Design and Specification
of the
Cellular Andrew
Environment

Edward R. Zayas
Craig F. Everhart
Information Technology Center
Carnegie Mellon University

DRAFT
2 August 1988

[/afslandrew.cmu.edulusrSlerzicellsidocispecispecification.ez]
CMU-ITC-070

(C) International Business Machines, 1988

CMU-ITC-88-070

Table of Contents

1. Introduction

2. Cellular Andrew Extensions

2.1 Authentication
2.1.1 Standard Mechanisms
2.1.2 Extensions

2.2 Volume Location
2.2.1 Standard Mechanisms
2.2.2 Extensions

2.3 Mapping VicelDs to Attributes
2.3.1 Standard Mechanisms
2.3.3 Extensions

3. Filespace Conventions
3.1 Directory Structure
3.1.1 The /afs Root
3.1.2 Per-Cell Directories
3.2 Volume Conventions
3.2.1 Naming
3.2.2 Replication
3.2.3 Directory Structure, Revisited
3.3 Handling Special Names

4. AFS Semantics
4.1 Applications Programming
4.2 Handling Future Changes

S. The Andrew Message System
5.1 Requirements for Full Cooperation
5.2 Implications
5.3 Fallbacks from Full Cooperation

6. Configuration Information
6.1 The /usr/vice/etc Files
6.2 Use of Configuration Files
6.3 Updating Configuration Files
6.4 Typical Errors and How to Handle Them

7. Server Interfaces

8. Programming Interfaces
8.1 The Cache Manager Interface
8.1.1 Affected Operations
8.1.2 fs Coding Examples

[y

O 00 00~~~ H W WL

8.2 White Pages
8.2.1 V-Class Routines
8.2.2 C-Class Routines
8.2.3 Example from [s
8.3 Authentication
8.3.1 Routines in auser.c
8.3.2 Routines in avenus.c
8.3.3 Routines Exported by cellconfig.h
8.3.4 Examples from log

9. Communication Between Cell Administrators
9.1 The Importance of Synchrony
9.2 Topics of Community Interest
9.3 Available Mechanisms

10. Future Plans
10.1 Delegation of Responsibility
10.2 Global Authentication
10.3 AFS Upgrades
10.3.1 Planned Improvements
10.3.2 Desired Yet Unplanned Features
10.4 Use of the Internet Domain System

11. Conclusions

Appendix 1: Glossary

Appendix 2: White Pages Format
Bibliography

40
40
41
41
43

48
50
52

55
55
35
56

59
59
59
60
60
61
61

63
65
69
71

1. Introduction

The Andrew computing environment developed by the Information Technology Center
(ITC) at Carnegie Mellon University aims at supporting a very large user base. On
the CMU campus, it is envisioned that each of the roughly 7,000 students, staff, and
faculty members will eventually have their own workstation, and the Andrew design
reflects this projection. The distributed file system employed allows each client
machine to share the same view of the single file tree, with individual workstations
merely caching copies of the files in the (conceptually) centralized collection.

Several Andrew sites have begun operation, some of them within Carnegie Mellon
itself. CMU’s Computer Science Department and the Psychology Department service
their members independent of the main campus computing organization. There is also
a separate internal Andrew site devoted to testing newly-released software before it is
introduced into the mainstream campus system. Externally, sites currently exist at
IBM Rochester, IBM Palo Alto, and the NIH. At the time of this writing, MIT has
just recently brought two cells online in support of the Athena Project. Future sites
include the University of Michigan and possibly Hewlett Packard. Each Andrew
installation is completely autonomous, independently managing such administrative
functions as account creation, maintenance of authentication databases, backup
services, server machine allocation, and configuration. As per design, each site
maintains its own separate file system.

The Cellular Andrew effort was launched in April 1987 in order to allow such
administratively autonomous sites, or cells, to cooperatively establish a ‘‘community
filespace’” composed of the union of the various individual trees. While the single
name space allows transparent access to any file in the cellular community from any
Andrew workstation, it does not require a site to relinquish (or even share)
administrative control over its own system. In particular, access to a site’s files is still
mediated by its own authentication system. Also, the design of the Cellular Andrew
extensions had the explicit goal of minimizing the performance costs of providing such
a unified community. While inter-cell file access would certainly not be uncommon,
the vast majority of references were still expected to lie within a single site.
Noticeable degradation of local file service due to overheads in maintaining the idiom
of a common file name space was seen as greatly outweighing the advantages of such
an arrangement.

The first two Andrew cells to come on line were the main CMU campus computing
organization (including the ITC) and the Psychology Department. The maiden
transparent cross-cell file access took place between these two sites in early August of
1987, with the cellular authentication mechanisms becoming fully functional a couple
of weeks later. Utilities such as Is and passwd were converted over time, and
additional functionality was put into the fs program so that users could take full
advantage of the new cellular system’s primitives. As more sites came on line and
more Andrew software was upgraded to exploit the features of the cellular
environment, the natural divergence took place. The Andrew Message System (AMS)
[3, 5], providing a multi-media mail and bulletin board service, drove home the need

to define community standards and conventions clearly, without which inter-cell
interoperation is severely hampered. This document is meant to provide a
comprehensive specification of these Cellular Andrew conventions at all levels.

This paper continues by describing the design of the cellular extensions to the Andrew
environment in Section 2. The reader is not assumed to have detailed knowledge of
the stock Andrew mechanisms. Those wishing more explicative detail and/or specific
performance figures for the Andrew File System (AFS) itself are referred to [1, 2, 4].
Section 3 begins the definition of proper cellular operation by presenting the set of
required file space conventions. Some of these conventions apply to optional facilities
that are not required to be supported at Andrew sites, namely the White Pages
database and the AMS. They are nonetheless included in this document, since these
same conventions are also used to inform the cellular community that certain services
are not being provided at a particular site. Following in Section 4 are the AFS
semantics that must be adhered to at the application level. The AMS requirements are
presented in Section 5. Again, it is important for cell administrators to understand
these requirements even if they do not plan to support AMS at their site.
Administrators must still insure that the conventions are not inadvertently breached.
All of the details of cellular configuration are given in Section 6. Sections 7 and 8
present the server and programming interfaces for cellular AFS respectively, and
Section 9 explains the formal methods by which cell administrators may propose
changes, keep their sites synchronized and just generally communicate. The plans for
future AFS development by the ITC File System Group as it impacts the cellular
architecture are revealed in Section 10, and the presentation is wrapped up in Section
11. Appendix 1 contains a glossary of the many terms that appear in this paper, while
Appendix 2 provides detailed information on the layout, maintenance, and use of the
optional White Pages database.

2. Cellular Andrew Extensions

The Andrew architecture is straightforward, and a summary is presented here. A set
of FileServer machines house the central copies of all AFS files on their disks. Each
Andrew workstation runs a special agent, the CacheManager, that transparently caches
any files accessed by its users on the machine’s local disk. This CacheManager is
issued callbacks from the FileServers it gets these files from, which are essentially
promises that notification will be issued if the central copy of the file is updated. In
this way, the CacheManager does not have to check with the appropriate FileServer
each time a user attempts to open() a file sitting in the local cache, but only when a
callback promise is not held for the given file. There is usually (but not necessarily) a
separate machine referred to as the System Control Machine, or SCM. This server
keeps all the FileServers synchronized, keeps volume location information up-to-date
(see below) and performs other important administrative functions. Authentication is
controlled in the system by AuthServer processes running on a subset of the FileServer
machines. These processes provide tokens of identity which are used in conjunction
with access control lists at the directory level (not the file level).

The rest of this section analyzes in detail the portions of the Andrew File System that
were affected by introduction of cellular capabilities, along with the actual changes
themselves.

2.1. Authentication

2.1.1. Standard Mechanisms

Each user of the current Andrew environment identifies himself to the system by
engaging in an authentication protocol. This procedure is first carried out via the login
program at the start of the user’s session. Authentication may take place several
more times during the same session using the su or log programs, allowing this
identity to change. After the user supplies his or her name and password, login (for
example) attempts to contact an available AuthServer process to verify this
information. At startup time, the CacheManager uses system configuration files to
determine the list of machines hosting AuthServer processes. If none of these
machines respond in a reasonable amount of time, the SCM is used. The AuthServer
that is eventually reached checks to see if the given password matches the one
recorded for that user. If so, it creates and returns clear and secret tokens that serve
to identify the user in its dealings with the FileServers. These tokens contain not only
the user’s central ViceID but also expiration information to prevent processes from
accessing the file system indefinitely. Note that ViceIDs do not necessarily correspond
with the local uid, although they currently tend to match. Login proceeds to pass
these tokens to the CacheMarnager, which stores them for when it acts as the user’s
agent for file manipulation. If all of the AuthServers are down, or if the tokens cannot
be successfully handed to the CacheManager, a local login is performed. In this case,
the user may still access files on his or her own workstation’s local disk iff the
password matches the one in the local copy of the password file. After a local login,
the user is still treated as completely unauthenticated when attempting to access the

pool of AFS files.

An Andrew user can be logged in as several different people at once. This option is
due to the fact that each user process belongs to exactly one process authentication
group (PAG). PAGs are guaranteed to be unique for all process families on a
machine until a reboot occurs. User tokens are associated with the corresponding
PAG, so the CacheManager can select the right set when a process asks it to interact
with the FileServers. Thus, different processes controlled by a user can be tied to
different accounts via this PAG mechanism. Note, however, that a single process/PAG
can only be authenticated as one user at any time.

2.1.2. Extensions

In the cellular Andrew environment, users have the option of specifying the site in
which they wish to be authenticated when invoking log and its brethren. Every
workstation associates itself with the administrative cell in which it physically resides,
as determined by the system configuration information. By default, the local set of
AuthServers will be contacted as before. If the user explicitly names a remote cell, a
service database will be queried to determine the set of machines advertised as hosting
AuthServers for that site. The AuthServers for the chosen cell are therefore contacted
directly, and they return tokens which can only be properly decoded by agents in that
domain. The data structure in which the CacheManager stores tokens is now tagged
with the cell in which they were generated. Note that the token format itself has not
been changed. When accessing a file in a particular cell in behalf of a client, the
CacheManager must now select the user’s tokens that correspond to that cell. The
feature, where tokens obtained from each authentication transaction accumulate in the
CacheManager, is known as additive authentication.

Even with additive authentication, the system restricts users to a single identity per
PAG in any one cell. The CacheManager enforces this restriction by only saving the
last set of tokens received for a given cell within a PAG. This limitation is necessary
to prevent situations where the proper identity cannot be selected automatically. To
illustrate, let us assume that this restriction did not hold and that the CacheManager
held andrew.cmu.edu tokens for both authors, erz and cfe, on behalf of an editor
process. It is impossible to determine a file’s correct owner if the editor tries to save it
into a directory writable by both people.

Additive authentication is a useful feature, allowing individual command invocations
to access protected files in several domains. Take the example where a protected file
needs to be copied from the erz account in the cs.cmu.edu domain into
andrew.cmu.edu’s erz account. If a process is authenticated as both parties, the
standard ¢p command works correctly. Without additive authentication, this simple
task would require two separate processes. The first process, authenticated in the
cs.cmu.edu domain, deposits the file in some intermediate location made accessible to
it (say, /tmp) on the local workstation disk. At this point, the second process,
authenticated as erz in andrew.cmu.edu, moves it to its final home. Alternatively, a
pipe may be set up between the two, with the first reading the c¢s.cmu.edu file and

the second writing to the proper file in the andrew.cmu.edu cell. These alternatives
are simply not palatable. As stated above, the CacheManager automatically selects
the proper token to present to a FileServer in a particular domain. If no token exists
for a cell, the CacheManager uses an unauthenticated connection when performing a
file operation, effectively reducing the client’s rights to those of the Anonymous user
in that domain. If system security and autonomy are to be maintained, it is imperative
that automatic rights reductions be performed when crossing into a protection domain
in which the client has not identified himself.

While several identities per PAG are possible at any given instant, the system must be
able to select at most one of them as the primary identity. Many programs need to
ask ““Who am I?”’ in order to operate properly. The prime example of a program
exhibiting this need is Messages, a multi-media facility that provides a common
framework for performing such tasks as reading electronic bulletin boards and
electronic mail. When it comes up, Messages must be able to determine such things as
its caller’s home directory and the directory holding that user’s mail. If Messages is
running in a PAG where the user is authenticated in several cells, there is no way to
unambiguously discover these things in an automatic way. The getpwuid() family of
routines are no help, since they only operate on local password files.

Primary identities are established during authentication by both convention and the
explicit use of switches in the command lines of the log family of programs. The
CacheManager marks the given identity as primary when it stores its tokens. At most
one primary identity can be selected at any given time per PAG. A program can
determine its primary identity through new routines that supplement the standard
getuid()/gerpw*() family. For example, gervuid() contacts the CacheManager and
returns the ViceID corresponding to the primary identity. Also, getvpwuid() can be
used to find the password file entry for that user’s primary identity. These routines are
described in more detail in Section 8.2.

This new naming and authentication scheme has several positive characteristics, and is
more attractive than any attempt to maintain a single, global authentication database:

1. Most existing AFS server data structures, operations, and tools are
completely unchanged by the cellular upgrade. These include the
authentication database format, distribution of authentication
information, and all operations for adding and deleting user accounts.

2. A cell’s authentication database is completely independent of both
the number of cells in the community and the corresponding sizes of
their protection files. A global authentication database will certainly
result in files with unworkable sizes, and will grow with the number of
cells represented. Password files in the andrew.cmu.edu cell are
already large enough to require a separate index in order to provide
adequate search times.

3. Maintaining reasonably consistent copies of a global authentication

database requires a large amount of communication among the cells.
The only information that must be kept reasonably current in the chosen
strategy is the list of AuthServers for each protection domain. These
lists are not expected to change very often. In addition, note that a
single, global authentication database approach requires that sensitive
information be transmitted across the network.

4. An error in authentication database updates by one cell could corrupt
other cells if a global approach were used. To avoid this, each domain
must expend energy on carrying out consistency checks on any new
information received before merging it in. No such corruption is
possible in this implementation, as updates never cross protection
boundaries.

5. User names do not need to be unique in the global community, only
within a cell. In fact, the result of this design is a global, unique naming
system in which each cell has complete and exclusive control of its own
user name space, totally free of any collisions with the name spaces
maintained by other cells.

6. Since the remote agents are contacted directly, remote authentication
activity does not raise the load on local servers.

7. Special privileges within a cell do not automatically carry over to
other cells, maintaining security and exclusivity. For example, a user
with System:Administrator rights in cell A cannot delete users in cell B
unless he is also authenticated there as a person with those same rights.
Automatic rights reduction insures that remote users who do not have
accounts in another cell or have chosen not to identify themselves as
that person are treated as the Anonymous user. However, an
authenticated administrator for cell B can still carry out his full range
of activities there even if they log in on a workstation that belongs to
cell A.

