
Providing Guaranteed Services Without Per Flow

Management

Ion Stoica Hui Zhang

May 1998

CMU-CS-99-133

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

An shorter version of this paper will appear in Proceedings of ACM SIGCOMM'99.

This research was sponsored by DARPA under contract numbers N66001-96-C-8528 and E30602-97-2-0287,

and by NSF under grant numbers Career Award NCR-9624979 and ANI-9814929. Additional support was pro-

vided by Intel Corp.

Views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the o�cial policies, either expressed or implied, of DARPA, NSF, Intel, or the U.S. government.

Keywords: Guaranteed services, Intserv, Di�serv, state management

Abstract

Existing approaches for providing guaranteed services require routers to manage per
ow states

and perform per
ow operations [3, 13]. Such a stateful network architecture is less scalable

and robust than stateless network architectures like the original IP and the recently proposed

Di�serv [12]. However, services provided with current stateless solutions, Di�serv included, have

lower
exibility, utilization, and/or assurance level as compared to the services that can be

provided with per
ow mechanisms.

In this paper, we propose techniques that do not require per
ow management (either control

or data planes) at core routers, but can implement guaranteed services with levels of
exibility,

utilization, and assurance similar to those that can be provided with per
ow mechanisms. In

this way we can simultaneously achieve high quality of service, high scalability and robustness.

The key technique we use is called Dynamic Packet State (DPS), which provides a lightweight

and robust mechanism for routers to coordinate actions and implement distributed algorithms.

We present an implementation of the proposed algorithms that has minimum incompatibility

with IPv4.

1 Introduction

Current IP networks provide one simple service: the best-e�ort datagram delivery. Such a simple

service model allows IP routers to be stateless: except routing state, which is highly aggregated,

routers do not keep any other �ne grain information about tra�c. Providing a minimalist service

model and having the \stateless waist" in the protocol hourglass allows the Internet to scale with

both the size of the network and heterogeneous applications and technologies. Together, they

are two of the most important technical reasons behind the success of the Internet.

As the Internet evolves into a global communication infrastructure, there is a growing need

to support more sophisticated services (e.g., tra�c management, QoS) than the traditional best-

e�ort service. Two classes of solutions emerge: those maintaining the stateless property of the

original IP architecture, and those requiring a new stateful architecture. Examples of stateless

solutions are RED for congestion control [15] and Di�erentiated Service (Di�serv) [12] for QoS.

The corresponding examples of stateful solutions are Fair Queueing [11] for congestion control

and Integrated Service (Intserv) [3] for QoS. In general, stateful solutions can provide more

powerful and
exible services. For example, compared with RED, Fair Queueing can protect

well-behaving
ows from misbehaving ones and accommodate heterogeneous end-to-end conges-

tion control algorithms [20, 25]. Similarly, as discussed in Section 2, services provided by Intserv

solutions have higher
exibility, utilization, and/or assurance level than those provided by Di�-

serv solutions. However, as also discussed in Section 2, stateful solutions are less scalable and

robust than their stateless counterparts.

The question we want to answer is: is it possible to have the best of the two worlds, i.e., pro-

viding services as powerful as those implemented by stateful networks, while utilizing algorithms

as scalable and robust as those used in stateless networks?

While we cannot answer the above question in its full generality, we can answer it in some

speci�c cases of practical interest. We consider a network architecture similar to the Di�serv

architecture, called Scalable Core or SCORE, in which only edge routers perform per
ow man-

agement, while core routers do not. As illustrated in Figure 1, the goal of a SCORE network is

to approximate the service provided by a reference stateful network. In [29] we have shown that

a SCORE network can achieve fair bandwidth allocation by approximating the service provided

by a reference network in which every node performs fair queueing.

In this paper, we will show that a SCORE network can provide end-to-end per
ow delay and

bandwidth guarantees as de�ned in Intserv. Current Intserv solutions assume a stateful network

in which two types of per
ow state are needed: forwarding state, which is used by the forwarding

engine to ensure �xed path forwarding, and QoS state1, which is used by both the admission

1In the context of RSVP, we use \QoS" state to refer to both the
ow spec and the �lter spec.

1

edge node

(a) Reference Network

core node

(b) SCORE Network

Figure 1: (a) A reference stateful network whose functionality is approximated by (b) a Scalable Core

(SCORE) network. In SCORE only edge nodes perform per
ow management; core nodes do not

perform per
ow management.

control module in the control plane and the classi�er and scheduler in the data plane. In [30], we

have proposed an algorithm that implements �xed path forwarding with no per
ow forwarding

state. In this paper, we focus on techniques to eliminate the need for core nodes to keep per
ow

QoS state. In particular, we propose two algorithms: one for the data plane to schedule packets,

and the other for the control plane to perform admission control. Neither requires per
ow state

at core routers.

The key technique used to implement a SCORE network is Dynamic Packet State (DPS).

With DPS, each packet carries in its header some state that is initialized by the ingress router.

Core routers process each incoming packet based on the state carried in the packet's header,

updating both its internal state and the state in the packet's header before forwarding it to the

next hop (see Figure 2). By using DPS to coordinate actions of edge and core routers along the

path traversed by a
ow, distributed algorithms can be designed to approximate the behavior of

a broad class of stateful networks using networks in which core routers do not maintain per
ow

state.

The rest of the paper is organized as follows. In Section 2, we give an overview of Intserv

2

(d)

(c)

(b)

(a)

Figure 2: The illustration of the Dynamic Packet State (DPS) technique used to implement a SCORE

network: (a-b) upon a packet arrival the ingress node inserts some state into the packet header; (b-c) a

core node processes the packet based on this state, and eventually updates both its internal state and

the packet state before forwarding it. (c-d) the egress node removes the state from the packet header.

and Di�serv, and discuss the tradeo�s of these two architectures in providing QoS. In Sections 3

and 4 we present the details of our data and control path algorithms, respectively. Section 5

describes a design and a prototype implementation of the proposed algorithms in IPv4 networks.

This demonstrates that it is indeed possible to implement algorithms with Dynamic Packet State

techniques that have minimum incompatibility with existing protocols. Finally, we conclude the

paper in Section 7.

2 Intserv and Di�serv

To support QoS in the Internet, the IETF has de�ned two architectures: the Integrated Services

or Intserv [3], and the Di�erentiated Services or Di�serv [12]. They have important di�erences in

both service de�nitions and implementation architectures. At the service de�nition level, Intserv

provides end-to-end guaranteed [26] or controlled load service [37] on a per
ow (individual or

aggregate) basis, while Di�serv provides a coarser level of service di�erentiation among a small

number of tra�c classes. At the implementation level, current Intserv solutions require each

router to process per
ow signaling messages and maintain per
ow data forwarding and QoS state

on the control path, and to perform per
ow classi�cation, scheduling, and bu�er management

on the data path. Performing per
ow management inside the network a�ects both the network

3

scalability and robustness. The former is because the complexities of these per
ow operations

usually increase as a function of the number of
ows; the later is because it is di�cult to maintain

the consistency of dynamic, and replicated per
ow state in a distributed network environment.

As pointed out by Clark in [5]: \because of the distributed nature of the replication, algorithms to

ensure robust replication are themselves di�cult to build, and few networks with distributed state

information provide any sort of protection against failure." While there are several proposals that

aim to reduce the number of
ows inside the network by aggregating micro-
ows that follow the

same path into one macro-
ow [2, 18], they only alleviate this problem, but do not fundamentally

solve it | the number of macro
ows can still be quite large in a network with many edge routers,

as the number of paths is a quadratic function of the number of edge nodes.

Di�serv, on the other hand, distinguishes between edge and core routers. While edge routers

process packets on the basis of �ner tra�c granularity, such as per
ow or per organization,

core routers do not maintain �ne grain state, and process packets based on a small number

of Per Hop Behaviors (PHBs) encoded by bit patterns in the packet header. By pushing the

complexity to the edge and maintaining a simple core, Di�serv's data plane is muchmore scalable

than Intserv. However, Di�serv still needs to address the problem of admission control on the

control path. One proposal is to use a centralized bandwidth broker that maintains the topology

as well as the state of all nodes in the network. In this case, the admission control can be

implemented by the broker, eliminating the need for maintaining distributed reservation state.

Such a centralized approach is more appropriate for an environment where most
ows are long

lived, and set-up and tear-down events are rare. To support �ne grain and dynamic
ows, there

may be a need for a distributed broker architecture, in which the broker database is replicated

or partitioned. Distributed broker architectures are still an active area of research. One can

envision an architecture in which, when a broker receives a request, it makes an acceptance or

rejection decision based on its own database, without consulting other brokers. This eliminates

the need for a signaling protocol, but requires another protocol to maintain the consistency of

the di�erent broker databases. However, since it is impossible to achieve perfect consistency,

this may lead to race conditions and/or resource fragmentation. In particular, since requests

which arrive simultaneously at di�erent brokers may want to reserve capacity along the same

link, each broker can independently allocate only a fraction of the link capacity without running

the risk of over-provisioning. This translates into a fundamental trade-o� between scalability

and fragmentation: while increasing the number of brokers make the solution more scalable, it

also increases resource fragmentation.

While Di�serv is more scalable than Intserv in terms of implementation, services provided

with existing Di�serv solutions usually have lower
exibility, utilization, and assurance levels than

Intserv services. Two examples of di�erentiated service models are the assured service [6, 7] and

4

the premium service [22]. The assured service is a form of statistical service and achieves lower

assurance than guaranteed service. The premium service provides the equivalent of a dedicated

link of �xed bandwidth between two edge nodes. However, as we have shown in Appendix A,

in order for the premium service to achieve service assurance comparable to the guaranteed

service, even with a relative large queueing delay bound (e.g., 200 ms), the fraction of bandwidth

that can be allocated to premium service tra�c has to be very low (e.g., 10%). It is debatable

whether these numbers should be of signi�cant concern. For example, low utilization by the

premium tra�c may be acceptable if the majority of tra�c will be best e�ort, either because

the best e�ort service is \good enough" for most applications or the price di�erence between

premium tra�c and best e�ort tra�c is too high to justify the performance di�erence between

them. Alternatively, if the guaranteed nature of service assurance is not needed, i.e., statistical

service assurance is su�cient for premium service, higher network utilization can be achieved.

Providing meaningful statistical service is still an open research problem. A discussion of these

topics is beyond the scope of this paper. For the remaining sections of the paper, we assume that

it is a desirable goal to provide guaranteed service and at the same time achieve high resource

utilization.

In summary, Intserv provides more powerful service but has serious limitations with respect

to network scalability and robustness. Di�serv is more scalable, but cannot provide services that

are comparable to Intserv. In addition, scalable and robust admission control for Di�serv is still

an open research problem.

3 QoS Scheduling Without Per Flow State

Current Intserv solutions assume a stateful network in which each router maintains per
ow QoS

state. The state is used by both the admission control module in the control plane and the

classi�er and scheduler in the data plane.

In this paper, we propose scheduling and admission control algorithms that provide guarantee

services but do not require core routers to maintain per
ow state. In this section, we present

techniques that eliminate the need for data plane algorithms to use per
ow state at core nodes.

In particular, at core nodes, packet classi�cation is no longer needed and packet scheduling is

based on the state carried in packet headers, rather than per
ow state stored locally at each

node. In Section 4, we will show that fully distributed admission control can also be achieved

without the need for maintaining per
ow state at core nodes.

The main idea behind our solution is to approximate a reference stateful network with a

SCORE network. The key technique used to implement approximation algorithms is Dynamic

Packet State (DPS). With DPS, each packet carries some state which is initialized by the ingress

5

node, and then updated by core nodes along the packet's path. The state is used by nodes

traversed by the packet to coordinate actions and implement distributed algorithms. On the

data path, our algorithm aims to approximate a network with every node implementing the

Delay-Jitter-Controlled Virtual Clock (Jitter-VC) algorithm. We make this choice for several

reasons. First, unlike various Fair Queueing algorithms [11, 24], in which a packet's deadline can

depend on state variables of all active
ows, in Virtual Clock a packet's deadline depends only on

the state variables of the
ow it belongs to. This property of Virtual Clock makes the algorithm

easier to approximate in a SCORE network. In particular, the fact that the deadline of each

packet can be computed exclusively based on the state variables of the
ow it belongs to, makes

possible to eliminate the need of replicating and maintaining per
ow state at all nodes across

the path. Instead, per
ow state can be stored only at the ingress node, inserted into the packet

header by the ingress node, and retrieved later by core nodes, which then use it to determine

the packet's deadline. Second, by regulating tra�c inside network using delay-jitter-controllers

(discussed below), it can be shown that with very high probability, the number of packets in the

server at any given time is signi�cantly smaller than the number of
ows (see Section 3.3). This

helps to simplify the scheduler.

In the remainder of this section, we will �rst describe the implementation of Jitter-VC using

per
ow state, then present our algorithm, called Core-Jitter-VC (CJVC), which uses the tech-

nique of Dynamic Packet State (DPS). In Appendix B we present an analysis to show that a

network of routers implementing CJVC provides the same delay bound as a network of routers

implementing the Jitter-VC algorithm.

3.1 Jitter Virtual Clock (Jitter-VC)

Jitter-VC is a non-work-conserving version of the Virtual Clock algorithm [40]. It uses a com-

bination of a delay-jitter rate-controller [33, 39] and a Virtual Clock scheduler. The algorithm

works as follows: each packet is assigned an eligible time and a deadline upon its arrival. The

packet is held in the rate-controller until it becomes eligible, i.e., the system time exceeds the

packet's eligible time (see Figure 3(a)). The scheduler then orders the transmission of eligible

packets according to their deadlines.

For the kth packet of
ow i, its eligible time eki;j and deadline dki;j at the j
th node on its path

are computed as follows:

e1i;j = a1i;j

eki;j = max(aki;j + gki;j�1; d
k�1
i;j); i; j � 1; k > 1 (1)

dki;j = eki;j +
lki
ri
; i; j; k � 1 (2)

6

Notation Comments

pki the k-th packet of
ow i

lki length of pki

aki;j arrival time of pki at node j

ski;j sending time of pki at node j

eki;j eligible time of pki at node j

dki;j deadline of pki at node j

gki;j time ahead of schedule: gki;j = dki;j + �j � ski;j

�ki slack delay of pki

�j propagation delay between nodes j and j + 1

�j transmission time of a maximum size packet at node j

Table 1: Notations used in Section 3.

where lki is the length of the packet, ri is the reserved rate for the
ow, a
k
i;j is the packet's arrival

time at the jth node traversed by the packet, and gki;j , stamped into the packet header by the

previous node, is the amount of time the packet was transmitted before its schedule, i.e., the

di�erence between the packet's deadline and its actual departure time at the j � 1th node. Note

that the packet deadline is actually in
ated by �j, i.e., the transmission time of a packet of

maximum size between nodes j and j + 1. This correction is needed because a packet can miss

its deadline by �j [40].

Intuitively, the algorithm eliminates the delay variation of di�erent packets by forcing all

packets to incur the maximum allowable delay. The purpose of having gki;j�1 is to compensate at

node j the variation of delay due to load
uctuation at the previous node j�1. Such regulations

limit the tra�c burstiness caused by network load
uctuations, and as a consequence, reduce

both bu�er space requirements and the scheduler complexity.

