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Abstract  

 

The ultimate objective of any biological imaging method is to understand the 

underlying biology especially through observing, analyzing and understanding 

the structures. Biological imaging using conventional light microscopy is limited 

in resolution due to the diffraction barrier of light and hence obtaining the 

detailed structural information is difficult. Recently, there has been advancement 

in this field to break the resolution limit with several super resolutions 

microscopy methods based on localization of single molecules such as STORM, 

PALM, etc.  which are evolving into important tools for structural biology. A 

catalog of molecular positions provides insight into underlying structures 

potentially at molecular length scales and demands computational approaches 

that utilize the inherent positional information to extract meaningful structural 

biologyɬscale information about cellular structures. These methods still suffer 

from localization of single molecules in 3 -d and we show that there are imaging 

methods which can improve the localization of multiple distinct molecules in a 

cell in 3-D. Moreover, there are limitations for dynamic imaging with these 

methods, since dynamic structures require information from fewer positions (i.e. 

shorter time window) to minimize underlying motion. Hence, the datasets are 

inherently incomplete. Our aim is to provide an information bridge between 

super-resolution microscopy and structural biology by using generative models 

to get a "molecular length-scale" picture of cellular structures. We hypothesize 

that generative models can accurately reconstruct biological structures using less 

data and with better resolution and infer useful biological information such as 

characteristic lengths, orientation of filam entous structure, molecular 

distributions for proteins inside a cell.  
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CHAPTER   1 

 

I NTRODUCTION TO SUPERɬRESOLUTION SINGLE M OLECULE 

I MAGING  

 

Learning about most biological processes begins at the very basic level of the 

molecular structures of the components involved. In order to obtain the relevant 

information and be able to study them, there must be a way to visualize the 

structure. It will not be an exaggeration if we say that the development of the 

entire field of biology has been possible due to our capability to imag e the cells, 

ÞÏÐÊÏɯ ÉÌÎÈÕɯ ÞÐÛÏɯ  ÕÛÖÕÐÌɯ 5ÈÕɯ +ÌÌÜÞÌÕÏÖÌÒɀÚɯ ×ÙÖÛÖÛà×Ìɯ ÖÍɯ ÔÖËÌÙÕɯ ËÈàɀÚɯ

microscope more than 300 years ago when he discovered bacteria, protozoans, 

muscle cells, etc. Before, that Zacharias Jansen and his father Hans Jansen (1595) 

of Holland inve nted a compound light microscope and later Robert Hooke (1665) 

ÍÙÖÔɯ$ÕÎÓÈÕËɯÍÜÙÛÏÌÙɯÙÌÍÐÕÌËɯÐÛɯÈÕËɯÈÊÛÜÈÓÓàɯÊÖÐÕÌËɯÛÏÌɯÛÌÙÔɯȿÊÌÓÓɀɯÉàɯÓÖÖÒÐÕÎɯÈÛɯ

walls in cork tissue (plant). The major improvement in the microscope optics was 

achieved in 19th century due to the effort of Carl Zeiss and Ernst Abbe. It is only 

recently  that we have seen methods such as X-ray diffraction, Nuclear Magnetic 

Resonance (NMR), Electron microscopy (EM), cryoEM and so on, besides light 

microscopy, which can capture the structural inf ormation at various scales and 

various components with amazing level of details. However, for learning about 

many biological processes and structures, often the most practical way is to 

image them using light microscopy methods due to the capability of sta ining and 

tagging individual cells and individual molecules of interest. Now to obtain a 
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detailed knowledge about the underlying biology, it is imperative that we should 

be able to observe the biological structures at the best possible resolution, which 

is defined as the ability of an optical system to resolve between closely spaced 

objects. We will discuss this concept in a later section. However, for many 

problems the resolution of the images obtained are not sufficient to reveal the 

intricate structural details due to the diffraction barrier of light, which was first 

introduced by Ernst Abbe in 1873.  Super-resolution (SR) imaging has led to 

various important studies in biology, which could not have been achieved with 

conventional microscopy. There are varieties of recent methods that achieve 

resolution far beyond the diffraction limit. These belong to two categories of 

methods, which works on the principle of optical switching of the fluorophores 

by manipulating the neighboring molecules in different stat es of activation so 

that it is easier for them to be optically resolved (Hell and Wichmann, 1994) . The 

first one is patterned illumination to spatially modulate the fluorescence of the 

molecules so that a subset of molecules are emitting at any given time and thus 

the effective point spread function of the molecules are reduced within the 

diffraction limited  region causing an improvement of resolution.  This is an 

ensemble imaging method and some of the most popular methods are stimulated 

emission and depletion (STED) microscopy (Hell and Wichmann, 1994) , ground 

state depletion (GSD) (Folling et al., 2008; Kroug, 1995), saturated structured 

illumination microscopy (SSIM) (Gustafsson, 2000) and so on. The other category 

comprises of the methods where the idea is to stochastically activate individual 

molecules at different times. This makes it easier to determine the position of the 

molecules (localization) and then the structure can be reconstructed based on the 

measured position of the molecules. The methods that are based on this principle 

are called stochastic optical reconstruction microscopy (STORM) (Rust et al., 

2006),  
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photo-activated localization microscopy (PALM) (Betzig et al., 2006), 

fluorescence PALM (fPALM) (Hess et al., 2006).   These methods allow us to 

study the dynamics of complex heterogeneous systems such as living cells at the 

single molecule level. The ability to obtain information of individual molecules 

using single particle tracking (SPT) has opened up new avenues that were 

previously not possible using ensemble averaging techniques. However, 

meaningful biological studies using SPT and Super-Resolution imaging require  

an extremely precise localization of single molecules in three dimensions.   

