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Abstract

Survivable storage system design has become a popular research topic. This paper tackles the diÆcult problem of
reasoning about the engineering trade-o�s inherent in data distribution scheme selection. The choice of an encoding
algorithm and its parameters positions a system at a particular point in a complex trade-o� space between performance,
availability, and security. We demonstrate that no choice is right for all systems, and we present an approach to
codifying and visualizing this trade-o� space. Using this approach, we explore the sensitivity of the space to system
characteristics, workload, and desired levels of security and availability.
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1 Introduction

Digital information is a critical resource, creating a need for distributed storage systems that provide suÆcient
data availability and data security in the face of failures and malicious attacks. Many research groups [13, 14,
17, 24, 37, 38, 40, 41] are now exploring the design and implementation of such survivable storage systems.
These systems build on mature technologies from decentralized storage systems [1, 3, 8, 20, 33, 34] and
also share the same high-level architectures. In fact, development of survivable storage with the same basic
architecture was pursued over 15 years ago [12, 15, 16]. The challenge now, as it was then, is to achieve
acceptable levels of performance and manageability. Moreover, a means to evaluate survivable storage
systems is required to facilitate the design of these systems.

One key to maximizing survivable storage performance is mindful selection of the data distribution scheme.
A data distribution scheme consists of a speci�c algorithm for data encoding & partitioning and a set of
values for its parameters. There are many algorithms applicable to survivable storage, including encryption,
replication, striping, erasure-resilient coding, secret sharing, and various combinations. Each algorithm has
one or more tunable parameters. The result is a large toolbox of possible schemes, each o�ering di�erent
levels of performance (throughput), availability (probability that data can be accessed), and security (e�ort
required to compromise the con�dentiality or integrity of stored data). For example, replication provides
availability at a high cost in network bandwidth and storage space, whereas short secret sharing provides
availability and security at lower storage and bandwidth cost but higher CPU utilization. Likewise, selecting
the number of shares required to reconstruct a secret-shared value involves a trade-o� between availability
and con�dentiality: if more machines must be compromised to steal the secret, then more must be operational
to provide it legitimately. Secret sharing schemes and other data distribution algorithms are described in
Section 2.

No single data distribution scheme is right for all systems. Instead, the right choice for any particular
system depends on an array of factors, including expected workload, system component characteristics, and
desired levels of availability and security. Unfortunately, most system designs appear to involve an ad hoc

choice, often resulting in a substantial performance loss due to missed opportunities and over-engineering.
This paper promotes a better approach to selecting the data distribution scheme. At a high level, this new

approach consists of three steps: enumerating possible data distribution schemes (<algorithm; parameters>
pairs), modeling the consequences of each scheme, and identifying the best-performing scheme for any given
set of availability and security requirements. The surface shown in Figure 1 illustrates one result of the
approach. Generating such a surface requires codifying each dimension of the trade-o� space such that all
data distribution schemes fall into a total order. The surface serves two functions: (1) it enables informed
trade-o�s among security, availability, and performance, and (2) it identi�es the best-performing scheme for
each point in the trade-o� space. Speci�cally, the surface shown represents the performance of the best-
performing scheme that provides at least the corresponding levels of availability and security. Many schemes
are not best at any of the points in the space and as such are not represented on the surface.

This paper demonstrates the feasibility and importance of careful data distribution scheme choice. The
results show that the optimal choice varies as a function of workload, system characteristics, and the desired
levels of availability and security. The results show that minor (�2�) changes in these determinants have
little e�ect, which means that the models need not be exact to be useful. Importantly, the results also
show that large changes, which would correspond to distinct systems, create substantially di�erent trade-o�
spaces and best choices. Thus, failing to examine the trade-o� space in the context of one's system can yield
both poor performance and unful�lled requirements. With sensitivity studies and survivable storage system
examples from the literature, we identify interesting trends and design points.

The remainder of this paper is organized as follows. Section 2 discusses survivable storage system design
and data distribution scheme options. Section 3 describes how we codify the trade-o� space. Section 4
describes PASIS [40, 48], our prototype survivable storage system, and its role in validating our performance
model. Section 5 explores the trade-o� space and its sensitivity to model inaccuracies, system components,
and expected workloads. Section 6 describes current and past survivable storage system research, identi-
fying insights from our explorations that could enhance their designs. Section 7 summarizes this papers
contributions.
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Figure 1: Data distribution scheme selection surface plotted in trade-o� space. The trade-o� space has per-
formance, availability, and security axes. Performance is quanti�ed as the number of 32 KB requests per second that can be
satis�ed for a single client; only the best-performing scheme that provides at least the given security and availability levels is
shown, resulting in a monotonic decrease along those axes. Availability is the probability that stored data can be accessed.
Security is the e�ort required to compromise either the con�dentiality or integrity of stored data. Section 2 describes the data
distribution algorithms listed in the legend. Section 3 describes the axes in detail.

2 Survivable Storage Systems

Survivable systems operate from the fundamental design thesis that no individual service, node, or user
can be fully trusted; having some compromised entities must be viewed as the common case rather than
the exception. Survivable storage systems must encode and distribute data across independent storage
nodes, entrusting the data's persistence to sets of nodes rather than to individual nodes. If con�dentiality is
required, unencoded data should not be stored directly on storage nodes; otherwise, compromising a single
storage node enables an attacker to bypass access-control policies.

Prior work in cluster storage systems [1, 3, 8, 20, 33, 34] provides much insight into how to eÆciently
decentralize storage services while providing a single, uni�ed view to applications. Figure 2 illustrates
the basic decentralized storage architecture. In most cases, some intermediary software is responsible for
translating between the uni�ed view and the decentralized reality. This piece of software may execute
directly on each client system [1, 3, 20, 33], on storage nodes identi�ed as leaders [8, 34], or at intermediary
nodes [1, 3].

In most cluster storage systems, the data and some form of redundancy information are striped across
storage nodes. Survivable storage systems di�er from decentralized storage systems mainly in the encoding
mechanism used (i.e., the data distribution scheme). The data distribution scheme enables the storage
system to survive both failures and compromises of storage nodes. Each scheme (a <algorithm; parameters>
pair) o�ers a di�erent level of performance, availability and security. Little understanding exists of the large
trade-o� space that the schemes occupy in practice.

