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Abstract

Exact arithmetic is used to build robust implementations of geometric algorithms. However,
it is slow, and computing to arbitrary precision is unnecessary most of the time. Floating-
point filters, which are commonly used instead, are fast self-checking computations that fall
back on exact arithmetic when the check indicates that the fast calculation is incorrect.
The use of interval arithmetic in floating-point filters is attractive because they can be used
to build geometric software that does not assume error-free inputs. However, the use of
interval arithmetic might impose a penalty on performance.

In this report, we study the performance impact of using interval arithmetic based filters in
the line-side and in-circle geometric predicates. We report results obtained with implemen-
tations of two commonly used geometric algorithms: Delaunay triangulation and convex
hull computation, and for a range of point distributions. Our results indicate that interval
arithmetic imposes a performance penalty of at most 2 in the worst case, and even improves
performance in some cases.

Keywords: Computational geometry, geometric predicates, geometric robustness, in-
terval arithmetic, error analysis.



1 Introduction

Many geometric algorithms rely on boolean-valued tests (predicates) on geometric objects.
Examples of such predicates include the lineside test, which tests which side of a line a
point lies on, and the incircle test, which determines whether a point lies within a circle.
These predicates generally assume that the objects they operate upon are represented in
terms of real numbers. However, the implementations of these algorithms on finite-precision
machines are susceptible to failure arising from roundoff errors. Arbitrary precision floating-
point arithmetic, also known as ezact arithmetic [14], is therefore used to make geometric
algorithms robust to such errors. However, exact arithmetic is slow, and it is preferable to
use it only when necessary.

A floating-point filter is a fast self-checking calculation that computes an approximate
value of an arithmetic expression, resorting to exact arithmetic only when its check indicates
that the answer cannot be trusted (i.e., when it “fails”). For geometric predicates such as
the lineside and incircle tests, the arithmetic expression to be evaluated is usually the sign of
a determinant. A floating-point filter for geometric predicates, hereafter referred to simply
as filter, can check its accuracy (i.e., whether the sign of its result can be trusted) by testing
whether the magnitude of its result is greater than the error it might incur.

Filters can be classified into three types: static, semi-static and dynamic. Static filters
are those in which an error bound B is computed prior to compile-time. Let V be the
value of the arithmetic expression of interest obtained by performing the fast calculation.
If |V| < B, then the filter fails, i.e., one must resort to exact arithmetic. Otherwise, the
value V is correct and can be used. An example of the use of static filters is in the LN
system [5]. In semi-static filters, the computation of the error bound is delayed until run-
time. The user supplies a formula at compile-time that evaluates to the error bound at
run-time. This error bound is used exactly as in the static case. Semi-static filters can thus
be designed to produce error bounds that are less conservative, but at the added cost of
run-time computation. Examples of semi-static filters have been proposed by Avnaim et
al. [1] and Burnikel et al. [3]. Shewchuk [13] has also proposed an adaptive combination
of semi-static filters. In dynamic filters, the error bound is calculated in a syntax-directed
fashion, by considering how each primitive operation (such as add or multiply) propagates
errors from input to output. There are two kinds of dynamic filters. In the first kind, the
expression for the error bound is derived automatically at compile-time [4]. The other kind
of dynamic filter incorporates the error into the number representation [2]. Dynamic filters
generally produce the least conservative error bounds, but at a larger performance penalty.

The focus of our work is to better understand the tradeoff in filters between efficiency
and robustness. We measure efficiency in terms of running time. Robustness is measured in
terms of how often the filter fails. Our study is restricted to semi-static and dynamic filters,
as static filters are mostly too conservative to be useful. We compare two classes of filters
with respect to the efficiency-robustness tradeoff. Filters in the first class are based on a
technique called error analysis, that computes an error bound after making the fast filter
calculation, and uses this error bound to decide whether the result of the filter calculation
can be trusted. Techniques that fall into this category include Shewchuk’s work [13] and
the filter in LEDA [4]. The error analysis technique is only as good as the formula available
for the computing the error bound for the predicate in question. Formulae that are derived
manually might generate tighter bounds, but are harder to come up with. On the other
hand, automatic generation of error-bound formulae leads to looser bounds. Also, error
analysis techniques are designed to work under the assumption that the inputs are error-



free. This assumption breaks down when, for example, different geometric algorithms are
composed together. The second kind of filter is based on interval arithmetic. The core idea
in interval arithmetic is to make the roundoff error part of the real number representation.
Each real number is represented by an interval representing the corresponding floating-point
number and its roundoff error. Arithmetic operations are redefined to operate on intervals.
This method has the advantage of eliminating the need to derive an error bound formula
at compile-time. Moreover, since the error is part of the representation, interval arithmetic
can be used in geometric algorithms that are to be composed with each other. However,
representing each real by two floats (the two ends of the interval) increases the cost of
arithmetic operations.

