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Abstract

We study the label complexity of pool-based active learning in the agnostic PAC model. Specifi-
cally, we derive a general upper bound on the number of label requests made by the A2 algorithm
proposed by Balcan et al. [1]. This represents the first nontrivial general-purpose upper bound on
label complexity in the agnostic PAC model.
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1 Introduction
In active learning, a learning algorithm is given access to a large pool of unlabeled examples,
and is allowed to request the label of any particular example from that pool. The objective is to
learn an accurate classifier while requesting as few labels as possible. This contrasts with passive
(semi)supervised learning, where the examples to be labeled are chosen randomly. In compari-
son, active learning can often significantly decrease the work load of human annotators by more
carefully selecting which examples from the unlabeled pool should be labeled. This is of partic-
ular interest for learning tasks where unlabeled examples are available in abundance, but labeled
examples require significant effort to obtain.

In the passive learning literature, there are well-known bounds on the number of training ex-
amples necessary and sufficient to learn an accurate classifier with high probability (i.e., the sam-
ple complexity)[9, 3, 8, 2]. This quantity depends largely on the VC dimension of the concept
space being learned (in a distribution-independent analysis) or the metric entropy (in a distribution-
dependent analysis). However, significantly less is presently known about the analogous quantity
for active learning: namely, the label complexity, or number of label requests that are necessary
and sufficient to learn. Building a thorough understanding of label complexity, along with the
quantities on which it depends, seems essential to fully exploit the potential of active learning.

In the present paper, we study the label complexity by way of bounding the number of label
requests made by a recently proposed active learning algorithm, A2 [1], which provably learns in
the agnostic PAC model. The bound we find for this algorithm depends critically on a particular
quantity, which we call the disagreement coefficient, depending on the concept space and example
distribution. This quantity is often simple to calculate or bound for many concept spaces. Although
we find that the bound we derive is not always tight, it represents a significant step forward, since
it is the first nontrivial general-purpose bound on label complexity in the agnostic PAC model.

The rest of the paper is organized as follows. In Section 2, we briefly review some of the related
literature, to place the present work in context. In Section 3, we continue with the introduction of
definitions, notation, and some useful lemmas, along with a variety of simple examples to help
build intuition. Moving on in Section 4, we state and prove the main result of this paper: an upper
bound on the number of label requests made by A2. We conclude in Section 5 with some open
problems.

2 Background
The recent literature on the label complexity of active learning has been bringing us steadily closer
to understanding the nature of this problem. Within that literature, there is a mix of positive and
negative results, as well as a wealth of open problems.

While studying the noise-free setting, Dasgupta defines a quantity ρ called the splitting index
[4]. ρ is dependent on the concept space, data distribution, and two (new) parameters he defines,
as well as the target function itself. It essentially quantifies the amount of overlap of the “disagree
sets” of (well-separated) pairs of concepts. He finds that when there is no noise, roughly Õ(d

ρ
)

label requests are sufficient (where d is VC dimension), and Ω(1
ρ
) are necessary for learning (for
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respectively appropriate values of the other parameters). Thus, it appears that something like
splitting index may be an important quantity to consider when bounding the label complexity.
Unfortunately, the splitting index analysis is presently restricted to the noise-free case.

In studying the possibility of active learning in the presence of arbitrary classification noise,
Balcan et al. propose the A2 algorithm [1]. The strategy behind A2 is to induce confidence intervals
for the error rates of all concepts, and remove any concepts whose estimated error rate is larger than
the smallest estimate to a statistically significant extent. This guarantees that with high probability
we do not remove the best classifier in the concept space. The key observation that sometimes leads
to improvements over passive learning is that, since we are only interested in comparing the error
estimates, we do not need to request the label of any example whose label is not in dispute among
the remaining classifiers. Balcan et al. analyze the number of label requests A2 makes for some
example concept spaces and distributions (notably linear separators under the uniform distribution
on the unit sphere). However, other than fallback guarantees, they do not derive a general bound
on the number of label requests, applicable to any concept space and distribution. This is the focus
of the present paper.