This paper takes a step towards understanding the relative merits of di�erent data distribution schemes
by examining them in the context of the trade-o� space. The remainder of this section describes various data
distribution algorithms and the parameters that specify each algorithm. There are several issues involved
with constructing a complete survivable storage system that are not central to the results and insights of
this paper. Speci�cally, this paper argues for and provides an approach for making mindful selections of the
data distribution scheme, but explicitly tries to do so while remaining impartial on issues that are largely
orthogonal. Examples of such issues include metadata and naming mechanisms, client node authentication,
and consistency given concurrent writers.
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Figure 2: Generic decentralized storage architecture. Intermediary software translates the applications' uni�ed view
of storage to the decentralized reality. Solid lines trace the data path. Dashed lines trace the meta-data path. Applications
read and write blocks to the intermediary software. Encoding transforms blocks into shares (decoding does the reverse). Sets
of shares are read from (written to) storage nodes. Intermediary software may run on clients, leader storage nodes, or at some
point in between.

2.1 Threshold algorithms

There is a wide array of data distribution algorithms, including encryption, replication, striping, erasure-
resilient coding, information dispersal, and secret sharing. Threshold algorithms, characterized by three
parameters (p, m, and n), represent a large set of these algorithms. In a p-m-n threshold scheme, data is
encoded into n shares such that any m of the shares can reconstruct the data and less than p reveal no
information about the encoded data. Thus, a stored value is available if at least m of the n shares can be
retrieved. Attackers must compromise at least p storage nodes before it is even theoretically possible to
determine any part of the encoded data.

Table 1 lists some p-m-n threshold schemes that have more familiar names. Perhaps the simplest example
is n-way replication, which is a 1-1-n threshold scheme. That is, out of the n replicas that are stored, any
single replica provides the original data (m = 1), and each replica reveals information about the encoded
data (p = 1). Another simple example is decimation (or striping, as in disk arrays), wherein a large block of
data is partitioned into n sub-blocks, each containing 1=n of the data (so, p = 1 and m = n). At the other
end of the spectrum is \splitting", an n-n-n threshold scheme that consists of storing n�1 random values
and one value that is the exclusive-or of the original value and those n�1 values; p = m = n for splitting,
since all n shares are needed to recover the original data. Replication, decimation, and splitting schemes
have a single tunable parameter, n, which a�ects their place in the trade-o� space.

With more CPU-intensive mathematics, the full range of p-m-n threshold schemes becomes available.
For example, secret sharing schemes [4, 27, 43] are m-m-n threshold schemes. Shamir's implementation of
secret sharing is based on interpolating points on a polynomial in a �nite �eld [43]. The secret value along
with m�1 randomly generated values uniquely determine the encoding polynomial of order m�1. Each
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Parameters Description

1-1-n Replication
1-n-n Decimation (Striping)
n-n-n Splitting (XORing)
1-m-n Information Dispersal
m-m-n Secret Sharing
p-m-n Ramp Schemes

Table 1: Example p-m-n threshold schemes.

share is generated by evaluating the polynomial at distinct points (distinct from other shares and the point
containing the secret value).

Rabin's information dispersal algorithm, a 1-m-n threshold scheme, uses the same polynomial-based math
as Shamir's secret sharing, but no random numbers [42]; m secret values are used to determine the unique
encoding polynomial. Thus, each share reveals partial information about the m simultaneously encoded
values, but the encoding is much more space-eÆcient. Ramp schemes [5] are p-m-n threshold schemes,
and they can also be implemented with the same polynomial-based math. The points used to uniquely
determine the encoding polynomial are p�1 random values and m�(p�1) secret values. Ramp schemes thus
o�er information-theoretic con�dentiality of up to p�1 shares. They are also more space-eÆcient than secret
sharing (so long as m>p). For p = 1, ramp schemes are equivalent to information dispersal; for p = m,
they are equivalent to secret sharing. Threshold algorithms can be implemented in ways other than the
polynomial method summarized in this section. For example, Blakley proposed implementing secret sharing
with intersecting hyper-planes [4], and Luby proposed implementing information dispersal with Tornado
codes [35].

Parameter options for p-m-n threshold schemes expose a large space of possible data distribution schemes.
In fact, there are on the order of N3 di�erent options to consider given N storage nodes. Each scheme in
this space o�ers di�erent levels of availability, con�dentiality, CPU costs, and storage requirements (which
also translates into network bandwidth requirements). For example, as n increases, information availability
increases (it is more probable thatm shares are available), but the amount of storage required increases (more
shares are stored) and con�dentiality decreases (more shares are available to steal). As m increases, the
storage space required decreases (a share's size is proportional to 1=(m�(p�1))), but so does its availability
(more shares are required to reconstruct the original object). Also, as m increases, each share contains less
information; this may increase the number of shares that must be captured before an intruder can reconstruct
a useful portion of the original object. As p increases, the information system's con�dentiality increases, but
the storage space required also increases. With such a wide array of options, selecting the most appropriate
data distribution scheme for a given environment is far from trivial.

2.2 Other algorithms

There are also important data distribution algorithms outside the class of p-m-n threshold schemes. Notably,
encryption is a common approach to protecting the con�dentiality of information. Symmetric key encryption
(e.g., triple-DES, AES) is a data distribution algorithm characterized by a single parameter|key length.
Hybrid data distribution algorithms can be constructed by combining the algorithms already discussed.
For example, many survivable storage systems combine replication with encryption to address availability
and security, respectively. Security in such a system hinges both upon how well the encryption keys are
protected and upon the diÆculty of cryptanalysis. As another example, short secret sharing encrypts the
original value with a random key, stores the encryption key using secret sharing, and stores the encrypted
information using information dispersal [30]. Short secret sharing algorithms have three parameters: m, n,
and k (key length). Public key cryptography (e.g., RSA) can be used instead of symmetric key cryptography
to protect information con�dentiality. The management of cryptographic keys must be addressed in the
design of a system that uses cryptography; symmetric key and public key cryptography require di�erent key
management strategies. Finally, compression algorithms (e.g., Hu�man coding) can be used before other
data distribution algorithms to reduce the size of the data that must be encoded.
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Another important type of data distribution algorithm provides integrity veri�cation. Cryptographic hash
algorithms (e.g., MD5, SHA-1) can be used to add digests to data before it is encoded with another algorithm.
The hash of the decoded data can be compared with the digest to verify the decoded data's integrity. Digests
can also be generated for shares resulting from an encoding (e.g., distributed �ngerprints [29]), allowing
integrity to be veri�ed prior to decoding the data. Hash algorithms are parameterized by the hash size,
and they must either be encoded with or stored separately from the data in order to be e�ective. Digital
signatures (e.g., DSA) can provide similar integrity guarantees as hash algorithms.

Two classes of integrity algorithms are often used to build authentication and directory services that
protect the integrity of meta-data. The �rst class are agreement algorithms [32] such as the Byzantine fault
tolerant library [9]. Quorum systems [19, 36], which are a superset of voting algorithms [21, 45], are the
second class. Also, there are integrity algorithms that work exclusively with threshold algorithms. In schemes
where m is less than n, excess shares can be used during decode (di�erent permutations of m shares are
used for validation). Secret sharing schemes can also be modi�ed directly to o�er a probabilistic guarantee
of cheater detection [46].

