment by running a program called sun-
tools. This program grabs the keyboard and the mouse, enables the kemnel sup-
port, and owns the root windows, painting them as requested in desktop grey.

2.1.1.1. The Libraries

The libraries implementing the various levels of the layered structure provide the follow-
ing facilities:

Client programs operate in windows, which are rectangular regions that may overlap
on the screen. Each window corresponds to a device file /dev/win *. Mouse and
keyboard events are demultiplexed by the kernel and routed to the appropriate one of

these devices. When windows change size, or become exposed, the client is notified
and must re-paint the image.

Clients may divide their windows into subwindows, which tile the window. They
are also associated with device files, and behave in other ways just like windows'.
Subwindows may be occupied by a library of pre-defined panels, implementing
behaviours such as text panes, button arrays, and so on. Subwindows may specify
the shape of the cursor when it is inside them. Input events may be received from
subwindows., and they may implement pop-up menus of various kinds.

The output aspects of subwindows are implemented using Pixwins ; structures encap-

sulating the clipping and locking necessary to arbitrate access to overlapping rectan-
gles on a display shared between multiple processes.

Pixwins are implemented using Pixrects ; structures encapsulating the storage of rec-

tangular bitmaps together with the implementations of suitable RasterOps to paint in
them.

2.1.1.2. The Clients

As it has evolved, SunWindows has acquired a large number of clients. The most
important Sun-supplied ones include:

L)

shelltool - aterminal emulator window.

gfxtool — a program that establishes a window and runs a program that takes it
over as a window to do graphics in.

tektool —emulates a Tektronix 4014 terminal for backwards compatibility.

dbxtool — a panel-based interface to the dbx debugger, interacting in one panel
and displaying the program text in another.

clocktool —the canonical window program.

perfmeter & perfmon - two different styles for displaying system perfor-
mance parameters.

icontool - a bitmap editor, useful for creating the icons that represent closed
windows.

* - In fact, they are implemented using the same kernel support as windows. The restriction that
they not overlap is imposed by the user-level libraries.

-7-

* fonttool —an editor for fonts in the vfont format.

The 3.0 release includes a number of new tools based on scrolling text panels, including
a shell interface and a text editor. Tools based on these panels implement inter-window
cut-&-paste (implemented using a special daemon called the selection service).

2.1.1.3. The Utilities

SunWindows provides many utilities, for manipulating raster image files, desktop
specifications, and so on. Two are worthy of special note:

adjacentscreens — allows a user to specify the relative location of multiple
displays, so that the mouse will track smoothly across their boundaries.

lockscreen - a program that keeps the screen dark and unusable until the pass-
word owner returns.

2.1.1.4. The SunTools program

In SunWindows, the root window on each display is just a window like any other, and it
too must be repainted when it is damaged. The program that does this is called sun-

tools; it is the command the user executes to enter the SunWindows environment. It
has several functions:

It initializes the window environment by grabbing the mouse and the keyboard and
enabling the kernel support.

It starts up the user’s default windows according to specifications in a profile file.
* It repaints the desktop grey background when it gets damaged.

* Itimplements the menu that pops-up over the desktop. This provides for starting new
instances of the common clients, for re-painting the entire display, and for shutting
down the environment gracefully.

2.1.2. Facilities of the SunWindows Library

The SunWindows libraries are intended to support three rather different areas:
* A device-independent interface to bitmap operations.

* Windows and their manipulation.

* A user-interface toolkit of panels of various types.

2.1.2.1. Device Independence

The device-independent interface to bitmap operations is the Pixrect:

struct pixrect {

struct pixrectops *pr_ops; /* operations appropriate to this pr */
struct pr_size pr_size; /* pixels per dimension */

int pr_depth; /* bits per pixel */

caddr_t pr_data; /* device-dependent pixel-access */

};

It describes a stored bitmap, and points to the set of operations appropriate to manipulate
it. The operations include:

* Create and destroy Pixrects.

* Read and write individual pixels.

» RasterOp, with or without a mask bitmap.

* Replicate a source pattern.

* Draw a straight line and a polyline.

* Draw text in a selected font (but with no shimming).

+ Fill an area bounded by a polygon or a trapezon ; a trapezoid-like figure whose non-
parallel sides are specified by chains that can describe curve approximations.

e Make a new Pixrect representing part of an existing one.
* Manipulate the color map for a Pixrect.

Note that the encapsulation of both the storage of and the operations on a bitmap allows

the Pixrect level to present a uniform interface to higher-level software that supports both
monochrome and color displays.

2.1.2.2. Windows
The window support in the library can be divided into three main areas:

+ Pixwins, an extension of Pixrects to cover the requirements of overlapping and shar-
ing between multiple processes.

* A user interface to window manipulation.

* A device-independent interface to input events, both from the mouse and keyboard,
and synthetic events.

Windows at this level are represented by /dev/win * files and many of the operations

involve special semantics for the read(), write(),and ioctl () system calls
on these files.

2.1.2.2.1. Pixwins

To support overlapping and multi-process access to Pixrects, the Pixwin structure adds
to the basic pixrect structure: :

* pointers to the shared objects (the display device and the color maps),
* an optional pointer to a pixrect used to retain a pristine copy of the bitmap,
+ and a set of operations to lock, unlock, and get the clip list.

Before drawing in a Pixwin, a client must lock it. The lock call may block, but when it
returns it supplies the clip list and guarantees not to make changes to the display that
would invalidate the list until the client unlocks. A client observing the locking protocol

and the clip lists will behave correctly even though it may be overlain by other windows,
and may be sharing the color map with them.

2.1.2.2.2. Window Manipulation

Linked into every client is code implementing the user interface to window manipula-
tions. A window can be open, or closed into an icon. Windows may be moved, resized,
pushed to the bottom of the window stack, and popped to the top. All these operations
are available from menus that pop up wherever the client has not specified some other

m

-9.

menu. By convention, clients draw a border around their active areas, and do not
specify their menus there.

2.1.2.2.3. Input

Just as there are problems with different display devices, there are problems with dif-

ferent keyboards, mice, tablets, and so on. SunWindows supports a wide range of input
devices in two ways:

* By virtualizing the input devices so that they all generate events. An event is
represented by a structure:

typedef struct inputevent {
short ie_code; /* input code */
short ie flags;
short ie_shiftmask; /* input code shift state */
short ie_locx, ie locy; /* locator (usually a mouse) position */
struct timeval ie_time; /* time of event */

} Event;

The code defines the type of event, such as an ASCII keypress, a mouse button tran-
sition, a mouse motion, or a synthetic event such as a window boundary crossing.
: The rest of the event contains the state of the shift, meta and function keys, the loca-
| tion of the mouse, and the system time at the occurrence of the event. Note that this
structure allows for many styles of input handling, including multi-clicking, modify-
ing the effect of mouse clicks by holding down function keys, and so on. .

* by serializing them into a single stream and distributing events from this stream to the
appropriate window. Clients read event structures from their /dev/win * file
descriptors; the particular file an event gets sent to is normally determined by the
window the mouse is in at the time. In fact, there are two separate /nput Foci, one
directing keystrokes and the other mouse and menu events.

Clients are expected to field window crossing events, and paint their boundaries and
carets to indicate whether they have the input focus. This poses a performance prob-
lem; moving the mouse between two windows requires the process with the old win-
dow to be scheduled to show that it has lost the focus, and then the process with the
new window to be scheduled to show that it has acquired it.

2.1.2.3. Panels

The user interface toolkit in the SunWindows library allows applications to be assembled
rapidly from pre-defined panels and pop-up menus. It consists of:

* acore program that maintains a dynamic structure of panels
* adefined interface between the core and panels
* alibrary of pre-defined panels.

The core fields re-paint requests and calls routines defined by each panel to perform
them, and reads all input events, calling the routines nominated by the panels to receive
{ the different event types.

-10-

2.1.2.3.1. Panel types

Pre-defined or application-specific panels may be created and composed according to a
number of geometric attributes. They may be just wide or high enough to fit their con-
tents, to fill the window with a specified margin, to occupy a specified proportion of the
window, and so on. The panel types supported include:

* message — displaying a text string

* button — displaying a click-able button whose image may be a string or an icon.

+ choice — displaying a menu of click-able buttons whose images include a selection
feedback.

 slider — displaying a bar with a pointer that may be dragged between a low and a high
value.

» text —displaying text that may be edited.

2.1.2.3.2. Menus

SunWindows supports menus that pop-up on the right mouse button in a number of
styles, including a hierarchical pull-right style. The images of items in a menu may be

graphic or text. The menus that pop-up are a property of the window the mouse is in
when the button is pressed.

2.1.3. Kernel Support Required by the SunWindows Library

The kernel support for SunWindows is extensive and somewhat complex. In outline, the
kernel maintains a separate hierarchy of panes (Sun calls them windows, but this is
somewhat confusing) for each display. At each level of the hierarchy, panes overlay
their older siblings. Child panes overlay their parents, but are clipped to their parent’s
outline. The root pane represents the display surface. Panes may be detached from the

hierarchy, in which case they are invisible, and may be inserted in arbitrary positions in
the hierarchy. System calls are provided to:

» Interlock between multiple processes attempting to access shared data. The shared
data includes the pane hierarchy, the color map, and the pixels on the display surface.
Note that the integrity of the display is entirely dependent upon clients locking
around their accesses to these resources; there is no mechanism for enforcing lock-
ing. The care taken by each client to determine a suitable granularity for these lock
operations is important to overall system performance. Locking at a fine granularity,
for example round each RasterOp, results in excessive system call overhead. Lock-
ing at a coarse granularity results in other processes waiting unreasonable lengths of
time to access the display. Locks held too long are broken by a time-out, safeguard-
ing the system from completely anti-social clients. '

» Create & destroy panes by opening and closing their associated /dev/win * files.
* Insert and remove panes from the hierarchy.
* Associate cursor images with panes.

