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Abstract

For most computer systems, even short periods of overload degrade performance signifi-
cantly. The number of jobs in the system quickly grows, often exceeding the capacity of
the system within just seconds, and response times explode.

In this paper we investigate system behavior under transient overload. We find that the
poor behavior of systems under transient overload can at least partly be attributed to
the scheduling policy traditionally used in systems. The traditionally-used scheduling
policy is Processor-Sharing, or time-sharing, (PS). We derive analytical approximations
as well as simulation results for the performance of a single PS queue under transient
overload. Simulation and analysis agree. The number of jobs in the system and the
system response times grows quite rapidly during overload, and even when the overload
period ends, recuperation is very slow.

We propose a new solution for coping with transient overload: SRPT scheduling of jobs
(Shortest Remaining Processing Time). We derive analytical approximations for the per-
formance of a single SRPT queue under transient overload, and validate those approxi-
mations with simulation.

We evaluate our PS and SRPT approximations under a realistic job size distribution, a
Bounded Pareto with a heavy-tailed property. We find that SRPT performs an order of
magnitude better with respect to mean response time and mean queue length.

While SRPT might not seem like the best choice for large jobs, particularly under overload,
it turns out that under our realistic workload big jobs do not perform worse under SRPT
as compared with PS in expectation. We give intuition for this. Finally we pose some
interesting open questions on the topic of starvation of large jobs.



1 Introduction

Overload is a situation where the rate of work arriving at a system is greater than the
system can handle. In this paper we investigate systems under transient overload, where
load alternates between a finite period of overload (called HIGH period) followed by a
finite period of low load or zero load (LOW period). The mean system load is always

below 1. This HIGH/LOW model is described in Section 2.

For most servers (e.g. web servers), even short periods of overload cause the number of
jobs in the system to quickly exceed the system capacity, often within a matter of seconds.
A large number of jobs implies large allocations of system resources (buffers), as well as
many context switches. These effects in turn cause the server to either stop accepting new
jobs or crash. Either way, client response times explode.

Recently there has been much attention paid to the problem of overload, particularly
in web servers. This research can be divided into 3 primary areas. One solution is to
increase the server resources, for example, adding more hardware, bandwidth, or CPU.
This is often done by replacing the server by a server farm (e.g. [8, 6, 16]). Another solution
is to enhance the OS to better support server software: ([20, 9, 1, 15, 19]). Finally, people
try to limit the load at a server, either via installing a proxy cache (at the client or server
end) (e.g. [10, 4]) or by admission control ([13]).

Our approach to coping with transient overload is different from the above approaches.
Our approach does not require buying more hardware or limiting the number of system
users. We simply propose scheduling the jobs in a different order from that traditionally
used.

In computer systems today, when multiple jobs contend for a single resource (e.g. CPU
or bandwidth), the policy used for scheduling the jobs most closely resembles Processor-
Sharing (PS). That is, the desired resource is time-shared among the contending jobs,
with each job in turn receiving a small quantum of service.

Processor-Sharing has many provably desirable properties when system load remains
below 1, such as low mean response times and fairness (all jobs experience same mean
slowdown) [17, 25]. However, in real systems the load fluctuates, sometimes exceeding 1,
and it is not clear what the performance of PS is in this case.

The first result in this paper is an approximate analysis of the performance of a PS
queue under transient overload. Our analysis is based on combining ideas from Jean-Marie
and Robert [14] and Chen, Kella, and Weiss [5]. We validate the assumptions made in
our analysis via simulation, which agrees with our analysis. We evaluate our analytic
formulas in the case where the job size distribution is a Bounded Pareto distribution,
with a heavy-tailed property. This distribution has been shown to be characteristic of
computer workloads [18, 12, 7, 21]. Our PS results indicate that performance of a PS
server under transient overload can be quite poor, even when mean system load is very
low. The performance is dominated by the load during the overload period. The number



of jobs in system increases very rapidly during the overload period and then is slow to
recover during the low load period, due to the time-sharing nature of PS scheduling.

In an attempt to improve performance of servers under transient overload, we pro-
pose scheduling requests under the well-known Shortest Remaining Processing Time First
(SRPT) policy. The motivation is the fact that SRPT minimizes the number of jobs in
the system at any time.

Applications have shied away from using SRPT for fear that SRPT “starves” big
jobs, particularly under overload [3, 23, 24, 22], however the performance of SRPT under
transient overload has never been analyzed. In a recent paper [2] we consider only the case
with constant load below 1 (no overload). In [2] we find that, provided the load is not too
close to 1 (so as to allow large jobs a turn to run), for many workloads with a heavy-tailed
property, the fear of starvation is unsubstantiated. That is, all jobs, including the very
largest job have lower queueing time under SRPT scheduling than under FAIR scheduling.

The second result in this paper is an approximate analysis of SRPT scheduling under
transient overload. We validate the assumptions made in our analysis via simulation,
which agrees with our analysis. We evaluate the analytic formulas in the case where the
job size distribution is a Bounded Pareto distribution, with a heavy-tailed property.

