
Improving Index Performance through Prefetching

Shimin Chen Phillip B. Gibbons
y

Todd C. Mowry

December 2000

CMU-CS-00-177

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

yInformation Sciences Research Center, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.

Todd C. Mowry is partially supported by an Alfred P. Sloan Research Fellowship and by a Faculty Development

Award from IBM.

Abstract

In recognition of the crucial role that cache hierarchies play in database performance, recent studies have

revisited core database algorithms and data structures in an e�ort to reduce the number of cache misses.

While these e�orts to avoid cache misses are certainly helpful, they are not a complete solution for two

reasons. First, a large number of cache misses still remain that cannot be eliminated. Second, because modern

processors support prefetching and other mechanisms to potentially overlap cache misses with computation

and other misses, it is not the total number of cache misses that dictates performance, but rather the total

amount of exposed miss latency. Hence an algorithm that is more amenable to prefetching can potentially

outperform an algorithm with fewer cache misses.

In this paper, we propose and evaluate Prefetching B+-Trees (pB+-Trees). Such trees are designed to

exploit prefetching to accelerate two important operations on B+-Tree indices: searches and range scans.

To accelerate searches, pB+-Trees use prefetching to e�ectively create wider nodes than the natural data

transfer size: e.g., eight vs. one cache lines or disk pages. These wider nodes reduce the height of the B+-Tree,

thereby decreasing the number of expensive misses when going from parent to child without signi�cantly

increasing the cost of fetching a given node. Our results show that this technique speeds up search, insertion,

and deletion times by a factor of 1.2{1.5 for main-memory B+-Trees. In addition, it outperforms and

is complementary to \Cache-Sensitive B+-Trees." To accelerate range scans, pB+-Trees provide arrays of

pointers to their leaf nodes. These allow the pB+-Tree to prefetch arbitrarily far ahead, even for nonclustered

indices, thereby hiding the normally expensive cache misses associated with traversing the leaves within the

range. Our results show that this technique yields over a sixfold speedup on range scans of 1000+ keys.

Although our experimental evaluation focuses on main memory databases, the techniques that we propose

are also applicable to hiding disk latency.

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e dcache stalls
 other stalls
 busy

B+ CSB+ B+

Search Scan

Figure 1: Execution time breakdown for common index accesses (B+ = B+-Trees, CSB+ = CSB+-Trees).

1 Introduction

As the gap between processor speed and both DRAM and disk speeds continues to grow exponentially, it

is becoming increasingly important to make e�ective use of caches to achieve high performance on database

management systems. Caching exists at multiple levels within modern memory hierarchies: typically two

or more levels of SRAM serves as caches for the contents of main memory in DRAM, which in turn is a

cache for the contents on disk. While database researchers have historically focused on the importance of

this latter form of caching (also known as the \bu�er pool"), recent studies have demonstrated that even on

traditional disk-oriented databases, roughly 50% or more of execution time is often wasted due to SRAM

cache misses [1, 2, 10, 19]. For main-memory databases, it is even clearer that SRAM cache performance is

crucial [20]. Hence several recent studies have revisited core database algorithms and data structures in an

e�ort to make them more cache friendly [5, 18, 20, 21, 23].

1.1 Cache Performance of B+-Tree Indices

Index structures are used extensively throughout database systems, and one of the most common implemen-

tations of an index is a B+-Tree. While database management systems perform several di�erent operations

that involve B+-Tree indices (e.g., single value selections, range selections, and nested loop index joins),

these higher-level operations can be decomposed into two key lower-level access patterns: (i) searching for

a particular key, which involves descending from the root to a leaf node using binary search within a given

node to determine which child pointer to follow; and (ii) scanning some portion of the index, which involves

traversing the leaves through a linked-list structure.1 While search time is the key factor in single value

selections and nested loop index joins, scan time is the dominant e�ect in range selections.

To illustrate the need for improving the cache performance of both search and scan on B+-Tree indices,

Figure 1 shows a breakdown of their simulated performance on a state-of-the-art machine. For the sake of

concreteness, we pattern the memory subsystem after the Compaq ES40 [7]|details are provided later in

Section 4. The \Search" experiment in Figure 1 looks up 100,000 random keys in a main-memory B+-Tree

index after it has been bulkloaded with 10 million keys. The \Scan" experiment performs 100 range scan

operations starting at random keys, each of which scans through 1 million hkey, tupleIDi pairs retrieving

the tupleID values. (The results for shorter range scans (e.g., 1000 tuple scans) are similar). The B+-Tree

node size is equal to the cache line size, which is 64 bytes.

Each bar in Figure 1 is broken down into three categories: busy, data cache stalls, and other stalls. Both

search and scan accesses on B+-Tree indices (the bars labeled \B+"|we will explain the \CSB+" bar

later) spend a signi�cant fraction of their time|65% and 84%, respectively|stalled on data cache misses.

Hence there is considerable room for improvement.

1For simplicity of exposition, we consider index scans for non-clustered indices, so that the leaves must be traversed. Index

scans for clustered indices can directly scan the database table (after searching for the starting key).

1

1.2 Previous Work on Improving the Cache Performance of Indices

In an e�ort to improve the cache performance of index searches for main-memory databases, Rao and Ross

proposed two new types of index structures: \Cache-Sensitive Search Trees" (CSS-Trees) [20] and \Cache-

Sensitive B+-Trees" (CSB+-Trees) [21]. The premise of their studies is the conventional wisdom that the

optimal tree node size is equal to the natural data transfer size, which corresponds to the disk page size for

disk-resident databases and the cache line size for main-memory databases. Because cache lines are roughly

two orders of magnitude smaller than disk pages (e.g., 64 bytes vs. 4 Kbytes), the resulting index trees for

main-memory databases are considerably deeper. Since the number of expensive cache misses is roughly

proportional to the height of the tree,2 it would be desirable to somehow increase the e�ective fanout (also

called the branching factor) of the tree, without paying the cost of additional cache misses that this would

normally imply.

To accomplish this, Rao and Ross [20, 21] exploit the following insight: by restricting the data layout such

that the location of each child node can be directly computed from the parent node's address (or a single

pointer), we can eliminate all (or nearly all) of the child pointers. Assuming that keys and pointers are the

same size, this e�ectively doubles the fanout of cache-line-sized tree nodes, thus reducing the height of the tree

and the number of cache misses. CSS-Trees [20] eliminate all child pointers, but do not support incremental

updates and therefore are only suitable for read-only or OLAP-like environments. CSB+-Trees [21] do

support updates by retaining a single pointer per non-leaf node that points to a contiguous block of its

children. Although CSB+-Trees outperform B+-Trees on searches, they still perform signi�cantly worse

on updates [21] due to the overheads of keeping all children for a given node in sequential order within

contiguous memory, especially during node splits.

Returning to the results in Figure 1, the bar labeled \CSB+" shows the execution time of CSB+-Trees

(normalized to that of B+-Trees) for the same index search experiment. As we see in Figure 1, CSB+-

Trees eliminate 20% of the data cache stall time, thus resulting in an overall speedup3 of 1.15 for searches.

While this is a signi�cant improvement, over half of the remaining execution time is still being lost to data

cache misses; hence there is signi�cant room for further improvement. In addition, these search-oriented

optimizations provide no bene�t to scan accesses, which are su�ering even more from data cache misses.

1.3 Our Approach: Prefetching B+-Trees

Modern microprocessors provide the following mechanisms for coping with large cache miss latencies. First,

they allow multiple outstanding cache misses to be in
ight simultaneously for the sake of exploiting par-

allelism within the memory hierarchy. For example, the Compaq ES40 [7] supports 32 in-
ight loads, 32

in-
ight stores, and eight outstanding o�-chip cache misses per processor, and its crossbar memory system

supports 24 outstanding cache misses. Second, to help applications take full advantage of this parallelism,

they also provide prefetch instructions which enable software to move data into the cache before it is needed.

Previous studies (which did not target databases speci�cally) have demonstrated that for both array-based

and pointer-based program codes, prefetching can successfully hide much of the performance impact of cache

misses by overlapping them with computation and other misses [13, 16]. Hence for modern machines, it is

not the number of cache misses that dictates performance, but rather the amount of exposed miss latency

that cannot be successfully hidden through techniques such as prefetching.

In this paper, we propose and study Prefetching B+-Trees (pB+-Trees), which are designed to use

prefetching to limit the exposed miss latency. Tree-based indices such as B+-Trees pose a major chal-

lenge for prefetching search and scan accesses, in that both access patterns su�er from the pointer-chasing

problem [13]: The data dependencies through pointers make it di�cult to prefetch su�ciently far ahead

to limit the exposed miss latency. For index searches, pB+-Trees seek to reduce this problem by having

wider nodes than the natural data transfer size, e.g., eight vs. one cache lines (or disk pages). These wider

nodes reduce the height of the tree, thereby decreasing the number of expensive misses when going from

parent to child. The key observation is that by using prefetching, the wider nodes come almost for free:

2Nodes that are close to the root are likely to remain in the cache if the index is reused repeatedly, but this is a relatively

small e�ect for main-memory indices, given the capacity of the caches and the number of levels in the tree.
3Throughout this paper, we report performance improvements in terms of their speedup factor, i.e., the original time divided

by the improved time.

2

all the cache lines in a wider node can be fetched about as quickly as the single cache line of a traditional

node. To accelerate index scans, we introduce arrays of pointers to the B+-Tree leaf nodes which allow us to

prefetch arbitrarily far ahead, thereby hiding the normally expensive cache misses associated with travers-

ing the leaves within the range. Of course, indices may be frequently updated. Perhaps surprisingly, we

demonstrate that insertion and deletion times actually decrease with our techniques, despite any overheads

associated with maintaining the wider nodes and the arrays of pointers.

