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Abstract

Traditional methods for analyzing population structure, such as the Structure program, ignore the influence
of the effect of allele mutations between the ancestral and current alleles of genetic markers, which can
dramatically influence the accuracy of the structural estimation of current populations, and reveal additional
information of population evolution such as the the divergence time and migration history of admixed
populations. We propose mStruct, an admixture of population-specific mixtures of inheritance models, that
addresses the task of structure inference and mutation estimation jointly through a hierarchical Bayesian
framework, and a variational algorithm for inference. We validated our method on synthetic data, and used
it to analyze the HGDP-CEPH cell line panel of microsatellites used in [1] and the HGDP SNP data used
in [2]. A comparison of the structural maps of world populations estimated by mStruct and Structure is
presented, and we also report potentially interesting mutation patterns in world populations estimated by
mStruct.
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1 Introduction

The deluge of genomic polymorphism data, such as the genome-wide multilocus genotype profiles of variable
number of tandem repeats (i.e., microsatellites) and single nucleotide polymorphisms (i.e., SNPs), has fueled
the long-standing interest in analyzing patterns of genetic variations to reconstruct the ancestral structures
of modern human populations, because such genetic ancestral information can shed light on the evolution-
ary history of modern populations and provide guidelines for more accurate association studies and other
population genetics problems.

Various methods have been proposed to examine the problem of detecting population structure from
multi-locus genotype information about a set of indviduals. Pritchard et al [3] proposed a model-based
method which uses a statistical methodology known as admixture models to find population structure.
This model, and admixture models in general, belong to a more general class of hierarchical Bayesian
models known as mixed membership models [4], which postulate that genetic markers of each individual are
independent identically distributed iid [3] or spatially coupled [5] samples from multiple population-specific
fixed-dimensional multinomial distributions (known as allele frequency profiles [5], or AP) of marker alleles.
Under this assumption, the admixture model identifies each ancestral population by a specific AP (that
defines a unique vector of allele frequencies of each marker in each ancestral population), and displays the
fraction of contributions from each AP in a modern individual genome as an admixing vector (also known as
an ancestral proportion vector or map vector) in a structural map over the study population sample. Figure
1 shows an example of a structural map of four modern populations inferred from a portion of the HapMap
multi-population dataset by Structure. In this population structural map, the admixing vector underlying each
individual is represented as a thin vertical line which shows the fraction of the individual’s genome which
originated from each ancestral population, as given by a unique AP. This method has been successfully
applied to human genetic data in [1] and has unraveled impressive patterns in the genetic structures of world
population.

A recent extension of Structure, known as the Structurama [6], relaxes the finite ancestral population
assumption in the admixture model by employing a Dirichlet process prior over the ancestral allele fre-
quency profiles, which can automatically estimate the maximum a posteriori probable number of ancestral
populations. Since the need for manual selection of ancestral population cardinality is often considered to
be a drawback of finite admixture models, this extension represents a useful improvement. Anderson et
al [7] address the problem of identifying species hybrids into categories using a model-based Bayesian clus-
tering approach implemented in the NewHybrid program. While this problem is not exactly identical to
the problem of stratifying the structure of highly admixed populations, it is useful for structural analysis
of populations which have recently admixed. The BAPS program developed by Corander et al [8] also uses
a Bayesian approach to find the best partition of a set of individuals into sub-populations on the bases of
genotypes. Parallel to the aforementioned model-based approaches for genomic structural analysis, direct
algebraic eigen-decomposition and dimensionality reduction methods, such as the Eigensoft program devel-
oped by Patterson et al [9] based on Principal Components Analysis (PCA), offer an alternative approach
to explore and visualize the ancestral composition of modern population, and facilitate formal statistical
tests for significance of population differentiation. However, unlike the model-based methods such as the
Structure, where each inferred ancestral population bears a physical meaning as population-specific allele-
frequency profiles, the eigen-vectors computed by Eigensoft represent the mutually-orthogonal directions in
an abstract low-dimensional ancestral space in which population samples can be embedded and visualized;
they can be understood as mathematical surrogates of independent genetic sources underlying a population
sample, but lack an concrete physical interpretation under a generative genetic inheritance model. Analyses
based on Eigensoft are usually limited to 2-dimensional ancestral spaces, offering limited power in stratifying
highly admixed populations.

This progress notwithstanding, an important aspect of population admixing that is largely missing in
the existing methods is the effect of allele mutations between the ancestral and current alleles of genetic
markers, which can dramatically influence the accuracy of the structural estimation of current populations,
and reveal additional information of population evolution such as the the divergence time and migration
history of admixed populations.
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Consider for example the Structure model- since an AP merely represents the frequency of alleles in
an ancestral population, rather than the actual allelic content or haplotypes of the alleles themselves, the
admixture models developed so far based on AP do not model genetic changes due to mutations from the
ancestral alleles. Indeed, a serious pitfall of the model underlying Structure, as pointed out in [10], is that
there is no mutation model for modern individual alleles with respect to hypothetical common prototypes
in the ancestral populations, i.e, every unique allele in the modern population is assumed to have a distinct
ancestral proportion, rather than allowing the possibility of it just being a descendent of some common
ancestral allele that can also give rise to other closely related alleles at the same locus in the modern
population. Thus, while Structure aims to provide ancestry information for each individual and each locus,
there is no explicit representation of “ancestors” as a physical set of “founding alleles”. Therefore, the
inferred population structural map emphasizes revealing the contributions of abstract population-specific
ancestral proportion profiles, which does not directly reflect individual diversity or the extent of genetic
changes with respect to the founders. Therefore, Structure does not enable inference of the founding genetic
patterns, the age of the founding alleles, or the population divergence time [10].