It has been shown that if a
ow's long term arrival rate is no greater than its reserved rate, a

network of Virtual Clock servers can provide the same delay guarantee to the
ow as a network

of WFQ servers [14, 17, 28]. In addition, it has been shown that a network of Jitter-VC servers

can provide the same delay guarantees as a network of Virtual Clock servers [10, 16]. Therefore,

a network of Jitter-VC servers can provide the same guaranteed service as a network of WFQ

servers.

7

3.2 Core-Jitter-VC (CJVC)

In this section we propose a variant of Jitter-VC, called Core-Jitter-VC (CJVC), which does not

require per
ow state at core nodes. In addition, we show that a network of CJVC servers can

provide the same guaranteed service as a network of Jitter-VC servers.

CJVC uses the DPS technique. The key idea is to have the ingress node to encode scheduling

parameters in each packet's header. The core routers can then make scheduling decisions based

on the parameters encoded in packet headers, thus eliminating the need for maintaining per
ow

state at core nodes. As suggested by Eqs. (1) and (2), the Jitter-VC algorithm needs two state

variables for each
ow i: ri, which is the reserved rate for
ow i and dki;j , which is the deadline

of the last packet from
ow i that was served by node j. While it is straightforward to eliminate

ri by putting it in the packet header, it is not trivial to eliminate dki;j. The di�erence between ri

and dki;j is that while all nodes along the path keep the same ri value for
ow i, dki;j is a dynamic

value that is computed iteratively at each node. In fact, the eligible time and the deadline of pki
depend on the deadline of the previous packet of the same
ow, i.e., dk�1i;j .

A naive implementation using the DPS technique would be to pre-compute the eligible times

and the deadlines of the packet at all nodes along its path and insert all of them in the header.

This would eliminate the need for core nodes to maintain dki;j. The main disadvantage of this

approach is that the amount of information carried by the packet increases with the number of

hops along the path. The challenge then is to design algorithms that compute dki;j for all nodes

while requiring a minimum amount of state in the packet header.

Notice that in Eq. (1), the reason for node j to maintain dki;j is that it will be used to compute

the deadline and the eligible time of the next packet. Since it is only used in a max operation,

we can eliminate the need for dki;j if we can ensure that the other term in max is never less than

dki;j. The key idea is then to use a slack variable associated with each packet, denoted �ki , such

that for every core node j along the path, the following holds

aki;j + gki;j�1 + �ki � dk�1i;j ; j > 1 (3)

By replacing the �rst term of max in Eq. (1) with aki;j + gki;j�1 + �ki , the computation of the

eligible time reduces to

eki;j = aki;j + gki;j�1 + �ki ; j > 1 (4)

Therefore, by using one additional DPS variable �ki we eliminate the need for maintaining dki;j at

the core nodes.

The derivation of �ki proceeds in two steps. First, we express the eligible time of packet pki at

an arbitrary core node j, eki;j, as a function of the eligible time of pki at the ingress node e
k
i;1 (see

Eq. (7)). Second, we use this result and Ineq. (4) to derive a lower bound for �ki .

8

i,4
1

e i,3
1

i,3
1d

i,4
1d

e i,1
1

i,3
2de i,3

2

d i,2
2e i,2

2

i,1
2de i,1

2

2de i,4
2

i,4

node 2

node 3

node 1
(ingress)

time

node 4

i,1

(egress)

1d

e i,2
1

i,2
1d

e

(a)

d

e i,4
1

e i,3
1

i,4
1d

e i,2
2

e i,3
2

i,3
1d

i,1
2de i,1

2

2de i,4
2

i,4

node 1

node 2

node 3

node 4

i,3
2d

d i,2
2

time

(ingress)

e

(egress)

i,1
1

i,1
1d

e i,2
1

i,2
1

(b)

Figure 3: The time diagram of the �rst two packets of
ow i along a four nodes path under (a)

Jitter-VC, and (b) CJVC, respectively. Propagation times (�j) and transmission times of maximum

size packets (�j) are ignored.

We now proceed with the �rst step. Recall that gki;j�1 represents the time by which pki

is transmitted before its schedule at node j � 1, i.e., dki;j�1 + �j�1 � ski;j�1, where �j�1 is the

maximum time by which a packet can miss its deadline at node j � 1. Let �j�1 denote the

propagation delay between nodes j�1 and j. Then the arrival time of pki at node j, a
k
i;j, is given

by

aki;j = ski;j�1 + �j�1 + �j�1 (5)

= dki;j�1 � gki;j�1 + �j�1 + �j�1:

By replacing aki;j, given by the above expression, in Eq. (4), and then using Eq. (2), we obtain

eki;j = dki;j�1 + �ki + �j�1 + �j�1 (6)

= eki;j�1 +
lki
ri
+ �ki + �j�1 + �j�1:

By iterating over the above equation we express eki;j as a function of eki;1:

eki;j = eki;1 + (j � 1)

lki
ri
+ �ki

!
+

j�1X
m=1

(�m + �m); j > 1 (7)

We are now ready to compute �ki . Recall that the goal is to compute the minimum �ki which

ensures that Ineq. (3) holds for every node along the path. After combining Ineq. (3), Eq. (4)

and Eq. (2) this reduces to ensure that

eki;j � dk�1i;j) eki;j � ek�1i;j +
lk�1i

ri
; j > 1 (8)

By plugging eki;j and ek�1i;j as expressed by Eq. (7) into Ineq. (8), we get

9

�ki � �k�1i +
lk�1i � lki

ri
+
ek�1i;1 + lk�1i =ri � eki;1

(j � 1)
; j > 1 (9)

From Eqs. (1) and (2) we have eki;1 � dk�1i;1 = ek�1i;1 + lk�1i =ri. Thus, the right-hand side term in

Ineq. (9) is maximized when j = h. As a result we compute �ki as

�1i = 0; (10)

�ki = max

0; �k�1i +

lk�1i � lki
ri

� eki;1 � ek�1i;1 � lk�1i =ri

h� 1

!
; k > 1; h > 1:

In this way, CJVC ensures that the eligible time of every packet pki at node j is no smaller

than the deadline of the previous packet of the same
ow at node j, i.e., eki;j � dk�1i;j . In addition,

the Virtual Clock scheduler ensures that the deadline of every packet is not missed by more than

�j [40].

In Appendix B, we have shown that a network of CJVC servers provide the same worst case

delay bounds as a network of Jitter-VC servers. More precisely, we have proven the following

result.

Theorem 1 The deadline of a packet at the last hop in a network of CJVC servers is equal to

the deadline of the same packet in a corresponding network of Jitter-VC servers.

The example in Figure 3 provides some intuition behind the above result. The basic obser-

vation is that, with Jitter-VC, not counting the propagation delay, the di�erence between the

eligible time of packet pki at node j and its deadline at the previous node j � 1, i.e., eki;j � dki;j�1,

never decreases as the packet propagates along the path. Consider the second packet in Figure 3.

With Jitter-VC, the di�erences e2i;j � d2i;j�1 (represented by the bases of the gray triangles) in-

crease in j. By introducing the slack variable �ki , CJVC equalizes these delays. While this change

may increase the delay of the packet at intermediate hops, it does not a�ect the end-to-end delay

bound.

Figure 4 shows the computation of the scheduling parameters eki;j and dki;j by a CJVC server.

The number of hops h is computed at the admission time as discussed in Section 4.1.

3.3 Data Path Complexity

While our algorithms do not maintain per
ow state at core nodes, there is still the need for core

nodes to perform regulation and packet scheduling based on eligible times and deadlines. The

10

ingress node

on packet p arrival

i = get flow(p);

if (�rst packet of
ow(p, i))

ei = current time;

�i = 0;

else

�i = max(0; �i + (li � length(p))=ri�

max(current time� di; 0)=(h� 1)); =� Eq. (10) �=

ei = max(current time; di);

li = length(p);

di = ei + li=ri;

on packet p transmission

label(p) (ri; di � current time; �i);

core/egress node

on packet p arrival

(r; g; �) label(p);

e = current time+ g + �; =� Eq. (4) �=

d = e+ length(p)=r

on packet p transmission

if (core node)

label(p) (r; d� current time; �);

else =� this is an egress node �=

clear label(p);

Figure 4: Algorithms performed by ingress, core, and egress nodes at the packet arrival and departure.

Note that core and egress nodes do not maintain per
ow state.

11

natural question to ask is: why is this a more scalable scheme than previous solutions requiring

per
ow management?

There are several scalability bottlenecks for solutions requiring per
ow management. On

the data path, the expensive operations are per
ow classi�cation and scheduling. On the

control path, the complexity is the maintenance of consistent and dynamic state in a distributed

environment. Among the three, it is easiest to reduce the complexity of the scheduling algorithm

as there is a natural tradeo� between the complexity and the
exibility of the scheduler [35]. In

fact, a number of techniques have already been proposed to reduce the scheduling complexity,

including those requiring constant time complexity [27, 36, 38].

We also note that due to the way we regulate tra�c, it can be shown that with very high

probability, the number of packets in the server at any given time is signi�cantly smaller than

the number of
ows. This will further reduce the scheduling complexity and in addition reduce

the bu�er space requirement. More precisely, in Appendix C we prove the following result.

Theorem 2 Consider a server traversed by n
ows. Assume that the arrival times of the packets

from di�erent
ows are independent, and that all packets have the same size. Then, for any given

probability ", the queue size at any time instant during a server busy periodic is asymptotically

bounded above by s, where

s =

vuut�n

lnn

2
� ln "

2
� 1

!
; (11)

with a probability larger than 1� ". For identical reservations � = 1; for heterogeneous reserva-

tions � = 3.

As an example, let n = 106, and " = 10�10, which is the same order of magnitude as the

probability of a packet being corrupted at the physical layer. Then, by Eq. (11) we obtain

s = 4174 if all
ows have identical reservations, and s = 7230 if
ows have heterogeneous

reservations. Thus the probability of having more packets in the queue than speci�ed by Eq. (11)

can be neglected at the level of the entire system even in the context of guaranteed services.

In Table 2 we compare the bounds given by Eq. (11) to simulation results. In each case we

report the maximum queue size achieved during the �rst n time slots of a busy period over 105

independent trials. We note that in the case of all
ows having identical reservations we are

guaranteed that if the queue does not over
ow during the �rst n time slots of a busy period, it

will not over
ow during the rest of the busy period (see Corollary 1). Since the probability of

a bu�er to over
ow during the �rst n time slots is no larger than n times the probability of the

bu�er to over
ow during an arbitrary time slot, we use " = 10�5

n
to compute the corresponding

12

ows (n) bound (s) max. queue size

100 31 28

1,000 109 100

10,000 374 284

100,000 1276 880

1,000,000 4310 2900

(a)

ows (n) bound (s) max. queue size

100 53 30

1,000 188 95

10,000 648 309

100,000 2210 904

1,000,000 7465 2944

(b)

Table 2: The upper bound of the queue size, s, computed by Eq. (11) for " = 10�5

n
(where n is the

number of
ows) versus the maximum queue size achieved during the �rst n time slots of a busy period

over 105 independent trials, during the �rst n time slots of a busy period: (a) when all
ows have

identical reservations; (b) when
ows' reservations di�er by a factor of 20.

bounds.2

The results show that our bounds are reasonably close (within a factor of two) when all

reservations are identical, but are more conservative when the reservations are di�erent. Finally,

we make three comments. First, by performing per packet regulation at every core node, the

bounds given by Eq. (11) hold for any core node and are independent of the path length. Second,

if the
ows' arrival patterns are not independent, we can easily enforce this by randomly delaying

the �rst packet from each backlogged period of the
ow at ingress nodes. This will increase the

end-to-end packet delay by at most the queueing delay of one extra hop. Third, the bounds

given by Eq. (11) are asymptotic. In particular, in proving the results in Appendix C we make

the assumption that n � s. However, this a reasonable assumption in practice, as the most

interesting cases involve high values for n, and, as suggested by Eq. (11) and the results in

Table 2, even for small values of " (e.g., 10�10), n is much larger than s in these case.

4 Admission Control With No Per Flow State

A key component of any architecture that provides guaranteed services is the admission con-

trol. The main job of the admission control is to ensure that the network resources are not

over-committed. In particular it has to ensure that the sum of the reservation rates of all
ows

that traverse any link in the network is no larger than the link capacity, i.e.,
P

i ri < C. A

new reservation request is granted if it passes the admission test at each hop along its path. As

discussed in Section 2, implementing such a functionality is not trivial: traditional distributed

2More formally, let "0 be the probability that the bu�er does not over
ow during the �rst n time slots of the

busy period. Then by taking "0 = n � ", Eq. (11) becomes s =
p
�n(lnn � (ln "0)=2� 1).

13

domainResv

1

2

Resv receiversender

Resv

ingress
node

egress
node

Data traffic

RSVP control messages

intra-domain
signaling messages

3

Figure 5: Ingress-egress admission control when RSVP is used outside the SCORE domain.

architectures based on signaling protocols are not scalable and are less robust due to the require-

ment of maintaining dynamic and replicated state; centralized architectures have scalability and

availability concerns.

In this section, we propose a fully distributed architecture for implementing admission control.

Like most distributed admission control architectures, in our solution, each node keeps track of

the aggregate reservation rate for each of its out-going links and makes local admission control

decisions. However, unlike existing reservation protocols, this distributed admission control

process is achieved without core nodes maintaining per
ow state.

4.1 Ingress-to-Egress Admission Control

We consider an architecture in which a lightweight signaling protocol is used within the SCORE

domain. Edge routers are the interface between this signaling protocol and an inter-domain

signaling protocol such as RSVP. For the purpose of this discussion, we consider only unicast

reservations. In addition, we assume a mechanism like the one proposed in [30] or Multi-Protocol

Label Switching (MPLS) [4] that can be used to pin a
ow to a route.

From the point of view of RSVP, a path through the SCORE domain is just a virtual link.

There are two basic control messages in RSVP: Path and Resv. These messages are processed

only by edge nodes; no operations are performed inside the domain. For the ingress node, upon

receiving a Path message, it simply forwards it through the domain. For the egress node, upon

receiving the �rst Resv message for a
ow (i.e., there was no RSVP state for the
ow at the

egress node before receiving the message), it will forward the message (message \1" in Figure 5)

to the corresponding ingress node, which in turn will send a special signaling message (message

\2" in Figure 5) along the path toward the egress node. Upon receiving the signaling message,

each node along the path performs a local admission control test as described in Section 4.2. In

addition, the message carries a counter h that is incremented at each hop. The �nal value h

14

is used for computing the slack delay � (see Eq. (10)). If we use the route pinning mechanism

described in [30], message \2" is also used to compute the label of the path between the ingress

and egress. This label is used then by the ingress node to make sure that all data packets of

the
ow are forwarded along the same path. When the signaling message \2" reaches the egress

node, it is re
ected back to the sender, which makes the �nal decision (message \3" in Figure 5).

RSVP refresh messages for a
ow that already has per
ow RSVP state installed at edge routers

will not trigger additional signaling messages inside the domain.

Since RSVP uses raw IP or UDP to send control messages, there is no need for retransmission

for our signaling messages, as message loss will not break the RSVP semantics. If the sender

does not receive a reply after a certain timeout, it simply drops the Resv message. In addition, as

we will show in Section 4.3, there is no need for a special termination message inside the domain

when a
ow is torn down.

