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Abstract

Recent research has considered the relationship between boosting and more standard statistical
methods, such as logistic regression, concluding that AdaBoost is similar but somehow still very
different from statistical methods in that it minimizes a different loss function. In this paper
we derive an equivalence between AdaBoost and the dual of a convex optimization problem. In
this setting, it is seen that the only difference between minimizing the exponential loss used by
AdaBoost and maximum likelihood for exponential models is that the latter requires the model to
be normalized to form a conditional probability distribution over labels; the two methods minimize
the same Kullback-Leibler divergence objective function subject to identical feature constraints. In
addition to establishing a simple and easily understood connection between the two methods, this
framework enables us to derive new regularization procedures for boosting that directly correspond
to penalized maximum likelihood. Experiments on UCI datasets, comparing exponential loss and
maximum likelihood for parallel and sequential update algorithms, confirm our theoretical analysis,
indicating that AdaBoost and maximum likelihood typically yield identical results as the number
of features increases to allow the models to fit the training data.
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I. INTRODUCTION

Several recent papers in statistics and machine learning have been devoted to the relationship
between boosting and more standard statistical procedures such as logistic regression. In spite
of this activity, an easy-to-understand and clean connection between these different techniques
has not emerged. Friedman, Hastie and Tibshirani [8] note the similarity between boosting and
stepwise logistic regression procedures, and suggest a least-squares alternative, but view the loss
functions of the two problems as different, leaving the precise relationship between boosting and
maximum likelihood unresolved. Kivinen and Warmuth [9] note that boosting is a form of “entropy
projection,” and Lafferty [10] suggests the use of Bregman distances to approximate the exponential
loss. Mason et al. [11] consider boosting algorithms as functional gradient descent and Duffy and
Helmbold [6] study various loss functions with respect to the PAC boosting property. More recently,
Collins, Schapire and Singer [3] show how different Bregman distances precisely account for boosting
and logistic regression, and use this framework to give the first convergence proof of AdaBoost.
However, in this work the two methods are viewed as minimizing different loss functions. Moreover,
the optimization problems are formulated in terms of a reference distribution consisting of the zero
vector, rather than the empirical distribution of the data, making the interpretation of this use of
Bregman distances problematic from a statistical point of view.

In this paper we present a very basic connection between boosting and maximum likelihood for
exponential models through a simple convex optimization problem. In this setting, it is seen
that the only difference between AdaBoost and maximum likelihood for exponential models, in
particular logistic regression, is that the latter requires the model to be normalized to form a
probability distribution. The two methods minimize the same extended Kullback-Leibler divergence
objective function subject to the same feature constraints. Using information geometry, we show
that projecting the exponential loss model onto the simplex of conditional probability distributions
gives precisely the maximum likelihood exponential model with the specified sufficient statistics. In
many cases of practical interest, the resulting models will be identical; in particular, as the number
of features increases to fit the training data the two methods will give the same classifiers. We note
that throughout the paper we view boosting as a procedure for minimizing the exponential loss,
using either parallel or sequential update algorithms as in [3], rather than as a forward stepwise
procedure as presented in [8] or [7].

Given the recent interest in these techniques, it is striking that this connection has gone unobserved
until now. However in general, there may be many ways of writing the constraints for a convex
optimization problem, and many different settings of the Lagrange multipliers (or Kuhn-Tucker
vectors) that represent identical solutions. The key to the connection we present here lies in the
use of a particular non-standard presentation of the constraints. When viewed in this way, there is
no need for special-purpose Bregman distances to give a unified account of boosting and maximum
likelihood, as we only make use of the standard Kullback-Leibler divergence. But our analysis gives
more than a formal framework for understanding old algorithms; it also leads to new algorithms for
regularizing AdaBoost, which is required when the training data is noisy. In particular, we derive a
regularization procedure for AdaBoost that directly corresponds to penalized maximum likelihood
using a Gaussian prior. Experiments on UCI data support our theoretical analysis, demonstrate
the effectiveness of the new regularization method, and give further insight into the relationship
between boosting and maximum likelihood exponential models.



