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Abstract

Hardware description languages (HDLs) are used today to describe circuits at all levels. In

large HDL programs, there is a need for source code reduction techniques to address a myriad

of problems in design, simulation, testing, and formal veri�cation. Program slicing is a static

program analysis technique that allows an analyst to automatically extract portions of programs

relevant to the aspects being analyzed. We extend program slicing to HDLs, thus allowing

for automatic program reduction to let the user focus on relevant code portions. We have

implemented a VHDL slicing tool composed of a general inter-procedural slicer and a front-end

that captures VHDL execution semantics. This report provides an introduction to the theory

of inter-procedural program slicing, a discussion of how to slice VHDL programs, a description

of the resulting tool, and a discussion of some applications and experimental results.





1 Introduction

Hardware description languages (HDLs) are used today to describe circuits at all levels from

conceptual system architecture to low-level circuit implementations suitable for synthesis. HDL

source-code simulation is a common technique for analyzing the resulting descriptions and

debugging the design before implementation. However, a major lack in current source-code-

simulation methodologies is the need for structured design and analysis techniques that can

be applied to the simulation process. The need for structured development methodologies is

becoming even more important with the increased use of reusable libraries of existing code,

since it is di�cult to use, modify, and/or maintain unstructured libraries. Thus, major needs

for source code simulation include support for testing, debugging, and maintenance of the

simulations. There are also several tools that apply model checking ([1]) to formally verify

correctness of HDL designs (one such system for VHDL is described in [2]). It is well recognized

that the fundamental problem in model checking is state explosion, and there is consequently

a need to reduce the size of HDL descriptions so that their corresponding models have fewer

states. For many designs, it is not even possible to build the state transition relation, and the

need for HDL program reduction techniques is even more critical in these cases.

Several of these desiderata have close parallels in the software-engineering domain, where

it is desirable to understand and manipulate large programs. This is di�cult to do, partly

because of the presence of large quantities of irrelevant code. Program slicing was de�ned by

Weiser [3] to cope with these problems by performing automatic decomposition of programs

based on data- and control-
ow analysis. A program slice consists of those parts of a program

that can potentially a�ect (or be a�ected by) a slicing criterion (i.e., a set of program points

of interest to the user). The identi�cation of program slices with respect to a slicing criterion

allows the user to reduce the original program to one that is simpler but functionally equivalent

with respect to the slicing criterion.

Results of program slicing in the software engineering world suggest that the techniques

can also be applied to HDLs to solve many of the problems mentioned above. However, most

traditional program slicing techniques are designed for sequential procedural programming lan-

guages, and the techniques are not directly applicable to HDLs, which have a fundamentally

di�erent computation paradigm. An HDL program is a non-halting reactive system composed

of a set of concurrent processes, and many HDL constructs have no direct analogue in more tra-

ditional programming languages. In this report we present an approach for slicing VHDL based

on its execution semantics. Our approach is based on a mapping of VHDL constructs onto tra-

ditional programming language constructs, in a way that ensures that all traces of the VHDL

program will also be valid traces in the corresponding sequential program. Corresponding to

this approach, we have also implemented a VHDL slicing tool consisting of a VHDL front-end

coupled with a language-independent toolset intended for inter-procedural slicing of sequential

languages such as C. We have also applied the tool to some formal veri�cation problems, and

have achieved substantial state space reductions.

The remainder of the report is organized as follows: Section 2 presents requisite background

material while Section 3 presents our techniques for performing language-independent interpro-

cedural slicing. Section 4 shows how we capture VHDL semantics for slicing. Section 5 describes

the architecture and implementation of the VHDL slicing tool, and provides a walkthrough of a

simple VHDL example. Section 6 lists many applications of slicing, and provides experimental
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results that concretely illustrate the bene�ts of slicing in reducing state space size for model

checking. We compare and contrast our work with other approaches in Section 7. Finally,

Section 8 summarizes our conclusions and brie
y discusses our future plans in this area.

2 Background

Slicing is an operation that identi�es semantically meaningful decompositions of programs,

where the decompositions consist of elements that are not necessarily textually contiguous

[4, 3, 5, 6, 7, 8]. (See [9, 10] for surveys on slicing.) Slicing, and subsequent manipulation

of slices, has applications in many software-engineering tools, including tools for program un-

derstanding, maintenance [11], debugging [12], testing [13, 14], di�erencing [15, 16], specializa-

tion [17], reuse [18], and merging [15].