1.4 Contributions of This Paper

This paper makes the following contributions. First, to our knowledge, this is the �rst study to explore how

prefetching can be used to accelerate search and scan operations on B+-Tree indices. We propose and study

the Prefetching B+-Tree (pB+-Tree). Second, we demonstrate that contrary to conventional wisdom, the

optimal B+-Tree node size on a modern machine is often wider than the natural data transfer size, since

we can use prefetching to fetch each piece of the node simultaneously. Our approach o�ers the following

advantages relative to CSB+-Trees: (i) we achieve better search performance because we can increase the

fanout by more than the factor of two that CSB+-Trees provide, e.g., we can increase it by a factor of

eight by making the nodes eight times wider; (ii) we achieve better (rather than worse) performance on

updates relative to B+-Trees, because our improved search speed more than o�sets any increase in node split

cost due to wider nodes; and (iii) we do not require any fundamental changes to the original B+-Tree data

structures or algorithms. In addition, we �nd that our approach is complementary to CSB+-Trees, in that

both techniques can be used together to advantage. Third, we demonstrate how the pB+-Tree can e�ectively

hide over 90% of the cache miss latency su�ered by (non-clustered) index scans, thus resulting in a factor

of 6.5{8.7 speedup over a range of scan lengths. While our experimental evaluation is performed within the

context of main memory databases, we believe that our techniques are also applicable to hiding disk latency,

in which case the prefetches will move data from disk into main memory.

The remainder of this paper is organized as follows. In Sections 2 and 3, we discuss how pB+-Trees use

prefetching to accelerate index searches and scans, respectively. To quantify the bene�ts of these techniques,

we present experimental results in Section 4. We discuss further issues related to B+-Tree operations in

Section 5, and �nally we conclude in Section 6.

2 Index Searches: Using Prefetching to Create Wider Nodes

Recall that during a B+-Tree search, we start from the root, performing a binary search in each non-leaf

node to determine which child to visit next. Upon reaching a leaf node, a �nal binary search returns the key

position (or the preceding key position in the case of an insertion). Regarding the cache behavior, we expect

at least one expensive cache miss to occur each time we move down a level in the tree. Hence the number

of cache misses is roughly proportional to the height of the tree (minus any nodes that might remain in the

cache if the index is reused). Thus, having wider tree nodes for the sake of reducing the height of the tree

might seem like a good idea. Unfortunately, in the absence of prefetching (i.e., when all cache misses are

equally expensive and cannot be overlapped), making the tree nodes wider than the natural data transfer

size|i.e., a cache line for main-memory databases (and a disk page for disk-resident databases)|actually

hurts performance rather than helps it, as has been shown in previous studies [20, 21]. The reason for this

is that the number of additional cache misses at each node more than o�sets the bene�ts of reducing the

number of levels in the tree.

As a small example, consider a main-memory B+-Tree holding 1000 keys where the cache line size is 64

bytes and the keys, child pointers, and tupleIDs are all four bytes. If we limit the node size to one cache line,

then the B+-Tree will contain at least four levels. Figure 2(a) illustrates the resulting cache behavior, where

the four cache misses would cost a total of 600 cycles on our Compaq ES40-based machine model [7]. If we

double the node width to two cache lines, the height of the B+-Tree can be reduced to three levels. However,

as we see in Figure 2(b), this would result in six cache misses, thus increasing execution time by 50%. In

general, if w is the number of cache lines per node and m is the number of pointers per one-cache-line node,4

4Throughout this paper, we consider for simplicity �xed-size keys, tupleIDs, and pointers. Thus m is the same for all nodes.

We also assume that tupleIDs and pointers are the same size.

3

��������
��������

��������
��������

node 0 node 1

150 300 450 600

cache miss

node 2 node 3

0

time (Cycles)

(a) Four levels of one-cache-line-wide nodes.

��������
��������

��������
��������

��������
��������

node 1 node 2
cache miss

node 0

0 150 300 450 600 750 900

time (Cycles)
��������
��������

��������
��������

����������
��������

�
�
�
�
�
�

�
�
�
�
�
� node 2node 1

cache miss
node 0

0 160 320 480

time (Cycles)

(b) Three levels of two-cache-lines-wide nodes. (c) Part (b) with prefetching.

Figure 2: Cache behaviors of various B+-Tree searches. The cache miss latency is 150 cycles to mainmemory,

and a subsequent access can begin 10 cycles later; these latencies are based on the Compaq ES40 [7].

then the number of cache misses in a B+-Tree of N tupleIDs is roughly proportional to

cache lines per node � levels in tree = w �

�
logwm

�
N

wm � 1

�
+ 1

�
(1)

To see this, observe that each non-leaf node contains wm child pointers, so that the fanout is wm, and each

leaf node holds wm � 1 hkey, tupleIDi pairs. Although the number of levels decreases as w increases, w,

which is the dominating factor in the equation, gets worse. Therefore equation (1) is minimized when w = 1.

With prefetching, however, the premise that all cache misses are equally costly is no longer valid, for it

becomes possible to hide the latency of any miss whose address can be predicted su�ciently early. Returning

to our example, if we prefetch the second half of each two-cache-line-wide tree node so that it is fetched in

parallel with the �rst half|as illustrated in Figure 2(c)|we can achieve signi�cantly better (rather than

worse) performance compared with the one-cache-line-wide nodes in Figure 2(a). The extent to which the

misses can be overlapped depends upon the implementation details of the memory hierarchy, but the trend

is toward supporting greater parallelism. In fact, with multiple cache and memory banks and crossbar

interconnects, it is possible to completely overlap multiple cache misses. Figure 2(c) illustrates the timing on

our Compaq ES40-based machine model, where back-to-back misses to memory can be serviced once every

10 cycles, which is a small fraction of the overall 150 cycle miss latency. Therefore even without perfect

overlap of the misses, we can still potentially achieve large performance gains (a speedup of 1.25 in this

example) by creating wider than normal B+-Tree nodes.

Hence the �rst aspect of our pB+-Tree design is to use prefetching to \create" nodes that are wider than

the natural data transfer size, but where the entire miss penalty for each extra-wide node is comparable to

that of an original B+-Tree node.

2.1 Modi�cations to the B+-Tree Algorithm

We consider a standard B+-Tree node structure: Each non-leaf node is comprised of some number,

d� 1, of childptr �elds, d� 1 key �elds, and one keynum �eld that records the number of keys stored in

the node (at most d � 1). (All notation is summarized in Table 1.) Each leaf node is comprised of d � 1

key �elds, d � 1 associated tupleID �elds, one keynum �eld, and one next-leaf �eld that points to the

next leaf node in key order. Our �rst modi�cation is to store the keynum and all of the keys prior to any

of the pointers or tupleIDs in a node. This simple layout optimization allows the binary search to proceed

without waiting to fetch all the pointers. Our search algorithm is a straightforward extension of the standard

B+-Tree algorithm, and we now describe only the parts that change.

Search: Before starting a binary search, we prefetch all of the cache lines that comprise the node.

Insertion: Since an index search is �rst performed to locate the position for insertion, all of the nodes on

the path from the root to the leaf are already in the cache before the real insertion phase. The only

additional cache misses are caused by newly allocated nodes, which we prefetch in their entirety before

redistributing the keys.

4

Table 1: Variable names and terminology used throughout this paper.

Variable De�nition

w number of cache lines in an index node

m number of child pointers in a one-cache-line-wide index node

N number of hkey, tupleIDi pairs in an index

d number of child pointers in a non-leaf B+-Tree node (= w�m)

T1 full latency of a cache miss

Tnext incremental latency of an additional pipelined cache miss

B normalized memory bandwidth
�
B = T

1

Tnext

�
k prefetching distance (number of nodes to prefetch ahead)

c chunk size (number of cache lines in a jump-pointer array chunk)

pwB+-Tree pB+-Tree with w-line-wide nodes and no jump-pointer arrays

pw
e
B+-Tree pB+-Tree with w-line-wide nodes and external jump-pointer arrays

pw
i
B+-Tree pB+-Tree with w-line-wide nodes and internal jump-pointer arrays

Deletion: We perform lazy deletion as in Rao and Ross [21]. If more than one key is in the node, we simply

delete the key. It is only when the last key in a node is deleted that we try to redistribute keys or

delete the node. Since index search is also performed prior to deletion, the entire root-to-leaf path is

in the cache. Key redistribution is the only potential cause of additional misses; hence when all keys

in a node are deleted, we prefetch the sibling node from which keys will be redistributed.

Prefetching can also be used to accelerate the bulkload of a B+-Tree. However, because this is expected

to occur infrequently, we focus instead on the more frequent operations of search, insertion and deletion.

2.2 Qualitative Analysis

As discussed earlier in this section, we expect search times to improve through our scheme because it reduces

the number of levels in the B+-Tree without signi�cantly increasing the cost of accessing each level. What

about the performance impact on updates? Updates always begin with a search phase, which will be sped

up. The expensive operations only occur either when the node becomes too full upon an insertion and must

be split, or when a node becomes empty upon a deletion and keys must be redistributed. Although node

splits and key redistributions are more costly with larger nodes, the relative frequency of these expensive

events should decrease. Therefore we expect update performance to be comparable to, or perhaps even

better than, B+-Trees with single-line nodes. Note that this would be in contrast with CSB+-Trees, where

update performance is generally worse than B+-Trees [21].

The space overhead of the index is strictly reduced with wider nodes. There is a slight improvement in the

amount of storage for leaf nodes, because the �xed overhead per leaf node (i.e., the keynum and next-leaf

�elds) is amortized across a larger number of hkey, tupleIDi pairs. The more signi�cant e�ect is the reduc-

tion in the number of non-leaf nodes. For a full tree, each leaf node contains d � 1 hkey, tupleIDi pairs.

The number of non-leaf nodes is dominated by the number of nodes in the level immediately above the leaf

nodes, and hence is approximately N

d(d�1)
. As the fanout d increases with wider nodes, the node size grows

linearly but the number of nodes decreases quadratically, resulting in a near linear decrease in the non-leaf

space overhead.

Finally, an interesting consideration is to determine the optimal node size, given prefetching. Should

nodes simply be as wide as possible? There are two system parameters that a�ect this answer. The �rst

is the extent to which the memory subsystem can overlap multiple cache misses. We quantify this as the

latency of a full cache miss (T1) divided by the additional time until another pipelined cache miss would also

complete (Tnext). We call this ratio (i.e., T1

Tnext
) the normalized bandwidth (B). For example, in our Compaq

ES40-based machine model, T1 = 150 cycles, Tnext = 10 cycles, and hence B = 15. The larger the value of

B, the greater the system's ability to overlap parallel accesses, and hence the greater likelihood of bene�ting

from wider index nodes. In general, we do not expect the optimal number of cache lines per node (woptimal)

5

��������
��������

��������
��������

cache miss

leaf0 leaf1 leaf2 leaf3

0 150 300 450 600

time (cycles)
��������
��������

��������
��������

cache miss

leaf0 leaf1

time (cycles)

0 160 320
��������
��������
��������
��������

cache miss

0 180

time (Cycles)

(a) Scanning 4 one-line nodes (b) Scanning 2 two-line nodes (c) Scanning with prefetching

Figure 3: Cache behaviors of index range scans.

to exceed B, since beyond that point we could have completed a binary search and moved down to the next

level in the tree. The second system parameter that potentially limits the optimal node size is the size of

the cache, although in practice this does not appear to be a limitation given realistic values of B.