2.2. Volume Location
2.2.1. Standard Mechanisms

The Andrew volume concept is a central one. Volumes are containers for a hierarchy
of files, and are the basic units of data moved between FileServers. The current
Andrew file system is composed of a collection of system and user volumes, joined
together at mount points. Note that Andrew mount points are AFS objects that have
no real connection with mount points as defined by the Unix file system. Instead, they
indicate where a particular volume is to appear in the file system tree. In this way,
AFS presents the image of a single, seamless tree to its clients. FileServers may be
instructed to clone read-only volumes from the read-write versions and replicate them
amongst themselves for greater availability and reduced per-server demand.
Mechanisms exist by which administrators may create, delete, back up, replicate, and
move volumes. Complete information on the status of all Andrew volumes is kept in
the Volume Location Data Base (VLDB) on the SCM and replicated at a subset of the
FileServer machines. As volume operations take place, individual FileServers keep
track of the changes to the volumes they host. Periodically, the SCM polls each
FileServer machine and collects these changes, merging them back into a new VLDB
and redistributing it. Volumes are identified by either name or number, both
guaranteed to be unique in the Andrew environment.

At startup time, the CacheManager determines the volume serving as the root of the
AFS tree. This is done by either calling the RViceGetRootVolume() file system
interface routine or through explicit (and overriding) information in the bootup
configuration files. It also determines the group of FileServer machines that provides
volume location service. As the CacheManager encounters mount points in the course
of processing path names presented by its users, it consults any FileServer in this
group to determine the location of a volume for which that information has not been
cached. Once the sites a volume resides on are determined, the CacheManager can
access that volume’s files to the full extent of the permissions held by its clients. To
make certain the volume location information held by the CacheManager doesn’t get
overly stale, one of its lightweight daemon processes checks the name-to-number
mappings every two hours.

2.2.2. Extensions

In the expanded environment, volumes from anywhere in the greater Andrew
community can be mounted in the AFS tree via cellular mount points. This new
construct differs from the standard AFS mount point in that it also contains the name
of the cell in which the associated volume resides. At startup time, the
CacheManager now learns of the set of FileServer machines providing volume
location service for each known cell, including its own. Internally, the
CacheManager’s volume information is keyed on both the cell and volume numbers.
This is made necessary by the fact that the 32-bit volume numbers are no longer
guaranteed to be unique across cells. Path name processing is now only slightly more
complex than before. When crossing a cell mount point for which no volume location

information has been cached, the CacheManager consults the subgroup of FileServers
responsible for the named cell. When crossing a standard mount point, volume
location requests are directed to the machines for the cell in which the parent volume
resides, since the new volume also resides there.

This scheme has the same advantages as the new approach to accessing authentication
services. These include the basic preservation of the existing mechanisms,
independence of VLDBs, preservation of workable file sizes, avoidance of inter-cell
communication needed to support a global VLDB, compartmentalization of errors,
direct application of remote volume location workload to remote servers, and
automatic rights reductions across protection boundaries. In addition, the proposed
system has two favorable characteristics:

1. Local file servers are completely unaffected by the file traffic
generated when its workstations access remote files. The only parties
involved in inter-cell file transfers are the remote FileServers hosting
the data and the individual workstations performing the accesses.

2. The cell mount point construct allows remote file systems to be
rooted anywhere in the local cell’s file system. This allows a cell’s
administrators to shape their view of the file space to suit their own
purposes. By convention, though, the upper level is defined as
described in Section 3.

While volumes may still be shuttled back and forth as they have always been between
FileServers in the same cell, they are not permitted to move between cells. Each
administrative domain has full control of its volumes, and is completely responsible
for their housing and backup. The only difficulty with this restriction is in handling
the natural movement of users between sites. Transferring a user’s files between cells,
ie., from andrew.cmu.edu to cs.cmu.edu, can still be accomplished in spite of this
limitation. A dump is taken of the user’s andrew.cmu.edu volume, and the volume
itself is destroyed. The dump file is copied to the cs.cmu.edu cell, where it is
restored to a new volume belonging to that site. This operation must be carried out as
a cooperative effort between the maintainers of both cells.

2.3. Mapping VicelDs to Attributes
2.3.1. Standard Mechanisms

Such programs as Is (list directory) perform mappings from internal uids/ViceIDs to
string names suitable for human consumption. Other programs map VicelDs to such
things as the user’s home directory, the desired shell (command interpreter), etc.
These tasks are done via the standard getuid() and getpw*()-class calls. The Andrew
version of Is is capable of using the White Pages facility to speed these mappings,
should it be available. The White Pages database is a superset of the information in
letc/passwd, supplying such additional information as user nicknames, departmental
affiliations, and mail forwarding addresses. The interface to this database allows such

sophisticated operations as fuzzy matching on user names. A full description of this
optional Andrew facility may be found in [7]. Andrew programs that have been
converted to take full advantage of the cellular environment use the corresponding
getvuid() and getvpw*() calls instead of the standard ones. These routines know to
make use of a White Pages database if one exists; otherwise, they fall back on a
vanilla search of /etc/passwd.

2.3.2. Extensions

These mappings will still be performed correctly by the above mechanism in the
cellular system, but only when dealing with files and directories living in the local
cell. The problem lies in the fact that this approach always maps uids/VicelDs in
relation to the local White Pages (or /etc/passwd) regardless of the cell they really
refer to. As an example of the confusion produced by this shortcoming of the
standard mapping mechanism, consider the following Is invocation when run from a
workstation in the andrew.cmu.edu cell:

% 1s -1dF /afs/cs.cmu.edu/user/erz

d 2 lynn 2048 May 25 15:21 /afs/cs.cmu.edu/user/erz/

The VicelID corresponding to the erz account in the cs.cmu.edu cell is 67. Since the
printable name string is determined from the andrew.cmu.edu White Pages, Is
attributes ownership of that directory to andrew.cmu.edu’s ViceID 67, namely Lynn
Brown.

Several solutions for this problem were considered and rejected. One proposal was to
change the standard star() block to carry cell information, but this would require a
change to all programs depending on the srar() interface. Similarly unworkable was
an approach which partitioned the uid/ViceID space so that a cell identifier appeared
in the upper bits. Another rejected suggestion was to forget about performing
translations on VicelDs associated with files in remote cells at all. Rather, (in the case
of Is) the raw number, qualified by the cell name, would be printed out. While this
was the easiest to implement, it was also the least informative, so much so that it was
determined to be useless.

The solution finally adopted was to establish a convention requiring that each cell
locate its White Pages database (and/or its /etc/passwd file) in a standard place within
its directory structure. The gercpwuid() and getcpwnam() routines were added to the
White Pages interface, allowing clients to specify the name of the cell within which
VicelD mappings are to take place. Using the above convention (described in more
detail in Section 5.1), that cell’s translation database(s) can be easily located and used
by gercpwuid(). Using these tools, the upgraded Is will always provide complete and
correct owner information. Its response to the above example is shown below:

% 1s -1dF /afs/cs.cmu.edu/user/erz

d 2 erz@cs.cmu.edu 2048 May 25 15:21 /fafs/cs.cmu.edu/user/erz/

- 10 -

The printable names are sometimes qualified by the cell in which the mapping was
made, as in the above example. This extra information is provided in the case where
the file lives outside the cell hosting the client’s primary identity (see Section 2.1.2). If
no primary identity has been declared, such qualification occurs only when providing
information about files outside the cell administering the workstation on which the
client is running. Thus, output from the upgraded /s will be identical to that of the
standard one for local (same-cell) files, but ownership will be fully qualified for
remote files.

- 11 -

3. Filespace Conventions
3.1. Directory Structure

3.1.1. The /afs Root

The global Andrew file tree is rooted at /afs. Listed below are the current contents of
this top-level directory, as seen from a workstation in the andrew.cmu.edu cell:

% 1s -F /afs

andrew/ cs.cmu.edu/
andrew.cmu.edu/ psy/
athena.mit/ psy.cmu.edu/
athena.mit.edu/ tmpcmu/
beta/ wm.mit /
beta.andrew.cmu.edu/ wm.mit.edu/
cs/

This illustrates the two basic classes of directory names that can appear under /afs:

1. The directories with fully-specified, domain-style names represent
entry points to the individual file systems of the sites participating in the
Greater Andrew community. Specifically, they are mount points to each
cell’s root volume.

2. For each entry bearing a full cell name, there is a corresponding
‘“‘short-form’’ name. These are simply locally-defined shortcuts for
people who wish to minimize key strokes when specifying full path
names. The short-form names are implemented as symbolic links to the
appropriate full names in the same directory.

Full names as exhibited in class 1 are unique across all cells, and can be freely and
safely used on any occasion. Shortcut names belonging to class 2 are conveniences
that are not guaranteed to be unique (or even exist in another cell). Further discussion
on these points and the dangers of using shortcut names is delayed until Section 3.2.1.

3.1.2. Per-Cell Directories

Cell administrators are generally free to structure their individual file systems (e.g.,
everything below /afs/andrew.cmu.edu) as they see fit. However, there is one
directory name whose use is ‘‘reserved’’ at this level of the file tree: service. If a site
provides such a directory, it is promising to export certain internal information in a
standardized fashion. Furthermore, all directories and files within a cell’s service
subtree must reside within that cell.

Within service itself, the presence of any or all of the following subdirectories
further obligates that cell to provide the corresponding service or services (hence

- 12 -

the name). Conversely, the absence of any or all of the directories listed below
indicates that the given cell does not provide the associated service or services.

etc: This directory holds copies of the /etc/passwd and /etc/group files, which are also
stored on each workstation’s local disk. Certain programs (e.g. Is) expect to
find this mapping information for each cell in the community at this location.
In the case of /etc/passwd, this copy is only referenced should the cell in
question not support a White Pages service. Thus, if the string name
associated with gid 4 has to be determined for cell XXX, the answer may be
found in /afs/xXX/serviceletc/group (for the curious, gid 4 maps to tty in the
andrew.cmu.edu cell). Administrators are free to zero the field carrying
encoded password information in this copy of /etc/passwd, since the file is
never used for authentication purposes. Notice that there is only one copy of
letc/group in this directory. The andrew.cmu.edu cell currently has a different
copy of /etc/group for each supported machine type. The only major
difference between them is that the rt r3 software requires that users must
belong to the wheel group before they can become root. A consolidated
version will thus be placed in /afs/andrew.cmu.edu/serviceletc/group to follow
through on the cellular conventions.

mailgs: This directory contains the mail delivery queues as used by the Andrew
Message System (AMS). As stated above, sites not running AMS should not
have a directory named service/mailgs, as its existence will be viewed by other
cells as a promise to provide AMS service. More information on the structure
and proper use of service/mailgs appears in the full discussion of AMS
requirements in Section 5.1.

configuration: This directory contains AMS configuration information. As with
mailgs above, further discussion on the contents of this directory is also carried
out in Section 5.1.

printing: This directory acts as an interface to the printing services available in the
given cell. Only the high-level directories expected from a cell are mentioned
here. The reader is referred to the Andrew printing documentation for details
of the lower-level directory organization, font representations, and accounting
procedures [6]. Briefly, there are six required subdirectories of service/printing
should a cell wish to export its printing facilities:

commands: This is the collection of shell scripts used to bring up the various
printer spoolers.

database: This directory contains an accounting database, divided into a set of
files for ease of locking. User entries contain such information as the
uid, the maximum printing quota, how much of this quota has been
used, and how many printing jobs have been issued in the user’s name.

device: All device-specific information is kept in this subtree. In
andrew.cmu.edu, there are three devices available, and each gets its
own subdirectory in service/device: ibm3812, ibm3820, and postscript.

- 13-

For each device ddd, there are two required files in
serviceldevice/ddd: translation.list, which holds the font-character
translation table, and fonts.list, which holds font-specific information.
JSonts: The actual font libraries live here, partitioned into two subdirectories: fdb
and ibm3820.
printcaps: Machine-specific printing configuration is archived in this directory.
spool: All print spool queues are kept in this directory. For each printer ppp,
there is a corresponding service/printing/spool/ ppp directory.

servers: Although details have not yet been worked out as to how a cell’s pool of free
machines might be made available to foreign users in a reasonable way,
presence of this directory implies that the given cell is willing to make its
excess computing power available to others. This directory contains some
configuration files for the Burler, the manager of the free workstation pool,
along with a set of subdirectories it needs for its operation. Although the
ability to run programs on external workstations is not currently exportable to
other sites, the servers directory still appears on this list, as this ability is
expected to be implemented in the future. Further documentation is expected
to be made available.

systypes: This plain ASCII file lists the legal set of values for the @sys special name
in the given cell. There is no particular format for the contents, as it is only
intended to be read by humans.

wp: This directory is the home for the given cell’s White Pages database files, should
they decide to support this facility. The database maintained at the
andrew.cmu.edu cell is very large, with the White Pages b-tree partitioned into
94 separate files.

3.2. Volume Conventions
3.2.1. Naming

Each cell is required to maintain a volume named root.afs, containing that cell’s
view of the global, top-level /afs directory. There are several reasons why each cell
maintains its own cellular root volume instead of having only one volume shared
between all sites. First, this scheme avoids dependence on the availability and
integrity of any one site in the community. It also avoids the bottleneck created by
having to go off-site for each and every pathname translation performed by the user
workstations. Furthermore, the partition of top-level entries into regular mount points
and cell mount points differs from cell to cell. Finally, each cell is free to assign its
own particular shortcut names (see Section 3.1.1) for the unique, fully-specified cell
entry points defined at this level. These short names represent a tradeoff between
typing ease and uniqueness. Although it turns out that uniqueness is still preserved in
the current cellular community, consider the following scenario. Suppose Newcell
University’s Computer Science Department comes on-line as the latest Cellular
Andrew site. Their full name, cs.newcell.edu, is added to the root.afs volume

- 14 -

(and hence the /afs directory) in each cell. However, a shortcut version of this full
name, cs, is placed in the root.afs maintained at Newcell University for the
convenience of its users. Notice that the meaning of pathname /afs/cs now varies
depending on the workstation interpreting it. Since workstations maintained by
Newcell University mount the local version of the cellular super-root volume, someone
running on one of these machines will be directed to /afs/cs.newcell.edu, whereas
someone sitting at a workstation in the CMU Computer Science Department will have
that name translated to /afs/cs.cmu.edu! For this reason, it is important that hard-
wired pathnames, either in programs or in files, use the fully-qualified versions of
cell names. This will insure that the use of that program or file will be location-
transparent.

Along with the above naming requirement for each system’s ‘‘super-root’’ volume,
each cell must use a standardized name for the root volume of its own individually-
maintained file system. Specifically, each cell must name its own root volume
root.cell. This allows a given cell’s file system to be mounted into an image of the
global tree by creating a cell mount point consisting of the cell’s name, a colon, and
the string “‘root.cel1’.

