
Respectful Type Converters For Mutable Types

Jeannette M. Wing John Ockerbloom

June 1999

CMU-CS-99-142

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted to Volume on Foundations of Component Based Systems, edited by Gary Leavens and Murali

Sitaraman

This research is sponsored in part by the Defense Advanced Research Projects Agency and the Wright Laboratory,

Aeronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and Rome Laboratory, Air

Force Materiel Command, USAF, under agreement number F30602-97-2-0031 and in part by the National Science

Foundation under Grant No. CCR-9523972. The U.S. Government is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily representing the o�cial policies or

endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency Rome Laboratory or

the U.S. Government.

Keywords: type converters, mutable types, subtype, object-oriented design, abstraction function, speci�-
cations, semantics, Larch, TOM, Y2K.

Abstract

In converting an object of one type to another, we expect some of the original object's behavior to remain
the same, and some to change. How can we state the relationship between the original object and converted
object to characterize what information is preserved and what is lost after the conversion takes place?
We answer this question by introducing the new relation, respects, and say that a type converter function
K : A! B respects a type T . We formally de�ne respects in terms of the Liskov and Wing behavioral notion
of subtyping; types A and B are subtypes of T .
In previous work [11] we de�ned respects for immutable types A, B, and T; in this paper we extend our
notion to handle conversions between mutable types. This extension is non-trivial since we need to consider
an object's behavior as it varies over time. We present in detail two examples to illustrate our ideas: one
for converting between PNG images and GIF images and another for converting between di�erent kinds of
bounded event queues. We also discuss in less detail other real-world applications, namely those inspired
by our Typed Object Model (TOM) conversion service built at Carnegie Mellon and by the infamous Year
2000 (Y2K) problem.

1 Motivation

The tremendous growth of the Internet and the World Wide Web gives millions of people access to vast
quantities of data. While users may be able to retrieve data easily, they may not be able to interpret or
display retrieved data intelligibly. For example, when retrieving a Microsoft Word document, without a
Microsoft Word program, the user will be unable to read, edit, display, or print it. In general, the type of
the retrieved data may be unknown to the retrieving site.

Users and programs cope with this problem by converting data from one type to another, e.g., from the
unknown type to one known by the local user or program. Thus, to view the Word document, we could
convert it to ASCII text or HTML, and then view it through our favorite text editor or browser. A picture
in an unfamiliar Windows bitmap type could be converted into a more familiar GIF image type. A mail
message with incomprehensible MIME attachments could be converted from an unreadable MIME-encoded
type to a text, image, or audio type that the recipient could examine directly. In general, we apply type

converters on (data) objects, transforming an object of one type to an object of a di�erent type.

1.1 What Information Do Type Converters Preserve?

In converting objects of one type to another we expect there to be some relationship between the original
object and the converted one. In what way are they similar? The reason to apply a converter in the �rst
place is that we expect some things about the original object to change in a way that we are willing to forgo,
but we also expect some things to stay the same. For example, suppose we convert a LATEX �le to an HTML
�le. We may care to ensure that the raw textual contents of the original LATEX document are preserved, but
not the formatting commands since they do not contribute to the meaning of the document itself; here the
preserved information is the underlying semantics of the text contained in the document. Alternatively, if
we convert a LATEX �le to a table-of-contents document, we may care to ensure that the number, order, and
titles of chapters and sections in the original document are preserved, but not the bulk of the text; here the
preserved information is primarily the document's structure.

The question we address in this paper is \How can we characterize what information is preserved by a
type converter?" Our answer is given in terms of the behavior of some type T . Informally, we say a converter
K : A ! B respects type T if the original object of type A and the converted object of type B have the
same behavior when both objects are viewed as a type T object. That is, from T 's viewpoint, the A and B
objects look the same. If the converter respects a type, then it preserves that type's observable behavior.
This paper formalizes this novel notion of respectful type converters.

Our particular formalization of respects exploits the subtype relationship that holds among types of ob-
jects. The Liskov and Wing notion of behavioral subtyping [8] conveniently characterizes semantic di�erences
between types. If S is a subtype of T , users of T objects cannot perceive when objects of type S are substi-
tuted for T objects. Intuitively, if K respects type T , an ancestor of both A and B in the subtype hierarchy,
then T captures the behavioral information preserved by K.

In our previous work, \Respectful Type Converters" [11] we presented a de�nition of respects for con-
versions between immutable types only. (It was correspondingly based on a simpli�ed version of Liskov and
Wing's de�nition of subtype.) In this paper, we present an enhanced version of our respects relation that
captures important properties of conversions between mutable types. Speci�cally, for mutable types we say
that a conversion respects a certain type T if an object with the converted value cannot be distinguished
(using T 's interface speci�cation) from an object with the original value either at the time of conversion,
or by analyzing any future computation on the object. That is, the future subhistory of the new object
will not be inconsistent with the expectations raised by the past subhistory of the original object, given the
constraints of type T .

This paper spells out how to determine whether a given ancestor T in a type hierarchy is respected by
a converter K : A ! B (Figure 1). In general, A and B need not be subtypes of each other; in practice,
they are often siblings or cousins in a given type hierarchy. Also, in general, T is not necessarily the least
common ancestor of A and B.

Here is an example of why T is not just any ancestor of A and B. Figure 2 depicts a type family for
images. Suppose that the PNG image and GIF image types are both subtypes of a pixel map type that
speci�es the colors of the pixels in a rectangular region. GIF images are limited to 256 distinct colors; PNG

1

A B
 B

... ...

T

AK:

Figure 1: Does Converter K Respect Type T?

bitmap

PNG GIF

GIF

(set or clear)

(1000’s of colors)

(1000’s of colors) (256 colors)

pixel_map

: PNGK

Figure 2: A PNG to GIF converter that does not respect pixel map might still respect bitmap. Conversely,
it is easy to de�ne a GIF to PNG converter that respects both pixel map and bitmap.

images are not. Assuming the pixel map type does not have a �xed color limit, then a general converter
from PNG images to GIF images would not respect the pixel map type: it is possible to use pixel map's
interface to distinguish a PNG image with thousands of colors from its conversion to a GIF image with
at most 256 colors. On the other hand, suppose pixel map is in turn a subtype of a more generic bitmap
type that simply records whether a graphical element is set or clear. Suppose further that elements in a
pixel map are considered set if they are not black, and clear if they are black. As long as the PNG to GIF
converter does not change any non-black color to black (or black to non-black), and otherwise preserves the
pixel layout, there is no way for the bitmap interface to distinguish the PNG image from the GIF image that
results from the conversion. Here then, the PNG to GIF converter respects the bitmap type.

1.2 Typed Object Model Context

At Carnegie Mellon we built a type broker, an instance of Ockerbloom's Typed Object Model (TOM) [9],
that provides a type conversion service. Our TOM type broker allows users in a distributed environment
to store types and type conversion functions, to register new ones, and to �nd existing ones. It plays a
role similar to that of the type repository in Open Distributed Processing [2] and the conversion manager
in System 33 [10]. The kinds of types TOM supports today are di�erent kinds of document types (e.g.,
Word, LATEX, PowerPoint, binhex, HTML) and \packages" of such document types (e.g., a mail message
that has an embedded postscript �le, a tar �le, or a zip �le). The kinds of conversions TOM supports
are o�-the-shelf converters like postscript2pdf (i.e., AdobeDistillerTM), o�-the-Web ones like latex2html, and
some home-grown ones like powerpoint2html.

Users can compose available converters to produce an object of a desired target type. For example, to

2

make a fourteen-year old Scribe document available on the Web, the �rst author used a scribe2latex converter
to produce a LATEX �le and then an enhanced latex2html converter to produce the Web version. This scenario
is similar to that described in the previous section: here, the composition of the two converters preserves
the semantics of the original Scribe document. Ironically, the LATEX program failed to run successfully on
the intermediate LATEX �le, but for this application, it did not matter; it was the end result|the HTML
�le|that mattered.

The Web site for the TOM conversion service at Carnegie Mellon is: http://tom.cs.cmu.edu/. It
supports roughly 100 abstract data types, a few hundred concrete data types, and over 300 type converters
(including over 200 meaningful compositions of about 70 primitive converters). As of May 1999, the number
of accesses to the TOM conversion service stabilized to 5000 per month, which is an average of 167 per
day. Accesses came from over 1000 sites in over 35 countries in six continents from all types of organizations
including educational, government, and commercial institutions. One class of the most popular converters are
those to unwrap mail messages with embedded �les. Another class consists of those which take a document
of one type and produce a �le of a di�erent type, typically for viewing or printing. The most common source
types for converting are mail messages, Microsoft Word, PowerPoint, postscript, LATEX, and pdf �les; the
most common target types are Web sections, HTML, text, postscript, and GIF images.