 

There are various optical fluorescence imaging techniques available in literature, 

which are used in the studies of cellular structures and biological processes. In 

particular super-resolution imaging methods such as localization microscopy can 

achieve extremely good lateral localization accuracy, but the axial localization is 

not that good. There are several methods which allow some determination of z 

position from the localizat ion data sets e.g. defocused (Juette et al., 2008; Speidel 

et al., 2003; Toprak et al., 2007; Zhang and Menq, 2008) and distortion 

(astigmatism) approaches (Holtzer et al., 2007; Huang et al., 2008; Kao and 

Verkman, 1994) , but compromises with photon efficiency and axial localization 

accuracy. These approaches work best for quantum dots and other bright probes, 

but are still limited with typical fluorescence probes in living cells.  In addition, 

to implement these with multiple colors as currently designed would require an 

exceptionally split (and inefficient) collection path, running multiple colors 

through multiple filters and distortion or focus -shifting optics. Also, 

conventional microscopes image only one focal plane at any time. Therefore, to 

study three-dimensional dynamics inside living cell one has to move the 

objective in sequential steps, which limits the localization and events of interest 
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due to slower acquisition speed with respect to the timescale of cellular events. 

Recently, a dual plane (Ram et al., 2008; Toprak et al., 2007; Watanabe et al., 2007) 

and dual objective (Ram et al., 2009a) imaging system that eliminates such 

imaging limitations has reported impressive 3-dimensional localization with 

around 10-20 nm axial localization accuracy. However, such imaging setup is not 

ideal for efficient multicolor localization. In addition, post -processing and 

analysis of localization data would still be computationally expensive. In order to 

perform super -resolution imaging on multiple colors, in 3 -dimensions, we need 

to have a more efficient optical design, and novel and faster algorithms that 

allow determination of the object position from such a collection system, in spite 

of different optical transfer f unctions for each of the collected colors. 

 

 

1.1 Breaking the diffraction barrier of light  

Spatial resolution for observing fluorescence molecules under light microscopy is 

limited due to the diffraction barrier of light. In general, any point object in a 

microscope generates a diffraction pattern (Fraunhofer). The size of the 

diffraction -limited spot depends on the wavelength of the light and the angle of 

the objective. The separation between two objects then is limited by the 

interference pattern. If the first minima of one object either coincide with 

principle maxima of the second object then that provides the limit of the 

resolution.  Ernst Abbe first calculated the resolution limit and it is called as the 

Abbe Limit (Abbe, 1873) which is discussed a little later.  
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Figure 1.1 Diffraction limited resolution of conventional microscopy  

 

For a conventional microscope the focal spot of a point emitter is shown in 

Figure 1.1A . The width of the point emitter as imaged through the objective is 

the actual diffraction -limited resolution.  When these optical setup is used for 

imaging biological structures whose features are smaller than the diffraction 

limited spot size then we see the image shown in Figure 1.1B.  This forced 

scientists to think about ways to resolve this barrier of biological imaging.  

 

 

 

 

 

Figure 1.2 Resolution limit for overlapping fluorophores  
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Ernst Abbe provided a quantitative estimate of the resolution limit given by the 

following:  

Ўὼȟώ  
‗

ς ὔὃ
 ȟ            Ўᾀ  

ς‗

ὔὃ
 

               (1.1) 

where the lateral resolution is given by ЎὼȟЎώ and the axial resolution is given by 

Ўᾀ. ‗ is the wavelength of the light, n is the refractive index of the medium and 

ὔὃ is the numerical aperture.  

Later Rayleigh provided a more appropriate limit for the diffraction limited 

resolution as shown in Figure 1.2. For noise free images the resolution limit 

according to Rayleigh criteria is given by:  

Ўὼȟώ  πȢφρ
‗

ὔὃ
  ȟ Ўᾀ  

ς‗ὲ

ὔὃ
 

           (1.2) 

When two point emitters are farther than this resolution limit, they appear as 

two separate objects  as shown in part (a) of Figure 1.1B  and are easily resolvable 

, whereas if they are less than this limit, then they appear as a single object and 

unresolvable as shown in part (b) of Figure 1.1B. 

