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Abstract

Inference in Markov random fields, and development and evaluation of similarity measures for
nodes in graphs, are both active areas of data-mining research. In this paper, we demonstrate a
formal connection between inference in tree-structured Markov random fields and personalized
PageRank, a widely-used similarity measure for graph nodes based on graph-walks. In particular
we show a connection between computation of marginal probabilities in tree-structured discrete-
variable pairwise MRFs, and computation of similarity between vertices of a graph using the per-
sonalized PageRank measure: roughly speaking, for these MRFs, computing a marginal proba-
bility Pr(Xi = j) can be reduced to computing a small set of personalized-PageRank similarity
vectors, followed by a very limited postprocessing stage.





1 Introduction
Developing and evaluating useful measures for the similarity of nodes in a graph is an active area
of data-mining research (e.g., [26, 4, 18, 27, 32, 24]), and one widely-used family of similarity
measures are based on random walks on a graph [26, 11, 12, 3, 32]. Graph-walk based similar-
ity measures have been used for various applications including information retrieval [3], schema
matching [22], word-sense disambiguation [33], entity resolution [7], and personal information
management tasks [24]. Novel techniques have been explored for computing these measures effi-
ciently (e.g., [13, 9, 32, 6]) or tuning them to specific tasks (e.g., [23, 10, 33, 1]). These measures
are closely related to similarity measures widely used for semi-supervised learning (e.g., [16, 35])
and spectral clustering (e.g., [21]) and are broadly similar to spreading activation, a model of
human cognition that has been actively studied for nearly 40 years (e.g., [29, 2]).

Graphs are also used heavily in another active research area: in research on learning and infer-
ence with probabilistic models, graphical probabilistic models such as Bayes networks and Markov
random fields (MRFs) are widely used (e.g., [28], [14],[5, Chapter 8]). MRFs are used in the well-
known junction-tree algorithm for inference in Bayes networks [8]. Conditional random fields—
i.e., MRFs tuned to optimize conditional probability of one set of variables given another—are
also widely used for structured learning problems (e.g., [17, 31, 20]). MRFs are also used as an
inferential “building block” in Markov logic networks [30], a well-studied first-order probabilistic
model.

While MRFs are generally visualized as undirected graphs, they are graphs with a very spe-
cial internal structure, and it is unclear to what extent data-mining techniques developed for other
graphs can be usefully applied to MRFs. In this paper, we demonstrate a formal connection be-
tween graph-walk based similarity measures and inference in MRFs. More specifically, we show
a connection between computation of marginal probabilities in certain MRFS, and computation of
similarity between vertices of a graph using the widely-used personalized PageRank (PPR) mea-
sure [26], also known as random walk with restart [32]. Our result shows that for certain MRFs,
computing a marginal probability Pr(Xi = j) can be reduced to computing a small set of PPR
similarity measures, followed by a very limited postprocessing stage.

A little more precisely, our results hold for any tree-structured MRFs with discrete variables and
binary cliques—a class that includes most MRFs used in conditional random fields or generated by
the junction tree algorithm. We show that for an MRF of this form with L leaves and |Y| values of
the variable Xi, then the marginal probability distribution Pr(Xi) can be approximated arbitrarily
well in O(L) time using |Y| calls to an oracle that computes a PPR ranking vector, where a
PPR ranking vector is simply the result of a personalized-PageRank similarity computation. The
constructions used in the proof are quite simple, and give an interesting insight into probabilistic
inference in MRFs. Some consequences of this result are discussed in Section 4.

The remainder of the paper is organized as follows. After presenting some background material
on graphs, MRFs, and similarity computation, we present in Section 3.1 a simplified version of the
main result, in the form of a theorem relating MRF inference to a similarity measure for graphs
that we call “all-paths similarity”: this measure is not widely used in experimental practise, but is
more transparently related to MRF inference. We then present two sets of corollaries of this result,
which allow us to relate MRF inference to more efficient computations of all-paths similarity. In

1



Section 3.4 we extend the result of Section 3.1 to the more commonly-used personalized PageR-
ank measure, and show a connection between MRF inference and computation of PPR ranking
vectors over a certain family of directed graphs, and in Section 3.5 we extend this result to PPR
ranking vectors over undirected graphs. Finally, in Section 3.6 we experimentally investigate cer-
tain convergence issues which are not tightly bounded by our theoretical results, and in Section 4
we conclude with a summary of the results, a discussion of related work, and a discussion of the
consequences of these results.

2 Background

2.1 Graphs
Graphs arise in many contexts within computer science: for instance, collections of hypertext,
social networks, and protein-protein interactions are commonly formalized as graphs. Formally, a
(directed) graph G = (V,E) has a set of vertices V and a set of edges E ⊆ V × V ×R, where an
edge (v, v′, w) is a directed link from v to v′ with weight w. We will assume here that edge weights
w lie in the range 0 ≤ w < 1. A graph is undirected iff each edge has an inverse with the same
weight, and acyclic iff there are no paths from a vertex to itself.

A path through a graph G is a sequence of triples

p = 〈(v0, v1, w1), (v1, v2, w2), . . . , (vT−1, vT , wT )〉

such that every triple (vt−1, vt, wt) is in E. The weight of the path p is defined as weight(p) ≡∏T
t=1wt. The set of all paths from v to v′ is written paths(G, v, v′). Here and elsewhere, the

argument G will be omitted when it is clear from context.
Sometimes it is convenient to think of V as the set of integers {1, . . . , |V |}, and to think of E

as a weight matrix W. Formally, the weight matrix W for a graph G = (V,E) is a |V | × |V |
matrix such that W[v, v′] is the weight of the edge from v to v′ (or zero if no such edge exists).
We use ev to denote a unit vector with |V | components, all of which are zero except for the v-th
component, which is one.

2.2 “All-paths” similarity
It is often useful to define some notion of “closeness” or similarity over the vertices in a graph. If
the edge-weights in a graph are all in the interval [0, 1), then one reasonable notion of similarity
for two vertices v, v′ in a directed acyclic graph (DAG) G is simply the total weight of all the paths
between v and v′:

SIM AP
G (v, v′) ≡

∑
p∈paths(G,v,v′)

weight(p) (1)

According to this measure, v and v′ are highly similar if they are connected by many strongly-
weighted paths, and less similar if they are connected by only a few weakly-weighted paths. (Since
edge-weights are strictly less than one, longer paths will necessarily have smaller weights in this
measure.)
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Input: A vertex v; graph G = (V,E) with weight matrix W.
Optional input: parameter γ : 0 < γ < 1.

Output: APV (G, v): i.e., a ranking vector s,
where SIM AP

G (v, v′) is given by s[v′].

1. Let r0 = ev.

2. Let s = r0.

3. For t = 1, . . . , |V |

(a) Let rt = rt−1 ·W
(b) Let s = s + rt

4. Return s.

Output: PPV (G, v): i.e., a ranking vector s,
where SIM PPR

G,γ (v, v′) is given by s[v′].