Though our idea of respectful type converters was inspired by our use of TOM in the context of �le and
document converters, type converters show up in other contexts. Most programming languages have built-in
type converters de�ned on primitive types, for example, ascii2integer, char2string, and string2array[char].
The real world is continually faced with painful, costly, yet seemingly simple conversions: the U.S. Postal
System converted �ve-digit zip codes to �ve+four-digit zip codes; Bell Atlantic recently added a new area
code necessitating the conversion of a large portion of phone numbers in Western Pennsylvania from the 412
area code to 724; payroll processing centers routinely need to convert large databases of employee records
whenever extra �elds are added to the relevant database schema; and of course, the infamous Year 2000
(Y2K) conversion problem is costing billions of dollars to �x [6].

1.3 Roadmap to Rest of Paper

In this paper we formally characterize the notion of when a converter respects a type. We �rst review in
Section 2 how we specify types and determine when one type is a subtype of another, borrowing directly
from Liskov and Wing's behavioral notion of subtyping [8]. In Section 3 we exploit this notion of subtyping
to de�ne the respects relation between a converter and a type. In Section 4 we discuss in detail two examples
to illustrate converters that do and do not respect types: one example of a type family for PNG and GIF
images, and one for bounded event queues. In Section 5 we give a further extension of respects that enables
us to relate the implementation of types to their speci�cations; speci�cally, the abstraction function used
to show the correctness of the implementation of abstract types �ts neatly into the way we de�ne respects.
In Section 6 we brie
y discuss two \real world" contexts in which our respects relation applies: the TOM
conversion service and the Y2K problem. We close with a discussion of related work and a summarizing set
of conclusions.

2 Behavioral Subtyping

The programming language community has come up with many de�nitions of the subtype relation. The goal
is to determine when this assignment

x: T := E

is legal in the presence of subtyping. Once the assignment has occurred, x will be used according to its
\apparent" type T , with the expectation that if the program performs correctly when the actual type of x's
object is T , it will also work correctly if the actual type of the object denoted by x is a subtype of T .

What we need is a subtype requirement that constrains the behavior of subtypes so that users will not
encounter any surprises:

3

No Surprises Requirement: Properties that users rely on to hold of an object of a type T should
hold even if the object is actually a member of a subtype S of T .

which guarantees Liskov's substitutability principle of subtypes [7]. In their 1994 TOPLAS paper \A Behav-
ioral Notion of Subtyping" Liskov and Wing [8] formalized this requirement in their de�nition of subtyping.
The novel aspect of their subtype de�nition is the ability to handle mutable types, and in particular, a type's
history properties.

To provide background for our de�nition and to make this paper self-contained, we �rst describe our
model of objects and types, then how we specify types, and then we de�ne the subtype relation. These
de�nitions are all taken from the Liskov and Wing paper [8].

2.1 Model of Objects, Types, and Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint typed sets. Each object
has a unique identity. A type de�nes a set of values for an object and a set of methods that provide the only
means to manipulate or observe that object.

Objects can be created and manipulated in the course of program execution. A state de�nes a value for
each existing object. It is a pair of mappings, an environment and a store. An environment maps program
variables to objects; a store maps objects to values.

State = Env � Store

Env = Var ! Obj

Store = Obj ! Val

Given a variable, x, and a state, �, with an environment, �:e, and store, �:s, we use the notation x� to denote
the value of x in state �; i.e., x� = �:s(�:e(x)) When we refer to the domain of a state, dom(�), we mean
more precisely the domain of the store in that state.

We model a type as a triple, hO; V;M i, where O � Obj is a set of objects, V � Val is a set of values, and
M is a set of methods. Each method for an object is a constructor, an observer, or a mutator. Constructors
of an object of type � return new objects of type � ; observers return results of other types; mutators modify
the values of objects of type � . An object is immutable if its value cannot change and otherwise it is mutable.
A type is immutable if all of its objects are; otherwise it is mutable. We allow mixed methods where a
constructor or an observer can also be a mutator. We also allow methods to signal exceptions; we assume
termination exceptions, i.e., each method call either terminates normally or in one of a number of named
exception conditions. To be consistent with object-oriented language notation, we write x.m(a) to denote
the call of method m on object x with the sequence of arguments a.

Objects come into existence and get their initial values through creators. Unlike other kinds of methods,
creators do not belong to particular objects, but rather are independent operations. They are the class

methods; the other methods are the instance methods.
A computation, i.e., program execution, is a sequence of alternating states and transitions starting in

some initial state, �0:

�0 Tr1 �1 ::: �n�1 Trn �n

Each transition, Tri, of a computation sequence is a partial function on states. A history is the subsequence
of states of a computation.

Objects are never destroyed: 8 1 � i � n : dom(�i�1) � dom(�i).

2.2 Type Speci�cations

A type speci�cation contains the following information:

� The type's name.

� A description of the set of values over which objects of the type ranges.

� For each of the type's methods:

4

GIF: type

uses GIFImage (gif for G)
for all g: GIF

invariant j colorrange(g�) j� 256
constraint true

color get color (i, j: int)
ensures result = overlay(g; i; j)

bool set color (i, j: int; c: color)
modi�es g

ensures if j colorrange(changepixel(gpre ; i; j; c)) j� 256
then c 2 colorrange(gpost) ^ gpost = changepixel(gpre; i; j; c) ^ result = true

else gpre = gpost ^ result = false

frame get frame (i: int)
requires 1 � i � len(g)
ensures result = g[i]

end GIF

Figure 3: A Larch Type Speci�cation for GIF Images

{ Its name.

{ Its signature, i.e., the types of its arguments (in order), result, and signaled exceptions.

{ Its behavior in terms of pre-conditions and post-conditions.

� A description of the type's history properties.

Figure 3 gives an example of a type speci�cation for GIF images. We give formal speci�cations, written
in the style of Larch [5], but we could just as easily have written informal speci�cations. Since these
speci�cations are formal we can do formal proofs, possibly with machine assistance like with the Larch
Prover [3], to show that a subtype relation holds [12].

The GIFImage Larch Shared Language trait and the invariant clause in the Larch interface type spec-
i�cation for GIF images together describe the set of values over which GIF image objects can range. GIF
images are sequences of frames where each frame is a bounded two-dimensional array of colors. Appendix A
contains all traits used in all examples in this paper, and here in particular, the GIFImage trait and those
for frame sequences, frames, colors, etc.

A type invariant constrains the value space for a type's objects. In the GIF example, the type invariant
says that a GIF image can have at most 256 di�erent colors. (The colorrange function de�ned in GIFImage
returns the range of colors mapped onto by the array.) The predicate �(x�) appearing in an invariant clause
for type � stands for the predicate: For all computations c, and for all states � in c:

8x : � : x 2 dom(�)) �(x�).

Whereas an invariant property is a property true of all states of an object, a history property is a property
that is true of all sequences of states that result from any computation on that object. For example, a typical
history property is that the bound of a �nite queue never changes; another example is that the value of an
integer counter always monotonically increases. A type constraint in a Larch interface speci�es the history
properties of the type's objects. The two-state predicate �(x�i ; x�k) appearing in a constraint clause for
type � stands for the predicate: For all computations c, and for all states �i and �k in c such that i < k:

5

8x : � : x 2 dom(�i)) �(x�i ; x�k)

Note that we do not require that �k be the immediate successor of �i in c. The GIF example has the trivial
constraint true. In Section 4.2 we will give examples of types with non-trivial constraints.

The requires and ensures clauses in the Larch interface speci�cation state the methods' pre- and
post-conditions respectively. To be consistent with the Liskov and Wing paper and the Larch approach,
pre-conditions are single-state predicates and post-conditions are two-state predicates. The modi�es clause
states that the values of any objects it does not list do not change; the values of those listed may possibly
change. The absence of a requires clause stands for the pre-condition true. The absence of a modi�es

clause means that the method cannot change the values of any objects.
The get color method returns the color of the (i, j)th array element of g. The overlay function de�ned in

GIFImage returns the color value of the (i; j)th array element of the last frame in the sequence that gives
a value for (i; j); otherwise, it returns BLACK, a distinguished color value, introduced in the ColorLiterals
trait. For example, if there are three frames in the frame sequence and for a given (i; j), the �rst frame maps
the array element to BLACK, the second to RED, and the third does not map (i; j) to any color (because
it is not within its bounds), then RED is returned. The set color method modi�es the GIF object g by
changing the �nal color of pixel (i; j) to c, and returns true, if the change would not make the resulting GIF
have more than 256 colors. Otherwise it leaves the GIF object unchanged and returns false. The get frame
method returns the ith frame of the GIF object's value.

To ensure that the speci�cation is consistent, the speci�er must show that each creator for the type
� establishes � 's invariant, and that each of � 's methods both preserves the invariant and satis�es the
constraint. These are standard conditions and their proofs are typically straightforward [8].

