
Automating the Modeling and Optimization of

the Performance of Signal Processing Algorithms

Bryan W. Singer

CMU-CS-01-156

December 2001

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Manuela Veloso, Chair

Scott Fahlman

John Lafferty

Jeremy Johnson, Drexel University

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2001 Bryan W. Singer

This research was sponsored by DARPA Grant No. DABT63-98-1-0004 and by a National Science
Foundation Graduate Fellowship.

The content of the information in this publication does not necessarily reflect the position or
the policy of the Defense Advanced Research Projects Agency (DARPA), the National Science
Foundation (NSF), or the US Government, and no official endorsement should be inferred.

Keywords: Machine learning, signal processing, signal transform optimization,

automatic performance tuning

Abstract

Many applications require fast implementations of signal processing algo-
rithms to analyze data in real time or to effectively process many large data
sets. Fast implementations of a signal transform need to take advantage of
structure in the transformation matrix to factor the transform into a prod-
uct of structured matrices. These factorizations compute the transform with
fewer operations than the näıve implementation of matrix multiplication. Sig-
nal transforms can have a vast number of factorizations, with each factorization
of a single transform represented by a unique but mathematically equivalent
formula. Interestingly, when implemented in code, these formulas can have sig-
nificantly different runtimes on the same processor, sometimes differing by an
order of magnitude. Further, the optimal implementations differ significantly
between processors. Therefore, determining which formula is the most efficient
for a particular processor is of great interest.

This thesis contributes methods for automating the modeling and optimiza-
tion of performance across a variety of signal processing algorithms. Modeling
and understanding performance can greatly aid in intelligently pruning the
huge search space when optimizing performance. Automation is vital consid-
ering the size of the search space, the variety of signal processing algorithms,
and the constantly changing computer platform market.

To automate the optimization of signal transforms, we have developed and
implemented a number of different search methods in the SPIRAL system.
These search methods are capable of optimizing a variety of different signal
transforms, including new user-specified transforms. We have developed a new
search method for this domain, STEER, which uses an evolutionary stochastic
algorithm to find fast implementations.

To enable computer modeling of signal processing performance, we have de-
veloped and analyzed a number of feature sets to describe formulas representing
specific transforms. We have developed several different models of formula per-
formance, including models that predict runtimes of formulas and models that
predict the number of cache misses formulas incur.

Further, we have developed a method that uses these learned models to
generate fast implementations. This method is able to construct fast formulas,
allowing us to intelligently search through only the most promising formulas.
While the learned model is trained on data from one transform size, our method
is able to produce fast formulas across many transform sizes, including larger
sizes, even though it has never timed a formula of those other sizes.

Acknowledgments

Whatever you do, work at it with all your heart, as working

for the Lord, not for men. — Colossians 3:23

First, I would like to acknowledge that my ability and patience to complete
this work comes from God. He has blessed me with the intellectual ability, the
yearning for knowledge, and the environments to allow those to grow. It is for
Him that I work and live.

Many thanks to my wife Kelly. She has stood by me and encouraged me
throughout this process. She endured three years of long distance dating before
I was able to move to Baltimore. Many, many thanks for being my faithful
editor of nearly every paper I have written, including this one. Thanks also for
patiently listening to so many practice talks.

My family has always been there for me. Mom, Dad, and Jason have
encouraged me in my endeavors and always provided a place where I could be
myself. Without their love, care, and encouragement, I could not be where I
am today.

Manuela, thanks for all of your guidance and encouragement. Thanks for
constantly encouraging me to write papers, to prepare my thesis proposal, and
now to prepare for my thesis defense. It was by your guidance that I began
looking at this interesting research area.

I would also like to thank rest of my thesis committee, Jeremy, Scott, and
John. You have been very encouraging about this work and always willing to
listen and to help.

It has been a joy to work with the SPIRAL research group. They have been
very encouraging about my work and have been extremely helpful. A special
thanks to Markus for all of his help with the formula generator and many other
details, and to Jianxin for his many quick fixes and major improvements to the
SPL compiler. Thanks also to José for his guidance and encouragement.

What would lunch at CMU be without Mike and Peter? Thanks guys for
being great friends. Thanks also for all the miscellaneous help, from answering
TEX questions to allowing me to bounce research ideas around.

Finally, I would like to thank Luis Torgo for his help in using RT4.0. He
went out of his way to add some unusual functionality that I needed.