1. Let r0 = (1− γ)ev.

2. Let s = r0.

3. For t = 1, . . . , to convergence:

(a) Let rt = rt−1 · γW
(b) Let s = s + rt

4. Return s.

Figure 1: Computing ranking vectors for the all-paths similarity metric and the personal PageRank
similarity metric

The set paths(v, v′) can be infinite for graphs with cycles, and can be exponentially large even
for DAGS. However, there is a simple dynamic programming algorithm for finding the total weight
of all paths of length t that start at p. This algorithm can be easily implemented using matrix
operations: since W2[v, v′] is the total weight of all length-2 paths from v to v′, and likewise
Wt[v, v′] is the total weight of all length-t paths from v to v′, and since no paths in a DAG can be
longer than |V |, the algorithm on the left-hand side of Figure 1 correctly computes SIM AP

G (·, ·) for
any DAG G.

We will call the vector s returned by Algorithm 1 the all-paths ranking vector for vertex v in
G, and write it as APV (G, v), or APV (v) when G is clear from context. Note that APV (v) =∑|V |

t=1 ev ·Wt.
Since computing all-paths similarity to v requires computing a ranking vector for v, it is nearly

as easy to compute the similarity of v to many vertices as to a single vertex. We will consider
an extended version of all-paths similarity as follows: if V is a set of vertices, then the all-paths
similarity of v to V is the product of the all-paths similarity of v to the elements of V: i.e.,

SIM AP
G (v,V) ≡

∏
v′∈V

SIM AP
G (v, v′)

2.3 Personalized PageRank
The all-paths similarity metric is closely related to another widely-used metric which we will call
here personalized PageRank similarity [26]. An algorithm for computing a ranking vector for the
personalized PageRank similarity metric is shown on the right-hand side of Figure 1. We call
the output of this algorithm the personalized PageRank ranking vector for v, and denote it as
PPV (G, v), and we define SIM PPR

G,γ (v, v′) as the analogous similarity metric between v and v′,
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i.e.,
SIM PPR

G,γ (v, v′) ≡ PPV (G, v)[v′]

More formally, personalized PageRank is usually described as the result of a random walk
process on a graph. Assume that G is a graph such that for every node, the sum of the weights of
outgoing edges is exactly one—i.e., the sum of weights in each row of W is exactly one. View
these weights as the probability of leaving a vertex via that edge, and now imagine a “random
surfer” particle, which probabilistically traverses the graph G as follows: at each time step, with
probability 1 − γ, the surfer “teleports” to the “start vertex” v; and with probability γW[v1, v2],
the surfer moves from its current location v1 to some new location v2.

Now consider the point where this process converges, i.e., the probability distribution p∗v such
that

p∗v = (1− γ)ev + γp∗vW

Solving this for p∗v yields
p∗v = (1− γ)ev · (I− γW)−1 (2)

This “random surfer” process is precisely the model that underlies traditional PageRank [26], ex-
cept that in traditional PageRank, the surfer “teleports” to a vertex v′ chosen uniformly from V ,
instead of teleporting to the designated “start vertex” v.

Although Equation 2 can be computed directly, inverting the matrix (I− γW) is expensive for
a large graph. An alternative method for computing pv

∗ is the “power iteration method”, which
relies on the fact that

(I− γW)−1 = lim
n→∞

n∑
i=0

(γW)n

for weight matrices W that are normalized as described above. (A somewhat more general version
of this fact is proved below, in Section 3.5.) This leads to the following proposition:

Proposition 1 If W is normalized so that every row sum is one, then the algorithm on the right-
hand side of Figure 1 converges and returns a vector s such that s = p∗v, where p∗v is the stationary
distribution defined in Equation 2.

Proof: The vector computed by the algorithm is

s = lim
n→∞

(1− γ)ev

(
n∑
t=0

(γW)n

)
= (1− γ)ev lim

n→∞

(
n∑
t=0

(γW)n

)
= (1− γ)ev(I− γW)−1

Personalized PageRank similarity can be viewed as a variant of all-paths similarity, obtained
by downweighting paths of length n by a factor of (1 − γ)γn. The proposition above formalizes
this statement: clearly, one could equivalently define SIM PPR

·,γ (·, ·) as

SIM PPR
G,γ (v, v′) ≡ (1− γ)

∑
p∈paths(G,v,v′)

weight(p) · γ|p| (3)
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2.4 Markov random fields
A Markov random field F = (X,Φ) is defined by a vector X = 〈X1, . . . , XN〉 of random variables,
each of which takes one of the discrete values1 in Y = {1, . . . , |Y|}, and a set of potential func-
tions Φ. Here we will consider only “pairwise” MRFs (with cliques of size two) so the potential
functions are Φi,i′ : Y × Y → R, whereR denotes the real numbers. We use Φ(Xi = j,Xi′ = j′)
to denote Φi,i′(j, j

′). The set of pairs (i, i′) over which Φ is defined will be denoted EΦ.
An MRF defines a probability function over the possible assignments x = 〈x1, . . . , xn〉 to the

variables X as follows:

Pr(X = x) =
1

Z

∏
(i,i′)∈EΦ

Φ(Xi = xi, Xi′ = xi′) (4)

where Z =
∑

z∈YN

∏
(i,i′)∈EΦ

Φ(Xi = zi, Xi′ = zi′). An MRF of this sort is commonly visualized
as a graph in which the variables are vertices and the pairs in EΦ are (undirected) edges. For such a
graph to be meaningful as an MRF, of course, it must be accompanied by additional annotations—
the values assumed by the potential function. (To emphasize the difference between MRF-variable
graphs, the simpler graph structure defined in Section 2.1 will sometimes be called an ordinary
graph.) Figure 2(A) shows an MRF containing five variables, each defined over the domain Y =
{1, 2}, along with some of the annotations required to define the associated probability distribution
over X.

A tree-structured MRF is an MRF where this graph forms a tree (i.e., there is exactly one path
in the graph between any pair of variables). A leaf variable Xk in a tree-structured MRF belongs
to only one pair in EΦ. The MRF of Figure 2(A) is tree-structured with three leaves, X1, X3, and
X5.

Tree-structured MRFs are important because certain types of inferences can be performed effi-
ciently: notably, one can efficiently compute the marginal probability of a variable Xi taking value
j, which is defined to be

Pr
F

(Xi = j) ≡ 1

Z

∑
x∈Xij

∏
(i,i′)∈EΦ

Φ(Xi = xi, Xi′ = xi′)

where Xij ≡ {x ∈ YN : xi = j} and Z is the normalization constant defined above. It will also be
useful to consider the unnormalized version of this quantity, the belief from F for Xi = j, which
we will write as BelF (Xi = j), and define as:

BelF (Xi = j) ≡
∑
x∈Xij

∏
(i,i′)∈EΦ

Φ(Xi = xi, Xi′ = xi′) (5)

In an MRF, if all paths between variables Xi and Xi′ pass through a third variable Xs, then Xi

and Xi′ are conditionally independent given Xs (i.e., Pr(Xi, Xi′|Xs) = Pr(Xi|Xs) Pr(Xi′ |Xs)).
For instance, in the graph of the figure, X3 is conditionally independent of X4 given X2.