3.2.2. Replication

For reliability, availability, and load-sharing, cell administrators will typically create
read-only replicas of important system and binary volumes, and distribute them across
several FileServer machines. It is strongly suggested that each cell create clones of its
root.afs volume and force its workstations to mount one of these read-only copies at
lafs, even if it is only running a single FileServer. The reason has to do with the
inheritance of volume characteristics across mount points. When crossing a mount
point, the CacheManager will locate and use a read-only replica of the target volume
if the following three conditions are met:

1. The “‘parent’’ volume, i.e., that which houses the mount point being
crossed, is a clone.

2. The read/write version of the target volume has not been explicitly
selected (via the -rw switch in the fs utility, which is used to
create mount points).

3. A read-only clone of the target volume exists.

By mounting a read-only copy of its own root.afs volume for the shared file system,
a cell’s workstations exploit read-only clones wherever they are available in the global
tree. This makes remote access more reliable, since any replication performed by
external sites on their own behalf is also taken advantage of. Mounting a read-only
version of root.afs is also an act of courtesy towards the other cells in the
community. As mentioned above, cloning is also used for load sharing in Andrew.
Having a cell pile up its requests on the read-write versions of remote volumes when
replicas are available is considered anti-social.

It is also desirable that the root volume for each cell’s individual file system

-15 -

(root .cell) be cloned, for the reasons listed above.
3.2.3. Directory Structure, Revisited

While accessing cloned volumes both locally and remotely is the best recourse for
normal computing activities, there are times when the read-write versions must be
manipulated. This action is required to carry out such system administration activities
as updating binaries and adding entry points for new cells. The upgraded read-write
volumes are cloned once again, and the new read-only copies replace the old ones at
the FileServers acting as replication sites within the cell. Although the necessary
read-write volumes can be explicitly mounted at a temporary location when such
operations are needed, it is more convenient to have the complete read-write tree
mounted and available at all times.

Thus, by convention, each cell will also explicitly mount the read/write version of the
other cells’ individual root volumes in /afs, as maintained by their local root.afs.
Since these entries are not needed during the vast majority of normal activities, they
are ‘‘hidden”” from the casual observer by prepending a period to the fully-qualified
names. To illustrate, let us once again generate a listing of the top-level /afs directory,
but this time we’ll include all the ‘‘hidden” subdirectories representing these read-
write mount points:

% 1ls -aF /afs

./ .wm.mit .edu/ cs/

oS andrew/ cs.cmu.edu/
.andrew.cmu.edu/ andrew.cmu.edu/ psy/
.athena.mit.edu/ athena.mit/ psy.cmu.edu/
.beta.andrew.cmu.edu/ athena.mit.edu/ wm.mit/
.cs.cmu.edu/ beta/ wn.mit.edu/
.psy.cmu.edu/ beta.andrew.cmu.edu/

As an example of the direct manipulation of a cell’s read/write root volume via this
mechanism, suppose the administrators for the andrew.cmu.edu cell wish to create a
directory, usr26, to hold additional user accounts (which are currently stored in
directories usr0 through usr25). The following command will start the ball rolling:

% mkdir /afs/.andrew.cmu.edu/usr26
To make this new user directory visible along the normal paths, the adminstrators then
clone and distribute the root.cell volume in the andrew.cmu.edu cell. When the
clones arrive at the replication sites and the VLDB is updated, workstations begin to

use these new clones. At this point, /afs/andrew.cmu.edulusr26 appears to the general
populace.

3.3. Handling Special Names

While processing pathname components, the CacheManager handles the string @sys

- 16 -

in a special way. Any occurrance of @sys is replaced with a string describing the
type of CPU and operating system the CacheManager’s workstation is running. For
example, @sys is replaced with rt_r3 for an IBM PC RT running Release 3
(basically Berkeley 4.3 Unix) in the andrew.cmu.edu cell, sun3_34 for a Sun3
workstation running Sun Unix 3.4 there, and so on.

This feature allows a program to use a given pathname without worrying about which
machine type and operating system type it is running on. For example, if a user were
to invoke /afs/andrew.cmu.edu/@sys/usr/andy/bin/ez from the command interpreter,
they would actually run the /afs/andrew.cmu.edu/rt_r3/usriandylbinlez editor on the
above RT configuration. Similarly, this same command would result in starting up the
lafslandrew.cmu.edu/sun3_34/usrlandy/binlez version of the same editor on a Sun3.

Extending this facility to operate ‘‘correctly’’ in the cellular environment has been
found to be intractable. The difficulty stems from the fact that each cell is free to
introduce new CPU types into the Andrew stable, and to perform its own (possibly
incompatible) operating system releases. Hence, it will also produce its own particular
@sys strings to reflect these new systems. This complicates the transparent operation
of the CacheManager. When encountering an @sys reference within the context of an
external cell, the CacheManager must discover the ‘‘compatible’’ translation string,
assuming one exists at all.

The nearest thing to a viable solution is to establish a standard, generic set of @sys
strings. Each cell provides a table which maps these global names to the compatible
local string. For example, let us assume rt r3 has been agreed upon as a standard
@sys string in the Andrew community. The andrew.cmu.edu cell provides the
identity mapping for it, while the cs.cmu.edu cell may decide to map it to something
like rt_mach. When handling an @sys reference in a pathname component lying in
cell X, the CacheManager uses the local string that X designates in its table. The
biggest drawback to this scheme is the amount of communication required to keep the
mapping information up to date. New standard names will have to be constantly
negotiated. Also, each cell administration will have to decide exactly what local
system(s) the new configuration is compatible with in order to add reasonable entries
in their exported mapping tables. This task rapidly becomes impossible in a large
community.

It has thus been determined that the CacheManager will map occurrances of @sys
according to the conventions established in its own cell, regardless of where in the
pathname this special name is seen. To continue with the above example, if a given
cell does not have such an r¢_r3 directory in the specified location, the pathname parse
will simply fail, even if a compatible version is available under a different name, say
rt_mach.

-17 -

4. AFS Semantics

The /afslandrew.cmu.edulcommonl/usriandy/doc/vdocivenus.vdoc file contains a
complete specification document for the programming interface to the Andrew
CacheManager. Every cell in the Greater Andrew community must adhere to this
interface, regardless of whether they decide to write their own CacheManager or to
simply make changes to the one available from the ITC. This section presents a set of
points regarding the AFS semantics which are of interest to Andrew applications
programmers, and the importance of fully publicizing proposed semantic changes to
the system as early as possible. It is strongly recommended that the reader review the
above document before examining this section.

4.1. Applications Programming

1. The CacheManager provides special codes in errno for conditions peculiar to the
AFS. It is expected that any such AFS-specific error conditions generate the
appropriate code in errno. In particular, the loss-of-connection condition produces
ETIMEDOUT, the loss-of-CacheManager condition produces ENXIO, restarting the
CacheManager produces ENoTTY for operations on old file descriptors, and the
absence of a mount point’s destination produces ENoDEv. It is also assumed that
VOFFLINE and vBUSY, if they occur, reflect temporary failures on a FileServer. In
particular, the errno code ENOENT must be returned only as an authoritative
observation that a file or directory is not present, and never simply that the
CacheManager was unable to determine whether or not a file or directory existed.

2. It is assumed that EFBIG is the errno value returned if a program attempts to
create a file in a directory that is at its maximum size limit.

3. If and when the AFS begins use of the domain system to determine the legitimate
subdirectories under /afs (instead of relying on a relatively static root.afs volume),
temporary failures from the domain system itself are reflected via errno values other
than ENOENT. A new and distinguished value for errno must be chosen when
scanning /afs in these cases, examples of which are SERVFAILS, non-authoritative
NXDOMAINS, and no-such-record responses.

4. Even after migrating the handling of /afs subdirectories to the domain system, the
cell name returned by the vIoc _FILE_CELL_NAME pioctl() and the VIOCIGETCELL
ioctl() will be the fully-qualified domain name and not an abbreviated one. We expect
that these two operations will return ErnvaL when presented with files that do not
reside on any server in any AFS cell. These calls are intended as a reliable
mechanism by which applications can determine whether or not a given file lives in
the AFS. This replaces the previous approach, wherein the st_gid field in the stat()
block was set to 32,767 iff the file resided in the AFS.

6. The fsync() system call, when directed at an AFS file, causes that file to be stored
on its FileServer, and furthermore results in that file remaining open with all flock()s
at the time of the fsync() still in force.

- 18 -

7. [Specifically for the AMS] When a file is created, its owner (the value in the
st_uid field after a star()) is the VicelD held in the FileServer connection that was
responsible for the creation. It is expected that whenever a rename is possible on a
file such that the st _uid field is nor updated, the person responsible for the
destination directory will be able to trust the person responsible for the source
directory. An example of this situation arises when renames are done within the same
volume. The AMS relies on this convention for files inserted into “Mailbox
directories. Thus, when a file tagged with a certain VicelD is inserted into a mailbox
directory, it is expected that it was inserted by a process authenticated as that same
ViceID. When a file is renamed into that directory without updating its st_uid (as in
the above example), we expect that the rename was performed by a trusted entity.
The andrew.cmu.edu cell’s administration carries out this part of the expectation by
assigning each user an individual AFS volume. Thus, the only files that can be
renamed into the user’s /Mailbox directory without changing the st uid field are
those that were stored in the user’s volume to begin with. Presumably, the user will
be able to trust such files.

4.2. Handling Future Changes

Suggested changes to the AFS semantics must be aired publically at the earliest
reasonable time to allow both system and applications programmers from all cells in
the community to assess their consequences. Sometimes, seemingly insignificant
changes have profound and devastating effects on certain Andrew programs. For
example, consider the following proposal made by the CMU Computer Science
Department. They suggested that the AFS support the ‘‘File system full -- pausing’’
feature, wherein a program that attempts to allocate storage beyond what is available
is suspended until the allocation request can be satisfied. If this behavior had been
universally applied without recourse, it would have disrupted sites using the AMS
facility to provide mail delivery service. PostOffice server machines would be
susceptible to hanging for extended periods, since they don’t normally have users
logged into them to see the problem. This would effectively halt mail and bulletin
board processing on that server machine. Specifically, an attempt to deliver mail to a
user that is over quota results in a denial of service to the rest of the community until
the situation is corrected. In this case, the issue was resolved allowing pausing to be
disabled on ENospc errors. Thus, machines that cannot tolerate such behavior (such
as those serving as PostOffices) merely change it to suit their needs.

- 19 -

5. The Andrew Message System

The Andrew Message System (AMS) is a highly desirable facility, but not a
prerequisite for membership in the cellular community. This section provides a set of
cellular conventions to be used by those sites that wish to run their own version of this
advanced mail delivery system. Even sites using other delivery systems must be
aware of these conventions to make certain they are not inadvertently violated. Such
violations may give the appearance to the rest of the Andrew world that their cell is
providing a particular service or services when in fact it is not.

The AMS is not only integrated into the cellular environment, but also takes advantage
of the unique opportunities it offers. It is possible for sites to participate in AMS
delivery both at a full-compliance level and at intermediate levels of participation.
This section also explores the details of such varying degrees of conformance
(including the possible non-participation of some sites) and the tradeoffs involved.

As stated earlier in this document, each cell has a fully-qualified Internet-style domain
name. This full domain name is referred to as the ‘‘cell name’’ or ‘‘CELLNAME’’.
These two terms will be used interchangeably throughout this discussion. As a
reminder, the (CMU campus) cells currently in existence are andrew.cmu.edu,
cs.cmu.edu, psy.cmu.edu, and beta.andrew.cmu.edu.

5.1. Requirements for Full Cooperation

This section defines full AMS cooperation, meaning AMS delivery system installation.
Intermediate levels of support are discussed in Section 5.3.

Under full compliance, each cell maintains and exports a White Pages database
describing its users, and this b-tree database is expected to reside in
lafs/ CELLNAME/service/wp, with a root file named lafs/ CELLNAME/service/wp/wp. A
cell’s White Pages contains an entry for each account entity known to its
administrators. These entries are derived from a file in letc/passwd-format, whose
fields are interpreted as follows:

pw_name: The login name for the AFS user (e.g., cfe).

pw_passwd: May be any one of the following: 1) The encoded local-disk
password, 2) A ““*’ prohibiting logins, 3) A ““* (null string) allowing
unauthenticated, password-free logins or 4) A “V”’ or “X’’ signalling
that AFS authentication should be trusted for purposes of workstation
login.

pw_uid: The VicelD for that AFS user.

pw_gid: The group ID for that AFS user.

pw_gecos: The full name for that AFS user (e.g. ‘‘Craig Everhart”).

pw_dir: The home directory for that AFS user.

pw_shell: The initial shell program to be used when that user logs in.

Thus, the authoritative translations between ViceID values and the login names

-20 -

corresponding to those values are kept here. The cell’s White Pages facility is used
by such programs as Is to determine the print-names for the owners of files in their
own or external cells.

By agreement, the cell name is the prevailing mail domain name. For example, the
AMS constructs ‘‘From:”’ headers in which the ‘‘@domain’’ text is ‘‘@CELLNAME’’.
In particular, the cellular-capable AMS treats the ‘‘@domain’’ part of any mail
address as a possible reference to a cell name. Thus, since the CMU Computer
Science Department’s cell is named cs.cmu.edu, the AMS looks to that cell to
resolve and deliver mail addressed to the ‘‘cs.cmu.edu’’ domain.

Also by convention, standard network services such as Finger, SMTP mail delivery,
Telnet, and FTP are provided through this cell name. For any cell name, there must
be a machine with an identical domain name. Finger, Telnet, and FTP services must
therefore be provided via processes on this machine. It is possible to redirect a sizable
portion of the SMTP mail traffic away from this specific machine by publishing the
proper set of MX records. However, there are many mail-sending machines in the
internet that do not use MX mail delivery records. Thus, we are effectively forced to
provide SMTP service at this location anyway.

The following algorithm is used to generate the ‘‘local-part’ for mail addresses by the
AMS authenticated in a given cell:

1. Take the VicelD returned by the CacheManager for the authentication
tokens in that cell.

2. Use that cell’s White Pages to translate that ViceID to a pw_name value.

3. Append a plus sign (‘‘+”’) to the pw_name value.

(This behavior may be modified in some higher-level cases; see the discussion in the
third paragraph following.)

The “‘From:” address in mail is derived from the message sender’s primary AFS
authentication. Other authentication traces, however (such as Return-path information,
or the authentication information preserved by the AMS and presented in message
captions), will be generated from any authentication, primary or not, possessed by the
message sender.

The AMS places in its ‘“From:’’ fields the pw_gecos field of the authenticated user, as
an RFC822 *‘phrase’” before an RFC822 ‘‘route’’. Thus, it will quote the pw_gecos
field contents if necessary to conform to RFC822.