Filters based on interval arithmetic(IA) were first introduced by Bronnimann et al. [2].
The authors report empirical results indicating that predicates with TA based filters run with
only a minor overhead as compared to predicates using error analysis based filters. They
also report that TA based filters fail less often than static filters on degenerate instances.
They however do not indicate how the predicates perform inside a larger application for
different point distributions, and what overhead exact arithmetic may impose when the
filter fails. The interval arithmetic based filters of Bronnimann et al. are used by Funke and
Mehlhorn in their Lazy Object-oriented Kernel (LOOK) [6]. They use interval arithmetic
as a second level filter after inexact floating-point arithmetic. Since LOOK includes many
other techniques as well, their experimental results do not isolate the effect of the interval
arithmetic filter.

In this paper, we report the results of a performance evaluation of the use of interval
arithmetic filters in two- and three-dimensional geometric predicates. Specifically, our study
attempts to answer the following questions:

1. What is the overhead of using interval arithmetic filters in conjunction with exact
arithmetic in commonly used geometric algorithms?

2. For what applications and input distributions is interval arithmetic a preferred option
over error analysis?

3. What is the effect, if any, of different hardware platforms on the performance of
interval arithmetic?

The rest of the paper is organized as follows.In Section 2, we discuss our implementation
of an interval arithmetic based filter, and briefly present other filter implementations used
in this study. We describe our results in Section 3 and conclude in Section 4.

2 Filter Implementations

2.1 Interval Arithmetic

The use of interval arithmetic in numerical computation was originally proposed by Moore [11].
A real number is replaced by an interval that represents it along with the uncertainty in
its representation. Interval arithmetic operations make extensive use of rounding. Let g
represent the value of a after rounding down and @ represent that after rounding up. Using
this notation, the add, subtract and multiply operations on intervals are defined below:

[@1,a2] + [b1,b2] = [a1 + b1, a2 + b9 (1)



la1, as] — [b1,b2] = [a1 — bo,ag — by] (2)

[a1,a2] * [b1,b2] = [min(aib1, a1be, asbi, asba), max(a1b1, a1ba, asbi, asbe)] (3)

Rounding is necessary because the exact result may not be representable in the finite pre-
cision representation.

2.2 Interval Arithmetic Filter Implementation
2.2.1 Architectural Dependence

As can be seen from the preceding section, every interval arithmetic operation potentially
requires us to change the rounding mode, to round up or to round down. Rounding mode
changes are typically done by setting flags in the floating point status register(fsr) of the
processor. The IEEE floating-point specification provides for four rounding modes: Round
to nearest, Round Down (to —oc0), Round Up (to +00) and Round to zero.

We selected two representative platforms for our experiments that differed on the mecha-
nisms they provided for setting the rounding mode: the DEC Alpha and the Sun UltraSparc.
The DEC Alpha allows the rounding mode flag to be specified as part of the floating point
arithmetic instruction. This eliminates the overhead of having to set the fsr explicitly. The
Sun Sparc, on the other hand, needs an explicit setting of the fsr each time the rounding
mode needs to be changed. This rounding mode setting has a negative effect on performance
since it breaks the pipeline.

However, this apparent advantage of the Alpha is negated by the following design pecu-
liarity. An arithmetic instruction in the Alpha contains only two bits to specify the rounding
mode. One of the four combinations is reserved to mean that the fsr must be looked up
for the rounding mode. Thus, only three out of four rounding modes can be specified in
the instruction. In particular, we discovered that rounding up on the Alpha requires an
explicit setting of the fsr, while rounding down can be specified “on-the-fly”. This means
that rounding up on the Alpha cannot be specified as part of the arithmetic instruction.

2.2.2 Implementation Details

We implemented interval arithmetic based filters for the lineside and incircle geometric pred-
icates. The target machines included a Sun UltraSparc Enterprise system with 6 Ultrasparc-
2/250 MHz processors, and an Alpha 21164 running at 500 MHz.

Our implementation of interval arithmetic is based on the Basic Interval Arithmetic
Subroutines(BIAS) library [8], which we optimized for our application. Since we only
needed BIAS routines that performed add, subtract and multiply, we converted exactly
these routines to macros with gcc ASM directives to perform arithmetic instructions. This
is especially required for the Alpha as we need to use instruction mnemonics that specified
the rounding mode (the generic instruction generated by the compiler does not suffice).