1It is simple to extend any of our results to allow each Xi to have a separate domain Yi.
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Figure 2: (A) An example MRF F = (〈X1, X2, X3, X4, X5〉,Φ). (B) The analogous ordinary
graph Ĝu = (V̂ , Êu). (C) A directed version of the analogous graph, Ĝd(v2,1), with edges directed
away from v2,0.

3 Results

3.1 All-paths similarity and MRF inference
We will next show that all-paths similarity is in some sense “closely related” to marginal proba-
bilities in tree-structured MRFs. By “closely related”, we simply mean than all-paths similarity
computations can be used to help compute marginals in a tree-structured MRF. We formalize this
idea in two stages. First, we define the “ordinary graph analog” of an MRF—an ordinary graph
with a similar structure. We then show that one can compute marginal probabilities in the MRF in
sublinear time, given an oracle for all-paths ranking vectors on the MRF’s graph analog.

More precisely, suppose that G = {G1, . . . , Gi, . . . , } is a set of graphs, and that F is an MRF
with |ΦE| edges and N variables over the domain Y , such that L variables are leaves. We say
that function g(F ) can be computed in (G, APV )-oracle timeO(t(L, |ΦE|, N, |Y|)) if g(F ) can be
computed in the stated time, using calls to an oracle that computes, in unit time, the ranking vector
APV (G, v) for any graph G ∈ G and any vertex v ∈ G.

The central connection between all-paths similarity and MRF inference is given in the follow-
ing lemma.

Theorem 1 For every tree-structured MRF F , there is a family of graphs G (of size polynomial in
L,M ,N , and |Y|) such that any marginal probability PrF (Xi = j) can be computed in (G, APV )-
oracle time O(L|Y|).
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For many interesting graphs, L will be smaller than N—for instance, in a linear-chain MRF,
such as are commonly used for sequential tagging problems [17, 31, 20], there are only two
“leaves”, so L = 2. Thus the theorem above says that using an APV oracle can reduce MRF
inference to sublinear time. In fact, PrF (Xi = j) can be computed with |Y| calls to the oracle,
followed by O(L) postprocessing time for each call; further, the computation performed given the
all-paths oracle’s result is extremely simple, consisting of only a multiplication of certain vector
components and a normalization step.

The proof of the result follows. It is based a very simple and natural construction, which is
illustrated by example in Figure 2, and which is defined precisely below.

Definition 1 (Ordinary-graph analog of an MRF.) Let F = (X,Φ) be a tree-structured MRF. The
ordinary-graph analog of F is an undirected graph ĜF

u = (V̂ , Êu) such that

1. For each variable Xi in F and each possible value j for Xi, V̂ contains a node vi,j .

2. For each edge (i, i′) in EΦ and each possible j ∈ Y , j′ ∈ Y , Êu contains an undirected edge
(vi,j, vi′,j′ , w), where w = Φ(Xi = j,Xi′ = j′).

3. For each variable leaf variable Xk in F and each possible j ∈ Y , V̂ contains a node ak, and
Êu contains an undirected edge from (ak, vk,j, 1).

4. V̂ and Êu contain no other nodes or edges.

We will call the nodes ak that are defined by step 3 the anchor nodes of the graph, and denote the
set of anchor nodes by Â. Note that the size of Ĝ is linear in the size of F : if F has N variables, of
which L are leaves, and Φ has M edges, then Ĝ has (N |Y|+L) vertices and (M |Y|2 + 2L) edges.
(Note that Φ may also have up to |Y|2 parameters for each edge.)

Figure 2(B) shows the ordinary-graph analog of the MRF of Figure 2(A). For this graph, Â =
{a1, a3, a5}.

We are actually most interested in certain set G of directed graphs that are derived from the
analog of F , as follows.

Definition 2 (Graph analog directed away from v.) If ĜF
u = (V̂ , Êu) is the ordinary-graph analog

of the MRF F , let ĜF
d(v) = (V̂ , Êd(v)) be the directed graph that is obtained by directing each edge

“away from v”. More precisely, if vi,j is in Ĝu, then let us call the vertices vi,j′ the alternatives to
vi,j , and define dist(v, v′), the “distance” from v to v′, as follows

dist(v, v′) ≡
{

0 if v′ is an alternative to v
minp∈paths(ĜF

u ,v,v
′) |p| otherwise

Now let Êd(v) contain the edges (v1, v2, w) ∈ Êu such that dist(v, v1) < dist(v, v2). The directed
graph ĜF

d(v) = (V̂ , Êd(v)) is called the ordinary-graph analog of the MRF F directed away from v.

Figure 2(C) shows the ordinary-graph analog of the MRF of Figure 2(A), directed away from
v2,1.

The following lemma presents the main intuition behind the result of Theorem 1.
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Figure 3: (A) The inductive step for Lemma 1, illustrating the blanket of an example MRF. (B)
The inductive step for Lemma 1, illustrating the paths from v2,0.

Lemma 1 If F is a MRF and ĜF
d(vi,j) is the ordinary-graph analog of F directed away from vi,j ,

then the belief from F for Xi = j is equivalent to the all-paths similarity of vi,j to the set of anchor
nodes Â in ĜF

d(vi,j). In other words,

BelF (Xi = j) = SIM AP
ĜF

d(vi,j)

(vi,j, Â)

Proof: By induction onN , the number of MRF variables. For brevity, we will use Ĝ for Ĝd(vi,j)

below.
When the MRF contains a single variable X1, then Bel(X1 = j) = 1 for all j. (With no

edges, Equation 5 vacuously assigns the value of 1 to the product
∏

(i,i′)∈EΦ
Φ(Xi = xi, Xi′ =

xi′).) Likewise, v1j is connected by a unit-weight link directly to the single vertex a ∈ Â, so
SIM AP

Ĝ
(vi,j, Â) = 1.

For the inductive step, assume the lemma holds for MRFs of fewer than N variables, and
consider the the variables Xm1 , . . . , XmB

that are directly connected to Xi by an edge in Eφ.
(These variables are called Markov blanket of Xi.) Imagine that we removed Xi from F : then
since F is tree-structured, the subparts of F that contain Xm1 , . . . , XmB

respectively would be
disconnected from each other, and would hence comprise independent MRFs Fm1 , . . . , FmB

.
Figure 3(A) illustrates this construction for the MRF of Figure 2(A) and the variable X2. The

Markov blanket ofX2 are the variablesX1, X3, X4 (i.e.,B = 3 andm1 = 1,m2 = 3, andm3 = 4.)
Removing X2 from F produces the three smaller MRFs identified as F1, F3, F4 in the figure.
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Using the independence of the Xmb
’s given Xi, we have

BelF (Xi = j) =
B∏
b=1

∑
j′∈Y

BelFmb
(Xmb

= j′)Φ(Xi = j,Xmb
= j′) (6)

For those familiar with MRF’s, Equation 6 can be established from the independence of the Xmb
’s

given Xi. (However, Equation 6 also follows quite directly from Equation 4. A short proof of this
is given in Appendix A.)

