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Abstract

Good similarity functions are crucial for many important subtasks in data integration, such as
“soft joins” and data deduping, and one widely-used similarity function is TFIDF similarity. In
this paper we describe a modification of TFIDF similarity that is more appropriate for certain
datasets: namely, large data collections formed by merging together many smaller collections,
each of which is (nearly) duplicate-free. Our similarity metric, called CX.IDF, shares TFIDF’s
most important properties: it can be computed efficiently and stored compactly; it can be “learned”
using few passes over a dataset (in experiments, one or three passes are used), and is well-suited to
parallelization; and finally, like TFIDF, it requires no labeled training data. In experiments, the new
similarity function reduces matching errors relative to TFIDF by up to 80%, and reduces k-nearest
neighbor classification error by 20% on average.





1 Introduction
An important step in integrating heterogeneous datasets is determining a mapping between ob-
jects from one source and objects from another source—a step variously known as record linkage,
matching, and deduping (among other terms) in the literature. One useful matching strategy is to
use an appropriately thresholded similarity function–i.e., to consider objects as identical if they are
“similar enough”. One widely-used similarity function is TFIDF similarity, which arose in the field
of information retrieval [19]. This similarity function scores objects as similar if they contain many
important identical “terms”. TFIDF similarity works well in many domains [7], and is often com-
petitive with or superior to more expensive metrics like string edit distance [6, 9]. TFIDF is also
very fast to compute—in fact, well-known indexing methods mean that terms similar to a query
item x can be found in sublinear time. TFIDF can be computed with no labeled examples—so, to
the extent that it is a learned metric, it is learned in an unsupervised way. The sufficient statistics
for TFIDF similarity can be stored compactly—only one integer, the document frequency, need be
recorded for each term. Finally, the importance weights “learned” by TFIDF can be found very
quickly—with only a single pass over the database, using a process that can be easily parallelized.
These factors make TFIDF useful in many practically important settings, and perhaps explains why
it (and similar token-based similarity metrics) have been the focus of much recent work on “soft
joins” (e.g., [2, 23]).

However, although TFIDF’s efficiency and scalability make it ideal for many large-scale prob-
lems, TFIDF does not exploit all the information in all large data collections. In this paper, we con-
sider large data collections formed by merging together many smaller collections, each of which
is duplicate-free (or nearly duplicate-free). This is a very common task: for instance, consider
removing duplicates from a database of product descriptions formed by merging the catalogs of a
thousand individual merchants; a database of citations formed by merging the reference section of
a thousand technical papers; or a database of patient records formed by merging the patient-care
information from a thousand hospitals. In each case, we expect to see duplicates across the smaller
collections, but not within them.

In this paper, we define a similarity metric that exploits the statistical properties of such col-
lections. Our metric is a variant of TFIDF, and shares TFIDF’s most important properties: it is
term-based, and hence can be computed efficiently; it can be stored compactly, as a single number
for each term; it can be computed by a small number of passes over a dataset (in our experiments,
either one or three passes are used); and it requires no labeled training data. Additionally, the form
of the similarity function is unchanged from that of TFIDF: similarity is still defined as the cosine
of the angle between two unit-length vectors.

Below, we first introduce our notation, present a small example dataset, define a baseline sim-
ilarity metric, and discuss the limitations of this baseline. We then define a simple “context-
sensitive” variant of the baseline, and discuss some variations of the context-sensitive similarity
metric that are sometimes useful. We next present pseudo-code for deriving the similarity met-
ric from a dataset, and argue that the similarity metric can, like IDF-based metrics, be computed
efficiently in parallel using a map-reduce framework.

We then present experimental results with context-sensitive similarity on two types of prob-
lems: k-nearest neighbor classification, and finding duplicate objects. For the classification tasks,
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we show that error rates are statistically significant reduced, relative to the baseline similarity
metric, on a suite of nine previously-studied tasks. On average, the improvement in error rate
is about 20%. For finding duplicate bibliography entries, using a new benchmark consisting of
over 100,000 bibliography entries collected from more than 400 distinct sources, we show that the
number of known errors can be reduced by nearly 70% for the bibliography matching task. For a
similar task involving 40 million product descriptions, we show that known errors can be reduced
by more than 90%.

Finally, we discuss related work in the area of similarity metrics for matching and metric learn-
ing, and conclude.

2 A context-sensitive similarity metric

2.1 Notation and background
Let D = x1, . . . , xn be a dataset of instances. Each instance xi represents some object in the
world. Formally, an instance xi consists of an identifier id(xi), also written idi; a context c(xi),
also written ci; and a set of features F (xi), also written Fi.

For example xi might correspond to a product, Fi might be the set of words in the name of the
product, and ci might be the name of the merchant offering the product.

Let VD be the vocabulary associated with a dataset D, i.e., let

VD ≡
⋃

xi∈D

F (xi)

The elements of VD are all features, f1, . . . , f|VD|. Any set Fi ⊆ VD can also be represented as a
long, sparse vector vi = 〈a1, . . . , a|VD|〉, where the k-th component ak of vi is 1 if fk ∈ Fi and ak

is 0 if fk 6∈ Fi. Below v(xi), also written vi, will denote the vector representation of F (xi). We
use ||v|| to denote the Euclidean norm of v.