3 The Trade-o� Space

The algorithms described in Section 2, together with the degrees of freedom given by their parameters,
provide thousands of data distribution schemes for survivable storage systems. Thoughtfully selecting one
scheme from this set requires the ability to evaluate their relative merits and, further, to do so in the context
of the target environment. This section describes our approach to comparing the performance, availability,
and security of various schemes.

3.1 Evaluating availability

The substantial body of prior work in building highly-available systems [23, 44] provides a clear metric for
evaluating information availability: the probability that a desired piece of information can be accessed at any
given point in time. Assuming uncorrelated failures, this probability can be computed from the probabilities
that required system components are available. For example, a p-m-n threshold scheme requires at least m
of the n storage nodes containing shares to be operational to perform a read. If fnode is the probability that
a storage node has failed or is otherwise unavailable, then the availability of the stored information is

Availabilityread =

n�mX
i=0

�
n

i

�
(fnode)

i(1� fnode)
n�i

For writes, the computation of availability depends upon the system's design. A system could require that
all of n speci�c nodes be operational for a write to succeed. This approach clearly has poor availability
characteristics. To improve write availability in a system with N > n storage nodes, the write operation can
attempt to write shares to di�erent storage nodes until it has completed n writes. Alternatively, a system
could allow a write to complete when fewer than n shares have been written. This requires more work during
failure recovery or reduces read availability of the stored data (because n is e�ectively lower for that data).
We calculate write availability using the last approach. Thus, m storage nodes of the N storage nodes in
the system must be available for a write to be performed, and write availability is

Availabilitywrite =

N�mX
i=0

�
N

i

�
(fnode)

i(1� fnode)
N�i

Availability requirements for storage systems tend to be quite high. A popular manner for discussing
high-availability values is in terms of \nines," referring to the number of nines after the decimal point in
the availability value before a digit other than nine. For example, a low availability value of 0.993 has just
two nines, whereas a high availability value of 0.99999996 has seven nines. It is worth noting that failures
are not always uncorrelated, as is generally assumed in availability computations. For survivable systems in
particular, denial-of-service (DoS) attacks can induce highly-correlated failures, bringing into question the
value of this metric. We believe that the relative availability levels computed for di�erent schemes provide
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insight even with DoS attacks. Although the absolute values may not always be meaningful, relative values
certainly are when comparing data distribution schemes for a given set of system components. In particular,
availability increases only when more options are available for servicing requests. Thus, a higher availability
value means that a DoS attack must eliminate a larger set of storage nodes.

3.2 Evaluating security

By far, security is the hardest of the three dimensions to evaluate, as there are no proven metrics or even
a mature body of research from which to draw. Our initial plan was to reuse the mathematics of fault
tolerance, counting how many storage nodes must be compromised to bypass con�dentiality or integrity.
However, this approach raised signi�cant problems: First and foremost, it relies upon having a \probability
of being compromised" with which to compute security values. Unfortunately, we are aware of no reliable
way to obtain or even estimate such a value. Further, using such a value would be questionable, because
security problems experienced by nodes in a distributed system are expected to be highly correlated; when
the system is under attack, the probability value would go up. Another problem with evaluating security in
terms of a probability of a node being compromised is that it is a useful measure for only a subset of the
data distribution algorithms (threshold algorithms). For example, it ignores the additional con�dentiality
provided by encryption.

Our current approach to evaluating security focuses on the e�ort (E) required for an active foe to
compromise the security of the system. For example, for a n-n-n threshold scheme, con�dentiality can
be compromised by breaking into all n heterogenous storage nodes or by compromising the authentication
system:

EConf = min [EAuth; (n�EBreakIn)]

Extending this example, assume that the data is also encrypted and that the names of shares reveal no
information about the encoded data. The attacker has many paths to the data|attempt cryptanalysis
or steal the encryption key, attempt combining shares in many permutations or compromise the directory
service. Assuming that an attacker is going to take the easiest path to the data:

EConf = min [EAuth; (n�EBreakIn)

+min [ECryptanalysis; EStealKey ]

+min [EIdentifyShares; EStealNames]]

In this paper, we focus strictly on the security of the storage system; attacks on the authentication service
and directory service are not considered further. Thus, we use only two values in our security model: EBreakIn

and ECircumventCryptography . These values are dimensionless. Thus, the unit of the security axis is \e�ort
units," and security values across all runs have been normalized on a scale that ranges from 0 to 100.

The �rst term, EBreakIn , is the e�ort required to steal a piece of data from a storage node. The second
term, ECircumventCryptography , is the e�ort required to circumvent cryptographic con�dentiality. It is a coarse
metric that includes cryptanalysis, key guessing, and the theft of decryption keys. The con�dentiality of an
encrypted replica is thus the summation of these two terms: one encrypted replica must be stolen and then
the encryption must be broken. Alternatively, the con�dentiality of secret sharing is solely a function of
the �rst term (i.e., m � EBreakIn)|a total of m shares must be stolen to compromise the con�dentiality of
data, thus the e�ort is m times the e�ort to steal a piece of data. We calculate the e�ort to compromise the
con�dentiality of information dispersal as a weighted sum of the information content of the shares, where
the weight is proportional to the number of shares that must be stolen to decode. This heuristic sets the
con�dentiality of information dispersal above that of replication, below that of secret sharing, and higher as
m increases. We assume that EBreakIn is constant for all storage nodes (i.e., distinct attacks of equivalent
diÆculty are necessary to compromise each storage node). For this assumption to be true storage nodes
must be heterogenous. Beyond this, we hypothesize that, as n increases, the likelihood that an attacker
can �nd a storage node that they can compromise increases; as such, con�dentiality should decrease as n
increases. We do not currently consider n in the calculation of security. A more detailed security model can
be implemented, however these simple models capture the major features of the algorithms we are currently
investigating.
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Security is often de�ned as availability, con�dentiality, and integrity. In our analysis, we have distin-
guished availability from the two other security characteristics because there is a trade-o� between it and
them. We focus our security axis on con�dentiality, since there appears to be agreement in the community
that cryptographic hashes are the right way to protect integrity, and we have found no contradictory evi-
dence. The hashes can be generated from the cleartext or the ciphertext, and they can be stored with data
shares, encoded into the name, or stored in the directory service. All of these increase integrity signi�cantly,
usually well beyond other e�ort levels.