We now turn to SIM AP
Ĝ

(vi,j, Â). Imagine that we removed vij from Ĝ: since F is tree-
structured, this would split Ĝ into disconnected subgraphs, which we will denote Ĝm1 , . . . , ĜmB

respectively. We will also use vmb,1, . . . , vmb,|Y| to denote the roots of Ĝmb
(i.e., the vertices that

were connected to vi,j in Ĝ.)
Figure 3(B) illustrates this construction. The graph shown in the figure is Ĝd(v2,1). The discon-

nected subgraphs are labeled G1, G3, G4.
Let Âmb

be the subset of Â contained in Ĝmb
. (For instance Â4 in Figure 3(B) would be the

singleton set {a5}.) Clearly all paths to a vertex in Â must pass through one of the roots vmb,j′ , so

SIM AP
Ĝ

(vij, Â) =
B∏
b=1

∑
j′∈Y

SIM AP
Ĝmb

(vmb,j′ , Âmb
) ·W[vi,j, vmb,j′ ]

By construction W[vi,j, vmb,j′ ] = Φ(Xi = j,Xmb
= j′). Also, Ĝmb

is almost identical2 to
Ĝ
Fmb

d(vmb
,j′), the ordinary-graph analog of Fmb

directed away from vmb,j′ , and it is easily verified

that the differences between Ĝmb
and Ĝ

Fmb

d(vmb
,j′) do not affect computation of all-paths similarity.

Thus

SIM AP
Ĝ

(vij, Â) =
B∏
b=1

∑
j′∈Y

SIM AP

Ĝ
Fmb
d(vmb

,j′)

(vmb,j′ , Âmb
) · Φ(Xi = j,Xmb

= j′) (7)

Now, the lemma can be proved by induction as follows. First rewrite Equation 6, using the induc-
tive hypothesis to replace BelFmb

(Xmb
= j′) with SIM AP

Ĝ
Fmb
d(vmb

,j′)

(vmb,j′ , Âmb
):

BelF (Xi = j) =
B∏
b=1

∑
j′∈Y

SIM AP

Ĝ
Fmb
d(vmb

,j′)

(vmb,j′ , Âmb
)(Xmb

= j′)Φ(Xi = j,Xmb
= j′) (8)

Since the right-hand side of Equation 8 is the same as the right-hand side of Equation 7, it must be
that BelF (Xi = j) = SIM AP

Ĝ
(vij, Â), concluding the proof of the lemma.

The proof of Theorem 1 is now immediate.
Proof:(of Theorem 1). Given a tree-structured MRF F , let G be the set of all graphs of the

form ĜF
d(vi,j). There are N |Y| such graphs, each of which has N |Y|+ L nodes and |EΦ||Y|2 + 2L

edges, and any marginal probability PrF (Xi = j) can be computed as follows:

2(The only differences are the addition in Ĝmb
of some extra edges leading away from the nodes vmb,j̃ , for j̃ 6= j′,

and the omission in in ĜF
mb

of anchor node amb
for the leaf variable Xmb

, which is the root of Gmb
.)
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Input: A vertex v; graph G = (V,E) with weight matrix W.
Optional input: parameter γ : 0 < γ < 1.

Output: APV dir(G, v) ≡ APV (Gd(v), v)

• ∗Let d0 =
∑

v′∈S ev′ , where S contains the
alternatives to v, plus v itself.

• Let r0 = ev.

• Let s = r0.

• For t = 1, . . . , |V |

◦ Let rt = rt−1 ·W
◦ ∗For all v′ : rt[v

′] 6= 0,

� ∗Let d[v′] = min(d[v′], t+ 1)

� ∗If d[v′] < t+ 1 then let rt[v′] = 0

◦ Let s = s + rt

• Return s.

Output: PPV dir(G, v) ≡ PPV (Gd(v), v)

• ∗Let d0 =
∑

v′∈S ev′ , where S contains the
alternatives to v, plus v itself.

• Let r0 = ev.

• Let s = (1− γ)r0.

• For t = 1, . . . , to convergence:

◦ Let rt = rt−1 · γW
◦ ∗For all v′ : rt[v

′] 6= 0,

� ∗Let dt[v′] = min(dt−1[v′], t+ 1)

� ∗If dt[v
′] < t+ 1 then let rt[v′] = 0

◦ Let s = s + rt

• Return s.

Figure 4: Computing the “directed” variants of the all-paths similarity metric and the personal
PageRank similarity metric.

1. For each j′ ∈ Y:

(a) Compute si,j′ = APV (Ĝd(vi,j′ ), vi,j′)

(b) Using the lemma, compute3 BelF (Xi = j′) =
∏

a∈Â si,j′ [a].

2. Return PrF (Xi = j) = BelF (Xi=j)P
j′ BelF (Xi=j′)

This computation requires |Y| calls to APV (·, ·) followed by O(L) time to post-process these
vectors.

3.2 “Directed” APV and MRF inference
Theorem 1 shows that that reducing MRF inference to APV computation is possible. As stated,
however, the theorem suggests that the reduction requires constructing many different variant
graphs. In fact, this is not necessary: whenever the APV oracle is called by the algorithm of
Theorem 1, it is called with arguments APV (Ĝd(v), v) for some vertex v, and it is quite simple
to compute the all-paths similarity ranking vector for v while simultaneously determining which
edges from Ĝu belong in the directed version Ĝd(v).

3Here Â are the anchors in Ĝd(vi,j′ ).
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Input: An MRF F , a variable Xi, and a value j ∈ Y .
Optional input: parameter γ : 0 < γ < 1.
Output: An approximation to the marginal probability PrF (Xi = j).

• Let Ĝu be the ordinary-graph analog of F .

• For each j′ ∈ Y:

– Perform one of the following variant steps:

V1: Compute si,j′ = APV (Ĝd(vi,j′ ), vi,j′)

V2: Compute si,j′ = APV dir(Ĝu, vi,j′)

V3: Compute si,j′ = PPV (Ĝd(vi,j′ ), vi,j′)

V4: Compute si,j′ = PPV dir(Ĝu, vi,j′)

V5: Compute si,j′ = PPV (Ĝu, vi,j′)

– Compute B̃F (Xi = j′) =
∏

a∈Â si,j′ [a].

• Return B̃F (Xi=j)P
j′ B̃F (Xi=j′)

as the value of PrF (Xi = j)

Figure 5: Variants of the algorithm defined in Theorem 1.

An algorithm for doing this computation is shown on the left-hand side of Figure 4. (The
starred lines correspond to additions to the algorithm of Figure 1.) The algorithm is based on the
observation that while computing rt (the all-paths ranking vector restricted to paths of length t or
less) it is also possible to compute (an approximation to) the minimum distance from v to every
node v′: in Figure 4, dt[v

′] = 0 if dist(v, v′) > t, and dt[v
′] = dist(v, v′) + 1 otherwise, and

hence it can be determined at iteration t whether or not to include an edge (a weight from W) in
the computation. We will call this variant of the APV algorithm directed APV. Figure 4 also shows
the directed variant of the personal PageRank similarity computation.