The comparison of the PS results with the SRPT results under the Bounded Pareto
workload is quite interesting. We find that:

e The improvement of SRPT over PS both in terms of the mean response time and
in terms of mean number of jobs in system is substantial (close to an order of
magnitude).

e The mean improvements of SRPT over PS are greatest when the overload is close
to 1.

e Unfairness to big jobs under SRPT as compared with PS is virtually non-existent
under our Bounded Pareto workload.

e The higher the load during the low load period, the better SRPT looks with respect
to all of the above metrics.

e For distributions with a lighter tail, e.g. the exponential distribution, the results
are not much worse. In fact we can prove that for an exponential distribution, if
the load during the overload period exceeds 2, then every single job performs better
under SRPT than under PS, in expectation.

The last observation above leads us to speculate on the class of distributions for which
SRPT improves upon PS under transient overload. This discussion is covered in Section 7,
where we provide analyses, observations, and open problems on this topic.

The above results are encouraging with respect to the potential real-world applicability

of SRPT scheduling.



2 Model, Relevant Previous Work, and Simplifying Assump-
tions

2.1 Model

Throughout this paper we will assume an M/G/1 queue. The job sizes will be assumed to
be independent and identically distributed with c.d.f. F(z) and p.d.f. f(z). The arrival
process will consist of alternating periods of high and low loads. During the high load
period (also called the “HIGH” period), jobs arrive with mean arrival rate Ay and create
a load of py > 1. The high load period has fixed duration ¢;. During the low load period
(also called the “LOW?” period) jobs arrive with mean arrival rate A; and create a load of
p1 < 1. The low load period has fixed duration {;.

Let p denote the average system load. Thus

th n i
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We will always assume that the average load p < 1.

Our system behavior is as follows: During the HIGH period, jobs build up in the
system as a function of time. We will derive an expression for this buildup. At the start
of the LOW period, there is an accumulation of jobs which we refer to as “the bag of
jobs.” Since the load during the LOW period is less than 1, the number in system will
start decaying and will converge to a low value, related to p;, before the end of the of the
LOW period. This is expected since the average load is less than 1.

Some additional notation: The number of jobs in the system ¢ time after the onset of
the HIGH period will be denoted by Np(t). Likewise the number of jobs in the system ¢
time after the onset of the LOW period will be denoted by N(t).

2.2 Relevant Previous Work

To the best of our knowledge, the HIGH/LOW workload model with general job size
distribution has not been studied under either PS or SRPT scheduling.

For SRPT scheduling, there are no relevant queueing results in the literature dealing
with overload.

For PS scheduling, there are two relevant results: one by Chen et. al. [5] and the other
by Jean-Marie and Robert [14]. While these results don’t cover the HIGH/LOW model,
they are still very relevant in its analysis.

Jean-Marie and Robert’s work [14] can be viewed as analyzing only the HIGH period
of the HIGH/LOW model under PS scheduling. They prove that Ny (t)/t converges to



a particular constant in the limit as ¢ — oco. They also derive the distribution on the
residual job sizes in the limit as { — oo.

Chen et. al.’s work [5] can be viewed as analyzing only the LOW period of the
HIGH/LOW model under PS scheduling. Specifically, they assume a PS server running
under load p; < 1 which begins with a set of initial jobs distributed according to an arbi-
trary distribution. They obtain a fluid approximation on N;, however it is not expressed
as a function of ¢, but rather as a function of v(¢), where v(¢) is the cumulative amount
of processing time per customer allocated by the server up to time ¢.

2.3 Simplifying Assumptions

It seems natural to try to combine the results in [14] and [5] to analyze the HIGH/LOW
model under PS. Our goal is to understand the mean response time for a job of size z
under the HIGH/LOW model. Unfortunately, we could not see how to directly combine
these results to derive mean response time. Part of the problem is that the Chen result
doesn’t actually compute N;(¢). Another part of the problem is that the Jean-Marie and
Robert result requires ¢ — oo, whereas we want to consider finite ¢; and ¢;. In our analysis
it was therefore necessary for us to resort to two simplifying assumptions under PS and

under SRPT:

1. %ﬂ = constant V¢, for all sample paths, and

2. Ni(t) is the same for all sample paths.

These simplifying assumptions will serve several purposes: First, they will allow us to
obtain an approximation for expected response time for a job of size z for a HIGH/LOW
process under PS scheduling (see Section 3). Second, they will allow us to obtain approx-
imations for all performance metrics of interest for a HIGH/LOW process under SRPT
scheduling ( expected response time for a job of size z, Ny (t), Ni(t)) (See Section 4). Third,
they will allow us to compare SRPT and PS performance in a HIGH/LOW workload (see
Section 5).

Our simplifying assumptions may seem quite strong. However, in Section 6 we will
compare the performance numbers derived using the simplifying assumptions with our
simulation results which make no assumptions. We will find that provided ¢, and ¢; are
not too small (at least 100 times the mean job size), the simulation numbers agree with
the analytically-derived numbers.

3 Analytical Results for PS under HIGH/LOW model

The goal of this section is to derive the expected response time for a job of size z under
the HIGH/LOW model with PS scheduling. Throughout we will apply our simplifying



assumptions from Section 2.

Before we begin we will need to review the results of Jean-Marie and Roberts [14] and
Chen et. al. [5]. In reviewing these results, we will also use our simplifying assumptions
to provide intuitive derivations of these results for the benefit of the reader.