Should a cell administration be able to guarantee the uniqueness of its pw_gecos field
contents, the algorithm for generating ‘‘From:” fields and for the validated form of
“To:” and ‘‘CC:’ recipients can be modified as follows. A file named
lafs/ICELLNAME/servicelconfiguration/name-separator is created by the administrators
(and recall that this file must be stored within the cerLNaME cell). If this file exists
and its first character is not alphanumeric, canonical mail addresses in CELLNAME are

-21-

constructed by replacing all spaces in the pw gecos field with that first character
(optionally quoting them to serve as a legal RFC822 “‘local-part’’) and then appending
“@ceLiNaMe’’. Thus, a cell that desires its validated mail addresses to usually be of
the form °‘Firstname.Lastname@cELLNAME’” should create a name-separator file whose
first character is a period. Similarly, the name-separator file should begin with an
underscore or a space if the addresses are to be of the form
“‘Firstname_Lastname@CELLNAME”’ or ““Firstname Lastname@CELLNAME”’
respectively. Other values for this character are not recommended for a cell that uses
the AMS delivery system. When an address is rewritten using a name-separator
character, no RFC822 ‘‘phrase’’/*‘route’” pair is generated. Instead, the pw_gecos
field is simply used as the RFC822 ‘‘local-part’’ for the address, and it is left as
“local-part@cerinamMe’. Choosing a space or a period for the name-separator
character may require AMS programs to quote the resultant ‘‘local-part’’.
Furthermore, using a space implies that any pw_gecos field with a space will be
quoted. Finally, using a period implies that any pw_gecos field with a period next to
a space must be quoted. For example,

Craig Everhart@ CELLNAME
Craig.F..Everhart@ CELLNAME

are not legal addresses; they must be quoted as

"Craig Everhart"@CELLNAME
"Craig.F..Everhart"@ CELLNAME

Another caveat is that even if a cell alters the form of its validated mail addresses, it
must still recognize the ‘‘userid+@cerrNamMe’ form. This is not only because some
addresses generated at low levels of the system will always generate this older form,
but also because it may not always be possible for an AMS program to read the
name-separator file (e.g., if communications are disrupted). In such cases, an AMS
program will revert to the ‘‘userid+@cerLLNaME’’ form of validated address if it cannot
be certain about the existence or contents of the published name-separator file.

Information concerning the authenticated source of every piece of mail is presented to
AMS users. This information is ultimately derived from the contents of the st_uid
field given by stat() for files living in AFS, which is translated via that cell’s White
Pages to a pw_gecos value. Each cell provides a distinguished account that is trusted
by that cell’s users to preserve authentication information for messages transferred
within that same cell. The name of this account is defined to be the value of
PostmasterName in the configuration files, which is typically postman.

A cel’s AMS mail queues are those subdirectories in the
lafs/ CELLNAME/service/mailgs directory whose names start with the prefix “‘q’’.
Again, it is stipulated that these subdirectories must be located in CELLNAME itself.
Thus, /afs/andrew.cmu.edul/service/mailqs/q003 names a mail queue for the
andrew.cmu.edu cell. A cell’s background mail queues are those subdirectories

whose names start with the prefix ‘‘sq”’. So, /afs/andrew.cmu.edul/service/mailqs/sq2

-22.

is an example of a background mail queue, again in the andrew.cmu.edu cell.

If the mailgs directory exists for a cell, it must contain at least one regular and one
background mail queue subdirectory. The presence of /afs/ CELLNAME/service/mailgs
signals to the AMS running in any cell that cerinaMe supports the AMS delivery
system. Furthermore, it promises that delivery into the CELLNAME mail domain may be
accomplished by enqueueing a mail request into one of the AMS mail queues found
there. Conventional access control permissions on these AMS mail queues include
“‘System:AnyUser 1i”’. A mail request, roughly speaking, is a triple of files in a mail
queue directory. The three files are grouped together by virtue of the fact that they
have the same file name except for the first letter of that name. The remainder of the
file names are arbitrary. The first two letters of the three file names are *‘SF”’, “‘QF”’
and ‘‘GF’’. The QF file contains the text to be sent, the SF file contains the out-of-
band information (the sender, the recipient and some additional tracking information)
and the GF file contains nothing -- its presence alone signifies that its companion QF
and SF files have been completely written.

The presence of AMS mail queues in a cell indicates that they will be serviced
frequently by daemons that read the queued messages there and deliver them to their
intended recipients. The conventional way in which this takes place is by running (at
least) one AMS Post Office machine, which is a workstation solely dedicated to
accepting and delivering mail. Each AMS mail queue is serviced by (at least) one
process running on a Post Office machine. These processes must be authenticated in
their cell as the trusted postman user. Recall that the name of that trusted user may
be configured at system-build time as the value of the PostmasterName configuration
variable. AMS Post Office machines are, by convention, run in a physically secure
environment. They may also serve as the ports by which ordinary network mail (e.g.,
SMTP, UUCP etc.) enters and leaves the cell.

The bodies of mail messages in the distributed, inter-cell AMS may be formatted in
various ways, including ATK datastreams. The format of such mail bodies is given by
an RFC822 header associated with that mail body (‘‘Content-type:’’). Processes that
read messages from the AMS must be aware of the possibility that the body might be
formatted. Thus, they must also be prepared to un-format messages when the
recipients cannot understand them (e.g. SMTP, NNTP, or UUCP recipients). There
are library functions to perform this de-formatting.

If cells A and B are running the AMS delivery system, then message delivery
between them may be accomplished either via direct insertion into the proper mailbox
directories or by use of the mail queues. These messages will retain their source
formatting and ‘‘Content-type:’’ headers.

Some configuration decisions about how a cell is run are represented by the contents
of the directory /afs/sCELLNAME/service/configuration. Yet again, it must be stressed
that the subtree rooted at this directory must reside completely within CELLNAME.
Should it exist, the /afs/CELLNAME/service/configuration/Postmaster file contains the
mailing address of those people who are responsible for electronic mail at that site.

-23-

Notice, though, that not all configuration decisions are represented in this directory.
For example, a cell administration announces that it runs the AMS delivery system by
simply providing an /afs/CELLNAME/service/mailgs directory. Also, the file named
lafs/ CELLNAME/servicel/configuration/lWP_Update, if it exists, contains the mailing
address of a process that accepts mailed requests to update fields of the White Pages
database. In the andrew.cmu.edu cell, the file
lafslandrew.cmu.edul/servicelconfiguration/Postmaster contains the string
‘‘Postmaster@andrew.cmu.edu’’ (with or without a trailing newline). If a file named
/afsI CELLNAME/service/configuration/name-separator exists, it means that canonical
mail addresses in CELLNAME are derived from the user’s full name rather than from the
userid. Other characteristics of the name-separator file have already been discussed
above.

The /afs/CELLNAME/servicel/configuration/AMS-Server file contains information used
by the AMS’s MessageServer program to configure itself when the AMS home cell
(generally the primary authentication) for a user is not the same cell responsible for
that workstation’s administration. All cells operating an AMS delivery system should
install such a file to allow the MessageServer to operate as though it had been able to
get its AndrewSetup information from a workstation in its home cell. This file is
ordinarily generated to contain all cell-configurable MessageServer options in the
conventional manner when installing the AMS delivery system.

There must be at most one distinguished home directory in the AFS for any user listed
in its White Pages. This allows mail to that user to be delivered directly to their
“/Mailbox directory. (As an aside, /Mailbox directories deny ‘‘w’’ (write) access to
everyone and grant ‘‘’k> (lock) access to accounts that may insert files there. The
access list is generally ‘‘System:AnyUser lik; <owner> rlidka’’.) Mail is delivered to
this 7/Mailbox directory by creating a new file there. In more detail, a file is created,
that file is flock()ed, the contents of the file are written, and the file is closed. Readers
must flock() files they discover in 7Mailbox before assuming that they are reading a
completely-delivered file. This flock() on reading prevents confusion due to multiple
simultaneous readers, in addition to ensuring that simultaneous attempts at writing and
reading do not collide. It is wise to choose file names such that multiple simultaneous
attempts at writing do not share a file name. The absence of ‘“‘w’’ (write) permission
on the Mailbox directory helps assure that writers do not collide.

The queuemail program must be copied to the workstation’s /etc directory, and it must
be setuid-root to allow it to change its local identity and to manipulate the
lusrispool/ViceMsgQueue queue. The file /usr/spool/ViceMsgQueue (or whatever is
configured as ‘‘LocalQueue’’ in the mailconfig process) must exist on the workstation,
such that only root may write the files contained there. The startmailsystem script
must also exist on the workstation’s /etc. This script should be responsible for setting
the permissions on that directory, for starting the queuemail and guardian daemons,
and for reporting error conditions on the local disk to the local postmaster.

5.2. Implications

-24 -

If the AMS generates a mail address ‘‘foo@bar’’, the expectation is that when the site
““bar’’ receives mail destined for ‘‘foo’’, it will be delivered to the intended user.

Let us work through an example where the sender has primary authentication in the
andrew.cmu.edu cell as login name “‘cfe”’, with a pw _gecos value of ‘‘Craig F.
Everhart”’. He also holds tokens for login name ‘‘everhart’’ in the cs.cmu.edu cell,
where his pw_gecos reads ‘‘Craig Everhart”’. The ‘‘From:” address in messages
sent will appear as ‘‘"Craig F. Everhart" <cfe+@andrew.cmu.edu>’’. If mail is sent to
recipients within the andrew.cmu.edu cell, the AMS presents the originator of that
mail as ““Craig F. Everhart’’. If mail is sent to recipients in the cs.cmu.edu cell, the
AMS presents the originator of that mail as ‘‘Craig Everhart””. If mail is sent to any
other cell, the AMS may present the originator of that mail as ‘‘Craig F. Everhart **’
(authenticated format) or as ‘‘Craig F. Everhart@andrew.cmu.edu’’ (unauthenticated
format). The ‘‘Return-path:”’ of the mail received in the andrew.cmu.edu cell will be
“‘<cfe+@andrew.cmu.edu>’’; the ‘‘Return-path:”” of the mail received in the
cs.cmu.edu cell may be the same, or it may be ‘‘<everhart+@cs.cmu.edu>’’.

In this example, the mail receiver for mail domain ‘‘andrew.cmu.edu’’ is expected to
route mail addressed to ‘‘cfe+@andrew.cmu.edu’’ via the appropriate Andrew mailbox
or any mail forwarding that has been established. Likewise, the mail receiver for mail
domain ‘‘cs.cmu.edu” is expected to route mail addressed to
“‘everhartH@cs.cmu.edu’’ to the primary Computer Science mailbox or to wherever
that mail address forwards its mail.

5.3. Fallbacks from Full Cooperation

Cell administrators may choose not to provide the capacity for complete interoperation
with other cells. In this section, we outline the possible fallback positions that are
supported by the distributed inter-cell Andrew Message System. Unsupported options
must remain forbidden, so that the choices made by one cell’s administrators do not
corrupt AMS operation in other cells. That is, any site that chooses not to maintain
full compliance must do so in a way that will be recognized by the AMS facilities
running elsewhere.

A cell, A, may choose to provide neither a White Pages nor any mail queues at all.
The AMS delivery system will be unable to run with primary authentication in such a
cell. AMS user interface programs may be specially configured to run with primary
authentication in such a cell, but they will not attempt AMS delivery system or local
White Pages functions. If an AMS program runs in another cell, B, that supports the
AMS delivery system, then B’s program will be unable to resolve mail names or find
final mail destinations for A. Additional restrictions are given in this section’s closing

paragraph.

Cell C may choose to provide a White Pages but not mail queues. Its White Pages
remains suitable for use by such programs as Is, but not for mail delivery. As with A,
the AMS delivery system will be unable to run with primary authentication in cell C,
and AMS user interface programs there will not attempt AMS delivery system

-25.

functions. Similarly, AMS programs running in other cells will be unable to validate
mail names in C. This situation thus corresponds to a cell that chooses not to run the
AMS mail delivery system. The AMS, run with its primary authentication in such a
cell, would not attempt inter-cell mail delivery of any kind. The AMS will ignore any
secondary authentications in such cells as C, because the only path by which mail
may be delivered into such a cell will be through such mechanisms as SMTP. Again,
additional restrictions appear below.

If a cell wishes to advertise that it runs the AMS delivery system, it will provide both
a set of mail queues and a White Pages database in the standard fashion. It is not
absolutely required that a cell’s mail queues be open to anonymous insertion from
another cell, but it is a good idea. If user Anonymous cannot insert into the mail
queues, then mail must be delivered into that cell either in accordance with the White
Pages or through some facility outside of AMS such as SMTP.

Sites that support both White Pages and publicly-insertable mail queues are the fullest
participants in this cellular scheme. Such cells may exchange messages that are fully
authenticated by a combination of the standard AFS authentication mechanisms and
the recipient’s trusted mail delivery agent.

As mentioned above, cells that choose not to run the AMS delivery system impose
some additional restrictions on people using their workstations. In order to send mail
with the AMS delivery system from a given workstation, the cell in which that
workstation ordinarily resides must itself run the AMS delivery system. Consider the
user whose primary authentication is in a cell running a full AMS delivery system, yet
whose workstation is sitting in a different cell that does not fully support AMS. In
this situation, the user will be able to compose and send mail, but it may not be
delivered for several hours since the workstation does not support the AMS dropoff
function. (In general, AMS delivery requires that a good deal of the delivery-specific
work occur on the workstation itself.) Alternatively, if a user’s primary authentication
is in a cell not running the full AMS delivery system, but the user’s workstation is in
another cell, that user’s home for the purposes of reading and sending mail and
bulletin board notices will not be considered to be where the user has primary
authentication, but rather in the workstation’s cell. If the user has no authentication in
the workstation’s cell, AMS programs like Messages will be unable to run. If the
primary authentication is neither in the workstation-native cell nor in a cell with AMS
delivery, AMS programs will not know how to configure themselves. Configuration
information for cells running AMS delivery is available by convention and via the
/afs/ CELLNAME/service directory, whereas most configuration options for cells not
running AMS delivery are not made public this way.

- 26 -

=27 -

6. Configuration Information

The introduction of cooperating Andrew installations has created the need to maintain
configuration information for this community. Each Andrew cell must know the
names of the other cells in the confederation as well as which machines are acting as
their volume location and authentication servers. This section supplies the information
needed by system operators to understand the contents of these files, make changes
when necessary and diagnose problems caused by omission or corruption of these files
on a workstation’s local disk. All examples are written from the point of view of the
andrew.cmu.edu cell; other sites should easily be able to extrapolate.

6.1. The /usr/vice/etc Files

All of the Andrew cellular configuration files are stored in both the AFS and each
workstation’s local disk. The /afs/andrew.cmu.edu/commonletc directory acts as the
central AFS repository. At boot time, the package program insures that the
configuration files are present and up to date in /usr/viceletc, located on the
workstation itself. There are currently four cellular configuration files, only two of
which are necessary for proper operation. One of the four, domain.auth-backup, is
scheduled for removal. Let’s look at each file individually:

ThisCell: This file contains the name of the Andrew cell to which the given
workstation belongs. It is permissible to have leading and trailing white space
in this file, along with any number of trailing linefeeds/carriage returns. This
file is the only source of this information, so it is critical to the operation of the
workstation’s CacheManager. On startup, one of the first things the
CacheManager does is to read this file to find out which cell it’s working for.
If it can’t read it, the CacheManager will decide it is running in a mythical cell
called localcell. If the version of /usriviceletc/ThisCell read has garbage in
it, the CacheManager will adopt the first string it can read from the file as its
cell name. Errors of this type will manifest themselves in bizarre ways later,
as described below.