Below we will discuss not only the effects of replacing the APV oracle for a directed graph
with an APV dir oracle for an undirected graph, but also the effects of replacing the APV oracle
with a various types of PPV oracles. To facilitate this discussion, Figure 5 shows five variants
of the algorithm used in the proof of Theorem 1. In each variant, a different ranking vector is
used to compute the “belief” in a particular variable assignment. In the figure we will write this
“belief” as B̃F (Xi = j)—as we will see, B̃F (Xi = j) need not coincide with BF (Xi = j).
Since it is straightforward to verify that APV dir(Ĝu, vij) computes the same ranking vector as
APV (Ĝd(vi,j), vij), it follows that:

Proposition 2 Variant V2 of Figure 5 is correct—i.e., it returns PrF (Xi = j).
Thus, for every tree-structured MRF F , any marginal probability PrF (Xi = j) can be com-

puted in (Ĝu, APV
dir)-oracle time4 O(L|Y|), where Ĝu is the ordinary-graph analog of F .

4Here we use (G,APV dir) as an abbreviation of (G, APV dir) for G = {G}, and we define (G, APV dir)-oracle
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Input:

• An MRF F .

• A set S of variables Xi, corresponding to marginal-probability computations.

Preprocessing stage:

1. Create Ĝu, the ordinary-graph analog of F .

2. For each anchor node ak in Â, let sk = APV dir(Ĝ, ak)

(In computing APV dir, the set of “alternatives” to an anchor node ak is defined to be the
empty set.)

Computation stage:

1. For each Xi ∈ S and each j ∈ Y

(a) Compute BelF (Xi = j) =
∏L

k=1 sk[vi,j]

(b) Compute PrF (Xi = j) = BelF (Xi = j)/
∑

j′ BelF (Xi = j′).

Figure 6: Computing many marginal probabilities efficiently with an APV dir oracle.

3.3 Propogating similarity from leaves to internal nodes
The algorithm of Theorem 1 is also inefficient if one needs to compute many marginal proba-
bilities on the same graph. MRF inference is usually performed with “message-passing”, where
“messages” originate in the leaves of the tree and propogate inward, to be combined at internal
nodes of the tree. The algorithm of Figure 6 implements a procedure with this flavor. First, the
algorithm computes the all-paths ranking vectors for each anchor node ak ∈ Ĝ. (Recall that inter-
nally, this computation requires a traversal of Ĝ to compute the all-paths similarity of âk to each
node v ∈ Ĝ, a process similar to propogating messages inward from ak.) After computing the L
ranking vectors, the belief BelF (Xi = j) is be computed as

BelF (Xi = j) =
L∏
k=1

APV dir(Ĝu, ak)[vi,j]

which is not identical to the computation that is justified by Lemma 1, namely

BelF (Xi = j) = SIM AP
Ĝd(vi,j)

(vi,j, Â) =
L∏
k=1

APV dir(Ĝu, vij)[ak]

time analogously to the (G, APV )-oracle time.
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However, it is easy to see that for any vij and ak

APV dir(Ĝu, ak)[vij ] = APV dir(Ĝu, vi,j)[ak]

by simply recalling that APV (v1)[v2] depends only on the weight of the paths between v1 and v2,
and noting that every path in Ĝd(vij) that leads to ak can be inverted to form a path in Ĝd(ak) that
leads to vij , and vice-versa. Thus the following proposition holds:

Proposition 3 The algorithm of Figure 6 correctly computes the marginal probabilities of each
variable Xi in S. Hence

• For every tree-structured MRF F , any marginal probability PrF (Xi = j) can be computed
in (Ĝu, APV

dir)-oracle time O(L+ |Y||S|), where Ĝu is the ordinary-graph analog of F .

• For every tree-structured MRF F , there is a family of polynomial-sized graphs G such that
any set of S marginal probabilities can be computed in (G, APV )-oracle timeO(L+|Y||S|).

The first claim of the proposition follows directly from the correctness of the algorithm of
Figure 6. The second follows from the observation that the calls to APV dir(Ĝu, v) can be replaced
with APV (Ĝd(v), v).

3.4 “Directed” personalized PageRank and MRF inference
Returning to the algorithms of Figure 5: from Theorem 1 we know that Variant V1 is correct, and
from Proposition 2 we know that Variant V2 is correct. Let us now consider the result of using the
personalized PageRank ranking in place of the all-paths similarity ranking. We have the following
result.

Theorem 2 Variants 3 and 4 of the algorithm of Figure 5 return PrF (Xi = j).

Proof: We will first analyze Variant V3. For brevity, we will use Ĝ for Ĝd(vi,j). Note that PPV
must converge in these cases, since Ĝ is a DAG. (To see this, notice that Wt[v, v′] is the weight of
all length-t paths from v to v′. Since paths in Ĝd(v) must have length no more than |V |, Wt = 0
for t > |V |.)

Consider an internal node vij ∈ Ĝ and an anchor vertex ak, and let us examine the relationship
between SIM AP

Ĝ
(vi,j, ak) and SIM PPR

Ĝ,γ
(vi,j, ak). All the paths in Ĝ between vij and ak are of

some fixed length, which is simply the number of variables in F between Xi and the leaf Xk that
corresponds to ak. If we write this distance as dik, so it must be that

SIM PPR
Ĝ,γ

(vi,j, ak) = (1− γ)γdikSIM AP
Ĝ

(vi,j, ak)
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∗ (1− γ)γ2 × weight(v11 → v21 → a2)
∗ (1− γ)γ2 × weight(v11 → v22 → a2)

(1− γ)γ4 × weight(v11 → v21 → v11 → v21 → a2)
(1− γ)γ4 × weight(v11 → v21 → v11 → v22 → a2)

! (1− γ)γ4 × weight(v11 → v21 → v12 → v21 → a2)
! (1− γ)γ4 × weight(v11 → v22 → v12 → v22 → a2)

(1− γ)γ4 × weight(v11 → a1 → v11 → v21 → a2)
(1− γ)γ4 × weight(v11 → a1 → v11 → v22 → a2)

! (1− γ)γ4 × weight(v11 → a1 → v12 → v21 → a2)
! (1− γ)γ4 × weight(v11 → a1 → v12 → v22 → a2)

. . .