Contents

1 Introduction 19

1.1 Thesis Problem and Approach . 21

1.2 Infrastructure . 24

1.3 Performance Optimization by Searching 26

1.4 Performance Modeling . 27

1.5 Generating Fast Implementations . 28

1.6 Thesis Contributions . 29

1.7 Document Outline . 30

2 Background 31

2.1 Signal Transforms . 31

2.2 Walsh-Hadamard Transform . 33

2.2.1 WHT Definition . 33

2.2.2 Break Down Rules . 34

2.2.3 Split Trees . 34

2.2.4 Stride . 36

2.2.5 Search Space . 36

2.3 WHT Timing Package . 39

2.4 Other Transforms . 40

2.5 SPIRAL . 43

2.5.1 System Design . 43

7

8 CONTENTS

2.5.2 Representation . 45

2.5.3 Implementation . 47

2.5.4 User Interface . 48

2.6 Summary . 49

3 Optimizing Performance with the Search Engine 51

3.1 Overview of the Search Methods . 52

3.2 Search Spaces . 54

3.2.1 Search Over Factorizations . 54

3.2.2 Search Over Options to the Formula Compiler 56

3.3 User Interface . 57

3.4 Details about Search Methods . 59

3.4.1 Exhaustive Search . 59

3.4.2 Dynamic Programming . 60

3.4.3 STEER, Random Search, and Hill Climbing Search 62

3.4.4 Timed Search . 64

3.5 Results . 65

3.5.1 Search Method Comparison 65

3.5.2 Local Unrolling Search . 74

3.5.3 Sun Results . 74

3.6 Summary . 74

4 Optimizing Performance with STEER 79

4.1 STEER for the WHT . 79

4.1.1 Tree Generation and Selection 80

4.1.2 Crossover . 81

4.1.3 Mutation . 81

4.1.4 Running STEER . 85

4.2 Search Algorithm Comparison for WHT 85

CONTENTS 9

4.3 STEER in the SPIRAL System . 89

4.3.1 Tree Generation and Selection 89

4.3.2 Crossover . 90

4.3.3 Mutation . 91

4.3.4 Other User Options . 92

4.4 Results Using STEER in the SPIRAL System 93

4.5 Summary . 93

5 Modeling Performance of Entire Formulas 95

5.1 Features for WHT Split Trees . 96

5.1.1 Feature Sets . 96

5.1.2 Evaluating Features . 100

5.2 Learning to Predict WHT Performance 105

5.2.1 Experimental Setup . 105

5.2.2 Results . 106

5.3 Summary . 108

6 Modeling Performance of Individual Nodes 109

6.1 Pentium Observations . 109

6.2 Predicting WHT Leaf Cache Misses 113

6.2.1 Features for WHT Leaves . 113

6.2.2 Learning Algorithm . 115

6.2.3 Training . 116

6.2.4 Evaluation . 117

6.2.5 Summary . 119

6.3 Sun Observations . 119

6.4 Predicting WHT Leaf Runtimes . 121

6.4.1 Learning Algorithm and Training 121

6.4.2 Evaluation . 122

10 CONTENTS

6.5 Extending to the FFT . 125

6.6 Predicting FFT Runtimes . 128

6.6.1 Learning Algorithm, Features, and Training 128

6.6.2 Evaluation . 129

6.7 Summary . 133

7 Generating Optimal Implementations 135

7.1 Approach . 136

7.1.1 Basic Formulation . 136

7.1.2 Details and Difficulties . 137

7.1.3 Value Function . 141

7.2 Algorithm . 143

7.3 Other Views . 145

7.4 Evaluation . 146

7.4.1 Using the WHT Cache Miss Predictor 147

7.4.2 Using WHT Runtime Predictors 148

7.4.3 Using FFT Runtime Predictors 151

7.5 Summary . 153

8 Related Work 155

8.1 Other SPIRAL Related Work . 155

8.2 Signal Transform Optimization . 156

8.2.1 Minimizing Arithmetic Operations 156

8.2.2 Optimizing Signal Transforms for Real Computers 157

8.3 Linear Algebra Algorithm Optimization 159

8.4 Numerical Algorithm Optimization and Modeling 160

8.5 Tuning Compiler Optimizations . 162

8.6 Combinatorial Problems and Machine Learning 164

8.7 Artificial Intelligence and Signal Processing 165

CONTENTS 11

9 Conclusions and Future Work 167

9.1 Contributions . 168

9.2 Future Directions . 170

9.2.1 General Extensions . 170

9.2.2 Search Engine Extensions . 171

9.2.3 Modeling and Generation Extensions 173

9.3 Concluding Remarks . 174

Bibliography 177

A Search Engine User Manual 185

A.1 The Search Engine . 185

A.2 Implement . 186

A.3 TestSearch . 189

A.4 Search Method Overview . 190

A.4.1 General Search Options . 191

A.4.2 ExhaustiveSearch . 192

A.4.3 DP . 194

A.4.4 RandomSearch . 199

A.4.5 HillClimb . 201

A.4.6 STEER . 204

A.4.7 TimedSearch . 208

A.5 BestFoundTable . 210

A.5.1 BestFoundLookup . 210

A.5.2 BestFoundSave . 211

A.5.3 BestFoundRead . 211

A.6 HashTables . 211

A.6.1 HashSave . 212

12 CONTENTS

A.6.2 HashRead . 212

A.6.3 HashTable Creation . 212

A.6.4 HashTable Example . 212

List of Figures

1.1 Histogram of runtimes for 70,376 different FFT (218) formulas. 20

1.2 Overview of the SPIRAL system. 25

2.1 Histogram of runtimes some WHT (216) formulas run on the same ma-

chine. 33

2.2 Two different split trees for WHT (25). 35

2.3 Example of stride for WHT nodes. 37

2.4 The SPIRAL system. 44

2.5 Example ruletree. 47

3.1 Comparison of search methods for the DFT on a Pentium. 68

3.2 Comparison of search methods for the WHT on a Pentium. 69

3.3 Comparison of the runtimes of the fastest formulas found by different

search methods for small sized DCTs on a Pentium. 70

3.4 Comparison of the runtimes of the fastest formulas found by different

search methods for small sized DSTs on a Pentium. 71

3.5 Number of formulas timed by different search methods for small sized

DCTs on a Pentium. 72

3.6 Number of formulas timed by different search methods for small sized

DSTs on a Pentium. 73

3.7 Comparison of search methods searching over local unrolling settings

for the DFT on a Pentium. 75

13

14 LIST OF FIGURES

3.8 Comparison of search methods searching over local unrolling settings

for the WHT on a Pentium. 76

3.9 Comparison of search methods for the DFT on a Sun. 77

4.1 Example of crossover for WHT trees 82

4.2 Examples of each kind of WHT mutation. 83

4.3 Typical plot of the best and average runtime of formulas as STEER

evolves the population. 86

4.4 Comparison of best WHT runtimes found by several search methods. 87

4.5 Comparison of the number of WHT formulas timed by several search

methods. 87

4.6 Two runs of dynamic programming. 88

4.7 Examples of each general mutation. 91

5.1 Two split trees with the same All Nodes counts but different Leaf Nodes

counts. 98

5.2 Example Split Tree. 99

5.3 Leftness of nodes in example tree. 99

6.1 Runtimes vs. cache misses for entire WHT (216) formulas on a Pentium.110

6.2 Histogram of the number of cache misses incurred by leaves ofWHT (216)

formulas on a Pentium. 111

6.3 Example leaf features for all of the leaves in the given split tree. . . . 114

6.4 Runtime vs. predicted cache misses for entire formulas. 119

6.5 Runtimes vs. cache misses for entire WHT (218) formulas on a Sun. . 120

6.6 Actual vs. predicted runtimes for entire formulas for a Pentium. . . . 124

6.7 Actual vs. predicted runtimes for entire formulas for a Sun. 125

6.8 Example node features for all of the nodes in the given WHT split tree. 129

6.9 Predicted FFT runtimes versus actual runtimes for sizes 214 and 215. . 131

6.10 Predicted FFT runtimes versus actual runtimes for sizes 217 and 218. . 132

LIST OF FIGURES 15

7.1 Example of growing a fast WHT split tree. 136

7.2 Example node features for all of the nodes in the given WHT split tree. 139

7.3 Histogram comparison of a limited exhaustive search to our method. . 149

7.4 Comparison of our generation method against dynamic programming

and exhaustive search. 153

16 LIST OF FIGURES

List of Tables

1.1 Comparing fast FFT (220) implementations generated for different ma-

chines. 21

2.1 Number of WHT formulas for different subsets of formulas. 38

2.2 A few example break down rules for some specific transforms. 41

2.3 Number of possible split trees for different transforms. 42

3.1 Pseudo-code for the hill climbing search method. 64

5.1 Example values of different node count feature sets. 99

5.2 Number of partitions generated by different feature sets for all binary

trees of different sized WHTs. 102

5.3 Weighted average and maximum relative standard deviation of different

feature sets. 104

5.4 Neural network prediction accuracy for WHT (28) with node counting

features. 107

6.1 Algorithm for learning to predict WHT cache miss categories. 115

6.2 A few example learned rules for predicting cache misses. 116

6.3 Error rates for predicting cache miss category incurred by leaves. . . . 117

6.4 Average percentage error for predicting cache misses for entire formulas.118

6.5 Algorithm for learning to predict WHT leaf runtimes. 121

6.6 Error rates for predicting runtimes for leaves for a Pentium. 122

6.7 Error rates for predicting runtimes for leaves for a Sun. 122

17

18 LIST OF TABLES

6.8 Error rates for predicting runtimes for entire formulas for a Pentium. 123

6.9 Error rates for predicting runtimes for entire formulas for a Sun. . . . 123

6.10 Error rates for predicting FFT formula runtimes on a Pentium using

different feature sets. 130

7.1 Algorithm for computing values of states. 143

7.2 Algorithm for generating fast split trees. 144

7.3 Results from generating fast WHT formulas using Pentium data and a

cache miss predictor. 148

7.4 Evaluation of generation method using a WHT runtime predictor for

a Pentium. 150

7.5 Evaluation of generation method using a WHT runtime predictor for

a Sun. 151

7.6 Evaluation of generation method using FFT runtime predictors for a

Pentium. 152

Chapter 1

Introduction

Signal processing includes the study of algorithms that take as an input a signal,

as a numerical dataset, and output a transformation of the signal that highlights

specific aspects of the dataset. For example, the Fourier Transform takes as an input

the values of a signal over time and returns the corresponding frequency variations.

