
CMU-ITC-091-106

The Alexandria Project

In support of an Information Environment

Michael L. Horowitz (mh11+@andrew.cmu.edu)
Fred Hansen

Michael Mclnerny
Thorn Peters

Maria Wadlow

November 21, 1991

Information Technology Center
Carnegie Mellon University

Pittsburgh, PA 15213

Acknowledgments to International Business Machines, Inc.

The ITC Vision

At the ITC, we envision a future where scholars, artists, and other

professionals use computers to create, manage, and communicate

information as naturally as they use telephones.

The ITC Mission

The mission of the ITC is:

to create a highly interactive, integrated, extensible computing

environment in which people create, manage, and communicate multi-
media information,

- to apply and test this environment in selected user communities at CMU
and elsewhere,

- to gain international recognition as a center of excellence for distributed
multi-media information systems, and

- to transfer our technology to our sponsor, IBM.

The Alexandria Project

In support of an Information Environment

Michael Horowitz
Fred Hansen

Michael McInerny
Thorn Peters

Maria Wadlow

November 21, 1991

Introduction

With the development of advanced computer systems, we can now realistically think about providing
access to exceptionally large amounts of information and to an environment that encourages the use and
sharing of that information. Having such information on-line permits users to manage it in ways that far
exceed simply providing access. Given the explosion of information availability currently taking place,
users need tools that allow them to manage, manipulate, and share these flows of information.

Hypertext systems comprise an initial exploration into the issues concerning information structuring. Pure
hypertext technology, however, cannot deal with the quantifies of on-line information that will become
available, even if a database is used as the underlying storage subsystem. More work is needed on the joint
problems of access and management to have a meaningful impact on the way information is used.

The primary focus of the Alexandria research project at the Information Technology Center (ITC) of
Carnegie Mellon University (CMU) is to investigate which tools computer users need in order to manage
large amounts of on4ine information over long periods of time. The characteristics that embody those
tools include [Palay 90]:

1) High pe_,ormance - The system must provide simple, fast access to large amounts of
information from multiple, diverse sources.

2) Flexible access - The system must support a spectrum of access techniques from browsing (as
in a hypertext system) to search (as in a database system).

3) Personalized structuring - The system must help the user productively manage information. In
particular, it is not sufficient to provide access to information; the user should be able to impose
a personalized structure, or organization, that facilitates later access to the information and aids
the user to further his work. In addition, since such structure can become unwieldy, the user
should be able to browse and search structure itself. 1

4) Structure evolution - The system should help the user maintain and evolve the structure
imposed on an information space. A user's view does not remain static; often as more
information becomes available, the user will want to change the form of the structure, not just
its content.

1"Structure" in this case is just additional information on top of other information; e.g. the table of contents of a book or the links in a
hypertext document.

(c) Copyright 1991 Information Technology Center

-2-

5) Data type extensibility - The system must accommodate a variety of digital media. Although
we do not expect that the system initially will be able to recognize features from raster, graphic,
audio, or video data, the design of the system must allow the management and access of such
information.

6) Collaboration - The system should enable cooperative work within a community of users and
encourage the exchange of ideas. Specifically, the system should make it easy for one user to
view an information space using the structure built by another. To support such capabilities
adequately, however, the system must ensure the privacy of unpublished data.

7) Maintaining currency - The system should handle changing information. Users often must
keep pace with information sources that augment or replace previous information (e.g. news
wires, electronic bulletin boards).

8) Integration - The system should be integrated fully into the user's computing environment.
That is, all applications should be able to take advantage of the system's capabilities and users
should be able to integrate data from any application into their personal information structure.

The Alexandria Vision

Users (i.e. scholars, artists, and other professionals) can, in a personalized fashion,
manage and share all on-line sources of information seamlessly, without using separate,
ad hoc applications for different sources and kinds of information.

We desire an environment in which information creation, management, and communication occurs
naturally. The Alexandria vision reflects our opinion that natural information management and sharing
should occur seamlessly and transparently; that is, without boundaries between information sources or
handling services. For example, it should be possible to relate information held in a library with
information from nemews (or other electronic bulletin board system). Furthermore, it must be possible for
each user to tailor the context in which information is managed and shared.

(c) Copyright 1991 Information Technology Center

-3-

The Alexandria Mission

The mission of the Alexandria project is to enable interactive, personalized, long-term
management, access, and sharing of large amounts of on-line information in an
integrated and extensible fashion.

Let's define some terms:

- By large amounts, we mean as much information as currently exists in the University Library;
on the order of terabytes. Unless our system can deal efficiently with such large amounts of
information, it might be difficult to convince potential users that it is worth working with
Alexandria's technology.

- By on-line information, we mean information of arbitrary type from any reasonable on-line
source, including over networks; information types of interest include complex models and new
interpretations of data such as multi-media (e.g. audio, video).

- By long-term, we mean beyond a single session; that is, the state of a user's information
management is persistent. In general, managing information is a task measured in years.

By integrated, we mean that all handling of information occurs seamlessly and transparently
regardless of its source or its nature. Furthermore, the system should be fully integrated into the
user's computing environment. Thus, all Alexandria applications should be able to take
advantage of provided capabilities, and the user should be able to integrate data from any
application into their personal information structure. 2

By personalized, we mean that each user can choose a tailored configuration of options for
dealing with the context of information management and sharing as well as the content of what
is managed and shared. We believe that tailorability is a key capability for achieving user
acceptance of our system; in particular, what is natural for one user may not be natural for
another.

- By extensible, we mean that it should be possible to introduce new information types (e.g.
multi-media), to incorporate new mechanisms for managing existing information types (e.g.
document indexing), and to create new ways to structure, edit, and interact with information.

- By management, we mean that users should be able to organize and interrelate information
from disparate sources in an effective fashion. Effective management means that the user can
regain access to desired information at some later date and also that the user can synthesize new
results from the interconnections of existing information. We believe this implies that users
must be able to define information structures, impose those structures on existing information,
and maintain and modify those relationships over long periods of time.

- By access, we mean that the system should support a spectrum of access techniques from
browsing (as in a hypertext system) to search (as in a database system).

- By sharing, we mean to encourage collaboration among users so that shared information
structures can be built and maintained. In addition, each user should be able to develop
individualized views of common information and publish that "view", including any additional
structure imposed on the information. Although the system should make it easy to share
information and structure, it should also ensure privacy whenever requested. As noted in a
previous paper [Palay 90], we have yet to determine the granularity of sharing that must be

2JohnHowardhascoinedtheterm "xeno-media"for thisconcept.

(C) Copyright 1991 Information Technology Center

-4-

supported (i.e. interactive collaboration as proposed by Rubine and Keim [Rubine 91] vs. more
normal, version concurrency control at the document level).

- Finally, by interactive, we mean that all activities in the system should support a user interface.
In general, we hope to provide direct manipulation interfaces, but interpreted little languages
may be required (e.g. a query language like OQL [Alashqur 89]).