Figure 7: Behavior of PPR(Ĝu, vij) on a sample graph

So for Variant V3, we have that

B̃F (Xi = j) =
∏
ak∈Â

SIM PPR
Ĝd(vi,j),γ

(vi,j, ak)

=
∏
ak∈Â

SIM AP
Ĝd(vi,j)

(vi,j, ak)(1− γ)γdik

=
∏
ak∈Â

SIM AP
Ĝd(vi,j)

(vi,j, ak)
∏
ak∈Â

(1− γ)γdik

= BF (Xi = j) · ci

where we define ci ≡
∏

ak∈Â(1 − γ)γdik . Note that this distance dik is the same for all the
alternatives to vij , so that this argument also holds for other values of B̃F (Xi = j′). Hence, the
value returned by this variant is

B̃F (Xi = j)∑
j′ B̃F (Xi = j′)

=
BF (Xi = j) · ci∑
j′ BF (Xi = j′) · ci

= Pr(Xi = j)

and so the variant is correct.
The correctness of Variant V4 follows from the correctness of Variant V3 and the arguments

used to support Proposition 2.
To summarize the proof informally: the personalized PageRank similarity metric differs from

the all-paths similarity metric only in the way it treats longer paths—specifically it downweights
paths of length d by a factor of (1 − γ)γd. However, while this downweighting changes the
unnormalized “belief” in a variable assignment, it does not change the normalized probability in a
variable assignment, because the downweighting equally affects the paths to a variable-assignment
node vij and the paths to its alternatives.
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3.5 Computing marginals with “undirected” personalized PageRank
Let us now consider Variant V5. Again, the first issue to consider is convergence, which in this
case is not immediate, as Ĝu is not a DAG, nor need it be appropriately normalized. However, it is
simple to show that:

Theorem 3 For every MRF F , there is an MRF F ′ that defines an equivalent probability distribu-
tion such that the algorithm given in Figure 1 will always converge when given as its graph input
ĜF ′
u , the ordinary-graph analog of F ′.

Proof: We begin by demonstrating that if A is a matrix such that limn→∞An = 0, then

lim
n→∞

n∑
t=1

An = (I−A)−1 (9)

To see that this is true, define Xn ≡
∑n

t=0(A)t. Multiplying both sides of this definition by (I−A)
will generate “telescoping” sums that can be simplified, as follows:

Xn(I−A) =

(
n∑
t=0

At

)
(I−A)

= (I−A) + (A−A2) + . . . (An −An+1)

= (I−An+1)

Xn = (I−An+1)(I−A)−1

Hence Xn = (I−An+1)(I−A)−1 and Equation 9 follows.
Hence the convergence of the PPV method requires only that limn→∞(γW)n = 0. For this con-

dition to hold it is sufficient that each row in W sum to at most one, rather than exactly one. This
condition is easy to meet by simply replacing W with 1

c
W, where c ≡ maxv∈V

∑
v′∈V W[v, v′];

or equivalently, by dividing each potential Φ(Xi = j,Xi′ = j′) in F by c. Notice that the joint
probability defined by an MRF does not change if the potential functions Φ are uniformly scaled
up or down by a constant.

We will henceforth assume that the potential functions for MRF’s are appropriately scaled, so
that the PPV algorithm converges.

Although the algorithm converges, it is quite easy to show that this variant is not correct, at
least in the sense defined so far. Consider the following small graph Ĝ of Figure 7 (derived from
an MRF F with two variables, each with two possible values), and consider using Variant V5 to
compute the “belief” for X1 = 1, corresponding to the node v11. For this undirected graph Ĝ,
SIM PPR

Ĝ,γ
(v11, a2) will be the sum of weights of the paths shown in the figure, as well as infinitely

many other paths.5 The two paths marked with an asterisk (∗) are the paths that will be included
in computation of SIM PPR

Ĝd(v11),γ
(v11, a2). The other paths contain loops, and are not included in

5The figure shows all paths of length four or less.
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the directed graph. The paths marked with an exclamation point (!) are especially worrisome, as
they are the paths associated with the belief for X1 = 2. So it appears that rather than returning a
downweighted version of the Bel(X1 = 1), the function SIM PPR

Ĝ,γ
(v11, a2) is actually returning a

weighted average of Bel(X1 = 1) and Bel(X1 = 2), as well as certain other terms associated with
other sorts of paths not counted in Ĝd(v11).

However, the weight of these “undesirable” paths is substantially lower than the weight of
the “correct” paths. This suggests that Variant V5 may nonetheless return a reasonably accurate
approximation of PrF (Xi = j): in particular if γ is small then the longer paths will have only a
small impact on the final result. This intuition is correct, as shown below:

Theorem 4 Let pγ(F,Xi, j) be the value returned by Variant V5 of the algorithm of Figure 5.
Then

lim
γ→0

pγ(F,Xi, j) = Pr
F

(Xi = j)

Proof: Recall from Equation 3 that

SIM PPR
Ĝu,γ

(v, v′) ≡ (1− γ)
∑

p∈paths(Ĝu,v,v′)

weight(p) · γ|p| (10)

The set paths(Ĝu, v, v
′) can be broken down into the disjoint sets paths(Ĝd(v), v, v

′) and Sloop,
where Sloop ≡ paths(Ĝu, v, v

′) − paths(Ĝd(v), v, v
′). If v = vij and v′ = ak then all the paths

in paths(Ĝd(v), v, v
′) are of length dik; clearly all the paths in Sloop are of length at least dik + 2.

Hence we can rewrite Equation 10 as

SIM PPR
Ĝu,γ

(vij, ak) ≡ (1− γ)γdik

SIM AP
Ĝd(vij)

(vij, ak) + γ2
∑

p∈Sloop

weight(p) · γ|p|−dik−2


For brevity, let Bijk = SIM AP

Ĝd(vij)
(vij, ak) and let Eijk =

∑
p∈Sloop

weight(p) · γ|p|−dik−2. Note

that Eijk is bounded by some constant since PPVĜu
converges. We can now write the “belief”

computed by Variant V5 as

B̃(Xi = j) =
∏
ak∈Â

(1− γ)γdik(Bijk + γ2Eijk)

=

∏
ak∈Â

(1− γ)γdik

(
∏
ak∈Â

Bijk) + γ2(
∑

high-order terms)


= ci

(
∏
ak∈Â

Bijk) + γ2(
∑

high-order terms)


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Parameters: dmax, the maximum depth of the tree; pleaf , the probability that a node will be a leaf;
pch(k), the probability that a non-leaf node will have exactly k children; pΦ(φ), the probability
that the potential between two nodes will have value Φ(Xi = j,Xi′ = j; ) = φ; and pJ(j), the
probability a node will have exactly J values.
To build a tree: repeatedly extend a tree at node Xi, as follows (where Xi is a variable with legal
values 1, . . . , Ji):

1. If the depth ofXi is more than dmax, makeXi a leaf. Otherwise, with probability pleaf , make
Xi a leaf.

2. If Xi is not a leaf: (a) Pick C, the number of children of Xi, according to pch(.); (b) generate
new nodes Xc1 , . . . , XcC to be the children of Xi; (c) and for each child node Xc` of Xi: (i)
Pick J`, the number of children of Xc` , according to pch(.), (ii) For each j ∈ {1, . . . , Ji},
j′ ∈ {1, . . . , J`} pick Φ(Xi = j,X` = j′) according to pΦ(.).