Let us now consider a more quantitative analysis of the optimal node width (woptimal). A pB+-Tree

with N hkey, tupleIDi pairs contains at least
l
log

d

�
N

d�1

�
+ 1

m
levels. With our data layout optimization

of putting keys before child pointers, 3
4
of the node is read on average. Hence the average memory stall time

for a search in a full tree is�
logd

N

d� 1
+ 1

�
�

�
T1 +

��
3w

4

�
� 1

�
� Tnext

�
= Tnext �

�
logwm

N

wm� 1
+ 1

�
�

�
B +

�
3w

4

�
� 1

�
(2)

By computing the value of w that minimizes this cost, we can �nd woptimal. For example, in our simulations

where m = 8 and B = 15, then by averaging over tree sizes N = 103; : : : ; 109, we can compute from

equation (2) that woptimal = 8. If the memory subsystem bandwidth increases such that B = 50, then

woptimal increases to 22.

In summary, comparing our pB+-Trees with conventional B+-Trees, we expect better search performance,

comparable or somewhat better update performance, and lower space overhead. Having addressed index

search performance, we now turn our attention to index range scans.

3 Index Scans: Prefetching Ahead Using Jump-Pointer Arrays

Recall that an index range scan takes starting and ending keys as arguments and returns a list of either the

tupleIDs or the tuples themselves with keys that fall within this range. The �rst step in performing a range

scan is to search the B+-Tree to �nd the starting leaf node. Once the starting leaf is known, the scan then

follows the next-leaf pointers, visiting the leaf nodes in order. As the scan proceeds, the tupleIDs (or

tuples) are copied into a return bu�er. This process stops when either the ending key is found or the return

bu�er �lls up. In the latter case, the scan procedure pauses and returns the bu�er to the caller (often a join

node in a query execution plan), which then consumes the data and resumes the scan where it left o�. Hence

a range selection involves one key search and often multiple leaf node scan calls. Throughout this section,

we will focus on range selections that return tupleIDs, although returning the tuples themselves (or other

variations) is a straightforward extension of our algorithm, as we will discuss later in Section 5.

As we saw already in Figure 1, the cache performance of range scans is abysmal: 84% of execution time

is being lost to data cache misses in that experiment. Figure 3(a) illustrates the problem, which is that the

full cache miss latency is su�ered for each leaf node. A partial solution is to use the technique described in

Section 2: If we make the leaf nodes multiple cache lines wide and prefetch each component of a leaf node

in parallel, we can reduce the frequency of expensive cache misses, as illustrated in Figure 3(b). While this

is helpful, our goal is to fully hide the miss latencies, as illustrated in Figure 3(c). In order to do that, we

must �rst overcome the pointer-chasing problem.

3.1 Solving the Pointer-Chasing Problem

Figure 4(a) illustrates the pointer-chasing problem, which was observed by Luk and Mowry [13, 14] in

the context of prefetching pointer-linked data structures (i.e., linked-lists, trees, etc.) in general-purpose

applications. Assuming that three nodes worth of computation are needed to hide the miss latency, then

when node ni in Figure 4(a) is visited, we would like to be launching a prefetch of node ni+3. To compute the

6

n i i+1n i+2n i+3n.

Currently visiting Would like to prefetch

n i i+1n i+2n i+3n

&ni+4&ni+3 &ni+5

Jump Pointer

. n i i+1n i+2n i+3n.

&ni+2 &ni+3 &ni+4 &ni+5&ni+1&ni
.

prefetching distance
Jump Pointer

Array

(a) Traversing a linked list (b) Linked list with jump pointers (c) Linked list with a jump-pointer array

Figure 4: Illustration of the pointer-chasing problem and how it can be addressed.

address of node ni+3, we would normally follow the pointer chain through nodes ni+1 and ni+2. However,

this would incur the full miss latency to fetch ni+1 and then to fetch ni+2, before the prefetch of ni+3 could

be launched, thereby defeating our goal of hiding the miss latency of ni+3.

Luk and Mowry proposed three solutions to the pointer-chasing problem [13, 14], two of which are

applicable to linked lists. The �rst scheme (data-linearization prefetching) involves arranging the nodes

in memory such that their addresses can be trivially calculated without dereferencing any pointers. For

example, if the leaf nodes of the B+-Tree are arranged sequentially in contiguous memory, they would be

trivial to prefetch. However, this will only work in read-only situations, and we would like to support

frequent updates. The second scheme (history-pointer prefetching) involves creating new pointers|called

jump pointers|which point from a node to the node that it should prefetch. For example, Figure 4(b) shows

how node ni could directly prefetch node ni+3 using three-ahead jump pointers.

In our study, we will build upon the concept of jump pointers, although we will customize them to the

speci�c needs of B+-Tree indices. For example, rather than storing jump pointers directly in the leaf nodes, we

instead pull them out into a separate array, which we call the jump-pointer array, as illustrated in Figure 4(c).

To initiate prefetching with a jump-pointer array, the starting leaf node uses a pointer to locate its position

within the array; it then adjusts its o�set within the array based on the desired prefetching distance to �nd

the appropriate leaf node address to prefetch. As the scan proceeds, the prefetching task simply continues

to walk ahead in the jump-pointer array (which itself is prefetched) without having to dereference the actual

leaf nodes again. In addition to this advantage, jump-pointer arrays o�er other bene�ts relative to storing

the jump pointers directly in the leaf nodes. For example, we can adjust the prefetching distance without

changing either the jump-pointer array or the B+-Tree nodes by simply changing the o�set used within the

array. This allows us to dynamically adapt to changing performance conditions on a given machine, or if

the code migrates to di�erent machines. In addition, the same jump-pointer array can be reused to target

di�erent latencies in the memory hierarchy (e.g., disk latency vs. memory latency). Other advantages include

improved robustness and more relaxed concurrency control on the jump-pointer arrays, since we can treat

the pointers simply as hints, etc.

Jump-pointer arrays do introduce additional space overhead, although that overhead is relatively small

since the array only contains one pointer per leaf node. For example, for the 8-cache-line-wide nodes that

we use later in our experiments, the jump-pointer array is only 0.8% of the size of the leaf nodes themselves.

Nevertheless, it is possible to reduce this space overhead even further by reusing internal nodes within the

B+-Tree, as we will discuss later in Section 3.5.

From an abstract point of view, one might think of the jump-pointer array as a single large, contiguous

array, as illustrated in Figure 5(a). (For simplicity, we omit the pointers from jump-pointer array back to the

leaf nodes in this �gure.) If updates did not occur, it would be easy to implement the jump-pointer array this

way in practice. However, in a read-only situation there is no motivation for using a jump-pointer array, since

we could simply arrange the leaf nodes themselves contiguously and use data-linearization prefetching [13, 14],

as we mentioned earlier. Hence a key issue in implementing jump-pointer arrays is that they must handle

updates gracefully.

3.2 Implementing Jump-Pointer Arrays to Support E�cient Updates

Let us brie
y consider the problems created by updates if we attempted to maintain the jump-pointer array

as a single contiguous array as shown in Figure 5(a). If a leaf node is deleted, then a gap will be created within

the array unless it is compacted. Since compacting an array of such a large size would be quite expensive,

it is more likely that we would simply leave the hole in the short term, and perhaps perform compaction of

7

. . .leaf nodes

contiguous array

back
pointer

Tree

leaf node addresses

. . .

. . . /

Tree

chunked
linked
list

hints
leaf addresses

.

leaf nodes

(a) single array with real back-pointers (b) chunked linked list with \hint" back-pointers

Figure 5: Structures to implement external jump-pointer arrays.

the entire array periodically but infrequently. The only real problem with a hole in the jump-pointer array

is that we need to skip over it to get to the next real prefetching address, although one can easily imagine

working around this issue. The more signi�cant problem occurs when new leaves are inserted, in which case

we would like to create a hole in the appropriate position for the new jump pointer. If no nearby holes

could be located, then this could potentially involve copying a very large amount of data within the array in

order to create the hole. In addition, for each jump-pointer that moves within the array, the corresponding

back-pointer from the leaf node into the array would also need to be updated, which could be very costly.

Clearly we would not want to pay such a high cost upon updates.

To avoid these problems, we improve upon the naive contiguous array implementation of jump-pointer

arrays in the following three ways. First, we break the contiguous array into a chunked linked list|as

illustrated in Figure 5(b)|which allows us to limit the impact of an update to its corresponding chunk. The

chunk size (c, in units of cache lines) is chosen to be su�ciently large relative to the cache miss latency to

ensure that we only need to prefetch one chunk ahead in order to fully hide the miss latency of the chunks

themselves. As we will see later in our experimental results, we achieve excellent performance on both scans

and updates using this approach.

Second, we actively attempt to interleave empty slots within the jump-pointer array so that insertions

can proceed quickly. During bulkload or when a chunk splits, the jump pointers are stored such that empty

slots are evenly distributed to maximize the chance of �nding a nearby empty slot for insertion. When a

jump-pointer is deleted, we simply leave an empty slot in the chunk.

Finally, we alter the meaning of the pointer from a leaf node to its position in the jump-pointer array such

that it is merely a hint. The pointer should point to the correct chunk, but the position within that chunk

may be imprecise. The advantage of this is that upon insertion, we do not need to update hints pointing to

any addresses moved in order to create a hole. We only update a hint �eld when: (i) the precise position

of its jump-pointer array position is looked up during range scan or insertion, in which case the leaf node

should be already in cache and updating the hint is almost free; and (ii) when a chunk splits and addresses

are redistributed, in which case we are forced to update the hints to point to the new chunk. The cost of

using hints, of course, is that we need to search for the correct location within the chunk in some cases. In

practice, however, the hints appear to be good approximations of the true positions, and searching for the

precise location is not a costly operation (e.g., it should not incur any cache misses).

