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Abstract

Learning spatial models from sensor data often raises a challenging data association
problem of relating parameters in the model to individual measurements. This paper
proposes an algorithm based on EM, which simultaneously solves the model learning
and the data association problem. The algorithm is developed in the context of the
the structure from motion problem, which is the problem of learning a 3D scene model
from a collection of image data. To accommodate the spatial constraints in this domain,
we introduce the notion of virtual measurements as sufficient statistics to be used in the
M-step, and develop an efficient Markov chain Monte Carlo sampling method called
chain flipping, to calculate these statistics in the E-step. Experimental results show
that we can solve hard data association problems when learning models of 3D scenes,
and that we can do so efficiently. We conjecture that this approach can be applied to a
broad range of model learning problems from sensor data, such as the robot mapping
problem.



1 Introduction

This paper addresses the problem of data association when learning models from data.
The data association problem, also known as the correspondence problem, is the prob-
lem of relating sensor measurements to parameters in the model that is being learned.
This problem arises in a range of disciplines. In clustering, it is the problem of deter-
mining which data point belongs to which cluster (McLachlan & Basford, 1988). In
mobile robotics, learning a map of the environment creates the problem of determining
the correspondence between individual measurements (e.g., the robot sees a door), and
the corresponding features in the world (e.g., door number 17) (Leonard & Durrant-
Whyte, 1992; Leonard et al., 1992; Shatkay, 1998; Thrun et al., 1998a). A similar
problem can be found in computer vision, where it is known as structure from mo-
tion (SFM). SFM secks to learn a 3D model from a collection of images, which raises
the problem of determining the correspondence between features in the physical world
and measurements in image space. In all of these problems, learning a model requires
a robust solution to the data association problem which, in the general case, is hard to
obtain. Because the problem is hard, many existing algorithms make highly restrictive
assumptions, such as the availability of unique landmarks in robotics (Borenstein et al.,
1996), or the existence of a reliable feature tracking mechanisms in computer vision
(Tomasi & Kanade, 1992; Hartley, 1994),

From a statistical point of view, the data association can be phrased as an incom-
plete data problem (Tanner, 1996), for which a range of methods exists. One popular
approach is expectation maximization (EM) (Dempster et al., 1977), which has been
applied with great success to clustering problems and a range of other estimation prob-
lems with incomplete data (McLachlan & Krishnan, 1997). The EM algorithm iterates
two estimation steps, called expectation (E-step) and maximization (M-step). The E-
step estimates a distribution over the incomplete data using a fixed model. The M-step
then calculates the maximum likelihood model for the distributions computed in the
E-step. It has been shown that EM performs hill-climbing in likelihood space, and
iterating both steps leads to a model that locally maximizes the likelihood (Dempster
et al., 1977; Neal & Hinton, 1998).

Applying EM to learning spatial models is not straightforward, as each domain
comes with a set of constraints that are often difficult to incorporate. An example is the
work on learning a map of the environment for mobile robots, by Shatkay and Kael-
bling (Shatkay & Kaelbling, 1997; Shatkay, 1998), and also by Thrun, Burgard, and
Fox (Burgard et al., 1999; Thrun et al., 1998b, 1998a). Both teams have proposed ex-
tensions of EM that take into account the geometric constraints of robot environments,
and the resulting mapping algorithms have shown to scale up to large environments.

This paper proposes an algorithm that applies EM to a different domain: the struc-
ture from motion problem in computer vision. As is commonly the case in SFM, the
model] that is being learned is the location of all features in 3D, along with the cameras
positions in 6D. In this paper, we make the commonly made assumption that all 3D
features are seen in all images (Tomasi & Kanade, 1992; Hartley, 1994; McLauchlan
& Murray, 1995). However, the method we propose does not depend crucially on this
assumption, and we will discuss at the end of this paper how to extend it to more gen-
eral imaging situations with occlusions and spurious measurements. More importantly,



we do not assume any prior knowledge on the camera positions or on the correspon-
dence between image measurements and 3D features the feature identities, giving rise
to a hard data association problem.

The vast majority of literature on SFM considers special situations where the data
association problem can be solved trivially. Some approaches simply assume that data
correspondence is known a priori (Ullman, 1979; Longuet-Higgins, 1981; Tsai &
Huang, 1984; Hartley, 1994; McLauchlan & Murray, 1995; Morris & Kanade, 1998).
Other approaches only consider situations where images are recorded in a sequence, so
that features can be tracked from frame to frame (Broida & Chellappa, 1991; Tomasi
& Kanade, 1992; Szeliski & Kang, 1993; Azarbayejani & Pentland, 1995; Poelman &
Kanade, 1997). Several authors considered the special case of correct but incomplete
correspondence, by interpolating occluded features (Tomasi & Kanade, 1992; Jacobs,
1997; Basri et al., 1998), or expanding a minimal correspondence into a complete
correspondence (Seitz & Dyer, 1995). However, these approaches require that a suffi-
cient and non-degenerate set of initial correspondences be provided a priori which is
assumed to be correct. A few authors have proposed methods for using geometric con-
straints to facilitate the correspondence problem in uncalibrated images. In particular,
Irani (Irani, 1999) described how geometric rank constraints can be used to facilitate
optical flow computation over closely-spaced views. Finally, methods based on the ro-
bust recovery of epipolar geometry, e.g. using RANSAC (Beardsley et al., 1996; Torr
et al., 1998) can cope with larger inter-frame displacements and can be very effective in
practice. However, RANSAC depends crucially on the ability to identify a reasonably
reliable set of initial correspondences, and this becomes more and more difficult with
increasing inter-frame motion.

In the most general case, however, images are taken from widely separated view-
points. This problem has largely been ignored in the SFM literature, due to the diffi-
culty of interleaving model learning and data association. It has been referred to as the
most difficult part of structure recovery (Torr et al., 1998), and it is also the problem
addressed in this paper. The reader should notice that it is particularly challenging in
3D. Traditional approaches for establishing correspondence between sets of 2D fea-
tures (Scott & Longuet-Higgins, 1991; Shapiro & Brady, 1992; Gold et al., 1998) are
of limited use in this domain, as the projected 3D structure can look very different in
each image.

From a statistical estimation point of view, the SFM problem comes with a unique
set of properties, which make the application of EM non-trivial:

1. Geometric consistency. The laws of optical projection constrain the space of
valid estimates (models, data associations) in a non-trivial way.

2. Mutual exclusiveness. Each feature in the real world occurs at most once in
each individual camera image—this is an important assumption that severely
constrains the data association.

3. Large parameter spaces. The number of features in computer vision domains is
usually large, giving raise to a huge number of local minima in the space of data

associations.