II. NOTATION AND ASSUMPTIONS ON DATA

Let X and Y be finite sets. We denote by M = {m : X x Y — R, } the set of non-negative measures
on X x Y, and by A C M the set of conditional probability distributions,

{mEM|Z (z,y) =1, for each z € X} (2.1)
yey

For m € M, we will overload the notation m(z,y) and m(y|x); the latter will be suggestive of a
conditional probability distribution, but in general it need not be normalized. Let f; : X x Y — R,
j =1,...,m, be given functions, which we will refer to as features. These will correspond to the
weak learners in boosting, and to the sufficient statistics in an exponential model. Suppose that
we have data {(z;,v;)}/~,; with empirical distribution p(z,y) and marginal p(z); thus, p(z,y) =
LS 1 8(mi,2) 8(yi, y). We assume, without loss of generality, that 7 (z) > 0 for all z. Throughout
the paper, we assume that the training data has the following property.

Consistent Data Assumption. For each x € X with p(z) > 0, there is a unique y € Y for which
P(y|z) > 0. This y will be denoted y(x).

For most data sets of interest, each x appears only once, so that the assumption trivially holds.
However, if  appears more than once, we require that it is labeled consistently. We make this
assumption mainly to correspond with the conventions used to present boosting algorithms; it is
not essential to what follows.

Given f;, we define the conditional exponential model gy(y | z), for A € R™, by

e ()

n(ylz) =

The maximum likelihood estimation problem is to determine parameters A that maximize the
conditional log-likelihood £(A) = 3, P(z,y)log gr(y|z). The objective function to be minimized
in the multi-label boosting algorithm AdaBoost.M2 [3] is the exponential loss given by

Eva(N) = Z Z e NS (@iy)—f (i) (2.3)

i=1 y#y;

In the binary case, AdaBoost takes Y = {—1,+1}, weak learners f; : X — R, and minimizes the
loss function

\) = Z e~ VilAf (i) (2.4)
=1

This is a special case of the AdaBoost.M2 problem, obtained by taking f;(z,y) = 2y fj(z). For the
same ) and f;, the logistic model is given by

1

aWle) = T —nrey 29

and the maximum likelihood problem becomes equivalent to minimizing the loss function

Zlog ( — e % f(wl))) (2.6)



As has been often noted, the log-loss (2.6) and the exponential loss (2.4) are qualitatively different.
The exponential loss (2.4) grows exponentially with increasing negative “margin” y (A, f(z)), while
the log-loss grows linearly.

III. CORRESPONDENCE BETWEEN ADABOOST AND MAXIMUM LIKELIHOOD

We will work with the (extended) conditional Kullback-Leibler divergence, given by

Do) = Y5 Y (nty] 91024~ piylo) + gty ) ) (3.1)
T y

defined on M x M (possibly taking on the value co). Note that if p(-| z) € A and ¢(-|z) € A then
this becomes the more familiar KL divergence for probabilities; see [12] for a nice presentation of
the use of the extended KL divergence for alternating minimization problems, including EM and
iterative scaling. Let features f; and a fixed default distribution gy € M be given. We define the
feasible set F(p,f) C M as

FB.f) = {p eM | D b)) plylz) (filz,y) — B5fi|=]) =0, allj} (3.2)
T Y
Since p € F, this set is non-empty. Note that under the consistent data assumption, we have that

E;[f|z] = f(z,y(z)). Consider now the following two convex optimization problems, labeled P;
and P,.

(Py) minimize D(p,qo) (P2)  minimize D(p,qo)
subject to p € F(p,f) subject to p € F(p,f)
p EA.

Thus, problem P, differs from P; only in that the solution is required to be normalized. As we
will show, the dual problem Pj* corresponds to AdaBoost, and the dual problem P; corresponds to
maximum likelihood for exponential models.