Achieving any of these characteristcs would contribute toward achieving the ITC's mission. Taken
together, however, these characteristics still do not fully accomplish the ITC's mission. In particular,
Alexandria's mission does not include exploring and solving the problems associated with creating,
managing, and communicating specifically multi-media information (i.e. audio and video). Many of these
problems we believe will be addressed by other ITC projects, and we intend to integrate the results of that
work into Alexandria.

On the other hand, these characteristics, when taken together, do represent a large, coherent solution to

many aspects of the problems the ITC wishes to address. In particular, Alexandria proposes to establish a
framework within which most, if not all, information management applications (including those dealing
with multi-media) can function and cooperate and to create an environment for users to manage such
applications as well as their information. We call this framework and environment the Information
Habitat.

Alexandria's Goals

We believe the design and implementation of the Information Habitat will demonstrate and fulfill
Alexandria's mission. Doing so entails many subgoals, including providing the capabilities for
personalized structuring and generalized access. One important subgoal that is not obvious involves
enabling users to construct information management applications interactively by designing and
implementing the tools needed to do so.

To demonstrate the usefulness of the Information Habitat, we feel it is necessary to design and implement a
set of cooperating applications that satisfies the needs of a specific user class. To this end, we will build
support for managing a computer scientist's research notebook. (Other "customer" applications are also
being investigated.)

The next section describes the Information Habitat and motivates the different capabilities that it should
provide. The following section delves into more detail about our reasoning for the need to support
interactive application construction. Finally, the last section discusses the requirements on the system
raised by one user application, the Research Notebook.

The Information Habitat

The ITC's mission describes an environment in which users deal with information. Alexandria's first goal
is to provide an environment in which users can do more than simply access and edit information - they can
also manage and share that information. Access is already provided by various database and file system
interfaces. Applications provide the means to edit instances of information. Our goal is not just to
generalize this interface and integrate applications, it is to extend functionality to enable personalized
organization of the information and collaboration of such synthesis.

What currently represents a user's information space? Typically, a computer user's information space is
kept in a file system and, sometimes, in various databases. A file system comprises an extremely poor
interface to an information space. The (nearly) hierarchical name space provided by most file systems
effectively acts as an index to the information contained in files. As an index, the file system provides only
a single organization for browsing and very poor support for searching the information space.

Furthermore, any meaningful semantic interconnections must be maintained by special-purpose programs

(c) Copyright 1991 Information Technology Center

-5-

or by the user.

Of course, it would be better to present an interface that manages semantic content. Using hierarchical
names is just one way to impose structure on a set of information entities. A fair amount of personalization
is allowed; users can choose their own names and hierarchies. Simple names and hierarchies, however, are
not appropriate structures for all kinds of information. As computers are used to manage more and
different complex kinds of information, we must create an environment in which users can impose suitable
structure on that information. In addition, users must be able to search that structure as well as browse.

Users will still wish to deal with different kinds of information in different ways, Users generally think
about handling mail messages one way and managing source code and documentation another. The user
interface for the Macintosh Finder 3 constitutes a leap for users in this regard. Information entities may be
tagged not only with a name but also with a type, which can be represented by an icon. Selecting that
information entity (i.e. double-clicking with the mouse) executes the correct application for that type of
information. This interface has several implications. First, applications must get all other parameters from
the user or from the operating environment. Second, each type of information may have only one
application that might be invoked in this manner. Even so, the Macintosh interface still presents a file
system: a hierarchical organization of names.

We propose a quantum leap from typical information organizations toward something which more closely
reflects the way people think about their information. Instead of an environment in which the user can only
browse a file name index for information of interest, the Alexandria Information Habitat will offer an
interface in which users can: (1) browse or search for desired information as appropriate; (2) impose
structure relevant to the information being managed (thus, enabling a high degree of personalized
organization of that information); (3) view provided information and imposed structure transparently (i.e.
without requiring one mode to view information and another to view structure); (4) share protected
"views" (i.e. imposed structure) of some information with others; and (5) define and select multiple
applications for handling information of each type.

To be integrated, our information environment must manage multiple sources and repositories for

information (i.e. not just the file system). In particular, the facilities provided to users should apply equally
well to such sources as the University Library, netnews, and several network databases (e.g.X.500
directory servers).

What, then, would be a typical scenario for a user operating in the Information Habitat? Initially, the user
starts in a state in which he must specify information of interest. To do this, the user either names the
information directly (using some index as the naming universe) or poses a query describing the
characteristics of the desired information. In some cases, knowing how to ask the right question may be
difficult, so it will be possible for the user to browse structure itself (thus discovering, for instance, that

mail messages have a _ field). Once the information has been retrieved, an application appropriate to
the type of the information can be chosen for interacting with and editing that information. The initial
query interface and subsequent application interfaces constitute views on information buffers. On a system
that supports a multiple-window environment, many such views can be active simultaneously. Each
application can support the ability to impose additional structure on its information, to cut, paste, or refer to
its information from other applications, and to publish its information for other users (including any
imposed structure).

Macintoshisa registeredtrademarkof Apple,Inc.

(c) Copyright 1991 Information Technology Center

-6-

To summarize: The Alexandria Information Habitat must support the following user activities:
- imposing structure on information;

interacting with imposed information structure, including browsing;
- posing queries based on imposed structure, and executing searches;

selecting information domains for both browsing and searching;
selecting how to interact with different types of information;

- publishing information for the benefit of other users;
- extending and integrating new mechanisms for accomplishing any of the above activities

(including new handlers that manage typed information semantics - e.g. a compiler or symbolic
math package).

In particular, the Information Habitat design should have the following characteristics pertinent to the
Alexandria Mission:

- deal with large amounts of on-line information;
- enable interactive, long-term, personalized management and sharing of information; and
- provide an integrated approach to information management.

The next section will outline how we wish to provide extensibility and enhance the interactive nature of the
system.

Interactive Application Construction

[Aside: "Application" may not be the correct term. First, "application" brings to mind
something heavy-weight that can stand on its own, whereas we desire an interactive
activity that is integrated within an environment. Second, the term "application" has a
technical meaning within certain environments. Perhaps better would be "little
application" (in line with Bentley's "little language") or "information handler" or
"information manager". One paper in the literature uses the term "mode" to refer to
such mini-applications [Shan 90].]

Recall that users will want to deal with differently typed information in different ways. Examples of such
information handling applications include:

- mail and bboard handler

- source code browser (integrated with concurrency control and documentation maintenance)
- library search system
- document browser and editor

- other hypertext-like applications (e.g. help)
- various graph browsers (e.g. organization charts, zoological taxonomies)
- dictionary/thesaurus/encyclopedia browsers
- telephone directory service
- research notebook support
- calendar maintainer

- bibliography manager
- map maintainer (e.g. to provide driving directions)
- journalist's workbench

This list is certainly not exhaustive. Examining this list, however, leads to two conclusions. First, each
application primarily involves simple, common information management: certain known structures are
defined (e.g. card catalogue for the library system, table of contents for documents) and similar operations
provided (e.g. search, follow link, zoom in for additional detail, add and remove entities). Very little of
each application requires special-purpose knowledge (e.g. how to send or post a message in the mail
handling system or how to edit rasters, drawings, or video).