For typical microscope setups, the lateral resolution is around 200-250 nm and 

the axial resolution is around 500 nm. As we can see in Figure 1, that when 

objects are separated by a distance larger than the resolution limit they are seen 

as separate objects otherwise they will appear as a single unresolvable object. As 

a consequence, obtaining detailed knowledge and visualization of sub-cellular 

structures such as vesicles, microtubules, mitochondria, etc. which are sub-

resolution (< 10 - 100 nm) sizes, are not possible as they appear as blurred spots 
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when imaged under light microscopes (Abbe, 1873). To overcome this limitation, 

new optical imaging systems have been designed along with computational 

approaches that now enable us to observe those structures far beyond the 

diffraction limit and thus these methods are collectively called Super -resolution 

imaging.  

 

1.2 Super-Resolution methods  

Here we describe the various super-resolution method s currently used in 

literature in little more details.  The first categories of methods are based on non-

linear optical imaging with a deterministic activation of fluorophores and the 

second category is based on computational approach post image acquisition, 

mostly through the localization of single molecules, which are activated 

stochastically.   

 

1.2.1 Optical methods for super -resolution  

There are non-linear optical approaches such as Stimulated Emission and 

Depletion (STED), Ground State Depletion (GSD), Saturated Structured 

Illumination Microscopy (SSIM), Vertico Spatially Modulated Illumination 

(Vertico-SMI)  (Reymann et al., 2008) which effectively reduces the Point spread 

function (PSF) through optical manipulation technique. The idea is to use 

patterned illumination to spatially modulate the fluorescence behavior of a 

subset of molecules and thus achieve sub-diffraction resolution. These methods 

fall under the category of far-field microscopy  with light waves showing the 

properties of Fraunhofer diffraction . The other class of optical methods uses the 

near-field properties of light  where the phenomenon of diffract ion of light is no 
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longer true . Some of the notable methods are near-field scanning optical 

microscopy (NSOM) (Betzig et al., 1986) which places a detector very near to the 

specimen surface, the distance being less than the wavelength of light and 

apertureless near-field scanning optical microscopy (ANSOM). Within this near 

field the evanescent waves is not diffraction limited and hence nanometer  spatial 

resolution is possible. The limitation of these methods is that specimens have to 

be placed at immediate proximity to the optical probes and it can be used for 

only imaging the surface  structures. The concept of achieving resolution far 

beyond the diffraction barrier was first introduced by Stefan Hell through a 

family of techniques collectively called as reversible saturable (switchable) 

optical fluorescence transitions or RESOLFT (Hell and Wichmann, 1994). The 

underlying principle of this concept is to reversibly and deterministically switch 

ÉÌÛÞÌÌÕɯÛÞÖɯËÐÚÛÐÕÊÛɯÚÛÈÛÌÚɯ ɯÈÕËɯ!ɯÖÙɯÈɯÍÓÜÖÙÌÚÊÌÕÛɯȿÖÕɀɯÈÕËɯËÈÙÒɯȿÖÍÍɀɯÚÛÈÛÌɯ

which is determined by the probability of molecules in each state. The most 

common examples are STED, GSD, and SSIM.   

              

A 
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              B 

 

 

 

 

   

 

 

 

   

Figure 1.3. Working principle of  (A) STED  (B) (S)SSIM 

 

The working principle of STED is shown in Figure 1.3A (Huang et al., 2010). At 

first, the fluorophores are excited to a higher energy state by a focused light 

beam shown in the green and followed up with depletion beam shown in red to 

bring the molecules back to the ground state through a process called stimulated 

emission.  The intensity profile of the depletion beam is usually doughnut 

shaped so that when the depletion happens it is usually on the outer sides of the 

focal spot leaving the molecules towards the central region to be still in the 

excited state. This produces a considerable decrease in the overall size of the 

fluorescent spot and thus effectively improves the image resolution to a sub -

diffraction level. Although the depletion intensity pattern is produced by the 
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diffraction -limited optics, since the molecules respond in a non-linear manner, it 

can achieve the enhancement.  

 

            

 

Figure 1.4. Resolution enhancement using STED (Fitzpatrick et al., 2009) 

 

The resolution () of the microscope is inversely proportional to the root of the 

intensity of the depletion beam:    


Ў

ρ Ὅ ȾὍ
 

(1.3) 

where Ў is the diffraction -limited fo cal spot size measured as the full width at 

half maxima of the intensity, the  Ὅ   is the intensity of the depletion beam and 

Ὅ  is the intensity of the saturated beam 

 

STED 



 
 

11 
 

In case of the structured illumination microscopy (SIM) and saturated SIM 

(SSIM) as shown in the Figure 1.3B, the illumination is sinusoidal producing the 

pattern shown in green. This in turn generates a similar pattern, shown in 

orange, when the molecules respond linearly to the excitation beam. When the 

excitation beam intensity strength is increased, the fluorescence pattern becomes 

saturated and then it generates the pattern shown in SSIM fluorescence emission 

with narrower unexcited regions, which effectively improves the resolution.  