2.3 The Subtype Relation

The subtype relation is de�ned in terms of a checklist of properties that must hold between the speci�cations
of the two types, � and � . Since in general the value space for objects of type � will be di�erent from the
value space for those of type � we need to relate the di�erent value spaces; we use an abstraction function,
�, to de�ne this relationship. Also since in general the names of the methods of type � can be di�erent
from those of type � we need to relate which method of � corresponds to which method of � ; to de�ne this
correspondence we use a renaming map, �, that maps names of methods of � to names of methods of � . (In
a programming language like Java, this is just the identity map, as realized through method overloading.)

� is a subtype of � if the following three conditions hold (informally stated):

1. The abstraction function respects the invariants. If the subtype invariant holds for any subtype value,
s, then the supertype invariant must hold for the abstracted supertype value �(s).

2. Subtype methods preserve the supertype methods' behavior. If m is a subtype method then let n be
the corresponding �(m) method of the supertype.

� Signature rules.

{ Arguments tom are contravariant to the corresponding arguments to n; m's result is covariant
to the result of n.

{ Any exception signaled by m is contained in the set of exceptions signaled by n.

� Methods rules. (These are completely analogous to the contra/covariant signature rules.)

{ n's pre-condition implies m's (under the abstraction function).

{ m's post-condition implies n's (under the abstraction function).

3. The history constraints of the supertype are preserved in the subtype. (The subtype can add additional
constraints, but its constraints must be at least as strict as its supertype's.)

The formal de�nition of the subtype relation, <, is given in Figure 4 1. It relates two types, � and � ,
each of whose speci�cations we assume are consistent. In the methods rules, since x is an object of type �,

1It is Liskov and Wing's \constraint" based subtype de�nition, and is taken from Fig. 4 of [8].

6

its value (xpre or xpost) is a member of S and therefore cannot be used directly in the predicates about �
objects (which are in terms of values in T). The abstraction function � is used to translate these values so
that the predicates about � objects make sense.

Definition of the subtype relation, <: � = hO�; S;M i is a subtype of � = hO� ; T;N i if
there exists an abstraction function, � : S ! T , and a renaming map, � :M ! N , such that:

1. The abstraction function respects invariants:

� Invariant Rule. 8s : S : I�(s)) I� (�(s))

� may be partial, need not be onto, but can be many-to-one.

2. Subtype methods preserve the supertype methods' behavior. If m� of � is the corresponding
renamed method m� of �, the following rules must hold:

� Signature rule.

{ Contravariance of arguments. m� and m� have the same number of arguments. If
the list of argument types of m� is ai and that of m� is bi, then 8i : ai < bi.

{ Covariance of result. Either both m� and m� have a result or neither has. If there
is a result, let m� 's result type be a and m� 's be b. Then b < a.

{ Exception rule. The exceptions signaled by m� are contained in the set of exceptions
signaled by m� .

� Methods rule. For all x : �:

{ Pre-condition rule. m� :pre[�(xpre)=xpre]) m� :pre:

{ Post-condition rule. m� :post) m� :post[�(xpre)=xpre; �(xpost)=xpost]

3. Subtype constraints ensure supertype constraints.

� Constraint rule. For all computations c, and all states �i and �k in c where i < k, for all
x : �:
C�) C� [�(x�i)=x�i ; �(x�k)=x�k]

Figure 4: De�nition of the Subtype Relation

Why does this subtype relation guarantee that the No Surprises Requirement holds? Recall that the
Requirement refers informally to \properties." This de�nition of subtype guarantees that certain properties of
the supertype|those stated explicitly or provable from a type's speci�cation|are preserved by the subtype.
The �rst condition directly relates the invariant properties. The second condition relates the behaviors of
the individual methods, and thus preserves any observable behavioral property of any program that invokes
those methods. The third condition relates the overall histories of objects, guaranteeing that the possible
histories in the subtype speci�cation are also possible histories in the supertype speci�cation.

Figure 5 gives a type speci�cation for pixel map, which is a supertype of both GIF and PNG. To show
that GIF is a subtype of pixel map (Figure 2), we de�ne the following abstraction function:

�PM
G

: G ! PM
8i; j : Integer . �PM

G
(g)[i; j] = overlay(g; i; j)

Using this abstraction function, the proofs that the invariant, signature, methods, and constraint rules
either are straightforward to show or trivially hold. The only noteworthy aspect of pixel map's speci�cation
is the nondeterminism speci�ed for its set color method, which is more liberal than that for both GIF images
and PNG images (as we will see in Section 4). A call to set color can always either fail (making no change)
or succeed (possibly adding a new color to the pixel maps's color range). We exploit this nondeterminism
later in our proofs.

7

pixel map: type

uses PixelMap (pixel map for PM)
for all p: pixel map

invariant true

constraint true

color get color (i, j: int)
ensures result = p[i; j]

bool set color (i, j: int; c: color)
modi�es p

ensures (result = false ^ ppre = ppost) _
(result = true ^ c 2 colorrange(ppost) ^ c = ppost[i; j] ^

8k; l : Integer:(k 6= i _ l 6= j)) ppre[k; l] = ppost[k; l])

end pixel map

Figure 5: A Larch Type Speci�cation for Pixel Maps

3 Respects

3.1 De�nition of Respectful Type Converter

Suppose we have two types A = hOA; VA;MAi and B = hOB ; VB;MBi. A converter, K, is a partial function
from VA to VB . Thus when we say that a converter maps from type A to type B we mean more precisely
that it maps the value space of type A to the value space of type B; for notational convenience, we continue
to write the signature of K as A ! B. To ensure the converter is consistent with B's speci�cation, the
speci�er should show that the values of VB to which K maps satisfy B's type invariant.

Let T be a type that is a common ancestor of A and B in a given type hierarchy. T is a supertype of both
A and B. Then there exist ancestor types, A1 : : :An, between A and T such that there exist the following
abstraction functions:

�0 : A! A1
: : :

�i : Ai ! Ai+1
: : :

�n : An ! T

Assuming for all 1 � i � n : dom(�i) � ran(�i�1), let � be the functional composition of �i:

� = �n � : : : � �0

For B we similarly de�ne Bi; �i, and � for 1 � i � m. Figure 6 illustrates these constructs.
Figure 7 gives the de�nition of the respects relation for a converter K : A ! B and type T . The �rst

two conditions (under Methods) state that the original value and the converted value are indistinguishable
when viewed through the methods (in particular, the observers) of type T . Let a stand for ypre used in
the de�nition (the value of the object of type A before the call to T's method m). Then the �rst condition
requires that m's pre-condition holds for a's abstraction under � i� it holds for the converted value of a
abstracted under �. Thus from T 's viewpoint, if m is de�ned for A's values, it should be de�ned for B's
values, and vice versa. The second condition requires that m's post-condition holds for a's abstracted value
under � i� it holds for the converted value of a abstracted under �. Thus, given that m is de�ned, then its
observed state must be the same for A's values and B's values from T 's viewpoint.

8

T

A n

A
1

Bm

B1

A B

... ...

β

β

β

α

α : A

: A

α
0

: A

i Ai

n
T

0
: B

Bi

T

i

m

: B

: B
m

i+1 i+1

n

A
1

B
1

α α α α
0in

=

β β β β
m i 0

=

Figure 6: Two Compositions of Abstraction Functions

Definition of respects relation: Let K : A! B be a partial function mapping values of type
A to values of type B. Let T be an ancestor of both A and B in a given type hierarchy; � and � are
de�ned in text and depicted in Figure 6. Then converter K respects T if the following conditions
hold:

� Methods: For each method m of T , and for all objects x : T , y : A, and z : B, and for all
subcomputations ypre mA ypost and zpre mB zpost, such that mA and mB are A's and B's
corresponding methods of m, ypre 2 dom(K), and K(ypre) = zpre:

1. m:pre[�(ypre)=xpre], m:pre[�(zpre)=xpre] and

2. m:post[�(ypre)=xpre; �(ypost)=xpost], m:post[�(zpre)=xpre; �(zpost)=xpost]

� Constraint: For all integers i, j, and k, where 0 � i � j � k, all histories �0:::�k and 0::: k,
and for all objects x : T , y : A, and z : B such that y�j 2 dom(K) and K(y�j) = z j

:

CT [�(y�i)=x�i ; �(z k
)=x�k]

Figure 7: De�nition of the Respects Relation

The last condition (labeled Constraint) requires that T 's constraints between any two points of any
history must be the same for an unconverted object of type A as for a converted object of type B. This
is trivially true for two points before the conversion and for two points after the conversion; the condition
more generally handles the case where one point, �i, is before the conversion, and one point, �k, is after
the conversion, where the point of conversion is �j . Thus, from T 's viewpoint, the converted object's later
states are consistent with the earlier states of the original object, given the history properties of T . To put it
another way, now let a stand for y�j used in the de�nition. If T's history constraint holds, then an observer
cannot tell that the object with the new value after conversion, K(a), is any di�erent from the object with
the original value, a, before conversion.