(c) Copyright 1991 Information Technology Center

-7-

Second, to be integrated within the Information Habitat, these applications must sham several user
capabilities in addition to the basic functionality of interacting with typed information, for example:

1) posing queries;
2) imposing structure;
3) transforming information structured one way into information structured another; and
4) publishing information and structure to other users.

The first two clearly derive from the goals of providing an integrated environment for information. The
third results from the desire to interact with an information view that differs from any currently provided
by any existing structure on that information. For example, a structured document browser and editor
should be able to extract a document's table-of-contents from its stream representation. The fourth
capability results from our desire to encourage collaboration, which motivated the choice of the project
name Alexandria [-Palay 90].

Because the list is not exhaustive, the Information Habitat must enable extensions to the set of applications
integrated into the system. Because each application primarily involves common management capabilities,
it should be possible to construct new applications from existing capabilities provided in the environment.

Significantly, the list of capabilities to be provided to users by these applications are also required by the
implementors of those applications. The conclusion we draw is that since these capabilities should be
provided interactively for users, these capabilities can also be provided interactively for implementors.

Thus, the Information Habitat must provide interactive "applications" to pose queries, select and impose
structure, create and execute transformations, and create and invoke authorizations for publishing.

At this point, much of the implementor's work can be done interactively. How much of the rest can also be
done interactively? To answer this question, we must first ask what capabilities are required in the "rest".

In addition to those described already, two new capabilities are required by application builders. First, an
implementor must be able to define the structure of the information being manipulated. 4 This effectively
involves defining data models. The second capability is to define how users edit and interact with instances
of such structure schemas. This activity closely resembles dealing with a UIMS, except that, as noted
above, the set of actions users may wish to execute within an information management application is
mostly bounded.

Both of these activities can also be interactive. Certainly, making the latter interactive is the subject of
considerable interest in the user interface research community. Since our domain (i.e. information
management applications) is limited, it should be possible to take advantage of existing results. We will
discuss how to make the structure schema definition phase interactive in more detail below.

Once these capabilities are provided within the Information Habitat, there is no reason not to provide them
to end-users as means for achieving highly personalized extensibility.

Before we conclude this section, we should address the issues concerning the integration of third-party
applications (e.g. ±d_raw) and foreign data storage formats (e.g. post:Scr±pt 5). Invoking third-party
editing applications when appropriate should be fairly trivial; we have already posited that applications will
be selected based on information type. All that is required is some mechanism to describe how to invoke
the application (i.e. required environment variables and parameter specification). Of more interest is how

4Note: at this point, the reader might notice an inconsistency in the use of the term "structure". In this instance, we mean structure as

schema, or something that defines the shape of information. Previously, we used "structure" to mean additional information a user

associates with existing information. When context is not sufficient for disambiguation, we will say "structure schema" for the first

meaning and "structure instance" for the second, since the additional information imposed by a user is in fact an instance of some
structure schema.

5PostScript is a registered trademark of Adobe Systems, Inc.

(c) Copyright 1991 Information Technology Center

-8-

to integrate Information Habitat capabilities into such applications. This will depend on the level of
cooperation provided by the application. If source code is available, some programming effort may be
required. On the other hand, if the application supplies a sufficiently powerful command language, less
experienced users might be able to incorporate our capabilities.

Integrating foreign data formats into the environment can be accomplished at three levels. The most
integration is achieved if that data format is recognized directly by the Information Habitat capabilities that
we build ourselves. Clearly, the number of such formats must be limited. The second, most useful, level is
accomplished by enabling the user to specify how to parse foreign data formats into the form managed by
the environment and how to render an internal form back out to the foreign format. The issues of how users
can specify such transformations interactively are discussed in more detail below. Finally, there may be
data formats that simply cannot be analyzed. Objects of such formats can still be managed within the
environment, they just can't be decomposed. In particular, it is these objects that will require the
integration of third-party applications discussed above.

Thus, Alexandria's goals include supporting the interactive conslruction of information management
applications by providing at least the following set of interactive capabilities within the Information
Habitat:

- pose and execute queries;
- define, select, and impose structure;
- define and select how to interact with instances of structure;

"run" an application (i.e. interact with selected information);
- define and execute transformations on structured information; and
- define and apply authorizations for publishing and collaboration.

Please note two things. First, these capabilities were motivated solely by the desire to have an Information
Habitat in the first place. Second, once these capabilities are provided, the Information Habitat just
becomes the driver, or framework, for these capabilities as well as other applications.

Finally, we believe that other capabilities exist that would also be advantageous, including:
the ability to specify transformations that parse foreign data formats into a form useful within
the Information Habitat and render modifications back out in the foreign data format;
the ability to define and apply indexes to sets of information entities (e.g. documents) in order to
enhance the performance of queries; and

- the ability to define and schedule agents that execute on behalf of users in the background,
"running" applications (combining agents and transformations allows automatic structuring to
occur, such as automatic classification; agents can also act as a "current awareness service" for
information sources that are constantly being updated).

In time, we may find the need for others as well.

To summarize: Supporting application construction in the Information Habitat should be as interactive as
possible since the activities involved in building applications greatly overlap with the capabilities we wish
to provide to users for tailorability and extensibility.

A look ahead: To achieve the various characteristics we desire, we hypothesize that the following support
technologies will be necessary --

"long-term" management requires persistence (either via file system, databases, or both);
- search access requires the ability to pose and execute queries and to follow direct links;
- sharing requires the ability to define authorizations and some form of concurrency control;
- personalized management requires the ability to define and impose structure;
- integration requires control over information sources, interoperability, distribution support,

and defined communication protocols between applications;

(c) Copyright 1991 Information Technology Center

-9-

tailoring requires user access to all building activities and interactive editing of the properties
of the insets used to interact with information;
extensibility requires at least the activities described above; and
"interactive" management of information requires either direct manipulation interfaces or
simple "little languages".

The Research Notebook

The concepts embodied by Alexandria will be tested by specifying and implementing a set of cooperating
information management applications within the Information Habitat to satisfy the needs of a specific
group of users. This goal is important in demonstrating not only that one's information needs can be met

within a single, integrated environment, but also that the applications satisfying those needs can be built
interactively.

Thus far, computer technology has provided us with the means by which we can accomplish some tasks
more rapidly than before. Using current computer applications, authors, for example, can produce written
texts more quickly. But computers still do little to help authors understand the problem domain, apply that
understanding to the task at hand, produce better solutions, or find solutions where they could not find them
before. In short, current information technologies remain unsatisfactory for significant parts of the writing
process.

Computers provide a powerful environment in which researchers, artists, designers, writers and other
professionals can do their work. In fiction writing, for example, the computer provides tools which support
editing, formatting and even spelling. However, it is the author's responsibility to keep track of the
intended audience, the plot threads, the character development and the sequencing of events or other
information that is needed to write the piece. The computer is helpful only after most of the difficult work
is finished. Outline processors are a step in the right direction, but they still provide little help in
structuring and managing ideas. Similarly, large portions of the graphic design process are currently
unsupported in information systems. A graphic designer must manage a variety of ideas over a period of
time. Those ideas are often represented in different ways (i.e. sketches on paper, verbal descriptions,
images, etc.) and organizing them is often problematic.