3.1 Analysis of the HIGH load period only

Lemma 0.1 (due to [14]) Consider an M/G/1/PS queue with load p > 1 and average
arrival rate A,. Let Ny(t) denote the number of jobs in the system at time t. Then for
almost all sample paths,

lim Nu(t) =a (1)

t— 00 t

where a is the solution to A\p(1 — [§° f(z)e”*"dz) = a.

Proof via Simplifying Assumptions: The following is a rough proof based on our
approximations made in Section 2. Since the work in the system by time ¢ increases as
(pr.— 1)t +o(t), it is not difficult to see that for almost all sample paths, Ny(t) = at+o(t),
for some a. To determine «, let us ignore the o(¢) term and approximate Ny (t) by at, and
assume that this holds for all ¢ and for all sample paths.

Now, consider a job of size z, arriving at time £,. Then the service received by the job

by time tq is
o dt

S(ta, to) = / A0 (2)

Clearly the job departs at time ¢4 such that S(t,,t4) = . So, tg = t,e®*. Thus, at time
t, if a job of size z arriving at time ¢, is present in the system, then {, > te™%".

Now the expected number of jobs of size between x and z+dz which arrive during time
[0,] is At f(z)dz. Since the arrival process is Poisson these jobs can be assumed to arrive
uniformly over [0,¢]. Thus, we expect that about A,t(1 — e %) f(z)dz of these jobs will
still be present in the system at time ¢{. Averaging over the possible job sizes x, we get that
Niu(t) = [57 An(t—te™) f(z)dz. Equating Nj(t) to at givesus a = [;° Ap(1—e™%) f(z)dz.
ad.

Since we will be interested in evaluating various metrics for PS, we will make the results
more compact. Let Ly(s) denote the Laplace transform of a function g, i.e. Ly(s) =
Jo7 g(z)e™**dz. Thus we observe that a satisfies « = A, (1 — Ls(a)). Moreover observing
that L(s) = (1 — Lys(s))/s, we can write @ in the following form which will be useful
later.

Lpa) = 5 ®)



We now obtain an approximation for the number of jobs with remaining size > y at
the end of the HIGH period, using our simplifying assumptions 1.

Consider a job of (original) size z. Arguing as above, this job will have remaining size
> y at time ¢y iff it’s arrival time, ¢,, is such that ¢, > the_“(z_y)

Thus the total number of jobs of size (z, z+ dz) which have remaining size > y at time
t, will be
Artnf(2)(1 = e dz (4)

Integrating 4 over all possible job sizes greater than y gives us the total number of jobs
which have remaining size > y at time ¢, which is

/OO Mutn f(2) (1 — e~ C=¥))dz (5)

Let F,. denote the c.d.f of the remaining sizes of the jobs at the end of the HIGH period.
Since the total number of jobs at time ¢, is alj, using 5 gives,

Foly) = 2 ARf(2) (1= e dz

6
- (6
After some manipulation, we observe that the Laplace Transform of F, can be written

simply as
1= ApL+=(s)
Li(s) = —— 1 (7)

sS—a

3.2 Analysis of the LOW load period only

We now consider just the low load period (p; < 1), starting with N;(0) jobs with remaining
sizes distributed according to c.d.f. F,.. New jobs arrive into the system at rate A; where
the new job sizes have c.d.f. F. We now use our simplifying assumptions to derive an
expression for the number of jobs in the system. Chen, Kella and Weiss [5] have analyzed
the low-load only system and obtained a fluid limit expression for the number of jobs in
the system. The [5] result is similar to our result in Equation 11.

Denote the number of jobs in this system at time ¢ by N;(¢), and let us assume that
Ni(t) is constant for all sample paths. N;(¢) will consist of two types of jobs. Jobs which
were present at time 0 and those which arrived at time greater than 0. We will call these
jobs of Type 1 and Type 2 respectively.

To determine N(t), consider a job of size z which arrives at time ¢,. This job will

complete at time ¢g such that the service received by the job during time ¢, to {q is z.

Now, the service received by the job during time ¢, to {4 under PS, will be tid %.

![14] also study the problem of residual job sizes.



Let us define v(t) = f; %, where v(t) is the cumulative service per customer allocated

by the server up to time ¢. Thus a job of size z arriving at time ¢, is present in the system
at time ¢ iff v(¢) — v(t,) < . Thus the number of Type 1 jobs still present at time ¢ will
be N;(0)F.(v(t)). To obtain the number of Type 2 jobs, consider the jobs which arrive
during time y and y 4+ dy. There will be approximately A;dy such jobs. Out of these the
number still present at time ¢ will be A\;dyF (v(t) — v(y)). Integrating over y from 0 to ¢
will give us the total number of Type 2 jobs still present at time ¢. Adding the number of

Type 1 and Type 2 jobs we thus obtain,

Nit) = MO (o) + [ MF((0) — o))dy ®)

We do not know of a way to solve Equation 8 directly to obtain the number in system as
a function of time. However, we can obtain this indirectly by solving for the number in
system and solving for ¢ as a function of v. We will denote these by N/ and ¢¥ respectively.

Observing that v(0) = 0 and Lv(t) = ﬁ, Equation 8 can be written as

N () = N(O)T () + [ " \Flv - N} () dz (9)
We can now solve Equation 9. Using Laplace Transforms this gives us
Ly (s) = Ni(0)Lg~(s) + AL7(s) Ly (s) (10)
which yields
Lny(s) = % (11)

Using Equation 7 we get,

_ Ni(0) (1= ApLg(s))
Lyp(s) = =2 (1- A;L;(SD

(12)

To obtain t¥ observe that % = N/, thus we get,

bt =3 210 (= .