These conditions together guarantee that T 's behavior is preserved by the conversion of objects of type
A to those of type B. Informally, T cannot distinguish between an object with the original value and an
object with the converted value, even when taking the subsequent histories of the objects into account. Thus
K respects T .

9

Claim 1 If a and K(a) abstractly map to the same value in T , i.e., �(a) = �(K(a)) for all a in the domain

of K, then the respects relation trivially follows.

This special case is often useful in proofs that a converter respects a type, as we will see Section 4.

3.2 Discussion of De�nition

The de�nition of the respects relation has a similar structure to the de�nition of the subtype relation. Like
the subtype relation, the respects relation includes methods and constraint rules. The Methods rules show
that the observable state of the original object and the object with the converted value are indistinguishable
(from the respected type's point of view) at the time of conversion. The Constraint rule shows that the
history of the object with the converted value is consistent with the past history of the original object.
Unlike the subtype relation, the respects relation does not need an invariant rule. Since both types A and
B are subtypes of the respected type T , all objects of those types must conform to the invariants of T ,
by the de�nition of subtype, so restating the invariant rule here for particular A and B objects would be
super
uous.

We considered various alternate de�nitions of the respects relation. One of them explicitly modeled a
computation involving object z : B, and required it to correspond exactly to a computation involving object
y : A, in rules like the ones above. Another did not explicitly consider histories or computations at all, but
simply compared values of an object y : A to values of a corresponding object z : B, and made sure the
converted values of z matched the original values of y at every state. The �rst alternative was more complex
than necessary; the second, too simplistic. Moreover, both failed to accommodate cases where the history of
an object with a converted value diverges from that of an object with an original value, a situation we want
(and need) to allow. (In the next section, we will see examples of this phenomenon. One common case occurs
where one of the types in question is less constrained than the other.) The history of the original object and
that of the converted object are allowed to diverge after the point of conversion, as long as both histories
are consistent with the past history of the original object, with respect to the respected type's constraints.
As long as this consistency property holds, there should be \no surprises" from the respected type's point
of view after a conversion.

4 Two Examples

The �rst example shows how our de�nition handles mutable methods, and hence mutable types. The
second example goes one step further and shows how we handle history properties as speci�ed in non-trivial
constraint clauses.

4.1 PNG and GIF Example Revisited

Let us look at the PNG to GIF example more carefully. First, we give the type speci�cation for PNG images
and an abstraction function that enables us to argue that PNG is a subtype of pixel map. Then we consider
converters between PNG and GIF, to argue that no total converter from PNG to GIF respects pixel map,
but that some converters from GIF to PNG do.

The type speci�cation for PNG images is given in Figure 8. Note we have a nontrivial application of the
renaming map, �, where �(get corrected color) = get color , and �(set corrected color) = set color . (Only
some of the methods for PNG have corresponding supertype methods; the rest are left unmapped by �.)

We are always allowed to set a PNG image's pixels to new colors, with no limit on the total number of
colors in the image; this freedom follows from the trivial type invariant and set corrected color's speci�cation.
In contrast, we are allowed to set a GIF image's pixels to new colors only when the total number of colors does
not exceed 256. The nondeterminism in the pixel map supertype (Figure 5) accommodates both subtype
speci�cations. In particular, for PNG images, the color range grows as more colors are added, so that
set corrected color always successfully sets a color, if a coordinate is set within the PNG image's bounds.
Moreover, although the pixel map supertype does not have any concept of coordinate boundaries, its set color
method can fail for any reason, thus accommodating the behavior of PNG's set corrected color in the case
that the coordinates are out of bounds.

10

PNG: type

uses PNGImage (PNG for P)
for all p: PNG

invariant true

constraint true

color get uncorrected color (i, j: int)
requires inframe(p; i; j)
ensures result = p[i; j]

gamma get gamma ()
ensures result = gamma(p)

int get xmin ()
ensures result = xmin(p)

: : : and similarly for get xmax, get ymin, and get ymax : : :

color get corrected color (i, j: int)
ensures if inframe(p; i; j)

then result = gc(p[i; j]; gamma(p); STDG)
else result = BLACK

bool set corrected color (i, j: int; c: color)
modi�es p

ensures same bounds and gamma(ppre; ppost) ^
if inframe(p; i; j)
then c = gc(ppost[i; j]; gamma(ppost); STDG) ^

c 2 colorrange(ppost) ^
8k; l : Integer:(k 6= i _ l 6= j)) ppre[k; l] = ppost[k; l])) ^
result = true

else ppre = ppost ^ result = false

end PNG

Figure 8: A Larch Type Speci�cation for PNG Images

11

PNG images di�er from pixel map objects in two ways: (1) they are framed and (2) associated with
each PNG object, p, is a \gamma" value, denoted gamma(p), used in a gamma correction function, gc.
The gamma correction function corrects for di�erences among monitors; some are dimmer than others and
thus have di�erent color balances. We abstract from the intricacies of gamma correction functions; for our
purposes here, they take as arguments a color, an input gamma factor, an output gamma factor, and return
a color. The constant, STDG, is the standard gamma value for normal monitors.

We de�ne the following abstraction function to show that PNG is a subtype of pixel map:
�PM
P

: P! PM

8i; j : Integer : �PM
P

(p)[i; j] =

8<
:

gc(p[i; j]; gamma(p); STDG) if xmin(p) � i � xmax(p) ^
ymin(p) � j � ymax(p)

BLACK otherwise
Consider a converter, K : P ! G, that maps values of PNG images to GIF values.

Claim 2 There is no such converter that respects pixel map, if the converter is de�ned for PNG images of

more than 256 colors.

Proof: A simple counting argument su�ces. First we show that for a given PNG value, p, where

j colorrange(p) j= n and n > 256, its abstracted pixel map value, �PM
P

(P), also has at least 256 col-

ors. From the abstraction function, �PM
P

(p)[i; j] = gc(p[i; j]; gamma(p); STDG), we know that every array

element of p maps to some array element of �PM
P

(p). Furthermore, if two array elements in p have di�erent
colors, so do the corresponding cells in �PM

P
(p). To prove this, we show that if two gamma corrected colors

are the same, then the original colors, c1 and c2, also have to be the same, i.e.,

Suppose

1. gc(c1; gamma(p); STDG) = gc(c2; gamma(p); STDG)
By the \transitivity" and \re
exivity" properties of gamma correction functions (see Appendix A),

we know that

2. gc(gc(c1; gamma(p); STDG); STDG; gamma(p)) = c1
By substitution in line 1, we get

3. gc(gc(c2; gamma(p); STDG); STDG; gamma(p)) = c1
Yielding

4. c2 = c1

So if there are n > 256 colors in p then there are also at least n colors in �PM
P

(p).
Next we show that the conversion of p to a valid GIF image value K(p) would cause the GIF value to

be observably di�erent from the PNG value, when viewed through pixel map's interface. K(p) can have a

maximum of 256 colors by the type invariant of GIF image. Furthermore, the abstraction mapping of K(p)
to a pixel map value, �PM

G
(K(p)), cannot add any colors to colorrange(K(p)) (except for BLACK), since we

see from the de�nition of �PM
G

, and hence by the de�nition of overlay, that every c 2 colorrange(�PM
G

(K(p)))
is either BLACK or one of the colors used in one of the frames of K(p). Therefore, there exists some c

such that c 2 colorrange(�PM
P

(p)) and c 3 colorrange(�PM
G

(K(p))). So there exists some i and j such

that the result of calling pixel map's observer, get color with arguments i and j will di�er between a call

on the original PNG image from a call on the converted GIF image, i.e., �PM
P

(p)[i; j] 6= �PM
G

(K(p))[i; j]
Therefore, the converter cannot respect pixel map. 2

It is possible, however, to have a converter from GIF images to PNG that respects the pixel map type.

Claim 3 There exist converters from GIF to PNG that respect pixel map.

