
Feature-based vs. intensity-based brain image
registration: voxel level and structure level

performance evaluation

Leonid Teverovskiy, Owen Carmichael,
Howard Aizenstein, Nicole Lazar, Yanxi Liu

November 2006 
CMU-ML-06-118



Feature-based vs. intensity-based brain image
registration: voxel level and structure level

performance evaluation
Leonid A. Teverovskiy1, Owen T. Carmichael2,

Howard J. Aizenstein3, Nicole A. Lazar4 and Yanxi Liu3,5,6

November 2006
CMU-ML-06-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
2Department of Neurology, University of California, Davis, CA, USA
3Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
4Department of Statistics, University of Georgia, Athens, GA, USA
5Department of Computer Science and Engineering, Penn State University, University Park,
PA, USA
6Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

This research is supported by the grant P50-AG05133 from National Institute of Health and PA tobacco grant
4100027294.



Keywords: deformable registration evaluation, mutual information, false discovery rate



Abstract

The power and validity of voxel based and tensor based morphometry methods depend on the ac-
curacy of the brain image registration algorithms they employ. We propose a mutual information
based quantitative evaluation method to compare the performance of two publicly available de-
formable registration packages: HAMMER and algorithms in the ITK package (FEM-Demons)
The advantage of our approach is that registration algorithms are quantitatively compared at both
global and local levels, thus enabling our method to pinpoint areas of the brain where one algo-
rithm performs significantly better or worse than the others. The brain image dataset used for
evaluation consists of a total of 59 images: 20 MR images of Alzheimer’s (AD) patients, 19 MR
images of people with mild cognitive impairment (MCI) and 20 MR images of normal (CTL)
subjects. Global and localized mutual information scores are used to evaluate the quality of reg-
istration, and paired t-tests are used to determine the statistical significance of registration quality
differences between the methods at three levels: global, voxel-wise and anatomical structures. We
threshold the resulting p-value maps using a false discovery rate control method in order to correct
for multiple comparisons. Our results show that both HAMMER and FEM-Demons algorithms
do significantly better than an affine registration algorithm, FLIRT, at all three levels for all three
subject groups. Comparison between the HAMMER and FEM-Demons algorithms shows that at
the global level there is no significant difference in performance between the two algorithms on
controls, and FEM-Demons outperforms HAMMER on Alzheimers patients (p-value 0.0416) and
MCI patients (p-value 0.0055). At the local and anatomical levels, FEM-Demons and HAMMER
dominate each other on different brain regions. Our results indicate that the choice between the
HAMMER and the FEM-Demons algorithms should depend on the region of interest of a study.





1 Introduction
Deformable registration algorithms are at the center of voxel-based morphometry methods(VBM)[10],
tensor field based morphometry methods (TBM) [16, 5, 31] and many automated segmentation
methods [15, 27]. The strengths and limitations of VBM, TBM and atlas based segmentation
methods depend on the strength and limitations of the deformable registration algorithms they
employ, and therefore it is crucial to explicitly state the accuracy of the registration when report-
ing scientific findings. We propose a mutual information based methodology for evaluating and
comparing registration algorithms. Our goal is to evaluate one of the necessary conditions for a
good deformable registration: visual similarity between registered and reference images. A pop-
ular and well-studied measure of image similarity is the mutual information [4, 33]. In this paper
we employ global and localized mutual information between the template and registered images
in order to quantitatively evaluate the performance of a registration algorithm. Our framework is
fully automated and is applicable in situations where manual segmentation of anatomical structures
is not available. Paired T-tests with multiple comparison correction are used to find areas of the
brain where the performance of one algorithm is significantly better than that of another. We apply
this methodology to two fully deformable registration algorithms and one affine registration algo-
rithm: finite element (FEM) based registration followed by demons registration algorithms avail-
able as part of the Insight Toolkit (ITK) [13, 29, 30, 8], hierarchical attribute matching mechanism
for elastic registration (HAMMER) algorithm [25], and FMRIB’s Linear Image Registration Tool
(FLIRT) [14]. The registration algorithms we use in ITK are intensity-based and fully deformable;
HAMMER is a feature-based fully deformable registration algorithm, and FLIRT is an intensity-
based affine registration algorithm. As an affine registration algorithm, FLIRT is constrained to
transformations with 12 degrees of freedom, which limits its registration ability compared to the
fully deformable HAMMER and FEM-Demons algorithms. Thus, comparing FLIRT with FEM-
Demons and FLIRT with HAMMER helps us validate our evaluation method. Then, we apply
our method to compare HAMMER and FEM-Demons registration algorithms in order to highlight
their areas of strength. The paper is organized as follows. Section 2 introduces relevant work in the
area of registration comparison. Section 3 describes data that was used for the experiments. The
evaluation procedure is described in detail in Section 4. Section 5 presents registration comparison
results at global, voxel-wise and anatomical structure levels. Section 6 contains the discussion of
the results, followed by a summary in Section 7.