* Read and mask events from the /dev/win * file. The window system multiplexes

keyboard and mouse events into a single stream of events, and distributes them to the
pane holding the keyboard focus or containing the mouse.

- 11 -

A newly inserted pane must be painted. It may be (partially) overlapped by other panes,
and so must be clipped to a set of rectangles. A system call is provided to enable a pro-
cess to discover the set of clip rectangles it must use. Note thar the integrity of the

display is entirely dependent upon clients observing these clip lists; there is no mechan-
ism for enforcing them.

As panes are removed and inserted in the hierarchy, the overlapping relationships
change, and parts of underlying panes become visible. The processes owning these
panes are notified using a special signal (SIGWINCH), and must then use a special sys-
tem call to discover the part of their image that needs re-painting. This mechanism is
also used to re-size panes. Note that the integrity of the display is entirely dependent on
the clients responding to SIGWINCH, inquiring the extent of the damage and the new
clip list, and re-painting their image.

The SunWindows libraries are rather large, and it is also necessary to link complete dev-
ice drivers for all possible Sun displays, and all the window manipulation code, into
each client program. This results in a very large process (400+K of text) behind each
window. Users will want many windows, and will thus run out of swap space, quite
apart from the performance problems of paging the same code in over and over again. In
the absence of shared libraries, Sun has attacked this problem by linking most applica-
tions into a single object file that acts (for example) as the shell tool if it is called
shelltool and as the debugging tool if it is called dbxtool. The text for all
instances of this merged tool is shared, achieving some of the benefits of shared libraries

in reducing swap space and paging load. Of course, this technique is generally applica-
ble; it requires no special kemel support

2.1.4. Porting the SunWindows System

The SunWindows system has not been ported to other workstation architectures, but has
been ported to a number of different displays. Doing so involves creating a Pixrect
Driver for the display. The Pixrect level of the system defines a common data structure
to represent bitmaps, and a set of operations for manipulating them. Many Sun displays
appear just like memory, and may use a pre-defined memory RasterOp to implement
these operations; other displays may require custom code for some or all operations. In
principle, this interface hides the display-dependent details such as byte and pixel order.

The new Pixrect driver must be linked into all applications that may use the device, and
at least some minimal version of it must be linked into the kernel to support cursor track-
ing.

The only other parts of the system that are significantly machine-dependent are the low-
level mouse and keyboard drivers. As none of the Sun displays have hardware cursor
assistance, the mouse drivers have to paint the cursor into the bitmap themselves, and
perform the necessary interlocking with the client’s RasterOps. This is a major over-
head, but exploiting cursor hardware would need significant changes to the drivers.

2.2. Oriel

The Oriel window system has been developed by Whitechapel Computer Works, a Brit-
ish workstation company. It is supplied as part of the 4BSD-based operating system on
their low-cost NS32016-based MG-1 workstation. The machine has a number of

-12-

interesting features, in particular the display is refreshed from main memory via a page
map, and a Z-80 processor off-loads the CPU by providing autonomous mouse-tracking
with a video-mixed cursor.

The system is of interest for this course because it represents a library-based window sys-
tem with a more coherent structure than SunWindows, and a very different type of ker-
nel support. What follows is a summary of the information in the Release 2.0A manuals
for Oriel, kindly supplied for this course by Dominic Sweetman of WCW, and in his
presentation to the Alvey workshop.

2.2.1. Components of the Oriel System

The Oriel system supplies a number of components. They include a library of graphics
and input operations, a number of client and utility programs built using this library, a
window-manager daemon process that provides a user interface to window manipulation
operations, and a kernel driver (panelist) that supports them all.

The system supports two key concepts. Applications operate in terms of panels, rec-
tangular regions that may become visible. An application obtains one or more root
panels from the window manager daemon, and can subdivide them into child panels. It
can pass ownership of panels to other processes, attach bitmaps to them, perform graph-
ics operations on the bitmaps, and obtain input events from them.

Users operate in terms of windows, overlapping rectangular regions of the display with
or without a border containing controls. When an application obtains a root panel, the
daemon will decorate its border with other panels. It owns these panels, and they form a
standard set of buttons. The corner areas of the border are identical for all windows; they
are used to signal the daemon to move, re-size, and pop or push the window in the
stack. The remaining border areas are used at the application’s option for scroll and split
controls. The total set of panels is manipulated as a whole, and forms a window. In this
way the user sees a uniform Mac-like interface to window manipulations; they are all

performed by the daemon, which has resource names for and creator’s rights to all root
and control panels.

2.2.1.1. The Library

The Oriel library provides functions in a number of groups:

* Graphics functions in bitmaps, including RasterOp, text and line-drawing.

* The Panelist interface, permitting panels to be divided into child panels, bitmaps to
be assigned to panels, input events obtained from panels, and panels to be destroyed.

¢ The interface to the Window Manager Daemon, providing for processes to request
the creation of windows, and to obtain the corresponding root panels. This interface

also provides operations on windows and icons such as push, pop and resize,
specifically for use by the window manager daemon itself.

+ The Toolkits, encapsulating the common uses of the facilities provided in the previ-
ous sections in easy-to-use form:

+ Basic Tools, encapsulating the operations required to create graphics and TTY
emulator windows, endow them with icons and other attributes, manage their
event queues, and deal with their interactions with the minutiae of UNIX, such as

-

-13-

the signal mechanism.

Border Styles, implementing a standard form for the optional controls on win-
dows. These are vertical and horizontal scroll bars, and controls for creating,
destroying and moving splits. Applications using these border styles get an

extended set of input events including ‘‘window scroll up’’ and ‘horizontal split
moved”’.

Menu Package, implementing a single-level pop-up menu style, with menu
items as either text or icons.

2.2.1.2. The Clients
The Oriel system provides a fairly limited number of clients:

newwin —a TTY window interface to the shell and other UNIX commands. It uses
the panelist’s built-in VT100 emulator to support termcap programs such as vi.

* console —aTTY window interface to /dev/console messages.
* draw - aMacPaint subset.

* iced —icon and cursor bitmap editor
* clock

* calc - apocket calculator
* petal, saddle - spirograph windows

2.2.1.3. The Utilities

The utilities mostly manipulate the desktop:

* desksave -save the current desktop layout for later re-creation.
* pattern -change the desktop pattern.

¢ prtsc —dump screen for Epson printer.

* show — temporarily pop all icons to the top, to help find the one you want.
* tidy - arrange the icons neatly.

2.2.1.4. The Daemon

* wmgr — A daemon process that manages the desktop, responding to user interactions
to allocate screen space and to process’ requests for new panels.

2.2.2. Facilities of the Oriel Library

The Oriel library duplicates some facilities available in 4.2BSD, because it was origi-
nally implemented under 4.1. For example, it uses PTYs as an IPC mechanism.

2.2.2.1. Graphics functions

Oriel’s graphics functions are performed on bitmaps, storage structures private to user
processes. For them to become visible, the raster must be attached to a panel, and the
panelist notified that the panel has changed. It will then copy the changed parts to the
screen. The operations supplied include:

-14 -

* RasterOp, with the source optionally being a tile that is replicated as required to fill
the destination with pattern.

* Line, Arc, and Circle, all single-pixel wide.
* Fill aregion of contiguous black or white pixels with a pattern.

* Text in a specified font. No support is provided for shimming justified text; it would
have to be painted a character at a time.

2.2.2.2. The Panelist interface

To make bitmaps visible, they must attached to panels. The Panelist interface functions
provide for:

* dividing panels into child panels.

¢ attaching bitmaps to panels.

* destroying panels.

* obtaining input events from panels.

* dividing panels into regions with associated cursors.

* attaching the VT100 emulator to a panel (thereby creating a new TTY-like device
/dev/ttyv * capable of supporting termcap style applications).

2.2.2.3. The Interface to the Window Manager Daemon

The window manager daemon performs screen space allocation. It owns a panel
representing the entire physical display, creates sub-panels in response to requests from
processes requiring new windows, and allocates them screen space in response to
requests from the user. It implements the user’s interface to operations such as hide,
expose, and re-shape windows. In principle, different daemons could be provided to
implement different user interfaces and window layout policies. The daemon interface
provides functions to: :

* Create & Destroy windows. Processes build trees of panels to form their displays.
Actual screen space can be allocated only to the root of such a tree. To obtain a root
panel, a process performs remote procedure calls on the window manager daemon
specifying the maximum size, initial position, etc.

+ Change window ownership. Windows are named by handles, small integers returned
by WindowCreate () . The name space 1s global, so any process may name any
window. To perform operations that change a window’s state, a process must be

 either the creator or the owner. Typically, a window is created by the window dae-
mon, which then hands-off ownership to the process requesting the creation.
Processes can also transfer ownership of windows to their children.