CellServDB: This file contains the full list of known Andrew cells (including
your own), along with the names and IP addresses of the machines providing
their volume location and authentication services. The information is in simple
ASCII text format, so it is possible to change with any editor. The current
contents of CellServDB in the andrew.cmu.edu cell is reproduced below for
easy reference:

>andrew.cmu.edu #ITC/Campus cell

128.2.10.2 #vice2.fs.andrew.cmu.edu
128.2.10.7 #vice7.fs.andrew.cmu.edu
128.2.249.123 #scm.fs.andrew.cmu.edu
>beta.andrew.cmu.edu #ASA’s beta cell

128.2.72.1 #betal.bfs.andrew.cmu.edu

128.2.72.2 #beta2.bfs.andrew.cmu.edu

-28 -

128.2.72.10 #scm.bfs.andrew.cmu.edu
>cs.cmu.edu #Computer Science cell
128.2.222.180 #mango.srv.cs.cmu.edu
128.2.242.81 #peach.srv.cs.cmu.edu
128.2.242.86 #lemon.srv.cs.cmu.edu
128.2.250.187 #guava.srv.cs.cmu.edu
128.2.217.45 #apple.srv.cs.cmu.edu
128.2.222.199 #papaya.srv.cs.cmu.edu
>psy.cmu.edu #Psychology cell

128.2.248.147 #thistle.psy.cmu.edu

Every line starting with a ‘“>’’ marks the beginning of the information for a
particular cell. The opening ‘“>”’ is followed immediately by the domain name
of the cell being described, some amount of whitespace, a “‘#’’ and finally a
wordier description of the cell. Each line between this marker and the next
one (or end-of-file) describes a machine providing volume
location/authentication services for that cell. The description starts with the
machine’s IP address in dot notation and is followed by some whitespace, a
“#”’ and finally its full domain name. The software manipulating this file
parses and stores this information, and in fact tends to use the explicit IP
addresses only as a last resort. The last server description line for each cell
must identify its System Control Machine (SCM). While the SCM normally
provides neither volume location nor authentication service, it is still necessary
to include it here so that passwords may be changed in other cells. The SCM
is the only place where this type of update can take place in a cell, forcing its
appearance on this list.

domain.auth-backup: This file is CellServDB’s predecessor, and is no longer
being used by anyone or anything. It is scheduled for removal in the near
future.

cacheinfo: This file contains the following three necessary pieces of
configuration information, separated by colons, for the in-kernel
CacheManager:

1. The Unix directory on the workstation’s local disk on which the AFS
will be mounted. This is expected to be /afs for a workstation
participating in the cellular community, but may take on other
values for such reasons as debugging.

2. The Unix directory on the workstation’s local disk to use for the
CacheManager’s disk cache.

3. The maximum number of 1Kbyte blocks on the workstation’s local
disk which may be devoted to the CacheManager’s disk cache.

Here are the contents of this file in the andrew.cmu.edu cell:

/afs:/usr/vice/cache:30000

- 20 .

In this case, the CacheManager is being told that the AFS should be mounted
locally at /afs, that the /usr/vice/cache directory will serve as its cache directory

and that 30 Mbytes (30,000 1Kbyte blocks) are available for cache storage on
disk.

The user-level CacheManager does not use this file. Instead, it depends on
letclvstab to supply this information.

6.2. Use of Configuration Files

The librauth.a library contains a module (cellconfig.c) which serves to interpret the
cell configuration files and make their information available to various application
programs. Let us consider these applications individually:

log, passwd: These two programs use the configuration file information to
contact the proper authentication servers when someone invokes an operation
that must be handled by another cell. In the case of log, a user may wish to
generate tokens so they can manipulate protected files in a remote cell. Take
the example where someone with user name frank wishes to establish
authentication with the Psychology cell, which is named psy.cmu.edu. The
user types in “‘log frank -c psy.cmu.edu’’. The log program recognizes that an
explicit cell is mentioned on the command line and deals directly with the
authentication servers in that cell. In the case of passwd, reference to another
cell will cause it to contact the last server in that cell’s list, which is
guaranteed to be the SCM (see the description of /usr/viceletc/CellServDB in
Section 6.1 above).

veellconfig: This program passes all of the information in the CellServDB file
to the workstation’s CacheManager The different types of CacheManager
begin life with different levels of knowledge concerning the members of the
cellular community. As discussed earlier, the user-level CacheManager only
reads the ThisCell file upon invocation. Along with the information it picks up
from /etc/vstab, it starts off knowing everything it needs to about the cell in
which it’s running, but no others. Thus, before a machine running a user-level
CacheManager can access files in other cells, vcellconfig must be run to round
out its knowledge. In the andrew.cmu.edu cell, vcellconfig is run
automatically as part of the bootup script. So, by the time the login prompt is
issued at a workstation running a user-level CacheManager process,
information on all advertised cells is available. The in-kernel CacheManager,
on the other hand, reads the information in CellServDB on its own upon
initialization. Thus, it comes up with a full awareness of the other sites in the
community.

Users may run vcellconfig as many times as they want; multiple invocations
won’t hurt anything. At worst, the CacheManager will receive the same
picture of the state of the cellular world as it had before. However, should a
cell have been added or deleted, running vcellconfig will update the

- 130 -

CacheManager’s knowledge. The -v switch tells vcellconfig to be verbose
about its activities. Anyone who’s more curious about this program can feel
free to use this switch.

AMS, guardian: These programs have been modified to extract cellular
information from the CacheManager. A version of the CacheManager capable
of providing this information to such applications has been released on both the
lusriandy and /usr/andrew sides. If Messages asks about a remote cell and the
(user-level) CacheManager hasn’t been prepared by vcellconfig, it won’t know
how to answer.

6.3. Updating Configuration Files

Operators should not normally be changing the cellular configuration files in the AFS
directories themselves. Their responsibility lies in discovering that they are either not
present or damaged on the workstation’s local disk and repairing the problem. When a
change has to be made, it is carried out on the AFS copy (or copies) and propagated
to individual workstations using whatever configuration tools are available. In the
andrew.cmu.edu cell, the package facility performs these updates upon workstation
reboot.

In those sites using package, operators should avoid editing the versions of these files
that are on local disk. Unless they protect them (as root) against writing, the repair
will disappear the next time the machine boots. These files are never to be left with
the owner’s write protection disabled! Doing this will prevent the package facility
from overwriting stale files with updated ones. Incidentally, package has been
instructed to boot the machine again if any of these files have changed since the last
time it ran. Otherwise, the CacheManager that is already running will use old and
often crippling information. After the second boot, the CacheManager is guaranteed
to have an accurate view of the world.

6.4. Typical Errors and How to Handle Them
There are typically a small number of errors that indicate that something is wrong with
the cellular configuration files.

If the CacheManager or an application complains about not being able to read a
certain configuration file, the presence, integrity and access rights of the file must be
checked. As stated above, if one of these files has been corrupted on the local disk, the
operator should resist simply editing it in place. The correct response is to ensure the
file is included in the package list, update the affected file(s) and reboot the
workstation.

If someone is having trouble getting to certain AFS files and the normal checks reveal
nothing, see what the CacheManager knows about cells. The ‘‘fs listcells /afs’
command will print out a complete picture of the cellular world as the CacheManager
currently sees it. If this information includes ‘‘localcell’ or some unusual string
anywhere, then there was trouble reading the /usr/viceletc/ThisCell file. Otherwise,

-31-

check the printout against the contents of the AFS copy of CellServDB. Differences
here could cause access problems by telling the CacheManager to contact the wrong
servers when it is trying to fetch and/or store files. By the way, a direct check on how
well ThisCell was read is to issue the ‘‘fs wscell /afs’> command, which echos the
contents of this file at the time the CacheManager looked at it. If the printout looks
fine (it’ll read ‘“ This workstation belongs to cell ’andrew.cmu.edu’ "), find out which
file in particular is causing the problem. Type in ‘‘fs whichcell filename”’, and it will
tell you in which cell the file resides. If information for that cell doesn’t appear in the
output produced by “‘fs listcells /afs’’ or if the command returns an error, then the user
needs to run the vcellconfig utility, which will refresh the CacheManager’s image of
the cellular configuration.

In general, unusual problems having to do with authentication and users not being able
to access certain files should prompt operators to check on the status of the cell
configuration files.

-32.-

-33.

7. Server Interfaces

One of the most important interfaces in the Cellular Andrew environment is that
between a CacheManager and FileServer. Not only must the interface routines be
well-defined, but so must the characteristics and architecture of the underlying RPC.

These topics are too complex to deal with in this paper. The reader is referred to [8]
and [9] for a full treatment.

-34 -

-135-

8. Programming Interfaces

This section explores the Andrew programming interfaces that are affected by the
upgrade to a cellular environment. The interface to the CacheManager has seen both
the addition of new routines and the modification of existing ones, and these will be
covered in detail. The optional White Pages facility has also experienced changes in
its interface, and is examined next. Programmers are well advised to use the White
Pages interface even if their cell does not provide this service. At such sites, these
routines fall back on the local password file. Furthermore, should the decision be
made at some later point to add White Pages services, all such software will
automatically access the database without recoding. Finally, the changes to the
authentication library are revealed. In each of these three areas, sample code will
illustrate the proper usage of the new or modified operations.

8.1. The CacheManager Interface

The full CacheManager interface is described in a separate document, which may be
found in /afs/andrew.cmu.edu/commonlusriandyldoc/vdoc/venus.vdoc. The portions
relating to the cellular pioctl()s and the single cellular ioctl(), VIOCIGETCELL, have
been extracted and reproduced in Section 8.1.1 for convenience. The reader is
referred to the above document for a full explanation of the CacheManager interface.
After the excerpts describing the new or altered interface operations, some examples
of their use are given. The fs utility provides access to much of the CacheManager
interface for the user sitting at his workstation, and the programming examples offered
in Section 8.1.2 are taken from this code.

8.1.1. Affected Operations

The VIOCIGETCELL ioctl()

Get the cell name associated with the given open file descriptor. If the file is not in
the AFS, this call returns an error (eNoTTYy or EINVAL). Otherwise, it returns one
output parameter: the null-terminated name of the cell containing the file open on this
descriptor. This is the recommended way of telling whether or not a file is stored in
the AFS (when a file descriptor for it is available).

VIOCSETTOK

Set authentication tokens. This call has one input parameter, the encoded
authentication tokens. These tokens are associated with the Unix uid of the process
performing the call. They are obtained (usually by log or login) by contacting an
AuthServer, using the user’s password as an encryption key. Thus, authentication with
any FileServer is possible without actually having the user’s password stored in
memory.

Tokens come in clear token and secret token pairs. The secret token is encrypted
(by the AuthServer) with the FileServer’s "password", and can be safely transmitted
over the network. The clear token is the unencrypted version of the same and should
not be transmitted over the network, as it contains a session key in the clear that

- 36 -

would allow others to observe one’s communication.

The input parameter encodes these tokens as follows. The first 4 bytes are the size of
the secret token. The next sizeof (SecretToken) bytes contain the secret token
itself. Similarly, the next 4 bytes give the size of the clear token and the next
sizeof (ClearToken) bytes hold the clear token. Each field must be byte-aligned.
Fields are copied around using bcopy().

If the tokens are not valid, the code EPERM is returned. EINVAL is returned if the
token sizes do not match what the file system expects.

Like VIOCGETTOK (described below), this call has also been extended to support
multiple cells. In particular, one may provide extra information after the tokens. If
present, this extra data is interpreted as a long integer specifying whether this is the
primary cell ID for the user, followed by a character string giving the cell name for
the tokens. This call will fail if the cell has not yet been configured on the
CacheManager.

VIOCGETTOK

Get authentication tokens. This call gets the authentication tokens associated with the
uid making the call. There are no input parameters and one output parameter, namely
the authentication tokens. They are encoded as in the VIOCSETTOK call. The
pathname parameter must be a file in the AFS.

This call has been extended to support multiple cells. It now has one optional input
parameter, which, if present, tells us we’re using the new calling convention. This
parameter is a sequencer, between 0 and infinity, telling the CacheManager which set
of tokens to return. There is no connection between this number and any internal cell
number used by the CacheManager. Rather, it is just an iteration mechanism for
performing multiple calls to the CacheManager to get all tokens associated with the
caller. When using the new calling convention, we return a long integer after the
token information, indicating whether this is the primary cell ID, and a character string
indicating the cell name. If the CacheManager is holding n tokens for the caller,
invoking VIOCGETTOK with an iterator greater than n will cause an error return
(EDOM).

VIOCNEWCELL

Tell the CacheManager to configure a new cell. The input parameter contains up to
MAXHOSTS (8) hosts in network byte order that provide the volume location and
authentication servers for this cell. The parameter must be null-terminated if there are
fewer than the maximum number of hosts. This 32-byte array is followed by the
null-terminated, fully-qualified cell name.

VIOCGETCELL

Get a cell name and its associated hosts. Takes one input parameter, a zero-based
index. Returns the same structure as in VIOCNEWCELL. When the index gets too
large (i.e., exceeds the number of cells currently configured into the system), this call

-37-

returns a standard Unix error (epom).

VIOC_FILE _CELL_NAME

Given a file name, determine the name of the cell in which that file resides. This call
has no input parameters, and returns a character string identifying the file’s
corresponding cell. If the file doesn’t exist, or for some other reason cannot be
accessed, the call will fail and errno will indicate the reason for the error.

VIOC_GET_WS_CELL
Get the name of the cell to which the workstation belongs. This call has no input

parameters, and returns a character string identifying the ‘‘home cell”” for the
workstation.

VIOC_GET_PRIMARY CELL

Return the name of the cell in which the caller has established his *‘primary’’ identity
(i.e., where he has done his login). Note: the log program can be used to establish
both primary and non-primary tokens of identity in any number of cells; any non-
primary identities are not reported here. If the user does not currently have a primary
identity (i.e., they have done an unlog), this call will return the null string.