This paper develops an algorithm based on EM that addresses these challenges. The
correspondence (data association) is encoded by an assignment vector that assigns in-
dividual measurements to specific features in the model. The basic steps of EM are
modified to suit the specifics of SFM:

The E-step calculates a posterior over the space of all possible assignments. Un-
fortunately, the constraints listed above make it impossible to calculate the posterior
in closed form. The standard approach for posterior estimation in such situations is
Monte Carlo Markov Chain (MCMC) (Doucet et al., 2001; Gilks et al., 1996; Neal,
1993). In particular, our approach uses the popular Metropolis-Hastings algorithm
(Hastings, 1970; Metropolis et al., 1953; Smith & Gelfand, 1992), for approximating
the desired posterior summaries. However, Metropolis-Hastings can be extremely in-
efficient in large spaces (Gilks et al., 1996). To remedy this problem, we propose a
new proposal distribution based on chain flipping, which is specifically suited for data
association problems. Chain flipping is a method that can quickly jump across globally
different assignments. Experimental results show that this approach is orders of mag-
nitude more efficient than commonly used approaches that consider only local changes
in the MCMC sampling process (e.g., Gibbs sampling (Geman & Geman, 1984; Smith
& Gelfand, 1992)).

The M-step calculates the location of the features in the scene, along with the
camera positions. As pointed out, the SFM literature has developed a number of excel-
lent algorithms for solving this problem under the assumption that the data association
problem is solved. However, the E-step generates only probabilistic data associations.
To bridge this gap, we introduce the notion of virfual measurements. Virtual measure-
ments are generated in the E-step, and have two pleasing properties: first, they make
it possible to apply off-the-shelf SFM algorithms for learning the model and the cam-
era positions, and second, they are sufficient statistics of the posterior with respect to
the problem of learning the model; hence the M-step is mathematically sound. Inde-
pendently from us, the concept of virtual measurements had already been used in the
tracking literature, most notably in (Avitzour, 1992; Streit & Luginbuhl, 1994).

From a machine learning point of view, our approach extends EM to an important
domain with a set of characteristics for which we previously lacked a sound statistical
estimator. From a SFM point of view, our approach adds a method for data association
that is statistically sound. In fact, our approach is orthogonal to the vast majority
of work in the SFM field in that is can be combined with virtually any optimization
algorithm that assumes known data association. Thus, our approach adds the benefit
of solving the data association problem for a large body of literature that previously
operated under more narrow assumptions.

The remainder of this paper is structured as follows: in the next section, Section 2,
we introduce the structure from motion problem, the assumptions we make, and show
how EM can be used to solve the associated data association problem. In Section 4 we
introduce the notion of virtual measurements, whereas Section 5 discusses how they
can be computed using MCMC methods. Sections 6 and 7 provide an overview of
the main algorithm, and present results for several non-trivial computer vision datasets
with challenging data association problems. In Section 8 we then present the “chain
flipping” proposal distribution, which makes the E-step computationally efficient. This
is illustrated with additional results on the convergence speed of the different sampling



Figure 1: An example with 4 features seen in 2 images. The 7 measurements 1, are
assigned to the individual features x; by means of the assignment variables 7;;.

methods in Section 9.

2 EM for Structure from Motion without Correspon-
dence

In this section we introduce the structure from motion problem and the assumptions we
make, and discuss existing SFM methods to solve the associated maximum-likelihood
problem for known correspondence. For the case of unknown correspondence, we
show how the expectation-maximization (EM) algorithm can be used to learn the model
parameters, even if we do not know which measurements correspond to which scene
elements.

2.1 Problem Statement, Notation, and Assumptions

The structure from motion (SFM) problem is this: given a set of images of a scene,
taken from different viewpoints, learn a model of the 3D scene and recover the camera
poses. Several flavors of this problem exist, depending on (a) whether the algorithm
works with the pixel values of the images themselves, or whether a set of image mea-
surements is first extracted, (b) whether the images were taken in a continuous sequence
or from arbitrary separate locations, or (c) whether the camera’s intrinsic parameters
are varying or not.
In this paper we make the following assumptions:

1. As most other approaches to SFM (Tomasi & Kanade, 1992; Szeliski & Kang,
1993; Hartley, 1994; McLauchlan & Murray, 1995; Poelman & Kanade, 1997,
Morris & Kanade, 1998), we adopt a feature-based approach, i.e., we assume
that the input to the algorithm is a set of discrete image measurements U =
{u;kli € 1..m, k € 1..K;}, where 7 is the image index, and K is the number of



measurements in image 4. It is assumed that these measurements u;;, correspond
to the projection of a set of real world, 3D features X = {x,;|j € 1..n}. In any
real imaging situation there is some uncertainty in the measurement, and so we
model the measurement process as one of projection followed by additive noise.

2. In contrast to the feature-based methods shortcited above, it is not required that
the correspondence between the measurements in the different images is known.
This is exactly the data association problem we solve using EM. To model the
correspondence between measurements u;,, and 3D feature x; we introduce an
assignment vector J: for each measurement u; the vector J contains an indi-
cator variable j;, indicating that u;; is a measurement assigned to the j;x-th
feature x;,, . Note that this additional data is unknown, i.e. it is hidden data.

3. We also allow images to be taken from a set of arbitrary camera poses M =
{m;]¢ € 1..m}. This makes the data association problem harder: most ex-
isting approaches rely on the temporal continuity of an image stream to track
features over time (Deriche & Faugeras, 1990; Tomasi & Kanade, 1992; Zhang
& Faugeras, 1992; Cox, 1993; Cox & Hingorani, 1994), or otherwise constrain
the data association problem (Beardsley et al., 1996).

4. In this paper, we adopt the commonly used assumption that all features x; are
seen in all images (Tomasi & Kanade, 1992; Hartley, 1994), i.e. there are no
spurious measurements and there is no occlusion. This is a strong assumption:
we discuss at the end of this paper how to extend our method to more general
imaging situations. Note that this implies that there are exactly n measurements
in each image, i.e. K; = n for all 4.

The various variables introduced above are illustrated in Figure 1.

2.2 SFM with Known Correspondence

In the case that the assignment vector J is known, i.e., the data association is solved,
most existing approaches to SFM can be viewed as maximum likelihood (ML) methods.
ML methods attempt to find those model parameters © that are most likely to have
generated the data. In our case we have

1. The model parameters © consist of the 3D feature locations X and the camera
poses M, i.e., © = (X, M), the structure and the motion.

2. The data consists of the 2D image measurements U, and the assignment vector
J that assigns measurements u;, to 3D features x;,, .