* Pop & Push windows. Windows are arranged in a stack on the desktop, and the win-
dow manager can manipulate this stack.

* Re-size windows. When creating a window, a process specifies the maximum size it
will attain. This information is required so that the necessary bitmaps can be allo-
cated. The window manager interacts with the user to assign an actual size and posi-
tion. These actual sizes can be changed by user actions; the process can inquire the
current values, and ask to be presented with events when changes occur.

-15-

Move and show icons. A process requesting a window can associate with it an icon .
>From the process’s point of view this is just another panel, but the window manager
treats it differently. It isn’t decorated with controls, and it is included in the set of
panels to which icon operations apply.

Stow and unstow windows from icons. The window manager can map (make visible)
and un-map the collection of panels forming a window. It typically does so in
response to clicks on the associated icon. Icons remain visible on the desktop
irrespective of whether their windows are visible.

2.2.2.4. The Toolkits

2.2.2.4.1. Basic Tools

The basic toolkit provides the common sequences of operations that applications use
to access windows (in the looser general sense):

Create and destroy windows, both graphical and VT100 emulators.
Set and inquire window attributes, such as title strings.

Manage windows across fork () s.

Manage the interaction of windows with the UNIX signal mechanism.
Manage the window’s event queue, and obtain events from it.

2.2.2.4.2. Border Styles

The border styles toolkit implements a standard form for the optional controls on
windows. They include vertical and horizontal scroll bars, and controls for creating,

destroying and moving splits. Applications using these border styles get an extended
set of input events including ‘‘window scroll up’’ and ‘horizontal split moved’’.

Create & destroy controls on a window.
Create & move splits in windows
Set range of scroll bar.

2.2.2.4.3. Menu Package

The menu package implements a single-level pop-up menu style, with menu items as
either text or icons:

Create & destroy menus.

Set the image of menu items, as text or icons.

Enable & disable menu items. Disable items are displayed grayed-out.

Mark menu items (e.g. as selected) by a character (normally a tick) to the left.

Display & hide menus. Menus are displayed at the mouse, or another specified posi-
tion. They can be left displayed while others pop up, to give the visual impression of
a multi-level menu scheme.

-16 -

2.2.3. Kernel Support Required by the Oriel Library

The kemel support (panelist) for the Oriel system manages a hierarchy of panels each
associated with a page in a user process; a panel-size bitmap containing the process’
view of its contents. >From time to time the process notifies the kernel that part or all of
the contents have changed, and the kernel copies the changed parts to the bitmap it
maintains, from which the display is refreshed. Note that this implies that the kernel
needs an implementation of RasterOp, albeit only a Copy operation.

Since the page is in a user process, it may get paged or swapped, and thus be unavail-
able when needed to re-paint an uncovered part of the display. To avoid lengthy delays
in re-painting, the panelist maintains complete off-screen copies of obscured panels in
kernel memory. Thus updating a (partially) obscured panel is twice as expensive as

updating a panel on top. Note that a client has no responsibility for observing clipping
restrictions or damage lists, and need never re-paint its display.

A panel can be subdivided into regions, and a cursor image associated with each. The

panelist communicates these rectangle sets and associated images to the autonomous
mouse tracking hardware.

The panelist maintains an event queue for each panel, with an associated mask. Key-
board transitions, mouse button transitions, and mouse movements are all formatted into
an event report structure and added to the appropriate event queue. The owner of a panel
can read events from this queue. The panelist also synthesizes events in this stream for
particular windows to inform them that they have been made visible or invisible, or have

changed size. Note that is is not essential that clients respond to these events.

The panelist protects panels, restricting state-changing operations (update, writes to
attributes, move in hierarchy) to the creator and owner processes.

The panelist also contains a VT100 emulator, which can be attached to a panel to display
its screen, and which generates a TTY-like device in the file system that can be used by
termcap applications.

2.2.4. Porting the Oriel System

The Oriel system is being ported to the Sabre, which also uses the NS32016 chip, but
whose display is not bitmapped, using instead a display-list type interface. No other

attempts to port the system are known. The panelist would divide into parts that were
display-dependent, CPU-dependent, and machine-independent.

» Machine-independent parts would presumably include management of the panel

hierarchy, scheduling of copies from user pages and kernel buffers, buffer mainte-
nance, event reporting, VT100 emulation.

+ Display-dependent parts would include allocation of video refresh buffers, and the
copy RasterOp (the display has hardware RasterOp support).

» CPU and I/O device dependent parts would include the interfaces to the mouse, key-
board, and cursor support.

Given the panelist support, the library would be display-independent. The RasterOp
code would be dependent both on the CPU and the RasterOp hardware; it isn’t easy to
write a fast software RasterOp for the NS32016, and there are complex trade-offs in

-17-

deciding the point at which the investment in setting up the RasterOp hardware pays off.

2.3. Other Kernel-Based Systems

* The window system developed at LucasFilm by Sam Leffler and Mike Hawley, and
described at the Portland Usenix, is another example of a kernel-based system. It
supports an impressive user interface toolkit, similar to that on the Blit.

2.4. Andrew

3 The Andrew window system was developed at the Information Technology Center at
Carnegie-Mellon University. The ITC is funded by IBM with a mission to develop a

campus-wide network of personal workstations. The system is owned by IBM, but it is
made available to Universities and some others.

Andrew provides a network window server, and a set of client programs that make
remote procedure calls to the server to perform graphics operations and receive input. It
uses 4.2BSD TCP/IP streams and a special low-overhead “‘batching’’ RPC mechanism.

The Andrew server retains no information about the contents of windows, and must call
upon the clients to re-paint them when they are re-sized. The server lays non-

overlapping windows out in columns, thereby reducing the frequency of re-sizing
events.

e mdews

2.4.1. Components of the Andrew System

2.4.1.1. The Server

The Andrew server supports the following configurations:

* Sun100 monochrome and color.

* Sun/2 monochrome and /160 color.

* Sun/3 monochrome and /160 color.

* micro-VAX with QVSS display.

* Experimental IBM workstation.

The server implements graphic output operations in windows, a non-overlapping win-
dow layout policy with a very simple user interface, and a menu system. The user-level

server code tracks the mouse with a cursor; the shape of the cursor is an attribute of rec-
tangular sub-divisions of windows called regions.

The design goals for the server were to implement a simple, highly portable, low invest-
ment system as a basis for development of the overlying user interface toolkit. The
intention of both the toolkit and the server is to enforce a uniform consistent user inter-
face on the educational applications that are the intended clients.

2.4.1.2. The User Interface Toolkit
Andrew’s User Interface toolkit consists of:

* acore that maintains a hierarchical division of a window into panels, and distributes
input events to panels,

-18 -

* a set of behaviours for panels, including scroll bars, button arrays, large scrolling
menus, meters, and other kinds of objects.

An application specifies its display as a set of panels linked by relationships such as
above () and left (). Some of the panels may be defined especially for the applica-
tion and others loaded from the toolkit.

The most important panel is the text panel, which implements a WYSIWYG-style editor
supporting dynamic reformatting of multi-font proportionally-spaced kerned text at every
keystroke. It operates on text files divided into regions with associated looks to control
the formatting. Among the attributes a look can control are the font family, the face type
(roman, bold, italic, bold italic), the size, the margin settings, the tab settings, and the
justification modes. The result is similar to on-the-fly Scribe.

Text panels are used to display almost all text in the system; the 24-by-80 terminal emu-
lator is the only significant exception. They are normally used in a composite form
called a document, consisting of a text panel with a scroll bar to the left and another
small text panel below acting as a message line. Text can be cut and pasted between
documents using the server’s cut-buffer facilities; if appropriate it retains its looks (i.e.
if some bold text is cut it will be bold when pasted). Documents can read into panels and
output to files in a special internal form, as’ troff input, or as Scribe input. The
troff and Scribe forms are used to print documents.

2.4.1.3. The Clients

Andrew provides a large number of clients, all of which are known to run on Suns,
VAXen and *‘experimental IBM workstations’’. Some, typically the basic tools, have
been developed at the ITC, some at the Center for the Design of Educational Computing
(CDEC), and many by application developers on the C-MU campus, who were given
workstations as part of a major deployment in early 1985.

2.4.1.3.1. Basic Tools

The basic tools provide the interface to the normal UNIX facilities. They are mostly built
from documents.

* edittext —an editor built from a single document panel. It provides all the capa-
bilities of documents as described above.

* typescript —asingle document panel providing an interface to the shell or other
commands. Text that you type is bold, and text the computer types is roman, though
the font used is up to the user. Text can be cut and pasted, and the document can be
printed, just as any other document.

* pipescript - a single document panel into which text can be piped. Useful for
the usual:

grep foobar | pipescript
sort of things.

* ttyscript - asingle document on the master side of a pseudo-tty. Useful for the
usual:

interactive-program <‘ttyscript:®

-19-

sort of things.

h1l9 —emulates a Heathkit H19 terminal with great precision. Chooses a fixed-width
font of an appropriate size so that the 24-by-80 array as nearly as possible fills the
screen. Implements cut-and-paste. Used only for backwards-compatibility with
termcap applications, suchas vi,and telnet to other machines.

help - a single document presenting the manual pages properly formatted to the
. window, with font and size changes, and cut-and-paste.

ringmaster - a single document making the contents of the ring of cut-buffers
\ visible (and thus editable and even cut-and-paste-able!).

male & female - a pair of multi-panel applications using large scrollable menus
~ and button arrays to select mail, and documents to display and edit it. It is possible

- to mail text containing the full set of looks, and have it displayed properly at the
recipient’s machine.