8.1.2. fs Coding Examples

Two examples are provided below to illustrate the proper use of these CacheManager
operations. They have been taken from the fs program, which allows users at a
workstation to communicate their desires to their CacheManager and to extract
information from it. The first example demonstrates a non-iterative call, simply
getting the cell in which the caller has his primary authentication (if he has one at all):

#define MAXSIZE 2000
char space[MAXSIZE];
struct VicelIoctl blob;

else if (!strcmp(argv(l], “whichcell")) {

/*
* Find out which cell a given file/directory lives in.
*/

if (argc !'= 3) {

printf ("%s: Syntax error in whichcell command.\n", pn);
exit (1);

blob.in_size = sizeof (argv([2]);
blob.in = argv[2];
blob.out_size = MAXSIZE;
blob.out = space;

-38 -

code = pioctl(argv(2], VIOC FILE_CELL NAME, &blob, 1);
if (code) {
Die(code, argv[2]);
}
else
printf ("File lives in cell ’%s’\n", space);
}

else...

As described in the full CacheManager interface document, the blob structure is used
as a communication buffer. The first true argument to fs whichcell is in argv[2], and
is the name of the file whose place of residence we wish to discover. We load this
filename as the input parameter to the pioctl(), and set up the space array as the
output parameter into which the associated cell name will be placed. All that has to
be done at this point is to call pioctl(VIOC_FILE CELL NAME), passing the address
of the blob and using the third parameter to instruct it to follow any symbolic links
encountered in the input argument. If the return code is zero, then the CacheManager
has successfully returned the associated cell name in the user’s space array.
Otherwise, the Die() routine, listed below, is used to print out what went wrong:

Die (code, filename)
int code;
char *filename;

{ /*Die*/
char FullError[256];

if (errno == EINVAL) {

printf ("%s: Invalid argument.\n", pn);

printf("%s: Possible that file is not in AFS.\n", pn);
}

else if (errno == ENOENT)

printf("%s: File ’%s’ doesn’t exist\n", pn, filename):;
else if (errno == EROFS)

printf("%s: You may not change a backup volume\n", pn);
else if (errno == EACCES)

printf("%$s: You don’t have the required access rights on
14 %S' \1’1",
pn, filename);

else {

sprintf (FullError, "%s:’%s’", pn, filename);

perror (FullError) ;
}
commandError = 1; /*So we exit(1)¥/

} /*¥Die*/

-39 -

The following excerpt from the fs program demonstrates the proper use of a pioctl()
meant to be used iteratively. In this case, the caller has invoked fs listcells, which

must generate a list of all cells the CacheManager currently knows about, along with
their associated servers:

else if (!strcmp(argv[l], "listcells")) {

/*

* List all cells.

*/

if (argc !'= 3) {
printf ("%s: Syntax error in listcells command.\n", pn);
exit (1) ;

}

for(i=0; i<1000; i++) {
blob.out_size = MAXSIZE;
blob.in_size = sizeof (long);
blob.in = space;
blob.out = space;
bcopy (&1, space, sizeof(long)):

code = pioctl(argv[2], VIOCGETCELL, &blob, 1);

if (code < 0) {

if (errno == EDOM)
break; /*Done with the list*/
else {

Die(code, argv[2]);
exit (1) ;

}
printf ("Cell %s on hosts", space+8*sizeof (long)):;
for(j=0; j < 8; j++) {
becopy (space + j*sizeof (long), &clear, sizeof (long)):;
if (clear == 0) break;

thp = gethostbyaddr(&clear, sizeof(long), AF_INET);
if (thp) {

printf (" %s", thp->h_name);
}
else {

printf (" %08x", clear);

}
printf (".\n");

else...

- 40 -

This time we loop, not expecting to find more than 1,000 cells configured into the
CacheManager. The iterator is stuffed into the input parameter area for each
pioctl(VIOCGETCELL) call. For the ith call, we print out the ith configured cell name
and its servers (getting the servers’ names from their IP addresses with the
gethostbyaddr() utility). On some call j, we’ll get back a failing (non-zero) error code.
The special case that is watched for here is EpOM, signifying that there are no more
configured cells, with the last valid one numbered j-1. Any other error value is
handled as a true error with the Die() routine described above. The choice of 1,000

for the upper limit will have to be increased should more than this number of Andrew
cells ever be in existence.

8.2. White Pages

As explained in various parts of this document, the White Pages is an optional service
available to cell administrators. It provides a superset of the local password file
information, with special features useful in running the AMS. It also provides some
interface routines that have been upgraded to work in the Cellular Andrew
environment. Programmers now have extensions to the standard gerpw*()-class calls
that allow them to specify the cell in which the information is gathered, and also
whether information for the primary authentication is desired. Again, these interface
routines may still be used whether or not the cell decides to provide a White Pages
service. They are available as part of the normal system build. They default to
operations on the local password file should a White Pages database not be available.
It is wise, in fact, to use these routines even when White Pages service is not being
currently supported at the programmer’s site. Should the cell step up and introduce a
White Pages for its users at a later date, its full power will be immediately available to
all the locally-produced software without the need for recoding.

The complete White Pages interface may be found in /usr/andylinclude/wp.h, but is
not of immediate interest to us here. The wp.h file specifies those routines which will
only work should a White Pages actually be installed. The subject of these next two
sections will be the White Pages-related routines defined in /usr/andylincludelutil.h and
implemented in the system’s standard liburil.a library, which is always available to any
AFS installation. These routines augment the power of the vanilla Unix gempw*()
calls. In this description, they are split into two “‘classes’’, V and C.

8.2.1. V-Class Routines

The standard getpwuid(), getpwnam(), setpweni(), endpwent() and getpwent() routines
in Unix allow the programmer to manipulate the local password file, typically stored
in /etc/passwd. Documentation on their arguments, return values and uses is found in
the conventional Unix man pages. However, these functions need to be augmented in
order to access the full power of the Cellular Andrew world. First, processes hold
VicelDs, used for AFS authentication purposes, which may differ from their actual
Unix process IDs. Furthermore, any process may be associated with several VicelDs,
as authentication in several cells at once is possible. The so-called V-class routines
are identical to the above Unix routines, with the sole exception that the information

- 41 -

they gather is for the primary identity associated with the calling process. Should the
caller not have a primary identity (see Section 2.1.2 for a full description and the
mechanism by which processes can forego primary identities), these routines will fail,
and the standard Unix routines may be used instead.

For convenience, here is the full specification for the V-class routines, as taken from
the various source modules that implement them:

int getvuid()

struct passwd *getvpwuid(vuid)
int wvuid;

struct passwd *getvpwnam(vnam)
char *vnam;

int setvpwent ()
int endpwent ()

struct passwd *getvpwent ()
8.2.2. C-Class Routines

The V-class routines described above must determine the user’s primary identity,
which could be in any cell at the time they are called. There is a different class of
routines provided via this special White Pages interface which allows the user to
specify the exact cell in which the information will be gathered. This C-class is made
up of the following two routines:

struct passwd *getcpwuid(vuid, vcell)
int vuid; char *vcell;

struct passwd *getcpwnam(vnam, vcell)
char *vnam, *vcell;

Both of the above functions are called just as the standard Unix routines from which
their names are derived, except that they take a second argument. The additional
parameter is the string name of the cell in which the password-style lookup is to take
place. These are useful for those occasions when the particular cell that must be
searched is known. They are also particularly useful in that they do not depend on
any particular authentication to be designated as ‘‘primary’’.

8.2.3. Example From Is

The use of these routines should be fairly straightforward to an experienced Unix
programmer. Regardless, this section illustrates the use of a C-class routine,

-42 -

getcpwuid(), by the Is utlity.

/*
* Element in a queue of cell names seen so far.
*/
struct HTCellName {
struct HTCellName *next; [/*Ptr to next cell name on list*/
char full([64]; *Full cell name*/
}s

struct afile {
struct HTCellName *cellname;
}:
register struct passwd *pw; /*Passwd entry*/
short uid;
struct afile *fileinfop;
/%
* Our cache didn’t have the uid -> name mapping. Look it up in
* the passwd database.

*/
HT uidCacheMisses++;
if (DB_1ls)

printf (" [$s:%8] Cache miss, looking up uid %d in cell ’%s’\n",
mn, rn, uid, fileinfop->cellname->full);

pw = getcpwuid((int) uid,
fileinfop->cellname->full /*Full cell name*/),

if (pw == 0) {
if (DB_ls)
printf (" [%s:%s] Can’t map uid %d in cell ‘%s’\n",
mn, rn, uid, fileinfop->cellname->full);
sprintf (MappedName, "%d", uid):
}
else
sprintf (MappedName, "%s", pw->pw_name);

The standard Is program, when asked to provide printable names for the uid
corresponding to an owner of a file, uses the local password database to derive these
mappings. The cellular-capable version of Is used at Andrew sites must also worry
about performing these mappings for files in different cells from its own. Once Is
determines which cell a particular file lives in (with the VIOC FILE CELL NAME
pioctl(), not shown above; see Section 8.1.1) and the owner’s uid (from a stat()), it

- 43 -

uses getcpwuid() to grab the appropriate password record. It extracts the printable
name associated with the given uid from this record. Should that given uid not have a

name mapping in the chosen cell, Is chooses to report the raw uid in its place.

The getcpwuid() operation is used freqently by Is, making the derived information
particularly amenable to caching. It is expected that most files in a directory are
owned by a small number of people, often only one. The above Is excerpt alludes to a
hash table in which ([uid, cell] --> name) mappings are kept. In practice, very high
hit ratios are achieved on these caches. Performing such caching of information from
remote databases not only makes software much faster, but also reduces network
traffic and the load on the FileServers. When writing important utilities, programmers
should keep this in mind.

8.3. Authentication

The CacheManager may now store several token pairs for each of its clients, as
described in Section 2.1.2. Thus, the Andrew authentication interface was modified to
reflect this new situation. This section describes the routines added to the interface in
support of additive authentication. The libauth.a library implements all of these
operations. Two component source files were affected: auser.c and avenus.c, both
living in directory /afs/andrew.cmu.edulitc/srcirellvicelauth.

Most of these routines have non-cellular counterparts so that programs written before
the cellular changes would run unchanged. However, the internals of these
counterparts have been altered to call upon the new interface routines directly, so they
are now little more than stubs. These new functions, in turn, communicate with the
CacheManager by calling the appropriate pioctl()s (see Section 8.1.1).

In addition to the changes in the existing auser.c and avenus.c modules, a new pair of
source files was added to the authentication library: cellconfig.c and its interface,
cellconfig.h. The header file is installed in the /usr/andy/serverlinclude directory. The
functions provided in this module allow an in-memory version of the file-based cell
configuration information to be built, as well as discovering the name of the cell to
which the local workstation is attached. This frees the programmer from having to
know the exact names and locations of the configuration files, and even if they are
files at all (the information may be kept in the domain system in future
implementations).

Readers interested in the actual code for the routines described below are encouraged
to look at the sources. After presenting the new authentication interface routines,
some examples of their use are provided. Keep in mind when reading these routine
descriptions that Venus is an older term for the Andrew CacheManager.

- 44 -

8.3.1. Routines in auser.c

L e e e e e e e e e e e e
* U_CellAuthenticate
*
* Description:
* Talks to an Authentication Server for the given cell and obtains tokens
* on behalf of user uName. Gets back clear & secret tokens for this user.
b3

* Arguments:

* uName : Ptr to the user’s login name.

* uPassword : Ptr to the user’s password.

* celllD : Ptr to the name of the cell to contact.

* cToken : Ptr to the location in which to deposit the clear token.
* sToken : Ditto for the secret token.

*

* Returns:

* >0 if the operation succeeded and the tokens were generated,

* 0 otherwise.

*

* Environment:

* Nothing interesting.

sk

* Side Effects:

* None.

K e e e o o e e e e e e e e e e e e e e e e e e */

int U_CellAuthenticate (uName, uPasswd, cellID, cToken, sToken)

char *uName;

char *uPasswd;
char *cellID;
ClearToken *cToken;

EncryptedSecretToken *sToken;

L e e e e e e e e e e e e
* U_CellChangePassword

*

* Description:

* Binds to the AuthServer running on the SCM in cell cellName and
* changes user uName’s password to newPasswd if myName is the
* same as uName or a system administrator (at the target cell).

* MyPasswd is used to validate myName.

sk

* Arguments:

* uName : The user id being changed.

* newPasswd : The new password desired.

* myName : The user performing the change.

* myPasswd : The password of the user making the change.

* cellName : The Andrew cell where uName lives.

*

* Returns:

* Whatever is returned by U_CellBindToServer(), AuthNameTolD() or
* AuthChangePasswd.

*

* Environment:

* Nothing special.

%

* Side Effects:

b3

As advertised.

- 45 -

int U_CellChangePassword(uName, newPasswd, myName, myPasswd, cellName)

char
char
char
char
char

*uName ;
*newPasswd;
*myName ;
*myPasswd;
*cellName;

- 46 -

* U_CellBindToServer

*

* Description:

*
*
*
*

Binds to an AuthServer in the given cell on behalf of user uName using

uPassword as the password. Sets RPCid to the value of the connection
id established, if any.

* Arguments:

* write : Whether the SCM is to be used as the chosen AuthServer.
* uName : The user name to use.

* uPasswd : The user’s password.

* cellID : The name of the cell to contact.

* RPCid : Set to the RPC id established with the AuthServer we
* contacted, if any.

P

* Returns:

* 0 if everything went well,

* >0 otherwise.

%k

* Environment:

* Variable SetGlobalVars determines whether the global settings of
* GlobalUserName and GlobalPassword are set here. This routine
* should also make sure we aren’t doing replays by calling a couple
* of procs in the AuthServer.

K

* Side Effects:

* Loads up the set of AuthServers, SCM to talk to from the Domain
* system, or from the local fallback file in case of failure. Sets the
* name to be used in pioctl()s at this time, too.

L3

int U_CellBindToServer (write, uName, uPasswd, cellID, RPCid)

int write;
char *uName ;
char *uPasswd;
char *celllD;

struct r_connection **RPCid;

- 47 -

/2 e e e e e e e e e e e e e e
* DetermineAuthServers
b3
* Description:
* Given a cell name, determine the set of AuthServers advertised by that
* cell. If the primary Domain system search fails, we fall back on the
* locally-maintained database.
£ 3

* Arguments:

* celllD : The string name of the cell we want to talk to.

*

* Returns:

* AUTH SUCCESS if everything goes well.

* AUTH NOSUCHCELL if the primary Domain service has never

* heard of the given cell.

* AUTH _NOTINBACKUP if the primary Domain service is not available
* and the cell doesn’t appear in the local

* backup file.

* AUTH_FAILED if any other failure condition is encountered.
*

* Environment:

* We use the cellconfig package to do basically all the work for us.

* The global CDBp and celllnfop pointers are set here.

*

* Side Effects:

k

Sets numHosts, [Hosts array.

int DetermineAuthServers (cellID)
char *celllD;

- 48 -

8.3.2. Routines in avenus.c

* U_CellSetLocalTokens

*

* Description:

* Tells Venus about the clear and secret tokens obtained from the
* AuthServer, as well as whether this identity is the Primary one and
* which cell these tokens are valid in. If setPag is true, a setpag
* system call is made. Returns O on success, -1 on failure.

b3

* Arguments:

* setPag : If true, do a setpag system call.

* cToken : Ptr to the clear token.