2 Related Work
There are several existing methods for the evaluation of registration algorithms. The approach
which evaluates intermodality rigid body registration algorithms in the retrospective image regis-
tration evaluation project [6] relies on landmarks in the template and test images. The quality of
registration is measured by the Euclidean distance between the corresponding landmarks in the
template and registered test images. The smaller is this distance, the better is the performance of
the registration algorithm.

Another very popular approach is to evaluate a registration algorithm through its performance
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in an automated segmentation task. A human expert delineates certain anatomical structures on
the template and test images by hand. After the registration algorithm is applied to register the
test image to the template, an overlap percentage between the delineated anatomical structures
of the template and test images is computed. Better image registration corresponds to greater
overlap percentage [2, 27, 15, 37]. Obtaining ground truth for these methods is an extremely
labor-intensive task, and developing a tracing protocol for segmentation is very time consuming
and complex. Also, segmentation results are rater-dependent. Usually, only a few anatomical
structures are segmented, and a registration algorithm is evaluated only on these structures.

Another technique used for quantitative evaluation of the registration algorithms involves using
simulated deformations. An image is deformed using an artificially created deformation field, and
then the deformed image is registered to the original image. The difference between the known
artificial deformation field and the field estimated by a registration algorithm serves as a basis for
evaluating the algorithm [34]. In this case, there is no additional work required to obtain the ground
truth. However, it should be noted that registering an image to a deformed version of itself removes
inter-subject and inter-scan variability as obstacles to accurate registration.

A recently developed method [23] evaluates the performance of the registration algorithms on a
set of images by measuring generalisation and specificity of the brain appearance models estimated
based on the registration results. The more similar the distribution of the images generated by the
appearance model is to the distribution of the images that are used to estimate the model, the more
accurate the registration algorithm is. However, the evaluation results obtained by this method
depend on the functional form of the appearance model, the number of its parameters and how
well these parameters can be estimated.

In contrast, we propose an evaluation scheme that does not require ground truth or appear-
ance model estimation. Our method quantitatively evaluates one necessary condition for good
deformable registration of images: visual similarity. In addition, we compare the performance of
deformable registration algorithms on images from different perspectives: as a whole, at voxel-
wise level and at the level of anatomical structures.

3 Data
Our test dataset consists of structural MR images of 59 subjects. These images were acquired
on GE 1.5T Signa scanner between 1999 and 2004 at the University of Pittsburgh Alzheimer’s
Research Center. The spoiled gradient-recalled (SPGR) volumetric T1-weighted pulse sequence
is used with the following parameters optimized for maximal contrast among gray matter, white
matter, and CSF: TE = 5ms, TR = 25ms, flip angle = 40, NEX = 1, slice thickness = 1.5 mm/0
mm interslice. Based on a series of clinical and neurophysiological tests, the 59 subjects were
diagnosed into 20 Alzheimer’s (AD) patients, 19 patients with mild cognitive impairment (MCI),
and 20 controls. MCI and AD cause brain changes that induce a high degree of variability in brain
structure, thus making registration more difficult. We removed skulls from all the images in our
dataset using the BET tool [28].
We use the anatomical automatic labeling (AAL) digital atlas [12, 32] distributed as a part of the
MRIcro package as a reference image. The atlas is an MR image in MNI space [20] accompanied
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by the labeling of 116 anatomical structures.

4 Method

4.1 Registration Algorithms
We use two fully deformable registration methods and an affine registration method: finite ele-
ment based registration followed by demons registration available as part of Insight Toolkit library
[13, 29, 30, 8], hierarchical attribute matching mechanism for elastic registration (HAMMER) de-
veloped by Shen et al [25], and FMRIB’s Linear Image Registration Tool (FLIRT). We use the
respective default parameters for all methods in our evaluation.