In summary, the net e�ect of these three enhancements is that nothing moves during deletions, only a

small number of jump pointers (between the insertion position and the nearest empty slot) typically move

during insertions, and in neither case do we normally update the hints within the leaf nodes. Thus we

expect jump-pointer arrays to perform well during updates. Having described the data structure that we

use to facilitate prefetching, we now describe our prefetching algorithm itself.

3.3 Prefetching Algorithm

Recall that the basic range scan algorithm consists of a loop that visits a leaf on each iteration by following

a next-leaf pointer. To augment this algorithm to support prefetching, we add prefetches both prior to

this loop (for the startup phase), and inside the loop (for the stable steady-state phase). Let k be the desired

prefetching distance, in units of leaf nodes (we discuss below how to select k). During the startup phase,

8

we perform range prefetching for the �rst k leaf nodes.5 Note that these prefetches proceed in parallel,

exploiting the available memory hierarchy bandwidth. During each loop iteration (i.e. in the steady-state

phase), prior to visiting the current leaf node in the range scan, we range prefetch the leaf node that is k

nodes after the current leaf node. The goal is to ensure that by the time the basic range scan loop is ready

to visit a leaf node, that node is already in the cache, due to our earlier prefetching. With this framework

in mind, we now describe further details of our algorithm.

First, when the range scan begins, we must �nd the location of the starting leaf within the jump-pointer

array. To do this, we follow the hint pointer from the starting leaf node to see whether it is a precise

match|i.e. whether the hint points to a pointer back to the starting leaf. If not, then we start searching

within the chunk in both directions relative to the hint position until the matching position is found. As

discussed earlier, we expect the distance between the hint and the actual position to be small.

Second, we need to prefetch the jump-pointer array chunks as well as the leaf nodes, and also handle

empty slots in the chunks. During the startup phase, we prefetch both the current chunk and the next

chunk. We test for and skip all empty slots when looking for a jump pointer. If we come to the end of the

current chunk, we will go to the next chunk to get the �rst non-empty jump-pointer (there is at least one

non-empty jump pointer or the chunk should have been deleted). We then prefetch the next chunk ahead

in the jump-pointer array. Because we always prefetch the next chunk before prefetching any leaf nodes

associated with the current chunk, the next chunk should be in the cache by the time we access it.

Third, although the actual number of tupleIDs in the leaf node is unknown when we do range prefetching,

we will assume that the leaf is full and prefetch the return bu�er area accordingly. Thus the return bu�er

will always be prefetched su�ciently early.

Finally, we discuss how to select the prefetching distance and the chunk size. The prefetching distance

(k, in units of nodes to prefetch ahead) is selected as follows. Normally one would derive this quantity by

dividing the expected worst-case miss latency by the time it takes to consume one leaf node (similar to what

has been done in other contexts [16]). However, because the computation time associated with performing

the binary search is expected to be quite small relative to the miss latency, we will assume that the limiting

factor is the memory bandwidth. Roughly speaking, we can estimate this bandwidth-limited prefetching

distance as

k =

�
B

w

�
; (3)

where B is the normalized memory bandwidth (recall that B = T1

Tnext
, the number of cache misses that

can be in
ight simultaneously), and w is the number of cache lines per leaf node. In practice, there is no

problem with increasing k a bit to create some extra slack, because any prefetches that cannot proceed are

simply bu�ered within the memory system. Indeed, our experimental results in Section 4 show that the

performance is not particularly sensitive to increasing k beyond
�
B

w

�
.

Regarding the chunk size (c), we observe a similar e�ect (also shown later in Section 4) where increasing

it beyond its minimum value has little impact on performance. Therefore, rather than trying to compute c

precisely, we will instead focus on estimating the minimumvalue of c that will be e�ective. The major factor

that dictates the minimum chunk size is that the chunks must be su�ciently large to ensure that we only

need to prefetch one chunk ahead to fully hide the miss latency of accessing the chunks themselves. Recall

that during the steady-state phase of a range scan, when we get to a new chunk, we immediately prefetch

the next chunk ahead so that we can overlap its fetch time with the time it takes to prefetch the leaf nodes

associated with the current chunk. Since the memory hierarchy only has enough bandwidth to initiate B

cache misses during the time it takes one cache miss to complete, the chunks would clearly be large enough

to hide the latency of fetching the next chunk (even if we are bandwidth-limited) if they contained at least B

leaf pointers. Since c is in units of cache lines, we compute its value by dividing B by the expected number

of leaf pointers within a cache-line-sized portion of a chunk. For a full tree with no empty leaf slots and no

empty chunk slots, each cache line can hold 2m leaf pointers (since there are only pointers and no keys), in

5Note that we need to prefetch not only a leaf node but also the bu�er area to hold the resulting tupleIDs; to simplify this

discussion, when we refer to \range prefetching a leaf node," we mean prefetching the cache lines for both the leaf node and

the bu�er area where the tupleIDs are to be stored.

9

which case we can estimate the minimum chunk size as

c =

�
B

2m

�
: (4)

To account for empty chunk slots, we can multiply the denominator in equation (4) by the fraction of chunk

slots that are expected to be full (a value similar to the bulkload factor), which would increase c somewhat.

A second factor that could (in theory) dictate the minimum chunk size is that each chunk should contain at

least k leaf pointers so that our prefetching algorithm can get su�ciently far ahead. However, since k � B

from equation (3), the chunk size in equation (4) should be su�cient. As we mentioned earlier, increasing c

beyond this minimum value to create some extra slack for empty leaf nodes and empty chunk slots does not

hurt performance in practice, as our experimental results demonstrate later in Section 4.

3.4 Summary and Qualitative Analysis

We now brie
y summarize the various aspects of our algorithm (referring the reader to Table 1, as needed):

Range Scan: Given the starting leaf node, we follow the hint in the leaf to its jump-pointer array position,

and locate the precise location for that leaf in the chunk. (At this point we update the hint for free.)

In the start-up phase, we perform range prefetching for k nodes. In each range scan loop iteration, we

prefetch the kth leaf node ahead of the current one.

Insertion: If the insertion does not result in a leaf node split, then there is no updating to be done. In the

infrequent case that a leaf node splits, if the jump-pointer array chunk has empty slots, the precise

location of the jump pointer is located as well as the nearest empty slot. The jump pointers between

these two locations are then moved and the new jump pointer is inserted. The hint in the new leaf

node is set, and the hint in the original leaf node is updated (if needed). On the other hand, in the

rare case that a leaf node splits and the chunk is full, then a new chunk is allocated and jump pointers

are redistributed so that empty slots are evenly distributed throughout the two chunks. The hint in

the new leaf node is set, and the hints in all leaf nodes with redistributed jump pointers are updated.

Deletion: If the deletion does not empty a leaf node, then there is no updating to be done. In the rare case

that a leaf node is emptied, and therefore is being deleted, the precise location in the jump-pointer

array is determined. If the chunk contains at least two addresses, then the jump pointer slot is simply

set to null, indicating an empty slot. Otherwise, the chunk is removed from the jump-pointer array.

Search: The search algorithm is unchanged. However, because each leaf node now contains a hint �eld,

the maximum number of hkey, tupleIDi pairs in a leaf is reduced by one (from d� 1 to d� 2).

Bulkload: The bulkload algorithm is extended to allocate and initialize the jump-pointer array, �lling it

with pointers to the leaf nodes. The bulkload factor determines the number of occupied slots in each

jump-pointer array chunk, just as it determines the number of occupied slots in leaf nodes.

Given su�cient memory system bandwidth, our prefetching scheme hides the full memory latency ex-

perienced at every leaf node visited during range scan operations. As discussed earlier, we also expect

good performance on updates. However, there is a space overhead associated with the jump-pointer array in

order to store the N

d�2
jump pointers. Given our technique described earlier in Section 2 for creating wider

B+-Tree nodes, the resulting increase in the fanout (d) will help reduce this overhead. However, if this space

overhead is still a concern, we now describe how it can be reduced further.

3.5 Saving Space through Internal Jump-Pointer Arrays

So far we have described how a jump-pointer array can be implemented by creating a new external structure

to store the jump pointers (as illustrated earlier in Figure 5). However, there is an existing structure within

a B+-Tree that already contains pointers to the leaf nodes, namely, the parents of the leaf nodes. We will

refer to these parent nodes as the bottom non-leaf nodes. The child pointers within a bottom non-leaf node

10

Tree

Bottom
non-leaf node

Figure 6: Adding next pointers to bottom non-leaf nodes

correspond to the jump-pointers within a chunk of the external jump-pointer array described in Section 3.2.

A key di�erence, however, is that there is no easy way to traverse these bottom non-leaf nodes quickly

enough to perform prefetching. A potential solution is to connect these bottom non-leaf nodes together in

leaf key order using linked-list pointers. (Note that this is sometimes done already for concurrency control

purposes [24].)

Figure 6 illustrates how this might be accomplished to create what is e�ectively an internal jump-pointer

array. Note that in the �gure, leaf nodes do not contain pointers to their position within the jump-pointer

array. It turns out that such pointers are not necessary for this internal implementation, because that

position will be determined during the binary search of the leaf node's parent. If we simply record or pass

this position along to the leaf node when we descend to it, then the prefetching can begin appropriately.

Maintaining a next pointer for a bottom non-leaf node is fairly similar to maintaining a next pointer

for a leaf node. Therefore bulkload, insertion and deletion algorithms can be easily obtained by extending

the existing B+-Tree algorithms. The search algorithm is the same, with the only di�erence being that the

maximum number of pointers in a bottom non-leaf node is reduced by one. The prefetching algorithm for

range scan is similar to the one described earlier for external jump-pointer arrays, although we do not need

to locate the starting leaf within the jump-pointer array (because the position has already been recorded, as

discussed above).

This approach is attractive with respect to space overhead, since the only overhead is one additional

pointer per bottom non-leaf node. The overhead of updating this pointer should be insigni�cant, because it

only needs to be changed in the rare event that a bottom non-leaf node splits or is deleted. One potential

limitation of this approach, however, is that the length of a \chunk" in this jump-pointer array is dictated

by the B+-Tree structure, and may not be easily adjusted to satisfy large prefetch distance requirements

(e.g., for hiding disk latencies).

In the remainder of this paper, we will use the notations \peB
+-Tree" and \piB

+-Tree" to refer to

pB+-Trees with external and internal jump-pointer array structures, respectively.