* sToken : Ptr to the secret token.

* celllD : String name for the cell these tokens are valid in.
* primaryF lag Does this token set represent the primary identity?
*

* Returns:

* 0 on success,

* -1 otherwise.

b3

* Environment:

* Nothing interesting.

%

* Side Effects:

3

None.

int U_CellSetLocalTokens (IN setPag, IN cToken, IN sToken,

IN cellID, IN primaryFlag)

int setPag;
ClearToken *cToken;
EncryptedSecretToken *sToken;
char *cellID;
int primaryFlag;

)
* U_CellGetLocalTokens
%
* Description:
* Gets the specified tokens from Venus, filling in cToken and sToken
* (and possibly celllD and plsPrimary).
*

* Arguments:
* useCellEntry : If true, supply the optional cellEntry argument to Venus,

* prompting Venus to return information for a specific cell.
* cellEntry : Ask Venus to return info about the tokens for the

* cellEntry’th cell associated with the caller.

* cToken . Ptr to the clear token buffer to fill.

* sToken : Ptr to the secret token buffer to fill.

* celllD : String name for the cell these tokens are valid in. Filled
* iff useCellEntry is true.

* plsPrimary : Does this token set represent the primary identity?

* Filled iff useCellEntry is true.

*

* Returns:

* 0 on success,

* EDOM if cellEntry is used and is out of range,

* -1 otherwise.

*

* Environment:

* Nothing interesting.

k

* Side Effects:

* None.

R e e e e e e e e e e e e e e e e e e */

int U_CellGetLocalTokens (IN useCellEntry, IN cellEntry,
OUT cToken, OUT sToken, OUT celllD,
OUT pIsPrimary)

int useCellEntry;
int cellEntry;
ClearToken *cToken;

EncryptedSecretToken *sToken;
char *celllID;
int *pIsPrimary;

- 49 -

- 50 -

8.3.3. Routines Exported by cellconfig.h

%
* Complete server info for one cell.
*/
struct CellServers {

struct CellServers *pNext; /*Ptr to next entry*/

char cellName [MAXCELLCHARS]; /*Cell name*/

short numServers; /*Num active servers for the cell*/

struct in_addr cellHostAddr [MAXHOSTSPERCELL]; /*IP addrs for cell’s
servers*/

char cellHostName [MAXHOSTSPERCELL] [MAXHOSTCHARS] ; /*Their names*/
};

extern char LclCellName [MAXCELLCHARS];

extern int GetLocalCellName () ;

/*
* Args:
* None.
%
* Returns:
* Indication of whether the local cell name was correctly determined.
*/

extern struct CellServers *ReadCellDatabase();

/*

* Args:

* None.

*
* Returns:

* Ptr to the first entry of the in-memory copy of the cell/servers
* database, or NULL if an error was encountered.

*/

extern int CelllLookup() ;
J*
* Args:
* char *cellToFind;
* struct CellServers *pCellDatabase;
* struct CellServers **ppCellRec;
£ 3
* Returns:
* CCONF _SUCCESS if the search succeeded,
* CCONF_NOTFOUND if the search failed.
* CCONF _FAILURE if the params were screwed up.
*/

extern void ReclaimCellDatabase () ;

/*
* Args:
* struct CellServers *pDBToDitch;
*
* Returns:
* Nothing.
*/

extern void PrintCellDatabase () ;
/*
* Args:
* struct CellServers *pDBToPrint,
sk
* Returns:
* Nothing.
*/

-51-

-52-

8.3.4. Examples from log

The log program allows a user to generate authentication tokens and pass them onto
the CacheManager, which acts on his behalf during file access operations. The user
enters his login name, password and optionally the specific cell that is to be contacted.
By default, this is the same as the workstation’s cell. One of the first things that log

has to do is find out exactly which cell it’s running in:

static char 1lclCellID[100] = { ’\O };
int rc;

/*

* Get our local cell’s name and copy it into the local cellD buffer.
*/

rc = GetLocalCellName() ;

if (rc != CCONF_SUCCESS)

fprintf(stderr, "%s: Can’t get local cell name! Using ’'%s’\n",

rn, LclCellName);
strcpy (lclCellID, LclCellName) ;

After all the user’s information is gathered, it is passed to the chosen cell’s

AuthServers, which generate and return tokens representing that user:

struct passwd pwent;

struct passwd *pw = &pwent;

static char passwd[100] = { 7\0’ };
SecretToken sToken;

ClearToken cToken;

static char cellID[100] = { ’\0’ };

/%
* Get the corresponding set of tokens from an AuthServer.
*/
if ((rc = U_CellAuthenticate (pw->pw_name, passwd, cellID,
&sToken))
!= AUTH SUCCESS) {
fprintf (stderr, "Invalid login.\n");
exit (xc);

&cToken,

Once the tokens are successfully in hand, log must pass them on to the

CacheManager:

int setPrimary = 0;

- 53

/*
* Give the tokens to the Cache Manager, along with the cell they're good for
* and how we want them treated as far as primary identity goes.
*/
if (U_CellsetLocalTokens(0, &cToken, &sToken, celllID, setPrimary))
fprintf (stderr,

"Local login only; couldn’t contact CacheManager.\n");

Should the user’s primary identity have changed as a result of this call, log is careful
to warn the user of this fact:

static char origPrimaryCell[100] = { ’\0’' };

if (setPrimary != 0)
if (strcmp(origPrimaryCell, cellID) != 0) {
fprintf (stderr, "\n*** WARNING ***\n");
fprintf (stderr, “Your primary identity is now in the ‘%s’ cell\n",

celllD) ;

fprintf (stderr, "instead of the ’%s’ cell! AMS programs\n",
origPrimaryCell) ;

fprintf (stderr, "such as Messages may fail in unpredictable

ways!!'\n\n") ;
}

-54 -

-55.

9. Communication Between Cell Administrators

It is expected that the set of cell adminstrators will maintain open communication
channels on which they will discuss matters of importance to the Cellular Andrew
community. This section outlines some topics of common interest. It also underlines
the importance of careful and timely discussions regarding changes visible to the
community at large and lists the actual mechansims in place for carrying out such
exchanges of information.

9.1. The Importance of Synchrony

In the diverse community promised by a cooperative of autonomous sites, it is very
easy for incompatibilites to creep in. One cell may change the semantics provided by
its CacheManager without advertising that fact, another might add a feature to its
version of the log program which changes the way primary identities are handled
without advising the cell administrators at large, and so on. Because of these changes,
software that had been working quite well across cells might suddenly begin
misbehaving in unusual ways, with the symptoms appearing in places far away from
the actual culprit. At best, this would cause an inconvenience to a few users and at
worst it might scramble or sever an important community service.

It is important for site administrators to recognize the danger of such unilateral,
unannounced acts. Furthermore, they must resist the implementation of such changes
before their impact can be assessed by the rest of the community and a transition plan
can be worked out by all. It is important to establish recognized and appropriate
forums for discussion of such changes, and Section 9.3 reveals the mechanisms
currently in place.

9.2. Topics of Community Interest

There are two basic categories of externally visible changes. The first category
comprises all upgrades to the services provided by a particular cell. Such upgrades
include the introduction of new volume location/authentication servers, the installation
of additional printers along with their associated directories and the implementation of
a White Pages facility for the cell. The common thread to these items is that they are
non-disruptive. Since only new services are being provided, other cells may safely be
informed of the changes after the fact. Existing services are in no way affected by
these changes.

This leads to the second category of externally-visible changes, namely those that
reduce the existing services provided by a cell, or those that propose to alter the
cellular conventions established through this document. In the reduction-of-service
case, it is important to announce such events well in advance, as other sites may have
to make alternate arrangements. In the specific case of reassigning a FileServer
machine to other duty, it is also in that cell’s best interest to publicize the change
ahead of time. Otherwise, workstations in other cells will continue to direct their
volume location and authentication requests to it. This unwanted network load could
possibly confuse whatever new software is running, and will definitely slow that

- 56 -

machine down. Proposals to change the cellular conventions must be duly considered
by all the members of the community, and a consensus must be reached on both the
change itself and a viable transition plan.

The following is a (necessarily) incomplete list of events or plans that should be made
known to the Cellular Andrew community, either before or after the fact, following the
above guidelines. Actual mechanisms for communication are discussed in Section 9.3.

- Addition of a cellular service: One or more FileServers handling
volume location and authentication requests, new printers, White Pages
support, and AMS support are examples.

- Removal of one or more of the above services.

- Addition of machine types and new versions of operating systems,
along with technical information as to their operation, relation to
existing systems, and associated @sys string (see Section 3.3).

- News concerning the site’s network availability, including problems
with or upgrades to routers, the state of communication lines, and so on.

- Announcements of new cells, along with pertinent configuration
information.

- Changes, either proposed or actual, to system support programs and/or
important applications (e.g., Messages).

- Scheduled downtimes for servers.

- Announcements of new software that, although not directly connected
with the cellular architecture, may be of general interest.

9.3. Available Mechanisms

There are several communication channels in place for the smooth flow of information
between cell administrators. First, the AFS-Administrators mailing list simplifies the
sending of mail concerning matters of importance to all sites. To be added to this list,
a prospective member need only direct his request to AFS-Administrators-
Request@andrew.cmu.edu. For those people with direct access to the electronic
bulletin boards managed by the andrew.cmu.edu cell, two relevant forums are
org.itc.cells and org.itc.afs. The former is used not only to report
developments concerning the cellular system, but also as a vehicle for discussion on
these matters. The latter bulletin board is used for news and discussion of events
dealing with the AFS itself. Finally, administrators from those cells on or near the
CMU campus gather at the ITC the first Thursday of each month. These face-to-face
encounters have proven useful for more detailed discussions concerning cellular issues.

-57-

Making proposals and documents available to the cell administrators or the cell
community as a whole is greatly simplified because of the great connectivity offered
by the AFS. The existence and location of such a document may be announced
through the mailing list or bulletin boards described above. Interested parties may
simply pull these files into their editors directly and read them at their leisure. Thus,
even highly-formatted documents are easily accessible through the shared file space.

- 58 -

- 59 -

10. Future Plans

There are several fronts along which further improvements can be made to the Cellular
Andrew system as it stands today. This section looks at the ITC File System Group’s
future plans regarding four of these areas.

10.1. Delegation of Responsibility

Some cells may wish to trade a portion of their autonomy in return for certain services
which it cannot or chooses not to provide for itself. There has already been a good
deal of work done by the AMS group to allow each site to select the level of Andrew
delivery system support it wishes to buy into, as described in Section 5. In spite of
this internal flexibility, though, it is still impossible to delegate this task to another
cell. Another specific case brought to our attention is volume backup. Smaller sites
may not have the proper staging and tape backup equipment necessary to save and
restore its own volumes. The current implementation makes it somewhat awkward to
delegate this (or any other) responsibility to a foreign cell. While remote sites may
access files in other cells, they do not have the right to perform volume operations
there directly. The general question of whether such piecemeal control over cellular
autonomy is feasible in the proposed system must be studied further. If methods are
found to accomplish this goal within the established framework, they may then be
applied to the stated backup and mail delivery problems.

10.2. Global Authentication

It would be extremely useful to be able to support access lists that include user names
from other cells. For example, one author could have the following access list for his
andrew.cmu.edu home directory, /afs/andrew.cmu.edu/usr8/erz:

% fs la ~

Normal rights:
System:AnyUser rl

erz rlidwka
vanryzin@cs.cmu.edu rl

Notice that this access list would allow David VanRyzin’s account (vanryzin) in the

cs.cmu.edu cell to have read and lookup rights in this directory, which lives in
andrew.cmu.edu. This implies that there is some form of shared secret between the
AuthServers running in the andrew.cmu.edu and cs.cmu.edu cells, allowing the
tokens generated by these two sites to be understood (or at least verified) in both
places. There is no proposal currently on the table for implementing this desirable
feature, but further investigation is envisioned.

- 60 -

10.3. AFS Upgrades
10.3.1. Planned Improvements

Work is currently underway to replace the existing second-generation AFS with a
much more powerful system that is also easier to operate from an administrative point
of view. One of the improvements being developed that will have direct and crucial
impact on the Cellular Andrew community is a new RPC facility. This new base
communication layer will be able to adapt itself to the speed of the underlying
transport medium. The current RPC’s timeouts are tuned to the performance
characteristics of a local area network. Thus, it does not allow geographically distant
sites to join in the existing Andrew community, since connections typically time out
before a remote procedure call can complete. With a fully adaptive protocol, new
Andrew cells are free to spring up anywhere and easily participate in the global file
system regardless of the speed of their interconnections.

Although connectivity regardless of location is guaranteed by the above upgrade, it is
still not pleasant to wait for file transfers conducted by the CacheManager to complete
across relatively slow links. There are two features scheduled to appear in the next-
generation AFS that will reduce these transfer times, both actual and perceived. First,
the kernelized CacheManager will perform read-ahead for its clients. Basically, this
means that a file open() in Andrew will complete upon the arrival of the first block in
the file, with the rest of the fetch occurring (still at high priority) in the background.
A process performing a Unix read() on a region of the file will block iff that portion
is still outstanding. Thus, a user program can begin using its data as soon as it arrives
at the workstation, and doesn’t have to wait until the entire file transfer completes
before it can read its first byte after an open(). This feature will lower the perceived
data transfer times (it still takes just as long to transfer the file, but early data is
available almost immediately) and is expected to increase throughput. The second
relevant feature is the projected ability of the kernelized CacheManager to perform
partial file transfers when necessary or desirable. Instead of insisting that whole-file
transfers always be used, only chunks of files will be shipped over to the workstation
in certain cases, driven by the access pattern there. This strategy is typically used for
very large files (i.e. those that couldn’t fit on the local disk, even if the cache were
empty) or when there isn’t enough free space to cache a full copy of a smaller file and
performing the regular cache replacement strategy is considered non-optimal. In many
cases, partial file transfers will result in a net decrease in the amount of data that must
travel across the slow link. Thus, this mechanism may decrease both perceived and
actual file transfer times. Read-ahead and partial file transfers should actually work
together to improve performance past what either alone could accomplish.

There is also another project being developed by the ITC File System Group to allow
access times more typical of local networks even across relatively narrow
communication channels. A site may install one or more CachingServers, which
accumulate copies of distant files referenced by its own workstations. The first access
for a file not held by the CachingServer will incur the full cost of transfer over the
slow communication channel. However, once located in the cell’s CachingServer,

-61 -

further access by the same or different workstations in the same cell will result in
local-network transfer speeds as long as that cached copy remains current. This also
has the added benefit in that it produces a net reduction of callback state across cells.
With accesses performed through CachingServers, a FileServer in the source cell will
typically only have to keep callback state for a single ‘‘workstation’’ in the destination
cell, namely the CachingServer itself, instead of each individual workstation in that

remote cell holding a copy of a given file. Thus, a cascading system of callbacks will
be in effect for these cases.