The maximum likelihood estimate ©* given the data U and J is given by
©* = argmax log L(©;U,J) 1)
e

where the likelihood L(©; U, J) is proportional to P(U, J|©), the conditional density
of the data given the model. To evaluate the likelihood, we need to assume a generative



model. In particular, we assume that each measurement u; is generated by applying
the measurement function h to the model, after which it is corrupted by additive noise

n:
Wik = h(mi7xjik) +n

The above expression also makes explicit that a given measurement u;; depends only
on the camera parameters m; for the image in which it was observed, and on the 3D
feature x;,, to which it is assigned.

Without loss of generality, let us consider the case in which the features x; are 3D
points and the measurements u; are points in the 2D image. In this case the measure-
ment function can be written as a 3D rigid displacement followed by a projection:

h(m;, x;) = IL[Ri(x; — ;)] 2)

where R; and t, are the rotation matrix and translation of the ¢-th camera, respectively,
and II; : R® — R? is a projection operator which projects a 3D point to the 2D image
plane. Various camera models can be defined by specifying the action of this projection
operator on a point X = (z,y, z)T (Morris et al., 1999). For example, the projection
operators for orthography and calibrated perspective are defined as:

= (5 ), - (7))

Finally, we need to assume (or learn) a distribution for the noise n. In the case
that the noise n on the measurements is i.i.d. zero-mean Gaussian noise with standard
deviation o, the negative log-likelihood is simply a sum of squared re-projection errors:

1 m T
log L(©;U,J) = =35 >~ 3 lJuse — h(ms, x5, 3)
=1 k=1

The more realistic model for automatic feature detectors, where each measurement can
have its own individual covariance matrix R;z, can be accommodated with obvious
modifications.

3 Existing Methods for Structure from Motion

The structure from motion problem has been studied extensively in the computer vision
literature over the past decade. A good survey of techniques can be found in Hartley
and Zisserman’s recent book on multiple view geometry (Hartley & Zisserman, 2000).

The earliest work focused on reconstruction from two images only (Ullman, 1979;
Longuet-Higgins, 1981; Tsai & Huang, 1984). Later new methods were developed to
handle multiple images, and they can all viewed as minimizing an objective function
such as (3), under a variety of different assumptions:

In the case of orthographic projection, i.e., the projection is orthogonal to the im-
age plane and has its focus at infinity, the estimate ©* for the model parameters that



minimize (3) can be found efficiently using using a factorization approach (Tomasi &
Kanade, 1992). Using this technique, singular value decomposition (SVD) is first ap-
plied to the data U in order to obtain affine structure X* and motion M?, so called
because they are only defined up to a 3D affine transformation. To do this, the assign-
ment information J is needed to re-arrange the data U in the correct order needed for
SVD. To get true Euclidean structure and motion, an additional step is needed that im-
poses metric constraints on M. The factorization method has the advantages that it is
fast and does not need a good initial estimate of structure and motion to converge. It has
been applied to more complex camera models, i.e., weak- and para-perspective mod-
els (Poelman & Kanade, 1997), and even to fully perspective cameras (Triggs, 1996).
These are well developed techniques, and the reader is referred to (Tomasi & Kanade,
1992; Poelman & Kanade, 1997; Morris & Kanade, 1998) for details and additional
references.

In the case of full perspective cameras the measurement function h(m;, x;) is non-
linear, as the projection involves a division by the depth of a feature point relative to
the camera. In this case one needs to resort to non-linear optimization to minimize
the re-projection error (3). This procedure is known in photogrammetry and computer
vision as bundle adjustment (Spetsakis & Aloimonos, 1991; Szeliski & Kang, 1993;
Weng et al., 1993; Hartley, 1994; Cooper & Robson, 1996; TRiggs et al., 1999). A
method that works with line measurements is (Taylor & Kriegman, 1995). The ad-
vantage with respect to factorization is that it gives the exact ML estimate, when it
converges. The disadvantage, however, is that it can get stuck in local minima, and
thus a good initial estimate for structure and motion needs to be available. To alleviate
this, recursive estimation techniques can be used to process the images as they arrive
(Broida & Chellappa, 1991; Azarbayejani & Pentland, 1995).

3.1 SFM without Correspondences

In the case that the correspondences are unknown we cannot directly apply the methods
discussed in Section 3. Although we can still frame this case as a problem of maximum
likelihood estimation, solving it directly is intractable due to the combinatorial nature
of the data association problem. To see this, note that the maximum likelihood estimate
©* = (X*, M*) of structure and motion given only the measurements U is given by:

©* = argmax log L(©; U) @)
)

Although this might seem counterintuitive at first, the above states that we can find the
ML structure and motion without explicitly reasoning about which assignment might
be correct. We "only’ need to maximize the likelihood Z(©; U), which does directly
not depend on J. To calculate L{©; U), note that by total probability we can write it as
a sum of likelihood terms of the form (1), with one term for every possible assignment
vector J:

L(&;U) = > L(&;U,J) ®)
J

Now, for any realistic number of features n and number of images m, the number of
possible assignments explodes combinatorially. Given our assumptions, there are n!



possible. assignment vectors J; in each image, yielding a total of n!™ assignments J.
Under mild assumptions we can factor the likelihood L(©; U, J) over the different
images, but even then the number of assignments in each image remains n!. In sum-
mary, L(©; U) is in general hard to obtain explicitly, as it involves summing over a
combinatorial number of possible assignments.

3.2 The Expectation Maximization Algorithm

A key insight is that we can use the well-known EM algorithm (Hartley, 1958; Demp-
ster et al., 1977; McLachlan & Krishnan, 1997) to attack the data association problem
that arises in the context of structure from motion. While a direct approach to comput-
ing the total likelihood L(©; U) in (5) is generally intractable, EM provides a practical
method for finding its maxima. The EM algorithm starts from an initial guess @° for
structure and motion, and then iterates over the following steps:

1. E-step: Calculate the expected log likelihood function Q*(©):

QY(©) = > f(I)log L(©; U, J) (6)
J

where the expectation is taken with respect to the posterior distribution f*(J) 2
P(J|U, ©) over all possible assignments J given the data U and a current guess
©?! for structure and motion.

2. M-step: Find the ML estimate ©**! for structure and motion, by maximizing

Q')
O™ = argmax Q*(©)
e

It is important to note that Q*(©) is calculated in the E-step by evaluating f*(J) using
the current guess ©* for structure and motion (hence the superscript t), whereas in the
M-step we are optimizing Q*(©) with respect to the free variable © to obtain the new
estimate @*+1. It can be proven that the EM algorithm converges to a local maximum
of L(©; U) (Dempster et al., 1977; McLachlan & Krishnan, 1997).