4.2 Per-Hop Admission Control

Each node needs to ensure that
P

i ri < C holds at all times. At �rst sight, one simple solution

that implements this test and also avoids per
ow state is for each node to maintain the aggregate

reserved rate R, where R is updated to R = R + r when a new
ow with the reservation rate

r is admitted, and to R = R � r0 when a
ow with the reservation rate r0 terminates. The

admission control reduces then to checking whether R+ r � C holds. However, it can be easily

shown that such a simple solution is not robust with respect to various failure conditions such as

packet loss, partial reservation failures, and network node crashes. To handle packet loss, when

a node receives a set-up or tear-down message, the node has to be able to tell whether it is a

duplicate of a message already processed. To handle partial reservation failures, a node needs

to \remember" what decision it made for the
ow in a previous pass. That is why all existing

solutions maintain per
ow reservation state, be it hard state as in ATM UNI or soft state as

in RSVP. However, maintaining consistent and dynamic state in a distributed environment is

itself challenging. Fundamentally, this is due to the fact that the update operations assume a

transaction semantic, which is di�cult to implement in a distributed environment [1, 34].

In the remaining of the section, we show that by using DPS, it is possible to signi�cantly

reduce the complexity of admission control in a distributed environment. Before we present the

details of the algorithm, we point out that our goal is to estimate a close upper bound on the

aggregate reserved rate. By using this bound in the admission test we avoid over-provisioning,

which is a necessary condition to provide deterministic service guarantees. This is in contrast

to many measurement-based admission control algorithms [19, 32], which, in the context of

supporting controlled load or statistical services, base their admission test on the measurement of

the actual amount of tra�c transmitted. To achieve this goal, our algorithm uses two techniques.

15

Notation Comments

ri
ow i's reserved rate

bki total number of bits
ow i is entitled to transmit

during [sk�1i;1 ; ski;1], i.e., b
k
i = ri(s

k
i;1 � sk�1i;1)

R(t) aggregate reservation at time t

Rbound(t) upper bound of R(t), used by admission test

RDPS(t) estimate of R(t), computed by using DPS

Rnew(t) sum of all new reservations accepted from the

beginning of current estimation interval until t

Rcal(t) upper bound of R(t), used to calibrate Rbound,

computed based on RDPS and Rnew

Table 3: Notations used in Section 4.3.

First, a conservative upper bound of R, denoted Rbound, is maintained at each core node and

is used for making admission control decisions. Rbound is updated with a simple rule: Rbound =

Rbound + r whenever a new request of a rate r is accepted. It should be noted that in order

to maintain the invariant that Rbound is an upper bound of R, this algorithm does not need to

detect duplicate request messages, generated either due to retransmission in case of packet loss

or retry in case of partial reservation failures. Of course, the obvious problem with this algorithm

is that Rbound will diverge from R. In the limit, when Rbound reaches the link capacity C, no new

requests can be accepted even though there might be available capacity.

To address this problem, a separate algorithm is introduced to periodically estimate the

aggregate reserved rate. Based on this estimate, a second upper bound for R, denoted Rcal,

is computed and used to re-calibrate Rbound. An important aspect of the estimation algorithm

is that the discrepancy between the upper bound Rcal and the actual reserved rate R can be

bounded. The re-calibration then becomes choosing the minimum of the two upper bounds

Rbound and Rcal. The estimation algorithm is based on DPS and does not require core routers to

maintain per
ow state.

Our algorithms have several important properties. First, they are robust in the presence of

network losses and partial reservation failures. Second, while they can over-estimate R, they

will never under-estimate R. This ensures the semantics of the guaranteed service { while over-

estimation can lead to under-utilization of network resources, under-estimation can result in

over-provisioning and violation of performance guarantees. Finally, the proposed estimation

algorithms are self-correcting in the sense that over-estimation in a previous period will be

corrected in the next period. This greatly reduces the possibility of serious resource under-

16

utilization.

4.3 Aggregate Reservation Estimation Algorithm

In this section, we present the estimation algorithm of the aggregate reserved rate which is

performed at each core node. In particular, we will describe how Rcal is computed and how it is

used to re-calibrate Rbound. In designing the algorithm for computing Rcal, we want to balance

between two goals: (a) Rcal should be an upper bound on R; (b) over-estimation errors should

be corrected and kept to the minimum.

To compute Rcal, we start with an inaccurate estimate of R, denoted RDPS , and then make

adjustments to account for estimation inaccuracies. In the following, we �rst present the al-

gorithm that computes RDPS , then describe the possible inaccuracies and the corresponding

adjustment algorithms.

The estimate RDPS is calculated using the DPS technique: ingress nodes insert additional

state in packet headers, which is in turn used by core nodes to estimate the aggregate reservation

R. In particular, the following state bki is inserted in the header of packet pki :

bki = ri(s
k
i;1 � sk�1i;1); (12)

where sk�1i;1 and ski;1 are the times the packets pk�1i and pki are transmitted by the ingress node.

Therefore, bki represents the total amount of bits that
ow i is entitled to send during the interval

[sk�1i;1 ; ski;1]. The computation of RDPS is based on the following simple observation: the sum of b

values of all packets of
ow i during an interval is a good approximation for the total number of

bits that
ow i is entitled to send during that interval according to its reserved rate. Similarly, the

sum of b values of all packets is a good approximation for the total number of bits that all
ows

are entitled to send during the corresponding interval. Dividing this sum by the length of the

interval gives the aggregate reservation rate. More precisely, let us divide time into intervals of

length TW : (uk; uk+1], k > 0. Let bi(uk; uk+1) be the sum of b values of packets in
ow i received

during (uk; uk+1], and let B(uk; uk+1) be the sum of b values of all packets during (uk; uk+1]. The

estimate is then computed at the end of each interval (uk; uk+1] as follows

RDPS(uk+1) =
B(uk; uk+1)

uk+1 � uk
=

B(uk; uk+1)

TW
: (13)

While simple, the above algorithm may introduce two types of inaccuracies. First, it ignores

the e�ects of the delay jitter and the packet inter-departure times. Second, it does not consider

the e�ects of accepting or terminating a reservation in the middle of an estimation interval. In

particular, having newly accepted
ows in the interval may result in the under-estimation of R(t)

17

T W

T J T I

T IT JT I --WT

T JT I --WT

edge node

core node

m2m1

Figure 6: The scenario in which the lower bound of bi, i.e., ri(TW � TI � TJ), is achieved. The arrows

represent packet transmissions. TW is the averaging window size; TI is an upper bound on the packet

inter-departure time; TJ is an upper bound on the delay jitter. Both m1 and m2 miss the estimation

interval TW .

by RDPS(t). To illustrate this, consider the following simple example: there are no guaranteed

ows on a link until a new request with rate r is accepted at the end of an estimation interval

(uk; uk+1]. If no data packet from the new
ow reaches the node before uk+1, B(uk; uk+1) would

be 0, and so would be RDPS(uk+1). However, the correct value should be r.

In the following, we present the algorithm to compute an upper bound of R(uk+1), denoted

Rcal(uk+1). In doing this we account for both types of inaccuracies. Let L(t) denote the set of
reservations at time t. Our goal is then to bound the aggregate reservation at time uk+1, i.e.,

R(uk+1) =
P

i2L(uk+1)
ri. Consider the division of L(uk+1) into two subsets: the subset of new

reservations that were accepted during the interval (uk; uk+1], denoted N (uk+1), and the subset

containing the rest of reservations which were accepted no later than uk+1. Next, we express

R(uk+1) as

R(uk+1) =
X

i2L(uk+1)nN (uk+1)

ri +
X

i2N (uk+1)

ri: (14)

The idea is then to derive an upper bound for each of the two right-hand side terms, and compute

Rcal as the sum of these two bounds. To bound
P

i2L(uk+1)nN (uk+1)
ri, we note that

B(uk; uk+1) �
X

i2L(uk+1)nN (uk+1)

bi(uk; uk+1): (15)

The reason that (15) is an inequality instead of an equality is that when there are
ows ter-

minating during the interval (uk; uk+1], their packets may still have contributed to B(uk; uk+1)

even though they do not belong to L(uk+1) n N (uk+1). Next, we compute a lower bound for

bi(uk; uk+1). By de�nition, since i 2 L(uk+1) n N (uk+1), it follows that
ow i holds a reservation

18

during the entire interval (uk; uk+1]. Let TI be the maximum inter-departure time between two

consecutive packets of a
ow at the edge node, and let TJ be the maximum delay jitter of a
ow,

where both TI and TJ are much smaller than TW . Now, consider the scenario shown in Figure 6

in which a core node receives the packets m1 and m2 just outside the estimation window. As-

suming the worst case in which m1 incurs the lowest possible delay, m2 incurs the maximum

possible delay, and that the last packet before m2 departs TI seconds earlier, it is easy to see

that that the sum of the b values carried by the packets received during the estimation interval

by the core node cannot be smaller than ri(TW � TI � TJ). Thus, we have

bi(uk; uk+1) > ri(TW � TI � TJ); (16)

8i 2 L(uk+1) n N (uk+1): (17)

By combining Ineqs. (15) and (16), and Eq. (13) we obtain

X
i2L(uk+1)nN (uk+1)

ri <
X

i2L(uk+1)nN (uk+1)

bi(uk; uk+1)

TW (1� f)

� RDPS(uk+1)

1� f
; (18)

where f = (TI + TJ)=TW .

Next, we bound the second right-hand side term in Ineq. (14):
P

i2N (uk+1)
ri For this, we intro-

duce a new global variable Rnew. Rnew is initialized at the beginning of each interval (uk; uk+1] to

zero, and is updated to Rnew + r every time a new reservation r is accepted. Let Rnew(t) denote

the value of this variable at time t. For simplicity, here we assume that a
ow which is granted

a reservation during the interval (uk; uk+1] becomes active no later than uk+1.
3 Then it is easy

to see that

X
i2N (uk+1)

ri � Rnew(uk+1): (19)

The inequality holds when no duplicate reservation requests are processed, and none of the new

accepted reservations terminate during the interval. Then we de�ne Rcal(uk+1) as

Rcal(uk+1) =
RDPS(uk+1)

1� f
+Rnew(uk+1): (20)

From Eq. (14), and Ineqs. (18) and (19) follow easily that Rcal(uk+1) is an upper bound for

R(uk+1), i.e., Rcal(uk+1) > R(uk+1). Finally, we use Rcal(uk+1) to re-calibrate the upper bound

of the aggregate reservation, Rbound, at uk+1 as

3Otherwise, to account for the worst case in which a reservation that was accepted by the node during (uk�1; uk]

becomes at time uk +RTT , we need to subtract RTT � Rnew(uk) from B(uk; uk+1).

19

Per-hop Admission Control

on reservation request r

if (Rbound + r � C) =� perform admission test �=

Rnew = Rnew + r;

Rbound = Rbound + r;

accept request;

else

deny request;

on reservation termination r =� optional �=

Rbound = Rbound � r;

Aggregate Reservation Bound Comp.

on packet arrival p

b get b(p); =� get b value inserted by ingress (Eq. (12)) �=

L = L+ b;

on time-out TW

RDPS = L=TW ; =� estimate aggregate reservation �=

Rbound = min(Rbound; RDPS=(1� f) +Rnew);

Rnew = 0;

Figure 7: The control path algorithms executed by core nodes; Rnew is initialized to 0.

Rbound(uk+1) = min(Rbound(uk+1); Rcal(uk+1)): (21)

Figure 7 shows the pseudocode of control algorithms at core nodes. Next we make several

observations.

First, the estimation algorithm uses only the information in the current interval. This makes

the algorithm robust with respect to loss and duplication of signaling packets since their e�ects

are \forgotten" after one time interval. As an example, if a node processes both the original and

a duplicate of the same reservation request during the interval (uk; uk+1], Rbound will be updated

twice for the same
ow. However, this erroneous update will not be re
ected in the computation

of RDPS(uk+2), since its computation is based only on the b values received during (uk+1; uk+2].

As a consequence, an important property of our admission control algorithm is that it can

asymptotically reach a link utilization of C(1� f)=(1 + f). In particular, the following result is

proven in Appendix D:

20

Theorem 3 Consider a link of capacity C at time t. Assume that no reservation terminates

and there are no reservation failures or request losses after time t. Then if there is su�cient

demand after t the link utilization approaches asymptotically C(1� f)=(1 + f).

Second, note that since Rcal(uk) is an upper bound of R(uk), a simple solution would be to use

Rcal(uk) +Rnew, instead of Rbound, to perform the admission test during (uk; uk+1]. The problem

with this approach is that Rcal can overestimate the aggregate reservation R. An example is

given in Section 5.3 to illustrate this issue (Figure 13(b)).

Third, we note that a possible optimization of the admission control algorithm is to add

reservation termination messages (see Figure 7). This will reduce the discrepancy between the

upper bound Rbound and the aggregate reservation R. However, in order to guarantee that Rbound

remains an upper bound for R, we need to ensure that a termination message is sent at most

once, i.e., there are no retransmissions if the message is lost. In practice, this property can be

enforced by edge nodes, which maintain per
ow state.

Finally, to ensure that the maximum inter-departure time is no larger than TI , the ingress

node may need to send a dummy packet in the case when no data packet arrives for a
ow during

an interval TI . This can be achieved by having the ingress node to maintain a timer with each

ow. An optimization would be to aggregate all \micro-
ows" between each pair of ingress and

egress nodes into one
ow, and compute b values based on the aggregated reservation rate, and

insert a dummy packet only if there is no data packet of the aggregate
ow during an interval.

5 Implementation and Experiments

The key technique of our algorithms is DPS, which encodes states in the packet header, and thus

eliminates the need for maintaining per
ow state at each node. Since there is limited space in

protocol headers and most header bits have been allocated, the main challenge of implementing

these algorithms is to (a) �nd space in the packet header for storing DPS variables and at the same

time remain fully compatible with current standards and protocols; and (b) e�ciently encode

state variables so that they �t in the available space without introducing too much inaccuracy.

In the remaining of the section, we will �rst present how we address the above two problems in

the context of IPv4 networks, describe a prototype implementation of our algorithms in FreeBSD

v2.2.6, and, �nally we give results from experiments in local testbed. The main goal of these

experiments is to provide a proof of concept of our design.

21

5.1 Carrying State in Data Packets

Two possibilities to encode state in the packet header are: (1) introduce a new IP option and

insert the option at the ingress router, or (2) introduce a new header between layer 2 and layer 3,

similar to the way labels are transported in Multi-Protocol Label Switching (MPLS) [4]. While

both of these solutions are quite general and can potentially provide large space for encoding

state variables, for the propose of our implementation we consider a third option: store the state

in the IP header. By doing this, we avoid the penalty imposed by most IPv4 routers in processing

the IP options, or the need of devising di�erent solutions for di�erent technologies as it would

have been required by introducing a new header between layer 2 and layer 3.

The biggest problem with using the IP header is to �nd enough space to insert the extra

information. The main challenge is to remain compatible with current standards and protocols.

In particular, we want the network domain to be transparent to end-to-end protocols, i.e., the

egress node should restore the �elds changed by ingress and core nodes to their original values.