There are two kinds of slices: a backward slice of a program with respect to a slicing criterion

C is the set of all program elements that might a�ect (either directly or transitively) the values

of the variables used at members of C; a forward slice with respect to C is the set of all program

elements that might be a�ected by the computations performed at members of C.

A related operation is program chopping [19, 20]. A chop answers questions of the form

\Which program elements serve to transmit e�ects from a given source element s to a given

target element t?". Given a set of source program points S and a set of target program points

T , the chop consists of all program points that might be a�ected by assignments performed at

S that can a�ect the values of variables used at T .

It is important to understand the distinction between two di�erent but related \slicing

problems":

Version (1) (Closure Slice) The slice of a program with respect to program point p and

variable x identi�es all statements and predicates of the program that might a�ect the

value of x at point p.

Version (2) (Executable Slice) The slice of a program with respect to program point p

and variable x produces a reduced program that computes the same sequence of values

for x at p. That is, at point p the behavior of the reduced program with respect to variable

x is indistinguishable from that of the original program.

In intraprocedural slicing, a solution to Version (1) provides a solution to Version (2), since the

\reduced program" required in Version (2) can be obtained by restricting the original program

to just the statements and predicates found in the solution for Version (1); in interprocedural

slicing, where a slice can cross the boundaries of procedure calls, it turns out that a solution to

Version (1) does not necessarily provide a solution to Version (2) since a slice may contain dif-

ferent subsets of a procedure's parameters for di�erent call instances of the same procedure [7].

However, a solution to Version (1) can always be extended to provide a solution to Version (2)

[21]. Our system does closure slicing, with partial support for executable slicing.

A second major design issue is the type of interprocedural slicing. Some slicing and chop-

ping algorithms are precise in the sense that they track dependences transmitted through the

program only along paths that re
ect the fact that when a procedure call �nishes, control re-

turns to the site of the corresponding call [7, 8, 20]. In contrast, other algorithms are imprecise

in that they safely, but pessimistically, track dependences along paths that enter a procedure
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at one call site, but return to a di�erent call site [22, 19]. Precise algorithms are preferable

because they return smaller slices. Precise slicing and chopping can be performed in polynomial

time [7, 8, 20]. Our VHDL slicing tool supports precise interprocedural slicing and chopping.

3 Inter-Procedural Slicing

The value of a variable y used at p is directly a�ected by assignments to y that reach p and by

the predicates that control how many times p is executed. Similarly, the value of a variable x

de�ned at p is directly a�ected by the values of the variables used at p and by the predicates

that control how many times p is executed. Consequently, a slice can be obtained by following

chains of dependences in the directly-a�ects relation. This observation is due to Ottenstein

and Ottenstein [5], who noted that procedure dependence graphs (PDGs), which were originally

devised for use in parallelizing and vectorizing compilers, are a convenient data structure for

slicing. PDGs for the procedures in a program can be combined to form a system dependence

graph (SDG), upon which our inter-procedural slicing algorithms are based.

The PDG for a procedure is a directed graph whose vertices represent the individual state-

ments and predicates of the procedure. Vertices are included for each of the following constructs:

� Each procedure has an entry vertex.

� Each formal parameter has a vertex representing its initialization from the corresponding

actual parameter.

� Each assignment statement has a vertex.

� Each control-structure condition (e.g. if) has a vertex.

� Each procedure call has a vertex.

� Each actual parameter to a procedure has a vertex representing the assignment of the

argument expression to some implicit (generated) variable.

� Each procedure with a return value has a vertex representing the assignment of the return

value to some generated name.

� Each formal parameter and local variable has a vertex representing its declaration.

A procedure's parameters may sometimes be implicit. If a procedure assigns to or uses a global

variable x (either directly or transitively via a procedure call), x is treated as an \hidden"

input parameter, thus giving rise to additional actual-in and formal-in vertices. Similarly, if

a procedure assigns to a global variable x (either directly or transitively), x is treated as a

\hidden" output parameter, thus giving rise to additional actual-out and formal-out vertices.