Many signal processing algorithms can be represented by a transformation matrix

which is multiplied by an input data vector to produce a desired output vector. That

is, for an input vector X representing the signal, a signal transform produces the

output vector Y = AX, where A is the transformation matrix (Nussbaumer, 1982;

Rao and Yip, 1990; Tolimieri et al., 1997).

Signal processing is particularly challenging for large datasets for which an imple-

mentation of the transform as a straightforward matrix-vector multiplication would

require O(n2) operations. However, the transformation matrices for signal transforms

often can be factored into a product of structured matrices, allowing for faster im-

plementations with O(n log n) operations. Furthermore, these factorizations can be

represented by mathematical formulas and a single signal processing algorithm can be

represented by many different, but mathematically equivalent, formulas (Auslander

et al., 1996).

The number of different formulas for a given transform is often very large and

grows with transform size. For example, with just a few different methods of factor-

ization, the Fast Fourier Transform (FFT) has 258,400 different formulas for size 25

and 1.8×1013 for size 26. Again with just a few methods of factorization, the Discrete

Cosine Transform (DCT) of type IV has 2.2 × 10306 different formulas for size 210.

19

20 CHAPTER 1. INTRODUCTION

Clearly, as the transform size increases, it becomes infeasible to even enumerate all

possible formulas let alone time them.

Interestingly, when these formulas are actually implemented in code and executed,

their runtimes can vary by a factor of 2 to 10. While many of the factorizations may

produce the exact same number of arithmetic operations, the different orderings of

the operations that the factorizations produce can greatly impact the performance of

the formulas on modern processors. For example, different operation orderings can

greatly impact the number of cache misses and register spills that a formula incurs

or its ability to make use of the available execution units in the processor. The

complexity of modern processors makes it difficult to analytically predict or model

by hand the performance of formulas.

Figure 1.1 shows a histogram of runtimes for a set of 70,376 different FFT formulas

of size 218. All of these formulas were run on the same Pentium III 450 MHz running

Linux. The histogram shows a significant spread of runtimes, almost a factor of 4

from fastest to slowest. Further, it shows that there are relatively few formulas that

are among the fastest.

1 2 3 4 5

x 10
8

0

500

1000

1500

2000

Runtime in CPU Cycles

N
um

be
r

of
 F

or
m

ul
as

Figure 1.1: Histogram of runtimes for 70,376 different FFT (218) formulas.

The differences between current processors lead to very different optimal formulas

from machine to machine. The optimal formula on one machine is very suboptimal

on another machine. To make this point, Püschel et al. (2001b) searched for fast

FFT (220) formulas on four different platforms. Then we timed these implementations

1.1. THESIS PROBLEM AND APPROACH 21

on each of the other platforms. The results are displayed in Table 1.1. Each row

corresponds to a timing platform; each column corresponds to a fast formula found

for a particular machine. For example, the runtime of the formula found for the

Pentium 4, timed on an Athlon is in row 3 and column 2. The fastest runtime for

each machine corresponds to the formula found for that machine. Furthermore, for a

given machine, the other formulas run significantly slower.

Table 1.1: Comparing fast FFT (220) implementations generated for different ma-

chines. The entries are runtimes given in seconds. (Püschel et al., 2001b)

fast formula for

PIII P4 Athlon Sun

Pentium III 900 MHz 0.83 1.08 0.99 1.10

Pentium 4 1.4 GHz 0.97 0.63 0.73 1.23

Athlon 1.1 GHz 1.23 1.23 1.07 1.22

ti
m

ed
on

Sun UltraSparc II 450 MHz 0.95 1.67 1.42 0.82

Given this complexity, hand tuning signal transform implementations for a given

architecture is very difficult and time consuming for humans to perform. The size of

the search space of possible formulas for a single transform is very large, and it is not

easy to understand why one formula runs faster than another. As different transforms

require different operations to be performed and data to be accessed differently, each

transform requires a separate effort to hand tune. Compounding this problem is the

fact that each new computer platform requires a completely new effort to understand

the new architecture and to tune code for that platform.

1.1 Thesis Problem and Approach

The thesis question is:

How can machine learning techniques automate the optimization of the

performance of signal transform implementations?

And specifically how can machine learning techniques help identify what influences

performance?

22 CHAPTER 1. INTRODUCTION

This thesis investigates how machine learning techniques can effectively analyze

runtime performance data for different signal transform implementations to then aid

in optimizing the signal transform. While it is difficult for a human to analyze and

understand performance by hand, it is easy to collect runtime performance data for

specific implementations of a given signal transform on a specific computing platform.

This data provides an opportunity both for learning to model and predict runtime

performance and for runtime feedback while searching for fast implementations. By

collecting runtime performance data for different signal transform implementations,

machine learning techniques can be used to automatically analyze this data and con-

struct performance models that can predict runtime performance for implementa-

tions. By timing specific signal transform implementations, search methods can use

this runtime performance data to guide the search towards faster implementations.

Thus, the problem that this thesis addresses is to find the best implementation

for:

• a signal transform of interest,

• a size of interest for that transform,

• a computing platform for which the code is to be tuned, and

• a performance metric to be optimized.

We constrain this problem by assuming the following are given:

• a set of break down rules to factor the given transform, defining the space of

formulas that can be considered,

• a method for implementing mathematical formulas representing transform fac-

torizations into machine code for the given platform, possibly with parameters

that influence the exact method of implementing the formulas, allowing another

degree of freedom, and

• a method of obtaining the runtime performance for specific implementations on

the given computing platform.

Instead of trying to optimize a single implementation for a signal transform across

all possible sizes, we consider each different transform size to be a different prob-

lem. Each transform size has a different space of formulas for factoring a transform

1.1. THESIS PROBLEM AND APPROACH 23

of that size. Further, the transform size can have a big impact on how different

types of implementations may perform, particularly as the transform size crosses the

sizes of different cache levels. However, we use machine learning techniques to learn

performance models that can accurately predict across a range of sizes.

While most of the results presented in this thesis have concentrated on optimizing

the runtime of implementations, the methods are general and can be used with any

performance metric that can be measured. For example, in hardware design, other

metrics such as power consumed or chip size may be of interest.

We have taken three different approaches to address this problem:

• Optimizing performance by searching for fast implementations. Our search

methods generate a number of different implementations and run them on the

given computing platform to determine their runtimes. The search methods

then use this runtime information to determine new implementations to time,

and the process is repeated.

• Modeling performance of different formulas. We have developed methods that

are able to learn to predict performance of different formulas on a given com-

puting platform.

• Generation of optimized implementations by using learned performance models.