4.1.1 FEM-Demons

The Insight Toolkit provides a finite element based registration method [13, 8, 7] and demons
registration algorithm [13, 29, 30]. In the FEM registration algorithm, an image is modeled as a
collection of elastic structural elements. The mean sum of squared differences of image intensi-
ties determines the external forces that act on the elastic elements. The deformation field between
images is calculated based on the physical properties of the structural elements and the external
forces. This procedure helps avoid local maxima and guarantees that the resulting deformation
field is smooth. The FEM registration algorithm is an iterative approach that employs a multires-
olution scheme. Once a smooth deformation field between images is found using finite element
based registration, we use the demons algorithm to estimate the deformation field more precisely.
The demons registration algorithm treats an image as a set of iso-intensity contours. Displacement
at each voxel is determined according to optical flow between the reference image and the image
that is being registered to it.

4.1.2 HAMMER

The hierarchical attribute matching mechanism for elastic registration uses a very different image
similarity measure. It computes a set of predefined attributes to find correspondences between the
voxels of the reference image and an image of a subject. HAMMER requires that images are seg-
mented into white matter, gray matter and CSF prior to registration. Fast tool [35] from the Oxford
Center for Functional Magnetic Resonance Imaging of the Brain software library (FSL) is used to
perform the segmentation. HAMMER computes an attribute vector for each voxel in the image.
The attribute vector contains the intensity of the voxel, the edge type of the voxel and the geometric
moment invariants about this voxel for each tissue type [25]. The correspondences between voxels
are determined based on the similarities of their attribute vectors. The deformation field between
images is estimated and refined over several iterations. During each iteration the deformation field
between images is computed based on the correspondences between the driving voxels, i.e. voxels
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Figure 1: HAMMER, FEM-Demons and FLIRT algorithms are used to register an input image to
the reference image. Registration quality is evaluated using global and localized mutual informa-
tion between deformed input image and the reference image.

with the most unique attribute vectors. The number of driving voxels is increased from iteration
to iteration. HAMMER employs a multiresolution scheme to improve efficiency and avoid local
maxima.

4.1.3 FLIRT

FMRIB’s Linear Image Registration Tool is a robust affine registration algorithm. It utilizes a mut-
liresolution scheme and a combination of the Powell optimization method [22] with an exhaustive
search over rotation angles. This algorithm is widely used for affine registration, and is shown to
perform as well as or better than other popular affine registration algorithms, including AIR and
SPM [36]. We use the default correlation ratio similarity metric for our experiments.

4.2 Registration comparison
We use global and localized mutual information to evaluate the registration algorithms. Mutual
information is a well-studied and widely used measure of similarity between images [4, 33]. Sim-
ilar images have high mutual information scores because they explain each other well. We use the
following definition of mutual information:

I(A,B) = H(A) + H(B)−H(A,B)
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Figure 2: Corresponding slices of averaged registered images by HAMMER, FEM-Demons and
FLIRT. Averages per class as well as average per dataset are shown. Last column contains corre-
sponding slice of the reference brain.

where I(A,B) is mutual information between images A and B,

H(A) =
∑
a∈A

p(a) log p(a)

and
H(B) =

∑

b∈B

p(b) log p(b)

are the Shannon entropies of gray level value distributions of images A and B, and

H(A,B) =
∑

a∈A,b∈B

p(a, b) log p(a, b)

is the Shannon entropy [24] of the joint distribution of gray level values of the images A and B. a
and b denote gray level values of the images A and B respectively.

In addition to computing mutual information between each registered image in our dataset
and the AAL template, we also compute localized mutual information between the corresponding
3x3x3, 7x7x7 and 11x11x11 voxel neighborhoods around each voxel in the reference and regis-
tered images. In order to assess the quality of registration for various anatomical structures of the
brain, we compute mutual information for 116 anatomical structures, as defined by the Anatomical
Automatic Labeling (AAL) atlas [32].

The three different registration methods provide us with three different sets of registered im-
ages. We compute global, voxel-wise and anatomical mutual information scores between each
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Table 1: Comparison between the registration methods on the global scale. Subscripts H or I near pair-
wise t-test statistics indicate that mutual information scores for HAMMER or FEM-Demons are higher,
respectively. * indicates statistical significance at 0.05 level

Registration Methods Subject group
Alzheimers MCI Controls

FEM-Demons vs
HAMMER 2.19∗I 3.15∗I 0.50I

FEM-Demons vs FLIRT 35.24∗I 37.42∗I 35.78∗I
HAMMER vs FLIRT 48.19∗H 42.18∗H 50.79∗H

pair of the three registered image sets. A paired T-test is used to determine whether the difference
in global mutual information for the pairs of registration methods is statistically significant. We
also use paired T-tests with multiple comparison correction to find voxels and anatomical struc-
tures where voxel-wise and anatomical structure registration scores differ significantly. It is worth
noting that none of the three algorithms uses mutual information as a similarity measure in their
respective registration processes, and so using mutual information for comparing them is not un-
fairly advantageous to any of the algorithms.