4 Experimental Results

To facilitate comparisons with CSB+-Trees, we present our experimental results in a main-memory database

environment. We begin by describing the framework for the experiments, including our performance simu-

lator and the implementation details of the index structures that we compare. The three subsections that

follow present our experimental results for index search, index scan, and updates. Next, we present results

for \mature" trees, followed by sensitivity analysis. Finally, we present a detailed cache performance study

for a few of our earlier experiments.

4.1 Experimental Framework

4.1.1 Machine Model

We evaluate the performance impact of Prefetching B+-Trees through detailed simulations of fully-

functional executables running on a state-of-the-art machine. Since the gap between processor and memory

speeds is continuing to increase dramatically with each new generation of machines, it is important to focus

on the performance characteristics of machines in the near future rather than in the past. Hence we base

11

Table 2: Simulation parameters.

Pipeline Parameters

Clock Rate 1 GHz

Issue Width 4 insts/cycle

Functional Units 2 Integer, 2 FP,

2 Memory, 1 Branch

Reorder Bu�er Size 64 insts

Integer Multiply/Divide 12/76 cycles

All Other Integer 1 cycle

FP Divide/Square Root 15/20 cycles

All Other FP 2 cycles

Branch Prediction Scheme gshare [15]

Memory Parameters

Line Size 64 bytes

Primary Data Cache 64 KB, 2-way set-assoc.

Primary Instruction Cache 64 KB, 2-way set-assoc.

Miss Handlers 32 for data, 2 for inst.

Uni�ed Secondary Cache 2 MB, direct-mapped

Primary-to-Secondary 15 cycles (plus any delays

Miss Latency due to contention)

Primary-to-Memory 150 cycles (plus any delays

Miss Latency due to contention)

Main Memory Bandwidth 1 access per 10 cycles

our memory hierarchy on the Compaq ES40 [7] (one of the most advanced computer systems announced

to date), but we update it slightly to include a dynamically-scheduled, superscalar processor similar to the

MIPS R10000 [25] running at a clock rate of 1 GHz. The simulator performs a cycle-by-cycle simulation,

modeling the rich details of the processor including the pipeline, register renaming, the reorder bu�er, branch

prediction, branching penalties, the memory hierarchy (including all forms of contention), etc. Table 2 shows

the key parameters of the simulator.

Given the parameters in Table 2, one can see that the normalized memory bandwidth (B)|i.e. the

number of cache misses to memory that can be serviced simultaneously|is 15, since

B =
T1

T
next

=
150

10
= 15: (5)

This is slightly pessimistic compared with the actual Compaq ES40 [7], where B = 16:25, and is intended

to re
ect other recent memory system designs [3]. As shown later in Section 4.6, small variations in B do

not substantively alter the results of our studies.

We compiled our C source code into MIPS executables using version 2.95.2 of the gcc compiler with

optimization
ags enabled. We added prefetch instructions to the source code by hand, using the gcc ASM

macro to translate these directly into valid MIPS prefetch instructions.

4.1.2 B+-Trees Studied and Implementation Details

Our experimental study compares pB+-Trees of various node widths w with B+-Trees and CSB+-Trees. We

consider both pw
e
B+-Trees and pw

i
B+-Trees (described earlier in Sections 3.2{3.4 and Section 3.5, respec-

tively). We also consider the combination of both pB+-Tree and CSB+-Tree techniques, which we denote as

a pCSB+-Tree.

We implemented bulkload, search, insertion, deletion, and range scan operations for: (i) standard B+-

Trees; (ii) pwB+-Trees for node widths w = 2; 4; 8; and 16; (iii) p8eB
+-Trees; and (iv) p8iB

+-Trees. For

these latter two cases, the node width w = 8 was selected because our experiments showed that this choice

resulted in the best search performance (consistent with the analytical computation in Section 2). We

also implemented bulkload and search for CSB+-Trees and pCSB+-Trees. Although we did not implement

insertion or deletion for CSB+-Trees, we conduct the same experiments as in Rao and Ross [21] (albeit in

a di�erent memory hierarchy) to facilitate a comparison of the results.6 Although Rao and Ross present

techniques to improve CSB+-Tree search performance within a node [21], we only implemented standard

binary search for all the trees studied because our focus is on memory performance (which is the primary

bottleneck, as shown earlier in Figure 1).

Our pB+-Tree techniques improve performance over a range of key, pointer, and tupleID sizes. For

concreteness, we report experimental results where the keys, pointers, and tupleIDs are 4 bytes each, as

was done in previous studies [20, 21]. As discussed in Section 2, we use a standard B+-Tree node structure,

consistent with previous studies. For the B+-Tree, each node is one cache line wide (i.e., 64 bytes). Each

6Note that direct comparisons are not possible due to the di�erent memory hierarchies, although we would expect the same

general trends to apply.

12

non-leaf node contains a keynum �eld, 7 key �elds and 8 childptr �elds, while each leaf node contains a

keynum �eld, 7 key �elds, 7 associated tupleID �elds, and a next-leaf pointer.7 The nodes of the pB+-

Trees are the same as the B+-Trees, except that they are wider. So for eight-cache-line-wide nodes, each

non-leaf node is 512 bytes and contains a keynum �eld, 63 key �elds, and 64 childptr �elds, while each leaf

node contains a keynum �eld, 63 key �elds, 63 associated tupleID �elds, and a next-leaf pointer. For the

p8
e
B+-Tree, non-leaf nodes have the same structure as for the pB+-Tree, while each leaf node has a hint

�eld and one fewer key and tupleID �elds. For the p8
i
B+-Tree, the only di�erence from the pB+-Tree is

its bottom non-leaf nodes: each bottom non-leaf node has a next-sibling pointer, and one fewer key and

childptr �elds. For the CSB+-Tree and the pCSB+-Tree, each non-leaf node has only one childptr �eld.

For example, a CSB+-Tree non-leaf node has a keynum �eld, 14 key �elds, and a childptr �eld. All tree

nodes are aligned on a 64 byte boundary when allocated.

For the p8
e
B+-Tree and p8

i
B+-Tree experiments, we need to select the prefetch distance (for both) and

the chunk size (for the former). According to equations (3) and (5), we should select k =
�
B

w

�
=
�
15
8

�
= 2.

However, as discussed in Section 3, it is often advantageous to slightly increase k in order to create some

extra slack. We set k = 3, to create extra slack for the prefetching of chunks and non-leaf nodes. (Our

sensitivity analysis in Section 4.6 will show that selecting k = 2, 3, or 4 results in similar scan performance.)

As for the chunk size, according to equation (4) and the discussion that follows, we should select c to be

at least
�
B

2m

�
=

�
15
16

�
= 1. We conservatively select c = 8, i.e., each chunk is 8 cache lines wide, so that

each chunk contains 126 leaf pointer �elds. (Our sensitivity analysis in Section 4.6 will show that selecting

c = 1; 2; : : : ; 32 results in similar scan performance.)

4.2 Search Performance

We �rst evaluate index search performance for B+-Trees, CSB+-Trees, pwB+-Trees (where w = 2, 4, 8, and

16), and p8CSB+-Trees (which combine our prefetching approach with CSB+-Trees).

Varying the number of leaf nodes. Figure 7 shows the execution time of 100,000 random searches after

bulkloading 10K, 30K, 100K, 300K, 1M, 3M, and 10M keys into the trees (nodes are 100% full except the

root).8 In the experiments shown in Figure 7(a), search operations are performed one immediately after

another (the \warm cache" case); whereas in the experiments shown in Figure 7(b), the cache is cleared

between each search (the \cold cache" case). Depending on the operations performed between the searches,

the real-world performance of an index search would lie in between the two extremes: closer to the warm

cache case for index joins, while often closer to the cold cache case for single value selections. From these

experiments, we see that:(i) the B+-Tree has the worst performance; (ii) the trees with wider nodes and

prefetching support (pB+-Trees, pCSB+-Tree) all perform better than their non-prefetching counterparts

(B+-Tree, CSB+-Tree); and (iii) the p8B+-Tree is comparable to or better than all other pB+-Trees over

the entire range of tree sizes. For warm caches, the speedup of the p8B+-Tree over the B+-Tree is between

a factor of 1.27 to 1.47. The warm cache speedup of the p8B+-Tree over the CSB+-Tree is between a factor

of 1.14 to 1.28 once the tree no longer �ts in the L2 cache. Likewise, the cold cache speedups are 1.32 to

1.55 and 1.14 to 1.34, respectively.

The cold cache curves provide insight into the index search performance. The trend of every single curve

is clearly shown in the cold cache experiment: the curves all increase in discrete large steps, and within the

same step they increase only slightly. The large steps for a curve occur when the number of levels in the tree

increases. This can be veri�ed by examining Table 3, which depicts the number of levels in the tree for each

data point plotted in Figure 7. Within a step, additional leaf nodes result in more keys in the root node (the

other nodes in the tree remain full), which in turn increases the cost to search the root. The step-up trend

is blurred in the warm cache curves because the top levels of the tree may remain in the cache. For di�erent

curves, we can see that generally the higher the tree structure, the larger the search cost; when trees are of

the same height, the smaller node size yields better performance. We conclude that the performance gains

for wider nodes stem mainly from the resulting decrease in tree height.

7Considering non-leaf nodes with next-sibling pointers, as is often done for concurrency control purposes [24], does not

substantively alter our results.
8Note that when we refer to a number of keys, \K" and \M" correspond to 1000 and 1,000,000, respectively. When we refer

to the size of a memory structure (e.g., a cache), however, \K" and \M" correspond to 1024 and 1,048,576, respectively.

13

10
4

10
5

10
6

10
7

10

20

30

40

50

60

70

80

entries in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
CSB+
p2B+tree
p4B+tree
p8B+tree
p16B+tree
p8CSB+

10
4

10
5

10
6

10
7

60
80

100
120
140
160
180
200
220
240
260
280

entries in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
CSB+
p2B+tree
p4B+tree
p8B+tree
p16B+tree
p8CSB+

(a) Warm cache (b) Cold cache

Figure 7: 100K searches after bulkloading 10K to 10M keys.

Table 3: The number of levels in trees for Figure 7.