 

So theoretically, these methods are limited by the amount of depletion light 

source, but there are some practical limitations such as optical aberrations, photo 

stability of the fluorophores, etc.  The optical resolution achieved by STED is 

about 20 nm for organic dyes and 50-70 nm for fluorescent proteins. The 

resolution obtained with SIM is 100 nm and 50 nm with SSIM in lateral 

dimension. These methods have also been used for 3-D imaging, for example, 

isoSTED with a z depletion pattern can achieve resolution of about 50nm in all 

three dimensions. In 3D SIM, three beams of patterned illumination are projected 

onto the samples and it creates an interference pattern known as moiré fringes in 

the lateral and the axial directions.  The resolution achieved by 3D SIM is ~100 

nm in lateral and ~300nm in the axial directions. A detailed review can be found 

in (Huang et al., 2010). 
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1.2.2 Computation based super -resolution methods  

Any biological structure can be thought of as a collection of individual 

components (molecules). Therefore, the resolution can also be improved through 

localization of the centroid of the single molecule, which are fluorescently 

activated over the biological structure in a stochastic manner. We are going to 

mainly focus on the far-field approaches with Fraunhofer diffraction. The notable 

amongst those methods are Photoactivated localization microscopy (PALM), 

Fluorescence PALM (FPALM), Stochastic Optical Reconstruction Microscopy 

(STORM), Fluorescence Imaging with One Nanometer Accuracy (FIONA) (Yildiz 

et al., 2003; Yildiz and Selvin, 2005), Super High Resolution Imaging with 

Photobleaching (SHRImP) (Gordon et al., 2004), Single molecule High REsolution 

Colocalization (SHREC) (Churchman et al., 2005) , point accumulation for 

imaging in nanoscale topography (PAINT) (Sharonov and Hochstrasser, 2006) 

and so on. One of most interesting non-localization based computational method 

is Super-resolution Optical Fluctuation  Imaging (SOFI) (Dertinger et al., 2009). 

There is a recent method for modeling single molecule data called Bayesian 

analysis of blinking and bleaching (3B) (Cox et al., 2012) which provides a very 

powerful and interesting approach on studying biological problem s with single 

molecule imaging .  Some of these notable techniques are described below. 
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 1.2.2.1   STORM / (F)PALM 

 

 

 

 

 

 

 

        

 

Figure 1.5. STORM , (F)PALM imaging method for biological structures  

 

Figure 1.5 shows how STORM and PALM imaging reconstructs the biological 

structure. Figure 1.5a shows the ground truth for  the structure. Figure 1.5b and 

Figure 1.5c shows stochastic activation of the two different subsets of molecules 

at different time points. Figure 1.5d shows the reconstruction of the biological 

structure after localization of the single molecules from all  such time points. 
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Figure 1.6. STORM , (F)PALM  Imaging principle (A) Image acquisition   (B) 

Single Molecule Localization (C) Localized position mapping  

 

STORM uses photo-switchable probes and is reversible whereas (F)PALM is an 

irreversible process since after a single step of photobleaching , the molecules  do 

not reappear. The basic imaging principle of STORM and PALM microscopy  is 

shown in Figure 1.6. The images are acquired and then analyzed frame by frame. 

The diffraction limited spots a re then segmented and fitted with a parameterized 

theoretical point spread fun ction usually a Gaussian or an Airy function 

described in chapter 2. The estimation of the centroid of the Gaussian determines 

the position of the single molecules. This is performed for all the objects in all the 

frames and then all the positions are accumulated in a composite image with a 

higher-level pixel sampling.     

The structural resolution is dependent on the localization accuracy „  of the 

single molecules and the density of the molecules that are detected. The 

localization accuracy (Thompson et al., 2002) is given by : 

„
„

ὔ

ὥ ρςϳ

ὔ 
ψ“„ ὦ

ὥὔ
  

                  (1.4) 
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where „  is the standard deviation of the point spread function , a is the pixel 

size, b is the background noise and N is the number of photons. 

If „  is the mean localization accuracy for all the molecules in the image and ὨӶ  

is the mean of the pairwise nearest neighbor distance of the molecules , 

providing the sampling density information, then the structural resolution Ὑ is 

given by (Kaufmann et al., 2012): 

Ὑ  ςȢσυ „ ς ὨӶ  

(1.5) 

Although, we see a substantial improvement in the spatial resolution with these 

imaging methods, this still lacks the capability of high -speed image acquisition, 

which is critical for studying dynamic imaging. Recent demons trations using 

very high laser power improved the frame -capture timescale by an order-of-

magnitude by accelerating the localization and deactivation cycle time (Jones et 

al., 2011). While this approach achieved 0.5ɬ2 second acquisition speeds, this still 

poses a challenging limit for many biological processes with timescales of 

milliseconds or even lower .  Other methods such as FIONA, SHRImP and 

SHREC are all based on the same principle with different conditions and 

applicability.  

 

1.2.2.2   SOFI 

This method uses the fluorescence blinking of fluorophores to im prove the 

spatial resolution. The working principle of SOFI (Dertinger et al., 2009) is based 

on the assumption that blinking behavior of the neighboring fluorescent 

molecules is statistically independent , whereas the single molecule spatio-
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temporally correlates with itself. As a result the temporal correlation of each 

pixel through the time series can generate a higher resolution image due to the 

reduced effective point spread function size.  