Denote the program code corresponding to a vertex V as #V . PDG vertices are connected

through the following types of edges:

� There is a 
ow dependence edge between two vertices v1 and v2 if there exists a program

variable x such that v1 can assign a value to x, v2 can use the value in x, and there is an

execution path in the program from #v1 to #v2 along which there is no assignment to x.
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FUNCTION add(a,b)
    return(a+b);
FUNCTION main()

    i <= 1;
    while (i < 11)
        sum <= add(sum,i);
        i <= add(i,1);
    print(sum);
    print(i);

    sum <= 0;

Figure 1: Sample SDG

� There is a control dependence edge between a condition vertex vc and a second vertex v

if the truth of the condition of #vc controls whether or not #v is executed.

� There is a declaration edge from the declaration vertex for a program variable, x, to each

vertex that can reference x.

� There is a summary edge corresponding to each indirect dependence from a procedure

call's actual parameters and its output(s). These edges are used to avoid recomputing

these summary relationships, thus making inter-procedural slicing more e�cient. They

are actually computed after PDG construction.

Given PDGs for each procedure, a system dependence graph (SDG) is then constructed by

connecting the PDGs appropriately using the following additional types of edges:

� There is a call edge from a procedure call vertex to the corresponding procedure entry

vertex.

� There is a parameter-in edge between each actual parameter and the corresponding formal

parameter.

� There is a parameter-out edge between each procedure output value vertex and the vertex

for an implicit (generated) variable on the caller side designated to receive it.

Figure 1 illustrates a SDG for a small pseudocode program.

The complete algorithm for building a SDG from a program involves the following steps:

1. Build a Control Flow Graph (CFG) for each procedure in the program.

2. Build the call graph for the program.

3. Perform global variable analysis, turning global variables into hidden parameters of the

procedures that reference or modify them.

4. Construct the PDGs by doing control-dependence and 
ow-dependence analysis.
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VHDL Construct Traditional Construct

Procedure

Function Procedure

Process

Concurrent Assignment

Architecture variable Local variable

Signal, Port Global variable

Sequential Statement Statement

Figure 2: Mapping of VHDL Constructs

5. Optionally compress the PDG so that each strongly connected region is represented by

one node.

6. Bring together the PDGs and the call graph to form the SDG.

7. Compute summary edges for procedures that describe dependences between the inputs

and the outputs of each procedure.

Then, slices and chops are computed by following the chains of dependences represented in

the edges of the SDG.

4 VHDL Slicing

Rather than creating an independent slicer built speci�cally for VHDL, our approach is to map

VHDL constructs onto constructs for more traditional procedural languages (e.g. C, Ada),

utilizing the semantics provided by the VHDL LRM [23]. Figure 2 lists the mapping between

VHDL and traditional constructs that we use.

While many of these mappings may seem obvious, there are several major di�erences be-

tween VHDL and traditional programming languages which complicate the generation of the

SDG. A VHDL program executes as a series of simulation cycles, as illustrated in Figure 3.

Begin simulation

��
Assign signals

��
Run processes

��

End simulation
Process resumption or

signal transaction ?
yes

��

no
oo Run processesoo

Update time // Update signals

OO

Figure 3: Simpli�ed VHDL simulation cycle
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The VHDL computational paradigm di�ers fundamentally from traditional languages in

three ways:

1. A VHDL program is a non-halting reactive system, rather than a collection of halting

procedures.

2. A VHDL program is a concurrent composition of processes, where there is no explicit

means for these processes to be called (in the manner of traditional procedures).

3. VHDL processes communicate through multiple-reader signals to which they are sensitive,

instead of through parameters de�ned at a single procedure entry point.

VHDL procedures and functions are modeled in the traditional way. However, VHDL

process models must capture the above di�erences, and we do this through three types of

modi�cations:

� The constructed CFGs model the non-halting reactive nature of VHDL processes.

� The constructed PDGs capture an additional dependence corresponding to VHDL signal

communication.

� An implicitly generated master \main" procedure controls process invocation, analogous

to the event queue which controls VHDL simulator execution.

These mechanisms are described below. In all cases, the discussion only mentions processes,

though it is to be understood that concurrent statements are treated analogously.

4.1 Constructing the CFG

CFG construction for traditional languages is well understood, and the identical technique is

used for VHDL procedures and functions. VHDL processes require some CFG modi�cations.