Number of Keys

Tree Type 10K 30K 100K 300K 1M 3M 10M

B+-Tree 5 6 6 7 7 8 8

CSB+-Tree 4 5 5 5 6 6 7

p2B+-Tree 4 4 5 5 6 6 6

p4B+-Tree 3 3 4 4 4 5 5

p8B+-Tree 3 3 3 4 4 4 4

p16B+-Tree 2 3 3 3 3 4 4

pCSB+-Tree 3 3 3 3 3 4 4

There is a special case though. When the number of levels are the same, the p2B+-Tree and the CSB+-

Tree have very similar performance. This is because the second cache line in a p2B+-Tree node stores pointers,

and the cost of retrieving these second lines is partly hidden by the key comparisons. By eliminating all but

one pointer, the CSB+-Tree has almost the same number of keys as the p2B+-Tree, resulting in similar key

comparison costs.

Varying the bulkload factor. Figure 8 shows the e�ect on search performance of varying the bulkload

factor. All the trees are bulkloaded with 3 million hkey, tupleIDi pairs, with bulkload factors 60%, 70%,

80%, 90%, and 100%. Because the actual number of used entries in leaf nodes in an experiment is the product

of the bulkload factor and the maximumnumber of slots (rounded to the nearest integer), we computed and

used the true percentage of used entries when plotting the data. Thus the plotted points may not be aligned

with the target bulkload factors. As in the previous experiments, Figure 8 shows that: (i) the B+-Tree has

the worst performance; (ii) the trees with wider nodes and prefetching support (pB+-Trees, pCSB+-Tree)

all perform better than their non-prefetching counterparts (B+-Tree, CSB+-Tree); and (iii) the p8B+-Tree

is the best of all the pB+-Trees.

In the cold cache experiment, we see a step-down pattern in the curves: the steps correspond to the

number of levels in the trees, for the tree height decreases (in a step-wise fashion) as the bulkload factor

increases. Within a step, however, the curves increase slightly. This is because in our bulkload algorithms,

the bulkload factor also determines the number of keys in non-leaf nodes. So the larger the bulkload factor,

the larger the number of keys in each non-root node, and hence the larger the key comparison cost.

Searches on trees with range scan prefetching structures. Our next experiment determines whether

the di�erent structures for speeding up range scans have an impact on search performance. We use node

14

50 60 70 80 90 100
40

50

60

70

80

90

100

110

percentage of entries used in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
CSB+
p2B+tree
p4B+tree
p8B+tree
p16B+tree
p8CSB+

50 60 70 80 90 100
100

140

180

220

260

300

percentage of entries used in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
CSB+
p2B+tree
p4B+tree
p8B+tree
p16B+tree
p8CSB+

(a) warm cache (b) cold cache

Figure 8: 100K searches after bulkloading 3M keys with di�erent bulkload factors.

10
4

10
5

10
6

10
7

10

20

30

40

50

60

70

80

entries in leaf nodes

tim
e

(M
 c

yc
le

s)

p8B+tree
p8eB+tree
p8iB+tree

10
4

10
5

10
6

10
7

60
80

100
120
140
160
180
200
220
240
260

entries in leaf nodes

tim
e

(M
 c

yc
le

s)

p8B+tree
p8eB+tree
p8iB+tree

(a) Warm cache (b) Cold cache

Figure 9: 100K searches after bulkloading 10K to 10M keys into p8B+-Trees with and without range scan

prefetching structures.

width w = 8 for these experiments, because the p8B+-Tree resulted in the best search performance among the

pB+-Trees. Figure 9 compares the search performance of the p8B+-Tree, the p8eB
+-Tree, and the p8

i
B+-Tree.

The same experiments as in Figure 7 were performed. Recall that both the p8eB
+-Tree and the p8

i
B+-Tree

consume space in the tree structures relative to the p8B+-Tree: the maximum number of keys in leaf nodes

is one fewer for the p8
e
B+-Tree, and the maximum number of keys in bottom non-leaf nodes is one fewer

for the p8
i
B+-Tree. Figures 9(a) and 9(b) show that these di�erences have a negligible impact on search

performance. In one cold cache case, when 10M keys are in the tree, the p8eB
+-Tree su�ers from having one

more level than the other two trees, but otherwise both the warm and cold cache performances are basically

the same for all three trees, over the entire range of 10K to 10M keys.

4.3 Range Scan Performance

In our next set of experiments, we evaluate the e�ectiveness of our techniques for improving range scan

performance. We compare B+-Trees, p8B+-Trees, p8
e
B+-Trees, and p8

i
B+-Trees. As indicated above, we

restrict our attention to node width w = 8 because this is the best width for searches, which are presumed

to occur more frequently than range scans. As discussed in Section 4.1.2, we set the prefetching distance to

3 and the chunk size to 8 cache lines.

Varying the range size and the bulkload factor. Figure 10 shows the execution time of range scans

while varying (a) the number of tupleIDs to scan per request (i.e., the size of the range), or (b) the bulkload

factor. Because of the large performance gains for pB+-Trees, the execution time is shown on a logarithmic

scale. In Figure 10(a), the trees are bulkloaded with 3 million hkey, tupleIDi pairs, using a 100% bulkload

factor. Then 100 random starting keys are selected, and a range scan is requested for m tupleIDs starting

15

10
2

10
4

10
6

10
4

10
6

10
8

10
10

entries scanned through in a single call

tim
e

(C
yc

le
s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

50 60 70 80 90 100
10

5

10
6

10
7

percentage of entries used in leaf nodes

tim
e

(C
yc

le
s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

(a) Varying the number of tupleIDs scanned for each request (b) Varying the bulkload factor

Figure 10: Range scan requests.

at that starting key value, for m = 10, 100, 1K, 10K, 100K, and 1M. The execution time plotted for

each m is the average of the 100 starting keys. In Figure 10(b), the trees are bulkloaded with 3 million

hkey, tupleIDi pairs, with bulkload factor 60%, 70%, 80%, 90%, and 100%. Then 100 random starting

keys are selected, and a range scan is requested for 1000 tuple IDs starting at that value. Between the

range scan requests, the caches are cleared, in order to more accurately re
ect scenarios in which range scan

requests are interleaved with other database operations or application programs (which would tend to evict

any cache-resident nodes).

From the �gures, we see that the p8
e
B+-Tree and the p8

i
B+-Tree achieve signi�cantly better performance

than the standard B+-Tree, with a factor of 6.5 to 8.7 speedup over the B+-Tree, when the number of

tupleIDs scanned ranges from 1K to 1M. In Figure 10(b), we see that as the bulkload factor decreases,

the number of leaf nodes to scan increases (we must scan past an increasing number of empty slots), and

our prefetching schemes achieve even larger speedup. The plots reveal the contribution to the speedup of

two of the pB+-Tree techniques. First, extending the node size and then prefetching all the cache lines in

a node while (searching and) scanning, results in a speedup of 3.5 to 3.7 (this is revealed in the speedup

of the p8B+-Tree over the B+-Tree). Second, also prefetching one or more leaf nodes ahead results in an

additional speedup of around 2 (this is revealed in the speedup of both the p8eB
+-Tree and the p8

i
B+-Tree

over the p8B+-Tree). Note that the performance of the p8eB
+-Tree and the p8iB

+-Tree are nearly identical,

indicating that there is no compelling need to build an external prefetching structure.9

When the number of tupleIDs scanned is much smaller than 1K, however, the cost of the start-up phase

in our prefetching schemes shows up in the performance curves. When scanning only 100 tupleIDs, pB+-

Trees are only twice as fast as standard B+-Trees. Moreover, when scanning only 10 tupleIDs, both the

p8eB
+-Tree and the p8iB

+-Tree are slower than the B+-Tree, while the p8B+-Tree is only slightly faster than

the B+-Tree. This suggests a scheme in which the prefetching of the p8
e
B+-Tree or the p8

i
B+-Tree is employed

only if the range is expected to be greater than 100 tupleIDs. Estimating the size of the range can be done

either (i) by a query optimizer using standard techniques such as histograms, or (ii) by simultaneously

searching for both the starting and ending leaves of the range and then seeing how far apart they are.

Large segmented range scans. We next consider large range scans. In practice, a large range scan

may be broken up into smaller segments, to permit other operations and queries to proceed or to avoid

over
owing the return bu�er. For example, an indexed scan providing sorted input to a sort-merge join

operator will have its return bu�er consumed at a rate dependent on the data pro�le of the operator's other

input. Figure 11 shows the execution time for performing segmented range scans: each scan consists of a

search for the starting key, followed by 1000 range scan requests, each scanning (and placing into the return

bu�er) the next segment of 1000 hkey, tupleIDi pairs, for a total of 1M pairs. The trees are bulkloaded

with 3 million hkey, tupleIDi pairs, with bulkload factor 60%, 70%, 80%, 90%, and 100%. The reported

execution times are the average of 100 segmented range scans, starting from 100 randomly selected starting

9This conclusion is dependent on the ratio of w to k. In other scenarios with di�erent ratios, such as when prefetching to

hide both memory and disk latencies, the
exibility of the external structure may be needed.

16

50 60 70 80 90 100
10

8

10
9

10
10

percentage of entries used in leaf nodes

tim
e

(C
yc

le
s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

Figure 11: Large (segmented) range scans with varying bulkload factors.

50 60 70 80 90 100
50

60

70

80

90

100

110

percentage of entries used in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

50 60 70 80 90 100
100

150

200

250

300

percentage of entries used in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

(a) Insertion (warm cache) (b) Insertion (cold cache)

50 60 70 80 90 100
50

60

70

80

90

percentage of entries used in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

50 60 70 80 90 100
120

140

160

180

200

220

240

percentage of entries used in leaf nodes

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

(c) Deletion (warm cache) (d) Deletion (cold cache)

Figure 12: 100K update operations with varying bulkload factors.

keys. The performance gains for segmented range scans (Figure 11) are similar to those for non-segmented

range scans (Figure 10).

4.4 Update Performance

One of our goals is to achieve good update performance as well as improving search and range scan. Our next

set of experiments compare the update performance for B+-Trees, p8B+-Trees, p8
e
B+-Trees, and p8

i
B+-Trees.

Figure 12 depicts the execution time for 100K random insertions or deletions on a tree bulkloaded with 3

million hkey, tupleIDi pairs, with bulkload factor 60%, 70%, 80%, 90%, and 100%. We �nd that all three

pB+-Tree schemes perform roughly the same, and all are signi�cantly faster than the B+-Tree. For example,

when the bulkload factor is 100%, the pB+-Trees achieve at least a 1.24 speedup over the B+-Tree in the

warm cache case, and at least a 1.38 speedup in the cold cache case, for both insertions and deletions. This

is somewhat surprising, given the additional overheads for maintaining the p8
e
B+-Tree jump-pointer arrays.