3.3 Analysis of Response times for the HIGH/LOW model

Using the results above we can now obtain the expressions for the response times as a
function of job size under transient overload.

We classify the jobs into 3 types. Jobs which arrive during the HIGH period and finish
during the HIGH period itself are type 1 jobs. Jobs which arrive during the HIGH period
but finish in the LOW period are type 2 jobs. Jobs which arrive during the LOW period
and finish during the same LOW period are type 3 jobs.

-~



Note, that since the average load is less than 1, very few jobs which arrive during the
LOW period will continue during the next HIGH period. Thus we consider only the three
types of jobs mentioned above.

Suppose J is a job of size . If it is a type 1 job, then we know that it must have
arrived during time 0 to {;e™%". Assuming it arrives uniformly during this interval, we
obtain

E[T(z)|Job is of type 1]
1 —ax

the
— ar _ 1 d
—= [ e =y

_ gmywwq (14)

Suppose J is of type 2, then it must have arrived during time t,e™%" to {. If it arrives
at time y, then it spends ¢ — y time during the HIGH period and its remaining size at
the beginning of the LOW period is r(y) = « — %log %‘ Observe that by Equation 13 this
job finishes at time tY(r(y)). Thus we obtain,

E[T(z)|Job is of type 2]

1 th 1 173
= oo | =) e = S o Ly

k('r) ne— ¥ Y
1 1 [t 1.t
= -k — (z — ~log 2)d
2 (CC) + k‘(.f) Zhe—ar (CC a og y ) Y
1 1 * v —az
= Ek(.’ﬂ) + m/o at (.f — 2)6 dZ (15)

where k(z) = t,(1 — e7%7).

Finally we consider the case when J is a job of type 3. To do this, we need to first
digress and define quantity ¢,,.

Consider the amount of work accumulated during the HIGH period. This is approxi-
mately (pp, — 1)ty. Thus the time until this work is removed from the system during the
LOW period will be around t,, = (py, — 1)tn/(1 — p1).

Returning to the case of a job of type 3, we can separate jobs of type 3 into 2 cases:
those which arrive before time ¢,, and those which arrive after time ¢,,.

Let us first consider the jobs which arrive during time ¢,, from the start of the LOW
period.

Suppose a job arrives at time ¢, from the start of the LOW period, then it will finish at
time ¢¥(z+v(t,)). Given that a job arrives during the time 0 to ¢,,, it will arrive uniformly
during this interval (since the arrival process is Poisson). Thus,

E[T(z)|Job is of type 3, and arrives in (0,%,)]



= L[ ew) - iy

_ % / T (24 2) — () NP (2)d= (16)

Observe that for each of the Type 1,2 and 3 jobs considered above, the response time
of a job is proportional to .

For type 3 jobs which arrive after time ¢,,, their response time will be independent
of t,. Thus if ¢; is quite large (compared to the mean job size) we can assume that the
response time for these jobs is negligible compared to jobs of type 1, type 2 and jobs of
type 3 which arrive during time 0 to ¢,. Hence we will approximate the response time of
type 3 jobs arriving during ¢,, to ¢; by 0.

So, finally we obtain
E[T(z)|Job is of type 3]

_ %/Ooo(t“(z—}—x)—t”(z))Nl”(z)dz (17)

Finally to obtain the approximate expected response time for a job of size z, we find
the unconditional response time. Thus we obtain that

E[T(2)]ps = prE(T1(2)) + po E(T2(2)) + psE(T3(2)) (18)

where E[T;(z)] is the expected response time for a job of type 7, ¢ = 1,2,3, as ob-
tained in Equations 14,15 and 17. The probability p; that a job of size z is of type
1is Aptne™/(Antn, + Ait;). The probability pp that a job of size @ is of type 2 is
(Antn(1 — e7%)) /(Antn + Aitg). Finally the probability ps that a job of size z is of type 3
is )\lth/(/\hth + /\ltl)-

Substituting the values in Equation 18 and doing some manipulation gives

E[T'(z)]ps
= /\ht;\h—t&h/\;tl [(1 - 62 i + /OI at’(z — z)e_“zdz]
+ m [/Ooo(t”(z—I—x) - t”(z))Nl”(z)dz] (19)
Observe that if p; = 0,
Br@les =5 4 e e - ea: (20)



4 Analytical Results for SRPT under HIGH/LOW model

In the previous section we derived an approximation for the response time for a job of
size  under PS scheduling. The goal of this section is to derive an approximation for the
response time for a job of size z under the HIGH/LOW model with SRPT scheduling.

4.1 Number of jobs during HIGH period

Let @, be defined such that pp(z,) = 1.

Consider a job of size > z,. This job will never run as long as there are jobs of size
less than z in the system. Since pp(z) > 1, it follows that for almost all sample paths w
there will be a time ¢(w) such that the work made up by jobs of size less than z will be
non-zero for all ¢ > {(w). Hence, if the job z arrives after time ¢(w) it will remain in the
system at least until the end of the HIGH period. Assuming that {5 is large compared
to t(w), we will use the approximation that all jobs of size > z, are held back during the
HIGH period.