 

 

 

 

Figure 1.7    Basic principle of SOFI analysis. (A) Emitter distribution (B) Time 

series fluctuation of the pixels (C) second-order correlation  function calculated 

from the fluctuations in (B) . (D) SOFI intensity for the corresponding pixels.   

  

The emitter fluorescence distribution is shown for two overlapping fluorophores 

in Figure 1.7A. The first step in SOFI is to collect the signal from the emitter 

fluorescence distribution and convolve the signals with the PSF of the optical 

system. Then the convolved values are recorded on sub-diffraction pixels so that 
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the information of th e diffraction -limited spot is spread over multiple pixels. As 

a result, each pixel now contains the time series information, consisting of the 

sum of signals (Figure 1.7B) from the emitters whose PSFs are part of the pixel. 

The next step is to calculate the second-order correlation function from the 

fluctuations recorded in each pixel as shown in Figure 1.7C. Then the higher 

order statistical cumulant, given by the integral over the second -order correlation 

function is computed for each pixel. This results in the SOFI image as shown in 

Figure 1.7D.  The expected spatial resolution enhancement that can be achieved 

by SOFI imaging  is a factor of   , since the emitter signal is processed by a 

second-order correlation function that is proportional to the squared PSF. If we 

take even higher order correlations then it can reduce the noise further. There is a 

variant of SOFI called variance imaging for super-resolution (VISION) 

(Watanabe et al., 2010) which has achieved 80 ms temporal resolution , although 

the spatial resolution enhancement is limited.  

There are some advantages of SOFI over localization-based methods.  Since the 

fluorophores are uncorrelated, it can automatically distinguish between 

overlapping fluorophores and it can remove the background autom atically. It 

requires dark state lifetime of the fluorophores to be on the order of the frame 

rate and the acquisition is usually faster than localization microscopy. It can be 

used alongside with most wide -field microscopy. There are some limitations to 

this method such as, the assumption that the positions of emitters are unchanged 

during the image acquisition, though this problem is fixable. The short 

acquisition time can generate noise in the correlation values and the fluorophore 

on-off switching rate will limit the acquisition speed for the method. SOFI has no 

single molecule information and so can be used only for super-resolution image 

reconstruction and not for single molecule studies.  
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1.2.2.3   Multiple Fluorophore fitting  

In super-resolution micro scopy, the usual approach is to localize the single 

molecules and perform the reconstruct the structures or do single particle 

tracking. However in many cases the density of single molecules high and for 

that reason the localization suffers due to overlapp ing fluorophores, since the 

model that is used to fit the single molecule intensity profiles is assuming there is 

only a single emitter in that space. Therefor a significant amount of data is either 

not properly localized or is discarded. In order to retai n the valuable data 

approaches have been developed such as (Huang et al., 2011).This method uses a 

Bayesian maximum likelihood estimation method to localize multiple 

fluorophore s in a given region of interest.  

 

 

 

 

 

 

 

 

 

Figure 1.8  Example of multi -fluorophore  fitting. Top left is 1 emitter fitting. Top 

right is 2 emitter fitting. Bottom left is 3 emitter fitting. Bottom right is 4 emitter 

fitting  
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Figure 1.8 shows an example of multiple fluorophore fitting where we see that 

with 4 emitter fitting , all the molecules are correctly localized compared to the 

lower order fitting s. 

 

1.2.2.4   DAOSTORM 

This algorithm was originally developed as DAOPHOT (Stetson, 1987) for 

studying images of crowded stars in astronomy, has been adopted for resolving 

high-density super-resolution images. The basic idea is to find the fluorophores 

in the image on the fir st pass with single emitter fitting approach. Then subtract 

the fit from the original image and perform the fitting on the residual image in a 

iterative manner until no further emitters are left in the residual. Standard 

DAOSTORM (Holden et al., 2011) uses a fixed-shape model PSF although it has 

been extended to variable shape in the 3D-DAOSTORM (Babcock, 2012). The 3d 

version is significantly more efficient and faster than the 2d version.  

 

1.2.2.5    3B Localization Microscopy 

The Bayesian analysis of blinking and bleaching (3B) method models the 

blinking and bleaching  mechanisms of multiple fluorophores using a Markov 

Chain Monte Carlo (MCMC) approach. The 3B method works by modeling over 

the full time series and it generates several possible models and a weighted 

average of all those models generates a probability map of the location of the 

fluorophores.  It factors the prior information on the blinking and bleaching 

behavior of the fluorophores, their numbers, location and the temporal 

dynamics. 
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The emitting fluorophores are modeled using a Gaussian profile with a sta te 

space (x, y, r, b),   where x, y is the position, r is the spot radius and b is the 

brightness of the emitter. The state transition for the Markov chain model is 

shown below:  

 

  

Figure 1.9  State transition diagram for the fluorophores in 3B Method  

 

The next step is to compute the different probability distributions, with the goal 

of finding the maximum a posteriori (MAP) location estimates. The marginal 

integrals are calculated using a hybrid of MCMC and forward Hidden Markov 

Model (HMM) algorithm. T o build the final image from the MAP estimates of 

the locations , the positions are mapped to the pixel in the higher resolution pixel 

grid and the intensity values are calculated from the accumulated fluorophores 

weighted with the MAP intensity values.  