Proof: By existence. Here is a converter from GIF to PNG:

K : G! P

K(g) = p where

xmin(p) = min(fxmin(g[i]) j 0 � i < len(g)g) ^
xmax(p) = max(fxmax(g[i]) j 0 � i < len(g)g) ^
ymin(p) = min(fymin(g[i]) j 0 � i < len(g)g) ^
ymax(p) = max(fymax(g[i]) j 0 � i < len(g)g) ^

12

gamma(p) = STDG ^
8i; j : Integer : p[i; j] = overlay(g; i; j)

Composing our converter with our abstraction function from PNG to pixel map, for an original gif value,

g, we get an abstracted converted pixel map value, pm, such that

8i; j : Integer : pm[i; j] =

8>>>><
>>>>:

gc(overlay(g; i; j); STDG; STDG) if min(fxmin(g[k]) j 0 � k < len(g)g) � i ^
i � max(fxmax(g[k]) j 0 � k < len(g)g) ^
min(fymin(g[k]) j 0 � k < len(g)g) � j ^
j � max(fymax(g[k]) j 0 � k < len(g)g)

BLACK otherwise

By the \re
exivity" property of gamma correction functions, we know that gc(c; g; g) = c. Furthermore,

we know that from the de�nition of overlay that when i and j are beyond the bounds of any frames in a

frameset, overlay(g; i; j) is BLACK. In the de�nition above, whenever i or j are outside the respective

minima or maxima, then (i; j) is outside any frame in the GIF. Therefore the de�nition above simpli�es to

8i; j : Integer . pm[i; j] = overlay(g; i; j)

which is exactly the same abstraction function as is used to map the original GIF to a pixel map. The

abstracted values are identical, so by Claim 1 (made at the end of Section 3.1), the conversion respects

pixel map. 2

Our assertion above may seem to go against our intuition, when we consider the further histories of the
original GIF and the converted PNG. After all, the same sequence of mutations called at the pixel map
level can cause the histories of the original object and the converted object to diverge. Indeed, our type
speci�cations for GIF and PNG mandate that the histories sometimes must diverge. Consider, for instance,
an object o which at some state � has exactly 256 colors. Attempting to call set color (within appropriate
x and y bounds) with a 257th color must fail for the original GIF object, since it has a maximum of 256
colors. However, it must succeed for the converted PNG object, since set color as de�ned on PNG images
cannot fail if it is called within the x and y bounds of the image. From this point on, then, the histories of
the original GIF image and the converted PNG image diverge.

For our conversion to respect pixel map, however, it su�ces that the GIF image and the converted PNG
image, at the time of conversion, have identical possible futures from pixel map's perspective. That is, we
should not be able to tell, given only the mutations and requirements of pixel map, that the object with the
original value and the object with the converted value were di�erent at the point of conversion. As long as
this is true, programs expecting to operate on a pixel map object will not encounter surprises if the object
they operate on had been converted from a GIF to a PNG image.

Our pixel map type has only one mutator, set color. All we know about set color is that any attempt
to add a new color to a given pixel map might succeed or might fail. Either outcome is possible from
pixel map's perspective, no matter how many colors are in a pixel map at a given time. So, from pixel map's
perspective, any sequence of pixel map method calls on both an original GIF object and a converted PNG
object will have the same possible future observed behaviors. Since the possible future histories of the PNG
and GIF objects look the same from pixel map's point of view, there will be no surprises when converting
from GIF to PNG, if one assumes only the behavior speci�ed in pixel map. Appendix B contains a formal
proof of this argument.

4.2 Event Queues

The types in the previous example had invariants but no history constraints. In this section's example of
an event queue type family (Figure 9), we look at a conversion between constrained types, and show which
common supertypes the conversion respects, and which it does not.

At the root of the type hierarchy, we have an eventqueue type that models bu�ered event queues. We
represent a value of an eventqueue object, q, as a pair, [items, bound], of a set of the bu�ered items and a
bound. Events in the queue must be inserted in increasing timestamp order. The size of the queue bu�er
is bounded, but the bound is not directly readable or writable by the eventqueue type. New events (if they
have appropriate timestamps) can be inserted into the queue unless the number of items already in the queue

13

(timestamp order,
bound cannot change)

(timestamp order,
bound = 10)

:

eventqueue

fixedqueue

shortqueue longqueue

shortqueue longqueue

(timestamp order,
bound may vary)

(timestamp order,
bound = 1000)

K

Figure 9: A Queue Hierarchy

eventqueue = type

uses EventQueue (eventqueue for Q)
for all q: eventqueue

invariant len(q�:items) � q�:bound

constraint timestamp(head(q�i :items)) � timestamp(head(q�k :items))

bool insert (e: event)
requires timestamp(last(qpre :items)) < timestamp(e)
modi�es q

ensures len(qpost:items) � qpost:bound ^
if len(qpre:items) < qpost:bound

then qpost:items = add(e; qpre:items) ^ result = true

else qpost:items = qpre:items ^ result = false

event remove ()
requires qpre:items 6= empty

modi�es q

ensures qpost:items = tail(qpre:items) ^ result = head(qpre:items) ^
len(qpost:items) � qpost:bound

int size ()
ensures result = len(qpre:items)

end eventqueue

Figure 10: A Type Speci�cation for Event Queues

14

�xedqueue = type

uses EventQueue (�xedqueue for Q)
for all q: �xedqueue

invariant len(q�:items) � q�:bound

constraint

timestamp(head(q�i :items)) � timestamp(head(q�k :items)) ^ q�i :bound = q�k :bound

bool insert (e: event)
requires timestamp(last(qpre :items)) < timestamp(e)
modi�es q

ensures qpre:bound = qpost:bound ^
if len(qpre:items) < qpost:bound

then qpost:items = add(e; qpre:items) ^ result = true

else qpost:items = qpre:items ^ result = false

event remove ()
requires qpre:items 6= empty

modi�es q

ensures qpost:items = tail(qpre:items) ^ result = head(qpre:items) ^
qpost:bound = qpre:bound

subtype of eventqueue
8q : Q : �(q) = q

end �xedqueue

Figure 11: A Type Speci�cation for Fixed Queues

shortqueue = type

uses EventQueue (shortqueue for Q)
for all q: shortqueue

invariant len(q�:items) � q�:bound ^ q�:bound = 10
constraint

timestamp(head(q�i :items)) � timestamp(head(q�k :items)) ^ q�i :bound = q�k :bound

subtype of �xedqueue
8q : Q : �(q) = q

end shortqueue

Figure 12: A Type Speci�cation for Short Queues

15

longqueue = type

uses EventQueue (longqueue for Q)
for all q: longqueue

invariant len(q�:items) � q�:bound ^ q�:bound = 1000
constraint

timestamp(head(q�i :items)) � timestamp(head(q�k :items)) ^ q�i :bound = q�k :bound

subtype of �xedqueue
8q : Q : �(q) = q

end longqueue

Figure 13: A Type Speci�cation for Long Queues

is equal to (or greater than) the bound. The eventqueue type also has the overall constraint that the event
at the head of the queue at a state �i has to have a timestamp less than or equal to the event at the head
of the queue at any later state �k. The constraint, however, does not require that its bound be �xed, so
the bound can vary over time. (The speci�cation subtly allows this possible mutation since the insert and
remove methods each has a modi�es clause; though no mention of changing the queue's bound is made
in either of their post-conditions, the presence of the modi�es clause gives permission to implementors to
change that part of the queue's value and simultaneously warns callers that they cannot rely on that part of
the queue's value to remain the same. Even more subtly, the condition in the if : : : then : : :else clause for
insert compares the length of the bu�er of the queue's pre-state with the bound of the queue's post-state to
account for the possibility of the bound changing as a side e�ect of calling insert.)

Let �xedqueue (Figure 11) be a subtype of eventqueue which adds the further constraint that the bu�er
bound cannot change. Again, there are no methods to read the bound directly. Two subtypes of �xedqueue,
shortqueue and longqueue, further specify that the bound is �xed to be 10 and 1000 items, respectively
(Figures 12 and 13). The subtype clause in a type speci�cation includes an abstraction function, �,
that relates subtype values to supertype values. Implicitly the clause requires that the subtype provides
all methods of its supertype; any method not renamed or rede�ned is \inherited" from its supertype as
is. For example, shortqueue's insert does not rede�ne �xedqueue's insert, but �xedqueue's does rede�ne
eventqueue's.

Claim 4 There is no conversion from shortqueue to longqueue, either partial or total, that respects �xedqueue.

Proof: Consider a shortqueue object s in the domain of the conversion. By the de�nition of shortqueue, its

bound must be 10. Suppose a conversion is made of s�j , yielding a longqueue value l j
. By the de�nition of

the longqueue type, the bound of the converted object must be 1000. Now consider s�i prior to the conversion

and the value l k
after the conversion. The constraint of �xedqueue is violated, since s�i :bound 6= l k

:bound,

and �xedqueue's constraint prohibits the bound from changing between states. The Constraint condition of

the de�nition of respects does not hold. Hence, the conversion cannot respect �xedqueue. 2

The histories of the converted object show the failure of the conversion to respect �xedqueue. While it
is possible to de�ne a simple conversion from shortqueue to longqueue that contains exactly the same items,
the conversion of its bound (from 10 to 1000) changes possible future behaviors of the longqueue object in
ways not consistent with the �xedqueue constraints. Suppose, for instance, that we have a program that �lls
up a queue bu�er to determine its size, and uses this information to allocate a �xed-size bu�er of its own to
store items pulled o� the queue. At some later point, after more items have been added to the queue, the
program empties the queue items into its own �xed-size bu�er. If the queue bound has been increased by a
conversion, the program may over
ow its previously-allocated bu�er, causing a crash or other errors.