We �rst consider processes with an explicit sensitivity list or a single wait statement. The non-

halting nature of processes is modeled simply by passing control from the end of the process

back to its beginning. The wait statement provides the only complication. As suggested by

Figure 3, from a wait statement, either control passes to the next statement or the simulation

exits (in case the wait condition is never satis�ed). This is simple to capture in the CFG by

creating two corresponding child control-
ow arcs from the wait statement. Figure 4 illustrates

a CFG for a simple process.

The situation is substantially more complicated when there are multiple wait statements

in the process. Although the above procedure still works in this case, the resulting slice may

be substantially larger than needed. Since each wait statement corresponds to a point where

a region of the process may be invoked, a forward slice that a�ects a wait statement needs to

include only the portion of the process between the wait statement and the next wait statement

(and similarly for backward slices). To model this, we partition each process into regions

corresponding to the portion of the process between successive wait statements (see Figure 5

for an example).

Note that we only require that each end node of a region precedes a wait statement; there

may be multiple end nodes, and regions may overlap in the presence of wait statements within
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Use x2

Use y3

Use x
4 Kill z

Exit1 PROCESS BEGIN
2     WAIT ON x;
3     IF (y = ’1’) 
4         THEN z <= x;
5     END IF;
6 END PROCESS;

Figure 4: Sample CFG (line numbers added for clarity)

region 1

region 3

region 2

    THEN WAIT ON x3;

WAIT ON x
y <= ’1’;
z <= x;

WAIT ON x2;
IF (x2 = ’1’)

END IF;
z <= x2;

Figure 5: Process regions in the presence of multiple wait statements

branching control structures (though very few VHDL programs have such control structures

in practice). Then, a procedure for each process region is created, and a CFG for each of

the resulting procedures is created as usual. To capture context information between process

regions within the same process, all objects local to the process (e.g., variables) are treated

as global variables after renaming to avoid con
icts with other processes (recall that the SDG

build algorithms treat global variables as hidden parameters). Thus, for a process with W wait

statements, W+1 procedures are created, one starting at each of the wait statements and one

starting at the beginning of the process.

4.2 PDG Modi�cations

In traditional languages, inter-procedure communication occurs through global variables and

parameters explicitly passed from the calling procedure to a called procedure. In contrast,

VHDL process communication occurs through signals, and a process (or process region) is

invoked when it is at a wait statement w, and there is an event for a signal that w is sensitive

to. This communication is captured through the notion of signal dependence (in addition to

the dependence types listed in Section 3): A process region p is said to be signal dependent

on statement s if s potentially assigns a value to a signal that p is sensitive to. Rather than

modeling this signal dependence explicitly in the PDG, we generate implicit procedure calls

in the CFG every time a signal is potentially assigned. For example, every assignment to

signal s is followed by implicit calls to every procedure (e.g. VHDL process region, concurrent

assignment) that is sensitive to s.
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4.3 The Master Process

The above changes do not handle the reactive nature of VHDL, since processes may also be

invoked by events on input ports. For simplicity, the following discussion deals with processes,

though the same arguments are also applicable to process regions. Consider a VHDL program

� =kni=1 Pi, where the Pi's are the processes comprising the program (as before, other concurrent

statements are treated as one-line processes for the purposes of this discussion). Partition �

into two disjoint sets �1;�2, where �1 is the set of processes that are sensitive to at least one

input port (hence, �2 = � n �1). It is clearly not possible to determine a priori whether a

process P 2 �1 is invoked in the simulation (after its initial invocation). Thus, there is some

simulation in which these processes are invoked in�nitely often, and the SDG must include

dependences for these calls. In contrast, any non-initial invocations of a process Q 2 �2 must

occur after an assignment to a signal that Q is sensitive to, and such invocations are handled

using the signal dependences discussed above. Given these two observations, a CFG for the

master process comprising the following (pseudocode) steps can be constructed:

for Q 2 � { initial invocations of each process

call Q

while (true) { subsequent invocations of �1 processes

for P 2 �1

call P

Given PDGs for the master process and each procedure in the VHDL program, the SDG is

constructed as usual.

4.4 Correctness

Our motivation for the VHDL mapping discussed above is captured in the following theorem:

First, de�ne a VHDL process invocation trace to be a sequence T = hT1; T2; : : : ; Ti; : : :i, where

Ti 2 2�, and Ti is the set of processes that are invoked on simulation cycle i of the trace.

Theorem 1 Let the VHDL program � have a process invocation trace T = hT1; T2; : : : ; Ti; : : :i.