In addition to the above results, there are a number of known lower bounds, than which there
cannot be a learning algorithm guarateeing a number of label requests smaller. In particular, Kulka-
rni proves that, even if we allow arbitrary binary-valued queries and there is no noise, any algo-
rithm that learns to accuracy 1 − ε can guarantee no better than Ω(log N(2ε)) queries [7], where
N(2ε) is the size of a minimal 2ε-cover (defined below). Another known lower bound is due to
Kääriäinen, who proves that for most nontrivial concept spaces and distributions, if the noise rate
is ν, then any algorithm that with high probability 1− δ outputs a classifier with error at most ν + ε

can guarantee no better than Ω
(

ν2

ε2
log 1

δ

)
label requests [6]. In particular, these lower bounds im-

ply that we can reasonably expect even the tightest general upper bounds on the label complexity
to have some term related to log N(ε) and some term related to ν2

ε2
log 1

δ
.

3 Preliminaries
Let X be an instance space, comprising all possible examples we may ever encounter. C is a set
of measurable functions h : X → {−1, 1}, known as the concept space.1 DXY is any probability
distribution on X × {−1, 1}. In the active learning setting, we draw (X, Y ) ∼ DXY , but the
Y value is hidden from the learning algorithm until requested. For convenience, we will abuse
notation by saying X ∼ D, where D is the marginal distribution of DXY over X ; we then say
the learning algorithm (optionally) requests the label Y of X (which was implicitly sampled at
the same time as X); we may sometimes denote this label Y by Oracle(X). For any h ∈ C
and distribution D′ over X × {−1, 1}, let erD′(h) = Pr(X,Y )∼D′{h(X) 6= Y }, and for S =
{(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X × {−1, 1})m, erS(h) = 1

m

∑m
i=1 |h(xi) − yi|/2. When

D′ = DXY (the distribution we are learning with respect to), we abbreviate this by er(h) =
erDXY

(h). The noise rate, denoted ν, is defined as ν = infh∈C er(h). Our objective in agnostic

1All of the ideas described here generalize nicely to the multiclass learning task, by substituting the appropriate
definitions.
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active learning is to, with probability ≥ 1 − δ, output a classifier h with er(h) ≤ ν + ε without
making many label requests.

Let ρD(·, ·) be the pseudo-metric on C induced by D, such that ∀h, h′ ∈ C, ρD(h, h′) =
PrX∼D{h(X) 6= h′(X)}. An ε-cover of C with respect to D is any set V ⊆ C such that
∀h ∈ C,∃h′ ∈ V : ρD(h, h′) ≤ ε. We additionally let N(ε) denote the size of a minimal ε-
cover of C with respect to D. It is known that N(ε) < 2

(
2e
ε

ln 2e
ε

)d, where d is the VC dimension
of C [5]. To focus on the learnable cases, we assume ∀ε > 0, N(ε) <∞.

Definition 1. The disagreement rate ∆(V ) of a set V ⊆ C is defined as

∆(V ) = PrX∼D{∃h1, h2 ∈ V : h1(X) 6= h2(X)}.

Definition 2. For h ∈ C, r > 0, let B(h, r) = {h′ ∈ C : ρD(h′, h) ≤ r}. Define the disagreement
rate at radius r

∆r = sup
h∈C

∆(B(h, r)).

Definition 3. The disagreement coefficient is the infimum value of θ > 0 such that ∀r > 4(ν+ε/2),

∆r ≤ θr.

This quantity plays a critical role in the upper bounds we derive in the following section, which
are increasing in this θ.

The canonical example of the potential improvements in label complexity of active over passive
learning is the thresholds concept space. Specifically, consider the concept space of thresholds tx
on the interval [0, 1] (for x ∈ [0, 1]), such that tx(y) = +1 iff y ≥ x. Furthermore, suppose D
is uniform on [0, 1]. In this case, it is clear that the disagreement coefficient is at most 2, since
the region of disagreement of B(tx, r) is roughly {y ∈ [0, 1] : |y − x| ≤ r}. That is, since the
disagreement region grows at rate 1 in two disjoint directions as r increases, the disagreement
coefficient θ = 2.