10.3.2. Desired Yet Unplanned Features

There are some AFS features that appear useful, but are currently not being seriously
considered. The first of these is a mechanism by which an access list check can be
performed in a uniform way between cells. That is, we wish to allow user X can ask
its CacheManager what permissions user Y has on directory D. This could be done
directly, or by simply allowing user X to ask whether user Y is in group G, or by
simply allowing user X to enumerate the contents of group G. In a related fashion, it
might be possible to allow some user X (or an unauthenticated connection) can ask
server A to identify the machines with which it has connections authenticated as user
Y, possibly only if user X has, say, ‘‘read’’ permissions on a particular directory
stored on server A (e.g. ‘“"Y/.FingeringOK”’).

10.4. Use of the Internet Domain System

As mentioned earlier, it is feasible to replace the use of the (relatively static)
root.afs volume in Cellular Andrew with a lookup into the domain system in order
to access the individual cells’ file systems. The advantage to this mechanism is that
addition or deletion of a cell can be done very simply, without requiring each site to
make changes to its root volume and then release it. As soon as a cell name (and
information about its associated volume location and authentication servers, of course)
is placed into the domain database, references to this cell’s files will cause this subtree
to immediately appear in that cell’s /afs ‘‘directory”’ as maintained by that
workstation’s CacheManager. There is also a significant disadvantage to this
approach. Using the domain system for this purpose would make it impossible to
enumerate fully the contents of /afs. Also, it is more than a little hard to explain to
naive (even experienced?) Unix users that there are (potentially) many more things in
/afs than are shown by Is. Consider the following example, which assumes a reduced
cell membership and the use of a domain-based system. The user has previously used
the path names /afs/andrew.cmu.edu/usr8/erz and /afs/cs.cmu.eduluser/erz successfully.
After consulting with the domain system, that person’s CacheManager has learned all
it needs to about these two cells - but only about these two cells. Observe the
following exchange:

% 1s /afs

andrew.cmu.edu/

cs.cmu.edu/

% 1s /afs/beta.andrew.cmu.edu

-62 -

bin/ 1ib/ vmunix.itcmin*
boot * usr/ vmunix.itcserv*
dev/ vmunix* vmunix.org*

etc/ vmunix.afs*

kadb* vmunix.itcall¥*

% 1ls /afs

andrew.cmu.edu/
beta.andrew.cmu.edu/
cs.cmu.edu/

No explicit mkdir /afs/beta.andrew.cmu.edu has been performed, and common sense
(and/or accumulated Unix experience) tells you that the second command above will
fail. Yet not only doesn’t it fail, but a new directory has appeared behind the user’s
back. Thus, the plan to explore the use of the domain system may result in increased
flexibility at the expense of some understandability.

- 63 -

11. Conclusions

The existing Cellular Andrew environment allows any number of sites to cooperate in
providing a unified file name space without sacrificing administrative autonomy. The
fact that each cell manages its own protection and volume databases in an exclusive
fashion minimizes the network communication between cells, compartmentalizes errors
and allows an arbitrary number of cells to enter the community without causing undue
local disturbance. Each process in the cellular system can still be properly identified,
and automatic rights reductions assure the community’s integrity. The allure and
convenience of transparent access to files across protection boundaries has already
been felt by the users in existing sites. With the planned improvements to the AFS
and hence the prospect of geographically distant sites joining the community, Cellular
Andrew offers to integrate a very large collection of users into a single, cohesive file
system and computing environment.

-64 -

- 65 -

Appendix 1: Glossary

[All terms appearing in bold are themselves key words or phrases described in this glossary.]

additive authentication

The ability of the Andrew CacheManager to hold several sets of authentication tokens
for any given user. Thus, the user may take on different identities at the same time,
but only one per cell.

AFS

The Andrew File System, sometimes referred to by its old name, Vice. This is the
distributed file system developed by the Information Technology Center (ITC), closely
resembling Unix, to serve a large (77,000) community of workstations belonging to
students, faculty and staff at Carnegie Mellon University. Files are managed by a set
of FileServer machines, with the workstation local disk serving strictly as a cache.
Currently, only whole-file transfer is used between FileServers and client workstations.
Each machine in the community sees exactly the same file space. A distinguishing
AFS performance optimization is its use of callbacks, or promises from the
FileServers to inform individual workstations when their cached files are no longer
current. Thus, workstations can operate on their cached file copies freely and without
contacting the FileServers as long as the callback promises are intact.

AMS

The Andrew Message System is a portable, distributed mechanism for creating,
viewing and manipulating multi-media mail and bulletin board posts in an integrated
fashion. The AMS architecture permits access to the message database exclusively
through a server process, so a wide variety of interfaces are possible. Thus, low-end
“‘glass-tty”” machines as well as powerful workstations with bit-mapped screens can
interact with the message database.

AuthServer

A server program running on a secure machine which provides authentication services
for the associated cell. Given a user’s account name and encrypted password, the
AuthServer generates and returns clear and secret tokens representing that user’s
identity. These tokens are held by the CacheManager and used to verify his identity
when performing file operations. Exactly one AuthServer is allowed to accept and
process requests to change passwords. This particular AuthServer process typically
runs on the SCM, if one exists.

- 66 -

CacheManager

The Andrew CacheManager is either a user-level process or a kernelized system
acting as a user’s representative and intermediary when he performs file accesses in
the AFS. File images are copied to the workstation local disk by the CacheManager
when they are accessed for the first time or when the already cached copy is stale.
All AFS file operations actually occur on these cached copies. The callback
mechanism is used to keep workstation caches synchronized with the state of the file
images in the central collection as maintained by the FileServer processes.

CachingServer

A server process which intercepts AFS requests destined for external cells and services
these requests when possible from its own local cache. This facility is part of the
future plans for Cellular Andrew development. See Section 10.3.1 for a full
discussion.

callback

Mechanism to maintain cache consistency on Andrew workstations. See the entry for
AFS.

cell

An Andrew installation, running its own distinct FileServer and AuthServer machines,
that cooperates with other such sites in the generation and maintenance of a common,
shared file space. A cell has full control over such administrative functions as volume
assignment and backup, creation and deletion of user accounts, and management of
printing facilities. Details of cellular operation are legislated by the contents of this
document.

cell mount point

This is an extension of the standard Andrew mount point, which ‘glues’’ together
volumes to form the file space visible from a workstation. A cell mount point
contains not only the name of the volume to be attached, but also the name of the cell
in which that volume resides. This mechanism allows externally-managed subtrees to
be mounted transparently in a workstation’s file space.

clear token

The unencoded version of a data structure generated by a cell’s AuthServers, used to
reliably determine a user’s true identity. Since they are not encoded, clear tokens are
never exchanged on the network. See secret token for a description of its counterpart.

FileServer

This server process runs on a restricted machine and is responsible for maintaining and
exporting a set of volumes containing files in the AFS. A FileServer receives requests
to store, read, and get status on its files, determines if the caller has the authority to
perform such operations, and ships out and receives file images and/or status
information to and from qualified parties. It also maintains callback information on
all such copies cached on workstations. It revokes callbacks to those file images that
become outdated. Certain miscellaneous services are also provided, such as time of

- 67 -

day. FileServers regularly report the set of volumes they manage to the SCM, if one
exists. They also respond to validated requests to move, destroy, or create read-only
replicas of their volumes.

mount point
See cell mount point for a description of the cellular extension of this facility.

PAG

A Process Authentication Group, used to differentiate between different *“families’’ of
users for authentication purposes. Each user process belongs to exactly one PAG, with
which its set of tokens is associated.

pioctl()
The “‘path ioctl()” interface operations exported by the CacheManager. See Section
8.1.1 for a full description of those pioctl()s related to cellular activities.

primary identity

The identity (set of tokens) marked as ‘‘special’’ in the CacheManager. The primary
identity is only used by such facilities as AMS to select among the identities created
by a given user, for such purposes as the proper selection of directory from which to
read mail.

SCM

The System Control Machine, responsible for keeping all FileServers coordinated. It
regularly collects the list of volumes each FileServer manages, creating a single
unified database with volume location information, the VLDB. This VLDB is then
distributed to the subset of the FileServers that has advertised itself as providing
volume location service. The SCM also performs various other housekeeping
functions, such as redistribution of FileServer and AuthServer binaries.

secret token

The encoded version of a data structure generated by a cell’s AuthServers, used to
reliably determine a user’s true identity. Since they are encrypted, secret tokens are
occasionally passed on the network as required by the underlying RPC protocol. See
clear token for a description of its counterpart.

VicelD

An integer value, similar to the Unix uid, used to identify an Andrew user for
authentication purposes.

VLDB
Volume Location Database. See the entry for SCM.

volume

A container for a heirarchy of files, conforming to a Unix subtree. These are the units
of storage, relocation, and backup implemented by the FileServers. Volumes are
““glued”’ together into a single coherent Unix rooted tree via mount points and cell

- 68 -

mount points.

White Pages

A superset of the information kept in the password file. The White Pages is intimately
involved with the AMS facility. See Section 5 for details on the use of the White
Pages. Also, see Appendix 2 for a description of the format for this optional yet
important database.

- 69 -

Appendix 2: White Pages Format

The optional White Pages facility requires that its database be structured as a B-tree in
the conventional format (generated by the makeboth program, located in
lusrlandrewletc in the andrew.cmu.edu cell, for instance). Entries in the White Pages
are drawn largely from the /etc/passwd-format file given as source to makeboth. The
possible fields in each entry of the White Pages are as follows:

N Full name; initialized from pw_gecos.

Tk Parts of that full name; generated from the nN and wn fields.

WN A sequence of alternate full names.

ID The Unix login id; initialized from pw_name.

EK A mask indicating the source of the information; the ““1°’ bit
means the /etc/passwd-format file.

NI The VicelD, if any; initialized from pw_uid.

GI The group ID; initialized from pw_gid.

PW A password; initialized from pw_passwd.

HD The distinguished home directory; initialized from pw dir.

Sh The login shell; initialized from pw_shell.

Af Any recognizable ‘‘affiliation’’; initialized from components of the
pw_dir field.

Fwd The account’s forwarding address, or the string ‘‘**unknownx**’’;
initialized as the contents of the wp/forward file at makeboth
time..

DK “‘Delivery Kind:*’ At this juncture, one of ‘‘DIST’’ or ‘‘NNTP’’.

DP ‘‘Delivery Parameter:”’ Extra information needed by the given Dbk
field. At present, only ‘“‘DIST’’ needs a parameter, providing the
name of the distribution list file.

D Phonetically-canonicalized surnames; generated automatically.

X Phonetically-canonicalized parts of names; generated automatically.

SI A sequence number for entries that have no n1 field.

The value of any field in any entry may be overridden in the passwd.chg file, which is
a sequence of lines containing five colon-separated fields: the 1p field to which it
applies, the name of the field to change, the old value of that field, the new value of
that field, and an integer by which multiple modifications may be sequenced. Thus, to
change the spelling of the name Craig Everhart, an entry could be:

everhart:N:Craig Everhardt:Craig Everhart:0

To add Craig’s name as a WN field, add the White Pages Mania alias for him, and
forward his mail to the Postmaster, the White Pages entries could be:

everhart:WN:Craig Everhart:Craig Fulmer Everhart;White Pages
Mania:0
everhart :Fwd:+ :postman++:0

-70 -

(There are three things to note here. First, the ‘‘old value’’ for the WN field is just the
value of the N field. Second, a sequence of full names is separated by semicolons (but
not additional spaces). Third, ‘‘+'’ is the quoting character for the field separator; a
null entry is specified as plus-space (‘“‘+ '), a single plus character by plus-plus
(““++""), and an embedded colon by plus-equals (‘‘+="").)

The wp.add file specifies complete new entries to be added to the White Pages.

Generally, these additional entries are the only ones that use the DK, DP, and SI
fields. Each such entry must contain a unique S1I field.

There are other entries in the White Pages, as well, that assist the phonetic name
matcher. These entries are generated from the names/nickmap and names/override
files in the makeboth procedure.

Conventionally, the AMS assumes that it can deliver mail using the following
algorithm. If the White Pages entry for a user can be found, the AMS looks at several
fields of that entry. If the pk field exists and is the text ‘‘NnNTP’’, the message is sent
as a netnews submission in the conventional fashion. If the px field exists and is the
text ‘‘Drst’’, the pp field is used as the name of a distribution list. Other values for
DK cause error messages to be generated. If no Dk field exists but a Fwd field exists,
that field value is used as an address list to which mail for that user is to be sent if
that field value is not the text string ‘‘**unknown**’’. When ‘‘**unknown**’’ is
encountered, the AMS looks for a uD (home directory) field, appends the string
*‘/.forward’’ to it, and looks for a file with that name. If the AMS can read that file,
its contents are used as an address list to which mail for that user is to be sent. If the
AMS can determine that the file does not exist, or if the Fwd field itself doesn’t exist,
the AMS looks for a Hp field, appends the string ‘‘/Mailbox’’ to that field value, and
delivers mail for that user by inserting a file into the directory named by the result
after assuring itself that the result is a directory in the AFS.

=71 -

Bibliography

[1]

An Overview of the Andrew File System
John H. Howard

Information Technology Center
Carnegie Mellon University

In 1988 Dallas Usenix (Also available as a CMU technical report: CMU-ITC-62)
[2]

Synchronization and Caching Issues in the Andrew File System

Michael Leon Kazar

Information Technology Center, Carnegie Mellon University

In 1988 Dallas Usenix (Also available as a CMU technical report: CMU-ITC-063)

(3]

A Multi-Media Message System for Andrew

Nathaniel Borenstein, Craig Everhart, Jonathan Rosenberg and Adam Stoller
Information Technology Center, Carnegie Mellon University

In 1988 Dallas Usenix (Also available as a CMU technical report: CMU-ITC-64)

(4]

Scale and Performance in a Distributed File System

John Howard, David Nichols, M. Satyanarayanan, Bob Sidebotham, Mike West
Information Technology Center, Carnegie Mellon University

In ACM Transactions on Computer Systems, 6(1), February 1988, pp. 51-81.

[5]

An Overview of the Andrew Message System

Jonathan Rosenberg, Craig F. Everhart and Nathaniel S. Borenstein

Information Technology Center, Carnegie Mellon University

In SIGCOMM ’87 Workshop: Frontiers in Computer Communications Technology
Stowe, VT, 11-13 August 1987.

(6]

Printing in the Andrew Environment

Information Technology Center, Carnegie Mellon University
[Internal document, in preparation]

-72 -

(7]

Building and Maintaining the Andrew White Pages Facility
Craig F. Everhart

Information Technology Center, Carnegie Mellon University
[Internal document, in preparation]

(8]

The Andrew File System Interface

Information Technology Center, Carnegie Mellon University
[Internal document, in preparation]

[9]

Rx: The Andrew RPC Protocol

Bob Sidebotham

Information Technology Center, Carnegie Mellon University
[Internal document, in preparation]