Another important issue in determining population structure is to accurately assess the extent of genetic
admixture in different populations. The Structure model, like a lot of other models, is based on the assump-
tion of presence of admixture. However, as we shall see later, on real data, it produces results that favor
clustering individuals into predominantly one allele frequency profile or the other, thus leading us to conclude
that there was little or no admixing between the ancestral human populations. While such a partitioning of
individuals would be desirable for clustering them into groups, it does not offer us enough biological insight
into the intermixing of the populations.

In this paper, we present mStruct (for structure under mutations), based on a new model: an admixture
of population-specific mixtures of inheritance model (AdMim). Rather than assuming an admixture of
multinomial distributions (of different allele frequencies) as in mStruct, statistically, AdMim is an admixture
of mixtures model, which represents each ancestral population as a mixture of ancestral alleles each with
its own inheritance process, and each modern individual as an “ancestry vector” (or map vector) that
represents membership proportions among the ancestral populations. mStruct facilitates estimation of both
the structural map of populations (incorporating mutations) and the mutation parameters of either SNP
or microsatellite alleles under various context. A new variational inference algorithm was developed for
inference and learning. We compare our method with Structure on both synthetic genotype data, and
on the microsatellite and SNP genotype data of world populations [1, 2]. Our results show the presence
of significant levels of admixture among the founding populations. As our results show, we believe that
Structure’s inability to allow mutations results in it inferring very low levels of admixture in human data.
We also report interesting genetic divergence in world populations revealed by the mutation patterns we
estimated.

2 The statistical model
The mStruct model differs from the Structure model in two main aspects: the representation of ancestral
populations, and the generative process for sampling a modern individual. In this section we describe in
details the statistical underpinning of these two aspects.

2.1 Representation of Populations

To reveal the genetic composition of each modern individual in terms of contributions from hypothetical
ancestral populations via statistical inference on multilocus genotype data, one must first choose an ap-
propriate representation of ancestral populations. We begin with a brief description of a commonly used
method, followed by a new method we propose that allows mutations to be captured.

2.1.1 Population-Specific Allele Frequency Profiles
Since all markers that are used for population strucure determination are polymorphic in nature, it is not
surprising that the most intuitive representation is a set of frequency vectors for all alleles observed at all
the loci. For example, we can represent an ancestral population k by a unique set of population-specific
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multinomial distributions, βk ≡ {~βki ; i = 1 : I}, where ~βki = [βki,1, . . . , β
k
i,L′

i
] is the vector of multinomial

parameters, also known as the allele frequency profile [5], or AP, of the allele distribution at locus i in
ancestral population k; L′i denotes the total number of observed marker alleles at locus i, and I denotes the
total number of marker loci. This representation, known as population-specific allele frequency profiles, is
used by the program Structure.

2.1.2 Population-Specific Mixtures of Ancestral Alleles

Being a vector of observed allele frequencies, an AP does not enable us to allow the possibility of mutations,
i.e, there is no way of representing that two observed alleles might have been derived from a single ancestral
allele by two different mutations. This possibility can be represented in a population by a genetically more
realistic statistical model known as the population-specific mixtures of ancestral alleles (MAA). For each
locus i, an MAA for ancestral population k is a triple {µki , δki , ~βki } consisting of a set of ancestral (or founder)
alleles µki = (µki,1, . . . , µ

k
i,Li

), which can differ from their descendent alleles in the modern population; a
mutation parameter δki associated with the locus, which can be further generalized to be allele-specific if
necessary; and an AP ~βki which now represents the frequencies of the ancestral alleles. Here Li denotes the
total number of ancestral alleles at loci i. By explictly linking a mutation model with the population, we
can now capture mutation events as described above.

An MAA is strictly more expressive than an AP, because the incorporation of a mutation model helps to
capture details about the population structure which an AP cannot; and the MAA reduces to the AP when
the mutation rates become zero and the founders are identical to their descendents. MAA is also arguably
more realistic because it allows mutation rates to be different for different founder alleles even within the
same ancestral population, as is commonly the case with many genetic markers. For example, the mutation
rates for microsatellite alleles are believed to be dependent on their length (number of repeats). As we show
shortly, with an MAA, one can examine the mutation parameters corresponding to each ancestral population
via Bayesian inference from genotype data; this might enable us to infer the age of alleles, and also estimate
population divergence times.

Let i ∈ {1, . . . , I} index the position of a locus in the study genome, n ∈ {1, . . . , N} index an individual
in the study population, and e ∈ {0, 1} index the two possible parental origin of an allele (in this study we
do not require strict phase information of the two alleles, so the index e is merely used to indicate diploid
data). Under an MAA specific to an ancestral population k, the correspondence between a marker allele
Xi,ne and a founder µki,l ∈ µki is not directly observable. For each allele founder µki,l, we associate with it
an inheritance model p(·|µki,l, δki,l) from which descendants can be sampled. Then, given specifications of the
ancestral population from which Xi,ne

is derived from, which is denoted by hidden indicator variable Zi,ne
,

the conditional distribution of Xi,ne
under MAA follows a mixture of population-specific inheritance model:

P (xi,ne
= l′ | zi,ne

= k) =
∑L
l=1 β

k
i,lP (xi,ne

|µki,l, δki,l). Comparing to the counterpart of this function under
AP: P (xi,ne

= l′ | zi,ne
= k) = βki,l′ , we can see that the latter cannot explicitly model allele diversities in

terms of molecular evolution from the founders.