What is needed for the research process is a flexible method of organizing, accessing, linking, and tracking
information, goals and ideas. An ideal computer environment would be one which supports these critical,
yet often overlooked, tasks. Imagine, for instance, computer-based tools to support a composer's creation
of a sonata, including sketches for its design. Such tools might help monitor the changing shape of the
composition, manage the generation, storage, and evaluation of alternate phrasings, and review all or parts
of the sonata. Or, alternatively, a graphic designer might find computer tools useful for managing visual
concepts and ideas, as well as for tracking the progress of the emerging design.

Our aim is to develop information technologies to support the research process more effectively. Research
might apply to the design of buildings, machines, or other real-world objects, the composition of musical
scores or written essays, the production of dance or video presentations, or the construction of computer

applications or tools. The technologies we will be exploring can include new devices (e.g., videodisks) as
well as new interfaces derived from a better understanding of the research process itself. Our current
proposal for achieving our goal is to build a Research Notebook for computer scientists.

A typical researcher has access to large amounts of (potentially) on-line information: the library card
catalogue, journal abstracts, journal articles, videotaped lectures, electronic mail and bulletin boards,
newswires, etc. However, easy access is meaningless if the researcher is unable to find the relevant
information when it is needed or relate it to other information effectively. A researcher may browse

through a collection of information, either searching for information on a particular topic or looking for

new ideas or perspectives on that topic. This search may last ten minutes or ten months. The researcher
may find an answer and move on, or may wish to continue browsing at a later time from a different starting

(c) Copyright 1991 Information Technology Center

- 10-

point. The researcher may also wish to record the path that this search takes, leaving a frail which may be
followed at a later date, or mark bits of information of particular interest, so that they can easily be found

again.

It is vital for researchers to keep up-to-date on topics relevant to their field of expertise. So much
information is being published in so many areas that this is becoming an impossible task. Hours may be
spent sifting through piles of uninteresting data in order to find one or two nuggets of useful information.
An alternative might be to narrow one's specialization drastically, investigating only those areas likely to
produce pertinent information. However, by limiting the scope of examination, a researcher may overlook
potentially crucial data or relationships.

In addition to finding information and keeping abreast of the latest activity in a particular field, researchers
also need to keep notes recording current ideas, trains of thought, relevant conversations, relationships
between pieces of information, etc. These notes indicate the state of the research, a snapshot of the work in
progress. They should be connected to germane reference materials as well as to other information created
by the researcher. In addition, a researcher may work on several projects simultaneously. A method is
therefore required for recording progress so that no ideas are lost while switching from one project to the
next. Or, a researcher may collaborate with colleagues and wish to make public any findings or new ideas.
Finally, the researcher may need to organize ideas and their relationships, create theories, models, and
explanations for observed behaviors, and test those theories empirically.

Having access to compilations of experimental results, theory revisions, related work, comments, and notes
would aid in the research process, but more importantly, the researcher needs tools that understand the
interrelationships inherent in that data. In addition to such research tools, several support applications,
such as a management application for annotated bibliographies, are also desirable.

To summarize: The Research Notebook will need to support not only management of the different kinds of
information available to the researcher, but also the synthesis that goes on during active research and the
transitions that occur when the researcher switches between projects.

The Research Notebook must support the following user activities:
- accessing an integrated multi-media environment;
- managing multiple threads of activity;

- structuring ideas;
linking information of any type (text, rasters, hierarchies, etc.), both public and private;

- publishing information, including links, data structures, maps and audit trails;
tracking revisions in personal data and updates in public data;
searching and browsing in personal databases and large-scale public databases;
specifying search criteria for ongoing searches;
keeping audit trails on searching and browsing which persist in the long term;
structuring notes, audit trails, links, etc. into multiple projects and switching between project
contexts;

- managing more mundane aspects of the research process, such as bibliographies, research
papers, talks, etc.

(c) Copyright 1991 Information Technology Center

-11-

System Outline

In this section, we discuss in more detail the interactive activities Alexandria will support. It describes the
capabilities that end-users and application builders might expect from each activity.

We can divide users into several classes:

Novice users will tend to use only those facilities that are provided directly by the application and
will not attempt to extend those facilities, even by defining macros.

Knowledgeable users are aware of the underlying models of the application and feel comfortable
- using the extension mechanisms that don't involve complex programming (i.e. programming

that requires package-level extensions - defining data types and modules).

Expert users are knowledgeable users that are able to write fairly large programs in order to
extend the application. To some degree, these users are also able to make use of trapdoors to
the language used to implement the application.

Wizards understand how the application was built and can write programs that take advantage of
that knowledge.

Below, we annotate some actions with the level of user sophistication we feel will be necessary to perform
those actions. All other actions should require only novice sophistication.

We also distinguish between end-users and application builders. End-users are those users who interact

with Information Habitat applications and the activities below that are part of those applications (e.g.
specifying and executing queries). On the other hand, application builders use all of the activities
described below to construct new information management applications. Generally, application builders
will need to be more sophisticated than novices, although novices may build simple applications. End-
users, of course, can be of any level of sophistication.

The following is organized according to logical activities without any consideration as to how a user

interface to such capabilities might appear. In particular, actions of several activities may appear within
the same user interface (e.g. selecting a structure to impose on information may be integrated with the
activity of viewing information).

Similarly, a user might start in any of several activities, regardless of the order presented below. Each
activity is annotated with the level of user sophistication expected for using that activity as an entry point.
(Note that one cannot start viewing information or imposing structure without somehow "retrieving" the
information to be managed.) In reading the following, it might be helpful to refer to Figure 1.

Please note that all actions can be performed only by users authorized to do so. For instance, almost

everyone should be able to specify and execute a query, but some information domains may be off-limits to
some users. Control over authorizations, of course, also requires appropriate authorizations!

(c) Copyright 1991 Information Technology Center

- 12-

Toolkit Outline

Authorization Transformation Structure]Oum-v

/ IVle./Interact [

i,

Execution

Information Transformation Information] Agent

Publishing Execution Browstng _lng]

Index

..._ Maintenance
External

World t

Figure 1: Outline of Information Habitat Capabilities

(c) Copyright 1991 Information Technology Center

- 13-

(0) Create Information [novice entry point]

This activity is not significantly different from the view, edit, and interact activity (described in the next
subsection); creating information, however, can be an entry point whereas viewing, editing, and interacting
with existing information cannot. Thus, although we distinguish the two for exposition, these two activities
should be treated as one. In particular, any references below to the view, edit, and interact activity
implicitly refer to the activity of information creation as well.

The following action is available in this activity:

(a) Create new information
- This action involves selecting a structure from a library of known structure schemas

or creating a new schema (see activity (3) below). Instead of imposing that
structure on existing information (as in action (g) of the view, edit, interact
activity), the user creates new information by filling in data of the appropriate types
(using the editing capabilities of action (a) of the view, edit, and interact activity
below). Creating new information will involve an application switch. The structure
schema selected restricts the set of application interfaces from which the user may
choose.