One well-known similarity function is IDF similarity [19]. Define the document frequency of
f (with respect to D) as the number of instances that contain the feature f , i.e.,

DFD(f) ≡ |{xi ∈ D : f ∈ F (xi)}|

and define the inverse frequency of w (with respect to D) as

IDFD(f) ≡ log(|D|/DFD(w))

Now define the IDF-weighted vector for xi as a vector w(xi) = 〈b1, . . . , b|VD|〉, also written wi,
where the k-th component bk of wi is ak · IDFD(fk). IDF similarity is defined as

simIDF(xi, xj) ≡
wi · wj

||wi|| · ||wj||

This is often interpreted as the cosine of the angle between the vectors, so the term “cosine similar-
ity” is also frequently used. (The term “TFIDF similarity” is also commonly used, where the “TF”
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idi ci Fi

us:gh1 toysRus guitar, hero, IIIx, controller, from, toys-R-us
us:gh2 toysRus guitar, hero, for, gameboy, from, toys-R-us
us:b14 toysRus lego, bionicle, kit, x14, from, lego
us:b23 toysRus lego, bionicle, kit, x23, from, lego
us:b37 toysRus lego, bionicle, model, x37, from, lego
bb:gh2 bestbuy guitar, hero, IIIx, for, gameboy
bb:b14 bestbuy lego, bionicle, x14, truck, kit
bb:b23 bestbuy lego, bionicle, x23, zombie, kit
bb:b37 bestbuy lego, bionicle, x37, watermelon, kit
cc:gh2 ccity guitar, hero, IIIx, for, gameboy
cc:b14 ccity lego, bionicle, x14, truck, kit
cc:b23 ccity lego, bionicle, x23, zombie, kit
cc:b37 ccity lego, bionicle, x37, watermelon, kit

Figure 1: A small example dataset. The elements of the sets Fi are conceptually unordered and
free of duplicates, but for clarity, they are given in the order of the original English description
(e.g., “guitar hero IIIx controller from toys-R-us”). Also, occurrences of a word after the first are
italicized in the figure - in the actual dataset, repeated occurrences are discarded.

part of the name comes from a weighting of “term” frequency within documents, a consideration
that we ignore here.)

One important property of the IDF similarity metric is that features are given differential im-
portance in computing similarity scores. While overlapping features f ∈ Fi ∩ Fj always increase
similarity, and non-overlapping features f ′ ∈ Fi−Fj (or f ′ ∈ Fj −Fi) always decrease similarity,
high-weight features are much more important to “get right” than low-weight features.

2.2 A small example
Figure 1 presents a small example of a dataset, and Figure 2 shows the IDF weights of the fea-
tures in the dataset. Notice that many of the weights seem to correlate with an intuitive notion
of “importance”—for instance, the features “from”, “lego” and “bionicle” have relatively low
weights, and are shared by many pairs of non-identical products. The features “IIIx”, “x14”,
and “x37” have higher weights, and appear in no pairs of non-identical products.

Figure 3 shows the similarity of some pairs of instances—the pairs below the line refer to
different products, and the pairs above the line refer to the same product.

2.3 A limitation of IDF similarity
In the small example, each xi corresponds to a product, Fi is words in the name of the product, and
the context ci identifies a merchant offering the product. Neither of these similarity metrics take
into account the context associated with an example; intuitively, however, they should.
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feature f IDFD(f) feature f IDFD(f)
model 2.565 gameboy 1.467
controller 2.565 for 1.467
zombie 1.872 IIIx 1.466
watermelon 1.872 hero 1.179
truck 1.872 guitar 1.179
toys-R-us 1.872 from 0.956
x37 1.467 kit 0.486
x23 1.467 lego 0.368
x14 1.467 bionicle 0.368

Figure 2: IDF weights for the features in the sample dataset

Pair idi, idj sim(xi, xj)
IDF CX.IDF

bb:b14,cc:b14 1.00 1.00
bb:b23,cc:b23 1.00 1.00
bb:b37,cc:b37 1.00 1.00
bb:gh2,cc:gh2 1.00 1.00
bb:b23,us:b23 0.86 0.99
cc:b23,us:b23 0.86 0.99
bb:gh2,us:gh2 0.82 0.84
cc:gh2,us:gh2 0.82 0.84
cc:b14,us:b14 0.57 0.88
bb:b14,us:b14 0.57 0.88
bb:b37,us:b37 0.31 0.85
cc:b37,us:b37 0.31 0.85
us:gh1,us:gh2 0.53 0.19
bb:gh2,us:gh1 0.46 0.62
cc:gh2,us:gh1 0.46 0.62

Figure 3: Similarities of some pairs of instances in the sample dataset

The reason contexts matter is that in many cases it is possible to find contexts c such that all of
the instances with a shared context are likely to be distinct. For example, suppose D is formed by
merging the catalogs of many merchants, where most of the individual catalogs are substantially
free of duplications. If xi is a product, Fi is the words in the name of the product, and ci is
the merchant offering the product, then two products xi, xj such that ci = cj are unlikely to be
identical—as this would indicate a duplication within a single merchant, an unlikely case.

Ideally, one would like the weights that are assigned to terms to reflect this—i.e., terms should
be have more weight if they are rare for many merchants, and have less weight if they are com-
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mon for some mechants. However, the IDF weights do not have this property. For instance, the
feature “toys-R-us” is rare (with DF=2) but appears twice in descriptions from the same merchant,
while the feature “x14” is more frequent (DF=3) but appears only once in each merchant’s product
description. We would prefer to weight “x14” somewhat higher than “toys-R-us”.

2.4 Context-dependent similarity
To capture this intuition in a principled way, let us consider two quantities. We define the proba-
bility of an inter-context duplication for a feature f (with respect to D), written PrINTER

D(f), to be
the probability that two instances xi, xj have different contexts ci 6= cj , given that xi, xj are a pair
of instances, both containing the feature f , drawn uniformly at random but without replacement
from D. Likewise, we define the probability of an intra-context duplication for f (with respect to
D), written PrINTRA

D(f), to be the probability that xi, xj have the same context c, again given that
xi, xj are a pair of instances, containing f , drawn uniformly at random but without replacement
from D.

To simplify notation below, we will drop the subscript D from PrINTRA and PrINTER (and else-
where, when it is clear from context). We will also define some more quantities.

• Let n ≡ |D| be the number of instances in the dataset.

• Let CD ≡ {c(xi) : xi ∈ D} be the set of contexts in the dataset

• Let nf ≡ DFD(f) ≡ |{xi ∈ D : f ∈ Fi}| be the number of instances in the dataset that
contain feature f .