4 The M-step and Virtual Measurements

In this section we show that the M-step for structure from motion can be implemented
in a simple and intuitive way. Below we show that the expected log-likelihood can
be rewritten such that the M-step amounts to solving a structure from motion prob-
lem of the same size as before, but using as input a newly synthesized set of virtual
measurements, created in the E-step.

The concept of using synthetic measurements is not new. It is also used in the
tracking literature, where EM is used to perform track smoothing (Avitzour, 1992;
Streit & Luginbuhl, 1994). To start with the derivation, we first rewrite the expected



log-likelihood Q*(©) in terms of sum of squared errors, which we can do under the as-
sumption of i.i.d. Gaussian noise. By substituting the expression for the log likelihood
log L(©; U, J) from (3) in equation (6), we obtain:

Q (@ Zf Z Z ”uzk — h(m;, ij‘k)”2 N

The key to the efficiency of EM lies in the fact that the expression above contains many
repeated terms., and can be rewritten as

QO) =~z D3 D el — Bl )| ®)

i=1 j=1 k=1

where fl, is the marginal posterior probability P(jy, = j|U,©*). Note that this
does not depend on the assumption of Gaussian noise, but rather on the conditional
independence of image measurements. Note also that a similar trick cannot be applied
to the total likelihood (5), as the latter is a sum of likelihoods, not log-likelihoods.
The marginal probabilities f” . can be calculated by summing f*(J) over all possible
assignments J where j;; = J:

'L_jk: - P(]'Lk - le et Za(jlk:;])ft(‘]) (9)
J

with 6(., .) is the Kronecker delta function.

The main point to be made in this section is this: it can be shown by simple alge-
braic manipulation that (8) can be written as the sum of a constant that does not depend
on ©, and a new re-projection error of n features in m images

1 m n
Q'O) = C =55 3 5" vk — h(m, ;)| (10)

i=1 j=1

where the virtual measurements v, are defined as
ij
k23
t A t
vE 2D Fhewin (11)
k=1

Each virtual measurement vfj is simply a weighted average of the original measure-
ments w;x in the ¢-th image, and the weights are the marginal probabilities fz’; ke

The important point is that the M-step objective function (10) above, arrived at
by assuming unknown correspondence, is of exactly the same form as the objective
function (3) for the SFM problem with krown correspondence. As a consequence,
any of the existing SFM methods, of which many are discussed in Section 3, can be
used to implement the M-Step This provides an intuitive interpretation for the overall
algorithm:

1. E-step: Calculate the weights f; from the distribution over as51gnments Then,
in each of the m images calculate n virtual measurements v



2. M-step: Solve a conventional SFM problem using the virtual measurements as
input.

In other words, the E-step synthesizes new measurement data, and the M-step is imple-
mented using conventional SFM methods. What is left is to show how the E-step can
be implemented.

S Markov Chain Monte Carlo and the E-step

The previous section showed that, when given the virtual measurements, the M-step
can be implemented using any known SFM approach. As a consequence, we need only
concern ourselves with the implementation of the E-step. In particular, we need to
calculate the marginal probabilities £%;, = P(jix = j|U, ©%) needed to calculate the
virtual measurements vfj.

Unfortunately, due to the mutual exclusion constraint an analytic expression for the
sufficient statistics f% is hard to obtain. Assuming conditional independence of the

assignments J; in each image, we can factor f*(J) as:

f1@) = PUI[U, 0% = [[ P(3:|U;, ©%)

=1

where U; are the measurements in image ¢. Applying Bayes law, we have
P(J;|U;, 0" « P(J;|©° LS h(m!, x)|? 12
(J:| Ui, ©%) o< P(J;]©%) exp —ﬁZIIsz— (my, x| (12)
k=1

The second part of this expression is simple enough. However, the prior probability
P(J;|©") of an assignment J; encodes the knowledge we have about the structure
from motion domain: if a measurement 1, has been assigned j;x = 7, then no other
measurement in the same image should be assigned the same feature point x;. In other
words, if we assume that valid assignments are all equally likely, the prior probability
of an assignment is

1 - - . .

1@ty _ J oo ifJsis avalid assignment
P(J:]©7) = { 0 otherwise (13)
While it is easy to evaluate the posterior probability £(J;) for any given assignment
J; through (12), the mutual exclusion constraint makes it difficult to analytically ex-

press the weights ffj 1 by substituting those expressions in Equation 9. We know of no

efficient closed form expression for f,.

5.1 Sampling the Distribution over Assignments J;

The solution we employ is to instead sample from the posterior probability distribution
1H(J;) over valid assignments vectors J;. Formally this can be justified in the context

10



of a Monte Carlo EM or MCEM, a version of the EM algorithm where the E-step is
executed by a Monte-Carlo process (Tanner, 1996; McLachlan & Krishnan, 1997).

To sample from f?(J;) we use the Metropolis-Hastings algorithm, a Markov Chain
Monte Carlo method (MCMC) (Neal, 1993; Gilks et al., 1996; Doucet et al., 2001).
MCMC methods can be used to obtain approximate values for expectations over dis-
tributions that defy easy analytical solutions. In our case, the target distribution is the
posterior distribution f(J;) over assignment vectors J; in image 7. Al MCMC meth-
ods work the same way: they generate a sequence of states, in our case the assignments
J;, with the property that the collection of generated assignments J] approximates a
sample from the target distribution £#(J;). To accomplish this, a Markov chain is de-
fined over the space of assignments J,, i.e. a transition probability matrix is specified
that gives the probability of transitioning from any given assignment J; to any other.
The transition probabilities are set up in a very specific way, however, such that the sta-
tionary distribution of the Markov chain is exactly the target distribution f£(J;). This
guarantees that, if we run the chain for a sufficiently long time and then start recording
states, these states constitute a (correlated) sample from the target distribution.

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953)
is one way to simulate a Markov chain with the correct stationary distribution, with-
out explicitly building the full transition probability matrix (which would be an in-
tractable). In our case, we use it to generate a sequence of R samples JI from the
posterior f(J;). The pseudo-code for the MH algorithm is as follows (adapted from
(Gilks et al., 1996)) :

1. Start with a valid initial assignment J?.
2. Propose a new assignment using the proposal density Q(J.; J7)

3. Calculate the acceptance ratio

T I QLI

where f!(J;) = P(J;|U;, ©) is the target distribution.

713 QU TY) i

4. Ifa >= 1 then accept J/, i.e. we set J7 ™1 = J/.
Otherwise, accept J; with probability a. If the proposal is rejected, then we
keep the previous sample, i.e. we set J fl =J7.