This presentation of the constraints is the key to making the correspondence between AdaBoost
and maximum likelihood. Note that the constraint }: p(z)>_, p(y | ) f(z,y) = Ej[f], which is
the usual presentation of the constraints for maximum likelihood (as dual to maximum entropy),
doesn’t make sense for unnormalized models, since the two sides of the equation may not be “on
the same scale.” Note further that attempting to rescale by dividing by the mass of p to get
~ ¢ 2y Py 2) f2:9) . ; .

Yow p(x)w = FE5[f] would yield nonlinear constraints.

We now derive the dual problems formally; the following section gives a precise statement of the
duality result. To derive the dual problem P;, we calculate the Lagrangian as

LN = Y@ Y sl (1og ply|2) —1—<A,f(x,y)—Eﬁ[f|w]>) (3.3)
T y

q(y | z)

For A € R™, the connecting equation g &t arg minpeaq L£1(p, A), is then calculated to be

oy |z) = qoly| z) exp Z A (fi(z,y) — Bylf;| z]) (3.4)



Thus, the dual function h1(A) = L1(gx, A) is given by

= > 5@ qlylz) exp [ DN (filz,y) — Bylf; | 2]) (3.5)
x y J

The dual problem is to determine \* = argmax, h1(\). To derive the dual for P, we simply add
additional Lagrange multipliers u, for the constraints Zy p(y|z) =1.

3.1. Special cases

It is now straightforward to derive various boosting and logistic regression problems as special cases
of the above optimization problems.

Case 1: AdaBoost.M2. Take qo(y|z) = 1. Then the dual problem maxjy hi(A) is equivalent to
computing

= argmmZZexp Z)\ (fi(zi,y) — fi(zi,v3)) (3.6)

i yFy;
which is the optimization problem of AdaBoost.M2.

Case 2: Binary AdaBoost. In addition to the assumptions for the previous case, now assume that
y € {—1,+1}, and take f;(z,y) = 2y fj(z). Then the dual problem is given by

A= arg;nin Z exp | —vyi Z i fi(zi) (3.7)
i J

which is the optimization problem of binary AdaBoost.

Case 3: Mazimum Likelihood for Ezponential Models. In this case we take the same setup as for
AdaBoost.M2 but add the additional normalization constraints: Zyp(y |z;)=1,i=1,... ,n. If
these constraints are satisfied, then the other constraints take the form

S 5@ Yl fiey) = S b y)fiay) (3.8)
z Yy Z,y

and the connecting equation becomes
1
wylz) = 2-alylz) exp(D A filx,y)) (3.9)
x -
J

where Zy is the normalizing constant Z; = }_, qo (y|z)eN (@) which corresponds to setting the
Lagrange multiplier y, to the appropriate value. In this case, after a simple calculation the dual
problem is seen to be

ha(A) = Zﬁ z,y) log gr(y | =) (3.10)

= Zp ) log g (7 | ) (3.11)



which corresponds to maximum likelihood for a conditional exponential model with sufficient statis-
tics fj(z,y).

Case 4: Logistic Regression. Returning to the case of binary AdaBoost, we see that when we add
normalization constraints as above, the model is equivalent to binary logistic regression, since

1

We note that it is not necessary to scale the features by a constant factor here, as in [8]; the
correspondence between logistic regression and boosting is direct.

3.2. Duality

Making the Lagrangian duality argument of the previous section rigorous requires care, because of
the possibility that the solution may lie on the boundary of M.