• Let nc,f ≡ |{xi ∈ D : f ∈ Fi and ci = c}| be the number of instances in the dataset that
contain feature f and have context c.

• Let Df ≡ {xi ∈ D : f ∈ Fi}, be the instances in D that contain feature f , and let x ∼ Df

denote drawing x uniformly from Df .

Then we can define PrINTER more precisely as follows:

PrINTER(f) ≡ Pr(ci 6= cj|xi ∼ Df and xj ∼ Df and xj 6= xi)

=
∑
c∈CD

Pr(ci = c|xi ∼ Df ) · Pr(cj 6= c|xj ∼ Df − {xi})

=
∑
c∈CD

nc,f

nf

· nf − nc,f

nf − 1
(1)

Likewise

PrINTRA(f) ≡ Pr(ci = cj|xi ∼ Df and xj ∼ Df and xj 6= xi)

=
∑
c∈CD

Pr(ci = c|xj ∼ Df ) · Pr(cj = c|xj ∼ Df − {xi})

=
∑
c∈CD

nc,f

nf

· nc,f − 1

nf − 1
(2)
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Equivalently, one could let PrINTRA(f) ≡ 1− PrINTER(f); however, Equation 2 will be useful later
on when we consider smoothing. Now consider the quantity CX(f), defined as

CX(f) ≡ log
PrINTER(f)

PrINTRA(f)
(3)

If pairs containing f are likely to be within the same merchant, and unlikely to be from different
merchants—as for the feature “toys-R-us” above—then CX(f) is small. If pairs containing f are
unlikely to be within the same merchant, and likely to be from different merchants—as for the
feature “x14” above—then CX(f) is large. Thus CX(f) captures the intuition discussed above.

One simple way to extend the IDF metric to additionally incorporate this new context-dependent
notion of importance is simply to use the product of IDF(f) and CX(f) to weight features. Let
the context-dependent IDF-weighted vector for xi be a vector z(xi) = 〈b′1, . . . , b′|VD|〉, also written
zi, where the k-th component b′k of zi is ak · IDF(fk) · CX(fk). Now the context-dependent IDF
similarity can be defined as

simCX.IDF(xi, xj) ≡
zi · zj

||zi|| · ||zj||

A small note: CX(f) is undefined if nf = 1, or if PrINTRA(f) = 0. For the former case, we
define CX(f) ≡ 1 if nf = 1, which leaves the IDF weight for f unchanged; we conjecture that
this makes little difference in practice, since features that occur only once in the dataset are not
very useful for similarity comparisons anyway. The latter case can be avoided by smoothing the
estimate for PrINTRA away from zero, an issue which is discussed below.

2.5 Some refinements of the metric
The definitions of PrINTRA and PrINTER above are maximum-likelihood estimates based on the data.
If there is prior knowledge of the importance of a feature f , this can be incorporated by smoothing
the estimate toward the expected. We smooth estimates using a Dirichlet prior, encoded as two val-
ues p0,m0, representing a prior probability p0 and a “strength” (expressed in number of equivalent
examples) m0 respectively. Given observations supporting the estimate p1 based on m1 examples,
the Dirichlet-smoothed estimate is

p̂ = p1 ·
m1

m1 +m0

+ p0 ·
m0

m1 +m0

=
p1m1 + p0m0

m1 +m0

In some applications, there are multiple types of features, rather than a single “type” of feature.
For instance, there might be tokens taken from a short name of a product, but also tokens taken
from a longer description; a simple way of handling this would be to create two features fn

w and
fd

w for each word w, where fn
w (respectively fd

w) represents word w appearing in the name (respec-
tively description) of a product. Assume that features in V (D) can be grouped into disjoint sets
V1, . . . , Vm, corresponding to different “types” of features. If one believes that there are differ-
ent types of features have different average levels of informativeness, then an empirical Bayesian
method can be used to smooth feature values in each subset V` together.
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To do this, the PrINTRA values for features f are computed with a default prior over each subset
of features f ∈ V`, and the mean µ` and standard deviation σ` of these values are computed. From
this, a prior value p` is computed for features in V`, as well as a prior strengthm`, which are defined
as

p` ≡
p0m0 + p′`m

′
`

m0 +m′`
(4)

m` ≡ m0 +m′` (5)

where p0,m0 are a user-defined universal prior, p′` = µ`, and m′` ≡ µ`(1 − µ`)/σ
2
` . This choice

for p′`,m
′
` has a nice mathematical property: with these values, the expected value and standard

deviation of the prior distribution, as a Beta distribution, is equivalent to the observed mean and
standard deviation of the values of the features in V`. After the priors are set, values for PrINTRA

can be re-computed using the revised priors (as well as values for PrINTER, and CX).
We also find it useful to bound the similarity function away from unity; this is useful since

often, objects with identical features still have some chance of being distinct. To avoid getting
extreme values of similarity one can adjust the metric by conceptually adding to every instance xi

one additional feature with weight γ that never appears anywhere else in the dataset. Larger values
of γ lead to smaller maximal similarities.

Equivalently, we can unroll and then modify the definitions of inner product and ||v||. Let zi,f

be the component of zi that corresponds to feature f , and similarly for zj,f . Then we let

simCX.IDF(xi, xj) ≡
zi · zj

||zi|| · ||zj||
=

∑
f zi,f · zj,k√∑

f z
2
i,f

√∑
f z

2
j,f

≈
∑

f zi,f · zj,k√
γ2 +

∑
f z

2
i,f

√
γ2 +

∑
f z

2
j,f

Using nonzero value of γ in the last line will bound simCX.IDF(xi, xj) away from 1.0.
In the experiments below, we will use two types of smoothing.