To achieve this goal, we �rst use four bits from the type of service (TOS) byte (now renamed the

Di�erentiated Service (DS) �eld) bits which are speci�cally allocated for local and experimental

use [21]. In addition, we observe that there is an ip o� �eld of 13 bits in the IPv4 header to

support packet fragmentation/reassembly which is rarely used. For example, by analyzing the

traces of over 1.7 million packets on an OC-3 link [23], we found that less than 0.22% of all

packets were fragments. Therefore, in most cases it is possible to use ip o� �eld to encode the

DPS values. This idea can be implemented as follows. When a packet arrives at an ingress

node, the node checks whether a packet is a fragment or needs to be fragmented. If neither of

these are true, the ip o� �eld in the packet header will be used to encode DPS values. When

the packet reaches the egress node, the ip o� is cleared. Otherwise, if the packet is a fragment,

it is forwarded as a best-e�ort packet. In this way the use of ip o� is transparent outside the

domain. We believe that forwarding a fragment as a best-e�ort packet, is acceptable in practice,

as end-points can easily avoid fragmentation by using an MTU discovery mechanism. Also note

that in the above we implicitly assume that packets can be fragmented only by egress nodes.

In summary, we have up to 17 bits available in the current IPv4 header to encode four state

variables. The next section discusses how we use this space to encode the DPS states.

5.2 State Encoding

There are four pieces of state that need to be encoded: three are for scheduling purposes, (1) the

reserved rate r or equivalently l=r, (2) the slack delay �, as computed by Eq. (10), and (3) the

amount of time g by which the packet was transmitted ahead of schedule at the previous node;

and one for admission control purpose, (4) b, as computed by Eq. (12). All are positive values.

22

void intToFP(int val, int *mantissa, int *exponent) {

int nbits = get_num_bits(val);

if (nbits <= m) {

*mantissa = val;

*exponent = (1 << n) - 1;

} else {

*exponent = nbits - m - 1;

*mantissa = (val >> *exponent) - (1 << m);

}

}

int FPToInt(int mantissa, int exponent) {

int tmp;

if (exponent == ((1 << n) - 1))

return mantissa;

tmp = mantissa | (1 << m);

return (tmp << exponent)

}

Figure 8: The C code for converting between integer and
oating point formats. m represents the

number of bits used by the mantissa; n represents the number of bits in the exponent. Only positive

values are represented. The exponent is computed such that the �rst bit of the mantissa is always 1,

when the number is � 2m. By omitting this bit, we gain an extra bit in precision. If the number is

< 2m we set by convention the exponent to 2n � 1 to indicate this.

One possible solution is to restrict each state variable to only a small number of possible

values. For example if a state variable is limited to eight values, only three bits are needed to

represent it. While this can be a reasonable solution in practice, in our implementation we use a

more sophisticated representation. Basically, we use a
oating point like format to represent the

largest value, and then represent the other value(s) as a fraction of the largest value. In this way

we are able to represents a much larger range of possible values. Since computing the eligible

time and the deadline involves only additions over these values, our representation achieves good

accuracy in terms of relative error. To further optimize the use of the available space we employ

two additional techniques. First, we use the
oating point format only to represent the largest

value, and then represent the other value(s) as a fraction of the largest value. In this way we are

able to represents a much larger range of possible values. Second, in the case in which there are

states which are not required to be simultaneously encoded in the same packet, we use the same

23

or by diffserv
used by IP forwarding

F2 <- g / F3

0 0

F3 = l / r +

if (OF == 1) F1 <- b

OF F1

4

F21

65

F3

1540 0743

used by our scheme

unused
3 4

7

if (OF == 0) F1 <- (l / r) / F3

1

0

1 1

CODE

fragment offset

tos byte (DS field) ip_off field

0 MFDF

0 2 9 10 16

16210

Figure 9: For carrying state we use the four bits from the TOS byte (or DS �eld) reserved for local use

and experimental purposes, and up to 13 bits from the ip o�. The �rst three bits specify whether ip o�

is used to encode DPS variables. F1, F2, and F3 are used to encode the DPS variables corresponding

to a data packet (codes 11x identify the state in data packet headers).

�eld to encode them. Next, we present the
oating point like format.

Assume that a is the largest value carried by the packet, where a is a positive integer. To

represent a we use an m bit mantissa and an n bit exponent. Since a � 0, it is possible to gain

an extra bit for mantissa. For this we consider two cases: (a) if a � 2m we represent a as the

closest value of the form u2v, where 2m � u � 2m+1. Then, since the m + 1-th most signi�cant

bit in the u's representation is always 1, we can ignore it. As an example, assume m = 3, n = 4,

and a = 19 = 10011. Then 19 is represented as 18 = u� 2v, where u = 9 = 1001 and v = 1. By

ignoring the �rst bit in the representation of u the mantissa will store 001, while the exponent

will be 1. (b) On the other hand, if a < 2m, the mantissa will contain a, while the exponent

will be 2n � 1. For example, for m = 3, n = 4, and a = 6 = 110, the mantissa is 110, while

the exponent is 1111. Converting from one format to another can be e�ciently implemented.

Figure 8 shows the conversion code in C. For simplicity, we assume that integers are truncated

rather than rounded when represented in
oating point.

By using m bits for mantissa and n for exponent, we can represent any integer in the range

[0::(2m+1� 1)� (22
n�1)] with a relative error bounded by (�1=2m+1; 1=2m+1). For example, with

7 bits, by allocating 3 for mantissa and 4 for exponent, we can represent any integer in the range

[1::15� 215] with a relative error of (�6:25%; 6:25%).4

If another value b � a is carried by the packet we store it as the fraction f = b=a. Assuming

4The worst relative error case occurs when the mantissa is 8. For example the number a = 271 = 100001111

is encoded as u = 1000, v = 5, with a relative error of (8 � 25 � 271)=271 = �0:0554 = �5:54%. Similarly,

a = 273 = 100010001 is encoded as u = 1001, v = 5, with a relative error of 5:55%.

24

egress
node

ingress
node

router

host

3

2

1

4

Figure 10: The test con�guration used in experiments.

that we use m1 bits to represent f , the absolute error is bounded by (�1=(2(2m1�1)); 1=(2(2m1�
1))). The �1 in the denominators is a result of mapping 2m1 values to [0, 1], with 2m1 � 1

representing 1. Finally, it is easy to show that by representing a in
oating point format with m

bits for mantissa and n bits for exponent, and by using m1 bits to encode b, the relative error of

a+ b, denoted RelErr(a + b), is bounded by

� 1

2m+1
� 1

2m1+1 � 2
< RelErr(a+ b) <

1

2m+1
+

1

2m1+1 � 2
; (22)

where we ignore the second order term 1=(2m+1(2m1+1 � 2)).

Figure 9 shows how the 17 bits available in the current IPv4 header are used to encode DPS

states in a data packet. The 17 bits are divided in four �elds: a code �eld which speci�es whether

the ip o� is used to encode state variables, and three data �elds, denoted F1; F2 and F3, used

to encode our variables.

The code �eld consists of three bits: 000 means that the packet is a fragment and therefore

no state is encoded; any other value means that up to 13 bits of ip o� are used to encode the

state. In particular, the code values specify the layout and the states encoded in the packet

header. For example, 11x speci�es that the encoded states correspond to a data packet, while

100 speci�es that the encoded states correspond to a dummy packet. Due to space limitations,

in Figure 9 we show the state encoding for a data packet only. In this case, the last bit of the

code �eld, also called O�set Field (OF), determines the content of F1. If this bit is 1, then F1

encodes the b value. Otherwise it encodes (l=r)=F3, where F3 = l=r + �. Finally, F2 encodes

g=F3. We make several observations. First, since F3 encodes the largest value among all �elds,

we represent it in
oating point format. By using this format, with seven bits we can represent

any positive number in the range [1::15 � 215], with a relative error within (�6:25%; 6:25%).

Second, since the deadline determines the delay guarantees, we use a representation that trades

the eligible time accuracy5 for the deadline accuracy. In particular, the deadline is computed as

d = current time+ F2 � F3 + F3 ' current time+ g + l=r + �. If OF is 0, the eligible time is

computed as e = d � F1 � F3 ' current time+ g + �. F1 uses only three bits and its value is

5As long as the eligible time value is under-estimated, its inaccuracy will a�ect only the scheduling complexity,

as the packet may become eligible earlier.

25

0

5

10

15

20

25

30

35

0 5 10 15 20 25

pa
ck

et
 n

um
be

r

Time (ms)

packet arrival
packet departure

(a)

0

5

10

15

20

25

30

35

0 5 10 15 20 25

pa
ck

et
 n

um
be

r

Time (ms)

packet arrival
packet departure

(b)

Figure 11: Packet arrival and departure times for a 10 Mbps
ow at (a) the ingress node, and (b) the

egress node.

computed such that F1 �F3 always over-estimates l=r. If OF is 1, the eligible time is computed

simply as e = current time. Third, we express b in units equals with the maximum packet size.

In this way we eliminate the need for each packet to carry the b value. In fact, if a
ow sends

at its reserved rate, only one packet every other eight packets needs to carry the b value. This

observation, combined with the fact that the under-estimation of the packet eligible time does

not a�ect the guaranteed delay of the
ow, allows us to alternatively encode either b or (l=r)=F3

in F1, without impacting the correctness of our algorithms.

5.3 Experimental Results

We have implemented these algorithms in FreeBSD v2.2.6 and deployed them in a testbed consist-

ing of 266 MHz and 300 MHz Pentium II PCs connected by point-to-point 100 Mbps Ethernets.

The testbed allows con�guring a path with up to two intermediate routers.

In the following, we present results from four simple experiments. The experiments are

designed to illustrate the microscopic behaviors of the algorithms, rather than their scalability.

All experiments were run on the topology shown in Figure 10. The �rst router is con�gured as

an ingress node, while the second router is con�gured as an egress node. An egress node also

implements the functionalities of a core node. In addition, it restores the initial values of the

ip o� �eld. All tra�c is UDP and all packets are 1000 bytes, not including the header.

In the �rst experiment we consider a
ow between hosts 1 and 3 that has a reservation of

10 Mbps but sends at a much higher rate of about 30Mbps. Figures 11(a) and (b) plot the

arrival and departure times for the �rst 30 packets of the
ow at the ingress and egress node,

respectively. One thing to notice in Figure 11(a) is that the arrival rate at the ingress node

26

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

pa
ck

et
 n

um
be

r

Time (ms)

Flow 1 (packet departure)
Flow 2 (packet departure)
Flow 3 (packet departure)

Flow 4 (packet arrival)
Flow 4 (packet departure)

Figure 12: The packets' arrival and departure times for four
ows. The �rst three
ows are guaranteed,

with reservations of 10 Mbps, 20 Mbps, and 40 Mbps. The last
ow is best e�ort with an arrival rate

of about 60 Mbps.

is almost three times the departure rate, which is the same as the reserved rate of 10 Mbps.

This illustrate the non-work-conserving nature of the CJVC algorithm, which enforces the tra�c

pro�le and allows only 10 Mbps tra�c into the network. Another thing to notice is that all

packets incur about 0:8 ms delay in the egress node. This is because they are sent by the ingress

node as soon as they become eligible, and therefore g ' l=r = 8 � 1052bits=10Mbps = 0:84 ms.

As a result, they will be held in the rate-controller for this amount of time at the next hop6,

which is the egress node in our case.

c

In the second experiment we consider three guaranteed
ows between hosts 1 and 3 with

reservations of 10 Mbps, 20 Mbps, and 40 Mbps, respectively. In addition, we consider a fourth

UDP
ow between hosts 2 and 4 which is treated as best e�ort. The arrival rates of the �rst

three
ows are slightly larger than their reservations, while the arrival rate of the fourth
ow

is approximately 60 Mbps. At time 0, only the best-e�ort
ow is active. At time 2.8 ms, the

�rst three
ows become simultaneously active. Flows 1 and 2 terminate after sending 12 and 35

packets, respectively. Figure 12 shows the packet arrival and departure times for the best-e�ort

ow 4, and the packet departure times for the real-time
ows 1, 2, and 3. As can be seen,

the best-e�ort packets experience very low delay in the initial period of 2.8 ms. After the QoS

ows become active, best-e�ort packets experience longer delays while QoS
ows receive service

at their reserved rate. After
ow 1 and 2 terminate, the best-e�ort tra�c grabs the remaining

6Note that since all packets have the same size, � = 0.

27

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

R
at

e
(M

bp
s)

Time (sec)

Flow 1
Flow 2

Aggregate Traffic

RDPS

Rcal
Rbound

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

15 20 25 30 35 40 45 50

R
at

e
(M

bp
s)

Time (sec)

Aggregate Traffic

RDPS
Rcal

Rbound

accept
reservation
(0.5 Mbps)

terminate
reservation
(0.5Mbps)

(b)

Figure 13: The estimate aggregate reservation Rcal, and the bounds Rbound and Rcal in the case of (a)

two ON-OFF
ows with reservations of 0.5 Mbps, and 1.5 Mbps, respectively, and in the case when

(b) one reservation of 0.5 Mbps is accepted at time t = 18 seconds, and then is terminated at t = 39

seconds.

bandwidth.

The last two experiments illustrate the algorithms for admission control described in Sec-

tion 4.3. The �rst experiment demonstrates the accuracy of estimating the aggregate reservation

based on the b values carried in the packet headers. The second experiment illustrates the com-

putation of the aggregate reservation bound, Rbound, when a new reservation is accepted or a

reservation terminates. In these experiments we use an averaging interval, TW , of 5 seconds, and

a maximum inter-departure time, TI, of 500 ms. For simplicity, we neglect the delay jitter, i.e.,

we assume TJ = 0. This gives us f = (TI + TJ)=TW = 0:1.

In the �rst experiment we consider two
ows, one with a reservation of 0.5 Mbps, and the

other with a reservation of 1.5 Mbps. Figure 13(a) plots the arrival rate of each
ow, as well

as the arrival rate of the aggregate tra�c. In addition, Figure 13(a) plots the bound of the

aggregate reservation used by admission test, Rbound, the estimate of the aggregate reservation

RDPS , and the bound Rcal used to recalibrate Rbound. According to the pseudocode in Figure 7,

both RDPS and Rcal are updated at the end of each estimation interval. More precisely, every

5 seconds RDPS is computed based on the b values carried in the packet headers, while Rcal is

computed as RDPS=(1�f)+Rnew . Note that since in this case no new reservation is accepted, we

have Rnew = 0, which yields Rcal = RDPS=(1 � f). The important thing to note in Figure 13(a)

is that the rate variation of the actual tra�c (represented by the continuous line) has little e�ect

on the accuracy of computing the aggregate reservation estimate RDPS , and consequently of

Rcal. In contrast, traditional measurement based admission control algorithms, which base their

28

Baseline 1
ow 10
ows 100
ows

ingress egress ingress egress ingress egress

avg std avg std avg std avg std avg std avg std avg std

enqueue 1.03 0.91 5.02 1.63 4.38 1.55 5.36 1.75 4.60 1.60 5.91 1.81 5.40 2.33

dequeue 1.52 1.91 3.14 3.27 2.69 2.81 2.79 3.68 2.30 2.91 2.77 2.82 1.73 2.12

Table 4: The average and standard deviation of the enqueue and dequeue times, measured in �s.

estimation on the actual tra�c, would signi�cantly under-estimate the aggregate reservation,

especially during the time periods when no data packets are received. In addition, note that

since in this experiment Rcal is always larger than Rbound, and no new reservations are accepted,

the value of Rbound is never updated.