5 Comparison results

5.1 Registration results
Each image in the dataset is registered to the reference image by HAMMER, FEM-Demons and
FLIRT. Deformation fields obtained using each of the registration methods are then used to trans-
form each original image to a registered image. The registration procedure is illustrated in Figure
1. Averaged registered images are shown in Figure 2. Mutual information is used to quantify the
similarity between each registered image and the reference image.

5.2 Global comparison
The global mutual information score is the mutual information computed between the entire refer-
ence and registered images. It reveals (see Figure 3 and Table 1)that while there is no significant
difference at 95% level between HAMMER and FEM-Demons for the controls (p-value=0.6218),
FEM-Demons performs significantly better on Alzheimers patients(p-value=0.0416) and MCI pa-
tients (p-value=0.0055). As expected, both HAMMER and FEM-Demons perform significantly
better than FLIRT (see Figures 7, 8 in the Appendix).
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(a) AD (b) AD

(c) MCI (d) MCI

(e) CTL (f) CTL

Figure 3: Global mutual information registration scores for HAMMER and FEM-Demons. a, b -
Alzheimers patients; c, d - MCI patients; e, f - controls. Figures b, d, f show histograms of the MI
score distribution between the two methods.
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5.3 Multiple Comparison Correction
There are two groups of methods for performing a multiple comparison correction. The first group
controls the family-wise error[11, 21]. Methods following this approach adjust p-value thresholds
of the individual tests so that the probability of type I error occurring in any of the tests in the
family is no greater than a given significance level. Bonferroni correction is the most popular
of these methods. The p-value thresholds adjusted in this way are generally very conservative
because they have to ensure that the occurrence of even a single false positive in the entire set of
tests is unlikely. Controlling family-wise error is a very intuitive thing to do in a situation where
the conclusion for the entire family can be drawn from a single positive test.

However, the conservativeness of these methods comes at the expense of their power. The
second group of methods adjusts the p-value threshold of the individual tests so that the expected
ratio of false positives to the total number of positives is no greater than a given false discovery
rate bound [9, 1]. These methods are applicable where the focus of an analysis is to provide a
descriptive statistic about a family of tests, but not to use individual tests to draw conclusions for
the family. In other words, adjusting false discovery rate is particularly suitable for the situations
where a researcher is willing to tolerate a small proportion of false positives in exchange for a
greater test power (i.e. smaller probability of a false negative).

The goal of our analysis is to find brain regions where one method performs statistically better
than the other. It is important for our analysis not to erroneously declare voxels where the two
registration methods perform comparably as significant voxels. However, it is equally important to
successfully detect voxels where the performance of the two registration algorithms is statistically
different. Therefore, we are willing to allow a small percentage of false positives in exchange
for the greater power of individual tests. Methods that control false discovery rate fit our needs
perfectly, and we use them to perform multiple comparison correction in our analysis. In order to
demonstrate that our results of the deformable registration algorithm comparison are consistent for
various levels of false discovery rate, we use rates of 1%, 5% and 10%. Setting false discovery rate
at 1% yields a p-value threshold of about 0.002 depending on the pair of algorithms being com-
pared, neighborhood size and subject group, while false discovery rates of 5% and 10% correspond
to p-value thresholds of about 0.02 and 0.05 respectively.

5.4 Voxel-wise comparison
Voxel-wise comparison between the registration algorithms indicates that there are roughly twice
as many voxels at which FEM-Demons significantly outperforms HAMMER than voxels where
HAMMER outperforms FEM-Demons. Table 2 contains comparison results for each subject group
and voxel neighborhood at three FDR levels: 0.01, 0.05 and 0.1.