• In the first variant, PrINTRA and PrINTER are computed as in Equations 1 and 2, save that in
estimating Pr(ci = c|·) and Pr(ci 6= c|·), we use Dirichlet smoothing with p0 = 0.5 and
m0 = 1 (i.e., a Laplace correction). This minimal amount of smoothing is necessary to keep
CX(f) from taking extreme values: below we will call this “Laplace-corrected” CX.IDF, or
simply CX.IDF.

• In the second variant, we compute Laplace-corrected CX.IDF in a first pass, and then use
the approach of Figure 5 as a second pass; here, we again use p0 = 0.5 and m0 = 1 as the
“universal prior” of Equations 4 and 5. Below we call this “CX.IDF with empirical priors”,
or simply “smoothed CX.IDF”.

Either of these types of smoothing can be combined with a non-zero value of γ: we used two
values of γ, γ = 10 and γ = 0, leading to four variants of CX.IDF.
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1. Weight the features.

• (Map step 1). Let the list MapOut be an empty list.

• For each xi ∈ D and each f ∈ Fi,

– Append the pair (f, ci) to MapOut.

• Sort MapOut lexicographically.

• In the sorted MapOut, collect sequences of adjacent pairs (f, c1), . . . , (f, cn) with the
same feature f and replace them with a single entry (f, 〈c1, . . . , cn〉). Call the revised
list ReduceIn.

• (Reduce step 1). Let the list ReduceOut be empty, and let the list CXVals be empty.

• For each pair (f, 〈c1, . . . , cn〉) in ReduceIn:

– From the list 〈c1, . . . , cn〉, compute nf and nc,f for every c in the list.
– Compute CX(f) using Equations 1, 2, and 3.
– Compute IDF(f) = log(n/nf )

– Append the pair (f,CX(f) · IDF(f)) to ReduceOut
– Append the pair (f,CX(f)) to CXVals

Figure 4: Computing context-dependent IDF similarity

Preliminary experiments suggested that for most purposes, the Laplace smoothing is compara-
ble to the empirical prior method, but that empirical priors are preferable when (a) there are many
distinct types of features, and some types tend to be highly informative, while some tend to be less
informative, or (b) most of the features are extremely informative, with a few frequent exceptions.
As an example of the former case, consider matching product names with two types of features,
one type derived from a long textual “marketing text” field, and one type derived from a shorter
“part number” field. An example of the latter case might be hard identifiers that contain a few
frequent noisy cases (e.g., part numbers like “000000000000”, “N/A”, or “UNK”).

2.6 Computing context-dependent similarity
One important property of the context-dependent IDF similarity metric is that it can be computed
quite inexpensively, even for large datasets. Figures 4 and 5 show one algorithm for this, described
using “map-reduce” framework [12]. Programs implemented using this framework can be easily
parallelized, so that a single large task can be run on many smaller computers in parallel quite
efficiently.

Briefly, the dataset D is converted first to pairs (f, c), where f is a feature appearing in context
c, and then this output is sorted and grouped into pairs of the form

(f, 〈c1, . . . , cn〉)
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1. Compute priors for the features.

• Clear all counters a`, b`.

• For each pair (f, CX(f)) in the list CXVals produced by the method of Figure 4:

– Let ` be the “type” of feature f , (i.e., the set V` such that f ∈ V`).
– Increment a` by CX(f).
– Increment b` by CX(f)2.
– Increment c` by 1.

• For each “feature type” `,

– Let p′` = a`/c` be the observed average score of features of type `.
– Let σ` =

√
b`/c` − (p′`)

2 be the observed variance of this average.
– Let m′` = (p′`(1− p′`)/σ2)

– Let m` = m0 +m′`
– Let p` = (p′`m

′
` + p0m0)/(m0 +m′`)

2. Re-weight the features. Re-execute Map step 1 and Reduce step 1 of the method of Figure 4,
but in computing CX(f), use Equations 3 and Dirichlet-smoothed versions of Equations
1,and 2, where the prior is m` and p` above (such that ` is the type of feature f ).

Figure 5: Computing context-dependent IDF similarity with empirical priors

where f is a feature and 〈c1, . . . , cn〉 is a sorted list of all contexts that co-occur with that feature.
This can in turn be converted to a list of the form

(f, 〈(c1, nc1,f ) . . . , (cn, ncn,f )〉)

where the pair (ci, nci,f ) contains a context plus the number of times it was duplicated. Below we
will call such a list a context histogram for feature f .

Note that none of the intermediate representations of the dataset are larger than the original
dataset, and for any particular feature f , the context histogram will be relatively small—it is
bounded in size by the number of different contexts. Importantly, the weight CX(f) · IDF(f)
for feature f depends only on the context histogram; this is why it is easy to parallelize the com-
putation of the weights.

Figure 5 presents similar pseudo-code for smoothing with empirically-derived priors.
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problem #train #test #classes #terms text-valued field label
memos 334 10cv 11 1014 document title category
cdroms 798 10cv 6 1133 CDRom game name category
birdcom 914 10cv 22 674 common name of bird phylogenic order
birdsci 914 10cv 22 1738 common + scientific name of bird phylogenic order
hcoarse 1875 600 126 2098 company name industry (coarse grain)
hfine 1875 600 228 2098 company name industry (fine grain)
books 3501 1800 63 7019 book title subject heading
species 3119 1600 6 7231 animal name phylum
netvet 3596 2000 14 5460 URL title category

Table 1: Description of benchmark problems

Task Error IDF IDF/CX smoothed IDF/CX
Rate γ = 0 γ = 10 γ = 0 γ = 10 γ = 0 γ = 10

memos 0.36 1.00 1.01 0.81 0.81 0.80 0.82
cdroms 0.55 1.00 0.99 1.03 0.97 0.98 0.99
birdcom 0.18 1.00 0.98 0.69 0.60 0.63 0.62
birdsci 0.12 1.00 0.96 0.63 0.60 0.65 0.63
hcoarse 0.70 1.00 0.96 1.09 1.01 1.00 1.01
hfine 0.80 1.00 0.98 1.05 1.00 1.00 1.02
books 0.41 1.00 0.99 0.92 0.92 0.92 0.90
species 0.07 1.00 1.00 0.79 0.61 0.58 0.55
netvet 0.30 1.00 1.05 0.74 0.74 0.76 0.73
average 0.38 1.00 0.99 ∗0.861 ∗0.807 ∗0.813 ∗0.808

Table 2: IDF/CX on nine k-nn classification problems with short descriptions. In the last six
columns, performance is expressed as a fraction of baseline error rate. Starred averages are statis-
tically significantly below 1.0.