Let Q1 and Q9 be defined as the following exponential families:

Qi(gq0,f) = {geM | qly|z) = qoly|z) N @V-T@IE@D)\ e Rm} (3.13)
Qg0 f) = {a€A | qly|z) o qoly|z) M@V N e R™} (3.14)

Thus Q1 is unnormalized while Q5 is normalized. We now define the boosting solution qzoos " and
maximum likelihood solution q:nl as

Thoost = T8 EDZ () Z q(y | =) (3.15)

q€1 T Y
1
* . ~
qy; = argmin Y p(z)log——— (3.16)

where @ denotes the closure of the set Q C M. It is interesting to cast the boosting objective
function in terms of a statistical model. For ¢ € Q1, let §(y|z) be the normalized version of ¢:

QO (y | x) e(Aaf(may)_f(xyg(z)))

tols) = ZyQO(y|w)e(>\af(m,y)—f(m,g(z))) (3.17)
A f(zy)
X (3.18)
>, qo(y | z) e F@w))
Then the boosting optimization problem (3.15) can be re-written as
1
* . _
q = argmin Y P(z)——= (3.19)
boost e ( )q(y|x)
1
= argmin Y p(x)—— (3.20)
1€ zm: q(7|z)

The following result corresponds to Proposition 4 of [4] for the usual KL divergence; the proof for
the extended KL divergence carries over with only minor changes. In [5] the duality theorem is
proved for a class of Bregman distances, including the extended KL divergence as a special case.
Note that we do not require divergences such as D(0, g) as in [3], but rather D(p, ¢), which is more
natural and interpretable from a statistical point-of-view.
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Figure 1: Geometric view of duality. Minimizing the exponential loss finds the member of Q; that intersects
the feasible set of measures satisfying the moment constraints (left). When we impose the additional con-
straint that each conditional distribution ¢, (y|z) must be normalized, we introduce a Lagrange multiplier
for each training example z, giving a higher-dimensional family Q). By the duality theorem, projecting the
exponential loss solution onto the intersection of the feasible set with the simplex of conditional probabilities,
FNA, we obtain the maximum likelihood solution. In many practical cases this projection is obtained by
simply normalizing by a constant, resulting in an identical model.

Proposition 3.1. Suppose that D(p,qo) < co. Then gy, and g} ; exist, are unique, and satisty

Qhoost = argminD(p,qo) = argminD(p,q) (3.21)
peEF qc 01

q:nl = argminD(p,q) = argEinD(ﬁ,q) (3.22)
pE.’FﬂA qegz

Moreover, q;(nl is computed in terms of qzoos ; as q;(nl = aregfI;liAnD(p, q’g oost)-

This result has a simple geometric interpretation. The unnormalized exponential family Q; in-
tersects the feasible set of measures F satisfying the constraints (3.2) at a single point. The
algorithms presented in [3] determine this point, which is the exponential loss solution qzoost =

arg min D(p,q) (see Figure 1, left).

q€Q1
On the other hand, maximum conditional likelihood estimation for an exponential model with the

same features is equivalent to the problem ¢* ; = arg min D(p,q) where Q] is the exponential
mil g 1

q€Q;
family with additional Lagrange multipliers, one for each normalization constraint. The feasible
set for this problem is F N A. Since F N A C F, by the Pythagorean equality we have that

gy, = argminy,crna D(p, g3, ) (see Figure 1, right).



IV. REGULARIZATION

Minimizing the exponential loss or the log-loss on real data often fails to produce finite parameters.
Specifically, this happens when for some feature f;

filz,y) — fj(z,y(z)) > 0 for all y and = with p(z) >0 (4.1)
or  fi(z,y) — fi(z,y(z)) <0 for all y and z with p(z) >0

This is especially harmful since often the features for which (4.1) holds are the most important for
the purpose of discrimination. The parallel update in [3] breaks down in such cases, resulting in
parameters going to oo or —oo. On the other hand, iterative scaling algorithms work in principle
for such features. In practice however, either the parameters A need to be artificially capped or
the features need to be thrown out altogether, resulting in a partial and less discriminating set of
features. Of course, even when (4.1) does not hold, models trained by maximizing likelihood or
minimizing exponential loss can overfit the training data. The standard regularization technique
in the case of maximum likelihood employs parameter priors in a Bayesian framework.