As a second example, let us study the disagreement coefficient for intervals on [0, 1]. As before,
let X = [0, 1] and D be uniform, but this time C is the set of intervals I[a,b] such that for y ∈ [0, 1],
I[a,b](y) = +1 iff y ∈ [a, b] (for a, b ∈ [0, 1], a ≤ b). In contrast to thresholds, the space of
intervals serves as a canonical example of situations where active learning does not help compared
to passive learning. This fact clearly shows itself in the disagreement coefficient, which is 1

4(ν+ε/2)

here, since ∆r = 1 for r = 4(ν+ε/2). To see this, note that the set B(I[0,0], r) contains all concepts
of the form I[a,a].

An interesting extension of the intervals example is to the space of p-intervals, or all intervals
I[a,b] such that b− a ≥ p ∈ (0, 1/8]. These spaces span the range of difficulty, with active learning
becoming easier as p increases. This is reflected in the θ value, since here θ = 1

2p
. When r < 2p,

every interval in B(I[a,b], r) has its lower and upper boundaries within r of a and b, respectively;
thus, ∆r ≤ 4r. However, when r ≥ 2p, every interval of width p is in B(I[0,p], r), so that ∆r = 1.

As an example that takes a (small) step closer to realistic learning scenarios, consider the
following theorem.
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Theorem 1. If X is the surface of the unit sphere in Rd, C is the space of homogeneous linear
separators, and D is the uniform distribution on X , then the disagreement coefficient θ satisfies

θ ≤ π
√

d.

Proof Sketch. This result was implicitly studied by Balcan et al. [1] in their analysis of the per-
formance of A2 for linear separators. First we represent the concepts in C as weight vectors
w ∈ Rd in the usual way. One can then show that ρD(w1, w2) = arccos(w1·w2)

π
. For any such

w, and r ≤ 1/2, B(w, r) = {w′ : w · w′ ≥ cos(rπ)}. Since the hyperplane corresponding
to w′ is orthogonal to the vector w′, the region of uncertainty swept out by this set consists of
{x ∈ X : |x · w| ≤ sin(rπ)}. By geometrical considerations, this set has measure at most√

dsin(rπ) ≤ π
√

dr. Thus, ∆r ≤ π
√

dr.

To prove bounds on the label complexity, we will additionally need to use some known results
on finite sample rates of convergence.

Definition 4. For m ∈ N,

G(m, δ) =

√
ln 2

δ

2m
.

UB(S, h, δ) = erS(h) + G(|S|, δ).

LB(S, h, δ) = erS(h)−G(|S|, δ).

The following lemma follows immediately from Hoeffding bounds.

Lemma 1. For h ∈ C, any distribution Di over X × {−1, 1}, and any m ∈ N, with probability at
least 1− δ over the draw of S ∼ Dm

i ,

|erS(h)− erDi
(h)| ≤ G(m, δ).

In particular, this means

erDi
(h)− 2G(|S|, δ) ≤ LB(S, h, δ) ≤ erDi

(h) ≤ UB(S, h, δ) ≤ erDi
(h) + 2G(|S|, δ).

Furthermore, for γ > 0, if m > 1
2γ2 ln 2

δ
, then G(m, δ) < γ.

4 An Upper Bound Via the A2 Algorithm
We use a (somewhat simplified) version of the A2 algorithm, presented by Balcan et. al [1]. The
algorithm is given in Figure 1.