Figure 8: Generating random tree-structured MRFs

where the “high-order terms” are various products of Bijk’s and Eijk′’s. The sum of these will
henceforth be written Tik, so the value returned by this variant can be written

pγ(F,Xi, j) =
B̃F (Xi = j)∑
j′ B̃F (Xi = j′)

=
ci
(
(
∏

ak∈ÂBijk) + γ2Tik
)∑

j′∈Y ci
(
(
∏

ak∈ÂBij′k) + γ2Tik
)

=

(
(
∏

ak∈ÂBijk) + γ2Tik
)∑

j′∈Y
(
(
∏

ak∈ÂBij′k) + γ2Tik
)

=
(BelF (Xi = j) + γ2Tik)∑
j′∈Y (BelF (Xi = j) + γ2Tik)

and hence limγ→0 pγ(F,Xi, j) = PrF (Xi = j).

3.6 Experimental confirmation
The focus of this paper is on formal, not experimental results. However, while Theorem 4 shows
that a “vanilla” version of personalized PageRank can be used to perform approximate inference
in tree-structured MRFs, and also suggests that the approximation will be better for smaller γ, the
theorem does not give any precise bounds on the quality of the approximation. To explore this
issue, we conducted some experiments with Variant V5 of the algorithm of Figure 5.

We constructed a random tree-structured MRF, following the procedure described in Figure 8.
The resulting ordinary-graph analog Ĝu contained 968 nodes and 3864 edges, with a diameter
of 16. We then picked 100 variable-value pairs (Xi, j) and ran Variant V5 of the algorithm of
Figure 5. We halted iteration of the loop in the PPV computation whenever (a) t ≥ 16 and (b)
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the L1-norm of rt was less than 10−10. The first condition ensures that every PPV (vi,j, ak) is
non-zero.

With γ = 0.5, the average relative error (i.e. |pγ − p|/p) was 3.7%. The largest relative error6

among the 100 samples was less than 20%. This is a surprisingly small amount of error. For
comparison, we also ran exact inference where each potential Φ(Xi = j,Xi′ = j′) is perturbed
by a randomly-chosen factor a, where a is chosen uniformly at random from [1 − ε, 1 + ε]. For
ε = 3×10−4 the average relative error was 3.4% on the same graph. In many reasonable settings—
i.e., if potentials were estimated from data—the error associated with using Variant 5 would not be
noticible.

We repeated this experiment with three other randomly-generated graphs of different sizes, and
using different values of γ. As expected, errors are smaller with smaller values of γ. The relative
error also appears to increase with the size of the graph. These results are summarized in Table 1.

4 Concluding Remarks
Inference in tree-structured MRFs is arguably the most essential and prototypical computation for
the subfield of graphical model inference and learning; likewise, personalized PageRank/random
walk with restart is an essential and prototypical computation for approaches to data-mining that
rely on similarity in structured data. Although widely studied, both practically and theoretically,
these two subareas are seldom connected in any concrete way. The primary contribution of this
paper is to clarify the connection between MRF inference and similarity measures based on graph
walks.

More specifically, in this paper we have established a formal connection between person-
alized PageRank, a widely-used similarity measure for vertices in a graph, and inference in
Markov random fields. We have shown that one can approximate marginal probabilities in a
tree-structured pairwise discrete-valued MRF F by performing personalized PageRank compu-
tations in the “graph analog” ĜF

u of the MRF—i.e., an ordinary graph with a similar structure.
The “graph analog” used in our construction is quite intuitive: as shown in Figure 2, the graph
contains one node vij for each possible value j that a variable Xi can assume; an edge with weight

6Large relative errors always occurred in estimating small probabilities: the largest error was in approximating of
the value Pr(Xi = j) = 3.01× 10−73 with Pr(Xi = j) ≈ 2.52× 10−73.

Graph Size Relative Error (%)
|V | |E| γ = 0.25 γ = 0.5 γ = 0.8
122 480 0.1 0.3 0.9
724 2,888 0.4 1.8 4.9
968 3,864 0.9 3.7 10.4

3326 13,296 1.1 4.6 13.8

Table 1: Performance of Variant 5 on four randomly constructed graphs

18



Φ(Xi = j,Xi′ = j′) between nodes for vij and vi′j′ , where Φ(·, ·) is the potential function for the
MRF; and for every “leaf variable” Xk, a special “anchor node” ak that is connected to each vkj
associated with Xi. Given this construction we show that

• the unnormalized probability or “belief” for a variable’s value in F , BelF (Xi = j), is ap-
proximately proportional to vij’s similarity to the set of anchor nodes in ĜF

u , where similarity
to a set of nodes Â is the product of similarity to the individual nodes ak ∈ Â;

• the quality of this approximation is better when γ, the “damping factor” for personalized
PageRank, is smaller, becoming a perfect approximation as γ → 0;

• experimentally, the approximation is quite good for moderate values of γ (e.g., γ = 0.5) on
certain classes of random MRFs.

Thus the main theorems immediately suggest both an intuitive interpretation of marginal probabil-
ities in an MRF, and an algorithm for MRF inference. Alternatively, one can precompute personal
PageRank ranking vectors for each leaf node ak in an MRF, and then compute BelF (Xi = j) as∏L

k=1APV
dir(Ĝu, vij)[ak]. This approach is broadly similar to the “message-passing” approach

usually used for inference in MRFs, in which “messages” originate in the leaves of the tree and
propogate inwards, to be combined at internal nodes.

Our results were developed by analogy to results involving “all-paths similarity” and “directed”
versions of all-paths similarity and personalized PageRank—similarity measures that are easier to
analyze, but not as commonly used in practice. These intermediate results may be of independent
interest, e.g. as pedagogical devices for presenting MRF inference to audiences familiar with
graph-walk similarity (or vice versa). Although both MRF inference and graph-walk similarity
measures are well-studied formally, the proof of our results are quite accessible, requiring little
technical machinery from either subarea.

One reason for the popularity of Bayes networks and other graphical probabilistic models is
that they can be implemented with highly parallel “marker passing” schemes [28]—a property
that makes the presence of similar inference schemes in the human brain seem somewhat more
plausible. Personalized PageRank is also easily parallelized7 and is in fact quite similar to the class
of cognitive models called spreading activation models [29]. It is possible that further insight into
the neural plausibility of graphical-model inference schemes could be gained by exploiting our
reduction of the marker-passing process of belief propogation to the even simpler parallel process
of computing personalized PageRank ranking vectors.