Although e�ort terms are diÆcult to quantify, we believe that e�ort-based evaluation focuses the de-
signer's attention on the right thing|raising the security bar \high enough." As with availability, the
relative merits of schemes can be compared usefully even if the absolute e�ort quantities are inaccurate.
Further, other security engineering research projects are now addressing the problem of measuring security
and doing so in terms of e�ort [39]. As better e�ort models become available, they can be modularly inserted
into the trade-o� exploration approach.

3.3 Evaluating performance

As with availability, performance metrics and evaluation techniques of distributed systems are part of a
mature body of prior work [26, 28]. The main issue faced in creating a general tool is balancing detail,
which should yield greater accuracy, with generality in the performance models. We use a simple, abstract
system model to predict the relative performance of di�erent data distribution options. Like the general
decentralized-storage model described in Section 2, we intend for it to represent a wide array of survivable
storage system designs. The model includes three parts: CPU time for encode or decode in the intermediary
software, network bandwidth for delivering the shares, and storage node response times.

CPU Time. The encode and decode operations involved with any data distribution scheme require CPU
time. There are orders of magnitude di�erences between the CPU times for di�erent schemes. For example,
Figure 3 shows the CPU cost for encoding a 32 KB block for four p-m-n threshold schemes for all possible
parameter selections with n � 25. Notice the large di�erences between the shapes of the performance curves
and the times at the same m and n for di�erent schemes.

We have constructed and calibrated simple models for the following data distribution algorithms: ramp
schemes, secret sharing, information dispersal, replication, decimation, splitting, short secret sharing, en-
cryption, and hash algorithms. The models require CPU measurements of a few key primitives: polynomial
interpolation of order m�1, random number generation, triple-DES encryption, and MD5 hash generation.
Given the requisite measurements, the models can predict the CPU time required for an encode or decode
operation for any of the data distribution schemes with at least 90% accuracy.

Network Bandwidth. The amount of data that must pass between the client and the storage nodes
depends directly on the data distribution scheme. For any of the p-m-n threshold schemes, the network
bandwidth required depends on the read-write ratio and the values of p, m, and n. Each share's size can
be computed as the original data size multiplied by 1=(m�(p�1)). For a write, we assume that all n shares
must be updated. For a read, we assume that only m shares are fetched by default.

We model the network bandwidth with a distribution, indicating the probability of a given bandwidth
during any period of time, assuming that a single bottleneck link determines the aggregate bandwidth.
Although imprecise, we believe that this allows the �rst-order e�ects of concern to be captured, when
combined with the storage node latencies discussed below. For a local-area network or dial-up client, we
expect this bottleneck link to be at the client's network interface card. For a wide-area system, we expect
this link to be at the edge router through which the client interacts with the wide-area network. Network
congestion would appear in this very simple model as a reduction of available bandwidth (if consistent) or
an increase in variability (if sporadic).

Storage Node Latency. A read or write request to a storage node involves work at the storage node
in addition to moving data over the network. This is observed at the client as a response time latency
that includes both delays, but accurate modeling requires separating these delays and recombining them
appropriately. In particular, the time for an operation that simultaneously writes data to n nodes must
capture both the shared bandwidth and concurrent latency aspects.

We model storage node latency as a random variable whose mean and variance depend on the operation
type (read or write) and the request size. Dependence on the former is expected, and we found dependence
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Figure 3: Measured encode times for 32 KB blocks on a 600 MHz Pentium III. All m and n combinations up to
n = 25 are shown for four threshold schemes: secret sharing (p=m), ramp scheme with p = dm=2e, ramp scheme with p = 2,
and information dispersal (p = 1).

on the latter necessary to model storage protocols (e.g., FTP or NT4's CIFS implementation) that open a
new TCP/IP connection with slow-start for each �le transfered. Competing loads on a storage node would
appear in this simple model as increases in the mean and/or the variance.

Overall performance model. To predict the access latency for a given request, we combine these
partial models as follows. For a write, ignoring variance and assuming homogeneous servers, we sum the
modeled CPU time for encode, the storage node latency for writing one share to one server, and n times
the network transmission time required per share. Thus, in sequence, the data is encoded, each share is
sent over the network to its appropriate storage node, and all responses are awaited; the nth request is sent
after the �rst n�1 and it �nishes after the average storage node latency. For a read, the same steps occur
in reverse. With variance, the last request sent is not necessarily the last to �nish, so a predicted latency
for each request must be computed. Our tools use simulation to compute the expected performance for any
given scheme. In our experience, the simulation is fast enough for our purposes, with each single-scheme
prediction requiring only 10{30ms. It is also accurate enough, yielding predictions that are within 15% of
values measured on the prototype described in Section 4 for a variety of validation experiments.

4 Prototype and Validation

We have implemented a prototype survivable storage system, PASIS [40, 48], which we use to validate our
performance models of data distribution schemes. Our system �ts the architecture illustrated in Figure 2,
with the intermediary software executing on the client machines. The encode/decode and multi-read/multi-
write aspects of the architecture are implemented in separate libraries. PASIS allows us to select from many
data distribution algorithms and specify a wide range of parameters; this enables us to explore many schemes
within the context of a single survivable storage system.
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4.1 Prototype Components

The encode/decode library supports all of the basic schemes described in Section 2. The library interface
exports two main functions: (1) a decode call that takes a scheme description and a set of shares as input and
returns the original data as output, and (2) an encode call that does the reverse. The implementation builds
on version 4.1 of the Crypto++ library [11], which provides code for encryption (triple-DES), hashing (MD5),
and polynomial operations in a �nite �eld. To enhance its performance for encoding/decoding bulk data
(as opposed to key-like secrets), we replaced its stream-based internal functions with block-based versions
and reduced the �eld size. The latter change enables the use of lookup tables to �nd multiplicative inverses
and the product of two elements. Together, these changes yield 3{5� faster encode and decode times for
the information dispersal, secret sharing, and ramp algorithms when compared to the original Crypto++
implementations.

The multi-read/multi-write library manages parallel communication with a set of storage nodes. The
library interface exports two main functions: (1) a fetch call that takes a set of n share descriptions and a
number of shares required (m), and (2) a store call that does the same for writes. Each share description
includes a storage node description and a name for the share within that storage node. For the experiments
described in this paper, these libraries were combined in a benchmark application that itself keeps track of
per-block metadata.

The library currently supports the use of NFS storage nodes, CIFS storage nodes, and FTP storage
nodes. By using these standard protocols, we are able to use independently-implemented, o�-the-shelf
storage nodes. This is an important practical design consideration that allows us to enhance storage node
heterogeneity, which in turn enhances security; for example, the likelihood is low of �nding a single attack
that can compromise a Sun NFS server, a Network Appliance NFS server, and a SNAP NFS server. Without
this feature, E�ortBreakIn for the second through nth storage nodes could be zero.