We have developed a method that is able to construct fast implementations of

signal transforms without performing a search that requires timing formulas.

Instead, our method uses learned performance models to guide it in controlling

the construction of fast formulas.

Thus, we can optimize the performance of signal transform implementations by either

performing a search in the space of implementations or by using our learned models

of performance to guide the generation of fast implementations.

This research has been conducted as part of a larger research effort by the SPIRAL

(Signal Processing algorithms Implementation Research for Adaptable Libraries) re-

search group (Moura et al., 1998). The ultimate goal of the SPIRAL group is to

develop adaptable, optimized libraries for signal processing algorithms. This thesis

focuses on how artificial intelligence and particularly machine learning techniques can

be used to further this goal.

24 CHAPTER 1. INTRODUCTION

1.2 Infrastructure

Instead of considering every arbitrary implementation of a signal transform, we have

constrained our problem in two ways. First, we fixed a set of break down rules that

our methods could use in factoring any given transform. This defines the space of

possible formulas that can be considered. As we have already discussed, the number

of possible formulas is huge, in some cases exceeding 10300 for a transform size of

210. Second, we have used software developed by others to translate mathematical

formulas representing a transform factorization into machine code. This software

defines how a formula is implemented on the computing platform of interest.

Some other members of the SPIRAL group produced a Walsh-Hadamard Trans-

form (WHT) package (Johnson and Püschel, 2000). This package takes any WHT

formula as input and is able to implement the WHT according to the factorization

specified by the formula. The package is then able to run and time this implementa-

tion. Much of the work with the WHT in this thesis has used this package.

More recently, the SPIRAL group has also developed a system that can implement

and time a wide variety of different signal transforms, including new user-specified

transforms (Püschel et al., 2001b). Figure 1.2 gives an overview of the SPIRAL

system. This system consists of four main components:

1. Transform and Break Down Rule Specification. The system begins by

allowing the user to specify new transforms and new break down rules to factor

the transforms, but also comes with a number of common transforms and break

down rules already defined.

2. Formula Generation. The second step is to apply these break down rules

repeatedly to produce a complete factorization of a given transform as a math-

ematical formula (Püschel et al., 2001a).

3. Code Generation. Given a formula, the third step is to implement it in exe-

cutable code. This is done by compiling the formula into Fortran or C which is

in turn compiled using the native compiler. This step allows for different por-

tions of the code to be optionally unrolled into straight-line code (code without

loops or function calls). This step can also measure the performance of the

resulting implementation. (Xiong, 2001)

4. Optimization. The final step is to search for a fast implementation. This

1.2. INFRASTRUCTURE 25

Defined Transforms

Break Down Rules

Formula Generation

(Transform Factorization)

Code Generation

Search for Fast Implementations

1

2

3
4

Executable Code

Figure 1.2: Overview of the SPIRAL system.

thesis contributes the development and implementation of the search engine

in the SPIRAL system. While the formula and code generation modules were

designed by others, this thesis contributes the entirety of this final optimization

step.

The SPIRAL system has formed the infrastructure for rest of the thesis that explores

transforms beyond just the WHT.

This infrastructure then defines the space of possible implementations considered

for a given transform. It provides two different sources of degrees of freedom. First,

there are the different possible formulas for a given transform. Second, with the

SPIRAL system there are also options in what portions of the code are unrolled.

Outside of these degrees of freedom, our work is constrained by this infrastructure.

For example, if the code generation step in the SPIRAL system always produced very

slow code, our work would never be able to find a really fast implementation, but

only the fastest implementation that the code generation step allows. So, the goal of

this thesis is to find the fastest implementations possible in the search space defined

by the used infrastructure.

26 CHAPTER 1. INTRODUCTION

1.3 Performance Optimization by Searching

One of the major components of the SPIRAL system is the search engine which

contains search methods for finding fast implementations of given transforms using the

infrastructure that rest of the SPIRAL system provides. The search methods control

the formula generation and code generation steps to produce an implementation which

is run to determine its performance. This performance information is then used by

the search engine to determine new implementations to generate and time. Since the

user can specify new transforms and break down rules to the SPIRAL system, the

search engine must be able to handle arbitrary transforms and break down rules.

We have developed a number of different search methods in the search engine,

including exhaustive search, dynamic programming, random search, hill climbing

search, STEER, and timed search. All of these search methods can optimize new

user-specified transforms using user-specified break down rules. Not only do all of

these search methods search over different factorizations for a given transform, but

almost all of these search methods are also able to search over different code unrolling

parameters that the SPIRAL system’s code generation method allows.

Each of these search methods have a different bias that directs how it searches the

space of possible implementations and how it uses feedback from timing implementa-

tions. Thus, a user can explore a variety of different search methods when trying to

optimize a particular transform. Further, the timed search method that we developed

allows the user to use multiple search methods while specifying a time limit for search.

We have developed a stochastic evolutionary search method called STEER for

searching for fast implementations in this domain. STEER is similar to a genetic

algorithm except that it uses a richer representation for individuals, namely a compact

tree representation of a factorization. STEER generates a population of random

implementations and then evolves this population using two operators. Mutation

makes small changes to a factorization to produce another factorization. Crossover

works between two different factorizations to exchange subformulas.

We have tested each of these search methods and have found that no one search

method tends to outperform all of the others for all transforms and sizes. One of the

advantages of the search engine is that many different search methods are provided

and can be tried, allowing for faster implementations to be found than if a single

search method was provided. However, we have found that for small sized Discrete

1.4. PERFORMANCE MODELING 27

Trigonometric Transforms (DTTs), STEER outperforms the other search methods,

finding formulas with runtimes up to 20% faster than the formulas found by the

standard dynamic programming search method.

1.4 Performance Modeling

Given the infrastructure provided by the SPIRAL system or the WHT package, it is

possible to generate many different implementations of a given transform and to ob-

tain runtime performance data for those implementations on a given platform. While

we have implemented a number of search methods for trying to find a fast imple-

mentation using this runtime data as feedback, we have also used this runtime data

to automatically train machine learning methods to model performance of different

formulas for a given transform. These performance models can then predict the per-

formance of new formulas more quickly than an accurate measurement of runtime

performance can be obtained.

One of the most difficult parts of using machine learning techniques to learn

to predict performance for signal transform formulas was developing a good set of

features to describe formulas. We have contributed a number of different feature sets

in this thesis and have evaluated them. One very important step in developing good

features was to to view the mathematical formulas using a compact tree representation

of a factorization that we have called a split tree. This representation highlights only

the most important aspects of the factorization while hiding some of the mathematical

details. Thus, we focused on developing features that described split trees.

Another important problem was framing the exact machine learning task. We

began by trying to train machine learning methods to predict performance for entire

formulas and thus developed features for entire split trees. While having good success

in doing this for transform sizes of about 210 and smaller, we found that it did not

work as well at larger sizes. Shifting our focus, we considered making predictions

for subportions of formulas, specifically individual nodes in split trees. We found

that by changing the machine learning task to predicting performance for individual

nodes, we could still accurately predict for entire formulas by simply summing our

predictions over all of the nodes. This change allowed us to predict accurately for

much larger sizes such as 220.