Secondly, for jobs of size z < z, the expected response time for a job of size z is o(1),
as shown in [2]. The reason for this is that if we consider the busy periods during which
jobs of size < z are executed, then at most one job of size > x can affect a particular busy
period. Hence, the response time for a job of size z is not affected significantly by jobs of
size > z, and hence is o(1), if p(z) < 1.

Using the observations above we approximate the number of jobs at time ¢ as
Ni(t) = AtF(z,) (21)
and the distribution of the job sizes of the accumulated jobs as

J=)
fr(w):{_ T >z,

F(zo)'
0 otherwise

4.2 Number of jobs during LOW period

During the LOW period, p; < 1, and thus the jobs accumulated during the HIGH period
will start receiving some share of the processor. Let us consider what the accumulated
jobs look like during the LOW period. At time ¢ = 0, the jobs in the bag are of size z,
and greater. As time progresses, jobs will be cleared from the bag starting from the jobs
of size z,. Let z(t) be the size of the smallest job remaining in the bag at time ¢. We will
first approximate z(t) as a function of ¢.

Clearly z(0) = z,. Consider the scenario at time {. Consider how much time it takes
to advance z(t) by dz amount. This will simply be the amount of work of size between

10



x(t) and z(t) + dz present in the system at time {. Suppose it takes dt time to do this.
Let us estimate dt in terms of dz. The expected amount of work that needs to be done
during the dt time can be divided into 3 parts:

1. The expected work made up of jobs in the original bag with sizes between z(¢) and

z(t) + dz. This work totals to Aptrz(t) f(z(t))dx.

2. Pending work due to the new arrivals (during the LOW period) with sizes between
z(t) and z(t) +dz. Note that these jobs were not worked upon, until now. This new
work will be Atz (t) f(z(t))dz.

3. The fresh work which arrives during this dt amount of time. We need only consider
work made up by jobs of size less than z(t), since z(¢) will be affected by other jobs.
This work will be p;(z(t))dt.

Using these observations we can write,
dt = Mptpa () f(z(t))de 4+ Mta(t) f(z(t))de + pi(z(t))dt

Hence,
dt z(t)f(=(t))dx
Apty + At o 1- pl(as(t))

Integrating the L.h.s. of Equation 23 from 0 to ¢ and the r.h.s. from z, to z(¢) and

observing that dpéf) = Nz f(z) and pp(z,) = 1, we get,

(23)

1 | Apty + Mt 1 | 1- pl(aco)
g 2 T T g —FATO
Al & Aty Al & 1-— pl(x(t))
Thus we obtain? Mt + 1)
1t + 1t
t)) = ———=— 24
pla) = 200 (24)

Having obtained z(t), N;(t) can be readily determined, since by the above arguments the
number of jobs at time ¢ will be approximately (Ants + Mt)F(z(t)). Thus,

Nl(t) = (/\hth + /\lt)F(x(t)) (25)

Finally, we obtain the inverse of (¢) which we denote by ¢(z). Thus {(z(t)) = t. This
will be useful in obtaining the approximation for the expected response time. Clearly ¢(z)
is only defined for z > x,. Then Equation 24 gives?

i(x) = th% (26)

?For the case when \; = 0, we get pr(z(t)) =1+ i
3For the case when \; = 0, we get E(x) = tn(pn(z) — 1)

11



4.3 Response times as a function of job size

To derive the expected response time under SRPT, we first consider a job of size less than
z,. For such a job we know that the expected response time is a constant, hence o(ty).
This holds whether the job arrives during the HIGH period or during the LOW period.

Consider a job of size z, # > x,. Suppose the job arrives during the HIGH period.
Then it will wait throughout the HIGH period, and approximately {(z) time during the
LOW period. Given that the job arrives during the HIGH period, it will arrive uniformly
in the interval since the arrival process is Poisson. Thus

1 -
E[T(z)|job arrives during HIGH period]srpr = §th +t(z) (27)

Now consider the case when the job of size z, > z, arrives during the LOW period.
Again, if the job arrives after time £(z), then its will response time will be o(t},).

Finally, given that the job arrives during the low period between time 0 to #(z), its
response time will be approximately %f(.ﬁ)

The probability that a job arrives during the HIGH period is Aptn/(Antn + \itr).
The probability that a job arrives during the interval [0,#(z)] of the LOW period is
/\lt(x)/(/\hth + /\ltl)-

Thus the expected response time for a job of size z > z, under SRPT will be

Arth 1 - A\ 2 (z)
E|T = —F—— | = 4 2
[ (x)]SRPT Apty + Aty (2 ht (35) + An 2t ( 8)

Observe that when py, and p; are fixed E[T(z)] varies linearly with ¢,. However if the job
size is less than z,, we know that E[T'(z)]is o(ts). Hence, for large ¢}, the ratio of response
times for a job of size < z, to that of size > z, will tend to 0. Thus we will approximate
E[T(z)] by 0 for z < z,. We will show later in Section 6 that this approximation is quite
good.

5 Comparison of PS and SRPT based on analytical results

In Sections 3 and 4 we derived the approximation for the expected response time of a job
of size  under SRPT and PS for the HIGH/LOW model. These results are summarized in
Equations 28 and 19 respectively. It is difficult to compare these two equations analytically
for generally-distributed workloads, therefore in this section we compare Equations 28 and
19 evaluated on a particular real-world workload. Although we only show results for this
particular workload, we will make observations which apply to more general workloads as
well, and we will discuss intuitions for why these results hold more generally. In Section 7
we return to the discussion of other workloads.