We have also implemented an NFS proxy server that exports an NFSv2 interface to clients and uses
the libraries above to encode and distribute the �les across a set of storage nodes. To store the necessary
metadata, each exported �le or directory is represented by two actual sets of storage objects: one set that
stores share descriptions for each �le block and one set that stores the actual data. The share descriptions
for the former are stored in the corresponding directory entries. We generally allow only the local machine
to mount the NFS proxy server (over the loopback interface), thus allowing us to use survivable storage
without changing the kernel. The downside, as expected, is lower performance relative to an in-kernel
implementation.

4.2 Model Veri�cation

We have used our prototype, PASIS, to verify that the simple performance model of Section 3 can capture the
key performance trends of at least one real survivable storage system. To do so, we measured the necessary
model parameters, con�gured the model accordingly, and then compared the model predictions to measured
system performance. The model predictions of read and write throughput were compared to this testbed for
all threshold scheme options up to n=6. In almost all cases, they are within 10% and the largest observed
error was 15%. Section 5 shows that this level of accuracy is more than suÆcient for proper data distribution
scheme selection.

The testbed consisted of seven PC systems inter-connected via a dedicated 100 Mbps switch. Each system
contains a 600 MHz Intel Pentium III, 256 MB of RAM, a 3Com Fast Etherlink XL network interface card,
and a Quantum Atlas 10K disk connected via an Adaptec ULTRA-2 SCSI controller. One system, acting as
the client, runs Windows NT 4.0 with Service Pack 5. The other six systems, acting as CIFS storage nodes,
run a SAMBA server on Linux RedHat 6.2 with kernel version 2.2.14. Time measurements are based on the
Pentium cycle counter, and all values are the mean of 20 measurements.

In addition to the overall validation, we have validated the libraries in isolation. The encode/decode
model matches measured library performance to within 10% for all supported data distribution schemes
up to n = 25. This was also veri�ed on a 300 MHz Pentium II and a 500 MHz Pentium III, and the
measured CPU times were observed to scale linearly with CPU performance. Likewise, the model predicts
multi-read/multi-write library performance to within 10%.
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5 Trade-o� Space Exploration

We have built a model with a good balance between accuracy and sensitivity. This allows us to capture the
large-scale e�ects in the trade-o� space. Comprehension of such features in the trade-o� space is necessary
to make system-level design decisions. For large variations in system characteristics (i.e., distinct system
con�gurations), large di�erences in the selection surface are observed. This supports our claim that systems
with di�erent characteristics require di�erent schemes. Also, a speci�c system should, for performance
reasons, use di�erent schemes when operating in very di�erent regions of the space|a region being an area
of the availability-security plane. For small variations in the system con�guration (i.e., slight inaccuracies
in models and/or measurements), only small di�erences in the selection surface are observed. This means
that the scheme selection surface is stable. Although it is inherently diÆcult to accurately characterize real
systems, we are able to determine a close-to-optimal scheme choice for a given system because of the stability
of the selection surface.

In the remainder of this section, the default con�guration is de�ned, and our method of measurement is
explained. A series of experiments are performed to investigate the sensitivity of the selection surface to small
con�guration changes, to large con�guration changes, and to workload changes. Finally, the availability and
security models are considered.

Default con�guration. For small systems (e.g., with n � 10), there are around 1000 schemes to
consider. In the remainder of this section, we concentrate on a system with 10 storage nodes. All scheme
selection graphs in this section are plotted with performance measured in 32 KB blocks per second, security
measured in e�ort, and availability measured in \number of nines." Performance is calculated based on the
CPU, network, and storage nodes as described in Section 4.2. The default value for the network parameter is
100 Mbps. Because no clear metric has emerged from research into estimating e�ort required to compromise
security, we set the values for EBreakIn and ECircumventCryptography equal in the default model. The default
value for the system workload is a read/write probability of 0.5 (an equal number of reads and writes). The
default value for a single storage node's failure probability is fnode = 0:005.

The default con�guration is the base case against which all other con�gurations are compared. The
scheme selection surface for the default con�guration is shown in Figure 1.

Measurements. To compare scheme selection surfaces, we use a metric with two components. The
�rst component quanti�es what percentage of the scheme choices change. The second component quanti�es
the magnitude of the performance cost associated with using the other surface's scheme at a given point.
For example, we state such results as, \The selection surface di�ers over X% of the area with an average
di�erence of Y%." When performing sensitivity analysis, we reverse the direction of the comparison (i.e., we
examine the impact of inaccuracies in the assumed system con�guration). This allows us to determine how
accurate the con�guration representation must be for the trade-o� analysis to be useful. In some regions of
the trade-o� space, many schemes have similar performance over a range of con�gurations. In such regions,
di�erent schemes may be selected for di�erent con�gurations, but with minimal performance impact. In
other regions, signi�cant performance costs are incurred if the wrong scheme is selected. To capture this
interesting e�ect, we sometimes perform a comparison between two selection surfaces and only list the area
and di�erence for regions that have changed by some minimum amount (i.e., we ignore di�erences of less
than 10% to get a better measure of large scale e�ects).

Another method of analyzing the trade-o� space is used to understand the consumption of resources
by the system. Speci�cally, we examine the ratio of time spent performing CPU operations to the time
spent performing network I/O in order to ascertain what regions of the selection surface are bound by each
resource. A scheme is considered to be bound by a resource if the resource accounts for greater than 80%
of the overall performance time. The resource consumption for the default con�guration is presented in
Figure 4.

5.1 Sensitivity to the model

If the selection surface is highly sensitive to small changes in the con�guration, then it might not be a useful
design tool because it would require exact information about how a system will behave. To ensure that the
selection surface is relatively stable, we examined its sensitivity to the system characteristics and workload
aspects of the default con�guration. For the system characteristics, we varied the default network speed by a
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Figure 4: Balance of resources in default con�guration. Light grey indicates a region of the surface in which the
selected scheme is bound by the available network bandwidth. Dark grey indicates a region in which the selected scheme is
bound by the CPU. In the default con�guration, replication (which appears along the zero security line) is network bound.
Farther down the security axis, schemes are CPU bound. There is a large region, comprised of information dispersal, replication
with cryptography, ramp schemes, and short secret sharing, with balanced resource consumption.

factor of two in each direction. For the workload, we considered workloads of 40% reads as well as 60% reads.
For the security model we varied the value of EBreakIn by 10% in either direction relative to the value of
ECircumventCryptography . Considering these cases, the selection surface di�ers by less than 9% of the area with
a di�erence of less than 9%. From this, we conclude that the selection surface is relatively stable. As well,
this means that as long as system characteristics are modeled with moderate accuracy and the workload is
roughly understood, the scheme selection surface can provide signi�cant insight into the real con�guration.