In the second experiment we consider a scenario in which a new reservation of 0.5 Mbps is

accepted at time t = 18 seconds and terminates approximately at time t = 39 seconds. For the

entire time duration, plotted in Figure 13(b), we have a background tra�c with an aggregate

reservation of 0.5 Mbps. Similarly to the previous case, we plot the rate of the aggregate tra�c,

and, in addition, Rbound, Rcal, and RDPS . There are several points worth noting. First, when

the reservation is accepted at time t = 18 seconds, Rbound increases by the value of the accepted

reservation, i.e., 0.5 Mbps (see Figure 7). In this way, Rbound is guaranteed to remain an upper

bound of the aggregate reservation R. In contrast, since both RDPS and Rcal are updated only at

the end of the estimation interval, they under-estimate the aggregate reservation, as well as the

aggregate tra�c, before time t = 20 seconds. Second, after Rcal is updated at time t = 20 seconds,

as RDPS=(1 � f) + Rnew , the new value signi�cantly over-estimates the aggregate reservation.

This is the main reason for which we do not use Rcal (+Rnew), but Rbound, to do the admission

control test. Third, note that unlike the case when the reservation was accepted, Rbound does not

change when the reservation terminates at time t = 39 seconds. This is simply because in our

implementation no tear-down message is generated when a reservation terminates. However, as

Rcal is updated at the end of the next estimation interval (i.e., at time t = 45 seconds), Rbound

drops to the correct value of 0.5 Mbps. This shows the importance of using Rcal to recalibrate

Rbound. In addition, this illustrates the robustness of our algorithm, i.e., the over-estimation

in a previous period is corrected in the next period. Finally, note that in both experiments

RDPS always under-estimates the aggregate reservation. This is due to the truncation errors in

computing both the b values and the RDPS estimate.

29

5.4 Processing Overhead

To evaluate the overhead of our algorithm we have performed three experiments on a 300 MHz

Pentium II involving 1, 10, and 100
ows, respectively. The reservation and actual sending rates

of all
ows are identical. The aggregate sending rate is about 20% larger than the aggregate

reservation rate. Table 4 shows the means and the standard deviations for the enqueue and

dequeue times at both ingress and egress nodes. Each of these numbers is based on a measurement

of 1000 packets. For comparison we also show the enqueue and dequeue times for the unmodi�ed

code. There are several points worth noting. First, our implementation adds less than 5 �s

overhead per enqueue operation, and about 2 �s per dequeue operation. In addition, both

the enqueue and dequeue times at the ingress node are greater than at the egress node. This

is because ingress node performs per
ow operations. Furthermore, as the number of
ows

increases the enqueue times increase only slightly, i.e., by less than 20%. This suggests that

our algorithm is indeed scalable in the number of
ows. Finally, the dequeue times actually

decrease as the number of
ows increases. This is because the rate-controller is implemented as

a calendar queue with each entry corresponding to a 128 �s time interval. Packets with eligible

times falling between the same interval are stored in the same entry. Therefore, when the number

of
ows is large, more packets are stored in the same calendar queue entry. Since all these packets

are transferred during one operation when they become eligible, the actual overhead per packet

decreases.

6 Related Work

Our scheme shares its intellectual roots with two pieces of related work: Di�serv and the Core-

Stateless Fair Queueing.

The idea of implementingQoS services by using a core-stateless architecture was �rst proposed

by Jacobson [22] and Clark [7], and is now being pursued by the IETF Di�serv working group [12].

There are several di�erences between our scheme and the existing Di�serv proposals. First, our

algorithms operate at a much �ner granularity both in terms of time and tra�c aggregates: the

state embedded in a packet can be highly dynamic, as it encodes the current state of the
ow,

rather than the static and global properties such as dropping or scheduling priority. In addition,

the goal of our scheme is to implement distributed algorithms that try to approximate the services

provided by a network in which all routers implement per
ow management. Therefore, we can

provide service di�erentiation and performance guarantees on a per
ow basis. In contrast,

existing Di�serv solutions provide service di�erentiation only among a small number of tra�c

classes. Finally, we propose fully distributed and dynamic algorithms for implementing both

data and control functionalities, where existing Di�serv solutions rely on more centralized and

30

static algorithms for implementing admission control.

We �rst proposed the idea of using Dynamic Packet State to encode dynamic per
ow state in

the context of approximating the Fair Queueing algorithm in a SCORE architecture [29]. While

algorithms proposed in this paper share the same architecture as CSFQ, there are important

di�erences both in high level goals and low level mechanisms. First, while CSFQ was designed to

support best-e�ort tra�c, algorithms proposed here are designed to support guaranteed services.

As a consequence, while CSFQ can use a probabilistic forwarding algorithm to statistically

approximate the Fair Queueing service, CJVC needs to use more elaborate mechanisms to provide

performance guarantees identical to those provided by Virtual Clock or Weighted Fair Queueing

algorithms. In particular, CJVC uses three types of Dynamic Packet State for scheduling purpose

and regulates tra�c at each hop. One more type of Dynamic Packet State was used to implement

the admission control, which was not needed in CSFQ. Finally, we have proposed a detailed design

for encoding the DPS variables in IPv4.

In this paper, we propose a technique to estimate the aggregate reservation rate and use

that estimate to perform admission control. While this may look similar to measurement-based

admission control algorithms [19, 32], the objectives and thus the techniques are quite di�erent.

The measurement-based admission control algorithms are designed to support controlled-load

type of services, the estimation is based on the actual amount of tra�c transmitted in the past,

and is usually an optimistic estimate in the sense that the estimated aggregate rate is smaller

than the aggregate reserved rate. While this has the bene�t of increasing the network utilization

by the controlled-load service tra�c, it has the risk of incurring transient overloads that may

cause the degradation of QoS. In contrast, our algorithm aims to support guaranteed service,

and the goal is to estimate a close upper bound on the aggregate reserved rate even when the

the actual arrival rate may vary.

In [9], Cruz proposed a novel scheduling algorithm called SCED+ in the context of ATM

networks. In SCED+, virtual circuits sharing a same path segment are aggregated into a virtual

path. At each switch, only per virtual path state instead of per virtual circuit needs to be

maintained for scheduling purpose. In addition, an algorithm is proposed to compute, the eligible

times and the deadlines of a packet at subsequent nodes, when the packet enters a virtual path.

We note that by doing this and using DPS to carry this information in the packets' headers, it

is possible to remove per path scheduling state from core nodes. However, unlike our solution,

SCED+ do not provide per
ow delay di�erentiation within an aggregate. In addition, the

SCED+ work focuses on the data path mechanism, while we addresses both data path and

control path issues.

31

7 Conclusion

In this paper, we developed two distributed algorithms that implement QoS scheduling and

admission control in a SCORE network where core routers do not maintain per
ow state. Com-

bined, these two algorithms signi�cantly enhance the scalability of both the data and control

plane mechanisms for implementing guaranteed services, and at the same time, provide guaran-

teed services with
exibility, utilization, and assurance levels similar to those that can be provided

with per
ow mechanisms. The key technique used in both algorithms is called Dynamic Packet

State (DPS), which provides a lightweight and robust means for routers to coordinate actions

and implement distributed algorithms. By presenting a design and prototype implementation of

the proposed algorithms in IPv4 networks, we demonstrate that it is indeed possible to apply

DPS techniques and have minimum incompatibility with existing protocols.

As a �nal note, we believe DPS is a powerful concept. By using DPS to coordinate actions of

edge and core routers along the path traversed by a
ow, distributed algorithms can be designed

to approximate the behavior of a broad class of \stateful" networks with networks in which core

routers do not maintain per
ow state. We observe that it is possible to extend the current

Di�serv framework to accommodate algorithms using Dynamic Packet State such as the ones

proposed in this paper and Core-Stateless Fair Queueing [29]. The key extension needed is to

associate with each Per Hop Behavior (PHB) additional space in the packet header for storing

PHB speci�c Dynamic Packet State [31]. Such a paradigm will signi�cantly increase the
exibility

and capabilities of the services that can be built with a Di�serv-like architecture.

References

[1] �O. Babao�glu and S. Toueg. Non-Blocking Atomic Commitment. Distributed Systems, S. Mullender

(ed.), pages 147{168, 1993.

[2] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie. Aggregation of RSVP for IP4 and IP6

Reservations. Internet Draft, draft-baker-rsvp-aggregation-00.txt.

[3] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an overview,

June 1994. Internet RFC 1633.

[4] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan. A framework for

multiprotocol label switching, November 1997. Internet Draft, draft-ietf-mpls-framework-02.txt.

[5] D. Clark. The design philosophy of the DARPA internet protocols. In Proceedings of ACM SIG-

COMM'88, pages 106{114, Stanford, CA, August 1988.

[6] D. Clark. Internet cost allocation and pricing. Internet Economics, L. W. McKnight and J. P.

Bailey (eds.), pages 215{252, 1997.

32

[7] D. Clark and J. Wroclawski. An approach to service allocation in the Internet, July 1997. Internet

Draft.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms, July 1990.

[9] R. L. Cruz. SCED+: E�cient Management of Quality of Service Guarantees. In Proceedings of

INFOCOM'98, pages 625{642, San Francisco, CA, 1998.

[10] R.L. Cruz. Quality of service guarantees in virtual circuit switched network. IEEE Journal on

Selected Areas in Communications, 13(6):1048{1056, August 1995.

[11] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. In

Journal of Internetworking Research and Experience, pages 3{26, October 1990. Also in Proceedings

of ACM SIGCOMM'89, pp 3-12.

[12] Y. Bernet et. al. A framework for di�erentiated services, November 1998. Internet Draft, draft-

ietf-di�serv-framework-01.txt.

[13] D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-area networks.

IEEE Journal on Selected Areas in Communications, 8(3):368{379, April 1990.

[14] N. Figueira and J. Pasquale. An upper bound on delay for the virtualclock service discipline.

IEEE/ACM Transactions on Networking, 3(4), April 1995.

[15] S. Floyd and V. Jacobson. Random early detection for congestion avoidance. IEEE/ACM Trans-

actions on Networking, 1(4):397{413, July 1993.

[16] L. Georgiadis, R. Guerin, V. Peris, and K. Sivarajan. E�cient network QoS provisioning based on

per node tra�c shaping. IEEE/ACM Transactions on Networking, 4(4):482{501, August 1996.

[17] P. Goyal, S. Lam, and H. Vin. Determining end-to-end delay bounds in heterogeneous networks.

In Proceedings of the 5th International Workshop on Network and Operating System Support For

Digital Audio and Video, pages 287{298, Durham, New Hampshire, April 1995.

[18] R. Guerin, S. Blake, and S. Herzog. Aggregating RSVP-based QoS Requests. Internet Draft,

draft-guerin-aggreg-rsvp-00.txt.

[19] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-based admission control algorithm

for integrated services packet networks. In Proceedings of SIGCOMM'95, pages 2{13, Boston, MA,

September 1995.

[20] S. Keshav. A control-theoretic approach to
ow control. In Proceedings of ACM SIGCOMM'91,

pages 3{15, Zurich, Switzerland, September 1991.

[21] K. Nichols, S. Blake, F. Baker, and D. L. Black. De�nition of the Di�erentiated Services Field (DS

Field) in the ipv4 and ipv6 Headers, October 1998. Internet Draft, draf-ietf-di�serv-header-04.txt.

33

[22] K. Nichols, V. Jacobson, and L. Zhang. An approach to service allocation in the Internet, November

1997. Internet Draft.

[23] NLANR. Network Tra�c Packet Header Traces. URL: http://moat.nlanr.net/Traces/.

[24] A. Parekh and R. Gallager. A generalized processor sharing approach to
ow control - the single

node case. In Proceedings of the INFOCOM'92, 1992.

[25] S. Shenker. Making greed work in networks: A game theoretical analysis of switch service disci-

plines. In Proceedings of ACM SIGCOMM'94, pages 47{57, London, UK, August 1994.

[26] S. Shenker, C. Partridge, and R. Guerin. Speci�cation of guaranteed quality of service, September

1997. Internet RFC 2212.

[27] D.C. Stephens, J.C.R. Bennett, and H. Zhang. Implementing scheduling algorithms in high speed

networks. To Appear in IEEE JSAC, 1999.

[28] D. Stilliadis and A. Verma. Latency-rate servers: A general model for analysis of tra�c scheduling

algorithms. IEEE/ACM Transactions on Networking, 6(2):164{174, April 1998.

[29] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: A scalable architecture to

approximate fair bandwidth allocations in high speed networks. In Proceedings of ACM SIGCOMM,

Vancouver, CA, August 1998.

[30] I. Stoica and H. Zhang. Lira: A model for service di�erentiation in the internet. In NOSSDAV'98,

London, UK, July 1998.

[31] I. Stoica, H. Zhang, S. Shenker, R. Yavatkar, D. Stephens, Y. Bernet, Z. Wang, F. Baker, J. Wro-

clawski, and R. Wilder C. Song. Per hop behaviors based on dynamic packet states, February 1999.

Internet Draft.

[32] D. Tse and M. Grosslauser. Measurement-based Call Admission Control: Analysis and Simulation.

In Proceedings of INFOCOM'97, pages 981{989, Kobe, Japan, 1997.

[33] D. Verma, H. Zhang, and D. Ferrari. Guaranteeing delay jitter bounds in packet switching networks.

In Proceedings of Tricomm'91, pages 35{46, Chapel Hill, North Carolina, April 1991.

[34] W. E. Weihl. Transaction-Processing Techniques. Distributed Systems, S. Mullender (ed.), pages

329{352, 1993.

[35] D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds for vbr video

packet-switching networks: Fundmental limits and practical trade-o�s. IEEE/ACM Transactions

on Networking, 4(3):352{362, June 1996.

[36] D.E. Wrege and J. Liebeherr. A Near-Optimal Packet Scheduler for QoS Networks. In Proceedings

of INFOCOM'97, pages 576{583, Kobe, Japan, 1997.

34

[37] J. Wroclawski. Speci�cation of controlled-load network element service, 1997. Internet RFC 2211.

[38] H. Zhang and D. Ferrari. Rate-controlled static priority queueing. In Proceedings of IEEE INFO-

COM'93, pages 227{236, San Francisco, California, April 1993.

[39] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Networks,

3(4):389{412, 1994.

[40] L. Zhang. Virtual clock: A new tra�c control algorithm for packet switching networks. In Pro-

ceedings of ACM SIGCOMM'90, pages 19{29, Philadelphia, PA, September 1990.

35

Appendix A: Network Utilization of Premium Service in
Di�serv Networks

Premium service provides the equivalent of a dedicated link of �xed bandwidth between edge

nodes in a Di�serv network. In such a service, each premium
ow has a reserved peak rate.

In the data plane, ingress nodes police each premium service tra�c
ow according to its peak

reservation rate. Inside the Di�serv domain, core routers put the aggregate of all premium tra�c

into one scheduling queue and service the premium tra�c with strict priority over best e�ort

tra�c. In the control plane, a bandwidth broker is used to perform admission control. The idea

is that by using very conservative admission control algorithms based on worst case analysis,

together with peak rate policing at ingress nodes and static priority scheduling at core nodes, it

is possible to ensure that all premium service packets incur very small queueing delay.

One important design question is: how conservative does the admission control algorithm

need to be? In other words, what is the upper limit on the utilization of the network capacity

that can be allocated to premium tra�c if we want the premium service to achieve the same

level of service assurance as the guaranteed service, such that the queueing delay of all premium

service packets is bounded by a �xed number even in the worst case?