Intuitively, step 2 proposes “moves” in state space, generated according to a probability
distribution Q(J;; J7) which is fixed in time but can depend on the current state J7.
The calculation of a and the acceptance mechanism in steps 3 and 4 have the effect of
modifying the transition probabilities of the chain such that its stationary distribution
is exactly f.

The MH algorithm easily allows incorporating the mutual exclusion constraint; if
an an assignment J} is proposed that violates the constraint, the acceptance ratio is
simply 0, and the move is not accepted. Alternatively, and this is more efficient, one
could take care never to propose such a move.

11



To compute the virtual measurements in (11), we need to compute the marginal
probabilities f;* 1, from the sample {J7}. Fortunately, this can be done without explicitly
storing the samples, by keeping running counts of how many times each measurement
u;y is assigned to feature j, as

z]k ~ R Zé Jzk’ (15)

is easily seen to be the Monte Carlo approximation to (9).

Finally, in order to implement the sampler, we need to know how to propose new
assignments J/ (the proposal density Q(JZ; J?), and how to compute the ratio a. Both
elements are discussed in detail in Section 8.

6 Summary of the Algorithm
The pseudo-code for the final algorithm is as follows:

1. Generate an initial structure and motion estimate @9,

2. Given ©! and the data U, run the Metropolis-Hastings sampler in each image to
obtain approximate values for the weights £ ;% (equation 15).

3. Calculate the virtual measurements vfj with (11).

4. Find the new estimate ©*+1 for structure and motion using the virtual measure-
ments vfj as data. This can be done using any SFM method discussed in Section
3.

5. If not converged, return to step 2.

In practice it is important to add annealing to this basic EM scheme, to avoid getting
stuck in local minima. In simulated annealing we artificially increase the noise pa-
rameter ¢ in early iterations, gradually decreasing it to its correct value. This has two
beneficial consequences. First, the posterior distribution f(J;) is less peaked when
o is high, allowing the MCMC sampler to explore the space of assignments J; more
easily. Second, the expected log-likelihood Q*(©) is smoother and has fewer local
maxima for higher values of o.

7 Results for SFM without Correspondence

In this section we show results on three sets of images for which the SFM problem
is non-trivial in the absence of correspondence. For each set we highlight a particular
property of our method. For all the results we present, the input to the algorithm was
a set of manually obtained image measurements. To initialize, the 3D points x; were
generated randomly in a normally distributed cloud around a depth of 1, whereas the
cameras m; were all initialized at the origin. In each case, we ran the EM algorithm for
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Figure 2: Three out of 11 cube images. Although the images were originally taken as
a sequence in time, the ordering of the images is irrelevant to our method.

=0 5200 t=1 0=25.1 t=3 0=23.5 =10 =187

=20 0=13.5 =100 0=1.0

Figure 3: The structure estimate as initialized and at successive iterations ¢ of the
algorithm.
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Figure 4: 4 out of 5 perspective images of a house.

100 iterations, with the annealing parameter ¢ decreasing exponentially from 25 pixels
to 1 pixel. For each EM iteration, we ran the sampler in each image for 10000 steps.
An entire run takes about a minute of CPU time on a standard PC. As is typical for
EM, the algorithm can sometimes get stuck in local minima, in which case we restart
it manually.

In practice, the algorithm converges consistently and fast to an estimate for the
structure and motion where the correct assignment is the most probable one, and where
most if not all assignments in the different images agree with each other. We illus-
trate this using the image set shown in Figure 2, which was taken under orthographic
projection. The typical evolution of the algorithm is illustrated in Figure 3, where we
have shown a wire-frame model of the recovered structure at successive instants of
time. There are two important points to note: (a) the gross structure is recovered in the
very first iteration, starting from random initial structure, and (b) finer details of the
structure are gradually resolved as the parameter o is decreased. The estimate for the
structure after convergence is almost identical to the one found by factorization when
given the correct assignment. Incidentally, we found the algorithm converges less of-
ten when we replace the random initialization by a *good’ initial estimate where all the
points in some image are projected onto a plane of constant depth.

To illustrate the EM iterations, consider the set of images in Figure 4 taken under
perspective projection. In the perspective case, we implement the M-step as para-
perspective factorization followed by bundle adjustment. In this example we do not
show the recovered structure (which is good), but show the marginal probabilities £,
at two different times during the course of the algorithm, in Figure 5. In early iterations,
o is high and there is still a lot of ambiguity. Towards the end, the distribution focuses in
on one consistent assignment. If all the probability were concentrated in one consistent
assignment over all images, the large fz’; , matrix would be a set of identical permutation
matrices stacked one upon the other.
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Figure 5: The marginal probabilities f}

;;% at an early and at a later iteration, respec-
tively. Each row corresponds to a measurement u,y, grouped according to image index,
whereas the columns represent the n features x;. In this example n = 58 and m = 5.
Black corresponds to a marginal probability of 1.

Figure 6: 6 out of 8 images of a wire-frame toy, taken from widely different viewpoints.



Figure 7: Recovered structure for wire-frame toy re-projected in 2 images.

The algorithm also deals with situations where the images are taken from widely
separate viewpoints, as is the case for the images in Figure 6. In this sequence, the
image features used were the colored beads on the wire-frame toy in the image, plus
four points on the ground plane. Images were taken from both sides of the object. Be-
cause of the "see-through’ nature of the object, there is also a lot of potential confusion
between image measurements. Figure 7 shows the wire-frame model obtained by our
method, where each of the wires corresponds to one of the wires on the toy. Although
in the final iteration there is still disagreement between images about the most likely
feature assignment, the overall structure of the model is recovered despite the arbitrary
configuration of the cameras.

8 An Efficient Sampler

The EM approach for structure and motion without correspondence outlined in the
previous sections is a statistically sound way to deal with a difficult data association
problem. However, in order for it to scale up to larger problems, it is imperative that it
is also efficient. Especially the reliance on a Monte Carlo estimate for the expectations
calculated in the E-step might seem troublesome in this regard. In this section we
show that the Metropolis-Hastings method can be made to very effectively sample
from weighted assignments, yielding an efficient E-step implementation.