5.2 System characteristics

To investigate the impact that system characteristics have on proper scheme selection, we �x the CPU speed
and vary the network speed. This explores system con�gurations representative of a wide range of distributed
systems such as peer-based computing on a LAN or client-server architectures.

We begin by varying the default network speed one order of magnitude (i.e., to 10 Mbps and 1 Gbps).
Speeding up the network has little e�ect on the selection surface. The selection surface di�ers over less than
10% of the area with an average di�erence of 3%. Changes resulted from replication with cryptography, a
computationally cheap and space-ineÆcient algorithm, becoming a better selection than information disper-
sal. Figure 5 shows the selection surface for the fast network. When the network bandwidth is reduced,
the selection surface di�ers over 26% of the area with an average di�erence of 17%. Clearly, this change is
substantial. However, some of this region is comprised of a \checkerboard," where the right choice bounces
between two schemes with little performance di�erence. In this checkerboard region, the selection surface
di�ers over 11% of the area with an average di�erence of 3%. In one part of the checkerboard region, short
secret sharing and ramp schemes have similar performance. In another part, information dispersal schemes
with parameters that make them more space-eÆcient are selected over less space-eÆcient ones. The remain-
der of the di�erence between the surfaces is due to 14% of the area with an average di�erence of 29%. In
this region, which is along the availability axis, information dispersal dominates replication. Figure 6 shows
the selection surface for the slow network.

An analysis of the resource consumption over the selection surfaces for the various network speeds consid-
ered shows that, for the fast network most of the selection surface is CPU bound, for the default model most
of the surface is balanced, and for slow networks most of the surface is network bound. Many conclusions
can be drawn from the results of these experiments. First, scheme selection depends on the balance between
the speed of the processor and the speed of the network. Second, in system con�gurations that include a
slow network, the space-eÆciency of a scheme is a signi�cant indicator of its overall performance. Third, the
default con�guration can be used to select schemes for faster networks since scheme performance is generally
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Figure 5: Fast network (1 Gbps). Replication with cryptography dominates the low security, high availability region
of the graph, because the network consumption of replication has a low performance cost on a fast network. Note: The fast
network required doubling the performance axis scale.

Figure 6: Slow network (10 Mbps). Information dispersal dominates along the availability axis. Short secret sharing has
similar performance to ramp schemes in the foreground of the graph.

CPU bound in the default con�guration.

5.3 Impact of workload

To investigate the impact that workload has on scheme selection, the ratio of reads to writes was varied from
a 100% read workload to a 100% write workload. Recall that the default workload is equal parts reads and
writes. As shown in Table 2, this experiment found that scheme selection is insensitive to workload over
a large portion of this range, 10% reads to 90% reads. However, at the end points of the range, there is
substantial change in the selection surface. In particular, changing the workload can change the operating
region of an algorithm (i.e., it changes the availability guarantee that can be made)|a clear di�erence from
modifying system characteristics.

The reason the selection surface is insensitive to the workload, except at extremes, is because the work-
load mainly changes system performance. As the read workload increases/decreases the selection surface
expands/contracts along the performance axis. The reason for this is that the read (decode) costs are lower
than the write (encode) costs for most algorithms. Only at the ends of the workload range do the di�erent
rates at which schemes are able to scale result in new schemes outperforming the scheme selected for a mid-
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Read Workload (% reads) Surface Change Average Performance Cost

0% 97% 33%
5% 67% 6%
20% 22% 5%
40% 6% 4%
60% 4% 2%
80% 26% 7%
95% 50% 16%
100% 61% 20%

Table 2: Impact of workload on selection surface. Scheme selection is insensitive to changes in the mid-range of
workloads. Signi�cant changes occur near the endpoints of the possible workloads.

range workload. The conclusion of this experiment is that, for most read-write workloads, scheme selection
can be done assuming a workload of 50% reads because the selection surface is stable over a large range.
However, for write-once/read-many storage systems, the trade-o� space di�ers radically.

The selection surfaces for the 100% read and 100% write workloads have some speci�c features that
provide insight into the trade-o� space. Figure 7 and Figure 8 show the selection surfaces for these workloads.
Splitting dominates the low availability-high security region (the back plane of the graph) for the 100% read
workload. Whereas, splitting dominates the diagonal that demarcates the edge of the operational region
for the 100% write workload. For other workloads, splitting only occurs at the maximum security point.
Splitting's encode operation is faster than secret sharing's; however, for any other workload secret sharing
dominates splitting because splitting has extremely poor read availability. Splitting's decode operation
is extremely fast compared to its encode. This is why it is selected for the read workload|its encode
performance does not penalize it.

This insight about splitting is applicable to the rest of the threshold schemes. For the 100% read workload,
schemes are not penalized for poor write performance. The result of this is that ramp schemes dominate the
region held by information dispersal for write dominated workloads|ramp schemes with large n and low
m are competitive with information dispersal schemes with mid-range n and similar m values because their
poor write performance is counted. Also, short secret sharing is shown to have little value for a read-only
workload. Short secret sharing o�ers good security for a low encode cost. Again, the encode cost does not
matter in a read-only workload|ramp schemes o�er better read-only performance than short secret sharing.

Considering the resource consumption of the 100% read and 100% write workload is also instructive.
Figure 9 and Figure 10 demonstrate that the best performing schemes have a balanced utilization of resources
when performing reads. Whereas, the CPU is the scarcest resource when encoding data for high security.
The fact that security is CPU bound matches intuition|security is expensive and system designers loathe
paying the price. However, the fact that reading secure data is not as expensive, in terms of CPU cycles,
is signi�cant. Indeed, for workloads with > 60% reads the utilization of resources in the system is balanced
deep into the security region.

5.4 Failure model

The failure probability for storage nodes, fnode, is an interesting parameter in our model. A total ordering
of all schemes based on their availability can be performed without substituting a speci�c value for this
parameter. Thus, the parameter only contracts or expands the surface in the availability dimension. For
example, the surface in Figure 11, which is based on a failure probability 10� larger than the default value,
has the exact same shape as the surface in Figure 1, except for the scaling along the availability axis. Thus, in
some sense the selection surface does not depend on the failure probability|ordering along the availability
axis is solely a function of n and m. Clearly though, an accurate understanding of the failure model of
storage nodes is necessary to correctly engineer the system to meet its requirements.
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Figure 7: 100% Read workload.

Figure 8: 100% Write workload.