(1) View_ Edit_ and Interact with Information [not an entr? point]

In this activity of the Information Habitat, all actions manipulate information through some structure. In
particular, a user imposes new structure on existing structure (i.e. the structure currently being viewed).
Similarly, any processing of the information (e.g. queries) also operates on structure. Simple data (e.g.
plain text) is considered the degenerate case of structured information.

The following actions are available in this activity:

(a) View, edit, and process information of a specific type
- Each type will present view and edit actions appropriate to it, including scrolling,

playing (for continuous-time media), zooming, abstracting, searching (e.g. string
search in text), analyzing, transforming (e.g. scaling, moving, rotating), and other
ways to change its value. 6

- Editing may involve some interaction with the database to "start" a transaction.
Nested transactions, then, can be used for checkpointing.

The specification of some information processing may require the skills of either a
knowledgeable, expert, or wizard user. In particular, there may need to be a
trapdoor to allow access to a general-purpose language for specifying processing
routines.

(b) Save changes
This action would terminate the current editing transaction and cause new versions
of information modified during the session to be stored in an appropriate database.

(c) View and edit the structure of information

_Forthis, weexpectto takeadvantageof theunderlyinguser interfacetoolkittechnologyandthird-partyapplications,as wellas the
resultsof researchintocontinuoustimemediaauthoringcurrentlygoingonat the1TC.

(C) Copyright 1991 Information Technology Center

- 14-

- Although many different structures are possible, most will share view and edit
actions similar to above. The difference is that these operations will apply to the
structure, and, as such, must be supported explicitly by Alexandria. The insets that
provide this capability are called Information Interactors, or 1nfoActors. 7

(d) Search and browse
Search involves the actions associated with posing and executing queries (see (2)
below). Browse typically involves scrolling and abstracting structure, and
following links. Of course, what appears to be browsing to the user may in fact be
the execution of an application-defined query.

(e) Change view/interaction [knowledgeable users]
Each application understands information structured in a certain way. There may
in fact be several applications that understand information possessing such
structure. Users may use this capability to change their view of the information.
When selecting the application interface with which to edit and interact with
information, only those choices appropriate to the structure of that information
should be available.

(f) Establish authorizations
- See activity (6) below.

(g) Select and impose structure
See activity (3) below.

ThetermInfoActorswascoinedbyThornPeters.

(c) Copyright 1991 Information Technology Center

- 15-

(2) Pose and Execute Queries [novice user entry point]

As mentioned above, no implication is made concerning user interfaces. Although we discuss this activity
as separate from the previous, for instance, the activity of viewing, editing, and interacting may allow
queries to be specified and executed within its user interface.

The following actions are available in this activity:

(a) Specify and edit queries
Many different models exist for posing queries (e.g. keyword, predicate, query-by-
example, form fill-in). The Information Habitat will provide a library of such
models for use both by end-users and application builders. In addition, the
architecture will support the integration of new models as they become available.
We do not intend to provide an interactive interface for creating totally new query
models; composition will be possible through the normal process of application
building.

Some models may be so complex that non-novice user sophistication may be
required to specify queries in those models.

Some query models may also accommodate user-defined predicates; a trapdoor to
a programming language may be necessary.

(b) Save query [knowledgeable users]
It will be possible to build up libraries of useful queries. Note that a library is
simply some form of collection structure on a set of objects, in this case, queries.

(c) Browse and search query libraries [knowledgeable users]
- This action, of course, is just applying activity (1) above to query libraries. Once a

query is selected, it can be edited using the capabilities presented by action (a)
above.

(d) Execute query
The execution of a query requires that the user (or application) specify the domain
from which information is desired, the preferred accuracy of the results (i.e. recall
and/or precision), and perhaps the indexes to be used for improving execution
speed.

(e) Reformulate query
The execution of a query results in a set of targets. A subset of this set can be
judged by the user as to the relevance of the item to the user's information need.
The system can then reformulate a new query, based on the user's feedback, and
generate a new set. This process can be iterated.

(c) Copyright 1991 Information Technology Center

- 16-

(3) Select and Impose Structure [not an entry point]

Again, no implication is made concerning user interfaces. Although we discuss this activity as separate
from the previous, for instance, the activity of view/interaction may allow structure imposition to be
specified and applied within its user interface.

The following actions are available in this activity:

(a) Browse and search structure libraries

Novice users will need a set of common structures from which to choose; they will
not wish to define their own structure abstractions except in the most primitive
circumstances. Examples of organizations that should be provided include
annotations, bookmarks, cross-references, and standard application entities such as
mail messages, card catalogues, dictionaries, calendars, telephone directories, etc.
Primitive structure definition could involve, for instance, lists of records, where the
user gets to specify the fields of each record.

As in the case of query libraries, this capability is just applying activity (1) above to
structure libraries.

(b) Instantiate structure schema

Instantiation can be done directly by the user (e.g. during creating information; see
action (h) of activity (1) above) or automatically through transformations (specified
and executed via activity (8) below or applied by the execution of an agent; see
activity (7) below).

(c) Evolve structured information [knowledgeable user]
- As time goes by, a user's view of parts of his information space may change (e.g.

as when a researcher's focus moves to an area in which she only had a passing
interest previously). In this case, the structure imposed on that information must
change. Although the user can make these changes by hand, the action must
provide some support for automating this task (perhaps with the use of
transformations).

This capability also has some implications concerning information versioning. For
example, it should be possible to monitor changes to structure (i.e. changing
structure constitutes an event that might invoke an agen0. We have not explored
these implications yet.

(c) Copyright 1991 Information Technology Center

- 17-

(4) Create New Structure Types [knowledgeable user entry point]

Since this activity is just another information management application, we expect it will have its own user
interface, s In this activity, users, whether end-users or application builders, will define new abstractions for
imposing structure. Application builders may do so as part of building up an application to manage
instances of such abstractions. End-users, on the other hand, may do so to generalize and simplify the
action of imposing structure. For example, if the system-provided structure library included annotation and
cross-references as known structure abstractions, and the user wants to create annotated cross-references,

then he would use this activity to compose the two into a new abslraction.

The following actions are available in this activity:

(a) Specify and edit structure schemas
Specifying a new schema consists of creating new classes of information and listing
their attributes and interrelationships. A model that users accept for defining such
schemas (probably based on the entity-relationship model [Chen 76, Carlson 89, Su
89]) must be chosen. Attribute values and relationship roles may involve existing
schemas; composing two or more existing schemas into one should be a fairly
common occurrence. Thus, browsing and searching libraries of existing structure
schemas (see action (a) of activity (3) above) must be accessible from this activity.

Editing existing structure schemas (i.e. adding, deleting, and modifying attributes,
changing relationships) requires evolution support. See also the related action of
evolving actual structure (action (c) of activity (3) above).

(b) Save structure schemas
- Effectively, this is how structure schema libraries will be built. As before, a library

is simply some form of collection structure on a set of objects; in this case,
structure schemas themselves.

(c) Impose sorting criteria on structure schema
Much of structure involves collections of subentities. Users generally prefer to
view a collection in some order that is logical according to the information
contained by the collection. To this end, users will be able to define sorting criteria
on collections as part of defining structure schemas. Some known sorting criteria
and ways to compose them will be made available to the user:.