In terms of convex duality, a parameter prior for the dual problem corresponds to a “potential”
on the constraint values in the primal problem. The case of a Gaussian prior on A, for example,
corresponds to a quadratic potential on the constraint values in the primal problem. Using this
correspondence, the connection between boosting and maximum likelihood presented in the previous
section indicates how to regularize AdaBoost using Bayesian MAP estimation for unnormalized
models, as explained below.

We now consider primal problems over (p,c) where p € M and ¢ € R™, where c is a parameter
vector that relaxes the original constraints. Define F(p, f,c) C M as

F(p,fe) = {pEM | Yo B@) ) plyl2) (filz,y) — Bzlf;|a]) :cj} (4.2)
T y
and consider the primal problem P reg given by

(P1,reg) minimize D(p,qo) + U(c)
subject to p € F(p, f,c)

where U : R™ — R is a convex function whose minimum is at 0.

To derive the dual problem, the Lagrangian is calculated as L(p,c,\) = L(p,A) + U(c) and the
dual function is then given by hireg(A) = h1(A) +U*(A) where U*()) is the convex conjugate of U.
For a quadratic penalty U(c) =}, %0? 0]2-, we have U*(A) = — >, %0]72 A? and the dual function
becomes

2
A

o (4.3)
J

J

hireg(\) = _Zf)(w)Zqo(y|$)ezj/\j(fj(w,y)—fj(w,g(w))_Z
x Y

A sequential update rule for (4.3) incurs the small additional cost of solving a nonlinear equation
by Newton’s method every iteration. See [2] for a discussion of this technique in the context of
exponential models in statistical language modeling.



Unregularized Regularized

Data ‘ etmin(Ql) ‘ etest(Ql) ‘ 6test(Ql) H etmm(q2) ‘ etest(q2) ‘ 6test(QZ) ‘
Promoters -0.29 -0.60 0.28 -0.32 -0.50 0.26
Iris -0.29 -1.16 0.21 -0.10 -0.20 0.09
Sonar -0.22 -0.58 0.25 -0.26 -0.48 0.19
Glass -0.82 -0.90 0.36 -0.84 -0.90 0.36
Tonosphere -0.18 -0.36 0.13 -0.21 -0.28 0.10
Hepatitis -0.28 -0.42 0.19 -0.28 -0.39 0.19
Breast Cancer Wisconsin -0.12 -0.14 0.04 -0.12 -0.14 0.04
Pima-Indians -0.48 -0.53 0.26 -0.48 -0.52 0.25

Table 1: Comparison of unregularized to regularized boosting. For both the regularized and unregularized
cases, the first column shows training log-likelihood, the second column shows test log-likelihood, and the
third column shows test error rate. Regularization reduces error rate in some cases while it consistently
improves the test set log-likelihood measure on all datasets. All entries were averaged using 10-fold cross
validation.

V. EXPERIMENTS

We performed experiments on some of the UCI datasets [1] in order to investigate the relationship
between boosting and maximum likelihood empirically. The weak learner was FindAttrTest as
described in [7], and the training set consisted of a randomly chosen 90% of the data. Table 1
shows experiments with regularized boosting. Two boosting models are compared. The first model
g1 was trained for 10 features generated by FindAttrTest, excluding features satisfying condition
(4.1). Training was carried out using the parallel update method described in [3]. The second
model, g2, was trained using the exponential loss with quadratic regularization. The performance
was measured using the conditional log-likelihood of the (normalized) models over the training and
test set, denoted £ipgin and Lysy, as well as using the test error rate €. The table entries were
averaged by 10-fold cross validation.

For the weak learner FindAttrTest, only the Iris dataset produced features that satisfy (4.1).
On average, 4 out of the 10 features were removed. As the flexibility of the weak learner is
increased, (4.1) is expected to hold more often. On this dataset regularization improves both
the test set log-likelihood and error rate considerably. In datasets where ¢; shows significant
overfitting, regularization improves both the log-likelihood measure and the error rate. In cases of
little overfitting (according to the log-likelihood measure), regularization only improves the test set
log-likelihood at the expense of the training set log-likelihood, however without affecting test set
error.