5.5 Security model

In this section, we investigate what happens if one assumes circumventing cryptographic protection and
compromising storage nodes require di�erent amounts of e�ort. It is important to only consider relative
changes in these experiments|the e�ort metric only provides a relative ordering of schemes.

We performed experiments to see what happens when ECircumventCryptography is varied relative to EBreakIn .
Reducing ECircumventCryptography by an order of magnitude relative to EBreakIn has little e�ect on the se-
lection surface. It di�ers over less than 4% of the area with an average di�erence of 9%. Thus, the
e�ort valuation used to generate a total order for schemes along the security axis gives less weight to
cryptographic con�dentiality than to information-theoretic con�dentiality. The results are much di�erent
when ECircumventCryptography is increased by an order of magnitude relative to EBreakIn . Replication with
cryptography dominates almost the entirety of the security-availability plane. This is because the max-
imum possible value of n is 10 in our default model. A threshold scheme can only achieve security of
10�EBreakIn|one order of magnitude. To gain more insight into how the selection surface changes, we
increased ECircumventCryptography by a factor of 2.5 relative to EBreakIn . Figure 12 presents the resulting se-
lection surface. Replication with cryptography dominates a very large region of the scheme selection surface.
As well, the region in which short secret sharing dominates ramp schemes grows signi�cantly. Indeed, the
selection surface di�ers by 45% of the area with an average di�erence of 60%.
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Figure 9: Balance of resources for a 100% read workload. The entire availability-security plane has balanced
consumption of network and CPU resources when performing reads.

Figure 10: Balance of resources for a 100% write workload. The cost of security is entirely in the write (encode)
operation. As well, the level of security is bound by the CPU.

Even though the numbers assigned to the security costs have an arbitrary nature, it is interesting to
consider how the value placed in cryptographic techniques can change depending on the amount of time
con�dentiality must be maintained. A goal of security engineering is to expend just enough e�ort (i.e.,
minimize performance degradation) to achieve the security goal. For systems with a short con�dentiality
window, the weighting of ECircumventCryptography relative to EBreakIn should be higher. E�ectively, this
assumes a bound on the time that an attacker can utilize to crack the cipher, steal keys, or guess keys.
On the other hand, information whose con�dentiality is a long-term priority must carefully consider the
valuation of cryptographic techniques.

5.6 Analysis

Although the trade-o� space is complex, we expected speci�c algorithms to dominate certain regions of
the availability-security plane. Within a region we expected the parameters to have a large impact on the
performance achieved. Our investigation shows that our original insights were basically correct. However,
some transitions between regions are abrupt, indicating that a large performance di�erence occurs for a small
change in security or availability guarantees. For example, the transition from replication to information
dispersal and the �rst transition between schemes within the region where information dispersal dominates
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Figure 11: Order of magnitude increase in node failure probability. The scheme selection surface contracts by
a factor of two along the availability axis. Remember, the scale of the availability axis is the number of nines. An order of
magnitude increase in the probability of failure results halves the number of nines of availability.

Figure 12: Placing higher value on cryptography than node security. If cryptography provides better con�dentiality
than the security of the storage nodes, replication with cryptography is a very e�ective scheme. As well, short secret sharing,
which combines cryptography with information dispersal, dominates ramp schemes deep into the region of high security.

have this property. This contradicts our original intuition that the large number of schemes would result in
a selection surface that is smooth. If a system is operating near a sharp performance transition, the system
requirements must be considered and an engineering decision must be made as to whether to err in favor of
performance, availability, or security.

Sharp transitions tend to be localized in the back corner of the trade-o� space (low availability and low
security). The sharpness is due to the data redundancy of threshold schemes. Share size is calculated as
1=(m�(p�1)), and n shares are generated by a threshold scheme. Consider a 1-1-4 threshold scheme (4-fold
replication) and a 1-2-4 threshold scheme (an information dispersal scheme). By increasing m from 1 to
2, the data redundancy is halved (i.e., storage space consumption is the same as 2-fold replication). On a
read, both schemes require the same amount of data (one replica versus two shares, each half the size of
the replica). The abrupt performance di�erence on the selection surface is due to write operations, which
depend on the amount of data that must be sent across the network.

Another feature of the selection surface occurs when two algorithms perform similarly; the result is a
\checkerboard" on the selection surface. In such cases, it is informative to consider the resource consumption
of each of the similarly performing schemes. Since the predicted di�erence is within the error of our model,

16



a system designer can use secondary criteria to select schemes.
Another aspect of the space that interests us is the performance di�erence between algorithms. Our

intuition was that limiting the set of potential algorithms would often result in poor performance. Our
intuition was correct: each algorithm tends to be good for only some region of the availability-security
plane. If the system being considered does not operate within the algorithm's \good" region, the system
has incurred an unnecessary performance penalty. Indeed, limiting the set of algorithms reduces the region
of the availability-security plane in which the system can operate. Constraining an algorithm to a speci�c
set of parameters (i.e., building a system around a single scheme) �xes the availability and security that can
be o�ered. Moreover, unless thorough analysis of the trade-o� space was done as part of the system design,
it is unlikely that the scheme selected is well matched to the system being built. This is only a reasonable
design decision if the system is to operate in a single region and the scheme used is on the selection surface
at the region.

The highest degree of availability is always achieved by a replication algorithm (because only replication
can handle n�1 failures) and the highest degree of security is always achieved by splitting (because only
splitting can handle n�1 compromises).

After some level of security, secret sharing dominates only the edge region that demarcates the reachable
portion of the availability-security plane. This is because for a m1-m1-n1 secret sharing scheme, there is
usually a p2-m2-n2 ramp scheme with p2 = m1, m2>m1, and n2>n1 which provides, by de�nition, the same
security guarantee, provides adequate availability, but has much better performance. The reason for this is
that the space savings of ramp schemes with m>p results in fewer computations being required, and thus
better performance (i.e., since shares are smaller in size, fewer calculations are required to generate each
share). Thus, if secret sharing is the only algorithm that o�ers the security and availability required, increas-
ing the number of storage nodes, (i.e., the maximum value n may take), will produce a better performing
ramp scheme (> 2� improvement) that meets the availability and security requirements. Clearly, this can
only be done if there is not a hard design constraint on the number of storage nodes in the system.

6 Survivable Storage Projects

Survivable storage systems are an active area of current research. This section describes six current and
past survivable storage projects, focusing on their system models, target workloads, and data distribution
schemes. For each, design insights resulting from our exploration of the trade-o� space are noted.