For the purpose of this discussion, we use
ow to refer to a subset of packets that traverse

the same path inside a Di�serv domain between two edge nodes. Thus, with the highest level

of tra�c aggregation, a
ow consists of all packets between the same pair of ingress and egress

nodes. Note that even in this case, the number of
ows in a network can be quite large as it may

increase quadratically with the number of edge nodes.

Let us consider a domain consisting of 4�4 routers with links of capacity C. Assume that the

fraction of the link capacity allocated to the premium tra�c is limited to
. Assume also that all

ows have equal packet sizes, and that each ingress node shapes not only each
ow, but also the

aggregate tra�c at each of its outputs. Figure 14(a) shows the tra�c pattern at the �rst core

router along a path. Each input receives 12 identical
ows, where each
ow has a reservation of

C=12 = C=48. Let � be the transmission time of one packet, then as shown in the Figure, the

inter-arrival time between two consecutive packets in the each
ow is 48� , and the inter-arrival

time between two consecutive packets in the aggregate
ow is 4� .

Assume the �rst three
ows at each input are forwarded to output 1. This will cause a burst

of 12 packets to arrive output 1 in a 8� long interval and the last packet of the burst to incur an

additional delay of 3� . Now assume that the next router receives at each input a tra�c pattern

similar to the one generated by output 1 of the �rst core router, as shown in Figure 14(b). In

addition, assume that the last three
ows from each input burst are forwarded to output 1. This

will cause a burst of 12 packets to arrive output 1 in a 2� long interval and the last packet in the

36

...

11

2

3

4

1

2

3

4

1

...

...

...

...

11

14567891011 23121

...

...

...

...

...

...

...

delay = 3

...
delay = 9...

...

...

2

a)

b)

8

2

3

4

1

2

3

4

1

Figure 14: Per-hop worst-case delay experienced by premium tra�c in a Di�serv domain. (a) and (b)

shows the tra�c pattern at the �rst and a subsequent node. The black and all dark grey packets go to

the �rst output; the light grey packets go to the other outputs.

burst to incur an additional delay of 9� . Thus, after two hops, a packet is delayed by as much

as 12� . This pattern can be repeated for all subsequent hops.

In general, consider a k � k router, and let n be the number of
ows that traverse each link.

For simplicity, assume that
 � 1=k. Then it can be shown that the worst case delay experienced

by a packet after h hops is

D =

n� 1�

�
n

k
� 1

�
1

!
� + (h� 1)n

k � 1

k
� + h�; (23)

where the �rst term is the additional delay at the �rst hop, the second term is the additional

delay at all subsequent hops, and the last term accounts for the packet transmission time at each

hop. As a a numerical example, let C = 1 Gbps, a packet size of 1500 bytes, k = 16,
 = 10%,

n = 1500 and h = 15. From here we obtain � = 12 �sec, and a delay D of over 240 ms. Finally,

if
 < 1=k, it can be shown that it will take only dlogk(1=
)e hops to achieve a continuous burst.
For example, for
 = 1% and k = 16, it takes only two hops to obtain a continuous burst.

The above example demonstrates that low network utilization and tra�c shaping at ingress

nodes alone are not enough to guarantee a \small" worst-case delay for all the premium tra�c.

This result is not surprising. Even using a per
ow scheduler like Weighted Fair Queueing

(WFQ), will not help to reduce the worst case end-to-end delay for all packets. In fact, if all

ows in the above example are given the same weight, the worst case delay under WFQ is hn� ,

which is basically the same as the one given by Eq. (23). However, the major advantage of using

WFQ is that it allows us to di�erentiate among
ows, which is a critical property as long as we

37

cannot guarantee a \small" delay to all
ows. In addition, WFQ can achieve 100% utilization.

Appendix B: Proof of Theorem 1

In this appendix we show that a network of CJVC servers provides the same end-to-end delay

guarantees as a network of Jitter-VC servers. In particular, in Theorem 1 we show that the

deadline of a packet at the last hop in both systems is the same. This result is based on Lemmas 2

and 3 which give the expressions of the deadline of a packet at the last hop in a network of Jitter-

VC, and a network of CJVC servers, respectively. First, we present a preliminary result used in

proving Lemma 2.

Lemma 1 Consider a network of Jitter-VC servers. Let �j denote the propagation delay between

hops j and j + 1, and let �j be the maximum transmission time of a packet at node j. Then for

any j > 1 and i; k � 1 we have

dki;j+1 � dki;j � �j � �j � dki;j � dki;j�1 � �j�1 � �j�1: (24)

Proof. The proof is by induction on k. First, recall that by de�nition gki;j = dki;j + �j � ski;j (see

Table 1), and that for j > 1, aki;j = ski;j�1 + �j�1. From here and from Eqs. (1) and (2) we have

then

dki;j = max(aki;j + gki;j�1; d
k�1
i;j) +

lki
ri

= max(dki;j�1 + �j�1 + �j�1; d
k�1
i;j) +

lki
ri
: (25)

Basic Step. For k = 1 and any j � 1, from Eq. (25) we have trivially d1i;j = d1i;j�1+ �j�1+�j�1+

l1i =ri, 8j > 1, and therefore d1i;j � d1i;j�1 � �j�1 � �j�1 = l1i =ri, 8j > 1.

Induction Step. Assume Ineq. (24) is true for k. Then we need to show that

dk+1i;j+1 � dk+1i;j � �j � �j � dk+1i;j � dk+1i;j�1 � �j�1 � �j�1)
max(dk+1i;j + �j + �j; d

k
i;j+1)�max(dk+1i;j�1 + �j�1 + �j�1; d

k
i;j)� �j � �j � (26)

max(dk+1i;j�1 + �j�1 + �j�1; d
k
i;j)�max(dk+1i;j�2 + �j�2 + �j�2; d

k
i;j�1)� �j�1 � �j�1;

where the second Inequality follows after using Eq. (25). Next consider two cases: whether

dk+1i;j�1 + �j�1 + �j�1 � dki;j or not. Assume dk+1i;j�1 + �j�1 + �j�1 � dki;j . From Ineq. (26) and from

the induction hypothesis we obtain

dk+1i;j+1 � dk+1i;j � �j � �j = max(dk+1i;j + �j + �j; d
k
i;j+1)� (27)

max(dk+1i;j�1 + �j�1 + �j�1; d
k
i;j)� �j � �j

38

= max(dk+1i;j + �j + �j; d
k
i;j+1)� dki;j � �j � �j

� dki;j+1 � dki;j � �j � �j (induction hypothesis)

� dki;j � dki;j�1 � �j�1 � �j�1

� dki;j �max(dk+1i;j�2 + �j�1 + �j�1; d
k
i;j�1)� �j�1 � �j�1

= max(dk+1i;j�1 + �j�1 + �j�1; d
k
i;j)�

max(dk+1i;j�2 + �j�2 + �j�2; d
k
i;j�1)� �j�1 � �j�1

= dk+1i;j � dk+1i;j�1 � �j�1 � �j�1:

Next, assume that

dk+1i;j�1 + �j�1 + �j�1 > dki;j: (28)

From here and by using Eq. (25) and Ineq. (26) we have

dk+1i;j+1 � dk+1i;j � �j � �j = max(dk+1i;j + �j + �j; d
k
i;j+1)� (29)

max(dk+1i;j�1 + �j�1 + �j�1; d
k
i;j)� �j � �j

= max(dk+1i;j + �j + �j; d
k
i;j+1)� dk+1i;j�1 � �j�1 � �j�1 � �j � �j

� dk+1i;j � dk+1i;j�1 � �j�1 � �j�1

= dk+1i;j �max(dk+1i;j�1 + �j�1 + �j�1; d
k
i;j) (Eq. (25))

=
lk+1i

ri
(Eq. (25))

= dk+1i;j�1 �max(dk+1i;j�2 + �j�2 + �j�2; d
k
i;j�1)

= max(dk+1i;j�1 + �j�1 + �j�1; d
k
i;j)� �j�1 � �j�1 � (Ineq. (28))

max(dk+1i;j�2 + �j�2 + �j�2; d
k
i;j�1)

= dk+1i;j � dk+1i;j�1 � �j�1 � �j�1:

This completes the proof.

Lemma 2 The deadline of any packet pki , k > 1, at the last hop h in a network of Jitter-VC

servers is

dki;h = max

eki;1 + h

lki
ri
+

h�1X
m=1

(�m + �m); d
k�1
i;h +

lki
ri

!
: (30)

Proof. Let j� > 1 be the last hop for which dki;j��1 + �j��1 + �j��1 < dk�1i;j� . We consider two

cases whether j� exists or not.

39

Case 1. (j� does not exist) From Eq. (1) we have eki;j = dki;j�1 + �j�1 + �j�1, 8j > 1. From here

and by using Eq. (2) we obtain

dki;h = eki;1 + h
lki
ri
+

h�1X
m=1

(�m + �m): (31)

Because we assume that j� does not exist we also have dki;h = eki;h + lki =ri � dk�1i;h + lki =ri, which

concludes the proof of this case.

Case 2. (j� exists) In this case we show that j� = h. Assume this is not true. Then we have

eki;j = dki;j�1 + �j�1 + �j�1, 8j > j�. By using Eq. (2) we obtain

dki;h = eki;j� + (h� j� + 1)
lki
ri
+

h�1X
m=j�

(�m + �m): (32)

On the other hand, by the de�nition of j� and from Eqs. (1) and (2) we have

dki;j� = max(dki;j��1 + �j��1 + �j��1; d
k�1
i;j�) +

lki
ri

(33)

> dki;j��1 + �j��1 + �j��1 +
lki
ri
:

As a result we obtain dki;j� � dki;j��1 � �j��1 � �j��1 > li=ri. By iteratively applying Lemma 1 we

have

dki;m+1 � dki;m � �m � �m � dki;j� � dki;j��1 � �j��1 � �j��1 >
lki
ri
; 8m � j� (34)

From Ineq. (34) we obtain

h�1X
m=j�

(dki;m+1 � dki;m � �m � �m) � (h � j�)(dki;j� � dki;j��1 � �j��1 � �j��1) > (h� j�)
lki
ri
; (35)

where the right-hand side term can be expressed as

h�1X
m=j�

(dki;m+1 � dki;m � �m � �m) = dki;h � dki;j� �
h�1X
m=j�

(�m + �m): (36)

By combining Ineq. (35) and Eq. (36) we get

dki;h > dki;j� + (h� j�)
lki
ri
+

h�1X
m=j�

(�m + �m) (37)

= eki;j� + (h� j� + 1)
lki
ri
+

h�1X
m=j�

(�m + �m):

40

But this inequality contradicts Eq. (32) and therefore proves our statement, i.e., j� = h. Thus,

eki;h = dk�1i;h . From here and from Eqs. (1) and (2) we get

dki;h = eki;h +
li

ri
= dk�1i;h +

li

ri
: (38)

Now, from Eq. (1) it follows trivially that

eki;j = max(dki;j�1 + �j�1 + �j�1; d
k
i;j�1) � dki;j�1 + �j�1 + �j�1; j � 1: (39)

By iterating over the above equation and then using Eq. (2) we get

dki;h � eki;1 + h
lki
ri
+

h�1X
m=1

(�m + �m); (40)

which together with Eq. (38) lead us to Eq. (30).

This completes the proof of the lemma.

Lemma 3 The deadline of any packet pki , k > 1, at the last hop h in a network of CJVC servers

is

dki;h = max

eki;1 + h

lki
ri
+

h�1X
m=1

(�m + �m); d
k�1
i;h +

lki
ri

!
: (41)

Proof. We consider two cases whether �ki = 0 or not.

Case 1. (�ki = 0) From Eqs. (2) and (6) it follows that

dki;h = eki;1 + h
lki
ri
+

h�1X
m=1

(�m + �m): (42)

On the other hand, by the de�nition of �ki (see Ineq. (3) and Eq. (4)) we have eki;j = dki;j�1 +

�j�1 + �j�1 + �ki � dk�1i;j , 8j > 1. From here and from Eq. (2) we obtain

dki;h � dk�1i;h +
lki
ri
: (43)

From this inequality and Eq. (42), Eq. (41) follows.

Case 2. (�ki > 0) By using Eqs. (2) and (10) we obtain

41

dki;h = eki;1 + h
lki
ri
+ (h� 1)�ki +

h�1X
m=1

(�m + �m) (44)

= eki;1 + h
lki
ri
+

(h � 1)�k�1i + (h� 1)

lk�1i � lki
ri

� eki;1 + ek�1i;1 +
lk�1i

ri

!

h�1X
m=1

(�m + �m)

= ek�1i;1 + h
lk�1i

ri
+ (h� 1)�k�1i +

h�1X
m=1

(�m + �m) +
lki
ri

= dk�1i;h +
lki
ri
:

Since �ki > 0, by using again Eq. (2) and (7) we get

dki;h = eki;1 + h
lki
ri
+ (h� 1)�ki +

h�1X
m=1

(�m + �m) (45)

> eki;1 + h
lki
ri
+

h�1X
m=1

(�m + �m):

which together with Eq. (44) lead to Eq. (41).

Theorem 1 The deadlines of a packet at the last hop in a network of CJVC servers is equal to

the deadline of the same packet in a corresponding network of Jitter-VC servers.

Proof. From Eqs (1) and (2) it is easy to see that in a network of Jitter-VC servers we have

d1i;h = e1i;1 + h
lki
ri
+

h�1X
m=1

(�m + �m): (46)

Similarly, in a network of CJVC servers, from Eqs. (1) and (7), and by using the fact that

�1i = 0 (see Eq. 8), we obtain an identical expression for d1i;h (i.e., Eq. (46)).

Finally, since (a) the eligible times of all packets pki at the �rst hop, i.e., eki;1 (8k � 1), are

identical for both Jitter-VC and CJVC servers, and since (b) the deadlines of the packets at

the last hop, i.e., dki;h (8k � 1), are computed based on the same formulae (see Eqs. (30), (41)

and 46), it follows that dki;h, (8k � 1) are identical in both a network of Jitter-VC, and a network

of CJVC servers.

Appendix C: Proof of Theorem 2

42

To prove Theorem 2 (see Section 3.3) we prove two intermediate results: Lemma 7 which gives

the bu�er occupancy for the case when all
ows have identical rates, and Lemma 10 which gives

the bu�er occupancy for arbitrary
ow rates.

Identical Flow Rates

Consider a work-conserving server with the output rate one, which is traversed by n
ows with

identical reservations of 1=n. Assume that the time axis is divided in unit sized slots, where

slot t corresponds to the time interval [t; t + 1). Assume that at most one packet can be sent

during each slot, i.e., the packet transmission time is one time unit. Finally, assume that the

starting times of the backlogged periods of any two
ows are uncorrelated. In practice, we enforce

this by delaying the �rst packet of a backlogged period by an amount drawn from an uniform

distribution in the range [tarrival; tarrival + n), where tarrival is the arrival time of the �rst packet

in the backlogged period. Note that according to Eq. (1), packets' eligible times during a
ow

backlogged interval are periodic with period n. Thus, without loss of generality, we assume that

the arrival process of any
ow during a backlogged interval is periodic.