Optimizations are also made in reducing the number of primitive operations in the
predicate implementations. Interval arithmetic multiplication is more expensive than other
arithmetic operations because it includes at least two branches and at least two multiply
instructions. Therefore, we use as few interval multiply operations as possible in computing
the geometric predicates. Secondly, setting the rounding mode is also an expensive oper-
ation, and therefore we wish to minimize the number of rounding mode settings. If we
represent intervals as they are written, the Alpha needs only one rounding mode setting per



predicate call, while the Sparc needs two rounding mode changes per arithmetic operation.
One would therefore expect interval arithmetic to be far more expensive on the Sparc as
compared to the Alpha.

However, by using an alternative interval representation, the per-operation rounding
mode overhead can be eliminated altogether! This representation, also suggested by Bron-
nimann et al., represents the interval [a,b] as [—a, b]. For this representation, rounding up

suffices because —a = —a. Thus, the new IA add and subtract operations can be rewritten
as:
[—a1,a2] + [=b1,bs] = [—a1 — b1, az + bo] (4)
[—a1,a] — [~b1,bo] = [—a1 + b, ag — by] (5)

This implementation eliminates the round down overhead on the Sparc. Analogously, we
can also represent the interval [a,b] as [a, —b]. This representation only requires rounding
down, and completely eliminates the rounding mode overhead on the Alpha. However,
rounding in one direction has only a small impact on running time since the rounding mode
is only being set twice per predicate call anyway. In experiments, we found that less than 7%
of the total predicate time involves changing the rounding mode, if we restrict to rounding
in one direction only. We can therefore conclude that architectural differences with respect
to rounding mode play little role in the efficiency of interval arithmetic; the only platform
specific effect arises from performance differences in floating point instruction execution.

In experiments on the UltraSparc, we found that when compared to BIAS, our imple-
mentation of interval arithmetic improves the performance of lineside by a factor of 4 and
the performance of incircle by a factor of 3.

2.3 Error Analysis

Several filters based on error analysis(EA) have been proposed. The two EA methods we
evaluated interval arithmetic against are the adaptive method of Jonathan Shewchuk [13],
and the method of LEDA based on expression compilation [9]. We made this choice for a
few different reasons. First, they represent two very different approaches to error analysis.
Shewchuk’s EA method is adaptive, computing answers and the corresponding error bounds
at 3 successively higher levels of precision (starting with level “A”, which is floating-point
arithmetic, and two intermediate levels “B” and “C”) before finally resorting to exact
arithmetic (level “D”). The error bound formulae are hand derived, and computations
performed at a lower level are reused at the next higher level for efficiency. On the other
hand, the EA method used by LEDA is completely automated. An expression compiler
is used to generate an error bound formula from the code for the geometric predicate.
The second reason for our choices is that these implementations are fairly efficient, and
have been tested with macrobenchmarks, making it suitable for a “macrobenchmark-based”
performance study of the kind presented in this paper. Finally, the availability of source
code for these filter implementations as well as the associated macrobenchmarks simplified
our evaluation task a great deal.

A detailed description of Shewchuk’s filter and of the methods used in LEDA is outside
the scope of this paper; we refer the reader to the relevant papers [13, 9] for details.



3 Results

We tested the use of interval arithmetic (IA) against the two error analysis (EA) imple-
mentations described in the previous section. We used our IA implementation of geometric
predicates within two macrobenchmarks: two dimensional Delaunay triangulation and three
dimensional convex hull computation. In addition, we tested the macrobenchmark imple-
mentations on three different input point distributions: (1) points generated according to
a uniform random distribution in the unit square, (2) points that are approximately co-
circular on the unit circle and and (3) a grid of lattice points, tilted so as not to be aligned
with the coordinate axes. These are the same point distributions that Shewchuk used in his
experiments, with the last two distributions chosen for their degeneracy. All experiments
were run on a sets of 50,000 points generated according to the selected point distributions.
We generated uniform random, co-circular and co-spherical point sets using the rbox pro-
gram distributed with the Minnesota ghull code [10], and the tilted grid point set with
our own random point generator. The input points had double precision floating point
coordinates.

To test our IA implementation against Shewchuk’s EA method, we modified Triangle,
which is Shewchuk’s 2D Delaunay triangulator [12]. For the LEDA EA method, we made
modifications to LEDA predicate computation code'. In both cases, the modified code
using our interval arithmetic filter worked as follows. We first evaluate the determinant using
interval arithmetic, which generates the result [lo, hi]. If 0 € (lo, hi), we use exact arithmetic
else we return the median value of the interval. We experimented with using different
implementations of exact arithmetic, including Shewchuk’s level D, exact rational arithmetic
in the GNU multiprecision (MP) library [7], and LEDA’s exact rational arithmetic. Our
results are summarized in Tables 1, 2 and 3.