There are two primary factors contributing to the faster update times for pB+-Trees compared with the

B+-Tree. First, search is an integral part of both insertion and deletion, and search has been improved by

17

50 60 70 80 90
0

2

4

6

8

10

percentage of entries used in leaf nodes

in
se

rt
io

ns
 w

ith
 n

od
e

sp
lit

s
(x

 1
00

0)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

|0

|20

|40

|60

|80

|100

 T
o

ta
l I

n
se

rt
io

n
s more splits

 one split
 no split

B+ p8B+ p8eB+ p8iB+

(a) Trees with empty slots (b) Trees that are 100% full

Figure 13: Insertion analysis.

our wider node prefetching scheme. Second, node splits are fewer for wider nodes. As shown in Figure 13(a),

when the bulkload factor is 60% to 90%, the number of insertions that cause node splits is very low for all

the pB+-Trees. Thus the major cost of insertion is search. Even for the B+-Tree, fewer than 10% of the

insertions cause node splits. In this range, the curves in Figures 12(a) and (b) show similar trends to those

in Figure 8. Thus we conclude that updates times for the pB+-Tree are smaller than for the B+-Tree due to

its faster search times. On the other hand, when the trees are full, many insertions will cause node splits, as

shown in Figure 13(b). But B+-Trees su�er far more node splits, due to their smaller nodes, and over 40%

of the insertions result in a more costly non-leaf node split. Wider nodes reduce the number of insertions

resulting in node splits, especially those resulting in expensive non-leaf node splits. Though the cost of each

pB+-Tree node split is greater, this cost is more than compensated by the combined e�ect of faster search

and fewer node splits.

Because both pB+-Trees and B+-Trees use lazy deletion, very few deletions result in a deleted node or a

key redistribution, across the range of bulkload factors. Thus, the performance gains for pB+-Tree deletions

are due solely to the faster search.

4.5 Operations on Mature Trees

Our next set of experiments show the performance of index operations on mature trees [21]. To obtain

a mature tree, we use the same method as Rao and Ross [21]: we �rst bulkload a tree with 0.4 million

hkey, tupleIDi pairs and then insert 3.6 million hkey, tupleIDi pairs. We compare the B+-Tree, the p8B+-

Tree, the p8eB
+-Tree, and the p8

i
B+-Tree. Figure 14 shows the execution time for performing up to 200K

random searches, insertions, or deletions. Figure 15 shows the execution times for: (a) range scans while

varying the number of tupleIDs; and (b) large (segmented) range scans. We �nd similar performance for

mature trees as in previous experiments for trees immediately after bulkloads.

We can now compare the insertion performance of pB+-Trees versus the CSB+-Tree. In [21], the same

experiments on mature trees showed that the CSB+-Tree could be 25% worse than the B+-Tree in insertion

performance. This is because the CSB+-Tree requires the sibling nodes to be moved when a node splits.

The pB+-Trees achieve better insertion performance than the B+-Tree, which is better than the CSB+-Tree.

Thus for modern memory systems, all three pB+-Trees are signi�cantly faster than the CSB+-Tree, for all

the main operations of an index structure.

4.6 Sensitivity Analysis

In our next set of experiments, we study the sensitivity of the performance gains to variations in (a) the

memory system's normalized bandwidth B, (b) the prefetching distance k used, and (c) the chunk size c

used. we will study the sensitivity of search performance to B and the sensitivity of scan performance to k

and c. (k and c, which are parameters used in prefetching scan algorithm, do not a�ect search performance,

and increasing memory bandwidth will proportionally increase prefetching scan performance as the major

18

40 80 120 160 200
0

50

100

150

200

number of search (x 1000)

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

40 80 120 160 200
0

50

100

150

200

number of insertion (x 1000)

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

40 80 120 160 200
0

50

100

150

200

number of deletion (x 1000)

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

(a) Search (warm cache) (b) Insertion (warm cache) (c) Deletion (warm cache)

40 80 120 160 200
0

100

200

300

400

500

number of search (x 1000)

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

40 80 120 160 200
0

100

200

300

400

500

number of insertion (x 1000)

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

40 80 120 160 200
0

100

200

300

400

500

number of deletion (x 1000)

tim
e

(M
 c

yc
le

s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

(d) Search (cold cache) (e) Insertion (cold cache) (f) Deletion (cold cache)

Figure 14: 200K operations on mature trees.

10
2

10
4

10
6

10
4

10
6

10
8

10
10

entries scanned through in a single call

tim
e

(C
yc

le
s)

B+tree
p8B+tree
p8eB+tree
p8iB+tree

0

1000

2000

3000

4000
tim

e
(M

 c
yc

le
s)

B+tree p8eB+ p8iB+

3537

479 452

p8B+

825

(a) Varying the number of tupleIDs scanned for each request (b) Large (segmented) range scans

Figure 15: Range scan performance on mature trees.

cost of prefetching scan is expected to be accessing memory of leaf nodes in a pipelined fashion) Recall that

in our previous experiments, B = 15, k = 3, and c = 8.

Varying the normalized bandwidth. Figures 16(a) and 16(b) compare the search performance of the

pB+-Tree to the B+-Tree, when the normalized bandwidth B ranges from 5 to 30. Because the optimal node

width of a pB+-Tree depends on B (recall equation (2) of Section 2), we show the search performance for

widths w ranging from 2 to 19. Note that the performance of a B+-Tree is independent of B, since it cannot

exploit additional memory hierarchy bandwidth. The three variants of the pB+-Tree have nearly identical

search performance (recall Figure 9), so we plot only the pwB+-Tree performance.

In this experiment, 3 million hkey, tupleIDi pairs are bulkloaded into each tree, followed by 100K random

searches. Figures 16(a) and 16(b) show the execution time for the pwB+-Tree searches normalized to the

execution time for the B+-Tree searches. For each curve, we observe better relative performance with larger

B, as the pB+-Trees are able to exploit this additional bandwidth. Even in the somewhat pessimistic case

where B = 5, the p8B+-Tree still achieves signi�cant speedups: 1.2 and 1.3 for warm and cold caches,

respectively. The cold cache performance corresponds to equation (2) in Section 2 with N = 3 million and

19

5 10 15 20 25 30
60

70

80

90

100

normalized bandwidth (B)

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e p2B+tree

p4B+tree
p8B+tree
p16B+tree
p19B+tree

5 10 15 20 25 30
50

60

70

80

90

100

110

normalized bandwidth (B)

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e p2B+tree

p4B+tree
p8B+tree
p16B+tree
p19B+tree

(a) Search varying memory bandwidth (warm cache) (b) Search varying memory bandwidth (cold cache)

10
2

10
4

10
6

10
4

10
6

10
8

10
10

entries scanned through in a single call

tim
e

(C
yc

le
s)

k=2
k=3
k=4
k=8
k=16
k=32

10
2

10
4

10
6

10
4

10
6

10
8

10
10

entries scanned through in a single call

tim
e

(C
yc

le
s)

c=2
c=4
c=8
c=16
c=32

(c) Scan varying prefetching distance (p8eB
+-Tree) (d) Scan varying chunk size (p8eB

+-Tree)

Figure 16: Sensitivity analysis

m = 8. As shown in Figure 16(b), the optimal value for w increases when B gets larger: p8B+-Tree is the

best when B is small, while p19B+-Tree outperforms all others when B � 15.10 For this particular number

of keys (i.e. 3 million), the number of levels in the p2B+-Tree, p4B+-Tree, p8B+-Tree, p16B+-Tree, and

p19B+-Tree are 6, 5, 4, 4, and 3, respectively. As we observed earlier in equation (2), the relative cost of

using prefetching to create a wider node decreases as B becomes larger, and therefore the optimal w also

increases. However, for a given number of keys, the performance only improves with a larger node size of

this actually decreases the number of levels in the tree. When the trees are of the same heights, as in the

cases of p8B+-Tree and p16B+-Tree, larger nodes lead to larger cost.

Varying the prefetching distance and the chunk size. Figures 16(c) and 16(d) show the e�ect on scan

performance when the prefetching distance k varies from 2 to 32, and when the chunk size c varies from 2 to

32, respectively. We perform the same experiments as described earlier (in Section 4.3) for Figure 10(a). A

larger prefetching distance leads to more overhead when we overshoot the end of the range. When only a small

number of tupleIDs are scanned in one request (e.g., 10 tupleIDs), the performance improves with smaller

k. On the other hand, when a large number of tupleIDs are scanned, the overshooting overhead|which

is independent of the number scanned|has a minimal incremental e�ect on the overall scan performance.

Recall as well that overshooting can be reduced given more accurate estimates of range sizes, as discussed

in Section 4.3. We conclude that the performance is not particularly sensitive to moderate increases in the

prefetching distance.

As we see in Figure 16(d), varying the chunk size has only a minimal e�ect on scan performance, because

the prefetching distance is still quite small compared with the number of leaf pointers in a chunk. When

only a small number of tupleIDs are scanned in one request, prefetching a larger chunk results in some

degradation of performance, although it is quite small.

10Note that as shown in Section 2, w = 8 is the optimal value for B = 15 computed by averaging over N from 103 to 109.

But this is not necessarily the optimum for a particular N|e.g., N = 3 million in Figure 16(b).

20

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e dcache stalls
 other stalls
 busy

B+ CSB+ p8B+ p8CSB+

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e dcache stalls
 other stalls
 busy

B+ p8B+ p8eB+ p8iB+
(a) Search (b) Scan

Figure 17: Impact of various forms of pB+-Trees on the cache performance of index search and range scan.

4.7 Cache Performance

Finally, our last set of experiments present a more detailed cache performance study, using two representative

experiments: one for index search and one for index range scan. A central claim of this paper is that

the demonstrated speedups for pB+-Trees are obtained by e�ectively limiting the exposed miss latency of

previous approaches. In these experiments, we con�rm that claim.

Our starting point is the experiments presented earlier in Figure 1 which illustrated the poor cache

performance of existing B+-Trees on index search and scan. We reproduce those results now in Figure 17,

along with several variations of our pB+-Trees. Figure 17(a) corresponds to the experiment shown earlier

in Figure 7(a) with 10 million hkey, tupleIDi pairs, and Figure 17(b) corresponds to the experiment shown

earlier in Figure 10(a) with 1 million tupleIDs scanned.