Then, for any Pj 2 Ti, either Pj 2 �1 or there is a signal dependence from some statement in

Pk 2 T` to Pj for some ` < i.

The correctness of the theorem can be seen to follow from VHDL operational semantics.

From the theorem, we can conclude that the VHDL slicing algorithm is correct, since any

inter-process dependences will have corresponding call edges in the SDG, by construction.

5 The Slicer

As mentioned earlier, the VHDL slicer is constructed using Codesurfer [24], a toolset developed

and marketed by Grammatech, Inc. The toolset consists of reusable, multi-lingual components

for building and operating on dependence-graph, call graph, and symbol-table representations of
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CFG
Extractor

VHDL
Program

CFGS
Database

Slicer
Core

SDG
Builder SDG

Scheme Scripts

Figure 6: VHDL Slicer Architecture

speci�cations and programs. The dependence graph is presented as an abstract data type, with

interfaces in both C and Scheme. The toolset supports e�cient implementations of powerful

operations on program dependence graphs, such as precise interprocedural slicing and chopping.

Figure 6 illustrates the architecture of the VHDL slicer. The CFG Extractor and SDG

Builder perform the algorithm described in Section 3 and output the SDG as well as a map

from PDG nodes to source-text references. The slicing and chopping algorithms are embedded

in the slicer core.

The user interface for a program-slicing tool is through the source code: By maintaining

appropriate maps between the underlying SDG on which slicing is performed and the source

code, the user speci�es the slicing criterion by selecting program elements in the display of

the source code, and the slice itself is displayed by highlighting the appropriate parts of the

program. Slices may be forward or backward, and unions of slices may be computed using the

GUI. The toolset GUI also supports browsing of projects and project �les, as well as navigation

through dependence graphs, slices, and chops. The user may also write scripts for operating

on the dependence graphs of his program; scripts are written in STk { an implementation of

Scheme enhanced with the Tk graphical user-interface widgets. Data types internal to the slicer

are lifted into STk , and the user interface is built up around them.

5.1 Tool Walkthrough

To give a feel for the interface and some capabilities of our tool, we use a simple VHDL

program, consisting of 1 D 
ip-
op and 2 logic functions (Figures 7, 8) 1. The project view

provides hierarchical summary information that is interactively viewable (partially shown in

the �gure), while the �le view provides the actual text comprising the program.

Figure 9 shows a �le view of the executable statements in the forward slice on the program

point t1 <= t0 AND not(a);. As expected, the slice includes the 
ip-
op but not any input

circuitry. In large �les, the colorbars to the right of the scrollbar allow the user to quickly scroll

1The screenshots reproduced here are dithered monochrome versions of the color tool output, and thus su�er

from some loss of clarity here
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Figure 7: Example Project Viewer view

Figure 8: Example File Viewer view
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Figure 9: Forward slice on t1 <= t0 AND not(a);

to the slice.

Figure 10 shows a project view of the backward slice on the same program point as above.

This time, the slice excludes the 
ip-
op.

6 Applications

There are numerous applications of slicing in hardware simulation, design, testing, and formal

veri�cation, and we describe these applications in this section.

6.1 Design

Some questions that a slicer can help answer during design include:

� What part of the circuit is in the control path (not datapath)?

� What part of the circuit is responsible for one particular circuit function (in a multi-

function circuit)?

� What part of the design is relevant to the actual function (and not the design-for-test

and debug circuitry)?

� When reusing an existing IP design, how should it be modi�ed to meet the new chip

requirements?

Most circuits performmultiple functions, and it is desirable to be identify the circuit portions

that perform a function of interest, so that the designer's attention is focused appropriately.
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Figure 10: Backward slice on t1 <= t0 AND not(a);

Slicing provides a mechanism to automatically perform this isolation. In many circuits, non-

functional (e.g. design-for-test and debug) circuitry often dwarf the functional circuitry, and

slicing allows the high-level architectural designer to ignore these lower-level circuit details.

Another use of slicing occurs when reusing IP Macros. In order to e�ectively and e�ciently

design system LSIs (system-on-a-chip LSIs), it is desirable to reuse existing designs as much as

possible, as it is unrealistically time-consuming to design the entire LSI chip from scratch. An

increasingly popular methodology is to build chips from existing design components registered

as IP macros. However, slight modi�cations to the IP macros are needed to meet the new

chips' requirements (e.g., interface with other chip components, additional or unneccessary

functionality in the reused designs). The e�ciency of these modi�cations is a key issue in system

LSI design. Modi�able IP macros are mostly given in terms of VHDL/Verilog synthesizable

RTL descriptions (so called soft-macros), and users must understand RTL code internals in

order to modify IP macros.