* hark & bark —a similar pair of tools for the Usenet.

2.4.1.3.2. File System Browsers

Many file system browsers have been developed as experiments towards a user interface
usable by freshmen. They include:

dir - a file system browser using large scrollable menus of files and pop-up menus
\ " of operations.

* bush - a file system browser using a graphical presentation of the hierarchy and a
menu panel.

* Don Z. - an iconic file system browser. Icons represent both files and operations;
file icons are dropped on operation icons.

2.4.1.3.3. Diagram Editors
Many diagram editors have been developed, for no very obvious reason. They include:

* de - the first, developed by Marc Donner. It uses pop-up menus of operations and
attributes.

* banzai - a constraint-based drawing editor similar to Juno, developed by Bruce

Lucas. It uses an iconic menu to access the underlying constraint programming
language.

¢ fig — was developed for the SunWindows system at the University of Texas, and
was ported to Andrew by Jim Peterson.

2.4.1.3.4. Font Tools

Andrew makes extensive use of fonts. It is normally used at C-MU with a set of high-
quality display fonts owned by Xerox, but these cannot be distributed. The system sup-
plied outside contains a large collection of public-domain fonts, in sizes from 6 to 36
points, in roman, bold, italic and bold-italic faces, and in serif, sans-serif, and type-
writer styles. They were derived from Metafont descriptions at 240 dots/inch and
reduced to 80 dots/inch using an adaptive resolution-reduction process. The results are
somewhat scruffy but usable. The font manipulation tools include:

-20-

* fe - afont editor, permitting control over all the spacing and size parameters of
individual characters, and its bitmap representation.

* samplefont - presents sample text in a given font as an aid to editing.

* viewfonts - abrowser for the font library.

2.4.1.3.5. Educational Applications

* cmututor - an implementation of an interactive programming environment for a
version of the Tutor computer-aided instruction language, as developed by the Plato
project at the University of Illinois. It is one of the world’s less elegant programming
languages, but there are about 10000 hours of courseware for Plato..... The system
uses documents to display text and edit the program; it is based on incremental com-
pilation into P-codes for rapid execution and rapid editing.

* graph —a “playground” for experimenting with families of equations (including
ODE’s) and viewing the resulting graphs. The equations are specified in a document;
the idea is for the student to read a text in one window, cutting the equations out and
pasting into graph to experiment with them.

* optics —asimulation of an optics bench.
* orbit - orbital mechanics in a double-planet system.
* gt —asimulation of a simple mechanics experiment.

2.4.1.3.6. Miscellaneous

* preview —takes DVI troff output and displays it in a window at close to full
size with every character correctly positioned. This saves many trees.

* clock - the ubiquitous window manager application. This one is both analog and
digital.

* gvmstat - a graphical version of vmstat. An essential tool to answer the funda-
mental question of window systems — why is it going so slowly?

* console - the proliferation of tools like clock, gvmstat, and so on got out
of hand. So Nathaniel Borenstein built console, a generalized window daemon
that accepts a Scribe-like declarative specification of a layout of instruments such as
graphs of performance variables, clocks, console logs, mail notifiers, and so on. It

is capable of displaying consoles ranging from the Cadillac to the Boeing 747 (which
takes 20% of a Sun/2).

« £ill - fills the window with a pattern, useful as window-paper.
* go —atwo-player go game, with windows on two machines.
* talk —amulti-player conversation, with windows on many machines.

* zip —a browser for pictures stored in a database. It is being used to present census
data at a parish level for a history course.

* zit -—a hyper-text editor, which is being used as the basis for a note-carding system
in use for a creative writing course.

e g IR AN

2.4.1.4. The Utilities

Andrew comes with a large set of utilities, mostly tools for mapping between various
types of file (troff, Scribe, C, etc.) and the internal document format.

2.4.2. Facilities of the Andrew Server

The Andrew server provides two sets of facilities in one program. It supports an RPC

interface by which clients may obtain and use windows, and a user interface by which
users may manipulate windows.

2.4.2.1. The Client Interface

The normal object manipulated by the client is a window, representing some screen
space (or perhaps none if it is hidden). Parts of a window can be saved and restored in

the server, but the client can never see the bitmap representation of any part of a win-
dow.

*

Open/Close Window - a heavyweight operation involving establishing a new connec-
tion to the server, and obtaining display space. Programs may have windows up to
the limit on file descriptors, but almost all operate with a single window. The server
provides almost no support for subdividing this window. Programs can hint about the
size of windows, but must be prepared to deal with windows of any size (or none,
which is what a hidden window looks like to the client).

* Window attribute operations - attributes include title bar information, clip regions,
cursor regions.

* Output operations - line, trapezoid fill, RasterOp. These apply to windows and not

to stored bitmaps. Output is always clipped to the window boundary, buta more res-
trictive clip may be specified.

* Save & Restore operations - allocate and free storage in the server for bitmaps, copy
bitmaps between storage and parts of windows. Bitmaps can not be copied between

client and server, Thus icons, for example, must be defined as characters in special
icon fonts.

¢ Cursor operations - define cursors associated with parts of windows. Constrain cursor
within parts of windows (used by scroll bar).

» Font operations - open and close fonts, write character strings with specified inter-
character and inter-space shims in specified fonts. Andrew’s font representation han-
dles kerned, proportionally-spaced fonts with arbitrary baseline directions. Fonts are
named by strings, such as HelveticalObi, encoding their properties. When
such a font is opened, the server scans the fonts it knows and selects the closest
approximation to the specified set of properties. It then sends the client a
specification of the bounding box and spacing parameters of each character. Some
approximation will always be made; opening a font can never fail.

« Cut-buffer operations - put and get byte strings to a ring of cut-buffers.

* Event operations - Andrew supports keyboard, mouse button, window boundary
crossing, mouse motion, and input focus change events. They can be selectively
masked. Keyboard events can be re-bound.

-22.

* Re-paint requests. The Andrew server notifies its clients whenever they are required
to re-paint their window. Since windows tile, these events are generated only when
windows changes size, but this fact is unknown to the client. The tiling policy
reduces the frequency of re-paint requests but the clients would operate just as well
with another policy. In fact, the design of the user interface has evolved to minimize
the number of re-paint requests because this improves the performance significantly.

The Andrew client interface has been very carefully designed to have a number of pro-

perties:

The only operation that can fail is opening a window. Once a window is open, noth-
ing can possibly go wrong. The server will do something sensible or ignore the
request, but it will never object. Part of the reason why Andrew has many clients is

the peace of mind this engenders in application programmers; there is never any
need to write code to handle errors.

* Almost no operations return values, since returning a value means blocking to await
a response from the server.

The client can never see bitmaps, not even the bitmaps defining characters in a font.
The information describing how characters are drawn is private to the server, and
thus may be device dependent. In this way clients are portable by default.

* All requests for resources, such as window size or fonts, are hints. This has two
effects:

* Clients cannot depend on particular resource allocation policies, and will thus
survive changes in them.

* Clients cannot wire-in knowledge about particular resources, such as the spac-
ings in Helvetica 10-point fonts. On the other hand, they can safely wire-in the
names of fonts, since they are only hints. Nothing will go wrong if the server
can’t find a 10-point Helvetica, it will just use some other font.

Note thar a client has no responsibility for observing clipping restrictions or damage
lists, but must re-paint its image when required. The server as currently implemented
has no memory other than the display’s pixels for the contents of a window. Additional

memory could be used to reduce the frequency of re-paint requests still further, but this
would be invisible to the clients.

A client may simply draw a fixed-size image, trusting the server to clip it at the window
boundaries. In some cases this is the right thing to do, but most applications are under
strong social pressure to cope better with size changes. All the Base Editor objects
reshape themselves properly (text re-wraps, button arrays re-lay themselves out, the
H19 emulator chooses a font size to fill the window), and this background makes clients
that fail to account properly for window size changes conspicuous.

2.4.2.2. The User Interface

Andrew’s “‘tiling’’ user interface has evolved through a large number of variations with
two main goals:

The interface should be simple enough to explain on a single sheet of paper.
* The system should feel very fast and responsive.

|

e N i

223

The goal of simplicity has led to “‘column-mode’’, a style similar to Xerox’s Cedar, in
which the screen is divided into a series of vertical stacks of windows. A new instance of
a type of window, for example an editor, takes some of the gray space at the bottom of
the appropriate stack. When windows vanish, the windows below them in the stack are
shuffled up to concentrate the gray space at the bottom. Windows can be either open,

with both a headline bar and some contents visible, or closed, with just the headline bar
visible. Users can:

AW

* Click the left button in a headline to flip the window between closed and open.

2 * Use the middle button to drag any of the bars between windows, causing the win-
dows alongside to move or re-size as required.

* Click the righr button in a headline to move the window elsewhere. The window
vanishes, the cursor changes to a target, and a subsequent click positions the win-
dow, shrinking the clicked-on window if required.