The motivation behind the A2 algorithm is to maintain a set of concepts Vi that we are confident
contains any concepts with minimal error rate. If we can guarantee with statistical significance that
a concept h1 ∈ Vi has error rate worse than another concept h2 ∈ Vi, then we can safely remove the
concept h1 since it is suboptimal. To achieve such a statistical guarantee, the algorithm employs
two-sided confidence intervals on the error rates of each classifier in the concept space; however,
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Input: concept space V , accuracy parameter ε′ ∈ (0, 1), confidence
parameter δ′ ∈ (0, 1)
Output: classifier ĥ ∈ V
(I) V1 ← V ; i← 1
(II) While ∆(Vi) (minh∈Vi

UB(Si, h, δ′)−minh∈Vi
LB(Si, h, δ′)) > ε′

1. Set Si = ∅, V ′
i = Vi

2. While ∆(V ′
i ) ≥ 1

2
∆(Vi)

(a) If ∆(V ′
i )

(
minh∈V ′

i
UB(Si, h, δ′)−minh∈V ′

i
LB(Si, h, δ′)

)
≤ ε′

(b) Return ĥ = arg minh∈V ′
i
UB(Si, h, δ′)

(c) Else
(i) S ′

i = Rejection sample 2|Si|+ 1 samples x from D satisfying
∃h1, h2 ∈ Vi : h1(x) 6= h2(x)

(ii) Si ← Si ∪ {(x, Oracle(x)) : x ∈ S ′
i}

(iii) V ′
i ← {h ∈ Vi : LB(Si, h, δ′) ≤ minh′∈Vi

UB(Si, h
′, δ′)}

3. Vi+1 ← V ′
i ; i← i + 1

(III) Return ĥ = arg minh∈Vi
UB(Si, h, δ′)

Figure 1: The A2 algorithm.

since we are only interested in the relative differences between error rates, on each iteration we
obtain this confidence interval for the error rate when D is restricted to the region of disagreement
{x ∈ X : ∃h1, h2 ∈ Vi, h1(x) 6= h2(x)}. This restriction to the region of disagreement is the
primary source of any improvements A2 achieves over passive learning. We measure the progress
of the algorithm by the reduction in the measure of the region of disagreement; the key question in
studying the number of label requests is bounding the number of random labeled examples from
the region of disagreement that are sufficient to remove enough concepts from Vi to significantly
reduce the measure of the region of disagreement.

Let V be a minimal ε
2
-cover of C with respect to D. To obtain bounds on the label complexity,

we consider running the A2 algorithm with concept space V ,2 accuracy parameter ε′ = ε
2
, and

confidence parameter δ′ = δ
nN(ε/2)

, where n = log2

(
512
ε2

ln 512N(ε/2)
ε2δ

)
log2

4
ε
.

Theorem 2. If θ is the disagreement coefficient for C, then with probability at least 1−δ, given the
inputs V , ε′, and δ′ described above, A2 outputs ĥ ∈ C with er(ĥ) ≤ ν + ε, and the total number
of label requests made by A2 is at most

O

(
θ2

(
ν2

ε2
+ 1

)
log

N(ε/2) log 1
ε

δ
log

1

ε

)
.

2A2 can be run with the full concept space C using standard uniform convergence bounds instead of those given in
Lemma 1. However, we employ the ε/2-cover to more fully exploit the distribution-dependence in this analysis. We
also note that an ε/2-cover of near optimal size can be constructed with high probability, using a polynomial number
of unlabeled examples.
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Proof. Let γi = maxh∈Vi
(UB(Si, h, δ′) − LB(Si, h, δ′)). Since we never have γi ≤ ε/4 at step

(c), Lemma 1 implies we always have |S ′
i| ≤ 256

ε2
ln 2

δ′ . We also never have ∆(Vi) ≤ ε/4, so
that we have at most log2

4
ε

iterations of the outer loop. Since each iteration of the inner loop
computes erSi

(h) for at most N(ε/2) concepts h, we compute at most nN(ε/2) such empirical
errors in the entire algorithm execution. Lemma 1 and a union bound imply that, with probability
≥ 1− δ, for every sample Si formed in step (ii) of any iteration of the algorithm, for every h ∈ V ,
|erSi

(h) − erDi
(h)| ≤ G(|Si|, δ′), where Di is the conditional distribution of DXY given that

∃h1, h2 ∈ Vi : h1(X) 6= h2(X). For the remainder of this proof, we assume that these inequalities
hold for all such Si and h ∈ V . In particular, together with the nature of the halting criterion, this
implies that er(ĥ) ≤ ν + ε.