To illustrate the incongruity above, we must track the behavior of the original object and the converted
object over time, through the point of conversion. It is not enough simply to look at each state and to

16

compare the original object's value and the converted object's value in that same state. In the queue
example, the longqueue type is less constrained than the shortqueue type, and so some possible longqueue
values are outside the range of any converter on shortqueue values. Once a conversion takes place, we need
to reason about the object in terms of its longqueue values; moreover, it would be ill-de�ned in subsequent
states to compare its longqueue value to any shortqueue value. However, we can allow such non-surjective
converters as long as the converted object's value does not violate constraints of the respected type.

For instance, it is possible to convert from shortqueue to longqueue in a way that respects the more
general eventqueue type.

Claim 5 There is a total conversion from shortqueue to longqueue that respects eventqueue.

Proof: By existence. Here is such a converter:

K : Q! Q

K(q) = [q:items; 1000]

To see whether this conversion respects eventqueue, we �rst check the method rules. The pre- and post-

conditions of the methods remove and size, and the pre-condition of the method insert, depend only on the

items portion of the queue value, which is the same for both a shortqueue object s and a longqueue object l

at the time of conversion. The insert method's post-condition depends in part on the post-state of bound, but

since eventqueue allows bound to change on insert, eventqueue's speci�cation permits either s or l's bound to

change, and hence allows the operation to insert an item or not for either object. (While s and l will in fact

behave di�erently based on the more constrained speci�cations of shortqueue and longqueue, the eventqueue

speci�cation itself cannot be used to tell that anything changed in the conversion.)

The only constraint of eventqueue is that the timestamp at the head of the queue not decrease over time.

Let s�i be any value of s before the conversion, s�j be the value of s at the time of conversion, l j
be the

value of l at the time of conversion, and l k
be any value of l after the conversion. Since shortqueue and

longqueue are both subtypes of eventqueue, which includes the history constraint, we know that

1. timestamp(head(s�i :items)) � timestamp(head(s�j :items)) and
2. timestamp(head(l j

:items)) � timestamp(head(l k
:items))

Furthermore, by the de�nition of our conversion,

3. s�j :items = l j
:items

so therefore

4. timestamp(head(s�j :items)) = timestamp(head(l j
:items))

By transitivity, then,

5. timestamp(head(s�i :items)) � timestamp(head(l k
:items))

Hence, the constraint rule is satis�ed. Therefore, the conversion, K, as a whole respects eventqueue. 2

Again, this result matches our expectations. The bu�er-over
owing program mentioned earlier got into
trouble only because the programmer assumed that the event queue's bu�er bound would not change, and
therefore allocated a �xed bu�er for receiving events from the queue. Programmers that do not assume
that the event queue's bu�er bound is �xed should allow for arbitrarily many events to be emptied from the
queue, and thus avoid the error of the previous program.

5 Incorporating Concrete Types

So far we have discussed the respects relation in terms of abstract types since the subtype relation is de�ned
in terms of a relation on abstract types. It makes sense, however, to consider the respects relation in terms of
concrete types too. For example, when we implement an abstract type in a programming language, we choose
a representation type for the abstract type and de�ne the abstract type's methods in terms of methods on
the representation type.

The TOM context introduces another kind of concrete type. When a user retrieves an object from a
remote site, in reality that object is encoded in terms of some transmissible type, a concrete representation
of the abstract object. These transmissible types are in turn represented in terms of primitive types that the

17

underlying communication substrate understands; for TOM, and for the purposes of this paper, it su�ces
that every transmissible object be representable in terms of sequences of bytes; part of the byte sequence
might represent metadata (e.g., the name of the abstract type) and the rest represents the data object itself.

Both of these kinds of concrete types may give rise to a new kind of converter, that from a concrete
type to another concrete type. For example, in programming languages, if we have an abstract point type
with two di�erent representations, one using Cartesian coordinates and one using polar, we may want to
implement a converter that takes any Cartesian point and produces the corresponding polar coordinates.
Similarly, for an abstract matrix type, we may want to represent matrices in terms of both row-order and
column-order and de�ne converters between the two.

In the TOM context, integers may be represented in terms of a 32-bit sign extension byte sequence or
a twos-complement, little-endian byte sequence, or even ASCII strings. These are all plausible concrete
representations of integers and conversions between them should respect the abstract integer type.

To extend our de�nition of respects to accommodate converters from concrete type to concrete type, we
borrow from the programming language community: we use the very same abstraction function used to
prove the correctness of data representations �rst introduced by Hoare in 1974 [4].

Let converter K : Aconc ! Bconc be de�ned on two concrete types Aconc and Bconc. Then if Aconc
and Bconc are correct implementations of (abstract) types A and B, respectively, there exist abstraction
functions:

A : Aconc ! A

B : Bconc ! B

We modify the de�nition of respects by modifying the de�nitions of � and � of Section 3.1 accordingly.
Assuming that dom(�0) � ran(A) and dom(�0) � ran(B), we de�ne

� = �n � : : : � �0 �A
� = �m � : : : � �0 �B

That is, we �rst apply the abstraction function A on the concrete value of type Aconc to form an abstract
value of type A; we do the same to the concrete value of type Bconc using B. K respects T if the same
condition holds as before, but using the revised � and � abstraction functions de�ned above. In the case
that the converter K maps an abstract type to a concrete one or vice versa, then we can omit the application
of A or B as appropriate.

6 Real World Examples

The �rst set of examples arose out of our work in building and using the TOM conversion service. The
second is motivated by the imminent and infamous Y2K problem.

6.1 TOM Examples

In building TOM, we were faced with a choice of how to represent the directory type; one way is as a list
of strings type. The list of strings type can in turn be represented by the sequence of bytes type, i.e., a
transmissible type. Thus, a client who wishes to view the contents of a remote directory can do so even
though the client's �le system (e.g., Window NT) may di�er from the server's (e.g., AFS or NFS).

In using TOM, typically, a client retrieves an object from a remote server. The client would like to
view the object, originally in type A, as an object of type B so far as it respects some type T . In the
client's mind some abstract conversion from A to B is being performed. The problem is that the A object
has to be represented in terms of something transmissible across the wire; so �rst it is encoded into some
transmissible type and then the client decodes the transmitted object into a B object. Here Aconc and Bconc
may very well be the same (transmissible) type, e.g., sequence of bytes, but at both the client and server
sides abstract interpretations are de�ned on Aconc and Bconc to yield respectively objects of A and B. For
example, suppose a client fetches a compressed Word �le from a Web server and wants to view it as an
HTML �le in a Web browser. Both the Word �le and the HTML �le are ultimately represented as sequences

18

of bytes. The conversions required to uncompress and to convert the Word document to HTML respect a
generic document type, via the abstraction that captures both their relations to the generic document type,
and the relation of their byte-sequence representation to their abstract types Word and HTML.

Finally, consider the problem of parsing integers retrieved from a text document and storing them in
a packed byte array. We can model this problem as a conversion from a string-based representation of
integers to a byte-based representation. We have an abstract type int, a concrete type ibytes, and another
concrete type istr. The abstraction function �: istr ! int is atoi, i.e., the standard C library function. The
abstraction function �: ibytes ! int is de�ned as follows for a given ibytes value b:

b[0] + 256 � b[1] + :::256n�1 � b[n� 1]

where n is the number of bytes in b. Then ��1 �� is a conversion from istr to ibytes that respects int. This
example illustrates a common way to �nd a conversion function: In general, if types A and B are \below"
type T by a composition of subtype and representation relations, and � is the abstraction function from A

to T and � is the abstraction function from B to T , and � is invertible, then ��1 �� is a conversion from A

to B that respects T .

6.2 Y2K Examples

The data stored in many complex systems periodically needs to be converted to new formats. Some of these
conversions are mandated by the passage of time, others by changing requirements and environments. The
Y2K date conversion problem alone is estimated to cost billions of dollars to address, and it is only one of
several conversion problems with hard deadlines [6].

The challenge of these conversions is not simply to change data formats appropriately, but also to ensure
that the programs that use the data will continue to operate normally, or to upgrade them so that they
will. Especially when faced with a conversion problem with a hard deadline, such as the Y2K problem, it is
often impractical to convert at the same time all of the data and all of the code that operates on the data.
Moreover, the desire for upward compatibility requires programs to be able to handle both the old and new
data formats.

The conversion of data using two-digit years to data using four-digit years may require di�erent changes
in programs that use the data, depending on how two-digit years are interpreted. There are at least three
distinct interpretations of two-digit years, and thus three distinct respectful type conversions.