P-value maps based on the localized mutual information for each subject group and neighborhood
sizes of 3x3x3, 7x7x7 and 11x11x11 voxels are illustrated in Figures 4, 5, 6. Both HAMMER and
FEM-Demons outperform FLIRT on over 90% of voxels. The corresponding tables and figures
for comparison with FLIRT are presented in the Appendix. From these figures one can observe
the tradeoff between the neighborhood size and the consistency of localized mutual information
scores. The smaller is the neighborhood, the greater is the locality of the mutual information. On
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(a) 3x3x3 (b) legend

Figure 4: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for FEM-
Demons registration are significantly higher than that of HAMMER; blue - voxels where HAMMER scores
are higher. Intensity of colors indicates statistical significance. (a) p-values for sample slices for 3x3x3
neighborhood; (b) shows the color map)
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(a) 7x7x7 (b) legend

Figure 5: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for FEM-
Demons registration are significantly higher than that of HAMMER; blue - voxels where HAMMER scores
are higher. Intensity of colors indicates statistical significance. (a) p-values for sample slices for 7x7x7
neighborhood; (b) shows the color map)
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(a) 11x11x11 (b) legend

Figure 6: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for FEM-
Demons registration are significantly higher than that of HAMMER; blue - voxels where HAMMER scores
are higher. Intensity of colors indicates statistical significance. (a) p-values for sample slices for 11x11x11
neighborhood; (b) shows the color map)
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the other hand, smaller neighborhoods do not provide enough samples to accurately estimate joint
voxel intensity distribution required to compute mutual information. From our experiments we
observed that the results based on 7x7x7 and 11x11x11 voxel neighborhoods are more consistent
with one another than with 3x3x3 neighborhood, leading us to believe that at least 7x7x7 voxel or
larger neighborhoods should be used for computing mutual information at the voxel-wise level.

5.5 Anatomical structure comparison
Comparison between FEM-Demons, HAMMER and FLIRT on anatomical structures is done for 116 struc-
tures using the AAL atlas [32]. The mutual information score is computed for each structure and every
registered image in the dataset and the corresponding structure in the AAL brain. Locations of the anatomi-
cal structures are determined according to the AAL labelling. As in the case with voxel-wise comparisons,
we set FDR level at 1%, 5% and 10%, which corresponds to p-value thresholds of about 0.004, 0.020 and
0.045 respectively, depending on the subject group and the pair of methods under consideration. The result
summary for each subject group is presented in the Table 3, and Tables 9, 10 of the Appendix. FEM-Demons
and HAMMER produce significantly better results than FLIRT did on almost all anatomical structures we
considered. The difference in performance between FEM-Demons and HAMMER is the greatest for MCI
patients, where FEM-Demons outperformed HAMMER on 31 anatomical structures, while HAMMER out-
performed FEM-Demons on 15. Table 3 shows the comparison results at the anatomical structure level for
all subject groups at the FDR levels of 0.01, 0.05 and 0.1. Tables 4, 5 and 6 show anatomical structures
where FEM-Demons outperforms HAMMER and structures where HAMMER outperforms FEM-Demons.

6 Discussion
Our evaluation results confirm our expectations that both deformable registration algorithms (HAMMER
and FEM-Demons) significantly outperform the affine registration algorithm (FLIRT) at all three levels:
global, voxel-wise and anatomical structures. This result is not surprising, since, unlike the fully deformable
registration algorithms, FLIRT is limited to only 12 degrees of freedom. This result serves as a sanity check
for our evaluation method.

Our comparison results on the two fully deformable registration algorithms show that both HAMMER
and FEM-Demons have areas of the brain where they outperform the other. Although FEM-Demons out-
performs HAMMER on roughly twice as many voxels, HAMMER outperforms FEM-Demons on structures
with well-defined boundaries, for example, the ventricles and the posterior cingulate. This phenomenon
could be explained by the fact that HAMMER employs image segmentation into white matter, gray mat-
ter and CSF during registration process, while the algorithms currently included in FEM-Demons do not.
Similar reasoning could explain why FEM-Demons algorithm does better in homogeneous regions, like the
thalamus and the caudate: FEM-Demons uses information from intensity variations within these regions,
while HAMMER, since it only uses segmented images, does not.

At all three levels, the difference in performance between HAMMER and FEM-Demons is subject group
dependent (see Tables 1, 2, 7, 8, 3, 9, 10). For example, Table 1 shows that at the global level FEM-Demons
and HAMMER do comparably well on MR images of normal subjects, while FEM-Demons outperforms
HAMMER on Alzheimers patients (p-value is 0.0416), and especially on MCI patients (p-value 0.006). A
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Table 2: FEM-Demons vs HAMMER: percentage of voxels where mutual information scores for
one method are significantly higher than for the other.