* string sorts (case insensitive, ignore punctuation, ignore leading/trailing
padding)

* number sorts (float vs. integer, date/time)

* table-driven (i.e. ordering a finite set of entities by hand) [expert users]

* user-defined functions (requires programming; a trapdoor is probably
required) [wizards]

* multiple key (i.e. radix) [expert users]

* multiple dimension (e.g. maps) [expert users]

sAlthoughthisactivityiscrucialfordefiningnewapplications,it is a candidatefor beingre-implementedaspart of a boot-strapping
phase(i.e.usingtheInformationHabitatto re-implementthis"application").

(C)Copyright 1991 Information Technology Center

- 18-

(5) Create New Information Application [expert user entry point]

This activity is the User Interface Management System (UIMS) for the Information Habitat. However, it
must be more. As in a typical UIMS, an application builder can specify the appearance and interaction
style of the application's user interface. Facilities must also be provided, though, that enable the
application builder to specify how to filter structured information from a data source into the user interface
and how to return modified information to the database.

Building user interfaces, then, will involve laying out Information Interactors (or InfoActors) and
specifying the styles peculiar to each (e.g. the shape of nodes in a graph editor, the text font for entries in a
title list). In addition to styles, each inter'actor will present a set of events generated as a result of end-user
actions (e.g. item selection). The application builder can choose an information-based "semantic" action
from a known set to be executed whenever that event occurs. (Known actions will include such things as
execute a query, follow a link, create a new item, etc.) To incorporate non-information-based semantics,
the builder will have to use a trapdoor into a full-fledged programming language; examples include
interfacing to the mail delivery subsystem or invoking a compiler (for a source code browser). As we
argued earlier, we believe that such applications primarily use only simple, information-based actions. One
result of our work will be to determine whether this hypothesis is valid.

The other major component of building an application interface involves specifying how each interactor
gets filled in from the information source and how to send editing changes back. For example, the table of
contents of a book may be defined as a hierarchy and the user might choose a tree browser to interact with
it. The application builder must somehow indicate that the node labels should be taken from the book's
section tides. Furthermore, when the structure changes (e.g. sections are added or moved), the
modifications must be committed to the database. See action (c) below.

The set of InfoActors available for composing application user interfaces will be limited. Interactive
construction of such insets appears to be an extremely hard problem. Thus, we plan to provide a set of
interactors that will represent a reasonable spectrum of interaction possibilities for several common
information structures (e.g. sets, sequences, hierarchies, lattices, general graphs, lists of numbers [i.e. bar
chart]). As in the case for data types (i.e. raster, audio, video), we hope to take advantage of the underlying
user interface toolkit's extensibility to integrate new interactors into the system. These interactors,
however, will have to be written in that toolkit's general-purpose implementation language (another
trapdoor).

Since it is not expected that this activity will be part of some other activity, it probably should have its own
user interface. It is probable, however, that it will not be possible to re-implement this interface as part of a
bootstrapping phase.

(c) Copyright 1991 Information Technology Center

- 19-

The following actions are available in this activity:

(a) Specify and edit application interface layouts

This action requires the services of a layout controller, much like that described by
Cardelli [Cardelli 87]. The properties we desire include:

* the ability to design screen layouts containing InfoActors;

* the ability to impose layout constraints;

* interactive editing of each InfoActor's styles; and

* interpreting the resulting specification as an inset (instead of needing to
compile).

(b) Specify and edit application interface interaction

This action might be integrated with the layout controller. Using this action, a user
can associate application actions with the events generated by end-users. Each

InfoActor defines its own set of events (e.g. item selection). The application
actions will fall into three classes: standard, information-based actions (described
above); arbitrary actions defined by a wizard using a trapdoor into some general-
purpose programming language; and simple macros of existing actions.

We will attempt to provide a set of information-based actions that is as complete as
possible. This is essential if we are to prove that most of the user interface of such
applications can be built interactively.

Although we do not go into such detail here, the ability (of wizards) to add to the
provided set of actions implies the need for maintaining libraries for those actions.

(c) Specify and edit application interface I/O transformations

In choosing the set of InfoActors for a screen layout (i.e. application user
interface), the application builder must also describe the type of information that
the layout is intended to manage and then how each InfoActor gets "filled" from
instances of that information type. (By type of information, of course, we mean the
structure schema of the information.)

In addition to specifying how to extract the data needed by each InfoActor from the

information source, the application builder must also specify how to package up
any modifications that end-users make that must be returned to a database.

- There will be a controller in the system that will know how to take structured
information and these layout transformation specifications and create the actual
layouts with which end-users will interact.

(d) Save an application interface

- It will be possible to build up libraries of application interfaces. Note that a library
is simply some form of collection structure on a set of objects, in this case, interface
specifications.

(e) Browse and search libraries of application interfaces
- This action, of course, is just applying activity (1) above to libraries of interface

specifications. Once an interface is selected, it can be edited using the capabilities
presented by actions (a), (b), and (c) above.

(c) Copyright 1991 Information Technology Center

-20-

(6) Manage Authorizations_ Publish Information [novice user entry point]

An authorization indicates whether or not a specific user can execute a specific operation on a specific
Information Habitat entity. Authorizations help maintain privacy and prevent unsanctioned updates.
Storing each authorization explicitly is clearly not feasible. Most systems derive authorizations implicitly
through the use of capabilities or access lists, neither of which are very flexible.

The Information Habitat will incorporate a design described by Rabitti, Woelk, and Kim [Rabitti 88]. As
described in more detail in a companion paper on the architecture of Alexandria's implementation
[Horowitz 92], three lattices are made available to the user so that most authorizations can be determined

implicitly. The three lattices represent user groups, operation categories, and entity compositions. By
establishing explicit authorizations involving nodes high in each lattice, all combinations of descendant
nodes become authorized implicitly.

Thus, the activities described in this section involve defining the nodes of each lattice and managing the
activation and suspension of specific, explicit authorizations. For example, we might define a user group
for Alexandria group members, the category of all authorization operations, and the set of entities
representing authorizations. With one positive authorization, all Alexandria group members can be
authorized to manage any authorizations. Then, with one negative authorization, we can forbid a given
user from actually removing anyone's authorizations.

This activity may appear as a subactivity of the others. Also, managing authorizations is clearly another
information management application, and is thus a candidate for re-implementation within the system
during a bootstrapping phase.

The following actions are available in this activity:

(a) Create and manage user groups, operation categories, and object compositions
- Managing each of the three lattices involves creating new nodes and placing those

nodes within the lattice (node deletion can be a problem if there are existing
explicit authorizations that refer to that node). Placing nodes involves specifying
which other nodes are parents and which are children. Thus, any explicit
authorization involving the new node implicitly authorizes all descendant nodes,
unless overridden by another explicit authorization. Similarly, the nearest explicit
authorization of an ancestor implicitly authorizes the new node. An algorithm for
choosing between two conflicting explicit authorizations for ancestors at the same
distance must be developed and published.