Impl. Time Lineside Incircle Speedup
(sec) | Exact/Total #(calls) | Exact/Total #(calls) | IA/EA

(A) Uniform Random in the unit square (50,000 points)

EA 1.259 0/425022 0/380652

IA+Level D 2.125 0/425022 0/380652 0.592
IA+GNU MP || 2.131 0/425022 0/380652 0.591
(B) Almost Co-circular on unit circle (50,000 points)

EA 1.289 0/271728 5319/199461

IA+Level D 1.663 0/271728 271/199461 0.775
TA+GNU MP || 2.45 0/271728 271/199461 0.526
(C) Tilted Grid (50,000 points)

EA 1.473 12137/377280 52900/255419

IA+Level D 1.413 0/377280 0/255419 1.042
IA+GNU MP || 1.418 0/377280 0/255419 1.039

Table 1: Performance Comparison with Shewchuk’s Error Analysis for 2D divide-and-
conquer Delaunay triangulation.

Table 1 shows a comparison of TA with Shewchuk’s EA implementation, for 2D Delaunay
triangulation. Shewchuk’s implementation is denoted by “EA”. We test this against two

!We changed methods orientation and side of circle in class rat_point in LEDA 4.1



IA implementations. Both IA implementations are modified versions of Triangle where all
predicates use interval arithmetic based filters that use exact arithmetic on failure. They
differ in the kind of exact arithmetic used; “IA+Level D” uses Shewchuk’s level D exact
computation, while “TA+GNU MP” uses exact rational arithmetic provided by the GNU
MP library. The number of exact calls in the case of Shewchuk’s filter is the number of calls
made to level B2, while in our case, it is the number of calls made if the IA filter fails. We
can see that for uniform random, there are hardly any predicate calls where exact arithmetic
is needed, and so Shewchuk’s implementation outperforms both IA implementations due to
the overhead of interval arithmetic over floating-point arithmetic. However, for degenerate
distributions such as the tilted grid, the TA implementations perform better, as the EA
based filter is too conservative. Among the TA implementations, the “ITA4+GNU MP” im-
plementation is less efficient as it incurs the overhead of several procedure calls. Finally, we
note that even though Shewchuk’s implementation will outperform IA on non-degenerate
distributions, using TA does not lose more than a factor of 2 in performance.

Impl. || Time Lineside Incircle Speedup
(sec) | Exact/Total #(calls) | Exact/Total #(calls) | TA/EA

(A) Uniform Random in the unit square (50,000 points)

EA 4.43 54/789647 875/404175

TIA 4.70 0/789647 0/404175 0.94

(B) Almost Co-circular on unit circle (50,000 points)

EA 33.2 15239/479223 200476 /200476

1A 5.06 0/479223 10833/200476 6.56

(C) Tilted Grid (50,000 points)

EA 7.01 105524/786941 2440/358805

IA 5.06 364/786941 22/358805 1.39

Table 2: Performance Comparison with LEDA’s Error Analysis (EA) for 2D Delaunay
triangulation using the Dwyer algorithm.

Impl. || Time Lineside Speedup
(sec) | Exact/Total #(calls) IA/EA
(A) Uniform Random in the unit cube (50,000 points)
EA 17.52 30769/958973

TA 6.31 10/958973 2.78

(B) Almost Co-spherical on unit sphere (50,000 points)
EA 7.63 1086/1262285

IA 8.07 0/1262285 0.95

Table 3: Performance Comparison with LEDA’s Error Analysis (EA) for 3D Convex Hull.

Tables 2 and 3 show results of comparing LEDA’s EA implementations with our TA
implementation for 2D Delaunay triangulation and 3D convex hull respectively. Here “TA”
stands for our IA implementation, while “EA” denotes LEDA’s EA implementation. Our

2levels C and D are never called on our test data



IA implementation is a modified version of LEDA where all predicates first use interval
arithmetic to compute the predicate, and if this fails, use LEDA’s exact rational arithmetic.