3x3x3
Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 7.91% 5.26% 5.43%
FDR=0.05 17.74% 13.28% 13.28%
FDR=0.10 30.21% 24.58% 24.24%

HAMMER
FDR=0.01 2.76% 2.95% 3.09%
FDR=0.05 6.31% 6.95% 7.31%
FDR=0.10 11.70% 13.29% 14.02%

7x7x7
Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 21.95% 18.57% 17.97%
FDR=0.05 32.20% 28.27% 27.44%
FDR=0.10 42.07% 37.93% 36.93%

HAMMER
FDR=0.01 6.83% 6.42% 6.58%
FDR=0.05 11.62% 11.33% 11.97%
FDR=0.10 17.25% 17.61% 18.63%

11x11x11
Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 21.07% 21.76% 19.43%
FDR=0.05 29.47% 30.52% 27.84%
FDR=0.10 37.62% 39.02% 35.88%

HAMMER
FDR=0.01 10.22% 8.32% 9.37%
FDR=0.05 16.61% 14.26% 16.22%
FDR=0.10 23.44% 20.89% 23.54%
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Table 3: FEM-Demons vs HAMMER: number and percentage of anatomical regions where mutual
information scores for one method are significantly higher than for the other. Total of 116 regions
were considered, as segmented on the AAL atlas.

Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 13 (11.21%) 18 (15.52%) 11 (9.48%)
FDR=0.05 26 (22.41%) 31 (26.72%) 16 (13.79%)
FDR=0.10 34 (29.31%) 33 (28.45%) 22 (18.97%)

HAMMER
FDR=0.01 14 (12.07%) 13 (11.21%) 13 (11.21%)
FDR=0.05 21 (18.10%) 15 (12.93%) 19 (16.38%)
FDR=0.10 23 (19.83%) 18 (15.52%) 24 (20.69%)

Table 4: FEM-Demons vs HAMMER, AD subjects: List of anatomical regions where mutual
information scores for one method are significantly (FDR=0.05) higher than for the other.

FEM-Demons Cerebelum 7b L, Cerebelum 7b R, Cerebelum Crus2 R,
Frontal Sup Orb L, Frontal Sup Orb R, Frontal Sup R,
Heschl L, Occipital Mid R, Parietal Inf L, Parietal Inf R,
Postcentral L, Supp Motor Area L, Supp Motor Area R,
SupraMarginal L, Temporal Inf L, Temporal Inf R, Tem-
poral Mid L, Temporal Pole Mid L, Temporal Pole Sup L,
Temporal Sup L, Temporal Sup R

HAMMER Cerebelum 3 L, Cerebelum 3 R, Cerebelum 9 L,
Cerebelum 9 R, Cingulum Mid L, Cingulum Post L,
Cingulum Post R, Cuneus R, Frontal Inf Oper L,
Frontal Mid Orb L, Precentral R, Precuneus R, Vermis 10,
Vermis 1 2, Vermis 3, Vermis 4 5, Vermis 6
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Table 5: FEM-Demons vs HAMMER, MCI subjects: List of anatomical regions where mutual
information scores for one method are significantly (FDR=0.05) higher than for the other.

FEM-Demons Amygdala R, Angular L, Cerebelum 7b L, Cere-
belum 7b R, Cerebelum 8 R, Frontal Sup Medial L,
Frontal Sup Medial R, Frontal Sup Orb L,
Frontal Sup Orb R, Heschl L, Heschl R, Insula L, In-
sula R, Parietal Inf L, Postcentral L, Putamen L, Rectus L,
Rolandic Oper L, Rolandic Oper R, SupraMarginal L,
Temporal Inf R, Temporal Mid L, Temporal Pole Mid L,
Temporal Pole Sup L, Temporal Sup L, Thalamus R

HAMMER Cerebelum 3 L, Cerebelum 3 R, Cingulum Mid L, Cingu-
lum Post L, Cingulum Post R, Frontal Inf Oper L, Occipi-
tal Sup R, Precuneus R, Vermis 10, Vermis 1 2, Vermis 3,
Vermis 4 5, Vermis 6

Table 6: FEM-Demons vs HAMMER, CTL subjects: List of anatomical regions where mutual
information scores for one method are significantly (FDR=0.05) higher than for the other.