12



Our workload assumes job sizes have a Bounded Pareto distribution. This distribution
is defined as follows:

Recall a Pareto distribution with parameter «, is defined such that
PriX >z]~27% where 0 < aw < 2

The Bounded-Pareto distribution [11] is characterized by three parameters: «, the expo-
nent of the power law; k, the smallest possible job; and p, the largest possible job, The
probability density function for the Bounded Pareto B(k,p,«) is defined as:

ol k<az<np.

In this paper, we consider the distribution B(k, p, &) obtained by keeping the mean fixed
(at 3000) and the maximum value fixed (at p = 10'° and o = 1.5). These parameters
correspond to typical values for Web workloads taken from [7]. Throughout we normalize
the distribution by scaling down the job sizes by a factor of 3000, leaving the mean as 1.
We refer to this normalized distribution as B(a = 1.5).

Pareto and Bounded-Pareto distributions have been shown to be characteristic of the
job size distributions in many computer workloads [18, 12, 7, 21]. These distributions have
3 important properties:

1. Decreasing failure rate (Pareto) or mostly-decreasing (Bounded Pareto).

2. Infinite variance (Pareto) or very high variance (Bounded Pareto).

3. The heavy-tailed property, which we define as: “A very small fraction of the largest
jobs (e.g., 1%) comprise more than half the total load.”

We now compare Equations 28 and 19 evaluated on our B(a = 1.5) distribution with
respect to two metrics:

1. Number of jobs in system as a function of time (Section 5.1).

2. Response time for a jobs of size z (Section 5.2).

5.1 Number of jobs in system

We now consider the number of jobs in the system as a function of time under PS and
SRPT. The number in system is an interesting practical metric. Consider as an example
a Web server which services its requests in SRPT order, as opposed to the traditional
PS service order. The number of requests in the system corresponds to the number of
simultaneously open connections in the Web server. The greater this number the more

13
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Figure 1: Analytic results: Number of jobs in system as a function of time under (a)
pr = 1.3 and (b) p;, = 2 for the B(aw = 1.5) distribution. Time 0-1000 corresponds to the
HIGH period. For each of the plots py = 0 and the average load is 0.7.

overhead is required by the Web server. Furthermore, if this number gets too high, the
Web server may crash or simply stop accepting requests.

Figure 1 shows the number of jobs as a function of time for various values of pp with
pi = 0, under SRPT and PS scheduling for the B(1.5) distribution. Here ¢, = 1000
and #; is chosen such that the average load is 0.7. Observe that a value of 1000 on the
x-axis indicates the end of an HIGH period. Observe that the area under the curves is
proportional to the mean number of jobs in the system (hence to the mean response time).

We now state a few general observations based on Figure 1. For each observation, we

provide intuition, and discuss why it should hold for more general workloads as well.

Observation 1 The mean number of jobs in the system under SRPT is significantly less
than that under PS.

This is due to the fact that SRPT is known to always minimize the number of jobs in the
system (under all conditions) since it always works on that job which can be completed
most quickly.

Observation 2 Though still significant, the relative advantage of SRPT over PS (with
respect to number of jobs in the system) decreases at higher values of py,. (See Figures la

and 1b).

This occurs since as pp, grows very high, both PS and SRPT retain almost all jobs during
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the HIGH period and thus the difference in their performance depends only on their
behavior during the low period.

Observation 3 SRPT recuperates from overload faster than PS. Specifically, the curve
for the number of jobs under SRPT during the LOW period is always convex, while this
may not be true for PS.

This follows since SRPT works on jobs with the smallest remaining size first, thus the rate
of clearance of jobs is maximum in the beginning of the LOW period and then decreases.
Also, since PS timeshares among all the jobs, it somewhat delays getting jobs out at the
beginning of the LOW period. This can be observed in Figure 1b (right). Thus SRPT
not only accumulates fewer jobs, but it also gets them out as quickly as possible.

Finally, a subtle, but important observation:

Observation 4 Given a fized pp, the number in system in Figure 1 does not depend on
the average load (provided p < 1). In general, the average load p can be made arbitrarily
low or arbitrarily close to 1 by choosing t; accordingly. However, the the number of jobs
during the HIGH period or the LOW period will not change.

This is an important departure from the usual M/G/1 queueing model in the sense that
the performance metric does not depend on the average load, but only on the load during
the overload period.

Finally, we find that the trends look similar for the case when p; > 0. * Notice that
the number of jobs during the HIGH period is independent of p;. Hence Np(¢) looks
identical for all values of p;. The only noticeable difference is that that it takes a longer
time (stretched by 1/(1 — p;)) during the LOW period for the number of jobs to go down
to zero.

5.2 Expected Response Times as a function of job size

The point of this section is to determine whether the large jobs “starve” under SRPT
scheduling as compared with PS scheduling. We do this by observing the expected response
time for large jobs.