Next we performed a set of experiments to test how much gj, ., differs from ¢ ;, where the boosting
model is normalized to form a conditional probability distribution; see equation (3.17). For different
experiments, FindAttrTest generated a different number of features (10-100), and the training set
was selected randomly. The plots in Figure 2 show for different datasets the relationship between
Lirain(@l,;) and Lirain(G},0s;) as Well as between Lirgin(ql,;) and Dirgin(@l, @5p0s)- The trend is the
same in each data set: as the number of features increases so that the training data is more closely fit
(Lrain(@mi) — 0), the boosting and maximum likelihood models become more similar, as measured
by the KL divergence.
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Figure 2: Comparison of AdaBoost and maximum likelihood on four UCI datasets: Hepatitis (top row),
Promoters (second row), Sonar (third row) and Glass (bottom row). The left column compares £irqin(q},;)
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Figure 3: Comparison of AdaBoost and maximum likelihood on the same UCI datasets as in the previous
figure. The left column compares the test likelihoods, £iest(q},;) t0 £test(q},,5;)> and the right column compares
test error rates, €zest(q,;) tO €test(Q},05:)- In €ach plot, the color represents the training likelihood £irqin(q,);
red corresponds to fitting the training data well.



P «
Promoters | 0.99 | 1.14
Hepatitis | 0.99 | 1.14
Sonar 0.99 | 1.16
Glass 0.99 | 1.11

Table 2: Correlation coefficient p and linear regression slope « for different datasets, indicating a strong
linear relationship with slope close to one.

The plots in Figure 3 show the relationship between the test set log-likelihoods, £icsi(g,,) to
Liest(@hp0s1), together with the test set error rates €jeq(ql,;) and €iesi(qh,0). In these figures the
testing set was chosen to be 50% of the total data. The color represents the training data log-
likelihood, Zirain(q,;), with the color red corresponding to high likelihood. In order to indicate the
number of points at each error rate, each circle was shifted by a small random value to avoid points
falling on top of each other.

The likelihood plots show a clear linear trend. While the plots in Figure 2 indicate that £i4in(q,) >
Lirain(Gh,0st) > @8 €xpected, on the test data the linear trend is reversed, so that £iesi(qh,;) < Liest(@hp0st)-
This suggests that the boosting model is smoother and less prone to overfitting. The duality result
shows that this is because the model is less constrained due to the lack of normalization constraints,
and therefore has higher entropy than the maximum likelihood model. However, as £(¢},,) — 0, the
two models come to agree. Table 2 gives the correlation coefficient p between £(q},,) and £(g},,5:)
as well as linear regression slope coefficient «. It is easy to show (see appendix D) that for any
exponential model ¢, € Q,,

Dtmin(qz(nlaQ)\) = e(q’;nl) - e(Q)\)' (51)

By taking gy = ¢}, it is seen that as the difference between ¢(¢},;) and £(qj,,,;) gets smaller, the
divergence between the two models also gets smaller. Furthermore, since the correlation coefficient
p is close to 1, we can use the approximation 4(q}, ,.,) = a£(g%,) to obtain

Dtmin(q,;nl’ quost) ~ (1 - a) f(%z) (5'2)

The results are consistent with the theoretical analysis. As the number of features is increased so
that the training data is fit more closely, the model matches the empirical distribution p and the
normalizing term Zy(z) becomes a constant. In this case, normalizing the boosting model g7,
does not violate the constraints, and results in the maximum likelihood model.
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APPENDIX

In Appendix A and B we rederive the update rules from [3] in our notation. These update rules
are derived by minimizing an auxiliary function that bounds from above the reduction in loss.
See [3] for the definition of an auxiliary function and proofs that the functions in A and B are
indeed auxiliary functions. Appendix A deals with parallel updates and B deals with sequential
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updates. In Appendix C the regularized formulation is shown in detail and a sequential update
rule is derived. Appendix D contains a proof for (5.1).