Each bar in Figure 17 represents execution time normalized to a B+-Tree, and is broken down into the

following three categories that explain what happened during all potential graduation slots.11 The bottom

section (busy) is the number of slots where instructions actually graduate. The other two sections are the

number of slots where there is no graduating instruction, broken down into data cache stalls and other stalls.

Speci�cally, the top section (dcache stalls) is the number of such slots that are immediately caused by the

oldest instruction su�ering a data cache miss, and the middle section (other stalls) is all other slots where

instructions do not graduate. Note that the dcache stalls section is only a �rst-order approximation of the

performance loss due to data cache misses: these delays also exacerbate subsequent data dependence stalls,

thereby increasing the number of other stalls.

As we see in Figure 17, pB+-Trees signi�cantly reduce the amount of exposed miss latency (i.e. the dcache

stalls component of each bar). For the index search experiments, we see that while CSB+-Trees eliminated

20% of the data cache stall time that existed with B+-Trees, p8B+-Trees eliminate 45% of this stall time,

thus resulting in an overall speedup of 1.47 (compared with 1.15 for CSB+-Trees). A signi�cant amount

of data cache stall time still remains for index searches, since we still experience the full miss latency each

time we move down a level in the tree (unless the node is already in the cache due to previous operations).

Eliminating this remaining latency appears to be di�cult, as we will discuss in the next section. In contrast,

we achieve nearly ideal performance for the index range scan experiments shown in Figure 17, where both

p8eB
+-Trees and p8

i
B+-Trees eliminate 97% of the original data cache stall time, resulting in an impressive

eightfold overall speedup. These results demonstrate that the pB+-Tree speedups are indeed primarily due

to a signi�cant reduction in the exposed miss latency.

5 Discussion

We now discuss several possible improvements to pB+-Trees and related issues. While our approach of using

prefetching to create wider nodes improves search performance by a factor of 1.2{1.5, we still su�er a full

cache miss latency at each level of the tree. Unfortunately, this is a very di�cult problem to solve given:

(i) the data dependence through the child pointer; (ii) the relatively large fanout of the tree nodes; and (iii)

11The number of graduation slots is the issue width (4 in our simulated architecture) multiplied by the number of cycles. We

focus on graduation slots rather than issue slots to avoid counting speculative operations that are squashed.

21

the fact that it is equally likely that any child will be visited (assuming uniformly distributed random search

keys). While one might consider prefetching the children or even the grandchildren of a node in parallel with

accessing the node, there is a duality between this and simply creating wider nodes. Compared with our

approach, prefetching children or grandchildren su�ers from (a) additional storage overhead for the children

and grandchildren pointers, and (b) the restriction that the \size" of a node (i.e., the number of cache lines

prefetched) can only grow by multiples of the tree fanout.

Although we have described our range scan algorithm for the case when the tupleIDs are copied into

a return bu�er, other variations are only slightly more complex. For example, returning tuples instead of

tupleIDs involves only the additional step of prefetching the tuple once the tupleID has been identi�ed.

Moreover, if the index stores tupleIDs with duplicate keys in separate lists, our prefetching approach could

be used to retrieve the addresses to the tupleID lists, then the tupleIDs, and �nally the tuples themselves.

Extending the idea of adding pointers to the bottom non-leaf nodes, it is possible to use no additional

pointers at all. Potentially, we could retain all the pointers from the root to the leaf during the search, and

then keep moving this set of pointers, sweeping through the entire range prefetching the leaf nodes. Note

that with wider nodes, trees are shallower and this scheme may be feasible.

Lehman and Carey, in an early paper on index structures for main memory databases, proposed and

studied the T-Tree [11, 12]. At the time of their study (the mid-80's), the T-Tree outperformed the B+-Tree,

and was considered the index structure of choice for main memory databases for over a decade. However,

more recent studies have shown that the B+-Tree outperforms the T-Tree on modern processors [20], due in

large part to the exponential growth these past 15 years in cache miss latency relative to processor speed.

Previous work has also considered key compression schemes (e.g., [4, 6, 8, 9, 17, 22]), in order to pack

more keys into an index node. As with CSB+-Trees, these techniques can be used in conjunction with our

approach, as desired.

Although our discussions and experiments have focused on main memory databases, pB+-Trees can also

be used to improve both the I/O performance and the memory performance of disk-resident databases.

Because the index node size for a disk-resident database is typically a disk page of 4KB, the fanout is much

larger than with main memory indices. This may e�ect the bene�ts of using even wider nodes for searches.

However, our range scan prefetching techniques applied to pages would likely continue to have a signi�cant

bene�t. Furthermore, main memory performance is important even for disk-resident databases, so it would

be interesting to apply our methods for both cache lines and pages, and quantify the overall performance

gains.

6 Conclusions

While eliminating child pointers through data layout techniques has been shown to signi�cantly improve

main memory B+-Tree search performance, a large fraction of the execution time for a search is still spent

in data cache stalls, and index insertion performance is hurt by these techniques. Moreover, the cache

performance of index scan (another important B+-Tree operation) has not been studied. In this paper, we

explored how prefetching could be used to improve the cache performance of index search, update, and scan

operations. We proposed the Prefetching B+-Tree (pB+-Tree) and evaluated its e�ectiveness in modern

memory systems.

We showed that the optimal B+-Tree node size is often wider than a cache line on a modern machine,

when prefetching is used to retrieve the pieces of a node, e�ectively overlapping multiple cache misses. Our

results can be summarized as follows:

� For index search, this prefetching technique achieves a speedup of 1.27 to 1.55 over the B+-Tree, by

decreasing the height of the tree.

� For index updates (insertions and deletions), the technique achieves a speedup of 1.24 to 1.52 over the

B+-Tree, due to the faster search and the less frequent node splits with wider nodes.

� For index scan, the technique achieves a speedup of 3.5 to 3.7 over the B+-Tree, again due to the faster

search and wider nodes. Moreover, we proposed jump-pointer arrays, which enable e�ective range scan

prefetching across node boundaries. Overall, the pB+-Tree achieves a speedup of 6.5 to 8.7 over the

22

B+-Tree for range scans. We proposed two alternative implementations of jump-pointer arrays, with

comparable performance.

From our results, we conclude that the cache performance of B+-Tree indices can be greatly improved by

exploiting the prefetching capabilities of state-of-the-art computer systems. We believe that this work makes

an important contribution towards applying prefetching techniques to advantage throughout a DBMS.

7 Acknowledgments

We thank Berni Schiefer at IBM for his many helpful comments regarding this work.

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a Modern Processor: Where Does

Time Go? In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB),

pages 266{277, September 1999.

[2] L. A. Barroso, K. Gharachorloo, and E. D. Bugnion. Memory System Characterization of Commercial

Workloads. In Proceedings of the 25th International Symposium on Computer Architecture (ISCA),

pages 3{14, June 1998.

[3] L. A. Barroso, K. Gharachorloo, A. Nowatzyk, and B. Verghese. Impact of Chip-Level Integration

on Performance of OLTP Workloads. In Proceedings of the 6th International Symposium on High-

Performance Computer Architecture (HPCA), pages 3{14, January 2000.

[4] R. Bayer and K. Unterauer. Pre�x B-trees. ACM Transactions on Database Systems, 2(1):11{26, March

1977.

[5] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-Oblivious B-Trees. In Proceedings of the

41st IEEE Symposium on Foundations of Computer Science (FOCS), November 2000.

[6] P. Bohannon, P. McIlroy, and R. Rastogi. Improving Main-Memory Index Performance with Partial

Key Information. Technical report, Bell Laboratories, November 2000.

[7] Z. Cvetanovic and R. E. Kessler. Performance Analysis of the Alpha 21264-Based Compaq ES40 System.

In Proceedings of the 27th International Symposium on Computer Architecture (ISCA), pages 192{202,

June 2000.

[8] D. Ferguson. Bit-tree: A Data Structure for Fast File Processing. Communications of the ACM,

35(6):114{120, June 1992.

[9] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and Indexes. In Proceedings of

the 14th International Conference on Data Engineering (ICDE), pages 370{379, February 1998.

[10] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. Performance Characterization of

a Quad Pentium Pro SMP using OLTP Workloads. In Proceedings of the 25th International Symposium

on Computer Architecture (ISCA), pages 15{26, June 1998.

[11] T. J. Lehman and M. J. Carey. A Study of Index Structures for Main Memory Database Management

Systems. In Proceedings of the 12th International Conference on Very Large Data Bases (VLDB), pages

294{303, August 1986.

[12] T. J. Lehman and M. J. Carey. Query Processing in Main Memory Database Management Systems. In

Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data (SIGMOD),

pages 239{250, May 1986.

23

[13] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching for Recursive Data Structures. In Proceedings

of the 7th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 222{233, October 1996.

[14] C.-K. Luk and T. C. Mowry. Automatic Compiler-Inserted Prefetching for Pointer-Based Applications.

IEEE Transactions on Computers, 48(2):134{141, February 1999.

[15] S. McFarling. Combining Branch Predictors. Technical Report WRL Technical Note TN-36, Digital

Equipment Corporation, June 1993.

[16] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evaluation of a Compiler Algorithm for Prefetching.

In Proceedings of the 5th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 62{73, October 1992.

[17] W. K. Ng and C. V. Ravishankar. Block-oriented Compression Techniques for Large Statistical

Databases. IEEE Transactions on Knowledge and Data Engineering, 9(2):314{328, March/April 1997.

[18] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort: A RISC Machine Sort. In

Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data (SIGMOD),

pages 233{242, May 1994.

[19] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance of Database Workloads

on Shared-Memory Systems with Out-of-Order Processors. In Proceedings of the 8th International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 307{318, October 1998.

[20] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support in Main Memory. In Proceedings

of the 25th International Conference on Very Large Data Bases (VLDB), pages 78{89, September 1999.

[21] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main Memory. In Proceedings of ACM

SIGMOD 2000 International Conference on Management of Data (SIGMOD), pages 475{486, May

2000.

[22] M. Ronstr�om. Design and Modelling of a Parallel Data Server for Telecom Applications. PhD thesis,

Link�oping University, April 1998.

[23] A. Shatdal, C. Kant, and J. F. Naughton. Cache Conscious Algorithms for Relational Query Processing.

In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), pages 510{521,

September 1994.

[24] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. McGraw Hill, New York,

New York, 3rd edition, 1997.

[25] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28{40, April 1996.

24