Co)Create and delete explicit authorizations
Creating an explicit authorization means specifying a triple consisting of a node
from each lattice (user group, operation category, and object composition) and
registering that triple as comprising a positive or negative explicit authorization (a
negative explicit authorization overrides a positive implicit authorization; e.g.
everyone but Bill can read a given document).

(c) Activate and suspend explicit authorizations

Instead of deleting an explicit authorization, it might be useful to just suspend its
effect, so that the user need not re-construct iL9

9Maybe not; establishing an authorization looks to be a very easy operation.

(c) Copyright 1991 Information Technology Center

-21 -

(d) Query authorizations (explicit and implicit)

Given the three lattices, it may not be clear to the user what the algorithm will
decide is the appropriate implicit authorization for a triple that has no explicit
authorization. Thus, it should be possible to ask what authorization (i.e. positive or
negative) is associated with a given triple.

(c) Copyright 1991 Information Technology Center

-22-

(7) Specify and Schedule Agents [knowledgeable user entry point]

Specifying agents involves thre_ tasks: identifying the information of interest; specifying when the agent
should execute; and describing what to do with the information of interest. The first task can be handled by
specifying a query and its execution context. The second task involves the definition of various kinds of
events and allowing the user to schedule the execution of agents according to when those events occur.
Finally, the third task requires some form of programming. If we hope to avoid the need for a general-
purpose language, we must identify the capabilities we wish to give the user and design an appropriate
"little language" [Bentley 86].

Agents can be used to monitor dynamically changing information (either additions or modifications) and to
automate the imposition of structure (e.g. classification, indexing). Thus, the capabilities we expect the user
might require in our "little language" should include a programmatic interface of all the actions being
described in this report. This implies that the language must also allow users to manipulate instances of

Alexandria entities (e.g. structure schemas, queries, transformations, authorizations, agent scheduler
events, structure instances, and agents themselves).

We expect the agent scheduler to understand at least the following event classes:
- time (e.g. run this agent every Monday at 3:00 pm);

- the addition of new information; this enables the automation of the "current awareness
service" typically provided by libraries to inform library patrons of new books or articles that
may specifically be of interest to them;

- the modification of existing information; this capability allows the system to simulate the
database "trigger" concept; and

- other Information Habitat events of interest, including any changes to authorizations (i.e. for
publishing information) or when another user starts a transaction on information of interest.

The following actions are available in this activity:

(a) Specify or edit a query and its execution context
Query specification is discussed in activity (2) above. The execution context, also
described above, consists of the domain containing the information of interest, the

desired accuracy of execution results (i.e. recall and/or precision), and whatever
indexes to be used for execution efficiency.

(b) Specify or edit the event schedule for executing an agent
This involves selecting the events (e.g. Wednesday) and the schedule (e.g. every
Wednesday) that will cause an agent's execution and registering the agent with a
scheduler that will monitor Information Habitat events and invoke the appropriate
agents.

(c) Describe and edit the information processing desired [may require an expert]
- As mentioned above, this is essentially a programming task. The user interface for

this action must provide some means of entering such a program. Minimally, this
will consist of a text editor (syntax-directed?) for a "little language". Maximally,
there might have to be a trapdoor here to a general-purpose programming
language. 1°

toResearch into visual progranuning may be applicable here.

(c) Copyright 1991 Information Technology Center

- 23 °

(d) Save agent description
It will be possible to build up libraries of useful agents. Note that a library is

simply some form of collection structure on a set of objects, in this case, agent
specifications. We expect that users will "trade" useful agents with each other.

(e) Browse and search agent libraries
- As in the other cases, this involves applying activity (1) above (interacting with

structured information) to libraries of agent specifications. Once an agent
specification is selected, it can be edited using action (a) or managed using action
(0.

(f) Manage agents
This simply involves activating or deactivating a specific agent (i.e. in effect,
establishing or removing an authorization for that agent to execute).

(c) Copyright 1991 Information Technology Center

-24.

(8) Specify and Execute Transformations [expert user entry point]

Transformations are necessary whenever information structured one way needs to be viewed as structured
another way. The need for transformations arises in several ways:

(1) _ -- Information in human readable form (i.e., text) is converted to an internal form.
For instance, a text may be converted to a concordance or an index constructed of certain key
terms. Analysis is essential not only for extracting structure from text but also for managing
information kept in foreign data formats.

(2) Rendering -- Information in internal form is converted to text or back to a foreign data format.

(3) Transforming -- Not only will end-users wish to change their view of structured information
(e.g. viewing a book's table-of-contents as an alphabetized index), but application builders will
also need to specify how to transform the results of a query into the form required by the set of
InfoActors to be used for interacting with those results (refer back to action (c) of the section on
creating new applications above).

The last point is illustrated in Figure 2. That is, before any application for viewing and editing information
(activity (1)) can be executed, the InfoActors comprising that application must be instantiated.
Transformations specify how the application controller is to extract that data from given information (such
as that returned by a query). Similarly, transformations indicate how to reconstitute information from the
data held by an InfoActor so that modifications can be stored back in a database. If that database is a
foreign data format, then analysis and rendering transformations will be required.

Certainly, end-users can also use a transformation facility to automate classification and other personalized

structuring (e.g. previewing mail messages and making best guesses as to their content by classifying them
into different "in" folders). Thus, transformations will be useful in the specification of agents (see activity
(7) above).

The following actions are available in this activity:

(a) Specify and edit transformations

To go from text (or foreign data format) to structure, some form of parsing must be
specified. The specification consists of a grammar with embedded instructions for
entering the parsed components of text as parts of the internal form. The
technology used for parsing is described in more detail in the subsequent report on
the system architecture [Horowitz 92].

To specify standard structure-to-structure transformations, the user will not only
have to indicate what happens to the source structure but will also have to select
appropriate target structure, much as in activity (3) above (i.e. selecting and
imposing structure). Again, the technology used for these kind of transformations
is described in more detail below.

Rendering transformations may be generated with appropriate string construction
facilities of an extension language (another trapdoor).

(b) Save transformation [knowledgeable user]

It will be possible to build up libraries of useful transformations. Note that a library
is simply some form of collection structure on a set of objects, in this case,
transformations.

(c) Copyright 1991 Information Technology Center

- 25 -

View Instantiation

Selection In_rpre_r

[

!

Figure 2: The Instantiation of an Application based on the type of Information

(c) Browse and search transformation libraries [knowledgeable users]
- This action applies activity (1) above (view, edit, and interact with information) to

libraries of transformations. Once a transformation is selected, it can be edited
using the capabilities presented by action (a) above or applied using action (d)
below.

(d) Execute transformation
In general, transformations will be executed implicitly by the system during
application instantiation. Changing the way information is structured from one
organization into another, however, will require an explicit action on the part of the
user.

To execute a transformation, the user must specify the information to be
transformed and what to do with the resulting information. Specifying the

information to be transformed may involve existing information or some
computation that can act as an information source. In the latter case, the
transformation acts as a filter.