A. DERIVATION OF THE PARALLEL UPDATES

Let £ € X be an example in the training set, which is of size n, and let § be its label. ) is the set of
all possible labels. At a given iteration \; denotes the j-th parameter of the model, and A\; + A\,
the parameter at the following iteration.

A.1. Exponential Loss

The objective is to minimize Eeyp(A + AX) — Eezp(A). In the following hj(z,y) = fi(z,y) — fi(z,9),
aa(yle) = XM@Y s (a0 ) = sign(hy(z,y)), M = maxiy ¥, hi(@i,y)], wiy =1 — 30, 20

By Jensen’s inequality applied to e* we have

Ee:cp()\ + AA) - Eewp(A) = Z Z E (g +AX )R (i) Z Z 2 Ajhi(zi,y)

|hj (= zy)\

= ZZq,\ ylwi)ei AN s @) M ZZq,\ ED)
< Z ZQ)\(yL'UZ) Z |h](J-7\Za y)|eA)\j5j(zi,y)M + Wiy — 1
iy J

L AAN ). (A.1)

We proceed by finding the stationary point of the auxiliary function with respect to A);:

O = gax = 2l
- —Z DRI SR SRR

Y asi(z,y)=+1 Y asi(mi,y)=—1
N GQMA'\J'Z Z hj(zi, y)ax(y|z;:) Z Z (@i, y) g (y|zs)
Y izsj(xs,y)=+1 Y isjziy)=—1

’ 5, Zzsj o= +1|h @) le)

A.2. ML exponential model

For the normalized case, the objective is to maximize the likelihood or minimize the log-loss. In
. . . . . 35 Ajhj(zy) .
this section, the previous notation remains except for gx(y|z) = th};y) The log-likelihood
is
E Aj f] (mzayz)
- _ 225 A (i (misy)— f (isyi)
= Ylg ERACER Zlogzy:e !
3

i

13



The loss that we want to minimize is then
>, e2oi X TAXN)(fj (i y) = [ (@i yyi))
Zy e2i Ai(fi(wiy)—fi(wiyi))
>, e2mj N t+AN ) (i)
= Io
Ei: & 5, e AP @)

= Y log Y aalylsi)eXs Ahiew)

{ y

< szym)e& Mghiai) _p, (A.2)

- S e

L) =LA +AXN) = ) log

Sj (xlyy) M —n

hj(z, -
< ZZ(D\(?A%) Z%*zy)leAAm(“’y)M%—w@y —n (A.3)
(2 Yy Vi

= A AN (A.4)
where in (A.2) we used the inequality logz < z — 1 and in (A.3) we used Jensen’s inequality. The
derivative of (A.3) with respect to AX will be identical to the derivative of (A.1) and so the log-loss

update rule will be identical to the exponential loss update rule, but with gy(y|z) representing a
normalized exponential model.

B. DERIVATION OF THE SEQUENTIAL UPDATES

The setup for sequential updates is similar to that for parallel updates, but now only one parameter
gets updated in each step, while the rest are held fixed.

B.1. Exponential Loss

We now assume that that only A\ gets updated. We also assume (with no loss of generality) that
each feature takes values in [0, 1], making hg(z;,y) € [—1,1].