This interface has been very well received; it is simple to explain and use, it supports all
the operations needed without using menus, all windows are always visible in some
form, new windows appear without user intervention in a predictable place, and it is
very fast. The speed is gained by minimizing the number of times a client has to be
requested to re-paint; almost all window manipulations need no re-paints, they involve
only copy operations by the server to move images on the screen without changing their
size. Even opening a window or dragging a horizontal bar normally requires only one

client to re-paint; if there is gray space at the bottom of the column the neighbour can
move out of the way.

LA SN

SR LT TV

2.4.3. Kernel Support Required by the Andrew Server

The server requires no kernel support beyond the ability to map the pixels or device
registers of the display into its address space. This is achieved variously using mmap ()

on special files, by mapping them into all user processes, and other hacks. Although the
server can make use of special mouse and keyboard drivers (on the uVAX it uses the

same drivers as X), it will work quite normally with input from stdin and a Mouse
Systems optical mouse on a normal TTY port.

Re-paint requests are generated by the server, and transmitted to the clients using the
out-of-band signals of TCP. They arrive as asynchronous signals. An alternative syn-
chronous notification scheme based on synthetic events could be used.

2.4.4. Porting the Andrew System

The Andrew server and clients now run on at least 8 different displays and 3 different
CPUs. This experience has allowed the parts of the system that are dependent on
displays or CPUs to be identified with some precision.

The server’s RasterOp is clearly dependent on both the CPU and the display. Andrew
runs on displays with autonomous RasterOp processors, on displays with a shift-&-mask
data path like the original Sun monochrome, and on displays which are just memory like
the Sun-2 and the QVSS. None of the displays used so far has required any assembly
language programming; most use Bruce Lucas’s generalized C RasterOp. This uses
many layers of macros to hide differences such as pixel order and access alignment res-
trictions, and is very easy to port across displays that can be accessed as memory. It isn’t

R |

-24.-

optimal on any of them, but by using loop macros that can be adapted to exploit, for
example, DBRA on the MC68010 it is efficient enough to make further improvements a
low priority. Using this, one is not dependent on either the delivery or the understanding
of proprietary RasterOp code for a new display, and the server has been ported to a new
display in less than five hours.

Porting the clients has never involved more than simple re-compilation. The protocol
that passes along the IPC channels explicitly accounts for byte-swapping problems, and
pixel-order problems do not arise because bitmaps are never transferred.

25. X

The X window system was developed with strong DEC support at Project Athena, MIT’s
DEC & IBM-funded campus computing project. It is owned by MIT, and will be distri-
buted on the 4.3BSD tape. DEC are using it as the product window manager for Ultrix
on the micro-VAX (uVAX). It is probable that the other IBM Advanced Educational
Program Universities (Brown, C-MU, etc.) will migrate to using X.

X is a network window server; client programs make remote procedure calls via stream
connections to the server to perform graphics operations and receive input events. X as
supplied uses normal 4.2BSD TCP/IP streams, but it has also been demonstrated running
over the 4.2BSD DecNET support.

X is conceptually similar to the Andrew system developed at C-MU, in that they both use
similar RPC mechanisms and rely on their clients to repaint the display when windows
are damaged or change size. MIT has committed to providing a compatibility library that

will permit Andrew client programs to be re-linked to use the X server. The major
differences are:

* The user interface and window layout policies of Andrew are wired-in to the server;
those of X are implemented by one of a number of privileged clients, each imple-
menting a different user interface style.

* The X server efficiently supports a hierarchy of subwindowé, even very large
numbers of them. The Andrew server supports only a one-level division of the
display, all sub-structures within windows are a client responsibility.

* Andrew provides effective support for high-quality fonts, and backs this up with a
user-interface toolkit based on a WYSIWYG-style editor for multi-font multi-style
documents (similar to but much more powerful that Sun’s text panels). X provides
only primitive font support and no editor or other higher-level support for text
display. ,

» X fully supports color; Andrew does not.

* Andrew has been in production use since early 1984; X is Just starting to get produc-
tion use.

The following is a summary of the available information about the system, based on the
Version 9 documents.

P

225.-

2.5.1. Components of the X System

2.5.1.1. The Server

The X server process supports the following configurations:

* VAX with V5100 display (Unibus device with local MC68000 as graphics engine -
no CPU access to bitmap).

* uVAX with QVSS display (display is just memory on the Q-bus).

It is also believed to run on an un-announced DEC color display (called the QDSS?)

on the uVAX, and to be being ported to an ‘‘experimental IBM workstation’’ at MIT
and Brown.

The server implements graphic operations in a hierarchy of overlapping sub-windows. It

tracks the mouse in user-level code with a cursor; the shape of the cursor is an attribute
of a sub-window.

2.5.1.2. The Clients

The current X system provides only a few clients, all of which are known to run on
VAX, uVAX, Sun 2, and ‘‘experimental IBM workstations’’:

* Bitmap (icon) editor.

+ Analog/Digital clock

* Demo program

» Display a FAX (RFC 803) file in a window.
» Display all characters from a font.

» Impress previewer.

* Performance monitor (load average only).

* Window Manager - process providing user interface to window mampulatlon (e.g.
hide, expose, resize). X supports several different styles.

¢ Terminal emulator - emulates a VT102 or a TEK4010, and provides cut-and-paste of
characters.

2.5.1.3. The Utilities

The X system also provides some utilities:

* Keymap file compiler.

+ resize - generates new size fields in termcap environment.
* Print a window on the DEC LNO3 printer.

e Access control utility.

» Defaults setting program.

* Window dump and undump (bitmap image to/from file).

-26-

2.5.2. Facilities of the X Server

2.5.2.1. Operations on Displays

Open/Close Display - returns the root window of the display. This is a heavy-weight
operation involving establishing an IPC channel to the server,

2.5.2.2. Operations on Windows

Create/Destroy a Child Window - Create is given a parent’s resource name and
returns the child’s resource name. Note that these are very cheap operations, and

individual applications programs may efficiently manipulate hierarchies of hundreds
of windows.

Map/Unmap windows - make them visible in their parent, clipped to its boundaries.
If all their ancestors are mapped, this makes them visible on the screen. Calls in this
group also move windows in X, Y, and depth.

Window attribute operations - attributes include background and foreground colors,
borders, clipping modes, desired sizes, icon windows, mouse state.

Save & Restore operations - allocate and free storage in the server for bitmaps, copy
bitmaps between storage and windows, copy bitmaps between client and server
address spaces (this is slow for large bitmaps).

2.5.2.3. Graphic Operations

X’s graphic operations apply to a window, whose pixels are in the server’s address space
but for which the client has a resource name.

Output operations - line, brush, fill.

RasterOp, including a general operation with source and destination in a window and
a pattern tile in the client’s address space, and the ability to operate between a win-
dow and a bitmap in the server’s address space. '

Cursor operations - define cursors associated with windows.
Color operations - X supports both read-only and read-write color maps.

Font operations - open and close fonts, write character strings with specified inter-
character and inter-space shims in specified fonts. X’s current font specification can
deal only with characters with vertical boxes that do not overlap (i.e. no kerning,
etc.). When a font is opened, the server reads the specified font file, and returns a

- structure defining the widths of each character to the client. Unlike Andrew, this

operation does no font approximation and can fail.

2.5.24. Other Operations

Access control operations - X maintains a list of machines from which it will accept
connections. :

Cut-buffer operations - put and get byte strings to a ring of cut-buffers.

Event operations - X supports keyboard, mouse button, window boundary crossing,
mouse motion, exposure, unmap (hide), and input focus change events. They can be
selectively masked, grabbed (to prevent access by other windows), and re-mapped.

-27.-

2.5.3. Kernel Support Required by the X Server
The X server on the VAX uses two types of kernel support:

* The pixels (of the QVSS), or the device registers (of the Vs100), are mapped
read/write into all Unix user processes, even though this mapping is only required by
the server. This is easy to do on the VAX, the addresses mapped are in system space
and all that is needed is to change the system space page table entries. Unfortunately,
this renders any VAX system running X vulnerable to being crashed with a machine
check (e.g. odd Unibus address) by a malicious or careless user program. This prob-
lem is a symptom of the fact that mmap () doesn’t work.

A special keyboard/mouse driver is used to avoid read () calls and to maintain
strict ordering of events. It uses memory shared between the driver and the server
(see hack above) to implement a circular buffer of events. The driver writes events to
this FIFO when either key or mouse events occur; the server can either select() on
the device or simply examine the queue pointers to see if there are events to process.
The driver also maintains the current mouse coordinates in shared memory.

The re-paint requests to the client are generated by the server and inserted into the event
stream, needing no special kernel support. Unlike Andrew’s, they are synchronous.
Note that the client has no responsibility to observe clip restrictions, but must respond to
re-paint requests either by re-painting the affected regions, or by re-painting the entire
image and trusting to the server to enforce the necessary clipping.

2.5.4. Porting the X System

X specifies a device-dependent interface within the server. This is at a fairly high level,

since it was designed to exploit the intelligent Vs100 hardware. It consists of:

* a set of RasterOps on PixMaps (multi-bit per pixel) and BitMaps (single-bit per
pixel), each taking a list of clip rectangles.

*

a set of font selection and character painting operations, again clipped against a list
of rectangles.

a set of rectangle save and restore routines, with associated space management
operations. There is no assumption that the CPU has direct access to either the
displayed or the stored pixels.

* A et of cursor operations.