Let r(t0; t00) denote the number of packets received (i.e., became eligible) during the interval

[t0; t00), and let s(t0; t00) denote the number of packets sent during the same interval. Note that

r(t0; t00) and s(t0; t00) do not include packets received/transmitted during slot t00. Let q(t) denote

the size of the queue at the beginning of slot t. Then, if no packets are dropped, we have

q(t00) = q(t0) + r(t0; t00)� s(t0; t00): (47)

Since at most one packet is sent during each time slot, we have s(t0; t00) � t00� t0. The inequality

holds when [t0; t00) belongs to a server busy period. A busy period is de�ned as an interval during

which server's queue is never empty. Also, note that if t0 is the starting time of a busy period

q(t0) = 0.

The next result shows that to compute an upper bound for q(t) it is enough to consider only

the scenarios in which all
ows are continuously backlogged.

Lemma 4 Let t1 be an arbitrary time slot during a server busy period that starts at time t0.

Assume
ow i is not continuously backlogged during the interval [t0; t1). Then q(t1) can only

increase if
ow i becomes continuously backlogged during [t0; t1).

Proof. Consider two cases whether
ow i is idle during the entire interval [t0; t1), or not.

If
ow i is idle during [t0; t1), consider the modi�ed scenario in which
ow i becomes back-

logged at an arbitrary time t < t0, and remains continuously backlogged during [t0; t1). In

43

addition, assume that the arrival patterns of all the other
ows remain unchanged. As a re-

sult, it is easy to see that in the modi�ed scenario the total number of packets received during

[t0; t1) can only increase, while the starting time of the busy interval can only decrease. Let r0,

s0, and q0 denote the corresponding values in the modi�ed scenario. Then q0(t0) � q(t0) = 0,

r0(t0; t1) � r(t0; t1), and s0(t0; t1) = s(t0; t1) = t1 � t0. From Eq. (47) it follows then that

q0(t1) � q(t1).

In the second case, when
ow i is neither idle nor continuously backlogged during the interval

[t0; t1), let t
0 denote the timewhen the last packet of
ow i arrives during [t0; t1). Next consider the

modi�ed scenario in which
ow i's packets arrive at times: t0�na; : : : ; t0�n; t0; t0+n; : : : ; t0+nb,

such that t0� na � t0, and t1 � t0+ nb. It is easy to see then that the number of packets of
ow

i that arrive during [t0; t1) is no smaller than the number of packets of
ow i that arrive during

the same interval in the original scenario. By assuming that the arrival patterns of all the other

ows do not change, it follows that r0(t0; t1) � r(t0; t1). In addition, since at most t1� t0 packets
are transmitted during [t0; t1) we have s

0(t0; t1) � t1� t0. The inequality holds if, after changing

the arrival pattern of
ow i, the server is no longer busy during the entire interval [t0; t1). In

addition, we have q0(t0) � 0, and from the hypothesis q(t0) = 0. Finally, from Eq. (47) we obtain

q0(t1) � q(t1), which concludes the proof of the lemma.

In consequence in the remaining of this section we limit our study to a busy period in which

all
ows are continuously backlogged.

Let t1 be the time when the last
ow becomes backlogged. Let t0 be the latest time no larger

than t1 when the server become busy, i.e., it has no packet to send during [t0 � 1; t0) and is

continuously busy during the interval [t0; t1 + 1). Then we have the following result.

Lemma 5 If all
ows remain continuously backlogged after time t1, the server is busy for any

time t � t0.

Proof. By the de�nition of t0, the server is busy during [t0; t1). Next we show that the server is

also busy for any t1 � 0.

Consider a
ow that becomes backlogged at time t0, Since its arrival process is periodic

it follows that during any interval [t0 � n + i; t0 + i), 8i > 0, exactly one packet of this
ow

arrives. Since after time t1 all n
ows are backlogged, exactly n packets are received during

[t1 � n + i; t1 + i), 8i > 0. Since at most n packets are sent during each of these intervals it

follows that the server cannot be idle during any slot i.

Consider a bu�er of size s. Our goal is to compute the probability with which the bu�er

over
ows during an arbitrary interval [t0; t0+ d). From Lemma 5 it follows that since the server

is busy during [t0; t0 + d), exactly d packets are transmitted during this interval. In addition,

since the starting times of
ows' backlogged periods are not correlated, in the followings we also

44

assume that the starting times of a
ow's backlogged period is not correlated with the starting

time, t0, of a busy period. Thus, during the interval [t0; t0 + d), a
ow receives dd=ne packets
with probability p(d) = d=n� bd=nc, and bd=nc with probability 1� p. Since this probability is

periodic with period n it will su�ce to consider only intervals of size at most n. Consequently,

in the followings we assume d � n. The probability to receive one packet during [t0; t0 + d) is

then

p(d) =
d

n
: (48)

Let p(m; d) denote the probability with which exactlym packets are received during the time

interval [t0; t0 + d), where

p(m; d) =

n

m

!
p(d)m(1� p(d))n�m: (49)

Now, let P (x > s; u) denote the probability with which the queue size exceeds s at time t0+u.

Since the server is idle at t0 and busy during [t0; t0 + u), from Eq. (47) follows that the server's

queue over
ows when more than u+ s packets are received during [t0; t0 + u). Thus, we have

P (x > s; u) =
nX

i=u+s+1

p(i;u) =
nX

i=u+s+1

n

i

!
p(u)i(1 � p(u))n�i: (50)

The next result computes P (x > s; u).

Lemma 6 The probability that a queue of size s over
ows at time t0 + u is bounded by

P (x > s; u) < �(n)

s
1

2�

1 � (s� 1)=2n

1 + (s� 1)=2n

!2s
(n+ s)2

4sn
: (51)

where �(n) = (n=e)1+(1=12n).

Proof. From Eq. (49) we obtain

p(m+ 1;u) =
p(u)

1� p(u)
� n�m

m+ 1
� p(m;u); (52)

By plugging the above equation and Eq. (48) into Eq. (50) we obtain

P (x > s; u) = p(u+ s;u)
nX

i=u+s+1

0
@ i�1Y
k=u+s

n� k

k + 1

1
A� u

n� u

�i�u�s
(53)

< p(u+ s;u)
nX

i=u+s+1

0
@ i�1Y
k=u+s

n� u� s

u+ s

1
A� u

n� u

�i�u�s

= p(u+ s;u)
nX

i=u+s+1

�
n� u� s

u+ s
� u

n � u

�i�u�s

45

Next, it can be easily veri�ed that for any positive reals a, b, and x, such that b�x � 0, we have

a

a+ x
� b� x

b
�

a+ b� x

a+ b+ x

!2

: (54)

By taking a = u, b = n� u, x = s, Eq. (53) becomes

P (x > s; u) < p(u + s;u)
nX

i=u+s+1

�
n� s

n + s

�2(i�u�s)
< p(u+ s;u)

1X
i=0

�
n� s

n + s

�2i
(55)

< p(u + s;u)
(n+ s)2

4sn
:

Next, it remains to bound p(u + s;u). From Eqs. (48) and (52) we have

p(u + s;u) = p(u;u)
s�1Y
i=0

�
u

n� u
� n� u� i

u+ i+ 1

�
<

s�1Y
i=0

�
u

u+ i
� n� u� i

n� u

�
: (56)

By using Ineq. (54) with a = u, b = n� u, and x = i, we obtain

p(u+ s;u) = p(u;u)
s�1Y
i=0

�
n� i

n+ i

�2
= p(u;u)

s�1Y
i=0

�
n � i

n + i
� n� s+ 1 + i

n+ s� 1� i

�
: (57)

Again, by applying Ineq. (54) to the pairs (n � i)=(n + i) and (n � s + 1 + i)=(n + s � 1 � i),

8i < s=2, we have

p(u+ s;u) < p(u;u)

2n � (s� 1)

2n + (s� 1)

!2s

= p(u;u)

1 � (s� 1)=2n

1 + (s� 1)=2n

!2s

: (58)

To bound p(u;u) we use Stirling inequalities [8], i.e.,
p
2�n(n=e)n < n! <

p
2�n(n=e)n+(1=12n),

8n � 1. From here we have

n

n� u

!
<

p
2�n(n=e)n+(1=12n)

p
2�u(u=e)u

q
2�(n� u)((n� u)=e)n�u

(59)

=

s
n

2�(n� u)u
� n

n(n=e)1=12n

uu(n� u)n�u
:

By combining Eqs. (48), (49) and (59), we obtain

p(u;u) < �(n)

s
n

2�u(n� u)
� �(n)

s
1

2�
: (60)

where �(n) = (n=e)1+(1=12n) and the last inequality follows from the fact that n=((n � u)u) < 1,

for any u � 1, n � 2. By plugging the above result in Eq. (55) we obtain

46

P (x > s; u) < �(n)

s
1

2�

1 � (s� 1)=2n

1 + (s� 1)=2n

!2s
(n+ s)2

4sn
: (61)

Lemma 7 Consider n
ows with identical rates and unit packet sizes. Then given a bu�er of

size s, were

s �
vuutn

lnn

2
� ln "

2
� 1

!
; (62)

the probability that the bu�er over
ows during an arbitrary time slot when the server is busy is

asymptotically < ".

Proof. To compute the asymptotic bound for P (x > s; u) assume that s � n. Since (1 �
x)=(1 + x) ' 1� 2x and ln(1� x) ' x, for x! 0, and since (n+ s)2=sn < n for n > s � 4, and

�(n) < 1:102 for any n � 1, by using Eq. (51) we obtain7

lnP (x > s; u) ' ln

0
@�(n)

s
1

2�

1
A + 2s � ln

1� (s� 1)=2n

1 + (s� 1)=2n

!
+ lnn� ln 4 (63)

' ln

0
@�(n)

s
1

2�

1
A + 2s � ln

�
1� s� 1

n

�
+ lnn� ln 4

' ln

0
@�(n)

s
1

2�

1
A � 2s

s� 1

n
+ lnn� ln 4

< �2 � 2
s(s � 1)

n
+ lnn ' 2(�1 � s2

n
) + lnn:

Using " to bound P (x > s; u) leads us to

P (x > s;u) � ") (64)

2

�1� s2

n

!
+ lnn � ln ")

s �
vuutn

lnn

2
� ln "

2
� 1

!
:

7More precisely ln�(n)
p
1=(2�)� ln 4 � �2:2081062 : : :.

47

Next we prove a stronger result by computing an asymptotic upper bound for the probability

with which a queue of size s over
ows during an arbitrary busy interval. Let Q(x > s) denote

this probability. The key observation is that since all
ows have period n, the aggregate arrival

tra�c will have the same period n. In addition, since during each of these periods exactly n

packets are received/transmitted it follows that the queue size at any time t0 + i � n + j is the

same, 8i; j � 0. Consequently, if the queue does not over
ow during [t0; t0 + n), the queue will

not over
ow at any other time t � t1 during the same busy period. Thus, the problem reduces

to compute the probability of queue over
owing during the interval [t0; t0 + n). Then we have

the following result.

Corollary 1 Consider n
ows with identical rates and unit packet sizes. Then given a bu�er of

size s, were

s �
q
n(lnn � (ln ")=2 � 1); (65)

the probability that the bu�er over
ows during an arbitrary busy interval is asymptotically < ".

Proof. Let "0 be the probability that a bu�er of size s over
ows at an instant t during the busy

interval [t0; t0+ u). Then the probability that the bu�er over
ows during this interval is smaller

than 1� (1� "0)u < u � "0. Now, recall that if the bu�er does not over
ow during [t0; t0+ n), the

bu�er will not over
ow after time t0 + n. Thus the probability that the bu�er will not over
ow

during an arbitrary busy period is less than n"0. Finally, let " = n � "0, and apply the result of

Lemma 7 for "0, i.e.,

s �
vuutn

lnn

2
� ln("=n)

2
� 1

!
=

vuutn

lnn� ln "

2
� 1

!
: (66)

48

Arbitrary Flow Rates

In this section we determine the bu�er bound for a system in which packets are of unit size,

but the reservations can be arbitrary. The basic idea is to use a succession of transformations to

reduce the problem to the case in which the probabilities associated to the
ows can take at most

three distinct values, and then to apply the results from the previous case when all reservations

are assumed to be identical.

Consider n
ows, and let rk denote the rate reserved by
ow k, where

nX
k=1

rk = 1: (67)

Consider again the case when all
ows are continuously backlogged. Let t0 denote the start-

ing time of a busy period. Since the time when
ow k becomes backlogged is assumed to be

independent of t0, it follows that during the interval [t0; t0+ d)
ow k receives exactly bd � rkc+1

packets with probability

pk(d) = d � rk � bd � rkc; (68)

and bd � rkc packets with probability 1� pk(d).

Let p(m; d) denote the probability with which the server receives exactly
Pn

k=1bd � rkc +m

packets during the interval [t0; t0 + d). Then

p(m; d) = Tm
n (p1(d); p2(d); : : : ; pn(d)); (69)

where Tm
n (p1(d); p2(d); : : : ; pn(d)) is the coe�cient of xm in the expansion of

nY
i=1

(xpi(d) + (1� pi(d))): (70)

Note that when all
ows have equal reservations, i.e., rk = 1=n; 1 � k � n, Eq. (69) reduces to

Eq. (49).

By using Eq. (68) the number of packets received during [t0; t0 + d) can be written as

nX
k=1

bd � rkc+m =
nX

k=1

(d � rk � pk(d)) +m = d�
nX

k=1

pk(d) +m: (71)

Since t0 is the starting time of the busy period and since the server remains busy during [t0; t0+d),

from Eq. (47) it follows that q(t0 + d) = m�Pn
k=1 pk(d).

Similarly, the probability P (x > s; u) to over
ow a queue of size s at time t0 + u is

P (x > s; u) =
nX

i=v+1

p(i;u); (72)

49

where v =
Pn

k=1 pk(u) + s.

Since in the followings pk(u) is always de�ned over [t0; t0+u) we will drop the argument from

the pk(u)'s notation. Next, note that for any two
ows k and l, p(m;u) can be rewritten as

p(m;u) = pkplAk;l(m) + (pk(1� pl) + (1� pk)pl)Bk;l(m) + (1� pk)(1� pl)Ck;l(m); (73)

where pkplAk;l, represents all terms in Tm
n (p1; p2; : : : ; pn) that contain pkpl, (pk(1 � pl) + (1 �

pk)pl)Bk;l represents all terms that contain either pk(1� pl) or (1� pk)pl, and (1� pk)(1� pl)Ck;l

represents all terms that contain (1� pk)(1� pl).

From Eqs. (72) and (73), the probability to over
ow a queue of size s at time t0 + u is then

P (x > s; u) =
nX

i=v+1

p(i;u) (74)

= pkpl � Ak;l(v; n) + (pk(1� pl) + (1� pk)pl) � Bk;l(v; n) +
(1� pk)(1� pl) � Ck;l(v; n);

where Ak;l(v; n) =
Pn

i=v+1 Ak;l(i), Bk;l(v; n) =
Pn

i=v+1Bk;l(i), and Ck;l(v; n) =
Pn

i=v+1 Ck;l(i),

respectively.