Consider the date \4 July 99". In the simplest case (Figure 14), the year here is interpreted as the actual
year modulo 100, with no assumption made about the century. (Two-digit years in historical letters are
interpreted in this way, for example. It is also a reasonable interpretation for databases where the range of
dates is known to be small.) In this interpretation, the four digit year type is an extension subtype [8] of
the two digit year type. Any conversion from two digit years to four digit years that simply adds century
information, e.g., as a new \century" attribute, will respect the two digit year supertype. As long as the
program that operates on the two digit years does not make any assumptions about the centuries of the
dates it reads, it will continue to operate correctly with four digit years, provided that it reads and writes
dates through an interface that abstracts away representation details, e.g., an object-oriented one. (Here is
an example of where A and T are the same type in the respects relation.)

A second common interpretation of two-digit years (Figure 15), particularly in older computer programs,
is that they represent years between 1900 and 1999. Here a two digit year date type and a four digit year
date type are both constrained subtypes [8] of a more general date type. For the date type to be a legal
supertype of both the two digit year and four digit year date types, the supertype must allow the setting of
a date's year to either succeed or fail, at least if they fall outside the 1900-1999 date range. The obvious
conversion from the two digit year type to the four digit year type respects this supertype. In order to
work correctly through such a conversion, programs will have to be prepared to deal with years outside the
1900-1999 range and also with failures when attempting to set the date outside this range.

A third interpretation is used in certain Unix-derived libraries (Figure 16), where the \year" �eld is
interpreted as the actual year minus 1900. Here, the year in \4 July 99" is still interpreted as 1999, as in the
second interpretation, but there is no constraint on the allowable years; a date in the year 2000, for instance,
is represented, somewhat counterintuitively, as \4 July 100". In this third interpretration, the dates with

19

two_digit _year

four_digit_year

Figure 14: One Y2K Interpretation: A converter K1 : two digit year ! four digit year respects
two digit year, where K1 enhances the two digit year value with century information.

(1900−1999) (0000−9999)

two_digit_year four_digit_year

date

Figure 15: A Second Y2K Interpretation: A converter K2 : two digit year ! four digit year respects date,
where K2 adds 1900 to the two digit year value.

date

year_minus_
1900_format normal_year_format

(Unix)

Figure 16: A Third Y2K Interpretation: Here, the dashed arrows denote the representation relation, not
the subtype relation; year minus 1900 format and normal year format are two di�erent concrete types rep-
resenting the same abstract date type. A converter K3 : year minus 1900 format ! normal year format
respects date, where K3 adds 1900 to its Unix-like date.

20

compact year representations, and those with the year fully spelled out, as in \4 July 1999", are simply two
di�erent concrete representations of the same abstract date type. Conversions from one to the other respect
the abstract type, and programs can easily use either representation, again as long as they read and write
dates through an abstract interface that hides the exact representation details.

Unfortunately, many legacy programs may interpret dates inconsistently. Perhaps some modules use
the �rst interpretation of the dates above, while others use the second. In such a case, there may be
no one respectful conversion from two-digit years to four-digit years, because the two-digit years are not
consistently interpreted as the same type, with the same semantics. However, making this discovery can
itself help in adapting such a program for a Y2K conversion. Once we attempt to determine the types of
objects to be converted and discover that there are two or more slightly inconsistent types used, we can �x
some of the modules so that they all interpret types consistently. Alternatively, we can model the overall
conversion as two conversions from two slightly di�erent types to one common type. We can then analyze
both conversions to see what abstract types they respect, and use this information to help ensure that the
programs will continue to behave properly after a conversion.

7 Related Work

There are notions of \respectful" conversions that are stronger or weaker than the one we present in this
paper; they may be more appropriate in certain situations.

In earlier work [11], we gave a simpler model of respectful conversion for immutable types. In that model,
when an object of type A is converted to an object of type B using a conversion that respects T , the objects
A and B cannot be distinguished from type T 's viewpoint. That is, the conversion preserves the information
speci�ed for T . Since the objects are immutable, there are no mutators or history constraints to consider.
We showed in that paper how that simpler model is useful for applications that retrieve and analyze data.
When applied to mutable objects, however, the failure to consider history constraints may produce behavior
in the converted object that is inconsistent with the past behavior of the original object, as we saw in
our queue example. When the de�nition of respects given in this paper is applied to immutable objects,
the predicates under the Methods condition to determine respectful conversions simplify to the predicates
given in our previous paper; the Constraint condition is entirely unnecessary. Also, the the PNG and GIF
example presented in the earlier paper considered a simpler version where the image types are immutable;
the eventqueue and Y2K examples in this paper are entirely new.

Applications that pass converted data back and forth between heterogeneous programs may require
stronger guarantees on conversions. For example, the Mockingbird system [1], de�nes a notion of intercon-
vertibility where data conversions are fully invertible. With this policy, data converted to another format can
always be converted back without loss of information. This concept corresponds in our model to a conversion
between two representations of some type T , where the conversion respects type T . While interconvertibility
makes it easy to exchange transformed data without risk of losing information, it is often too strong a con-
straint on conversions. Our model of respectful type conversions is more
exible. In respectful conversions,
some information can be lost or changed in the conversion, provided that the information and behavior of
the respected type is preserved.

8 Summary and Conclusions

In this paper, we extended our earlier de�nition of a novel notion of respectful type converters to capture what
behavior a conversion function preserves when transforming objects of one type to another; our extension
deals with mutable types. We greatly leverage o� the Liskov and Wing notion of behavioral subtyping
to characterize this information succinctly. Their framework gives us the key technical tool we need; in
particular, the abstraction functions, �i, de�ne formally how two di�erent objects can be viewed as the
same. We also can easily incorporate concrete types by leveraging o� Hoare's abstraction functions for
proving the correctness of the implementations of abstract types.

We illustrated the use of our de�nitions on a type family for images and on one for event queues. We
further motivated the appeal of respectful type converters in the context of the TOM conversion service and

21

the Y2K problem.
As discussed for the Y2K examples, analyzing the types that a conversion respects allows developers to

determine where programs will continue to behave normally after data is converted, and where they may
behave unexpectedly or erroneously. Intuitively, if a conversion respects a type T , then after an object of type
A is converted to an object of type B in a conversion that respects T , programs that operate on the objects
using the interface and expectations of T will encounter no surprises. Programs that use more detailed
interfaces or that rely on behavioral assumptions speci�ed by A or B but not by T , however, may encounter
problems. Reviewing the assumptions programs make about data and seeing what types conversions respect
allow us to detect possible con
icts introduced by converted data, and to adjust programs appropriately.

This spin on the Y2K problem suggests that when faced with a massive conversion task, we should
consider all three points of the triangle, A, B, and T, where A in the obsolete format of data, B is the new
format, and T is the set of assumptions which the program continues to rely on despite a conversion of data
from A to B.

References

[1] Joshua Auerbach and Mark C. Chu-Carroll. The Mockingbird System: A Compiler-based Approach
to Maximally Interoperable Distributed Programming. Technical Report RC 20718, IBM, Yorktown
Heights, NY, 1997.

[2] Wayne Brookes and Jadwiga Indulska. A Type Management System for Open Distributed Processing.
Technical Report 285, University of Queensland, St. Lucia, Qld., Australia, 1994.

[3] S.J. Garland and J.V. Guttag. An Overview of LP, the Larch Prover. In Proceedings of the Third

International Conference on Rewriting Techniques and Applications, pages 137{151, Chapel Hill, NC,
April 1989. Lecture Notes in Computer Science 355.

[4] C.A.R. Hoare. Proof of Correctness of Data Representations. Acta Informatica, 1(1):271{281, 1972.

[5] J.J. Horning, J.V. with S.J. Garland Guttag, K.D. Jones, A. Modet, and J.M. Wing. Larch : Languages
and Tools for Formal Speci�cation. Springer-Verlag, New York, 1993.

[6] Capers Jones. Bad Days for Software. IEEE Spectrum, 35(9):47{52, September 1998.

[7] Barbara Liskov. Data Abstraction and Hierarchy. In OOPSLA'87: Addendum to the Proceedings, 1987.

[8] Barbara Liskov and Jeannette M.Wing. A Behavioral Notion of Subtyping. ACM TOPLAS, 16(6):1811{
1841, November 1994.

[9] John Ockerbloom. Mediating Among Diverse Data Formats. Technical Report CMU-CS-98-102,
Carnegie Mellon Computer Science Department, Pittsburgh, PA, January 1998. Ph.D. Thesis.

[10] Steve Putz. Design and Implementation of the System 33 Document Service. Technical Report P93-
00112, Xerox PARC, Palo Alto, CA, 1993.

[11] Jeannette M. Wing and John Ockerbloom. Respectful Type Converters. IEEE Transactions on Software

Engineering, 1999. to appear.

[12] Amy M. Zaremski. Signature and Speci�cation Matching. Technical Report CS-CMU-96-103, CMU
Computer Science Department, January 1996. Ph.D. Thesis.