While we have learned models for specific transforms and computing platforms,

28 CHAPTER 1. INTRODUCTION

we have been able to learn models that accurately predict across transform sizes. Fur-

ther, we can train these models using data from only one transform size and be able

to accurately predict for both smaller and larger sizes. Since runtime performance

data can be gathered more quickly for smaller sized transforms, being able to accu-

rately predict for larger sizes while training on data from smaller sized transforms is

particularly exciting.

1.5 Generating Fast Implementations

Given that we have been able to develop accurate performance models, the next step

is to be able to use those performance models to aid in the optimization of signal

transform implementations. While optimization by search requires implementing and

timing each formula that it considers, the performance models offer the possibility

to obtain predicted performance values for formulas without actually implementing

and timing them. Unfortunately, there are still so many different formulas for a given

transform that predicting for all them would be infeasible.

Ideally, we would like a method to be able to generate a formula with the fastest

predicted runtime possible without enumerating all possible formulas. Specifically,

we would like a method to learn how to control the generation of formulas so as

to produce fast ones. Producing a formula for a signal transform involves a series of

choices in how to factor that transform and the resulting factors recursively. Thus, we

wish to devise a method that learns to control the generation of fast implementations

by making the best choices possible in factoring the transforms.

By borrowing concepts from reinforcement learning, we have been able to develop

a method for controlling the generation of formulas. Our method uses learned perfor-

mance models to guide its choices, allowing it to generate fast formulas. Our method

achieves excellent results, often producing the previously fastest known formula for a

given transform and size within the first 50 formulas generated. Further, the runtime

of the first formula that our method generates is often within 6% of the fastest known

runtime.

Since the models being used can predict well across many transform sizes, our

generation method can produce fast formulas also across many sizes. While some

formulas of one size were timed to collect data to train the performance models, our

method does not see timings for transforms of any other size and still can produce fast

1.6. THESIS CONTRIBUTIONS 29

formulas for those sizes. Thus, our method pays a one time cost to collect data for one

transform size to train a performance model and then can construct fast formulas for

many different sizes, including larger sizes, without timing a single formula of those

other sizes.

1.6 Thesis Contributions

This thesis makes three major contributions:

1. Several search methods for finding fast implementations of a variety

of signal transforms.

We have developed and implemented a variety of different search methods in

the SPIRAL system, namely exhaustive search, dynamic programming, random

search, hill climbing search, STEER, and timed search. These methods are able

to automatically optimize any transform that can be specified to the system,

including new user-specified transforms. We have specifically developed a new

search method for this domain, namely an evolutionary stochastic search algo-

rithm named STEER. Further, we have developed a meta-search algorithm that

uses the other search algorithms to try to find the best implementation given a

limited amount of time to search. In this thesis, we describe the development

and implementation of these algorithms as well as present a comparison of their

performance.

2. Automatic methods for modeling and predicting performance of sig-

nal transforms.

This thesis presents a number of methods for automatically learning to predict

performance of signal transforms. We show results for predicting both runtime

and cache misses. Most of the techniques can be immediately used with any

other performance measure as well. Two of the most difficult problems here

were determining a good set of features to use and defining a good task for

the machine learning algorithms to address. We have contributed several differ-

ent feature sets and two very different approaches to defining signal transform

performance prediction as a machine learning task.

3. A method for automatically generating fast implementations.

We have developed a method that uses learned models of performance to gen-

30 CHAPTER 1. INTRODUCTION

erate fast WHT and FFT implementations. By using learned models of per-

formance, our method is able to construct fast formulas for a given transform

size, even though the method never times a single formula of that size. By

paying a one time cost to time a few formulas of one particular size to train

the performance model, our method is able to generate fast formulas for many

different transform sizes, including larger sizes.

1.7 Document Outline

Following this introduction, Chapter 2 details some of the necessary background for

understanding the remainder of this document. In particular, this chapter provides

background on signal processing and describes the SPIRAL system.

The next two chapters describe our work in optimizing the performance of signal

processing algorithms. Chapter 3 describes our development and implementation of

different search algorithms in the SPIRAL system. Further, it compares their relative

performance. Chapter 4 then provides more details about STEER, the evolutionary

stochastic search algorithm that we developed for this domain.

The next two chapters describe our work in modeling the performance of signal

processing algorithms. Chapter 5 describes techniques that attempt to directly model

the performance of entire formulas. Chapter 6 then describes techniques that model

the performance of individual nodes in split trees and how this can be used to predict

performance for entire formulas.

Chapter 7 details our method for generating fast implementations of both the

WHT and the DFT. This method uses the learned performance models of Chapter 6

to guide its construction of fast formulas.

Finally, Chapter 8 discusses related work, and Chapter 9 presents conclusions and

future work.

Chapter 2

Background

This chapter presents some necessary background for understanding the remainder

of the thesis. Section 2.1 gives a brief overview of signal transforms. Section 2.2

introduces the Walsh-Hadamard Transform (WHT), giving concrete examples of the

concepts first presented in Section 2.1. Section 2.2 also describes break down rules,

split trees, stride, and the search space for the WHT. Then, Section 2.3 describes the

WHT timing package that has been used in this thesis. Next, Section 2.4 highlights

some of the significant differences and similarities between the WHT and some other

transforms that have been investigated. Finally, Section 2.5 describes the SPIRAL

system.

2.1 Signal Transforms

A linear signal transform takes as an input a signal X as a vector and produces the

transformation Y = AX. The matrix A is called the transformation matrix, and it

defines the transform. A transform of size n operates on an input vector of length

n and is represented by a transformation matrix of size n × n. The output vector

Y then also has length n. (Tolimieri et al., 1997; Nussbaumer, 1982; Rao and Yip,

1990)

Throughout this thesis, we have tested our methods with real or complex valued

input vectors and transformation matrices. It is possible to perform integer transforms

or even transforms on arbitrary groups (Maslen and Rockmore, 1995). The work

presented here is not restricted to real or complex transforms, but no other types of

31

32 CHAPTER 2. BACKGROUND

transforms have been tested as the infrastructure used does not currently allow for

other types of transforms.

A näıve implementation of the matrix-vector multiplication Y = AX would re-

quire O(n2) operations. Fortunately, the transformation matrices in signal process-

ing are usually highly structured, allowing them to be factored into a product of

structured matrices. These factorizations usually lead to algorithms with O(n log n)

operations, resulting in a substantial reduction in execution time. Further, there are

often many possible ways to factor a transform, each which can be represented by a

different but equivalent mathematical formula (Auslander et al., 1996).

While most of these different formulas lead to O(n log n) algorithms with the exact

same arithmetic operation counts, they perform the operations in different orders

and access data differently. This causes different formulas to have widely different

runtimes on the same machine and the same formula to have widely different runtimes

across different machines. Different operation orderings can greatly impact on cache

performance as well as register and execution unit usage, causing the variance in

runtimes between formulas. Since computers have differing cache architectures and

different numbers of registers and execution units, the same formula can have widely

varying runtimes between computers.

Figure 2.1 shows a histogram of the runtimes of 13,175 different formulas for the

Walsh-Hadamard Transform of size 216. All of these formulas were run on the same

Pentium III 450 MHz running Linux. The histogram shows a significant spread of

runtimes, almost a factor of 6 from fastest to slowest. Further, it shows that there

are relatively few formulas that are amongst the fastest.