EeapA+ AX) — Eegp(A) = Z Z 325 Ajhi (@i y)+ANchy(zisy) _ Z Z 3, Ak (i)
_ Z Zq}\ |$Z ( 1+hk(wl y))A)\k+(1 hkz(wl y))(iA/\k) B 1) (B_l)

1+h 1 — hy(z:
< ZZ‘D\ ylz;) (M ANy 4 Me—A/\k _ 1)

AN, A/\k) (B.2)
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The stationary point of A (with respect to A)\g) is

14+ hg(x;, hp(z;,y) —1 _
0 = ZZQA y|z;) (716( i-Y) A’\’“Jrik( Z2y) e A"’C)

. wkzm )0+ (o) = 5 3 ox o)1)

3 10 2i 2oy Y|ze) (1 — hi(zi,9))
B = glos (zi SWNOEAIE +hk<xi,y)))

B.2. Log-Loss

e Xihi(Tisy)+ ANy (i)

AT A = Zlog y ¥, e Aihi(@iy) - ZIOgZq’\(y|wi)em\khk($i’y)
i Y 1 Y
< D) aa(ylzi)et ) —p (B.3)
Ty

Equation (B.3) is the same as (B.1), except that gx is now the normalized model. This leads to
exactly the same form of update rule as in the previous subsection.

C. REGULARIZED Loss FUNCTIONS

C.1. Problem setting

mnimaize z) | lo pylz) — c
M D) +U(0) = 5l ijp<y| ) (108 222 —1) 4 g

subject to Zp p(ylz)hj(z,y) =c¢j, j=1,...,m

where ¢ € R™ and U : R™ — R is a convex function whose minimum is at 0. The Lagrangian turns

out to be
L(p,c,\) Zp Zp yl|z) (log (( || )) —1— (X h(=z, y))) + U(¢).
We will derive the dual problem for U(c) = Y, $02¢?. The convex conjugate U* is
U\ ¥ 1an Xici +Ulc mfz/\ i + Z o? (C.1)
0 = XN+ola = ci:—:—:é
U*(\) = —Zi—;Z%a?i—i :_Zi:ﬁ?
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The dual problem for the exponential loss is then
X = argmax i peq(N)
A

= argmax—Zp Zqo y|z)eXi X hi@Y) () (C.2)

\2
_ : = 225 A hj(z,y) 23
= argmin} 5(z) Y qolyle)ei VMY + 3 o
T Y j J
Next, a sequential update rule for the exponential loss is derived.
C.2. Exponential Loss—Sequential update rule
As before, gy = 1 and we replace # by S.
k

Eexp( A+ AX) — Eczp(A)
= S (B A _ L) 4 G0+ AN BN (C3)

Lthg(eey) Lohy(oin))
= 2> aalylw) (6(%)&\”( ) A’\k)_l)
iy
+ 282 AN, + BANZ
1+h’ Zi, ].—h Ti, _
< ZZQA ylzi) (M A’\fur#e Ay _1)

+ 25 A AN, + BANS
= A(Aa AAk)

The stationary point will be at the solution of the following equation

0 = BAAk ZZ(])\ ylzi) ( + by (i, ))e™ + (hy (i, y) — 1)€_A’\’“) +26 (Mg + A)g).
A solution to this equation can be found with Newton’s method. Since the second derivative 8‘92:\‘2
k

is positive, the auxiliary function is strictly convex and Newton’s method will converge.

D. DIVERGENCE BETWEEN EXPONENTIAL MODELS

The log-likelihood of gy is:

E Aj f] TisYi)

() = —Z og ZA > faow) )= = 3 log 7

7

E,\ Ej(f;] — Zlogz)‘,z

16



I (Ylzi)
D(gxr,59x,) = — g, (y|zi) log —=——
(o) = 5323 on Ol s L2

e M fi(@iy)
-I— lo

= —ZZ% (yl:) (108 N ISR E)
= _21 Dai f+ ZZ% ylei) ij zi,y)(Arg — Azg)

— _Zl Insii +Z ALy — A2,5) gy, [f5]

)\1,1

This corresponds to the fact that the KL divergence between exponential models is the Bregman
distance, with respect to the cumulant function, between the natural parameters.

If g, is qg\"l, since the moment constraints are satisfied, it follows that

D(¢§",ar) = —Zl +Z (AP = X)E5(f;] = 6A™) — £(X)
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