The convergence of the Metropolis-Hastings algorithm depends crucially on the
proposal density (). We need a proposal strategy that leads to a rapidly mixing Markov
chain, i.e. one that converges quickly to the stationary distribution. Below we dis-
cuss three different proposal strategies, each of which induces a Markov chain with
increasingly better convergence properties.
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8.1 Preliminaries

It is convenient at this time to look at the sampling in each image in isolation, and
think of it in terms of weighted bipartite graph matching. Consider the bipartite graph
G = (U, V, E) in image ¢ where the vertices U correspond to the image measurements,
Le. ug 2 u;k, and the vertices V' are identified with the projected features, given the
L A .
current guess ©* for structure and motion, i.e. v; = h(m}, xj) Both & and j range
from 1 ton, i.e. [U| = |V| = n. Finally, the graph is fully connected £ = U x V, and
we associate the following edge weight with each edge e = (ug, v;):

a 1 1
’lU(’LLk,’UJ) % QHU’k UJ” % 2||ulk ( za _7)”2

A marching is defined as a subset M of the edges F, such that each vertex is incident
to at most one edge. An assignment is defined as a perfect matching: a set of n edges
such that every vertex is incident to exactly one edge.

Given these definitions, it is easily seen that every assignment vector J; corresponds
to an assignment in the bipartite graph G, so we use the same symbol to denote both
entities. Furthermore, we use the notation J;(u) to denote the match of a vertex wu,
ie. J;(ux) = vy iff 4,5 = j. Recalling equation (12), it is easily seen that for valid
assignments J; , the posterior probability f?(J;) can be expressed in terms of the edge
weights as follows:

SH33) o< exp | - Zluzk— m}, x})[*| oc e (16)

where the weight w(J;) of an assignment is defined as

3
= > w(uk, Js(ur))
k=1

Expression (16) has the form of a Gibbs distribution, where w(J;) plays the role of an
energy term: assignments with higher weight (energy) are less likely, assignments with
lower weight (energy) are more likely.

Thus, the problem of sampling from the assignment vectors J; in the structure and
motion problem is equivalent te sampling from weighted assignments in the bipartite
graph G, where the target distribution is given by the Gibbs distribution (16). Be-
low we drop the image index <, and think solely in terms of the weighted assignment
problem.

8.2 Flip Proposals

The simplest way to propose a new assignment J’ from a current assignment J is
simply to swap the assignment of two randomly chosen vertices u:

1. Pick two matched edges (u1,v1) and (uz, v2) at random.
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Figure 8: An ambiguous assignment problem with n = 3. The regular arrangement of
the vertices yields two optimal assignments, (a) and (e), whereas (b-d) are much less
likely. The figure illustrates a major problem with “flip proposals™: there is no way
to move from (a) to (e) via flip proposals without passing through one of the unlikely
states (b-d).

2. Swap their assignments, i.e. set J'(uy) «— vg and J'(uz) «— vy
To calculate the ratio a, note that the proposal ratio 85{,;{;; = 1. Thus, the acceptance
ratio e is equal to the probability ratio, given by
P(J)

a = —— = exp [w(ur, v1) + w(ua, v} — wlur, v2) — w(ug, v1)]

P(J)

Even though this “flip proposal” strategy is attractive from a computational point
of view, it has the severe disadvantage of leading to slowly mixing chains in many
instances. To see this, consider the arrangement with n = 3 in Figure 8. There is no
way to move from the most likely configurations (a) to (e) via flip proposals without
passing through one of the unlikely states (b-d). An MCMC sampler that proposes only
such moves can stay stuck in the modes (a) or (e) for a long time.

8.3 Augmenting Paths and Alternating Cycles

In order to improve the convergence properties of the chain, we use the idea of ran-
domly generating an augmenting path, a construct that plays a central role in determin-
istic algorithms to find the optimal weighted assignment (Bertsekas, 1991; Cook et al.,
1998; Papadimitriou & Steiglitz, 1982). The intuition behind an augmenting path is
simple: it is a way to resolve conflicts when proposing a new assignment for some ran-
dom vertex in U. When sampling, an idea for a proposal density is to randomly pick a
vertex u and change its assignment, but as this can lead to a conflict, we propose to use
a similar mechanism resolve the conflict recursively.

We now explain augmenting paths following (Kozen, 1991). Assume we have a
partial matching M. An example is given in Figure 9 (a). Now pick an unmatched
vertex u, and propose to match it up with v. We indicate this by traversing the free
edge (u,v). If v is free, we can simply add this edge to the matching M. However, if
v is not free we cancel its current assignment by traversing the matched edge (v, v’).
We then recurse, until a free vertex in V is reached, tracing out the augmenting path
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Figure 9: Augmenting paths. (a) Original, partial matching. (b) An augmenting path,
alternating between free and matched edges. (c) The resulting matching after augment-
ing the matching in (a) with the path in (b) .

NN

Voo e

@ (b) ©

Figure 10: (a) Original assignment. (b) An alternating cycle implementing a k-swap,
with k=3 in this example. (c) Newly obtained assignment.

p. One such a path is shown in Figure 9 (b). Now the matching can be augmented to
M’ by swapping the matched and the free edges in p. This augmentation operation is
written as M’ = M @ p, where @ is the symmetric difference operator on sets

A®B=(AUB)—~(ANB)=(A-B)U(B - A)

For the example, the resulting matching is shown in Figure 9 (c). Algorithms to find
optimal matchings start with an empty matching, and then perform a series of augmen-
tations until a maximal matching is obtained.

-For sampling purposes alternating cycles are of interest, because they implement
k-swaps. An example is shown for n = 4 in Figure 10. In contrast to the optimal
algorithms, when sampling we start out with a perfect matching (an assignment), and
want to propose a move to a different -also perfect- matching. We can do this by
proposing the matching J' = J & C, where C is an alternating cycle, which has
the effect of permuting a subset of the assignments. Such permutations that leave no
element untouched are also called derangements.

8.4 Proposing Moves by “Chain Flipping”

Recall that the goal is to sample from assignments J using the Metropolis-Hastings
algorithm. We now advance a new strategy to generate proposed moves, through an
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algorithm that we call “chain flipping” (CF). The algorithm is based on randomly gen-
erating an alternating cycle according to the following algorithm:

1. Pick a random vertex ug in U

2. Choose a match v in V by traversing the edge ¢ = (u, v) according to the transi-
tion probabilities

exp(—w(u, v))
5, exp(—w(u, v)) n

which accords higher probability to edges e = (u, v) with lower weight.

g(u,v) 2

3. Traverse the matched edge (v, «’) to undo the former match.
4. Continue with 2 until a cycle is formed.
5. Erase the transient part to get an alternating cycle C.