There are several levels of modi�cation that are made to IP macros when they are reused,

and slicing can assist these as follows:

� Changing polarities of inputs or outputs or adding encoders/decoders to inputs or out-

puts of the IP macros: Slicing (using the appropriate inputs/outputs as criteria) assists

designers in determining where to make these modi�cations e�ciently.

� Deleting functionality from an IP macro: Slicing can be directly applied to extract

reusable code portions. For example, we obtain a 2-channel ATM from a 4-channel

ATM by slicing with respect to two ATM output ports. Similarly, we slice an MPEG en-

coder/decoder with respect to the P frame outputs to obtain a simpler encoder/decoder

similar to a motion JPEG encoder/decoder.

� Adding new functionality to an IP macro: A common way of adding new functionality

is to describe it in a new VHDL/Verilog module, and connect it with the existing macro

through multiplexors. However, this is notoriously ine�cient since no code is shared even

if the modules are similar. Slicing can be used to determine macro portions related to the
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new functionality, thus minimizing the added code. If the di�erence between the original

code and the new code is small, we can even expect similar delay/areas performance from

the circuits. This predictability is very important in hardware designs.

For example, consider high-speed communication chips. As network data rates increase,

communication chip macros designed earlier for slower data rates can be reused by

adding/modifying functionality associated with data/cell processing portions of the com-

munication chip. Slicing can be used to identify the portions of the VHDL/Verilog code

associated with the data/cell processing functionality and reuse those portions.

Moreover, if appropriate process techniques are applied in logic synthesis, then we can use

VHDL slicing before RTL code generation and still modify gate level circuits for the original

IP macros e�ciently. We can thus modify hard-macros, i.e., macros that already have layout

information (placement and routing).

6.2 Simulation

Some questions that a slicer can help answer during simulation include:

� What code portions can potentially cause an unexpected signal value found in simulation?

� What portions of the circuit can be a�ected by changing a particular code segment?

� What potentially harmful interactions with other modules can result from changing a

particular code segment?

When debugging a simulation, designers routinely trace backward (in time and program

state) from a point where a signal holds an unexpected value. If the slicing criteria is the set

of statements that potentially assign the value to the signal, a backward slice is precisely the

subset of the program that the designer must trace through, and the remainder of the program

may safely be ignored.

If a code module is updated, a forward slice on the updated portion identi�es the portions of

the circuit that can potentially be a�ected by this update. Moreover, if that slice includes code

from other hardware units, the designer may be alerted to unexpected potential interactions

that may result in the introduction of new bugs due to the update.

6.3 Testing

Testing issues which a slicer can provide assistance for include:

� What execution paths are covered by a given test vector?

� What part of the circuit must be retested if a certain code segment is changed (i.e.

regression testing)?

� What portion of a circuit is controllable from a given set of input ports?

� What portion of a circuit is observable from a given set of output ports?
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Processes
Concurrent
Statements

Total
States

Reachable
States

Original 7 18 1:8X1047 2:5X1037

Sliced (SAFE) 4 3 8:1X1031 1:1X1022

Original 7 18 1:8X1047 6:5X1039

Sliced (INEV) 4 1 3:1X1029 1:1X1022

Figure 11: Bene�ts of Slicing for Formal Veri�cation

� What portion of a circuit is testable (i.e. both controllable and observable) from a given

set of input and output ports?

Test plan generation is a complicated and time-consuming task. Part of this task involves

the identi�cation of execution paths that are covered by a given test vector. Slicing provides

assistance in identifying these paths. For the same reason, slicing assists in determining which

test vectors need to be rerun if a certain code segment is changed.

Another major research area in testing involves the use of metrics to quantify how testable a

circuit is, if only some subset of inputs and outputs is available during test. A forward slice from

the input subset provides an upper bound on circuit controllability, while a backward slice from

the output subset provides an upper bound on circuit observability. Then, the intersection of

these two slices, or alternatively the program chop from the input to the output subset, provides

an upper bound on circuit testability. In all three cases, slicing provides a metric that can be

used when constructing test plans.