In principle, the 3B methodology is similar to just point estimates for spars e 

ÌÔÐÛÛÌÙɯÓÖÊÈÛÐÖÕÚȭɯ'ÖÞÌÝÌÙȮɯÐÛɀÚɯÈÊÛÜÈÓɯÌÍÍÌÊÛÐÝÌÕÌÚÚɯÊÈÕɯÉÌɯÚÌÌÕɯfor high -density 

case where simple point estimates are not sufficient to provide enough 

information, since there will be a lot of ambiguous estimates, in which case a 
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multi fluorophore fitting approach, as discussed earlier, is required. Since the 3B 

method averages over several models, it automatically accounts for the 

ambiguous cases as well. The different situations is shown in Figure 1.10  below 

(Lidke, 2012) . 

 

Figure 1.10   3B Approach for single molecule super-resolution imaging   

 

The 3B method has can be used with most common fluorescence microscopy 

experiments. If we compare with SOFI, which also can deal with overlapping 

fluorophores, the 3B method has some advantages. For reconstructing the 

structures with similar details, SOFI requires more data than the 3B method, 

although the reconstruction is much faster for SOFI. In addition, the resolution 

enhancement with SOFI is limited whereas the 3B method can achieve resolution 
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up to 50 nm with relatively short acquisition time of few seconds. For 3B method, 

with more data the spatial resolution is expected to improve at the expense of 

temporal resolution and vice -versa. The computational time complexity varies 

linearly with the number of emitters times the number of pixels, for the 3B 

method. This actually is quite computationally intensive when there is a large 

model to analyze. In short, the 3B method is an exciting and powerful concept for 

analyzing and reconstructing dynamic images of biological structures using 

super-resolution mic rocopy. 

 

1.3   Spatial and Temporal resolution information of super -resolution methods  

The imaging methods used in fluorescence microscopy cover spatial resolution 

from 5 mm to ~ 10 nm (Fernandez-Suarez and Ting, 2008; Huang et al., 2010).  

Widefield and Total Intern al Reflection Fluorescence (TIRF) microscopy 

generally covers the range ~ 5 mm to 400 nm and milliseconds temporal 

resolution. Confocal has a spatial range of 5 mm to 200 nm and a temporal 

resolution of milliseconds. GSD and SSIM has a spatial range of 5 mm to ~ 80 nm. 

STED has a spatial range of 5 mm to 10 nm and a temporal resolution of seconds. 

PALM and STORM has a spatial range from 5 mm to 10nm with a tempor al 

resolution of seconds. NSOM has a spatial range from 5 mm to 10nm. EM and 

cryoEM has a spatial range from less than 100 ʈÍ to less than 1 nm. NMR has a 

spatial range of 100 ʈÍ to less than 1nm and temporal resolution of less than 

seconds. 
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1.4   Modeling of Single Molecule Super Resolution Images of Biological 

Structures 

So far we have seen all the different methods which can either image biological 

structures at sub-diffraction resolution using improved optical setups, 

fluorescent probes or performing post processing of the single molecule images 

acquired to provide the super -resolution images or the single molecule 

information the biological problem. Some methods  are better than the other in 

respect of providing improved spatial resolution and some are superior to the 

other in providing better temporal resolution for imaging dynamic biological 

processes. All these methods may be extremely good at providing the raw 

structural image, but what none of these methods are able to provide is the 

capability of understanding the images automatically with minimal human 

supervision or interpretation.  We can take the super -resolution imaging concept 

one-step further with the novel idea of actually reconstructing the images using 

generative models for the biological structures.  

The 3B method describe earlier is extremely powerful in that sense of providing 

the spatial and temporal dynamics of the biological structures and other  

information about the actual physical process of blinking and bleaching behavior 

of the fluorescent emitters. What we are aiming is that we would tackle this 

problem from the view point of structural model rather than the actual physical 

process that generates the fluorescence over the structure to make it absolutely 

independent of any physical process of the probes.   

Various computational methods from the branch of statistical machine learning 

and computer vision (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; 

Stoitsis et al., 2008; Taylor et al., 2011; Thomann et al., 2003)  have been applied to 

study biological and biophysical structures and processes. These applications are 
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mostly on confocal or other conventional images of biological structures like 

actin filaments with parametric feature extraction techniques such as Hough 

Transform in (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; Stoitsis et 

al., 2008; Taylor et al., 2011; Thomann et al., 2003) , Radon Transform and 

Beamlet Transform in (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; 

Stoitsis et al., 2008; Taylor et al., 2011; Thomann et al., 2003). Some are 

application s to electron microscopy (EM) images such as in (Berlemont et al., 

2008; Li et al., 2009a; Schaub et al., 2007; Stoitsis et al., 2008; Taylor et al., 2011; 