(c) Copyright 1991 Information Technology Center

- 26 -

(9) Create and Impose Indexes [knowledgeable user entry point]

In this activity, users impose a kind of structure on information purely for performance reasons. That is,
the structure itself is not meant for browsing. For now, we expect that only text indexes will be provided in
the system, since we do not know how to index arbitrary multi-media. The user may choose from a set of
indexing technologies known to the system; although we hope to make this set extensible, we do not expect
anyone but wizards to be able to create a new indexing technology (a trapdoor is required here).

The user interface for this activity might be integrated with several of the other activities, especially since
the user must select the set of information entities to be indexed.

The following actions are available in this activity:

(a) Select the collection of information entities to be indexed
The user must not only specify the structure representing a collection of
information entities, but must also indicate which textual attributes should
participate in the indexing process.

(b) Select and apply an indexing technology
Each technology may have a set of parameters the user can specify that affect the
performance of subsequent retrievals (i.e. speed, recall, precision). To extend the
set of known technologies, then, the implementor of a new technology must
provide the appropriate user interface to be presented when a user selects that
technology.

(c) Updating an index
It is important for an index to be up-to-date with the collection it indexes.
However, recomputing indexes can be a very time-consuming operation, and the
user should have control over when an index is recomputed. By default, when an
index is created, a re-indexing agent is also created which has four modes:

1) re-index only when the user asks for a fresh index;
2) when attempting to use a "stale" index, ask if the index should be

recomputed;
3) re-index periodically (e.g. nightly); and
4) re-index whenever the collection changes.

(c) Copyright 1991 Information Technology Center

- 27 -

Conclusions

As more and more information becomes available on-line, traditional mechanisms provided on computers
for access and management of that information will start to break down. We believe that the solution to this

problem lies not only in improved access technologies (i.e. better indexing and query algorithms),but also
in providing new, highly extensible capabilities that allow users to organize the information of interest to

them. These capabilities hopefully model the activities users employ xl outside the computer to manage
their information space today. In particular, the goals of Alexandria include enabling on-line maintenance

of the personalized organization users impose on their information and enhancing those organization
activities in ways that can only be achieved on computers (e.g. facile indexing and search).

We have identified several activities that would be useful for personally organizing large amounts of
information. First, the ability to index and query information domains is clearly necessary. Personalized
organization, however, implies that the user must be able to impose additional, structural information on
top of existing information. Thus, at the minimum, a reasonable set of useful structures should be made

available for such imposition (e.g. hierarchies, lists, cross-references). Once structure has been imposed,
the ability to browse that structure and its corresponding information together transparently becomes
essential. The desire for collaboration implies that users should be able to share such views, as long as
adequate protection is provided. Thus, an adequate authorization facility should be built.

The need to deal with all kinds of information implies that parsing, rendering, and other transformation
capabilities be integrated within an environment. Transformations also allow the same information to be

viewed in different ways. Since transforming and imposing structure on large amounts of information by
hand would be impractical, some means for creating background agents to do the work is important. And,
of course, once background processing is made available, it can be used for other things as well, such as
monitoring a dynamically changing information source and informing the user when changes of interest
OCCUr.

Finally, since the set of structure types and the applications that operate on instances of those types cannot
be exhaustive within the environment, it must be possible to integrate in third-party applications, create
new structure types, and create new applications that manage the information of those new types. The
integration of a third-party application may be improved if it supplies a command language that can invoke
the capabilities present within the Information Habitat. The construction of new applications can take
advantage of the observation that most user-level actions of such applications are common to all
information management applications. Thus, it should be possible to allow users to construct their
applications interactively.

In fact, most of these activities admit to reasonable direct-manipulation user interfaces. Thus, we believe
that the capabilities of the Information Habitat should be highly accessible to novice users. We intend to

prove these assertions by building the Information Habitat and applying it to a specific user community that
deals with information intensively and has access to large amounts of on-line information.

This paper described the motivations behind the research and the approach we propose to take. One or
more companion papers will address the issues concerning the designs of the different capabilities to be
provided in the Information Habitat.

n Or wish they could employ.

(c) Copyright 1991 Information Technology Center

- 28 -

References

[Alashqur 89] A.M. Alashqur, S. Y. W. Su, H. Lam.
OQL: A Query Language for Manipulating Object-oriented Databases.
In Proc. 15th International Conference on Very Large Data Bases, pp. 1-10, August
1989.

[Bentley 86] J. Bentley.
Programming Pearls: Little Languages.
Communications of the ACM, 29(8), 711-721, August 1986.

[Cardelli 87] L. Cardelli.
Building User Interfaces by Direct Manipulation.
Technical Report 22, Systems Research Center, Digital Equipment Corp., October
1987.

[Chen 76] P.P. Chen.
The Entity-Relationship Model -- Toward a Unified View of Data.
ACM Transactions on Database Systems 1(1):9-36, March 1976.

[Carlson 89] C.R. Carlson, W. Ji, A. K. Arora.
The Nested Entity-Relationship Model - A Pragmatic Approach to E-R
Comprehension and Design Layout.
In Entity-Relationship Approach to Database Design and Querying, Proceedings of
the Eighth International Conference on Entity-Relationship Approach, October
1989, ed. F. H. Lochovsky, North-Holland, 1990.

[Fishman 87] D.H. Fishman, et. al.
Iris: An Object-Oriented Database Management System.
ACM Transactions on Office Information Systems 5(1):48-58, January 1987.

[Horowitz 91] M.L. Horowitz.
An Introduction to Object-Oriented Databases and Database Systems.
ITC Technical Report, ITC-TR-91-103, August 1991.

[Horowitz 92] M.L. Horowitz, eL al.
The Alexandria Project: Design, Architecture, and Implementation.
To be published as an ITC Technical Report, 1992.

[Palay 90] A. Palay, D. Anderson, M. Horowitz, M. Mclnerny.
The Alexandria Project: In Search of a Unified Environment for Information Access
and Management.
ITC internal report.

[Rabitti 88] F. Rabitti, D. Woelk, W. Kim.
A Model of Authorization for Object-Oriented and Semantic Databases.

In Proceedings of the International Conference on Extending Database Technology,
pp. 231-250, March 1988.

[Rubine 91] D. Rubine, G. Keim.
SYSTEM: A Multimedia Information System.
ITC internal report.

(c) Copyright 1991 Information Technology Center

- 29 -

[Shan 90] Y-P. Shan.
MODE: A UIMS for Smalltalk.

OOPSLA/ECOOP '90, SIGPLAN Notices 25(10), 258-268, October 1990.

[Su 89] S.Y.W. Su, V. Krishnamurthy, H. Lam.
An Object-oriented Semantic Association Model (OSAM*).
In Artificial Intelligence: Manufacturing Theory and Practice, ed. S. T. Kumara, A.
L. Soyster, and R. L. Kashyap, Chapter 17, Institute of Industrial Engineers,
Industrial Engineering and Management Press, Norcross, GA, 1989.

[Teorey 86] T. Teorey, D. Yang, J. P. Fry.
A Logical Design Methodology for Relational Databases Using the Extended
Entity-Relationship Model.
ACM Computing Surveys, 18(2), 197-222, June 1986.

(c) Copyright 1991 Information Technology Center