3 Experimental results

3.1 Classification of short strings
The first set of experiments we will discuss will be for the task of K-nearest neighbor (k-nn)
classification. Classification is perhaps the best-studied task that uses similarity metrics–in fact,
a data integration system that supports similarity joins can be straightforwardly used for k-nn
classification, using a reduction proposed by Cohen and Hirsh [8]. Hence, a plausible way to
evaluate a similarity metric is to use it to classify instances qualitatively like those that must be
matched. For instance, Cohen and Hirsh evaluated some variations of IDF similarity using a k-nn
classifier (for k = 30) on a suite of nine problem where the instances were short descriptions, such
as book titles, web page titles, game titles, or names of different bird species. These problems are
summarized in Table 1.
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While none of these datasets have a natural notion of “context”, an alternative version of
CX.IDF can be used for classification. We let each class label be represented by a different con-
text, and then modify each vector by dividing the IDF weights of each feature by the CX weight,
rather than multiplying it by the CX weight. Recall that the motivation of the original CX.IDF for-
mula was to increase the importance of features that are distributed across many “contexts”, and
decrease the importance of features that are concentrated in a single “context”. For classification
we would like to do the reverse. We call this variant IDF/CX.

We performed the same experiments conducted by Cohen and Hirsh with our system. As in
Cohen and Hirsh, if an example has no neighbors (i.e., no training cases have non-zero similarity)
then the most frequent class is predicted. The results are shown in Table 2.

Depending on the variant used, the IDF/CX weighting scheme increases error very slightly
on two or three of the nine problems, but decreases error (by up to 40%) on other problems. On
average, relative to the baseline IDF metric with γ = 0, the error rate is decreased by 14% for
IDF/CX with γ = 0, and decreased by nearly 20% for the other three IDF/CX variants. This
reduction is statistically significant in each case (at 95% confidence or above, using a paired t-test
across the nine problems.)1

For these problems we looked at two values of γ: γ = 10 and γ = 0. (No additional tuning of
γ was done, and the default non-zero weight of γ = 10 was established on separate datasets.) A
value of γ = 10 statistically significantly improves over γ = 0 for unsmoothed IDF/CX, but not
for the IDF metric or the smoothed IDF/CX metric. The differences between the smoothed and
unsmoothed IDF/CX variants are not statistically significant.

To summarize, the IDF/CX weighting scheme improves significantly over the baseline IDF,
and improves more when smoothed appropriately. Furthermore, smoothing by using the simple
Laplace correction and γ = 10 performs about as well as the more expensive empirically Bayesian
smoothing.

3.2 Matching bibliography entries
In order to perform a more direct evaluation of CX.IDF’s utility for matching object descriptions,
we generated data for a representative matching task that included contexts. We performed a
Google search for publically-indexed files with the extension “.bib” that contained the phrase “ma-
chine learning”, and downloaded 418 such files that were valid LATEX bibliography files, which
collectively contained 115,940 bibliography entries. The context of a bibliography entry was the
file from which it was extracted, and each bibliography entry was described by features f `

w where
w is a word (a space-separated string with case folded but without stemming) and ` is a field of the
bibliography entry (one of “title”; “booktitle” or “journal”; “author”; “editor”; “keywords”; “cite”
or “key”; “volume”; “month”; “year”; “pages”; “number”; “series”; “note”; “address”; “howpub-
lished” or “type”; “publisher”, “organization”, “school”, or “institution”; ‘or abstract”.) Below,
these bibliography-entry fields will be used to establish groups for empirical Bayesian smoothing:

1The results use our re-implementation of the Cohen and Hirsh results as a baseline, but the average performance
of our baseline is nearly identical to the results published by Cohen and Hirsh, and the average reduction in error for
the smoothed versions of IDF/CX are statistically significantly improved over the published Cohen and Hirsh results
as well.
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Figure 6: Matching bibliography entries from 418 sources: interpolated average precision using
IDF and two varieties of CX.IDF. Left: precision versus rank. Right: number of known errors
versus rank.

specifically, we will define distinct set of features V` ≡ {f `
w1
, . . . , f `

wn
} for the words contained in

with different fields. There are a total of 387,383 distinct features of these 17 types.
To evaluate the correctness of matching, it is useful to consider matchable items that have “hard

identifiers”—strings that can act as clear and unambiguous identifiers. To this end, we identified
all bibliography entries which were (a) not identified as parts of a book and (b) contained a field
labeled “url” or “doi” with a value that is a URL containing one of substrings “doi”, “pdf”, or “ps”.
The vast majority of these fields are either ACM digital library document identifiers, or else on-line
versions of papers; hence when such fields exist, they can be used as “hard identifiers”. However,
only a small minority of the papers (2,922) have such identifiers. We define a pair of bibliography
entries x, y to be correct if both x and y have hard identifiers and id(x) = id(y), incorrect if both
x and y have hard identifiers and id(x) 6= id(y), and uncertain otherwise.

To evaluate a similarity metric, we followed a methodology similar to that used in our previous
papers on similarity joins [7]. First, a fixed set of pairs x, y are generated. Second, this set of pairs
is sorted by their similarity. Finally, the interpolated average precision is plotted at each position
in the list. Non-interpolated average precision at rank r is the number of correct pairs at rank r or
above divided by the number of correct or incorrect pairs at rank r or above. (Hence, uncertain
pairs are simply ignored in computing non-interpolated average precision.) Interpolated average
precision at rank r is the maximum value of non-interpolated average precision at any rank r′ > r.