FEM-Demons Cerebelum 10 L, Cerebelum 7b L, Cerebelum 7b R,
Cerebelum 8 L, Cerebelum Crus2 R, Frontal Sup Orb L,
Frontal Sup Orb R, Heschl L, Olfactory L, Postcentral L,
Rectus L, SupraMarginal L, Temporal Inf R, Tempo-
ral Pole Mid L, Temporal Sup L

HAMMER Cerebelum 3 L, Cingulum Mid L, Cingulum Post L, Cin-
gulum Post R, Cuneus L, Cuneus R, Occipital Mid L, Oc-
cipital Sup R, Paracentral Lobule R, Precuneus R, Ver-
mis 10, Vermis 1 2, Vermis 3, Vermis 4 5, Vermis 6, Ver-
mis 9
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possible reason for these results is that automatic MR image segmentation, which HAMMER relies on, is
more accurate for controls than for patients.

Our results show that FLIRT outperforms FEM-Demons and HAMMER on 9% to 14% of the voxels
when 3x3x3 neighborhood is used. The reason for having voxels where FLIRT has higher mutual infor-
mation scores than the two deformable registration algorithms might be that 3x3x3 voxel neighborhood is
too small. The difference in registration quality is more apparent in the neighborhoods that contain edges
between tissue types, and less apparent in the homogeneous neighborhoods. The smaller the neighborhood
is the more likely it is to be homogeneous and therefore not to reflect the registration quality differences
between the images. Thus, mutual information scores computed between such neighborhoods do not re-
flect the desired similarity between the images. As the neighborhood size increases the number of such
homogeneous neighborhoods decreases and mutual information scores become more meaningful. Tables
7 and 8 show that it is indeed the case, that the number of voxels where the affine registration algorithm
(FLIRT) has significantly higher mutual information scores than the two deformable registration algorithms
drastically decreases as the size of the neighborhood increases. Our experiments suggest that at least 7x7x7
voxel neighborhoods should be used for voxel-wise comparison because 3x3x3 voxel neighborhood was
not sensitive enough to reflect registration quality differences between FLIRT and the two fully deformable
registration algorithms (Tables 7 and 8).

7 Summary
In summary, we propose a mutual information based methodology for comparing registration algorithms,
and apply this method for quantitative performance evaluations on three registration algorithms. Our results
show that both HAMMER and FEM-Demons algorithms perform better than FLIRT at global, voxel-wise
and anatomical structure levels. Comparison between HAMMER and FEM-Demons yields that FEM-
Demons has significantly higher mutual information scores on the global scale for MCI and Alzheimers
patients (Table 1) while no significant difference is observed on controls. Voxel-wise comparison between
the registration algorithms indicates that there are roughly twice as many voxels at which FEM-Demons
significantly outperforms HAMMER than voxels where HAMMER outperforms FEM-Demons (Table 2).
At the anatomical structure level, FEM-Demons and HAMMER produce significantly better results than
FLIRT on almost all 116 anatomical structures. The difference in performance between FEM-Demons and
HAMMER is the greatest for MCI patients, where FEM-Demons outperformed HAMMER on 31 anatom-
ical structures, while HAMMER outperformed FEM-Demons on 15 (Table 3). HAMMER tends to do
better on the anatomical structures with well-defined boundaries, like the ventricles and posterior cingulate,
while FEM-Demons produces better results within homogeneous regions, like superioir temporal lobe and
cerebellum 2b. These results suggest that the choice between FEM-Demons and HAMMER should de-
pend on the specific region of interest, because FEM-Demons outperforms HAMMER on some anatomical
regions, while HAMMER outperforms FEM-Demons on others.

8 Appendix
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(a) AD (b) AD

(c) MCI (d) MCI

(e) CTL (f) CTL

Figure 7: Global mutual information registration scores for FEM-Demons and FLIRT. a, b -
Alzheimers patients; c, d - MCI patients; e, f - controls. Figures b, d, f show histograms of the MI
score distribution between the two methods.
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(a) AD (b) AD

(c) MCI (d) MCI

(e) CTL (f) CTL

Figure 8: Global mutual information registration scores for HAMMER and FLIRT. a, b -
Alzheimers patients; c, d - MCI patients e, f - controls. Figures b, d, f show histograms of the
MI score distribution between the two methods.

18



Table 7: FEM-Demons vs FLIRT: percentage of voxels where mutual information scores for one
method are significantly higher than for the other.