This thesis is interested in finding the formula that implements the signal trans-

form with the fastest runtime on a given machine. That is, we wish to find the best

factorization of the transformation matrix for a given architecture.

It is possible that further optimizations could be performed if it was known that

the input vector had particular structure. However, for this thesis we will not consider

this case. We will assume that we wish to find the optimal implementation of a given

transform for any arbitrary input vector. That is, our resulting implementations will

correctly perform the specified transformation on any arbitrary input vector of the

given length. However, many of the techniques and methods presented here should

be easily extended to also consider structured input vectors.

2.2. WALSH-HADAMARD TRANSFORM 33

0.5 1 1.5 2 2.5 3

x 10
7

0

50

100

150

200

250

300

350

400

Running time in CPU cycles

N
um

be
r

of
 fo

rm
ul

as

Figure 2.1: Histogram of runtimes some WHT (216) formulas run on the same ma-

chine.

2.2 Walsh-Hadamard Transform

Now we consider the Walsh-Hadamard Transform (WHT) as an example of a specific

transform. The concepts introduced have close analogs for other transforms. Our

research began with the WHT because it is similar to the widely used Fast Fourier

Transform (FFT), but is a simpler transform.

2.2.1 WHT Definition

The Walsh-Hadamard Transform of a signal x of size 2n is the product WHT (2n) · x
where

WHT (2n) =
n⊗
i=1

DFT (2),

DFT (2) =

 1 1

1 −1

 ,
and ⊗ is the tensor or Kronecker product (Beauchamp, 1984). If A is a m×m matrix

and B a n× n matrix, then A⊗B is the block matrix product
a1,1B · · · a1,mB

...
. . .

...

am,1B · · · am,mB

 .

34 CHAPTER 2. BACKGROUND

For example,

WHT (22) =

 1 1

1 −1

⊗
 1 1

1 −1



=


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

2.2.2 Break Down Rules

Clearly the matrix in the example above is highly structured. By calculating and

combining smaller WHTs appropriately, this structure can be leveraged to produce

efficient algorithms.

Let n = n1 + · · ·+ nt with all of the nj being positive integers. Then, WHT (2n)

can be rewritten as the product

[WHT (2n1)⊗ I2n2+···+nt] ·[
t−1∏
i=2

(I2n1+···+ni−1 ⊗WHT (2ni)⊗ I2ni+1+···+nt)

]
·

[I2n1+···+nt−1 ⊗WHT (2nt)] ,

where Ik is the k× k identity matrix. We call the above formula a “break down rule”

as it specifies how to factor a transform of one size into other (in this case smaller)

transforms. This break down rule can then be recursively applied to each of these

new smaller WHTs. Thus, WHT (2n) can be rewritten as any of a large number of

different but mathematically equivalent formulas.

2.2.3 Split Trees

Any of these formulas for WHT (2n) can be uniquely represented by a tree, which we

call a “split tree.” For example, suppose WHT (25) was factored as:

WHT (25) = [WHT (23)⊗ I22][I23 ⊗WHT (22)]

= [{(WHT (21)⊗ I22)(I21 ⊗WHT (22))} ⊗ I22]

[I23 ⊗ {(WHT (21)⊗ I21)(I21 ⊗WHT (21))}]

2.2. WALSH-HADAMARD TRANSFORM 35

The split tree corresponding to this final formula is shown in Figure 2.2(a). Each

node in the split tree is labeled with the base two logarithm of the size of the WHT

at that level. The children of a node indicate how the node’s WHT is recursively

computed. The split tree in Figure 2.2(b) corresponds to the formula:

WHT (25) = [WHT (22)⊗ I23][I22 ⊗WHT (21)⊗ I22][I23 ⊗WHT (22)]

5

3 2

21 1 1

5

2 1 2

(a) (b)

Figure 2.2: Two different split trees for WHT (25).

In general, each node of a split tree should contain not only the size of the trans-

form, but also the transform at that node and the break down rule being applied.

In the above example, the representation was simplified since it only used one break

down rule which only involved WHTs.

More formally, the root node of a split tree specifies the transform being factored

including the transform’s size. The break down rule used to factor this transform is

also specified at the root. The children of the root node then specify the transforms

resulting from the application of this break down rule. In general, a node in a split

tree specifies the transform being factored and the break down rule being used. The

children of a node represent the resulting transforms from applying the node’s break

down rule to the node’s transform.

Split trees capture the order and sizes of the computations that are performed in

a computer. Any change to the split tree means a change in the order and/or size

of the computations performed. Unlike simple scalar multiplication where a ∗ b runs

just as fast as b∗a, the different orderings and different sized subcomponents of these

matrix operations can often produce very different runtimes on a computer.

36 CHAPTER 2. BACKGROUND

2.2.4 Stride

Implicit in a WHT split tree is the stride at which nodes compute their respective

WHTs. A node’s stride determines how it accesses data from the input and output

vectors. A stride of 1 means that a node accesses data from the input and output

vectors sequentially. Such a node would access data items x0, x1, x2, ..., up to the size

of the transform being computed at that node, assuming no initial offset. A stride of

s means that a node accesses every s-th data item from the input and output vectors.

So, such a node would access data items x0, xs, x2s, ..., with no initial offset, and

data items xi, xs+i, x2s+i, ..., with an initial offset of i.

Stride arises from the tensor products of the smaller WHTs with identity matrices

in the mathematical formulas for factored WHTs. For example, (WHT (22) ⊗ I23)x

can be calculated by performing 23 WHT (22)’s all at stride 23 but changing their

initial offset into the input vector x. That is, WHTs of size 22 are performed on the

four data items xi, x8+i, x16+i, and x24+i, with i taking on a different value for each

WHT performed (0 ≤ i < 8).

Thus, the stride of a WHT node is determined by its location in the split tree.

The root node of a split tree has a stride of 1. If a node has a stride of s, then its

right child has a stride also of s. Further, if the right child is of size r, then the next

child to the left has stride sr. An arbitrary child of this node has a stride of s times

the sizes of all siblings to the right of the given child.

Figure 2.3 gives an example WHT split tree along with the stride of each of nodes.

Note that in the figure all values are given as base two logarithms of their size or stride.

The stride of a node can greatly impact its cache performance. Two nodes of the

same size but that have different strides can have very different cache performance.

2.2.5 Search Space

There is a large number of possible split trees for a WHT of any given size, and thus

there is a large number of formulas equal to that WHT. Specifically, a WHT of size 2n

has O((4+
√

8)n/n3/2) different possible split trees (Johnson and Püschel, 2000). The

column marked “All” in Table 2.1 shows the total number of possible WHT formulas

for sizes 21 to 220. For example, WHT (210) has 551,613 different split trees. Since

it requires more than a second to obtain an accurate runtime for a single formula, it

2.2. WALSH-HADAMARD TRANSFORM 37

3 8 5

2 6

7

4

13

20
log2 Size log2 Stride

20 0

13 0

5 0

8 5

6 5

2 11

7 13

4 13

3 17

Figure 2.3: Example of stride for WHT nodes.

would require more than 6 days to time all possible WHT (210) formulas and over a

million years to time all possible WHT (220) formulas.