The QVSS display is not intelligent, and RasterOps must be performed by the CPU.
DEC regards the low-level RasterOp code as proprietary, but Athena has filled-in the
gap between the low-level code and the device-dependent interface. This code will be
shipped, and will presumably assist a porting effort, but the details are as yet unclear.

The kernel mouse/keyboard driver is VAX-specific, though work at Brown is reputed to
have converted it to something like a line-discipline. It appears possible to fake the

driver in a portable way by read() -ing from the keyboard and mouse devices and
maintaining the event queue in the server’s address space.

X specifies that bitmaps visible to the client are stored in 16-bit words left-to-right across
the scanline, with the least significant bit to the left. This is convenient for the VAX and
no-one else.

-28-

2.6. Other Window Servers

The original UNIX window server in one sense was the Bell Labs Blit terminal. It
runs a server-like system in a MC68000-based terminal, and has been described in
several papers by Rob Pike. It works extremely well, even over relatively low-speed
asynchronous links, because applications can customize the behaviour of the server

by down-loading application specific code into the lightweight process in the terminal
that is running their window.

An alternative approach to a window server has been developed at Stanford. Their
VGTS system is based on structured display lists, and offers higher-level abstrac-
tions as the basis for a virtual terminal than either X or Andrew.

2.7. Comparisons

This survey has covered two representative kernel-based window systems, and two win-
dow servers. A number of comparisons are worth drawing between them:

.

SunWindows depends upon clients cooperating to a large extent (locking, clip lists,
damage lists, re-paints). Andrew and X depend only on applications re-painting on
request. Oriel hardly expects client cooperation at all.

SunWindows needs locking for synchronization because the clients have access to the
real resources. The others serialize accesses implicitly, Oriel because only the kernel
can touch the real display, and Andrew and X because only the servers can.

The Andrew server does not support sub-windows. SunWindows has a file for each
sub-window, and is thus limited in the number of sub-windows a process may have.
X and Oriel can manipulate very large numbers of sub-windows.

SunWindows links the code implementing the user interface to window manipula-
tions into each client. The others centralize this code in daemon or server processes.
The location of this code can be critical for performance; the window manipulation
code is used relatively infrequently but must feel Very responsive:.

* Andrew puts all window manipulation and menu code in the server. This process
is highly interactive, being scheduled very frequently because it fields all the
mouse and keyboard events as well as the RPC requests. It is thus unlikely to get
paged or swapped out, and Andrew’s window manipulation feels very fast.

* X and Oriel place window manipulations in a daemon process that isn’t fielding
all the mouse, keyboard, and RPC requests. This process is highly interactive
while it is in use, but has long pauses between bouts of activity. The UNIX
scheduler provides quite good response for such processes, but in the inactive
periods they may get paged or swapped.

* SunWindows places window manipulations in each client. Apart from the swap
space problems caused by this duplication, it virtually guarantees that the code
needed to perform a particular window manipulation will be paged out when it is
needed. Closing one window and opening another can involve paging the same
code in twice!

Porting SunWindows even between devices on the same CPU involves re-linking all
the clients since they actually operate on the device. Porting Oriel between devices
does not affect the clients, but porting between CPUs does, since they contain a

LRI PRy

-29.

memory RasterOp that is CPU-dependent. Porting the other systems between
displays or CPUs is easy; server-based systems do RasterOp only in the server.

SunWindows and Andrew provide extensive user interface toolkits of pre-defined

panel behaviours. Oriel provides a more limited set of such components; X provides
none.

As an example of (a) the code-sharing advantages of server-based systems and (b) the
need for shared libraries in 4.7BSD, we can compare Andrew’s typescript with
SunWindows’ cmdtool. Both implement a scrolling text panel interface to the
shell or other programs, with cut-and-paste and other editing facilities:

* cmdtool is about 400K of text, including drivers for all the Sun displays.

* typescript is about 155K of text. Andrew’s wm server is about the same
size, including drivers for Sun 1 and 2 monochrome and Sun 1 color displays.

Given shared libraries, both typescript and cmdtool would be tiny. They
both involve only a few pages of code tying together pre-defined panels from the
library.

-30-

3. Programmer’s Model

The fundamental questions an application developer should be asking about window Sys-
tems are “‘what should I expect them to do for me?”’ and “‘what do [have to do in

return?’’ Reviewing the systems described above, we can start to answer these ques-
tions.

3.1. What You Get

In the early stages of the development of a window system, only the basic facilities will
be available. Many systems get no further than this stage, and even at later stages the
basic facilities are often the easiest to describe and use. The ‘“XOR this rectangle with
that one, then paint a 10-point Times Roman Italic H there’’ level of window system
capability is important and fundamental, but it is nor the level at which normal applica-
tion programmers should be expected to work except in a dire emergency. The lower-
level facilities of the system must be viewed as existing in order to make a user interface
toolkit possible; all too often the toolkit is regarded as existing in order to disguise the
chaos in the lower-level facilities. Viewed in this light:

* The system should provide a comprehensive user interface toolkit, so that applica-
tions can generally be constructed by pasting together pre-existing panels in suitable
combinations.

* Since the library is unlikely to have all the panels required, the system must provide
for the application to define its own. Doing so requires: '
* An efficient means for sub-dividing the window into panes.
* A wide range of graphical output primitives for drawing in panes.

¢ The panels will need to process the input events directed at them. The toolkit should
receive all inputs and distribute them to the panes, normally by calling appropriate
routines in the panel implementation.

* The applications will need to share the real resources of the workstation, both the

display and the input devices. The window system must provide protection and input
demultiplexing.

The user will need to be able to manipulate windows; moving, re-sizing, opening

and closing them into icons, and pushing and popping them in the stack. Ideally, the
system should be:

* capable of laying-out new windows without user intervention
¢ have user-replaceable layout policies
* have user-replaceable window manipulation styles

3.1.1. User Interface Toolkit

A window system should provide a means of composing panels; being able to say things
like:
The top third of the window is an array of the following buttons: Abort, Quit,
Exit, Terminate, Cancel, Shutdown. The middle third is an editable text
panel with a scroll bar 25 pixels wide. The left half of the bottom third is a
meter displaying keystrokes per second. The right half of the bottom third is a

-31-

read-only text panel with a scroll bar displaying the manual page.

The composition facilities should permit size specifications to be in terms of proportions
of the window, absolute coordinates, and the size of a panel’s contents.

It should also provide a wide range of pre-defined panels, including button arrays, slid-
ers, meters, graphs, and above all text panels. In effect, in a system of this kind the text
panel implementation replaces the old-style UNIX TTY driver as the primary mode of
communication with the system. The text panel should offer:

* Speed - if it is to be an effective replacement for the TTY driver it cannot be too fast.
Text output from programs running under a shell window should zip by much too fast

to read. Typing in a text panel at full speed should not visibly affect the user or sys-
tem time traces on the performance monitor.

Fonts — the text panel should cope with multiple font families, in multiple sizes,
with multiple attributes (bold, italic, underlined, and so on). It should support pro-
portional spacing, kerning, and font changes at arbitrary positions in the text.

Formatting — the text panel should support filling and various other justification
modes, including left and right flush, and centering, between adjustable margins.

Scrolling — the user should be able to page forward and backward, and to leap to an

arbitrary position in the panel’s contents. Ideally, the text should be capable of
flowing smoothly in both directions at a fast scanning speed.

Local editing — the text panel should support the conventional UNIX local editing
functions, binding them to the keys specified in the szzy command. :

Cut & Paste — the text panel should support selecting regions of the text, deleting
them, and copying them to other text panels.

* Searches — the text panel should support forward and backward regular expression
pattern searches, and some form of global replace operations.

* Undo - the editing operations on the panel should be undo-able.

Printing — it should be possible to print out the contents of a text panel, both as they
appear on the screen and re-formatted to fit the output page.

As regards user interface toolkits, SunWindows and Andrew score highly. There are
some quibbles with both systems; SunWindows font support is inadequate and their text
panels are too slow, and Andrew could do with an Undo capability and the ability to
smooth-scroll backwards.

3.1.2. Drawing in Panes

To support the creation of application-specific panels, a window system should specify a
panel interface to which they must conform, and should provide:

* An efficient means for sub-dividing the window into panes, and re-dividing those
panes. Creating and destroying subdivisions should be very cheap; it should, for
example, be possible to regard each item in a pop-up menu as a pane. In this respect
X is outstanding, providing unmatched efficiency at manipulating large hierarchies
of subwindows. The Pixrect level of SunWindows is also effective, though they are
lighter-weight objects than X’s subwindows.

j--.----u--lIIlIIIllllllllIllllIlIIlllIIlIlIIIII.IIIIIIIIIIII.II.-III-IHI

-32.

 Comprehensive support for text output. All systems provide font selection and char-
acter and string output. But they vary in the detail of their font specifications, and in
this area. Andrew’s support for multi-font proportionally spaced, kerned text with
shimming and non-horizontal baselines is outstanding.

* A wide range of graphical output primitives for drawing in panes. All systems pro-
vide the basic rectangular RasterOps, pattern fill, and vectors. Additional primitives
such as the trapezoid fill of Andrew are useful. In this area SunWindows stands out

for its comprehensive set of output operations which include curve drawing and
filling capabilities.

3.1.3. Input Facilities

The implementor of a panel must be able to nominate routines to handle the various types
of input event, or to decide to ignore them. This means that the toolkit should receive all

events directed at the window, and distribute them to the panels forming it, calling the
nominated routines.