6.4 Formal Veri�cation

HDL slicing is particularly useful in model checking to prove circuit correctness. The major

problem in model checking is state space explosion. Given a temporal logic speci�cation, let the

support of the speci�cation be the set of variables/signals in it. Then a backward slice on the

set of statements assigning values to these variables results in a subset of the program consisting

of only the statements that can potentially a�ect the correctness of the speci�cation. Figure 11

illustrates the state space reduction that was achieved in the veri�cation of the controller logic

for a RISC processor, using the model checker described in [2].

7 Related Work

The only other application of program slicing to HDLs that we are aware of is by [25], which

discusses a number of issues and applications related to VHDL slicing. However, the work

presented there is motivational in nature, and we are not aware of any resulting automatable

approaches. To the best of our knowledge, we are the �rst to have implemented a tool to

automatically slice VHDL programs.

SDG-like structures form the basis of many gate-level test-generation algorithms. However,

our approach works at the VHDL source level, thus avoiding the heavy complexity of synthesis.
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Moreover, many applications of slicing described in Section 6 make sense only at the VHDL

source level.

A third area of related work occurs in the model checking domain, where state space size is

reduced using the cone of in
uence reduction (COI) or localization reduction ([26]).

COI can be expressed as a �xpoint computation that constructs the set of state variables that

can potentially a�ect the value of a variable in the CTL speci�cation (i.e., the set of variables

in the cone of in
uence of the variable of interest). Alternatively, COI can be thought of as

building a dependence graph for the program, and then using graph reachability to determine

what parts of the speci�cation are relevant to the variable of interest. The actual dependence

graph may be either on the VHDL source-code (pre-encoding) or on the set of equations that

represent the transition function (post-encoding).

The localization reduction performs a related function. Intuitively, it works by conserva-

tively abstracting system components and verifying a localized version of the speci�cation. If

the localized version is not veri�able, the abstractions are iteratively relaxed by adding more

components, until the speci�cation is eventually provable. Added components are in the spec-

i�cation's COI.

Several di�erences between these two reductions and slicing are worth noting (the �rst 3

apply only if the reductions are done as post-encoding operations):

� In HDL veri�cation, the di�culty often lies in model generation rather than model check-

ing, and it is sometimes not even possible to build the model. Any post-encoding method

obviously does not help in such cases.

� The model generation process often does some translation of the VHDL program into a

restricted VHDL subset, and it is thus di�cult or impossible to trace back to statements in

the original program. Most of the design, simulation, and testing applications mentioned

in this report are consequently not possible using a post-encoding technique.

� One of the variables that the model size is a function of is the size of the input program

(e.g., the bits needed to represent the program counters). Post-encoding reductions cannot

reduce this overhead in general.

� Slicing permits more complex reductions of programs to be speci�ed than is possible using

COI. For example, suppose the speci�cation is of the form \Signal x is always false. In

veri�cation, we are primarily interested in ensuring that counterexamples in the original

program are also in the slice. Thus, we can select the set of all statements that potentially

assign non-false values to x as the slicing criterion, and perform a backward slice with

respect to these statements to produce the desired reduced program. In the most general

case, the structure of the speci�cation can be analyzed to determine the appropriate

combination of forward and backward slices that result in an equivalent program.

In some cases, slicing also has a disadvantage compared to the postencoding versions of the

other reductions mentioned above, since it is applied at the level of granularity of the source

rather than bits.
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8 Conclusions

In this report, we have shown how to extend traditional slicing techniques to VHDL, using

an approach based on capturing the operational semantics of VHDL in traditional constructs.

We have implemented a tool for automatic slicing, and the report listed many applications of

the tool along with some experimental results showing the state space reduction achievable in

model checking. We are currently pursuing further research along four lines. First, we are

enhancing the supported VHDL subset. There are no theoretical limitations, and we expect to

be able to slice almost all of elaborated VHDL soon. Second, we are investigating techniques to

achieve more precise slices, by capturing VHDL semantics more accurately in the SDGs. The

current SDGs are conservative in allowing for more dependences than actually exist, and more

inter-cycle analysis of VHDL can remove some of these dependences. Third, we are working on

developing slicing techniques for general concurrent languages, since the techniques described

here extend readily to other concurrent languages. Finally, we are developing a theoretical

basis for slicing with respect to CTL speci�cations for use in formal veri�cation.
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