Thomann et al., 2003) . Again some of the methods are for studying dynamic 

trafficking and tracking of single molecules such as in (Berlemont et al., 2008; Li 

et al., 2009a; Schaub et al., 2007; Stoitsis et al., 2008; Taylor et al., 2011; Thomann 

et al., 2003).  Methods such as active contour models from computer vision and 

method like particle filters with Monte Carlo Sampling methods from machine 

learning has been employed for studying actin filaments (Berlemont et al., 2008; 

Li et al., 2009a; Schaub et al., 2007; Stoitsis et al., 2008; Taylor et al., 2011; 

Thomann et al., 2003) from conventional microscopy images. Again, various 

generative models (Fudenberg and Paninski, 2009; Svoboda et al., 2009; Zhao and 

Murphy, 2007) have been used to model biological structures from conventional 

microscopy images. These models generally are parametric models based on 

several structural components, that is used to learn and build the generalized 

cellular and sub-cellular structures wi th several instances of the similar structure. 

The structure of localization -based SR imaging data is different from that of 

conventional microscopy and hence we need to develop methods from first 

principle s or apply approaches already existing in the computational fields to 

address the needs of super-resolution and single molecule imaging field.  
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1.5    Thesis outline  

The essence of this thesis is about inferring biological structure from single 

molecule images and improving th e localization image data, which  already has a 

sub-diffraction resolution . The idea is to be able to reconstruct the structures at 

much lower spatial sampling which will enabling us to improve  the temporal 

resolution for dynamic imaging. Since our primary focus is on localization 

microscopy, one of the objectives is to determine methods of improving the 

localization capability. With that idea, we start with a method for 3D localization 

of single molecule, using multi -focal plane imaging (first introduced in (Ram et 

al., 2008; Ram et al., 2009a), in chapter 2. The motivation of course is to point 

towards the fact that given an appropriate optical setup we can still push the 

boundary for localization microscopy, which would help in ultimately 

reconstructing the structures or track single molecules more accurately. Since our 

ultimate goal is to determine the biological structures, we take the concept of 

localization microscopy to a different level with completely different perspective 

of studying single molecule super -resolution data using generative models, 

starting in chapter 3. We present a proof of principle using a parametric feature 

extraction technique called Hough Transform for showing that we can establish 

the underlying biological structures with primitive shapes from sparse single 

molecule data and thereby potentially improv ing on the temporal resolution . 

This chapter is mostly adapted from  the publication  (Maji and Bruchez, 2012). In 

chapter 4 we present another approach of modeling arbitrary biological 

structures using single molecule super-resolution data with a generative 

probabilistic graphical model fra mework. The manuscript for this chapter is in 

preparation. The motivation of this work is to start with a subset of data and 

improve the model gradually in a iterative manner using the biologically 
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relevant model constraints for the str ucture of interest. In chapter 5 we discuss 

some clustering and manifold learning algorithms for 2d point data sets which 

could be useful for recovering some straightforward super -resolution structures 

and provide additional information. In chapter 6 we discuss a method on Monte 

Carlo based data association algorithm, which is usually used for tracking 

multiple objects. We wanted to test if a single framework can both perform single 

particle tracking and recover structures from static data. These methods pave the 

way for futur e development of sophisticated modeling of biological structures 

from super -resolution microscopy images. 
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CHAPTER   2 

 

 

D UAL PLANE T HREE-DIMENSIONAL LOCALIZATION OF SINGLE 

M OLECULES  

 

 

Conventional microscopes use serially stepped single focal plane imaging 

to study biological process and that limits the capability to look at fast processes 

in 3-dimensions. Localization of single object with single plane intensity 

information often leads to a poor estimate of axial positions especially near the 

focus where   the change in point spread function (PSF) with Z displacement is 

minimal. One method to make this change of PSF with Z positions more 

pronounced for better estimation of the axial po sition is by distortion of PSF or 

astigmatism as in (Holtzer et al., 2007; Huang et al., 2008), but this technique is 

limited in its spatial range to about 1  µm or less and still shows minimal 

distortion near the true focal plane. In order to do single particle localization and 

tracking with better spatial and te mporal precision; we can use a dual plane 

imaging setup (Ram et al., 2008). Dual plane information (in -focus and out-of-

focus) would allow us to estimate the 3D location more accurately than classical 

approaches, because the in-focus data would provide us with Z -information for 

object positions away from the focus better and out-of-focus data would provide 

better Z-information for object positions near focus. Together they would 

provide improv ed Z-displacement sensitivity for all the axial positions. The axial 

range for the dual plane approach is more than 2 µm, which is a significant  

advantage over astigmatism approach as far as biological processes are 
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concerned. The objective is also to track multiple objects for analyzing the 

interactions of different biological molecules.  

 

2.1   3D Image model  

 

 

 

 

 

 

 

 Figure 2.1. Object representation  

 

Here   ‚ ὼȟ ώȟ ᾀ  is a point on the image plane, ‚ ὼȟώȟᾀ is the actual object 

coordinate and 
f

z  is the focal distance. 