Transferring the input focus between the panels of a window is typically more complex
than the simple area-based technique used to route events to windows: panels often wish

to pre-empt others selectively on specific types of event (as for example with pop-up
confirmation boxes).

To support these toolkit facilities, the window system should provide for all input events
(keyboard up-down transitions, mouse motions, mouse button transitions, etc.) to be:

* serialized into a single stream in strict time sequence

* formatted into a uniform event report identifying the type of event

* stamped with the time of occurrence

* labeled with the mouse position at the time of occurrence

* distributed to the appropriate window

The strict serialization and the timestamping is required to support some user interface
styles, such as double-click selection. Windows should be capable of ignoring events in
certain classes, and perhaps of pre-empting all events everywhere. It should be possible
for applications to generate synthetic events and insert them into the stream. In this area

both Oriel and SunWindows provide adequate facilities, but X does not timestamp its
events, and Andrew’s facilities are even more primitive.

3.1.4. Protection and Sharing

The user will want multiple applications to share the real resources of the display and the
input devices. The application should be unaware of this sharing, and to maintain this
illusion the window system should:

* provide mutual protection between windows by enforcing appropriate clipping
* demultiplex the input devices, routing events to the appropriate window

All the systems provide adequate capabilities in this area. Even SunWindows, which
depends on linking code into each client to perform clipping and locking, and lacks any
real mechanism for enforcing protection, works well in practice.

1 same

- e edie S p.

-33-

For server-based systems, there is another aspect of sharing that is important. The server
makes a workstation’s screen into a resource accessible from anywhere in the network.
Network accessibility was exploited in an early Andrew application, the surprise
server. This was a daemon process that lived in the network', and at intervals selected
two machines at random. Using the facilities of rsh, it would cause the first of the

machines to do something surprising on the screen of the second. A substantial surprise
library was developed, including:

The traditional cookie monster. A window would pop up and demand cookies,
becoming more obstreporous as it was ignored. It could be pacified by feeding it

cookies, either by typing their names or, more conveniently, by selecting different
cookies from the pop-up menu.

tingle, the random abuse program, modified to print each letter in a different font
as if it had been cut from newspapers.

The logic bomb, a window that ticked for a while in Russian, flashed violently,
and then vanished.

A program called eliza, that would (sometimes) respond conversationally when
you typed in its window. The twist was that this program was actually the talk

program in disguise; at the other end another person was also seeing an eliza
window......

+ The homeostat, a program that selected the size of window it would like to have

at random, and pestered the user with requests such as ‘‘make me taller’’ until it was
satisfied. .

Obviously, network access to windows is both useful and a source of problems. Some
form of access control is required. Andrew simply ignores the problem, whereas X
makes an attempt by allowing users to list machines from which they are willing to
accept windows. Some more sophisticated access control mechanism is required,

though it will probably have to be part of a more sophisticated control mechanism for
remote execution in general.

3.1.5. User Interface to Window Manipulations

The user will need to be able to control the allocation of the real resources to the compet-
ing clients, by moving the input focus between windows, and by moving, re-sizing,
pushing, popping, opening and closing windows. Again, the clients should be unaware

of the mechanism for doing this, though they must respond to the results of the mechan-
ism.

In most systems, there are actually two input foci. One controls the distribution of
mouse (and normally menu) events, and the other the distribution of keystrokes. Typi-
cally the systems can be run in two modes:

» Focus Follows Cursor — in which both foci are tied together and follow the mouse.

t Or rather, two processes. One actually did the work and arranged to die at random intervals;

the other monitored the first, and if it had died or been killed re-incarnated it elsewhere. At
intervals, the second process would re-locate itself as well

-34 -

* Click To Type — in which the mouse focus follows the mouse, and the keyboard

focus remains where it was last placed until a mouse button is clicked in a new win-
dow.

The second style is normally used to support Xerox-style shift-select and its derivatives,
in which text may be transferred to the text insertion point (even in another window) by

selecting it with the mouse. This is the only mode available in Oriel, the other systems
can operate in both modes.

The user should be able to replace the interface to window manipulations. In particular,
it should be possible to implement both:

* overlapping and tiling window layout policies

* styles in which new windows are automatically assigned display space, and styles in
which the user must explicitly assign the space.

Ideally, manipulation of the boundaries between panels in a window should be possible

using similar mechanisms; it is often difficult to explain to users that they can drag this
boundary but not that one.

In this area, both X and Oriel concentrate these user interfaces in daemon processes that
can easily be replaced. Andrew implements a choice between several styles in code
installed in the server, but if you don’t like any of these styles life gets hard. Changing
your mind about these aspects of SunWindows requires relinking all the clients.

3.2. What It Costs

In return for supplying these services to the client, the window system may expect some
services in return. Typically these include responding to partial or complete redraw
requests; if the client can be relied upon to repaint its image on request the server need
not devote resources to preserving the image, and need not attempt to figure out what the
correct image should be after windows have changed size.

Responding to re-paint requests is a significant responsibility. Many existing graphics
applications are structured in such a way that there is no single routine that can be called
to re-paint the image. Some applications may spend large amounts of time computing
their images, and there may not be any simple data structure in which to keep the results
of the computation to speed re-painting. In such cases, the window system should pro-
vide for a complete retained bitmap of the image, from which it can quickly be re-
painted. SunWindows provides this option, and it is the only mode in which Oriel
operates. The facility is lacking in Andrew, since although the contents of a window
may be saved and later restored, this must be done by the client, and by the time the
client finds out that the window has been damaged the damage has been done!. The
facility seems also to be missing from X. '

Clients should also respond carefully to window re-sizing. In almost all cases simply
repositioning the origin at the origin of the new window and re-painting the original
image through the new clip is the wrong thing to do. Systems such as Andrew, where
text re-wraps itself, graphs re-scale themselves, titles re-center themselves, and so on

T A fix for this would be to associate a buffer with a window so that the server would save its
contents before damaging it.

M T o AR

it e N

-35-

show that application-specific re-size behaviour is worth considerable effort.

-36 -

4. Implementation

Given the requirements just set out, how do current window systems measure up? There
are a number of problems:

+ Completeness — no existing system implements the full set of facilities required.

* Performance — no existing system can be satisfied with its performance and respon-
siveness.

* Auvailability — the only system (Andrew) which has demonstrated that it is technically
easy to port between workstations cannot be widely distributed because it is
proprietary. Other systems have yet to demonstrate their portability, and most are

also proprietary. Obviously, the advent of X is a hopeful development in this
respect.

In this section, we examine a number of areas in which customer’s demands and sugges-
tions can help window system suppliers do the right thing. Of course, as far as X is con-

cerned everyone can be a supplier, so this section can also be viewed as a list of things
for which volunteers should sign-up.

4.1. Completeness

The major component that is missing from X, as is natural when a new window system
is created, is the user interface toolkit. A generally usable toolkit would be a major step
forward, as it would set a framework in which user interface components could be widely
reused (see Tom Neuendorffer’s paper at this conference GLO - A Tool for Developing
Window-Based Programs). The design of such toolkits is now fairly well understood;
all that is needed is for someone to bite the bullet of implementing it and giving it away.

Given the toolkit framework, easily the most important plug-in component is the text
panel. Andrew is barely adequate in this area, and other systems are frankly deficient.
Given the role of the text panel as a replacement for the TTY driver, and the extent to
which UNIX has been plagued by poorly implemented and incompatible TTY drivers, it
is hard to overstate the importance of an effective and widely accepted text panel. For
some details on the specification of a suitable panel, refer back to section 3.1.1.

4.2. Performance

In the excitement about window systems it is easy to lose sight of the fact that they are
only a tool for communicating with the real applications. No-one wants to run a window
system for the sheer joy of dividing up the screen into overlapping rectangles. If the tool
for communicating with the real applications takes 100% of the CPU, or if it is so slow
that everyone ends up working through a single shell window using job control to multi-
plex tasks, the window system has failed.

There are a number of reasons for poor performance, some of which are easier to fix
than others:

* Inadequate hardware.
* Window system designs that squander resources.
* Window system designs that interact poorly with the UNIX environment.

s

YRR S et A e

-37-

* Inadequacies in the UNIX environment itself.

4.2.1. Inadequate Hall'dware

[have pontificated on this subject before (at the 1985 Paris EUUG meeting); so this is
only a summary:

*

A workstation is only as good as its display, and the display is only as good as the
bandwidth of communication between it and the CPU. In many cases, major com-
puter manufacturers market as workstations hardware that was designed as a small
computer with a memory-mapped I/O bus. This is then magically converted into a
workstation by adding a display to the bus. Bandwidth to this bus is often an order of

magnitude less than to system memory, with predictable results on display perfor-
mance.

Character drawing speed is a convenient measure of display performance. The
overwhelming majority of RasterOps paint a character, so it is a good measure of
overall system performance. Andrew provides an excellent test-bed, since in most
cases the RasterOp code is effectively the same:

Andrew Character Drawing
Workstation Approx chars/sec

Sun/1 10000
Sun/2 6000
Sun/3 24000
uVAXII 4000

The effects of the bit-addressable display memory on the Sun/l (which doesn’t use

the same RasterOp as the /2 and /3) and the poor Q-bus bandwidth on the
microVAX II (which does use the same RasterOp) are clearly visible.