This algorithm simulates a Markov chain M C defined on the bipartite graph G and
terminates the simulation when a cycle is detected. The resulting alternating cycle C'
is used to propose a new assignment J' = J & C, i.e. we “flip” the assignments on the
alternating cycle or “chain” of alternating edges.
We also need to calculate the acceptance ratio a. As it happens, we have
/ .
P(J) Q(J';J)

To prove this, note that by (16) and (17) the probability ratio is given by

P(J) ~ e (w))

The proposal density Q(J'; J) is equal to the probability of proposing a cycle C that
yields J’ from J, which is given by:

1 e—w(J") w. Ju
P [ fere) o

wel

QU= I awJ'®@)] Y Puc(T) (20)
T

(u,v)€p

where the sum is over all transient paths 7" that end on the cycle C, and Ppo(T) is
the probability of one such transient. The probability Q(.J; J’) of proposing J starting
from J” is similarly obtained, and substituting both together with (19) into (18) yields
the surprising result a = 1.

A distinct advantage of the CF algorithm is that, as with the Gibbs sampler (Gilks
et al., 1996), every proposed move is always accepted. The n? transition probabilities
q(u, v) are also fixed and can be easily pre-computed. A major disadvantage, however,
is that many of the generated paths do not actually change the current assignment,
making the chain slower than it could be. This is because in step 2 there is nothing
that prevents us from choosing a matched edge, leading to a trivial cycle, and in steady
state matched edges are exactly those with high transition probabilities.
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Figure 11: 20 iterations of an MCMC sampler with the “smart chain flipping” propos-
als. For each iteration we show a and whether the move was accepted (A) or rejected

(R).

8.5 ”Smart Chain Flipping”

An obvious modification to the CF algorithm, and one that leads to very effective sam-
pling, is to make it impossible to traverse through a matched edge when generating
the proposal paths. This ensures that every proposed move does indeed change the as-
signment, if it is accepted. However, now the ratio a can be less than 1, causing some
moves to be rejected.

Forcing the chosen edges to be free can be accomplished by modifying the tran-
sition probabilities g(u, v). We denote the new transition probabilities as ¢” (u, v), as
they depend on the current assignment .J, and define them as follows:

exp(—w(u,v)) .
qJ(U:, ’U) é { 2wt a(u) EXP(—w(u,v)) ifv 7& J(u)
0

ifv=J(u)

i.e. we disallow the transition through a matched edge. We can rewrite this in terms of
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the transition probabilities g(u, v) defined earlier in (17), as follows

¢’ (u,v) = { Al—g((lut:gg@) va #J(w)
0 ifv=J(u)

Note that these depend on the current assignment J, but in an implementation their
explicit calculation can be avoided by appropriately modifying the cumulative distri-
bution function of ¢ at run-time.

This proposal strategy, which we call “smart chain flipping” (SMART), generates
more exploratory moves than the CF algorithm, but at the expense of rejecting some of
the moves. It can be easily verified that we now have

ASMART = = g, Jw)
wie 1= a(w, J'(w)

In Figure 11 we have shown 20 iterations of a Metropolis-Hastings sampler using the
SMART proposals, and also show the value of a and whether the move was accepted

(A) or rejected (R).

9 Results for Efficient Sampling

In this section we show experimental results supporting the intuition that “smart chain
flipping” leads to rapidly mixing chains. To assess the convergence of the sampler
under different conditions, we use the approach discussed in (Gelman, 1996): we graph
the time series for a single summary statistic in multiple, concurrently run MCMC
simulations. Convergence can be assumed if all time series converge to the same value
for the statistic. Displays such as this also give a qualitative understanding of the
behavior of the different strategies, as we discuss in more detail below.

For Figure 12, we sample from a distribution over assignments with n = 4, for
the configuration of features and observations as shown in Figure 11. It is clear from
the latter figure that there are two globally optimal assignments, leading to a strongly
bimodal distribution. In Figure 12 we show the convergence of each of the three pro-
posal strategies discussed above, respectively from top to bottom: “flip proposals”,
“chain flipping”, and “smart chain flipping”. For each strategy, we show the results
for a relatively smooth distribution (¢ = 0.9 R, shown at left), and a relatively peaked
distribution (¢ = 0.5R, shown at right). The summary statistic used is the proportion
of samples that assigns observation 1 to feature 1, estimated by the average

I 2 236,

In the case of the low value for o, this value is expected to be equal to 0.5, and smaller
for higher values of ¢. In all cases, the sampler was run for 1100 iterations, the first
100 of which were discarded as a transient.

We draw the following inferences from these figures:
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Figure 12: Assessing the convergence for the different proposal strategies. When con-
verged, the time series for the three parallel runs in each figure should converge on the
same value. See text for more explanation. (top) “Flip proposals”, (middle) “chain flip-
ping”, (bottom) “Smart chain flipping”. On the left, ¢ = 0.9R, on the right & = 0.5R.
The configuration that is being sampled ovey is the same as in Figure 11.



o “Flip proposals” are very slowly mixing and get stuck on high probability assigri-
ments, especially for peaked distributions (low o). This is evident from Figure
12 (b).

e “chain flipping” leads to better mixing, but from the Figure 12 (¢) and (d) it is
clear that there are long stretches where the assignment is not changed much if
at all.

e Dramatically better performance is obtained using “smart chain flipping”, espe-
cially for the peaked distribution on the right. The convergence to the bimodal
distribution is almost immediate when compared to the other strategies. Conver-
gence is somewhat slower for a high value of o, as there are many more probable
states that take some time to be visited often enough.

10 Related Work

In recent years, EM has become a popular algorithm for estimating models of various
sorts from incomplete data. As outlined in the introduction, the issue of incomplete
data and the data association problem are closely related, though not identical. Other
applications, such as the Baum-Welch algorithm for learning hidden Markov model
(Rabiner & Juang, 1986), do not assume a one-to-one correspondence between mea-
surements and model parameters.

The structure from motion problem has been studied extensively in the computer
vision literature over the past decade, as we have discussed in detail in Section 3. In the
introduction and in Section 2 we discussed the shortcomings of the existing methods
for data-association in the SFM literature.

The SFM problem is similar, and in some cases equivalent, to the map learning
problem in robotics. Here a mobile robot is given a sequence of sensor measurements
(e.g., range measurements) along with odometry readings, and seeks to construct a map
of its environment. In the case of bearing' measurements on discrete features, this con-
current mapping and localization (CML) (Leonard & Feder, 1999), is mathematically
identical to a SFM problem. One of the dominant families of algorithms relied on re-
cursive estimation of model features and robot poses by a variable dimension Kalman
filter (Castellanos et al., 1999; Castellanos & Tardés, 2000; Leonard & Durrant-Whyte,
1992; Leonard et al., 1992).