One prior work that establishes a connection between graph walks and MRF inference is the
“walk-sum” framework of Malioutov et al [19]. The walk-sum framework is applied to Gaussian
Markov random fields (in which each variable Xi takes on a real value xi ∈ R) and edge weights
indicate covariances, and one of their results is that inference for certain classes of Gaussian graph-
ical models can be implemented by a “walk-sum” process similar to computation of all-paths rank-
ing vectors [19, Appendix A]. Their basic result and construction is broadly similar to the analysis

7If each vertex has a processor, one way to compute PPV (v) would be the following. At time 0, “send” activation
1 to processor v. At time t > 0, let each processor v′ do the following steps: (1) “receive” total activation a from its
neighbors; (2) “keep” activation (1 − γ)a by adding it to a counter s[v′]; and (3) “send” activation γaW[v′, v′′] to
each neighbor v′′.
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of all-paths similarity in Section 3.1—the main technical difference is that for Gaussian random
fields, the construction of “analogous” ordinary graphs is simpler. Malioutov et al also define a
more general condition of “walk-summability”, which holds for certain cyclic Gaussian MRFs,
and show that the walk-sum method version of belief propogation will converge for all “walk-
summable” networks. However, they do not explore the consequences of using PageRank-style
damped walks as we do (i.e., they have no results analogous to our Theorems 2 or 4).

It is to be hoped that many of the well-developed results and techniques from these two subar-
eas can be fruitfully combined to obtain new practical or formal contributions. Another possible
point of synergy is between techniques for quickly approximating graph-walk similarities (e.g.,
[13, 9, 32, 6]) and inference tasks on large MRFs. These are of particular interest because some
theoretical approaches to approximate inference in general MRFs (e.g., recent work in inference
via self-avoiding walks [34, 15]) reduce the general inference problem in moderate-sized MRFs
to inference in larger “computation trees”, which are tree-structured MRFs. (One technical ob-
stacle to immediate application of fast approximation techniques for graph-walk similarity is that
some approximations ignore very small similarities, which can be important in computing marginal
probabilities.) Another obvious area for further study is the performance of the inference method
analyzed in Theorem 4 for general MRFs. This method is quite similar to loopy belief propogation
[28, 25], but is guaranteed (by Theorem 3) to converge; however, analysis of its limiting accuracy
on MRFs that are not trees remains open. One potential avenue of inquiry along these lines is to
extend the notion of walk-summability to discrete-valued MRFs.
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A Proof of Equation 6
Although substantial technical machinery has been developed in both subareas (Markov random
fields and analysis of graph similarities) the proofs of this paper are largely self-contained. The
principle exception to this is Equation 6, which claims that

BelF (Xi = j) =
B∏
b=1

∑
j′∈Y

BelFmb
(Xmb

= j′)Φ(Xi = j,Xmb
= j′)

This claim can actually be established quite easily, without recourse to graphical model theory. Let
us begin by considering a very simple variant of the sort of independencies needed to establish this.
Consider setsQ1,Q2,R1,R2,S , let X ≡ Q1×R1×Q2×R2×S, and let Xj ≡ {〈q1, r1, q2, r2〉 ∈
X : s = j}. Define the function β(j) as

β(s) ≡
∑
x∈Xj

f1(q1, r1)g1(r1, s)f2(q2, r2)g2(r2, s)

where the fi’s and gi’s are arbitrarily functions. Below we will write β(s) as β(S = s), to help
reinforce the similarity of this to computation of “belief” in an MRF. We claim

Proposition 4

β(S = s) =
∑
r1

∑
q1

∑
r2

∑
q2

f1(q1, r1)g1(r1, s)f2(q2, r2)g2(r2, s)

=
∑
r1

∑
q1

f1(q1, r1)g1(r1, s)
∑
r2

∑
q2

f2(q2, r2)g2(r2, s)

The proof of the proposition is immediate, requiring only distributing the common factors
across two summations.

From this proposition we can easily generalize to the following:

Lemma 2 Let B be an integer, let Q1, . . . ,QB,R1, . . . ,RB and S be sets. Define

XB = Q1 ×R1 ×Q2 ×R2 × . . .QB ×RB × S

and let XB
j = {〈q1, r1, . . . , qB, rB, s〉 ∈ X : s = j}. Define

βBX (S = s) ≡
∑

x∈XB
j

B∏
b=1

fb(qb, rb)gb(rb, s) (11)

where again the fb’s and gb’s are arbitrarily functions. Then

βBX (S = s) =
B∏
b=1

∑
rb∈Rb

∑
qb∈Qb

fb(qb, rb)gb(rb, s) (12)
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Proof: If we write Equation 11 as

βBX (S = s) ≡
∑
r1

∑
q1

. . .
∑
rB

∑
qB

f1(r1, q1)g1(q1, s) . . . fB(rB, qB)gB(qB, s)

we see that we can again distribute the common factors f1(r1, q1)g1(q1, s) across most of the sums,
yielding

βBX (S = s) ≡∑
r1

∑
q1

f1(r1, q1)g1(q1, s)
∑
r2

∑
q2

. . .
∑
rB

∑
qB

f2(r2, q2)g2(q2, s) . . . fB(rB, qB)gB(qB, s)

We can now distribute out the common factors f2(r2, q2)g2(q2, s), and so on: continuing this pro-
cess repeatedly will yield Equation 12.

Now, consider Equation 6 and define Tb to be the variables in Fmb
, andRb to be

Rb ≡ {rb : rb is an assignment to the variables in Tb − {Xmb
}}

For b = 1, . . . , B, let Qb = Y represent the possible values of Xmb
, and let S = Y be the possible

values of Xi. With a slight abuse of notation we will also let X ≡ 〈r1, xm1 , . . . , rb, xmb
, xi〉 and

let Xj = {x ∈ X : xi = j}. (Note that x ∈ X is isomorphic to the vectors 〈x1, . . . , xn〉 that we
used in the body of the paper to represent an assignment of values to the variables X1, . . . , Xn, and
Xj is isomorphic to the set denoted Xij used in the body of the paper—only the ordering of the
variables is changed.) Let EΦb

be the edges in EΦ between variables in Tb, and define

fb(rb, qb) ≡
∏

(i′,i′′)∈EΦb

Φ(Xi′ = xi′ , Xi′′ = xi′′)

where xi′ is the value assigned to Xi′ by r (if Xi′ ∈ Tb) or by qb (if Xi′ = Xmb
). Also define

gb(qb, s) ≡ Φ(Xmb
= qb, Xi = s)

Substituting these values into Equation 11 gives us

BelF (Xi = s) ≡
∑
x∈Xj

B∏
b=1

fb(qb, rb)gb(rb, s)

=
B∏
b=1

∑
qb∈Qb

∑
rb∈Rb

fb(qb, rb)gb(rb, s)

=
B∏
b=1

∑
xmb
∈Y

∑
rb∈Rb

 ∏
(i′,i′′)∈EΦb

Φ(Xi′ = xi′ , Xi′′ = xi′′)

Φ(Xmb
= xmb

, Xi = s)

=
B∏
b=1

∑
xmb
∈Y

∑
rb∈Rb

∏
(i′,i′′)∈EΦb

Φ(Xi′ = xi′ , Xi′′ = xi′′)

Φ(Xmb
= xmb

, Xi = s)

=
B∏
b=1

∑
xmb
∈Y

BelFmb
(Xmb

= xmb
)Φ(Xmb

= xmb
, Xi = s)
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This concludes the proof of the statement of Equation 6.
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