Delta-4. The Delta-4 system [12, 16] is comprised of clients, security servers and data storage servers.
The data distribution scheme employed is referred to as fragmentation, redundancy and scattering. Data
is decimated into fragments, each fragment is encrypted (with a chained cipher so that fragments must be
decoded in a certain order), and the encrypted fragments are replicated. Each data storage server is sent
all of the fragments and uses a pseudo-random algorithm to decide which fragments to store. The names
of fragments are self-verifying but give no information about the fragment's contents. To access a piece of
data, a client must get authorization from a set of storage servers. The storage servers run an agreement
protocol to provide integrity. The hash, which enables a client to determine the names of the fragments it
wants to read, is stored using secret sharing on the security servers. Both the integrity and con�dentiality of
the data stored in Delta-4 hinges on the security servers adequately protecting fragments' meta-data. Since
CPU cycles are not as scarce as they were �fteen years ago, cryptography coupled with information dispersal
should be used in a Delta-4 type system rather than replication. Indeed, since all shares are sent to all
storage nodes, space-eÆciency of encoding is paramount to reducing bandwidth consumption.

Publius. Publius [47] is strongly in
uenced by Anderson's Eternity Service proposal [2], which argues
for survivable storage plus anonymity. Publius uses encrypted replicas for data distribution. The key used
for encryption is encoded with secret sharing, and a single share of the key is stored with each replica. This
algorithm is very similar to short secret sharing, except that replication rather than information dispersal
is used to encode the cipher text. No indication is given as to the speci�c parameters selected for the data
distribution scheme. However, the authors do identify parameter selection as a diÆcult task, citing the desire
to balance resistance to censorship and performance. The availability of data in a Publius system is limited
by the secret sharing of the encryption key. Thus, the extra space consumed by replication, over information
dispersal is an ineÆciency. Because decode times for information dispersal schemes is so low and Publius is
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so heavily weighted towards reads, 2{4� space reduction could be realized at very little incremental cost by
utilizing a better scheme.

Intermemory. The Intermemory project [10, 22] focuses on archival storage of public data (i.e., write-
once, read-many data with high availability and integrity requirements over time). Intermemory's goal is
to provide extraordinarily high availability while minimizing storage consumption and the expected cost of
reading data. Deep encoding is the data distribution scheme used in Intermemory. Deep encoding involves
storing a single copy of a piece of data, then applying a threshold scheme (Tornado schemes in this case [35])
to the piece of data, distributing the shares, and then having the storage nodes recursively apply the same
threshold scheme to each share they receive. Deep encoding is performed to some depth level (e.g., deep
encoding of depth three stores a replica, n shares, and n2 subsequent shares of shares). Intermemory uses a
1-16-32 threshold scheme applied to depth level three. Public-key cryptography is discussed as a means to
provide long-term integrity of stored data in the Intermemory system. The Intermemory project has selected
an excellent scheme that provides high availability with reasonable expected read performance and very low
storage space overhead. However, integrity is explicitly stated as a goal of the system. An attacker need
only compromise a single replica to defeat the integrity of the stored data. Adding a hash to the encoding
algorithm and removing the �rst depth level of deep encoding would greatly increase the integrity of the
Intermemory system at the expense of increasing the expected cost of performing a read.

Oceanstore. Oceanstore [31] is envisioned as a wide-area data utility. It intends to leverage excess
storage capacity over a wide area to provide survivable storage of data accessible from anywhere. Oceanstore
stores two types of data: active data (which can be read and written) and archival data (which is write-once,
read-many). Active data is stored using encrypted replicas. Replicas have self-verifying names to provide
integrity. Agreement algorithms are used to manage authorization to data. Archival data is stored using
deep encoding as in Intermemory. Oceanstore is addressing many other issues pertaining to building a data
storage utility of global scale, including client mobility, robust naming, data migration, and replica discovery.
Analyzing the trade-o�s amongst data distribution schemes would enable Oceanstore to clearly understand
the di�erent characteristics of the two distinct data distribution schemes it employs. Indeed, such an analysis
is necessary for them to determine at which workload data should switch from being active to archival.

Farsite. The Farsite project [7] is exploring peer-based storage in a local-area setting. Farsite is attempt-
ing to leverage the idle cycles and unused storage capacity of desktop workstations, which inherently have
poor availability characteristics, to provide a survivable storage system. Farsite uses encrypted replication
with self-verifying names. A Byzantine agreement protocol amongst client machines storing meta-data is
used to guarantee the integrity of the directory service (and subsequently provide the self-verifying nature of
the replica names). To limit space consumption, single instance storage [6], in conjunction with convergent
encryption, is used to ensure that only n replicas of any similar piece of data is stored system wide. Since
Farsite explicitly states concerns about storage space consumption, information dispersal rather then repli-
cation should probably be used. With relatively small CPU costs, 2{4� reductions in space and bandwidth
utilization are available. Further, both single instance storage and convergent encryption can still be used
with the shares generated by information dispersal.

e-Vault. The e-Vault system [18, 25] is a survivable storage system that uses either information dispersal
or short secret sharing, depending on whether or not strong con�dentiality is desired. Distributed �nger-
prints [29] are used for integrity. The system is designed for a local-area setting in which clients interact
with storage servers via a \gateway" (a designated storage server). Performance numbers are given for the
1-2-3 information dispersal scheme [25], since the test platform is limited to three storage servers. This is
a very limited system in which to consider information dispersal schemes. A system with just a few more
storage nodes has signi�cantly better performance and availability characteristics.

PASIS. Our prototype system, PASIS [40, 48], is described in Section 4. PASIS provides an implemen-
tation of a survivable storage system against which we validate our performance models. The main design
goal of PASIS is to be 
exible enough for us to investigate many di�erent approaches to building survivable
storage systems. Our implementation of encode/decode functionality is separate from our multi-read/multi-
write functionality. The encode/decode library provides threshold algorithms, cryptographic algorithms, and
hybrid algorithms, all of which can be instantiated over a wide range of parameters. The library is structured
so as to facilitate the addition of data distribution algorithms and the composition of hybrid algorithms. The
multi-read/multi-write library supports NFS, CIFS, and FTP storage nodes and can be extended to support
additional types of storage nodes. The 
exibility of the PASIS design allows us to explore the complex
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engineering trade-o�s of survivable storage system design within the context of a real system.

7 Summary

This paper illustrates the complex trade-o� space associated with selecting the right data distribution scheme
for a survivable storage system. A reasoned approach to exploring this trade-o� space is developed and used
to explore the space's sensitivity to various system and workload characteristics. Although further work is
needed to re�ne the models, we believe that this paper takes a big step in the right direction|away from ad

hoc selections and towards informed engineering decisions.
This work was done in the context of the PASIS survivable storage project at Carnegie Mellon University.

Additional information on our work and results can be found on the project web site [40].
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