Figure 2 shows the expected response time as a function of job size under SRPT versus
PS for the B(a = 1.5) distribution, when p; = 0. The job size is expressed as a percentile of
the job size distribution (where 100 percentile indicates the very largest job). Note that due
to the choice of the z-axis, the area under the PS (respectively, SRPT) curve corresponds
to the mean response time under PS (respectively, SRPT). In Figure 3 we consider the
case when p; = 0.5. However we use a 3 stage hyper-exponential approximation to B(1.5),

“The plots for this case are not included for lack of space.
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in order to evaluate the response times (Recall that for p; > 0, evaluating F[1'(z)] for PS
requires the use of the Laplace Transform of the job size distribution).

5.2.1 Case when p;=10

We first consider the case when p; = 0. The following observations hold for all plots in
Figure 2 and are easily explained:

Observation 5 Under SRPT jobs of size less than x, have an approximate response time
of 0 when compared with t,.

Observation 6 Large jobs do not necessarily suffer under SRPT as compared with PS
(as is commonly believed). (See Figure 2.)

To see why this is the case, observe that although large jobs do badly under SRPT,
they do almost equally badly under PS. The point is that the average amount of service
received by a large job under PS during a HIGH period is negligible compared to its
size. Thus this job stays in the system throughout the HIGH period (since its arrival).
Moreover it is among the last of the jobs to complete during the LOW period, since its
remaining size at the beginning of the LOW period is large compared to other remaining
jobs.

The observations above make a very strong case for SRPT. Not only is there a signifi-
cant improvement in the mean response lime under SRPT, but this improvement does not
come at the cost of starving large jobs.

Finally, we note (as in Observation 4) that the results above only depend on pp. In
particular, they are not a consequence of fixing the average load to a value of 0.7.

5.2.2 Case when p; > 0

Observation 7 The extent of starvation when p; > 0 is much less than that when p; = 0.

To see why this is the case, first observe that the growth rate of jobs during the HIGH
period is the same for both p; = 0 and p; = 0.5. Thus the difference in the response
times arises due to the behavior of the system during the LOW period. Observe that the
number of jobs is non-zero for a longer time (by a factor of 1/(1 — p;)) during the LOW
period as compared to the case when p; = 0. Thus the poor behavior of PS with respect
to clearing jobs out of the system as noted in Observation 3 is accentuated for the case
when p; > 0.
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6 Simulation Comparison

The discussion in Section 5 was based on analytical results obtained in Sections 3 and 4.
In this section we compare how well our approximations agree with the actual numbers
obtained by simulation.

We simulate PS and SRPT under the HIGH/LOW model for various distributions.
The goal of the simulation is two-fold.

1. To figure out how large ¢, needs to be so that the analytical results match simulation.

2. To figure out the number of the HIGH/LOW cycles required (denoted by n), so that
the metrics of interest averaged over these cycles converge to their mean.

Figure 4 shows the response times as a function of the percentile of job size under PS
and SRPT, both under theory and simulation. The job size distribution is the 3 stage
hyper-exponential approximation to B(1.5), with mean job size scaled down to 1, which
we denote by Bj;(1.5). The parameters {5 and n are set to 1000 and 100 respectively.
Observe that for PS the approximation matches simulation almost exactly. For SRPT the
approximation is close except for the point at z,. We find that, as ¢; is made higher, the
simulation and analysis results grow closer for SRPT.

Simulation comparison results
1200 T

- - - PS simulation
SRPT simulation

1000} -+ - PStheory
--- SRPT theory

o]

o

o
T

Expected Response Time
B [e2]
S o]
o o
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6] 20 40 60 80 100
Percentile of Job Size

Figure 4: Simulation results as compared with analytical approximation results, pp =
2,p; = 0.5.

In general for all workload distributions we tested®, we found that our analytical
approximation results match almost exactly with simulation when ¢, is large. We found
that simulation matched analysis even for {5, only about 100-1000 times the mean job size,
provided pp was not too close too 1. For low variability distributions ¢; and n may be
lower. The comparison of simulation and analysis is an even closer match when considering
the metric number in system as a function of time.

“More plots not shown here for lack of space.
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7 SRPT vs. PS under more general workloads — Open prob-
lems

In Section 5 we compared the performance of SRPT vs. PS on a B(a = 1.5) distribution
under transient overload. We found that SRPT had two desirable properties: (1) It im-
proved significantly upon PS with respect to mean response time, and (2) SRPT did not
treat large jobs worse than they would be treated under PS.

The point of this section is to explore whether these desirable properties of SRPT also
translate to other distributions.

We first show that the desirable properties for low variability distributions as well. We
prove that for the exponential distribution (C? = 1), SRPT improves upon PS for every
job.

Observation 8 For an exponential with pp > 2 and p; = 0 every job has lower expected
response time under SRPT as compared with PS.