The results are shown in Figure 6. “Smoothed CX.IDF” is CX.IDF with smoothing using
empirical Bayes, where the feature types are defined by the field from which a token was taken, and
a value of γ = 10 was used throughout. We ranked a large set of candidate pairs (approximately
300,000, selected using the method described in Section 3.4, with thresholds of CX ≥ 1.5 and
DF ≤ 1000.) On the left of the figure, we display precision for the first 10,000 ranks. Smoothed
CX.IDF outperforms the IDF metric over most of this range—although there is a narrow interval
(around ranks 5000-6000) where IDF performs best. The first 10,000 ranks is the range most
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Rank × 1000 IDF CX.IDF Smoothed CX.IDF
Errors Errors ∆(baseline) Errors ∆(baseline)

10 53 30 -43.40 39 -26.42
20 141 54 -61.70 87 -38.30
30 210 77 -63.33 155 -26.19
40 291 103 -64.60 236 -18.90
50 401 129 -67.83 308 -23.19
75 631 192 -69.57 449 -28.84

100 882 274 -68.93 582 -34.01
200 1583 527 -66.71 1018 -35.69
300 1945 788 -59.49 1293 -33.52
500 2464 1308 -46.92 1814 -26.38

1000 3207 2390 -25.48 2724 -15.06
2500 4664 4530 -2.87 4508 -3.34
3000 5245 5245 0.00 5245 0.00

Table 3: Number of known errors as a function of rank position for three similarity metrics for
bibliography entries.

interesting for a system that requires high-precision matches.2

The right-hand side plot Figure 6 summarizes the same data in a different way. Here, we plot
the number of known matching errors (i.e., errors detectable using the hard identifiers) against
rank—for instance, the graph shows that in the first 7000 pairs listed, the IDF ranking contains
22 known errors and the smoothed CX.IDF ranking contains about 12 known errors. At the same
position in the ranking, the smoothed CX.IDF ranking contains only 108 pairs known to be correct,
and the IDF ranking contains only 111 known-correct pairs.

Because these numbers are relatively small, precision estimates based on them will necessarily
have high variance. We thus also report, in Table 3, the total number of known errors for each
similarity method for the remainder of the ranking. In this range, the “unsmoothed” CX.IDF
performs best, reducing the number of errors made by the baseline IDF ranking by nearly 70% for
some recall levels. Smoothed CX.IDF also reduces errors substantially.

3.3 Matching product descriptions
As a larger-scale matching problem, we took a set of descriptions of consumer products and per-
formed a similar experiment. Consumer product description matching is both commercially im-
portant and technically difficult (e.g., previous work has shown only moderately accurate perfor-
mance for clustering products, even using similarity functions trained using supervised learning
and labeled product-description pairs [5].) The sample included approximately 40 million product

2Since the total number of correct pairs is unknown, recall cannot be determined, although clearly recall is linearly
related to rank. If one extrapolates the rate of duplications of bibliography entries with hard identifiers to the entire
set, one would expect about 5000 true duplications.
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Figure 7: Matching product descriptions from several hundred sources: precision plotted against
rank, using IDF and two varieties of CX.IDF, over the first 30 million pairings.

Figure 8: Matching product descriptions from several hundred sources. Left, number of errors
versus ranked 300,000 pairings. Right, number of errors versus rank for the top-ranked 14 million
pairings.

descriptions from several hundred distinct sources, and included descriptions of products offered
for sale in June 2009 by Google Shopping; product descriptions extracted from web sites; and
hand-constructed product catalogs. More than half of these product descriptions included some
sort of universally-recognized “hard” identifier (e.g., ISBN number or a UPC code). The set of
products is extemely diverse: about two-thirds of the hard identifiers are distinct.

As before, we generated a list of weakly similar pairs, and ranked these pairs by each of three
similarity functions: IDF, CX.IDF, and smoothed CX.IDF. In all cases, a value of γ = 10 was
used. There were approximately 60 million pairs in the generated list. The features here were more
carefully engineered than in the bibliography-matching problem above, but all feature-tuning was
done on a much earlier version of the dataset.
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Rank × 1000 IDF CX.IDF Smoothed CX.IDF
Errors Errors ∆(baseline) Errors ∆(baseline)

5 23 − − 4 -82.61
20 84 − − 7 -91.67

100 1,009 − − 482 -52.23
650 2,363 − − 1,376 -41.77

2,000 4,487 − − 4,325 -3.61
5,000 7,047 8,579 +21.74 7,555 +7.21

10,000 12,573 16,430 +30.68 17,969 +42.92
10,000 3,348,616 665,592 -80.12 1,437,196 -57.08
25,000 7,440,369 1,238,221 -83.36 5,214,735 -29.91
30,000 11,316,451 1,841,019 -83.73 9,226,685 -18.47

Table 4: Number of known errors as a function of rank position for three similarity metrics for
product descriptions.

The results are shown in Figures 7 and 8. Overall performance on this task is much higher, but
qualitatively the results are similar. At high levels of recall, CX.IDF far outperforms IDF in terms
of precision, and smoothed CX.IDF has precision between IDF and “unsmoothed” CX.IDF. We
used γ = 10 on all of these experiments.

Performance at lower precision levels is harder to see, since all three algorithms show quite
good performance; also, due to rounding errors, “unsmoothed” CX.IDF gives the same score to
the top 6.8 million (1.7%) of the candidate pairs, making 8,579 errors on these top-ranked pairs for
a precision of 99.8%.