22

Appendix A: Larch Traits and Type Speci�cations

This appendix contains the following Larch speci�cations: Color trait for color literals, ColorSet trait for
sets of colors, Frame trait, FrameSeq trait, GIFImage trait, Gammas trait, PNGImage trait, PixelMap trait,
Event trait, event type, and EventQueue trait. Appendix A of the Larch Book [5] contains traits for Boolean,
Integer, FloatingPoint, Set, Deque, Array2, TotalOrder, and Queue, all of which we use below.

ColorLiterals: trait
% A trait for N colors where BLACK = 0 and WHITE = 1 and N >> 256.

Color enumeration of BLACK, WHITE, 2, . . . , N-1
end ColorLiterals

ColorSet(Color, CS): trait
includes ColorLiterals, Set (Color, CS)

end ColorSet

Frame(F): trait
includes Array2 (Color, Integer, Integer, F), ColorSet (Color, CS)
introduces

xmin; xmax; ymin; ymax : F ! Integer
colorrange : F ! CS
inframe : F, Integer, Integer ! Boolean

asserts for all i; j : Integer, f : F
xmin(f) � xmax(f)
ymin(f) � ymax(f)
inframe(f; i; j) = (xmin(f) � i � xmax(f)) ^ (ymin(f) � j � ymax(f))
inframe(f; i; j)) f [i; j] 2 colorrange(f)

end Frame

FrameSeq(F, FS): trait
includes Deque (Frame, FS)
introduces

overlay: FS, Integer, Integer ! Color
changepixel: FS, Integer, Integer, Color ! FS
colorrange: FS ! CS
[]: FS, Integer ! F

asserts for all i, j, k, l: Integer, c: Color, f: F, fs: FS
overlay(fs, i, j) = if len(fs) = 0 then BLACK else

if inframe(last(fs); i; j)
then last(fs)[i; j]
else overlay(init(fs); i; j)

colorrange(empty) = fg
colorrange(fs ` f) = colorrange(fs) [colorrange(f)
(fs ` f)[i] = if i = len(fs ` f) then f else fs[i]
overlay(changepixel(fs; i; j; c); k; l) = if i = k ^ j = l then c else overlay(fs; k; l)

exempting

8i : Integer : empty[i]
8i � 0 : fs [i]
8i � len(fs) : fs[i]

end FrameSeq

GIFImage: trait
includes FrameSeq (G for FS), ColorSet(Color, CS)
asserts for all g: G

23

BLACK 2 colorrange(g)
end GIFImage

Gammas: trait
includes FloatingPoint (Gamma for F)

introduces

STDG:! Gamma
gc : Color, Gamma, Gamma! Color

asserts for all c: Color, g, h, i: Gamma
gc(c; g; g) = c \re
exivity"
gc(gc(c; g; h); h; i) = gc(c; g; i) \transitivity"

end Gammas

PNGImage: trait
includes Frame (P for F), Gammas
introduces

gamma: P ! Gamma
same bounds and gamma: P, P ! Boolean

asserts for all p, q: P
same bounds and gamma(p; q) = (gamma(p) = gamma(q)^

xmin(p) = xmin(q) ^ xmax(p) = xmax(q) ^ ymin(p) = ymin(q) ^ ymax(p) = ymax(q))
end PNGImage

PixelMap: trait
includes Array2 (Color, Integer, Integer, PM), ColorSet (Color, CS)
introduces

colorrange: PM ! CS
asserts for all i, j: Integer, pm: PM

BLACK 2 colorrange(pm)
pm[i; j] 2 colorrange(pm)

end PixelMap

Event: trait
includes TotalOrder (Time for T)
introduces

timestamp: Ev ! Time

event: type
uses Event (event for Ev)

end event

EventQueue: trait
includes Queue (Ev for E), Event

Q tuple of items: C, bound: Integer

24

Appendix B: Proof of Claim in Section 4.1

At the end of Section 4.1 we claimed that from pixel map's perspective the future subhistories of an uncon-
verted GIF image will be the same as those of the converted PNG image. We give a more formal argument
here.

First, we need to de�ne a few terms. Let Vals : Obj � Val �Method� ! 2Val , such that Vals(o; v; �m)
is the set of possible values that object o can have after applying the sequence of method calls in �m on o
starting with value v. This set may contain more than one element because method speci�cations are in
general nondeterministic.

Defn 1 Observational Equivalence for Values (v1 =T v2) Two values v1 and v2 are observationally
equivalent with respect to a type T if:

For each method m of T , and for all objects y : T and z : T , for all subcomputations ypre m ypost and

zpre m zpost such that ypre = v1 and zpre = v2:

1. m:pre[ypre=xpre], m:pre[zpre=xpre] and

2. m:post[ypre=xpre; ypost=xpost], m:post[zpre=xpre; zpost=xpost]

These conditions are analogous to the two Methods rules of the de�nition of the respects relation, but
are simpler since they relate values of the same type T . Note that if v1 = v2 then trivially v1 =T v2.

The above concept becomes more interesting when we work with values of di�erent types, e.g., A and B.
We extend observational equivalence in two ways at once: to work on sets of values of di�erent types:

Defn 2 Observational Equivalence for Value Sets (S1 �T S2) . Let S1 be a set of values of objects of

type A, S2 a set of values of objects of type B, and � : A ! T and � : B ! T be the respective abstraction

functions for showing that A and B are subtypes of T . Then S1 �T S2 i�

8v1 2 S1:9v2 2 S2 : �(v1) =T �(v2) ^ 8v2 2 S2:9v1 2 S1 : �(v2) =T �(v1)

Informally, if every element in S1 has a corresponding element in S2 that looks the same from T 's
standpoint, and vice versa, then S1 and S2 are observationally equivalent with respect to T . Notice that we
do not require that v2 = K(v1) in the above de�nition.

Our claim is that, when a GIF is converted to a PNG image, that PNG image has the same possible
future subhistories from pixel map's point of view that the original GIF has. Formally,

Claim 6 Given a GIF object g with value v, and a PNG object p with value K(v), where K is the GIF to

PNG converter that respects pixel map as given in Section 4.1, then for all sequences �m of pixel map method

calls on objects g and p, Vals(g; v; �m) �T Vals(p;K(v); �m).
Proof: By induction on the length of �m.

Base case: len(�m) = 0. If no methods have been called on g and p, then their values have not changed, so

Vals(g; v; �m) = fvg and Vals(p;K(v); �m) = fK(v)g. We have already shown in Claim 3 that �(v) = �(K(v))
and thus trivially �(v) =T �(K(v)). Thus, fvg �T fK(v)g, and thus Vals(g; v; �m) �T Vals(p;K(v); �m).

Inductive case: Assume the claim holds for �m where len(�m) > 0. Show it holds for �m ` m, for some

method call m. That is,

IH: Vals(g; v; �m) �T Vals(p;K(v); �m).

We need to show

Vals(g; v; �m ` m) �T Vals(p;K(v); �m ` m).

Case 1. m is a call to a non-mutator. Since m does change any object values, Vals(g; v; �m ` m) =
Vals(g; v; �m). Similarly, Vals(p;K(v); �m ` m) = Vals(p;K(v); �m). Thus, by IH, Vals(g; v; �m ` m) �T
Vals(p;K(v); �m ` m).

Case 2. m is a call to a mutator. The only mutator method in pixel map is set color. It can either fail or

succeed. Because it is always allowed to fail, and thus have no e�ect, we know Vals(g; v; �m) � Vals(g; v; �m `
m) and Vals(p;K(v);�(m)) � Vals(p;K(v); �m ` m).

25

If it succeeds, it can also have an e�ect. In this case, for any v1 2 Vals(g; v; �m) choose v2 2 Vals(p;K(v); �m)
such that �(v1) =T �(v2). Our induction hypothesis tells us that v2 exists. (The parallel argument holds

when choosing some v1 for any v2.) Let v01 and v
0

2 be the respective new values of g and p after the successful

call to set color. We need to show that �(v01) =T �(v
0

2). The only observer in pixel map is get color. It has
a trivial pre-condition so the �rst part of De�nition 1 trivially holds. From get color's post-condition, we
need to show that result = �(v01)[i; j], result = �(v02)[i; j])

The result of a successful call to set color(x, y, c) on g, no matter what the previous color was, will be

the same as for p. That is, c = �(v0
1
)[x; y] ^ c = �(v0

2
)[x; y]. For other coordinates, i 6= x or j 6= y, the

result of calling get color(i, j) is the same as it was before this last call m to set color. That is, �(v01)[i; j] =
�(v1)[i; j]^ �(v02)[i; j] = �(v02)[i; j].

Thus,

1. 8i; j : �(v01)[i; j] = �(v02)[i; j]
Thus,

2. �(v01) =T �(v
0

2)
Thus,

3. Vals(g; v; �m) [fv01g �T Vals(p;K(v); �m) [fv02g
Thus,

4. Vals(g; v; �m ` m) �T Vals(p;K(v); �m ` m)

2

26