Proof:

Without loss of generality assume that the mean job size is 1. Then Ay = pp, and
a = pr, — 1. Recall the expression for response time under PS,

E[T(2)]ps = (1 — e_”)%h + /; at®(z — 2)e " dz

Now using the expression for ¥ we note that the

1 aty
Ly (s) = — 1= A Lle
o) = 2 (1 AL (s)
Note that F(z) = ™%, hence Li(z) = S_%l
Thus,
aty,
L v = ————
() s(s+1)

which gives tY(y) = at,(1 — e7¥). Thus,

t T
BIT(@)lps = (1 - e7) 2 —|—a2/ th(1— %)~ dz
0
1 la+1 _, at
E[T(.r)]pg—(a—l— 5)th—|—§a_1€ tp, — a—le th (29)

By Equation 28 we get,

E[T(z)]srpr = (a4 1)t /OZ ye Ydy — th

19



1500

[y
o
o
o

5001

Expected Response Time

— Ps )
--- SRPT 4

L L " il

20 40 60 80 100
Percentile of Job Size

Figure 5: No starvation for big jobs under Exponential job size distribution with p; =

2,p=10

which gives,

E[T(2)])srpr = (a4 %)th ~ (et 1)(e® + ze ")y

We now show that for @ > 1, Va, E[T(z)]ps > E[T(2)]|srpr-

To show that E[T'(z)]ps > E[1(z)]srpr, it suffices to show that

a+1

72((1 -y e < (a+1)(e7" 4+ ze™T)

Or equivalently, we must show that:

1

e
a—1

—T

a+1

me —I—(a—l—l)xe

1
1 < (a* =1z + %e(_aﬂﬁ

Define )
g()=1-(a* = 1)z — %e(_aﬂ)z
Clearly g(0) = (1 — @)/2 which is less than 0. ¢’(z) = (1 — a?)(1 — {=2+t1)%/2) which is
less than 0, for z > 0. Thus g(z) < 0 for all z > 0, and the proof follows. n
Figure 5 shows response time as a function of job size when the job size distribution is

Exponential when pp, = 2 and p; = 0. The figure shows that every job prefers SRPT to
PS in expectation and furthermore that the improvement in mean response time of SRPT
over PS is significant (a factor of about 3, judging by the area under the curves). Observe
that in the above proof, we required that pp > 2. We now show that if p is close to 1,
then big jobs fair worse under SRPT as compared with PS.
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Observation 9 For an exponential job size distribution with pp ~ 1 and p; = 0, big jobs
perform worse under SRPT as compared with PS.

The proof is evident from Figure 6. We now provide some intuition for why the case of
pr =~ 1is bad for SRPT as compared with PS with respect to large jobs.

Consider a job of size a little bigger than zg. If py = 1, then there is a big difference
under SRPT vs. PS with respect to the remaining size on this job at the end of the HIGH
period. SRPT has a large remaining size (the original size of the job). In contrast under
PS since pj is low, big jobs receive quite a bit of service during the high period, hence
their remaining size is small, and therefore response times in this case are lower under PS

than SRPT (see Figure 6).

However even in the case of p, = 1, we find that for the B(a = 1.5) distribution,
starvation is largely diminished.

Observation 10 When p, = 1.1, and the job size distribution is B(a = 1.5), only 0.06%
of jobs do worse under SRPT as compared with PS, and only al most 20% worse.

To explain the above observation, we have to return to the heavy-tailed property, ex-
hibited by the B(a = 1.5) distribution. Recall that the heavy-tailed property says that
very few of the largest jobs carry all the weight. For distributions with a heavy-tailed
property, the work received by the very largest jobs under PS during the HIGH period
will be negligible compared to their very large size. Thus these jobs perform comparably
under SRPT and PS. Hence no “starvation.”

We leave it as an open problem to determine the exact conditions under which SRPT
has desirable properties as compared with PS. We conjecture that these conditions are
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related to pp, and the nature of the job size distribution, in particular the weight of its
tail, its overall range, and its variance.

8 Conclusion

In this paper we propose a solution for coping with transient overload in systems. Our
proposal is that the traditional scheduling policy used in systems (PS scheduling) be
replaced by SRPT scheduling of jobs. We consider a HIGH-LOW workload model which
alternates between a period of overload (HIGH) and a period of low load (LOW). We
obtain analytical approximations on the response time for a job of size z under the HIGH-
LOW model and other metrics. Our analytical approximation results match closely to
simulation.

We find the behavior of both SRPT and PS under the HIGH-LOW model to be quite
different from that under a tradition M/G/1, p < 1 queue. For example, the main property
of PS — fairness (in the sense of the same mean slowdown for all jobs) — no longer holds

under the HIGH-LOW model.

We evaluate our analytical results on a distribution characteristic of today’s computer
workloads, and find that, for the HIGH-LOW model, SRPT improves upon PS for every
job size (in expectation), and that the improvement in mean response time can be quite
significant.

Our analysis sheds light on some general reasons for why SRPT performs well as com-
pared with PS under the HIGH-LOW model. Our analysis shows that PS is particularly
ineffective in dealing with periods of temporary overload. Due to its time-sharing nature,
it deteriorates the performance of all the jobs, which is actually unfair to small jobs. More-
over, PS is particularly slow at getting the system “back to normal” once the overload has
disappeared. By contrast, SRPT accumulates far fewer jobs during the overload period,
and is also much more efficient at getting them out once the overload period is over.

Our analysis sheds light on why SRPT performs well as compared with PS even on large
jobs. The reason is that while it seems obvious that large jobs won’t receive service under
SRPT during the overload period, it turns out that they also don’t receive much service
under PS during the overload period. This is particularly true when the distribution has
a heavy-tailed property.

Our results have implications for real world systems, where fluctuations in load are
common. Under PS scheduling, these fluctuations can results in large buildups of jobs
which continue to effect the system for a long time. In SRPT, as we’ve shown, the effect
of load fluctuations is much less severe.
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