Let h∗ ∈ V be such that er(h∗) ≤ ν + ε
2
. At step 2, suppose ∆(Vi) > 8θ(ν + ε/2). Then let

V
(θ)
i =

{
h ∈ Vi : ρD(h, h∗) >

∆(Vi)

2θ

}
.

Since for h ∈ Vi, ρD(h, h∗)/∆(Vi) = ρDi
(h, h∗) ≤ erDi

(h) + erDi
(h∗) ≤ erDi

(h) + ν+ε/2
∆(Vi)

, we
have

V
(θ)
i ⊆

{
h ∈ Vi : erDi

(h) >
1

2θ
− ν + ε/2

∆(Vi)

}
⊆

{
h ∈ Vi : erDi

(h)− 1

8θ
> erDi

(h∗) +
3

8θ
− 2

ν + ε/2

∆(Vi)

}
⊆

{
h ∈ Vi : erDi

(h)− 1

8θ
> erDi

(h∗) +
1

8θ

}
.

Let V̄i denote the latter set. By Lemma 1, Si of size O
(
θ2 log 1

δ′

)
suffices to guarantee every h ∈ V̄i

has LB(Si, h, δ′) > UB(Si, h
∗, δ′) in step (iii). Since V

(θ)
i ⊆ V̄i and ∆(Vi \ V

(θ)
i ) ≤ ∆∆(Vi)

2θ

≤
1
2
∆(Vi), we must exit the inner while loop with |Si| = O

(
θ2 log 1

δ′

)
.

On the other hand, suppose that at step 2 we have ∆(Vi) ≤ 8θ(ν + ε/2). In this case, Si

of size O
(
θ2 (ν+ε)2

ε2
log 1

δ′

)
suffices for every h ∈ Vi to have UB(Si, h, δ′) − LB(Si, h, δ′) <

ε
2∆(Vi)

, satisfying the halting conditions. Therefore, we must exit the inner while loop with |Si| =

O
(
θ2 (ν+ε)2

ε2
log 1

δ′

)
.

These two conditions are exhaustive for any iteration of the outer while loop. Noting that there
are at most O(log 1

ε
) iterations of the outer while loop completes the proof.

The following lemma allows us to extend a bound for learning with D to a bound for any D′

that is λ-close to D. The proof is straightforward, and left as an exercise.

Lemma 2. Suppose D′ is such that, ∃λ ∈ (0, 1) s.t. for all measurable sets A, λD(A) ≤ D′(A) ≤
1
λ
D(A). If ∆r,θ,∆′

r, and θ′ are the disagreement rates at radius r and disagreement coefficients
for D and D′ respectively, then

λ∆λr ≤ ∆′
r ≤

1

λ
∆r/λ,
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and thus
λ2θ ≤ θ′ ≤ 1

λ2
θ.

5 Open Problems
One important aspect of active learning that has not been addressed here is the value of unlabeled
examples. Specifically, given an overabundance of unlabeled examples, can we use them to de-
crease the number of label requests required, and by how much? The splitting index bounds of
Dasgupta [4] can be used to study these types of questions in the noise-free setting; however, we
have yet to see a thorough exploration of the topic for agnostic learning, where the role of unlabeled
examples appears fundamentally different (at least in A2).

On the subject of bound tightness, the bound derived here for the number of label requests
made by A2 is sometimes suboptimal with respect to the label complexity of active learning. That
is, there are concept spaces and distributions for which these label complexity bounds are larger
than necessary (and by more than just log factors). In some cases, one can show this gap is due
to a deficiency in the A2 algorithm itself. However, in other cases, the reason for this gap remains
unclear, and in particular it may be possible to derive a tighter bound for A2 (e.g., by reducing θ2

to θ).
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