Consider table 2. We can see that for the co-circular and tilted grid distributions IA
outperforms EA by a significant factor, which is larger when EA makes a higher proportion
of incircle calls. Incircle is inherently more expensive than lineside as it contains almost 8
times as many multiply operations. Moreover, the EA filter fails 100% of the time on incircle
calls for the co-circular distribution. The reason for this can be explained as follows. The
incircle predicate tests the sign of a polynomial of degree four in the Cartesian coordinates
of the input points. If the input points have d-bit precision, the error in a floating evaluation
of the polynomial (computed by EA) is about 9d*g-52 [9]. For co-circular points the actual
value of the polynomial is close to zero and hence the filter will be effective as long as d < 12.
However, our input points are of double precision, hence, LEDA’s EA filter always fails.
For the uniform random distribution, however, EA makes very few calls to exact arithmetic
and hence performs slightly better than TA.

Table 3 shows similar results for convex hull. However, the cases are inverted here; for
uniform random points, convex hull does very many lineside tests and a larger proportion
of them are between almost collinear points. Hence, EA needs to make more calls to exact
arithmetic, causing it to slowdown by 2.78 in comparison to TA.

4 Conclusions

We can conclude from the results in this paper that

1. Interval Arithmetic does not impose an excessive cost as compared to Error Analysis.
In addition, it is always a better filter, failing less often.

2. Rounding mode changes are a smaller factor in performance than we originally thought
them to be; in particular, architectures such as that of the Alpha offer no major
advantage over the Sparc.

3. On degenerate input distributions, Interval Arithmetic can be faster than Error Anal-
ysis. The distribution on which TA outperforms EA might depend on the macrobench-
mark.

4. Interval Arithmetic can be used in conjunction with exact arithmetic to compose to-
gether geometric software without having to worry about generating error-free inputs
for each stage. In particular, any error may be propagated in a “lazy” manner be-
tween transformations so long as it does not affect robustness; when it does, exact
arithmetic can be used to do a “cleanup” operation.

There are many interesting avenues for future work. From a programming language
standpoint, it is interesting to see how a code consumer may be guaranteed, via safe pro-
gramming language constructs, that the library call she makes does not make arbitrary
changes in the processor state, such as changing the rounding mode. It might also be useful
to extend the performance study to other macrobenchmarks, and study the performance
tradeoffs with respect to varying point distributions.



Acknowledgments

This work was initiated during a course organized by Prof. M. Satyanarayanan. The first
author would like to thank Satya for his guidance and feedback on the project.

References

1]

[10]
[11]
[12]

[13]

[14]

AvNAIM, F., BOISSONNAT, J.-D., DEVILLERS, O., PREPARATA, F., AND YVINEC,
M. Evaluating Signs of Determinants using Single-Precision Arithmetic. Algorithmica
17 (1997), 111-132.

BRONNIMANN, H., BURNIKEL, C., AND PION, S. Interval Arithmetic Yields Efficient
Dynamic Filters for Computational Geometry. In Proceedings of the 14th. Annual
ACM Symposium on Computational Geometry (1998), pp. 165-174.

BURNIKEL, C., FUNKE, S., AND SEEL, M. Exact Arithmetic using Cascaded Com-
putations. In Proceedings of the 14th. Annual ACM Symposium on Computational
Geometry (1998), pp. 175-183.

BURNIKEL, C., KONEMANN, J., MEHLHORN, K., NAHER, S., SCHIRRA, S., AND
Unric, C. Exact Geometric Computation in LEDA. In Proceedings of the 11th.
Annual ACM Symposium on Computational Geometry (1995), pp. C18-C19.

FORTUNE, S., AND WYK, C. V. Static Analysis yields efficient Exact Integer Arith-
metic for Computational Geometry. ACM Transactions on Graphics 15, 3 (July 1996),
223-248.

FUNKE, S., AND MEHLHORN, K. LOOK: A Lazy Object-oriented Kernel for Geometric
Computation. In Proceedings of the 16th. Annual ACM Symposium on Computational
Geometry (2000), pp. 156-165.

GNU MP PACKAGE. http://www.swox.com/gmp.

KNUEPPEL, O. PROFIL/BIAS - A Fast Interval Library. Computing 53, 3-4 (1994),
277-287.

MEHLHORN, K., AND NAHER, S. LEDA: A platform for combinatorial and geometric
computing. Cambridge University Press, 1999.

MINNESOTA QHULL PACKAGE. http://www.geom.umn.edu/software/qhull/.
MOORE, R. Interval Analysis. Prentice-Hall, 1966.
SHEWCHUK, J. http://www.cs.cmu.edu/~quake/triangle.html.

SHEWCHUK, J. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geo-
metric Predicates. Tech. Rep. CMU-CS-96-140, School of Computer Science, Carnegie
Mellon University, 1996.

Yar, C., AND DUBE, T. The Exact Computation Paradigm. In Computing in Eu-
clidean Geometry, 2nd Edition. World Scientific, 1995.