2.2 A New Admixture Model for Population Structure

Admixtures are useful for modeling objects (e.g., human beings) each comprising multiple instances of
some attributes (e.g., marker alleles), each of which comes from a (possibly different) source distribution
Pk(·|Θk), according to an individual-specific admixing coefficient vector (a.k.a. map vector) ~θ. The map
vector represents the normalized contribution from each of the source distributions {Pk ; k = 1 : K} to the
study object. For example, for every individual, the alleles at all marker loci may be inherited from founders
in different ancestral populations, each represented by a unique distribution of founding alleles and the way
they can be inherited. Formally, this scenario can be captured in the following generative process:

1. For each individual n, draw the admixing vector: ~θn ∼ P (·|α), where P (·|α) is a pre-chosen map prior.

2. For each marker allele xi,ne ∈ xn

• 2.1: draw the latent ancestral-population-origin indicator zi,ne ∼ Multinomial(·| ~θn);

• 2.2: draw the allele xi,ne |zi,ne = k ∼ Pk(·|Θk).
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As discussed in the previous section, an ancestral population can be either represented as an AP or as
an MAA. These two different representations lead to two different probability distributions for Pk(·|Θk) in
the last sampling step above, and thereby two different admixtures of very different characteristics.

2.2.1 The existing model

In Structure, the ancestral populations are represented by a set of population-specific APs. Thus the distri-
bution Pk(·|Θk) from which an observed allele can be sampled is a multinomial distribution defined by the
rates of all observed alleles in the ancestral population, i.e., xi,ne

|zi,ne
= k ∼ Multinomial(·|~βki ). Using this

probability distribution in the general admixture scheme outlined above, we can see that Structure essen-
tially implements an admixture of population-specific allele frequency profiles model. This model has been
successfully applied to human genetic data in [1] and has unraveled impressive patterns in the genetic struc-
tures of world population; and it has been generalized to allow linked loci and correlated allele frequencies
in [5]. But a serious pitfall of using such a model, as pointed out in [10], is that there is no error model
for individual alleles with respect to the common prototypes, i.e, every unique measurement at a particular
allele is assumed to be a new allele, rather than allowing the possibility of it just being derived from some
common ancestral allele at that marker as a result of a mutation.

2.2.2 The proposed model
We propose to represent each ancestral population by a set of population-specific MAAs. Recall that in an
MAA for each locus we define a finite set of founders with prototypical alleles µki = (µki,1, . . . , µ

k
i,Li

) that
can be different from the alleles observed in a modern population; each founder is associated with a unique
frequency βki,l, and a unique (if desired) mutation model from the prototype allele parameterized by rate
δki,l. Under this representation, now the distribution Pk(·|Θk) from which an observed allele can be sampled
becomes a mixture of inheritance models each defined on a specific founder; and the ensuing sampling module
to be plugged into the general admixture scheme outlined above (to replace step 2.2) becomes a two-step
generative process:
• 2.2a: draw the latent founder indicator ci,ne |zi,ne = k ∼ Multinomial(·|~βki );
• 2.2b: draw the allele xi,ne |ci,ne = l, zi,ne = k ∼ Pm(·|µki,l, δki,l),

where Pm() is a mutation model that can be flexibly defined based on whether the genetic markers are
microsatellites or single nucleotide polymorphisms. We call this model an admixture of population-specific
inheritance models (AdMim), while the previous model is technically only an admixture of population specific
allele frequency profiles. Figure 2(a) shows a graphical model the overall generative scheme for AdMim, in
comparison with the admixture of population-specific allele rates discussed earlier. From the figure, we can
clearly see that mStruct is an extended Structure model which allows noisy observations.

For simplicity of presentation, in the model described above we assume that for a particular individual,
the genetic markers at each locus are conditionally iid samples from a set of population-specific fixed-
dimensional mixture of inheritance models, and that the set of founder alleles at a particular locus is the
same for all ancestral populations (µki = µi). We shall also assume that the mutation parameters for
each population at any locus are independent of the alleles at that locus (δki,l = δki ). Also our model
assumes Hardy-Weinberg equilibrium within populations. The simplifying assumptions of unliked loci, no
linkage disequilibrium between loci within populations can be easily removed by incorporating Markovian
dependencies over ancestral indicators Zi,ne and Zi+1,ne of adjacent loci, and over other parameters such
as the allele frequencies ~βki in exactly the same way as in Structure. We can also introduce Markovian
dependencies over mutation rates at adjacent loci, which might be desirable to better reflect the dynamics
of molecular evolution in the genome. We defer such extensions to a later paper.

2.3 Mutation model

As described above, our model is applicable to almost all kinds of genetic markers by plugging in an ap-
propriate allele mutation model (i.e., inheritance model) Pm(). We now discuss two mutation models, for
microsatellites and SNPs, respectively.
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2.3.1 Microsatellite mutation model

Microsatellites are a class of tandem repeat loci that involve a base DNA unit of 1-4 base pairs in length.
They are special in that microsatellite DNA has significantly high mutation rates as compared to other DNA,
with mutation rates as high as 10−3 or 10−4 [11, 12]. The large amount of variation present in microsatellite
DNA makes it ideal for differentiating between closely related populations. Microsatellite loci have been used
before DNA fingerprinting [13], linkage analysis [14], and in the reconstruction of human phylogeny [15]. By
applying theoretical models of microsatellite evolution to data, questions such as time of divergence of two
populations can be attempted to be addressed [16, 17].

The choice of a suitable microsatellite mutation model is important, for both computational and inter-
pretation purposes. Below we discuss the mutation model that we use and the biological interpretation of
the parameters of the mutation model. We begin with a stepwise mutation model for microsatellites widely
used in forensic analysis [18, 19].

This model defines a conditional distribution of a progeny allele b given its progenitor allele a, both of
which take continuous values:

p(b|a) =
1
2
ξ(1− δ)δ|b−a|−1, (1)

where ξ is the mutation rate (probability of any mutation), and δ is the factor by which mutation decreases
as distance between the two alleles increases. Although this mutation distribution is not stationary (i.e.
it does not ensure allele frequencies to be constant over the generations), it is simple and commonly used
in forensic inference. To some degree δ can be regarded as a parameter that controls the probability of
unit-distance mutation, as can be seen from the following identity: p(b+ 1|a)/p(b|a) = δ.