To visualize performance here, we again look at the number of errors for each method. Figure 8
shows errors for the first 300,000 pairs on the left, and errors for the first 14 million pairs on
the right. Again, at lower recall levels, smoothed CX.IDF performs best, followed closely by
unsmoothed CX.IDF. At higher recall levels, unsmoothed CX.IDF generally performs best—with
the exception of ranks between about 8 and 11 million, where ordinary IDF has the lowest error
rate. Table 4 gives the number of known errors made for certain ranks, including parts of the high-
precision range (ranks 5,000 through 650,000); the middle range, where IDF performs best (ranks
2,000,000 through 10,000,000); and the high-recall range (ranks 10,000,000 through 30,000,000).
As in Table 3, we also show the percentage improvement over baseline.

To summarize, in both matching experiments, there is a small part of the recall-precision curve
in which IDF is competitive with the CX.IDF variants. However, over most of the curve, one or
both of CX.IDF variants greatly outperform the IDF baseline.

3.4 Generating plausible candidate pairs
Another important use of IDF scores is for selecting candidate pairs for which similarity will be
computed. A number of well-known heuristics for finding candidate pairs involve finding features
f with high IDF, and then proposing pairs of items xi, xj that share feature f . These pairs can be
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1. Let Fcanopy be a subset of features.

2. Let C be the empty set.

3. For each f ∈ Fcanopy,

(a) Let Xf = {x1, . . . , xDF(f)} be the set of all instances that have f as a feature
(i.e., the inverted index for f ).

(b) For each pair (xi, xj) such that xi ∈ Xf , xj ∈ Xf , and xi 6= xj ,

• Add (xi, xj) to C.

Table 5: A simple algorithm for generating pairs xi, xj of likely-to-be-similar instances.

Figure 9: Pairs of bibliography entries xi, xj , showing the minimum IDF value of any common
feature f ∈ Fi∩Fj (on the x axis) and the minimum CX value of any common feature f ∈ Fi∩Fj

(on the y axis).

conveniently found by using an inverted index for f . Many fast similarity-join methods use this
trick explicitly (e.g., [2, 7]), while others use it indirectly via information-retrieval engines (which
often use “shortcut” retrieval methods based on high-IDF terms [21]) (e.g., [14]).

We wished to explore the effectiveness of context-sensitive similarity metrics for generating
candidate pairs. In order to do this, we took the bibliography data, and generated the set of all pairs
xi, xj that shared the same hard identifier: there were 131 of these pairs. We will henceforth call
this the known-correct pair set. (Of course, since only a subset of entries have hard identifiers, this
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is only a subset of the full set of correct pairs.)
We also generated a set of candidate pairs using the method outlines in Table 5: we picked

a set of features Fcanopy, created inverted indices Xf for all features f ∈ Fcanopy, and then used
these inverted indices to generate all pairs (xi, xj) that contained at least one common feature
f ∈ Fcanopy. This technique is quadratic in the size of the largest inverted index, so to make this
computationally feasible, we let Fcanopy be the set of all features with DF(f) < 1000. Equivalently,
this set could be defined as all features f with IDF(f) > θ, where θ is (on this dataset) around 7.8
for this dataset. This set contains about 4.4 million pairs, and will be called the canopy pair set.

From the canopy set, we sampled a much smaller set of 447 pairs, which we will call the
random pair set, for the purpose of visualization. In Figure 9, we plot each pair (xi, xj) in random
using a red “+”, and also each pair in known-correct using a green “×”. The position of each pair
is chosen so that its x-axis position is the smallest IDF value of any common feature f ∈ Fi ∩ Fj ,
and the y-axis position is the smallest CX value of any common feature f ∈ Fi ∩ Fj .

From inspection of the figure, it is easy to see that the known-correct pairs cluster in the top
right, while the random pairs are more widely dispersed. The pairs in the top right have a common
feature that has high IDF, and also common feature with high CX. This suggests that one could
restrict the canopy set by using a more restrictive set of features Fcanopy: specifically, one could
either (a) impose a higher threshold on IDF(f) or (b) combine a threshold on IDF(f) with a
threshold on CX(f). The blue line in Figure 9 suggests one such combination, namely a linear
combination of IDF and CX.

More specifically, the graph shows that most known-correct pairs (all but four) have an x axis
position of 10 or greater. Thus, a set of candidate pairs generated by taking all pairs sharing a
common feature f with IDF≥ 10 would be expected to include most of the correct, and hence
have fairly high recall. Likewise, we can see that relatively few of the pairs in random set are
to the right of the line x = 10 (only 24 of 447). Thus, increasing the threshold from θ = 7.8
to θ = 10 would significantly decrease the size of the canopy (by a factor of around 20), while
maintaining high recall. In Figure 9 thus helps to justify the commonly-used heuristic of using
high-IDF features to generate canopies.

Looking now at the y-axis position, we see that most (all but eight) of the known-correct pairs
have an y position of more than 4. This suggests imposing a secondary threshold on CX(f) for
features in Fcanopy—i.e., defining

Fcanopy = {f : IDF(f) > θ1 and CX(f) > θ2}

The canopy set of 4.4 million pairs described above corresponds to θ1 ≈ 7.8 (or equivalent,
DF(f) < 1000) and θ2 > −∞. Increasing θ2 to 3.8 reduces the number of canopy by more
than 23%, without changing the coverage of the gold pairs at all. Alternatively, increasing θ2 to
4.0 reduces the size of the canopy set by more than 40%, and reduces recall on the gold set by only
5%.

While in some practical cases a 40% improvement in speed is worth a modest loss in recall,
in this paper we do not use aggressive thresholds on CX (or IDF) in generating candidate pairs.
In the matching experiments of Sections 3.3 and 3.2, we used thresholds DF(f) < 1000 and
CX(f) > 1.5, which are in each case well below the thresholds associated with any known-correct
pairs.