The classical target tracking literature provides a number of methods for data-
association (Bar-Shalom & Fortmann, 1988; Popoli & Blackman, 1999) that are used
in computer vision (Cox, 1993) and CML (Cox & Leonard, 1994; Feder et al., 1999),
such as nearest neighbor tracking (Deriche & Faugeras, 1990), the track splitting fil-
ter (Zhang & Faugeras, 1992), the Joint Probabilistic Data Association Filter (JPDAF)
(Rasmussen & Hager, 1998), and the multiple hypothesis tracker (MHT) (Reid, 1979;
Cox & Leonard, 1994; Cox & Hingorani, 1994). Unfortunately the latter, more pow-
erful methods have exponential complexity so suboptimal approximations are used in
practice. However, the strategies for hypothesis pruning are based on assumptions such
as motion continuity that are often violated in practice (Seitz & Dyer, 1995). Thus, they
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are not directly applicable to the SFM or CML problem when the measurements do not
arrive in a temporally continuous fashion, as we have assumed.

Thus, both vision and map learning approaches assume that the data association
problem is solved, either through uniquely identifiable features in the environment of a
robot, or through sensor streams that make it possible to track individual features. Of
particular difficulty, thus, is the problem of mapping cyclic environments (Gutmann &
Konolige, 2000), where features cannot be tracked and the data association problem
arises naturally. Recently, an alternative class of algorithms has been proposed that
addresses the data association problem (Burgard et al., 1999; Shatkay & Kaelbling,
1997; Shatkay, 1998; Thrun et al., 1998b, 1998a). Like ours, these algorithms are
based on EM, and they have been demonstrated to accommodate ambiguities and large
odometric errors. These algorithms are similar in spirit to the one proposed here in
that they formulate the mapping problem as estimation problem from incomplete data,
and use the E-step of EM to estimate expectations over those missing data. There
are essential differences, though. In particular, these algorithms consider the camera
positions as missing data, whereas ours regard the camera poses as model parameters,
and instead the correspondence matrix is being estimated in the E-step.

Recently, EM has also been proposed in the target-tracking literature to perform
ML or MAP smoothing of tracks, leading to the Probabilistic Multi-Hypothesis Tracker
(PMHT) (Avitzour, 1992; Streit & Luginbuhl, 1994; Gauvrit et al., 1997). In the
PMHT, the same conditional independence assumptions are made as in this paper, and
identical expressions are obtained for the virtual measurements in the M-step. How-
ever, the PMHT makes the same motion continuity assumptions as the classical JPDAF
and MHT algorithms, which we do not assume. Moreover, in our work we optimize
for structure (targets) and motion, a considerably more difficult problem. Most impor-
tantly, however, the PMHT altogether abandons the mutual exclusion constraint in the
interest of computational efficiency. This is one of the main causes leading to perfor-
mance that is generally less optimal than the JPDAF or MHT (Willett et al., 1999). In
contrast, in our work we have shown that the correct distribution in the E-step can be
efficiently approximated by Markov chain Monte Carlo sampling. Nevertheless, the
PMHT is a very elegant algorithm, and we conjecture that combining the PMHT with
our efficient sampler in the E-step could lead to a novel, approximately optimal tracker
and/or smoother of interest to the target tracking commnunity.

The new proposal strategies we propose for efficient sampling of assignments bear
an interesting relation to research in the field of computational complexity theory. In
particular, the “chain flipping” proposal is related in terms of mechanism, if not de-
scription, to the Broder chain, an MCMC type method to generate (unweighted) as-
signments at random (Broder, 1986). However, our method is specifically geared to-
wards sampling from weighted assignments, and uses the weights to bias proposals
towards more likely assignments. Recently, polynomial approximation bounds have
been proven for Broder-type algorithms (Jerrum & Sinclair, 1997), and there is hope
that these proofs could be modified to prove hard properties for our method, as well.
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11 Discussion

In this paper we have presented a novel tool, which enables us to learn models from data
in the presence of non-trivial data association problems. We have applied it success-
fully to the structure from motion problem with unknown correspondence, significantly
extending the applicability of these methods to new imaging situations. In particular,
our method can cope with images given in arbitrary order and taken from widely sepa-
rate viewpoints, obviating the temporal continuity assumption needed to track features
over time.

Despite the space we have devoted to explaining the rationale behind it, the final al-
gorithm is simple and easy to implement. As summarized in Section 6, at each iteration
one only needs to obtain a sample of probable assignments, compute the virtual mea-
surements, and solve a synthetic SFM problem using known methods. In addition, we
have developed a novel sampling strategy, called “smart chain flipping”, to calculate
these virtual measurements efficiently using the Metropolis-Hastings algorithm.

However, there is plenty of opportunity for future work. In this paper, we make
the commonly made assumption that all 3D features are seen in all images (Tomasi &
Kanade, 1992; Hartley, 1994; McLauchlan & Murray, 1995). The development of our
approach does not depend on this assumption, however. We are currently extending
and evaluating the approach to deal with spurious measurements, by the introduction
of a NULL feature, as e.g. in (Gold et al., 1998), and with occlusion, through the
development of a more sophisticated prior on assignments. The process of occlusion,
however, is a systematic phenomenon which is not accurately modeled by assuming a
simple independent probability of occlusion for each 3D feature. In order to deal with
this in a principled manner, we are investigating the use of a Markov random field prior
(Li, 1995; Winkler, 1995) on occlusion, similar in spirit to (MacCormick & Blake,
1998). It also introduces the thorny issue of model selection, as in the presence of
occlusion it is not commonly known a priori how many features actually exist in the
world. This problem of model selection has been addressed successfully before in the
context of vision (Ayer & Sawhney, 1995; Torr, 1997), and it is hoped that the lessons
learned there can equally apply in the current context.

As argued in the introduction to this paper, the data association problem arises in
many problems of learning models from data. While the current work has been phrased
in the context of the structure from motion problem in computer vision, we conjecture
that the general approach is more widely applicable. For example, as discussed above,
the robot mapping problem shares a similar set of constraints, making the chain flip-
ping proposal distribution directly applicable. Thus, just as we employed of-the-shelf
techniques for solving the SFM problem with known correspondences, EM and our
new MCMC techniques can be stipulated to the rich literature on concurrent mapping
and localization (CML) with known correspondences. Such an approach would "boot-
strap” these techniques to cases with.unknown correspondence, which has great practi-
cal importance, particularly in the area of multi-robot mapping. As a second example,
we suspect that our MCMC chain flipping approach is also applicable to visual object
identification from distributed sensors, where others (Pasula, Russell, Ostland, & Ritov,
1999) have already successfully applied EM and MCMC to solve the data association
problem. Data association problems occur in a wide range of learning models from
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data. The application of our approach to other data association problems is subject of
future research.
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