To slightly reduce the search space, it is possible to only consider binary WHT

split trees. However, there are still O(5n/n3/2) possible binary WHT (2n) split trees

(Johnson and Püschel, 2000). The column marked “Binary” in Table 2.1 gives the

actual number of binary WHT split trees. Even with this reduction, it would require

over a week and a half to time all formulas of size 212.

By conducting a number of different searches, we have observed that the fastest

formulas never have leaves of size 21. This confirms that it is more effective to use

unrolled code of sizes larger than 21. By searching just over split trees with no leaves

of size 21, the total number of trees that need to be timed can be greatly reduced.

For example, there are 51,819 binary trees of size 210 but only 101 binary trees of

size 210 with no leaves of size 21, as shown in Table 2.1. This restriction allows us

to exhaustively search this limited space for formulas of sizes greater than the level 1

data cache.

Unfortunately, it still requires at least several hours to exhaustively search this

limited space for transforms much larger than 216. Again through conducting a num-

ber of different searches in this space, we have observed that the best formulas are

always rightmost split trees (trees where every left child is a leaf). Exhaustively

searching this restricted space is then possible for even larger sizes than 216.

38 CHAPTER 2. BACKGROUND

Table 2.1: Number of WHT formulas for different subsets of formulas.

Binary

Binary No 21 leaves

Size All Binary No 21 leaves Rightmost

21 1 1 0 0

22 2 2 1 1

23 6 5 1 1

24 24 15 2 2

25 112 51 3 3

26 568 188 6 5

27 3,032 731 11 8

28 16,768 2,950 23 13

29 95,199 12,234 46 20

210 551,613 51,819 101 33

211 3.2× 106 223,180 218 52

212 1.9× 107 974,382 488 84

213 1.2× 108 4.3× 106 1,092 134

214 7.1× 108 1.9× 107 2,489 215

215 4.4× 109 8.6× 107 5,696 344

216 2.7× 1010 3.9× 108 13,175 551

217 1.7× 1011 1.8× 109 30,620 882

218 1.1× 1012 8.1× 109 71,664 1,413

219 6.6× 1012 3.7× 1010 168,468 2,262

220 4.2× 1013 1.7× 1011 398,041 3,623

2.3. WHT TIMING PACKAGE 39

2.3 WHT Timing Package

For most of the results with the WHT presented in this document we used a WHT

package, (Johnson and Püschel, 2000), that can implement and run WHT formulas

passed to it. The package can also time the execution, giving a runtime for the

specified formula. For some computer architectures, the package can use performance

counters to count the number of cycles needed to execute the given WHT formula.

The WHT package allows leaves of the split trees to be sizes 21 to 28 which

are implemented as unrolled, straight-line code. Unrolled or straight-line code is a

sequence of instructions with no loops, jumps, or function calls so that each instruction

is executed sequentially. The code for these leaves efficiently implements a WHT of

the given size, accessing its input and output at any specified stride and initial offset.

Internal nodes of the split tree are implemented as recursive calls to their children.

For example, suppose an internal node of size n and stride s has two children, a right

child of size r and a left child of size l (where n = rl). This node is then computing:

[(WHT (l)⊗ Ir) (Il ⊗WHT (r))]⊗ Is.

When this node is called, it recursively calls the right child l times in a row. Every

call specifies a stride of s but each call has a different initial offset so that the right

child accesses n different data items all together. When called, this right child will

recursively call its children if it is also an internal node. Then, the original node calls

its left child r times, all at stride sr, but again with different initial offsets so that it

accesses n different data items.

The straight-line code used in the leaves has the advantage that it does not have

loop or recursion overhead but the disadvantage that large code blocks will overfill

the instruction cache and can be difficult for compilers to optimize. Thus, it is often

better to not continue splitting down every node possible until every leaf is of size

21. Having leaves of size larger than 21 has the advantage of avoiding some recursive

calls and loop overhead. However, it is also usually better to continue splitting nodes

of size 28 as its straight-line code is often too large.

Besides its usual timing method, the WHT package also uses the Performance

Counter Library (PCL) (Berrendorf and Mohr, 2000) to use hardware performance

counters to obtain different performance measures for formulas or even subportions

of formulas. PCL can be used on a variety of popular platforms, and the WHT

package can use PCL anywhere that PCL can be properly installed. This allows the

40 CHAPTER 2. BACKGROUND

WHT package to potentially collect a number of different performance measures for

formulas, such as cache misses incurred (for different caches), TLB misses, CPU stalls,

number of instructions executed from different instruction classes, and so on.

Further, since PCL uses hardware performance counters, it is possible to get rea-

sonably accurate timings for subportions of WHT formulas. The WHT package can

return timings for each subtree in an entire split tree, indicating the total amount

of time (or other performance measure) spent in computing each portion of the for-

mula. Adding calls to obtain performance measurements during the computation of

a formula can reduce the accuracy of the measurements; so, this is only used when

timings for subportions of formulas are needed, and not when wanting to obtain a

runtime for the entire formula.

2.4 Other Transforms

We have investigated a number of transforms besides the WHT, including the discrete

Fourier Transform (DFT), four types of the discrete cosine transform (DCT), and four

types of the discrete sine transform (DST). Table 2.2 gives a few example break down

rules for some of these transforms. Some break down rules show how to compute a

transform of one size from several smaller transforms of the same type, while other

break down rules show how to compute a transform from several smaller transforms

of different types. Further, some break down rules show how to translate a transform

of one type into a transform of a different type but of the same size.

The discrete trigonometric transforms (DTTs), DCT and DST, (Rao and Yip,

1990; Chan and Ho, 1990; Wang, 1984; Strang, 1999) are considerably different from

the WHT. Specifically, the following differences are of importance:

• While we have used just one basic break down rule for the WHT, there are

several very different break down rules for most of the different types of DCTs

and DSTs. Currently we have as many as ten different break down rules for

some of the DTTs while others have two or three.

• While the break down rule for the WHT allowed for many possible sets of

children, most of the break down rules for the DTTs specify exactly one set of

children.

2.4. OTHER TRANSFORMS 41

Table 2.2: A few example break down rules for some specific transforms. These

equations are not meant to be exact but simply to give the flavor of the break down

rules. Diagonal matrices are represented by D, permutations by P and L, rotation

matrices by R, and other sparse matrices by M and T .

WHT (2n) = (WHT (2n1)⊗ I2n2+···+nt)[
t−1∏
i=2

(I2n1+···+ni−1 ⊗WHT (2ni)⊗ I2ni+1+···+nt)

]
(I2n1+···+nt−1 ⊗WHT (2nt))

DCT IV (n) = Mn ∗DCT II(n) ∗Dn

DCT IV (n) = Mn ∗ Pn ∗ (DCT II(n/2)⊕DST II(n/2)Pn/2) ∗Rn

DST I(n) = Pn ∗ (DST III(n/2)⊕DST I(n/2)Pn/2) ∗Mn

DFT (rs) = (DFT (r)⊗ Is)T rss (Ir ⊗DFT (s))Lrsr

DFT (n) = CosDFT (n) + i ∗ SinDFT (n)

CosDFT (n) = Mn ∗ (CosDFT (n/2)⊕DCT II(n/4)) ∗Mn ∗ Pn

• While the WHT factored into smaller WHTs, the break down rules for the

DTTs often factor one transform into two transforms of different types or even

translate one DTT into another. Most of the DTTs are interrelated, with one

DTT being a child of another DTT in a factorization of the second DTT. Thus,

when specifying a split tree for a DTT, it is necessary to not only label the

nodes with the size of the transform, but also with which transform is present

at each node and which break down is applied at each node.