For three-dimensional localization, the object intensity profile could be fitted to a 

three-dimensional Gaussian PSF given by:  

Ὅὼȟώȟᾀ Ὅ ὍÅØÐ
ὼ ‘

ς„

ώ ‘

ς„

ᾀ ‘

ς„
   

    (2.1) 
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Here (‘ȟ‘ , ‘) are the coordinates of the centroid and („, „ȟ„) are the 

standard deviation of the point spread function in x, y and z direction 

respectively, Ὅ is the peak intensity and Ὅ is the offset for the intensity profile.  

 

However, a more correct way to localize single molecules is to use a 3D Airy 

function as the point spread function (Aguet et al., 2005) based on (Born and 

Wolf, 1999) and described in (Gibson  and Lanni, 1989; Gibson  and Lanni, 1991) 

is given by: 

ὖὛὊ‚ȟ‚ ὃ ὐ ὑ
ὔὃ

ᾀ
”ὶÅØÐὭὡ”ȟ‚ȟ‚ ”Ὠ”     

               (2.2) 

where A is a constant complex amplitude, ὐ is the zeroth order Bessel function 

of the first kind. Ὧ is the wavenumber, ὶ  ὼ ‘ ώ ‘  is the radial 

distance from the centroid of the object and ὔὃ is the numerical aperture of the 

microscope,  ὡ ”ȟ‚ȟ‚  is the phase aberration term defined as  ὡ ”ȟ‚ȟ‚

ὯȢὕὖὈ,  is the set of optical parameters and  OPD is the optical path difference 

between the object plane and the detector plane and is given by:  

ὕὖὈ Ўᾀ 
“ὔὃ

‗ὲ
”   

(2.3) 
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Below is a model representation of the 3D point spread function  

 

 

 

 

 

 

 

 

Figure 2.2  3D Point spread Function with varying airy disk patterns at different 

axial positions 

 

A single focal plane is symmetric to the positive and negative Z displacement 

whereas dual plane is inherently asymmetric  for the displacement and may 

contain more information about the 3d position of a molecule. 

 

2.2   Global fitting using Dual -plane information  

The z-position estimates for fluorescent objects close to focus is usually very 

difficult, so a good way to resolve this problem is to use information from more 

than one plane. Localization using multifocal plan e data has been shown in (Ram 

et al., 2008; Ram et al., 2009a). Here we use a similar approach to address the 

problem to show the working principle of dual plane method . Suppose the 
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intensity distribution of an object in any two planes separated by a distance Ўᾀ 

(as shown in Figure 2.2) is given by: 

Ὅ‚ȟ‚ ὄȟ ὖὛὊ‚ȟ‚  

Ὅ‚ȟ‚ȿ ὄȟ ὖὛὊ‚ πȟπȟɝᾀȟ‚  

          

                        (2.4) 

where ὄȟ  and ὄȟ  are the background noise for plane 1 and plane 2. 

Then the actual object intensity profiles in two planes can be fitted 

simultaneously (global fitting) to their corresponding theoretical forms given in 

Equation 2.4  Global fitting can be achieved by minimizing the objective function 

for least square error: 

    Ὅ‚ȟ‚ Ὂ Ὅ‚ȟ‚ Ὂ    or 

ὤᶻ ÁÒÇÍÉÎ Ὅ‚ȟ‚ Ὂ              

    (2.5) 

where   Ὂ and   Ὂ are fluorescence image intensity profile for the object in plane 

1 and plane 2 respectively. The fitting results from the two focal planes should 

provide a better estimate of the actual centroid due to higher information content 

than if we had just one pl ane.  

 

2.3   Simulation results   

The simulated dual plane data is shown in Figure 2.3. The data is generated with 

the parameter values described in Table 2.1. The goal is to estimate the z position 
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,using the information from both the planes , of all the im ages given its true 

position by which the data was generated. The global fitting results for the two 

cases are shown in Figure 2.4.  

 

 

  

A  

 

 

B 

 

 

Figure 2.3. Simulated single molecule data in a dual plane setup. (A) True Z -

position of the object centroid is 400nm. Top row is focal plane 1 (out-of-focus) 

and bottom row is focal plane 2 (in -focus). (B) True Z-position of the object 

centroid is 100nm. Top row is focal plane 1 (in-focus) and bottom row is focal 

plane 2 (out-of-focus).  

    

The simulation detai ls are provided in the Table 2.1.  In the first two columns of 

Figure 2.4A and B, the blue curves are the simulated data and the red curves are 

from the dual plane fitting  model given by equation 2.4 and 2.5.  The third 

column shows the difference between the data and model fits. The fit ting 

estimate of the Z positions are quite close to the theoretical position values for all 
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the position s. Figure 2.5 shows the variability of the estimates for the same Z 

positions for different instances of the z position data.  The simulation shows very 

good improvement of the dual plane method over single plane localization , 

where the accuracy is generally around 40-50 nm (Ram et al., 2008) for a photon 

count of about 1000. The localization is even worse in single plane when objects 

are close to the focus. There are however limitations to  the dula-plane method, 

mostly in the physical setup . 
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