In practice, the alleles for almost all microsatellite markers are represented by discrete integer counts.
Also the two-parameter stepwise mutation model described above complicates the inference process. We
propose a discrete microsatellite mutation model that is a simplification of Eq.1, but captures its main idea.
We posit that: P (b|a) ∝ δ|b−a|. Since b ∈ [1,∞), the normalization constant of this distribution is:

∞∑
b=1

P (b|a) =
a∑
b=1

δa−b +
∞∑

b=a+1

δb−a

=
1− δa

1− δ
+

δ

1− δ

=
1 + δ − δa

1− δ
,

which gives the mutation model as

P (b|a) =
1− δ

1− δa + δ
δ|b−a|. (2)

We can interpret δ as a variance parameter, the factor by which probability drops as a fuction of the distance
between the mutated version b of the allele a. Figure 3 shows the discrete pdf for various values of δ.

Determination of founder set at each locus: According to our model assumptions, there can be a
different number of founder alleles at each locus. This number is typically smaller than the number of alleles
observed at each marker since the founder alleles are “ancestral”. To estimate the appropriate number
and allele states of founders, we fit finite mixtures (of fixed size, corresponding to the desired number of
ancestral alleles) of microsatellite mutation models over all the measurements at a particular marker for
all individuals. We use the Bayesian Information Criterion (BIC) to determine the best number and state-
estimation of founder alleles to use at each locus, since information criteria tend to favor smaller number of
founder alleles which fit the observed data well.

For each locus, we fit many different finite-sized mixtures of mutation distributions, with the size varying
from 1 to the number of observed alleles at the locus. For each mixture size, the likelihood is optimized and
a BIC value is computed. The number of founder alleles is chosen to be the size of the mixture that has
the best (minimum) BIC value. It is important to note that this can be performed as a pre-processing step
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before the actual inference or estimation procedures since we assumed that the set of founder alleles at each
locus was the same for all populations.

Choice of mutation prior: In our model, the δ parameter, as explained above, is a population-specific
parameter that controls the probability of stepwise mutations. Being a parameter that controls the variance
of the mutation distribution, there is a possibility that inference on the model will encourage higher values
of δ to improve the log-likelihood, in the absence of any prior distribution on δ. To avoid this situation, and
to allow more meaningful and realistic results to emerge from the inference process, we impose on δ a beta
prior that will be biased towards smaller values of δ. The beta prior will be a fixed one and will not be
among the parameters we estimate.

2.3.2 SNP mutation model

SNPs, or single nucleotide polymorphisms, represent the largest class of individual differences in DNA. In
general, there is a well-defined correlation between the age of the mutation producing a SNP allele and the
frequency of the allele. For SNPs, we use a simple pointwise mutation model, rather than more complex
block models. Thus, the observations in SNP data are only binary in nature (0/1). So, given the observed
allele b, we say that the probability of it being derived from the founder allele a is given by:

P (b|a) = δI[b=a] × (1− δ)I[b 6=a]; a, b ∈ {0, 1}. (3)

In this case, the mutation parameter δ is the probability that the observed allele is not identical to the
founder allele, but derived from it due to a mutation.

2.4 Inference and Parameter Estimation

2.4.1 Probability distribution on the model

For notational convenience, we will ignore the diploid nature of observations in the analysis that follows.
With the understanding that the analysis is carried out for the nth individual, we will drop the subscript
n. Also, we overload the indicator variables zi and ci to be both, arrays with only one element equal to 1
and the rest equal to 0, as well as scalars with a value equal to the index at which the array forms have 1s.
In other words: zi ∈ {1, . . . ,K}, ci ∈ {1, . . . , L}, zi,k = I[zi = k], and ci,l = I[ci = l], where I[·] denotes an
indicator function that equals to 1 when its argument is true and 0 otherwise.

The joint probability distribution of the the data and the relevant variables under the AdMim model can
then be written as:

P
“
x, z, c, ~θ|α,β, µ, δ

”
= p

“
~θ|α
” IY
i=1

P
“
zi|~θ
”
P
“
ci|zi, ~βk=1:K

i

”
P
“
xi|ci, zi, µi, δk=1:K

i

”
The marginal likelihood of the data can be computed by summing/integrating out the latent variables.

P (x|α,β, µ, δ) =
Γ
“PK

k=1 αk
”

QK
k=1 Γ (αk)

Z  KY
k=1

θ
αk−1
k

!
. . .

×
IY
i=1

KX
k=1

 
KY
k=1

θ
zi,k

k

!
IX
i=1

KY
k=1

LiY
l=1

“
βki,l

”ci,lzi,k

× P
“
xi|µi,l, δki

”ci,lzi,k

d~θ

However, a closed-form solution to this summation/integration is not possible, and indeed exact inference
on hidden variables such as the map vector ~θ, and estimation of model parameters such as the mutation
rates δ under AdMim is intractable. [3] developed an MCMC algorithms for approximate inference for their
admixture model underlying Structure. While it is straightforward to implement a similar MCMC scheme for
AdMim, we choose to apply a computationally efficient approximate inference method known as variational
inference [20].
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2.5 Variational Inference

We use a mean-field approximation for performing inference on the model. This approximation method ap-
proximates an intractable joint posterior p() of the all hidden variables in the model by a product of marginal
distributions q() =

∏
qi(), each over only a single hidden variable. The optimal parameterization of qi() for

each variable is obtained by minimizing the Kullback-Leibler divergence between the variational approxima-
tion q and the true joint posterior p. Using results from the the Generalised Mean Field theory [21], we can
write the variational distributions of the latent variables as follows:

q(~θ) ∝
KY
k=1

θ
αk−1+

PI
i=1 〈zi,k〉

k

q(ci) ∝
LY
l=1

 
KY
k=1

“
βki,lf(xi|µi,l, δki )

”〈zi,k〉
!ci,l

q(zi) ∝
KY
k=1

 
e〈log(θk)〉

 
LY
l=1

βki,lf(xi|µi,l, δki )
〈ci,l〉

!!zi,k

.