3x3x3
Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 12.02% 9.71% 10.38%
FDR=0.05 25.27% 21.83% 22.37%
FDR=0.10 40.22% 36.12% 36.22%

FLIRT
FDR=0.01 2.04% 2.04% 2.11%
FDR=0.05 4.83% 5.09% 5.25%
FDR=0.10 8.99% 9.71% 10.03%

7x7x7
Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 42.61% 40.60% 40.60%
FDR=0.05 57.50% 55.43% 55.30%
FDR=0.10 68.76% 67.06% 66.86%

FLIRT
FDR=0.01 1.79% 1.38% 1.32%
FDR=0.05 3.30% 2.73% 2.59%
FDR=0.10 5.25% 4.61% 4.42%

11x11x11
Registration Method Alzheimers MCI Controls
FEM-Demons

FDR=0.01 78.00% 79.72% 78.34%
FDR=0.05 87.18% 88.58% 87.93%
FDR=0.10 91.86% 92.96% 92.87%

FLIRT
FDR=0.01 0.54% 0.36% 0.33%
FDR=0.05 0.83% 0.61% 0.54%
FDR=0.10 1.21% 0.89% 0.81%
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Table 8: HAMMER vs FLIRT: percentage of voxels where mutual information scores for one
method are significantly higher than for the other.

3x3x3
Registration Method Alzheimers MCI Controls
HAMMER

FDR=0.01 8.76% 7.56% 8.58%
FDR=0.05 18.29% 17.04% 18.48%
FDR=0.10 30.33% 29.49% 30.83%

FLIRT
FDR=0.01 3.46% 2.21% 2.48%
FDR=0.05 8.02% 6.00% 6.30%
FDR=0.10 14.31% 11.88% 12.23%

7x7x7
Registration Method Alzheimers MCI Controls
HAMMER

FDR=0.01 36.38% 35.16% 38.38%
FDR=0.05 50.08% 50.56% 52.75%
FDR=0.10 60.68% 62.32% 63.57%

FLIRT
FDR=0.01 3.59% 1.96% 2.03%
FDR=0.05 6.11% 4.10% 4.16%
FDR=0.10 9.19% 6.93% 6.96%

11x11x11
Registration Method Alzheimers MCI Controls
HAMMER

FDR=0.01 80.09% 82.81% 83.91%
FDR=0.05 88.07% 90.29% 90.35%
FDR=0.10 92.11% 93.83% 93.66%

FLIRT
FDR=0.01 0.89% 0.46% 0.41%
FDR=0.05 1.33% 0.82% 0.76%
FDR=0.10 1.76% 1.20% 1.14%
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(a) 3x3x3 (b) legend

Figure 9: P-values from a paired T-test for every voxel. Red color indicates voxels where MI scores for
FEM-Demons registration are significantly higher than that of FLIRT; blue color - voxels where FLIRT
scores were better. Intensity of colors indicates statistical significance. (a) p-values for sample slices for
3x3x3 neighborhood; (b) shows the color map)
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(a) 7x7x7 (b) legend

Figure 10: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for FEM-
Demons registration are significantly higher than that of FLIRT; blue - voxels where FLIRT scores are higher.
Intensity of colors indicates statistical significance. (a) p-values for sample slices for 7x7x7 neighborhood;
(b) shows the color map)
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(a) 11x11x11 (b) legend

Figure 11: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for FEM-
Demons registration are significantly higher than that of FLIRT; blue - voxels where FLIRT scores are
higher. Intensity of colors indicates statistical significance. (a) p-values for sample slices for 11x11x11
neighborhood; (b) shows the color map)
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(a) 3x3x3 (b) legend

Figure 12: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for HAM-
MER registration are significantly higher than that of FLIRT; blue - voxels where FLIRT scores are better.
Intensity of colors indicates statistical significance. (a) p-values for sample slices for 3x3x3 neighborhood;
(b) shows the color map)
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(a) 7x7x7 (b) legend

Figure 13: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for HAM-
MER registration are significantly higher than that of FLIRT; blue - voxels where FLIRT scores are higher.
Intensity of colors indicates statistical significance. (a) p-values for sample slices for 7x7x7 neighborhood;
(b) shows the color map)
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(a) 11x11x11 (b) legend

Figure 14: P-values from a paired T-test for every voxel. Red indicates voxels where MI scores for HAM-
MER registration are significantly higher than that of FLIRT; color - voxels where FLIRT scores are higher.
Intensity of colors indicates statistical significance. (a) p-values for sample slices for 11x11x11 neighbor-
hood; (b) shows the color map)
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