* A cursor tracking the mouse is an essential part of a window system, and the lack of
suitable hardware support for it can be very expensive in either performance of user
interface quality. Lacking cursor hardware, the window system must paint the cursor
into the real bitmap, and then interlock with the clients to ensure that it is removed
before any RasterOp that overlaps it. Performing this interlock at a coarse granularity
makes the cursor flash and track poorly, performing it at a fine granularity slows the
entire system. A video-mixed cursor should be an essential part of a display design,
as anyone who has tried the cursor tracking on the Whitechapel MG-1 would agree.

* Hardware designers are like hospital doctors, they know what is wrong with you and
how to fix it. Obviously, RasterOp is an expensive but well-specified function, so it
should be cast in silicon. Unfortunately, the attempts to do so somehow always
cause more problems than they solve. Typically, they do too much in slightly the
wrong way. An example is the way the Vs100 and similar displays require you to use
the nardware designer’s idea of a good font format. Another common failing is to
forget that the RasterOp hardware must be used in a multi-process environment, and
to make context-switching it expensive or even impossible.

4.2.2. Squandering Resources

When system designers first encounter workstations, they tend to believe that the days of
resource constraints are gone forever. All that CPU horsepower and all that virtual
memory! Mine, all Mine! The result is that they abandon all restraint, finding them-
selves doing things they would have been ashamed of a few short months before, and
which they live to regret. Examples of this are:

* Waste of CPU — Andrew’s initial window layout policy, which required every win-
dow to re-paint itself every time any window changed size.

¢ Waste of swap space — The way that the components in many window systems
libraries are so interdependent that the library acts like a tar-ball; the slightest touch
drags with it a vast weight of code that you never imagined you would need, and
can’t imagine what calls.

4.2.3. Poor Interaction with UNIX

There is often a clash between designer’s ambitions for the user interface and the practi-
calities of the UNIX environment. The most frequent form in which this becomes evident
is excessive context switches, a symptom of function having been divided among many
processes, and this division having been forgotten. Examples are:

* the various attempts to do rubber-banding in the Andrew environment, where each
mouse movement must be read by the server, transmitted to the client, the response
transmitted to the server and then echoed to the display.

* the echoing of the transfer of the input focus by the individual clients in SunWin-
dows.

Combining excessive context switches with the large processes often found in window
environments in systems with limited real memory can rapidly confuse the pager and
swapper, and lead to truly awful performance.

4.2.4. Inadequacies in UNIX

Jim Gettys’ paper at this conference Problems Implementing Window Systems in UNIX
explains in some detail the inadequacies as far as implementation is concerned. I have
only to add some notes on the inadequacies as far as performance is concerned.

The major inadequacy in 4BSD systems that prevents window systems from performing
as they should is that mmap () doesn’t work. If it did:

+ client programs could efficiently share the huge libraries of interactive techniques
they depend on, reducing the demand for swap space and for page frames.

* RPCs between processes on the same machine (the normal case) could use shared
writable memory instead of system calls.

The other inadequacy of 4BSD systems is the scheduler, swapper and pager. They have
grown up to provide good interactive response on heavily-loaded timesharing systems,
where there are typically many processes runnable at any one time. Blocking one while
it takes a page fault or gets swapped back in is not a disaster.

In a workstation environment, there are typically very few runnable processes at a time.
Furthermore, there is typically only one potentially interactive process at a time, the one
with the input focus. A series of minor changes can improve the responsiveness of the

system considerably:

*

The window system (if run as root) can raise the priority of the process group holding
the input focus. The way that csh manipulates the process groups makes this a lit-
tle tricky; typically the processes you really want are the process with the input focus
(perhaps typescript), and processes in its process group (normally csh), and
process groups whose leaders are children of these processes.

Now that processes with raised priority levels are likely to be those with the input
focus, the swapper can be modified to be more reluctant to swap out processes with
raised priority, and more anxious to swap them back in.

The pager can also be modified to make processes with raised priority less likely to
suffer erosion of their in-core page sets. At present, the niceness of the process(es)
holding the page have no effect on the decision to free it.

These changes can also help processes, such as the X and Oriel daemons, that are critical
to system responsiveness but only get run infrequently.

4.3. Availability

There are a number of areas in which the availability of window systems could be
improved, principally by making X or its successors easier to port and distribute:

* The key to Andrew’s portability is Bruce Lucas’ efficient C memory RasterOp, which

isolates key machine dependencies in layers of macros. X would be much more port-
able if analogous code were available in the 4BSD domain. The Andrew code is only

copyright, not trade secret, so there is nothing to stop someone from learning from
Bruce’s example.

A window system, particularly one with pretensions to adequate text handling,
requires a large collection of high-quality display fonts. Andrew includes a large col-
lection of low-quality fonts; they are public-domain although the format in which
they are stored is not. Effort devoted to developing a better font representation for X,
tools for manipulating fonts in such a format, and either hand-tuning the TEX-

derived fonts or producing an alternative public-domain set would pay handsome
dividends in window system availability.

-40 -

S. Writing Portable Programs

Unfortunately, the new facilities outlined in the previous section will take a while to
arrive. In the meantime, the application developer is faced with a number of only par-

one you’ve got, while being suitably defensive about the possibility that it may go away
and be replaced with another?

5.1. Hints

There are a number of hints that will help you prepare for the day that someone sweeps
your current window system into the dustbin of history and presents you with a much
better and just slightly incompatible one:

* Don’t evén think that you have the actual screen pixels in your address space. Build-

ing your program around this assumption will be fata] if you ever have to move to a
window server.

* Be prepared to re-paint your image on request. Better yet, be prepared to re-paint

arbitrary rectangles in your image on request. There are very few systems that will
never ask you to re-paint.

If your application invests a lot of computation in its image, try to find some way of
representing the image for rapid re-painting. Depend upon the window system being
able to save a complete bitmap of the image only as a last resort.

* Regard all your requests for resources as hints. Always ask for some resource and

then find out how much you actually have. Things in this category include window
size, and the details of fonts. Never assume that just because you asked for an 12-

encapsulate these operations so that they can be easily replaced.

* Think hard before depending upon detailed properties of the filling and curve-
drawing primitives your system provides. There is much less agreement about these
than about the simpler primitives. For example, a major problem in providing a
Mac-like interface is that Mac applications depend upon the precise way in which
*‘circles’’ are not in fact circular. '

5.2. Your Own Toolkit

If your window system provides a user interface toolkit, use it. Not merely because it
will save you lots of time, but also because it is a good defensive tactic. Since libraries

i

sk

& didnimictiod kit il

LT TRy S S

- e MM ey

-41 -

If your window system doesn’t provide a toolkit, you can create your own quite easily.
There are two components:

.

The core, that composes panels, assigns screen space, and distributes input events
to panels.

The Panel interface, through which the core sees the panels. This defines the data

available about each panel, and the operations that the panels may be called upon to
perform.

A typical panel interface will be represented by some data structures, one defining an
instance of a panel:

struct Panel {

struct Point origin;
struct Point size;

int depth;
WindowHandle resources;

struct PanelOps *operations;

}:

The meanings of the fields are:

*

the origin is typically the top left corner of the panel in whatever coordinates the
output operations need

the size is the width and height
the depth a priority used for input distribution and perhaps for overlapping,

the resources are whatever handle the window system needs to be given when
drawing in this panel

the operations define the type of the panel by pointing to a structure like:

struct PanelOps {

int (*keystroke) (/* pan, chr */);

int (*mouseclik) (/* pan, but */

int (*mousemove) (/* pan, pos */);

int (*menuselct) (/* pan, mid, item */);
int (*updateimg) (/* pan */);

int (*repaint) (/* pan, rect */);

Point (*sizesugst) (/* pan, pl */);

struct Panel (*create) () ;

int (*destroy) () ;

}:

where the operations are:

L]

*

keystroke if present, is called for every character typed into the panel
mouséclik if present, is called for every button transition in the panel
mousemove if present, is called for every mouse movement in the panel
menuselct if present, is called for every menu selection in the panel
updateimg if present, is called to incrementally update the image of the panel
repaint must be present, and is called to repaint the image of the panel

sizesugst if present is called with the size the core would like the panel to be,
and the panel can reply with a different size (this is useful for fixed-size objects, and
objects like button arrays that can re-size themselves in discrete increments. Of

-42.

course, the panel cannot depend on the core assigning the requested space)
* Create is called to make a new instance of the panel
* Pg destroy is called to destroy a panel instance.

As an example, consider implementing a switch panel. The create routine would
return a structure like:

struct SwitchPanel {
struct Panel panel;
int state;

}:

Note that its first field is a generic Panel » allowing pointers to SwitchPanel s to be

given to the generic panel routines, and the rest of the structure is private state. The
mouseclik routine would look like:

SwitchMouseClik (pan, but)
struct SwitchPanel *pan;
{

pan—->state = !pan->state;

}

Note that it knows that the pan argument will actually point to a SwitchPanel

(you can include a type field in the Panel structure to make sure of this). The
repaint routine would look like:

SwitchRePaint(pan)
struct SwitchPanel *pan;
{
SetToBackGround(pan—>origin, pan->size);
if (pan->state)
SwitchDrawOn (pan) ;
else
SwitchDrawOff (pan) ;
}

clearing the assigned space and drawing the switch in the appropriate state. In this case,
the other fields are not needed, and can be NULL.