In the distributions above, the ‘〈·〉’ are used to indicate the expected values of the enclosed random variables.
A close inspection of the above formulas reveals that these variational distributions have the form q(~θ) ∼
Dirichlet(γ1, . . . , γK), q(zi) ∼ Multinomial(ρi,1, . . . , ρi,K), and q(ci) ∼ Multinomial(ξi,1, . . . , ξi,L), respectively,
where the parameters γk, ρi,k and ξi,l are given by the following equations:

γk = αk +
I∑
i=1

〈zi,k〉

ρi,k =
e〈log(θk)〉

(∏L
l=1 β

k
i,lf(xi|µi,l, δki )〈ci,l〉

)
∑K
k=1

(
θk

(∏L
l=1 βiklf(xi|µil, δik)〈cil〉

))
ξi,l =

∏K
k=1

(
βki,lf(xi|µi,l, δki )

)〈zi,k〉

∑K
k=1

(∏K
k=1

(
βki,lf(xi|µi,l, δi,k)

)〈zi,k〉
)

and they have the properties: 〈log(θk)〉 = γk, 〈zi,k〉 = ρi,k and 〈ci,l〉 = ξi,l, which suggest that they can be
computed via fixed point iterations. It can be shown that this iteration will converge to a local optimum,
similar to what happens in an EM algorithm. Empirically, a near global optimal can be obtained by multiple
random restarts of the fixed point iteration. Typically, such a mean-field variational inference converges much
faster then sampling [21]. Upon convergence, we can easily compute an estimate of the map vector ~θ for
each individual from {〈log(θk)〉 ; k = 1 : K}.

3 Hyperparameter Estimation

The hyperparameters of our model, i.e., {µ, δ,β}, and the Dirichlet hyperparameter α, can be estimated by
maximizing the lower bound on the log-likelihood as a function of the current values of the hyperparameters,
via a variational EM algorithm. For the hyperparameter estimation, we perform empirical Bayes estima-
tion using the variational Expectation Maximization algorithm described in [22]. The variational inference
described in Section 2.5 provides us with a tractable lower bound on the log-likelihood as a function of the
current values of the hyperparameters. We can thus maximize it with respect to the hyperparameters. If
we alternately carry out variational inference with fixed hyperparameters, followed by a maximization of the
lower bound with respect to the hyperparameters for fixed values of the variational parameters, we can get
an empirical Bayes estimate of the hyperparameters. The derivation, details of which we will not show here,
leads to the following iterative algorithm:

1. (E-step) For each individual, find the optimizing values of the variational parameters (γn, ρn, ξn;n ∈
1, . . . , N) using the variational updates described above.
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2. (M-step) Maximize the resulting variational lower bound on the likelihood with respect to the model
parameters, namely α, β, µ, δ.

The two steps are repeated until the lower bound on the log-likelihood converges.

3.1 Bayes estimates of hyperparameters

Denote the original set of hyperparameters by

H = {α,β, µ, δ} (4)

and the variational parameters for the nth individual by

Vn = {γn, ρn, ξn} (5)

The variational lower bound to the log-likelihood for the nth individual is given by:

Ln(H,Vn) = Eq[log p(xn, ~θn, z.,n, c.,n; H)]

− Eq[log q(~θn, z.,n, c.,n; H,Vn)]
(6)

The subscripts indicate the nth individual. As described earlier, we partition the variational approximation
as:

q(~θn, z.,n, c.,n; H,V) = q(~θn)
I∏
i=1

q(zi,n)q(ci,n) (7)

So we can expand Equation 6 as

Ln(H,Vi) = Eq[log p(~θn;α)] + Eq[log p(z.,n|~θn)] + Eq[log p(c.,n|z.,n)]

+ Eq[log p(xn|c., n, z.,n,β)]− Eq[log q(~θn)]− Eq[log q(z., n)]− Eq[log q(c., n)] (8)

The lower bound to the total data log-likelihood is

L(H,V) =
N∑
n=1

Ln(H,Vn)

which, on substituting from Equation 8 becomes

L(H,V) =
N∑
n=1

Eq[log p(~θn;α)] +
N∑
n=1

Eq[log p(z.,n|~θn)]

+
N∑
n=1

Eq[log p(c.,n|z.,n)] +
N∑
n=1

Eq[log p(xn|c.,n, z.,n,β)]

−
N∑
n=1

Eq[log q(~θn)]−
N∑
n=1

Eq[log q(z.,n)]

−
N∑
n=1

Eq[log q(c.,n)]

(9)
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Simplifying each term in Equation 9, we get

L(H,V) = N log Γ

(
K∑
k=1

αk

)
−N

K∑
k=1

log Γ (αk) +
N∑
n=1

K∑
k=1

(αk − 1)

[
ψ (γnk )− ψ

(
K∑
k=1

γnk

)]

+
N∑
n=1

I∑
i=1

K∑
k=1

ρni,k

[
ψ (γnk )− ψ

(
K∑
k=1

γnk

)]

+
N∑
n=1

I∑
i=1

K∑
k=1

Li∑
l=1

ξni,lρ
n
i,k log βkil

+
N∑
n=1

I∑
i=1

K∑
k=1

Li∑
l=1

ξni,lρ
n
i,k

[
log (1− δki ) + |xi,n − µi,l| log δki − log

(
1 + δki −

(
δki
)µi,l

)]
−

N∑
n=1

[
log Γ

(
K∑
k=1

γnk

)
−

K∑
k=1

log Γ (γnk )
K∑
k=1

(γnk − 1)

[
ψ (γnk )− ψ

(
K∑
k=1

γnk

)]]

−
N∑
n=1

I∑
i=1

Li∑
l=1

ξni,l log ξni,l

−
N∑
n=1

I∑
i=1

K∑
k=1

ρni,k log ρni,k

(10)

Each line in Equation 10 corresponds to an expectation term in Equation 9. In the following subsections,
we will briefly describe how the maximum-likelihood estimates of the hyperparameters were obtained from
the variational lower bound.