Our next goal is to reduce the problem of bounding P (x > s; u) to the case in which the

ows' probabilities take a limited number of values. This makes possible to use the results from

the homogeneous reservations case without compromising too much the bound quality. The idea

is to iteratively modify the values of the
ows' probabilities, without decreasing P (x > s; u). In

particular, we consider the following simple transformation: select two probabilities pk and pl

and update them as follows:

p0k = pk � �; (75)

p0l = pl + �;

where � is a real value such that 0 � p0l; p
0
k � 1, and the new computed probability

P 0(x > s; u) = p0kp
0
l � Ak;l(v; n) + (p0k(1� p0l) + (1� p0k)p

0
l) � Bk;l(v; n) + (76)

(1� p0k)(1� p0l) � Ck;l(v; n):

is greater or equal to P (x > s; u).

It is interesting note that performing transformation (75) is equivalent to de�ning a new

system in which the reservations of
ows k and l are changed to r0k and r
0
l, respectively, such that

p0k = d � r0k �bd � r0kc, and p0l = d � r0l�bd � r0lc. There are two observations worth noting about this

system. First, by choosing r0k = rk� �=d and r0l = rl+ �=d we maintain the invariant
Pn

i=1 ri = 1.

50

Second, while in the new system the start time t0 of the busy period may change, this will not

in
uence P 0(x > s; u) as this depends only on the length of the interval [t0; t0 + u).

Next, we give the details of our transformation. From Eqs. (74), (75) and (76), after some

simple algebra, we obtain

P 0(x > s; u)� P (x > s; u) = �(pk � pl � �)Dk;l(v; n); (77)

where

D(i; j) = Ak;l(i; j)� 2Bk;l(i; j) + Ck;l(i; j)): (78)

Recall that our goal is to chose � such that P 0(x > s; u) � P (x > s). Without loss of

generality assume that pk > pl. We consider two cases: (1) if Dk;l(v; n) > 0, then � � 0 and

pk � pl + � (� < 0 and pk < pl + � cannot be simultaneously true); (2) if Dk;l(v; n) � 0, then

either � � 0 and pk � pl + �, or � < 0 and pk > pl + �.

Let pmin = min1�i�n pi, and pmax = max1�i�n pi, respectively. Consider the following three

subsets, denoted U , V , and M , where U contains all
ows k such that pk = pmin, V contains all

ows k such that pk = pmax, and M contains all the other
ows. The idea is then to successively

apply the transformation (75) on p1; p2; : : : ; pn, until the probabilities of all
ows in M become

equal. In this way we reduce the problem to the case in which the probabilities pk can take

at most three distinct values: pmin, pmax, and pM , where pk = pM , 8k 2 M . Figure 15 shows

the iterative algorithm to achieve this. Lemmas 8 and 9 prove that by using the algorithm in

Figure 15, p1; p2; : : : ; pn converge asymptotically to the three values.

while (jM j > 1) do =� while size of M is greater than one �=

pl = mini2M(pi);

pk = maxi2M(pi);

if (Dk;l(v; n) > 0)

pk = pl = (pk + pl)=2;

else

� = max(pk � pmax; pmin � pl);

pk = pk � �; pl = pl + �;

if (pl = pmin)

M = M n flg; U = U [flg;

if (pk = pmax)

M = M n fkg; V = V [fkg;

Figure 15: Reducing p1; p2; : : : pn to three distinct values.

51

Lemma 8 After an iteration of the algorithm in Figure 15 either the size of M decreases by one,

or the standard deviation of the probabilities in M decreases by a factor of at least (1� 1
2jM j

).

Proof. The �rst part is trivial; if Dk;l(v; n) � 0 the size of M decreases by one. For the second

part, let p denote the average values of probabilities associated to the
ows in M , i.e.,

p =

P
i2M pi

jM j : (79)

The standard deviation associated to the probabilities in M is

dev =
X
i2M

(pi � p)2: (80)

After averaging probabilities pk and pl, standard deviation v changes to

dev0 = dev + 2

�
pk + pl

2
� p

�2
� (pk � p)2 � (pl � p)2 = dev � (pk � pl)

2

2
: (81)

Since pk and pl are the lowest, and respectively, the highest probabilities inM we have (pi�p)2 �
(pl � pk)

2, 8i 2M . From here and from Eqs. (80) and (81) we have

dev =
X
i2M

(pi � p)2 � jM j(pl � pk)
2 = 2jM j(dev � dev0)) dev0 � dev �

1 � 1

2jM j

!
: (82)

Lemma 9 Consider n
ows, and let pi denote the probability associated to
ow i. Then, by using

the algorithm in Figure 15, the probabilities pi (1 � i � n) converge to at most three values.

Proof. Let " be an arbitrary small real. The idea is then to show that after a �nite number of

iterations of the algorithm in Figure 15, the standard deviation of pi's (i 2M) becomes smaller

than ".

The standard deviation for the probabilities of
ows in M is trivially bounded as follows

dev =
X
i2M

(pi � p)2 �
X
i2M

(pmax � pmin)
2 = jM j(pmax � pmin)

2 < n(pmax � pmin)
2: (83)

Assume Dk;l(v; n) > 0 (i.e., M does not change) for n1 consecutive iterations. Then, by using

Lemma 8, it is easy to see that n1 is bounded above by N , where

dev �

1� 1

2jM j

!N

< dev �
�
1 � 1

2n

�N
= ") N =

ln("=dev)

ln(1� 1=(2n))
: (84)

52

Since the above bound, N , holds for any set M , it follows that after nN iterations, we are

guaranteed that either set M becomes empty, case in which lemma is trivially true, or dev < ".

Thus, we have reduced the problem to compute an upper bound for probability P (x > s; u)

in a system in which probabilities take only three values at time u: pmin, pmax, and pM .

Next we give the main result of this section

Lemma 10 Consider n
ows with unit packet sizes and arbitrary
ow reservations. Then given

a bu�er of size s, were

s �
vuut3n

lnn

2
� ln "

2
� 1

!
; (85)

the probability that the bu�er over
ows in an arbitrary time slot during a server busy period is

asymptotically < ".

Proof. Consider the probability, P (x > s; u), with which the queue over
ows at time t0+u (see

Eq. (72)). Next, by using the algorithm in Figure 15, we reduce probabilities pi's (1 � i � n)

to three values: pmin; pmax, and pM , respectively. Let pfi denote the �nal probability of
ow i,

and let P f (x > s; u) denote the �nal probability of the queue over
owing at time t0 + u. More

precisely, from Eqs. (72) and (69) we have

P f (x > s; u) =
nX

i=v+1

pf (i;u) =
nX

i=v+1

T i
n(p1; p2; : : : ; pn); (86)

where v =
Pn

k=1 pk(u)+ s, and pi = pmin, 8i 2 U , pi = pmax, 8i 2 V , and pi = pM , 8i 2 V . Since
after each transformation P (x > s; u) can only increase, we have P f (x > s; u) � P (x > s; u).

Let nU , nV , and nM be the number of
ows in sets U , V , and M , respectively. De�ne integers

vu, vV , and vM , such that v = vu + vV + vM , and vU < nU ; vV < nV , and vM < nM , respectively.

Then, it can be shown that

P f (x > s; u) � PU + PV + PM ; (87)

where

PU =
nUX

i=vU+1

nU

i

!
pimin(1 � pmin)

nU�i (88)

PV =
nVX

i=vV +1

nV

i

!
pimax(1� pmax)

nV �i

PM =
nMX

i=vM+1

nM

i

!
piM (1 � pM)nM�i:

53

Due to the notation complexity we omit the derivation of Ineq. (87). Instead, below we give an

alternate method that achieves the same result.

The key observation is that PU represents the probability with which more than
P

i2Ubu �
ric + vU packets from
ows in U arrive during the interval [t0; t0 + u). This is easy to see as

the probability that exactly
P

i2Ubu � ric+m packets from
ows in U arrive during [t0; t0+ u) is�
nU
m

�
pmmin(1� pmin)

nU�m (see Eq. (69) for comparison).

Similarly, PV is the probability that more than
P

i2V bu � ric + vV packets from
ows in V

arrive during [t0; t0 + u), while PM is the probability that more than
P

i2Mbu � ric+ vM packets

from
ows in M arrive during the same interval.

Consequently, (1�PU)(1�PV)(1�PM) represents the probability with which no more thanP
i2Ubu �ric+vU ,

P
i2V bu �ric+vV , and

P
i2Mbu �ric+vM packets are received from
ows in U , V ,

and M during [t0; t0 + u). Clearly this probability is no larger than the probability of receiving

no more than
Pn

i=1bu � ric + v packets from all
ows during the interval [t0; t0 + u), probability

which is exactly 1� P f (x > s; u). This yields

1� P f (x > s; u) � (1� PU)(1� PV)(1� PM)) (89)

P f (x > s; u) � 1� (1� PU)(1� PV)(1 � PM) � PU + PV + PM :

Next, consider the expression of PU in Eq. (88). Let

sU = vU � uU ; (90)

where uU = pminnU . Then it is easy to see that the expressions of pmin (i.e., pmin = uU=nU) and

PU , given by Eq. (88), are identical to the expressions of p(d) and P (x > s; u), given by Eqs. (48)

and (50), respectively, after the following substitutions: d uU , n nU , u uU , s sU . By

applying the result of Lemma 6 we have the following bound

PU =
nUX

i=uU+sU+1

nU

i

!
pimin(1 � pmin)

nU�i (91)

< �(nU)

s
1

2�

1� (sU � 1)=2nU

1 + (sU � 1)=2nU

!2sU (nU + sU)
2

4sUnU
:

Next we compute sU , such that

"

3
= �(nU)

s
1

2�

1 � (sU � 1)=2nU

1 + (sU � 1)=2nU

!2sU (nU + sU)
2

4sUnU
: (92)

By applying the same approximations used in proving Lemma 7 (see Ineq. (63)), i.e., sU � nU ,

sV � nV , and sM � nM , respectively, we get

54

sU '
vuutnU

lnnU

2
� ln("=3)

2
� 1

!
; (93)

and similarly

sV '
vuutnV

lnnV

2
� ln("=3)

2
� 1

!
(94)

sM '
vuutnM

lnnM

2
� ln("=3)

2
� 1

!
:

By using the above values for sU , sV , and sM , respectively, and by the de�nition of P f (x >

s; u) and Ineq. (87), we have

P (x > s; u) � P f (x > s; u) � PU + PV + PM � 3 � "
3
= ": (95)

Now it remains to compute s. First, recall that sU = vU �uU , sV = vU �uV , sM = vM �uM ,

where uU = pminu, uV = pmaxu, and uM = pMu (see Eq. (90)). From here we obtain

sU + sV + sM = (vU � nU) + (vV � nV) + (vM � nM) (96)

= v � nU � nV � nM � 3

= v � pminnU � pmaxnV � pMnM

= v �
X
i2U

pmin �
X
i2V

pmax �
X
i2M

pM

= v �
nX
i=1

pi = s:

As both P (x > s; u) and P f (x > s; u) decrease in s, for our purpose it is su�cient to

determine an upper bound for s. From Eqs. (93), (94) and (96) this reduces to compute

max

0
@ X
I2fU;V;Mg

vuutnI

lnnI

2
� ln("=3)

2
� 1

!1A ; (97)

subject to nU + nV + nM = n. Since the function
p
x lnx is concave, it follows that expression

(97) achieves maximum for nU = nV = nM = n=3. Finally, we choose

s = 3 �
vuutn

3

ln(n=3)

2
� ln("=3)

2
� 1

!
=

vuut3n

lnn

2
� ln "

2
� 1

!
; (98)

which completes the proof.

By combining Lemmas 7 and 10 we have the following result

55

Theorem 2 Consider a server traversed by n
ows. Assume that the arrival times of the packets

from di�erent
ows are independent, and that all packets have the same size. Then, for any given

probability ", the queue size at any time instant during a server busy periodic is asymptotically

bounded above by s, where

s =

vuut�n

lnn

2
� ln "

2
� 1

!
; (99)

with a probability larger than 1� ". For identical reservations � = 1; for heterogeneous reserva-

tions � = 3.

Appendix D: Proof of Theorem 3

Theorem 3 Consider a link of capacity C at time t. Assume that no reservation terminates

and there are no reservation failures or request losses after time t. Then if there is su�cient

demand after t the link utilization approaches asymptotically C(1� f)=(1 + f).

Proof. If the aggregate reservation at time t is larger than C(1�f)=(1+f), the proof is trivially

true. Next, we consider the case in which the aggregate reservation is less than C(1�f)=(1+f).

In particular, let C(1� f)=(1 + f)�� be the aggregate reservation at time t. Without loss

of generality assume t = uk. Then we will show that if no reservation terminates, no reservation

request fails, and it is enough demand after time uk, then at least (1 + f)�=2 bandwidth is

allocated during the next two slots. i.e., during the interval (uk; uk+2]. Thus, for any arbitrary

small real ", we are guaranteed that after at most

2� ln("=�)

ln((1� f)=2)
(100)

slots the aggregate reservation will exceed C(1� f)=(1 + f) � ".

From Eq. (20) it follows that the maximum capacity which can be allocate during the interval

(uk; uk+1] is max(C �Rcal(uk); 0). Assume then that �1 capacity is allocated during (uk; uk+1],

where �1 � max(C � Rcal(uk); 0). Consider two cases whether �1 � � or not. If �1 � � the

proof follows trivially.

Assume �1 < �. Then we will show that at time uk+2 the aggregate reservation can increase

by at least a constant fraction of �. From Figure 16 is easy to see that for any reservation

continuously active during an interval (uk; uk+1] we have

bi(uk; uk+1) < ri(TW + TI + TJ): (101)

56

T I T W

T JT I

T JT I --WT

edge node

core node

m2m1

Figure 16: The scenario in which the upper bound of bi, i.e., ri(TW �TI �TJ), is achieved. The arrows

represent packet transmissions. TW is the averaging window size; TI is an upper bound on the packet

inter-departure time; TJ is an upper bound on the delay jitter. Both m1 and m2 fall just inside the

estimation interval, TW , at the core node.

Since no reservation terminates during (uk; uk+1] we have L(uk+1) = L(uk) [N (uk+1). Let

aci 2 (uk; uk+1] be the time when
ow i becomes active during (uk; uk+1]. Since bi(aci; uk+1) �
bi(uk; uk+1), by using Eq. (101) we obtain

B(uk; uk+1) =
X

i2L(uk+1)

bi(uk; uk+1) <
X

i2L(uk+1)

ri(TW + TI + TW): (102)

From here we get

RDPS(uk; uk+1) < R(uk+1)(1 + f): (103)

Since there are no duplicate requests or partial reservation failures after time t = uk, we have

�1 = Rnew(uk+1). From here and from Eq. (20) and Ineq. (103) we have

Rcal(uk+1) �
RDPS(uk+1)

1 � f
+�1 < R(uk+1)

1 + f

1 � f
+�1: (104)

In addition, we have R(uk+1) = R(uk)+�1. Since R(uk) = C(1�f)=(1+f)��, from Eq. (104)

it follows

C �Rcal(uk+1) � C �R(uk+1)
1 + f

1� f
��1 �

1 + f

1� f
�� 2

1� f
�1: (105)

Finally, consider two cases whether (a) �1 < �(1 + f)=2, or (b) not. If (a) is true then the

link can allocate up to

�1 + C �Rcal(uk+1) > �1 +
1 + f

1 � f
�� 2

1 � f
�1 =

1 + f

1� f
(���1) >

1 + f

2
�; (106)

capacity during the time interval (uk; uk+2]. In case (b) we have trivially �1 � �(1+f)=2. Thus

in both cases we can allocate at least �(1 + f)=2 new capacity during (uk; uk+2].

57