17



4 Related Work
Context-sensitive similarity, as defined here, is closely related to the problem of clustering with
instance-level constraints [22]. In particular, for the CX.IDF weighting scheme, each context c
could be viewed as a set of (soft) cannot-link constraints that hold between all pairs xi and xj such
that ci = cj . Likewise, for the IDF/CX weighting scheme, each context c could be viewed as a
set of soft must-link constraints. A number of techniques have been proposed for incorporating
such constraints in clustering (e.g., see [1] for an overview of recent research.) One particularly
related piece of prior work is the technique of Oyama and Tanaka [17], which, like this paper,
focuses on the effect of cannot-link constraints only. Oyama and Tanaka show that if only cannot-
link constraints are available, then a distance metric learned using convex quadratic programming
methods can be used to improve object identification performance. The work described here differs
primarily in its emphasis on very scalable techniques; we also demonstrate that our techniques are
applicable to a wide range of information-integration related tasks.

Shen et al [20] introduce a technique called “source-aware matching”, which has some points
of similarity with context-sensitive similarity. In source-aware matching, instances from many
sources are clustered, using different matching methods (e.g., different similarity functions, or
different thresholds for the same function) to match instances extracted from different sources.
Source-aware matching requires user input for each source (solicited via active learning) to deter-
mine parameters of the source-specific matching functions. Shen et al also describe methods for
finding a “match plan” that orchestrates sequence of individual source-aware matching operations
used to build an overall clustering of the data. In contrast, we use unsupervised methods to learn a
single similarity function that can be applied to any pair instances, for any source. To some extent
the two techniques are complementary, however: for instance, one could use a “match plan” to
orchestrate a series of intra-source merges using a single context-sensitive similarity function.

5 Concluding Remarks
Deduping, or removing duplicated objects, is an important task in heterogeneous data integration.
Here we have proposed a novel modification of IDF similarity that is designed explicitly for large
data collections formed by merging together many smaller collections, each of which is duplicate-
free (or nearly so). The new metric, CX.IDF, takes into account the “context” from which each
description was extracted; however, it accounts for context without adding additional parameters
to the similarity function, thus retaining many of the desirable properties of the IDF metric. Like
IDF, CX.IDF can be computed efficiently and stored compactly; like IDF, CX.IDF can be “learned”
using a single pass over a dataset, and can be implemented easily in a map-reduce framework, al-
lowing simple parallel implementations, and a variant of CX.IDF that supports smoothing with
empirically derived priors can be computed nearly as efficiently (with three map-reduce passed
over the dataset). Finally, CX.IDF requires no labeled training data—the only additional informa-
tion that is used is the source (or “context”) of each object.

As validation of the metric, we performed k-nn experiments with a suite of nine previously-
studied classification tasks, and CX.IDF was shown to reduce error rates by 14-19% relative to
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an IDF baseline. We also performed experiments in which candidate duplicated pairs were scored
and ranked by similarity, and then various prefixes of the ranked lists were evaluated by estimating
precision (or simply the number of known errors) for pairs with known “hard” identifiers. In
one domain, bibliography entries, approximately 3 million candidate pairs involving over 100,000
bibliography-entry objects were scored using IDF and two varieties of CX.IDF: a highly efficient
one-pass version that uses simple ad hoc smoothing techniques, and a three-pass version that uses
empirically tuned priors. In the second domain, product descriptions, 60 million pairs involving
40 million products were scored and ranked with the same metrics.

The results were qualitatively similar in both domains. The CX.IDF methods greatly outper-
form the baseline IDF method for high recall levels. In the product domain, at ranks 20-30 million,
the empirically-smoothed CX.IDF variant makes 18-57% fewer errors, and the one-pass CX.IDF
version makes more than 80% fewer errors. In the bibliography domain, at ranks 50-200 thousand,
the empirically-smoothed CX.IDF variant makes 23-35% fewer errors than IDF, and the one-pass
CX.IDF version makes more than 65% fewer errors.

At the high-precision end of the ranking, all methods perform extremely well for the product
domain: however, the empirically-smoothed CX.IDF version clearly outperforms the baseline,
making 41-91% fewer errors for ranks 5-650 thousand. In the smaller bibliography domain, there
is no clear difference between the two techniques—they perform comparably for the first 10,000
ranks. In both domains, there is an intermediate range in which the baseline IDF is comparable to,
or even better than, either CX.IDF variant: however, this range is relatively narrow (as can be seen
in the right-hand plots of Figure 6 and 8).

The results of this paper have evaluated context-sensitive similarity functions in a limited
way—via the ordering they induce of pairs of instances. Further work will be needed on how and
when context-sensitive similarity functions interact with methods that cluster objects based on mul-
tiple types of similarity evidence—while some such approaches are by design similarity-function
insensitive (e.g., [3]) others appear to be more sensitive to the function used (e.g., [13]), and still
other approaches require probabilistic properties that CX.IDF does not possess (e.g., [18, 4]). Fu-
ture work will also be needed to evaluate how context-sensitive similarity interacts with systems
that directly query a database of similarity-produced clusters (e.g., [15]), or directly query collec-
tions of instances using similarity-based queries (e.g., [7]).

The results in this paper have also considered context-sensitive similarity methods of a partic-
ular narrow type (CX.IDF and some close variants). In particular, we have considered only sim-
ilarity functions based using an unordered set of atomic features (sometimes called “term-based”
methods [9], since the features are usually tokens.) It is not clear how to extend our approach
to context-sensitivity to edit-distance like methods (e.g., [6]) which retain some information about
feature ordering. This is an important topic for further research, since edit-distance based methods,
while usually more expensive to compute, are sometimes more accurate than feature-based meth-
ods (e.g., [14, 10, 11]); it has also been shown than using ordering information can in some cases
speed up “similarity join” computations [23]. Recently, Moreau et al [16] extended the SoftTFIDF
similarity function [9] and formalized a family of “robust” hybrid similarity functions that com-
bine aspects of edit-distance similarities and feature-based similarities; this may be an appropriate
starting point for extending context-sensitive similarity functions.
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