3.2 Estimating ancestral allele frequency profiles β

Since β is a table of probability distributions, the values of its elements are constrained by the equality∑Li

l=1 β
k
i,l = 1 for all combinations of {i, k}. So to find the optimal values of β satisfying this constraint while

maximizing the variational lower bound, we introduce lagrange multipliers νi,k. The new objective function
to maximize is then given by:

Lnew(H,V) = L(H,V) +
I∑
i=1

K∑
k=1

νi,k

(
Li∑
l=1

βki,l − 1

)
(11)

Maximizing this objective function gives:

βki,l =

∑N
n=1 ξ

n
i,lρ

n
i,k∑Li

l=1

∑N
n=1 ξ

n
i,lρ

n
i,k

(12)

We use a uniform dirichlet prior λ on each multinomial ~βki . Under this prior, it is not difficult to show that
the estimate of βki,l changes to

βki,l =
λ+

∑N
n=1 ξ

n
i,lρ

n
i,k

λ ∗ Li +
∑Li

l=1

∑N
n=1 ξ

n
i,lρ

n
i,k

(13)

3.3 Estimating the Dirichlet prior on populations α

For estimating α we use the method described by Minka in [23]. This gives a Newton-Raphson iteration for
α that does not involve inversion of the Hessian, and hence is reasonably fast. The update equation we get
is:

αnew = αold −
(
H−1g

)
(14)
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where (
H−1g

)
k

=
gk − b
qkk

gk = Nψ

(∑
k

αk

)
−N

∑
k

ψ (αk)

+
∑
i

∑
k

[
ψ (γnk )− ψ

(∑
k

γnk

)]
qjk = −Nψ

′
(αk) δ (j − k)

b =

∑
j gj/qjj

1/z −
∑
j 1/qjj

z = Nψ
′

(∑
k

αk

)

3.4 Estimating the ancestral alleles µ and the cumulative mutation parameters
δ

For finding the optimal values of µ and δ, we use simple gradient ascent with line search. µ are actually
discrete variables, however, as an approximation, we will assume them to be continuous in the optimization
and round off the result to the nearest integer. The gradient of the variational lower bound with respect to
µil is given by

∂L

∂µil
=

N∑
n=1

K∑
k=1

ξnilρ
n
ik log δik

[
sign (xnm − µil) +

δµil

ik

1 + δik − δµil

ik

]
(15)

The gradient with respect to δik is given by

∂L

∂δik
=

N∑
n=1

Li∑
l=1

ξnilρ
n
ik

[
|xnm − µil|

δik
− 1

1− δik
−

1− µilδµil−1
ik

1 + δik − δµil

ik

]
(16)

Since the values of δ are constrained to be in [0, 1], we use the logit transformation to create a mapping from
[0, 1] to R. This gives us the equations:

σik = log
(

δik
1− δik

)
δik = sigmoid (σik)
∂L

∂σik
=

∂L

∂δik

∂δik
∂σik

=
∂L

∂δik
× δik (1− δik)

We can then perform gradient ascent on each µ and δ separately, and repeat this a number of times, to obtain
values that increase the lower bound. To constrain values of the mutation parameter δ to allow meaningful
interpretation, we use a β prior on it with a small expected value( around 0.1).

While the gradient methods developed are useful for small datasets, they are inefficient on larger datasets
and increase the time required for estimation. Hence we look at a couple of small approximations that help
speed up the hyperparameter estimation. A careful look at the results produced indicates that once the
founder alleles have been picked initially by fitting a mixture of mutation distributions individually at each
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locus, the later gradient descent on µ only makes very minor changes in their values, if any at all. So, to
improve the speed of the algorithm, we do not perform gradient descent on the founder alleles µ but fix them
after initialization. We show below an approximation for estimating the mutation parameter δ.
For the estimation of the mutation parameter (δ), the only relevant term in the likelihood lower bound is
the term:

L(δki ) =
N∑
n=1

Li∑
l=1

ξni,lρ
n
i,k × log f(xni ;µi,l, δki )

+
δki

∆1−1(1− δki )∆2−1

B (∆1,∆2)

+ (Terms not involving δki )

(17)

And for the mutation distribution, we use the discrete distribution whose pdf is

f(x|µ, δ) =
(1− δ)δ|x−µ|

1 + δ − δµ
(18)

3.4.1 Approximation

We will assume δ to be small in equation 18. So we can ignore the term exponential in µ in the denominator,
reducing it to only (1 + δ). The expansion of (1 + δ)−1 is given by

1
1 + δ

= 1− δ + δ2 − δ3 + . . . (19)

≥ 1− δ (20)

This gives us a lower bound to the mutation distribution to be

flb(x|µ, δ) = (1− δ)2δ|x−µ| (21)

It is not hard to show that using this form for the mutation distribution allows a closed form MLE for δ.
This approximation gives us a lower bound to the likelihood that is not as tight as the variational lower
bound. However, it offers a significant improvement in time complexity due to the the existence of a closed
form solution, thus avoiding the need for slow gradient-based methods.

4 Experiments and Results
We validated our model on a synthetic microsatellite dataset where the simulated values of the hidden
map vector θn of each individual and the population parameters {µk, δk, ~βk} of each ancestral population
are known as ground truth. The goal is to assess the performance of mStruct in terms of accuracy and
consistency of the estimated map vectors and population parameters, and test of the correctness of the
inference and estimation algorithms we developed. We also conduct empirical analysis using mStruct of two
real datasets: the HGDP-CEPH cell line panel of microsatellite loci and the HGDP SNP data, in comparison
with the Structure program (version 2.2).

4.1 Validations on Synthetic Data

We simulated 20 microsatellite genotype dataset using the AdMim generative process described in section
2.2, with 100 diploid individuals from 2 ancestral populations, at 50 genotype loci. Each locus has 4
founding alleles, separated by adjustable distances; the mutation parameter at each locus for both populations
had default value 0.1, but can be varied to simulate different degrees of divergence. The founding allele
frequencies, ~βki , were drawn from a flat Dirichlet prior with parameter 1. The map vectors θn were sampled
from a symmetric beta distribution with parameter α, allowing different levels of admixing. We examine the
accuracies of several estimates of interest under a number of different simulation conditions, and for each
condition we report the statistics of the accuracies across 20 iid synthetic datasets.
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4.1.1 Accuracy of population Map estimate

The map vector θn reflects the proportions of contributions from different ancestral population to the marker-
alleles of each individual. The display of the map vectors of all individuals in a study population gives a
Map of population structure (see, e.g., Fig. 1 in the introduction), which has been the main output of the
Structure program . We compare the accuracy of the estimated θn w.r.t. the ground truth recorded during
the simulation in terms of their L1 distances.

Figure 3 shows an example of this comparison, and we can see that mStruct is visually more accurate
than Structure. Figure 5 shows the accuracy of the Map estimate by mStruct on synthetic datasets simulated
with different properties, in comparison with that of Structure. Fig. 5(a) shows that, under different degrees
of biases of population admixing induced by the Dirichlet prior of θn, mStruct consistently performs better
than Structure, which shows the consistency and correctness of our inference and parameter estimation
procedures. Specifically, as the value of the Beta prior hyperparameter α increases, fewer individuals tend
to belong completely to only one population, and more and more individuals become highly admixed. As
the figure shows, the performance of both methods degrades as we progress toward this end; however,
the severity of degradation of mStruct is much less than that of Structure. mStruct remains robust and
dominates Structure constantly as the separations between founding alleles decreases (Fig.5(b)), which tends
to increasingly confound the ancestral origins of modern alleles. Finally, Fig. 5(c) shows how the presence
of mutations affects the performance of both methods. At very low values of the mutation parameters, the
performances of both models are comparable; but as the mutation parameter increases in magnitude, the
performance of Structure degrades significantly. On the other hand, the decrease in accuracy for mStruct is
hardly noticeable. This shows that our model is resistant to the confounding effect of large mutations.

4.1.2 Accuracy of parameter estimation

An important aspect of guarantee and utility we desire for our model and inference algorithm is that it
should offer consistent estimates of the population parameters {µk, δk, ~βk} underlying the composition of
the ancestral population and their inheritance processes. These estimates offer important insight of the
evolutionary history and dynamics of modern population genotype data. We have extensively investigated
the robustness and accuracy of all these estimates. Due to space limitations, here we report highlights of
mutation rate estimation.
Mutation parameter estimation: We evaluate the performance at recovery of δk’s by a simple distance
measure, such as the L1 distance measure, between the true and inferred values. As explained earlier, the
use of a beta prior on each parameter avoids the situation where the variation parameters can be used
to accommodate errors into the model if not properly biased initially. So we expect that using the prior
improves the recovery of the population-specific mutation parameters. As shown in Figure 6, the estimates
of δk’s are robust and remain low-bias under different degree of admixing (due to changing α) and different
ancestor dispersion (due to changing distances among the µk’s). The accuracy decreases as the value of the
mutation parameter itself increases, but remains respectable, as shown in Figure. 6(c).

4.2 Empirical Analysis of Real Datasets

The HGDP-CEPH cell line panel [24, 25] used in [1] contains genotype information from 1056 indviduals
from 52 populations at 377 autosomal microsatellite loci, along with geographical and population labels.
The HGDP SNP data [2] contains the SNPs genotypes at 2834 loci of 927 unrelated individuals that overlap
with the HGDP-CEPH data. To make results for both types of data comparable, we chose the set of only
those individuals present in both datasets. As in [1], the choice of the total number of ancestral populations
can be left to the user; we tried K ranging from 2 to 5, and we applied BIC to decide the Bayes optimal
number of ancestral populations within this range to be K = 4. Below, we present the structural analysis
under four ancestral populations.

4.2.1 Structural maps from HGDP data
We compare the structural maps inferred from both the microsatellite and the SNP data using mStruct and
Structure (top panels in Figure 7 and Figure 8). The structural maps produced by both programs are quite
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similar in the case of SNPs, but are very different for microsatellites. The most obvious difference between the
maps produced by both programs is the degree of admixing that the individuals in the program are assigned.
Structure assigns each geographical population to a distinct ancestral allele frequency profile. Thus, it seems
to predict very little admixing effect in modern human populations. While useful for clustering, this might
result in loss of potentially useful information about the actual evolutionary history of populations. In
contrast, the structure map produced by mStruct from microsatellite data suggests that all populations
share a common ancestral population with a unique extra component (represented by the magenta color in
Figure 7) that characterizes their particular genotypes. It is interesting to note that clustering individuals
by the ancestry proportion vectors due to mStruct will produce exactly the same clustering partitions as
that due to Structure. The structural maps produced in the case of SNP data are quite similar for both
softwares, with results from mStruct again predicting more admixture than Structure. It is also interesting
to see that the ancestry proportions for European and Middle Eastern regions are more distinct from each
other in mStruct than in Structure, allowing for better separation of the two geographical regions. A possible
cause for the inconsistency between the results produced by mStruct for SNP data and microsatellite data
could be the large difference between their mutation rates, or due to the choice of a simplistic mutation
model that might not be powerful enough to capture mutations.
4.2.2 Analysis of the mutation spectrums
Now we report a preliminary analysis of the evolutionary dynamics reflected by the estimated mutation
spectrums of different ancestral populations (denoted “am-spectrum”), and of different modern geographical
populations (denoted “gm-spectrum”), which is not possible by Structure. For the am-spectrum, we compute
the mean mutation rates over all loci and founding alleles for each ancestral population as estimated by
mStruct. We estimate the gm-spectrum as follows: for every individual, a mutation rate is computed
as the per-locus number of observed alleles that are attributed to mutations, weighted by the mutation
rate corresponding to the ancestral allele chosen for that locus. This can be computed by observing the
population-indicator (Z) and the allele-indicator (C) for each individual. We then compute the population
mutation rates by averaging mutation rates of all individuals having the same geographical label.

As shown in the gm-spectrums in Figure 7 and Figure 8 (lower sub-panels on the right), the mutation
rates for African populations are indeed higher than those of other modern populations. This indicates
that they diverged earlier, a common hypothesis of human migration. Other trends in the gm-spectrums
also reveal interesting insights, which we do not have space to discuss. The am-spectrums of SNP data in
Figure 8 suggest that the founder ancestral population that dominates modern African populations has a
higher mutation rate than the other ancestral population, indicating that is the older of the two ancestral
populations. The mutation estimates are largely consistent for both microsatellites and SNPs in comparative
order, but vastly different in numerical values.

4.3 Model selection
As with all probabilistic models, we face a tradeoff between model complexity and the log-likelihood value
that the model achieves. In our case, complexity is controlled by the number of ancestral populations we
pick, K. Unlike non-parametric or infinite dimensional models( Dirichlet processes etc.), for models of fixed
dimension, it is not clear in general as to what value of K gives us the best balance between model complexity
and log-likelihood. In such cases, different information criteria are often used to determine the optimal model
complexity. To determine what number of ancestral populations fit the HGDP SNP and microsatellite data
best, we computed BIC scores for K=2 to K=5 for both kinds of data separately. The results are shown in
Figure 9. From the BIC curves for both SNP and microsatellite data, we can see that the curves suggest
K=4 as the best fit for the data.

5 Discussions
The task of estimating the genetic contributions of ancestral populations, i.e., structural map estimation,
in each modern individual is an important problem in population genetics. Due to the relatively high rates
of mutation in markers such as microsatellites and SNPs, multilocus genotype data usually harbor a large
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amount of variations, which allows differentiation even between populations that have close evolutionary rela-
tionships. However, to our knowledge, none of the existing methods is able to take advantage of this property
to compare how marker mutation rates vary with population and locus, while at the same time exploiting
such information for population structural estimation. Traditionally, population structure estimation and
mutation spectrum estimation have been performed as separate tasks.

We have developed mStruct, which allows estimation of genetic contributions of ancestral populations in
each modern individual in light of both population admixture and allele mutation. The variational inference
algorithm that we developed allows tractable approximate inference on the model. The ancestral proportions
of each individual enable representing population structure in a way that is both visually easy to interpret,
as well as amenable to further computational analysis.

The statistical modeling differences between mStruct and Structure provide an interesting insight into
the possible reasons which lead to mStruct inferring higher levels of admixture than Structure. In Struc-
ture’s representation of population, every microsatellite allele is considered to be a separate element of the
population, even though they might be very similar. In the inheritance model representation, such alleles
are considered to be derived from a single ancestral allele. This gives extra similarity to the individuals
possessing these alleles. This is probably the main reason that the inferred levels of admixture are higher in
mStruct and Structure.

Another parameter that would also affect inferred levels of admixture is the δ parameter which determines
the variance of the mutation distributions. Higher values of δ (tending to 1) lead to significantly higher levels
of inferred admixture. If a strong prior is not used, the δ values tend towards 1 in the initial few steps of
the variational EM algorithm. This seems to happen due to the initial imprecise assignments for the z and
c indicator variables. However, the region of high δ values is a region of low log-likelihood in the parameter
space and the EM quickly finds a local optimum which is undesirable due to the low log-likelihood of that
region of the parameter space.

In conjunction with geographical location, the inferred ancestry proportions could be used to detect
migrations, sub-populations etc. quite easily. Moreover, the ability to estimate population and locus specific
mutation rates also allows us to substantiate evolutionary dynamics claims based on high/low mutation
rates in certain geographical population, or on high/low mutation rates at certain loci in the genome. While
the estimates of mutation rates that mStruct provides are not on an absolute scale, the comparison of their
relative magnitudes is certainly informative.

As of now, there remain a number of possible extensions to the methodology we presented so far. It
would be instructive to see the impact of allowing linked loci as in [5]. We have not yet addressed the
issue of the most suitable choice of mutation process, but instead have chosen one that is reasonable and
computationally tractable. It would be interesting to combine mStruct with the nonparametric Bayesian
models based on the Dirichlet processes as in programs such as Spectrum [26] and Structurama [6].
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Figure 1: Population structural map inferred by Structure on HapMap data consisting of 4 populations.
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Figure 2: Graphical Models: the circles represent random variables and diamonds represent hyperparameters.
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θ. Middle panel shows the estimates by mStruct. Right panel shows the estimates from Structure.
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Figure 5: Accuracy of ancestry proportion vector θ estimation under different conditions.
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Figure 6: Accuracy of microsatellite mutation parameter estimation
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