• Most of the rules for the DTTs either translate a DTT of one type to another

type without a change in size or produce two children each of half the size of

the parent. Thus, the sum of the sizes of the children add up to the size of

the parent for the DTTs. Whereas, with WHT, the product of the sizes of the

children is the size of the parent (sum of the base two logarithm). Therefore,

the number of factorizations for the DTTs grows even quicker than that for

the WHT. For example, DCT type IV already has about 1.9 × 109 different

factorizations at size 25 and about 7.3× 1018 factorizations at size 26 with the

current set of break down rules.

42 CHAPTER 2. BACKGROUND

The DFT also has many different break down rules. Note that a fast implementa-

tion of the DFT is called a Fast Fourier Transform (FFT). The standard Cooley-Tukey

decomposition (Cooley and Tukey, 1965) for the FFT is:

DFT (rs) = (DFT (r)⊗ Is)T rss (Ir ⊗DFT (s))Lrsr

The structure of this break down rule is similar to the one for the WHT in that it

factors a DFT of one size into two DFTs where the product of the sizes of the resulting

DFTs is equal to the size of the original DFT. Another break down rule for the DFT

splits it into real and imaginary parts which each can be decomposed using the DTTs

(Vetterli and Nussbaumer, 1984).

Table 2.3 lists the number of different split trees for different transforms using all

of the default break down rules available in the SPIRAL system as of version 3.1. The

table shows that the number of formulas grows even more quickly for the DFT and

the DCTs than for the WHT. Further, the number of formulas for the DCTs grow

even more quickly than for the DFT. Clearly, the space of all possible formulas for

these transforms can not be exhaustively searched at sizes above 25.

Table 2.3: Number of possible split trees for different transforms.

Size DFT DCT1 DCT2 DCT3 DCT4

21 1 2 1 1 1

22 6 4 1 1 10

23 40 8 10 10 126

24 360 160 1,260 1,260 31,242

25 258,400 403,200 3.9× 107 3.9× 107 1.9× 109

26 1.8× 1013 3.2× 1013 7.6× 1016 7.6× 1016 7.3× 1018

27 7.2× 1013 4.8× 1030 5.6× 1035 5.6× 1035 1.1× 1038

28 7.2× 1014 5.4× 1066 6.0× 1073 6.0× 1073 2.3× 1076

29 1.5× 1016 6.4× 10140 1.4× 10150 1.4× 10150 1.1× 10153

210 2.3× 1017 1.8× 10291 1.5× 10303 1.5× 10303 2.2× 10306

2.5. SPIRAL 43

2.5 SPIRAL

This section briefly describes the SPIRAL system (Püschel et al., 2001b; Moura et al.,

1998) that has been developed by the SPIRAL research group. The development of

the SPIRAL system has been a major collaborative effort spanning several universities

and many researchers. This section, however, does not provide much detail about the

search engine, as that is the major focus of Chapter 3. The search engine in the

SPIRAL system is one of major contributions of this thesis. To understand this

contribution, it is necessary to understand the larger SPIRAL system framework in

which the search engine works.

The SPIRAL system automatically produces code for performing a given trans-

form of a given size. Different factorizations can be specified to the system as break

down rules, allowing the system to produce different implementations of the same

transform. The system is general in that new transforms and new break down rules

can be specified to the system and it can immediately produce code for these new

transforms using the new break down rules. Further, the system can automatically

produce platform adapted, highly optimized code by performing a search over the

different degrees of freedom available (e.g., applying different break down rules). The

SPIRAL system can currently produce C or Fortran code for performing the specified

transform, allowing the code to be easily integrated into applications.

2.5.1 System Design

Figure 2.4 provides a basic overview of the major components of the SPIRAL system.

The SPIRAL system consists of four main steps:

1. Transform and Break Down Rule Specification. The system begins by

allowing the user to specify new transforms and new break down rules to fac-

tor the transforms. A large number of transforms, including the DFT, WHT,

and four types of discrete cosine and sine transforms (DCT/DST), and a large

number of break down rules are already specified to the system by default.

2. Formula Generation. The second step is to apply these break down rules

repeatedly to produce a complete factorization of a given transform. This fac-

torization is represented by a mathematical formula. The formula generator

uses the transform and break down rule specifications to be able to produce

44 CHAPTER 2. BACKGROUND

Defined Transforms

Break Down Rules

Formula Generation

(Transform Factorization)

Code Generation

Search for Fast Implementations

1

2

3
4

Executable Code

Figure 2.4: The SPIRAL system.

a formula that implements the given transform efficiently. In general, there

are many different ways to apply the break down rules leading to a very large

number of different formulas that can be obtained. (Püschel et al., 2001a)

3. Code Generation. Given a formula, the third step is to implement it in exe-

cutable code. To perform this step, a compiler has been developed to translate

formulas into a low-level language such as Fortran or C. This resulting Fortran

or C program can then be compiled by a standard compiler for the given lan-

guage. The formula compiler has a number of parameters that can be adjusted

to change how it implements a formula in code. For example, a parameter

can be specified to indicate how much of the code should be unrolled and how

much should be left as loops. This provides another dimension that must be

optimized when searching for fast implementations. (Xiong, 2001; Xiong et al.,

2001; Johnson et al., 2000)

4. Optimization. With all of this machinery in place, it is possible to generate

executable code for any possible factorization specified by the break down rules

for any possible transform that has been defined to the system. Further, this

executable code can be run to obtain a runtime for that implementation. The

final but key step in the process, then, is to use this machinery to search for

2.5. SPIRAL 45

a fast implementation for a given transform. Research and implementation of

this final step is one of the major contributions of this thesis and is discussed

in Chapters 3 and 4.

The SPIRAL system has an additional module that can be used to test and verify

the code that it generates. Given that a user may specify a new break down rule for

a transform, it is beneficial to be able to verify that the factorizations produced using

this new break down rule actually calculate the specified transform. Further, given

that there is several steps from transform specification to executable code, having a

method to verify the correctness of the generated code is desirable. The SPIRAL

verifier can compare a given factorization against the definition of a transform (im-

plemented as a matrix multiplication), or it can compare two different factorizations.

These comparisons can be made on a set of basis input vectors or on a set of random

input vectors.

2.5.2 Representation

The SPIRAL system uses several different representations for transforms and their

factorizations.

A transform can be specified to the system by providing:

1. A name for the transform as a string,

2. A function for checking its parameters, and

3. A function for producing its defining transformation matrix.

A transform specification usually defines the transform across all possible sizes, and

thus most transforms take a size as a parameter. Some of the discrete trigonometric

transforms also have scaled or unscaled versions which can be specified as a parameter.

The system is general and allows new transforms to take arbitrary parameters.

A break down rule can be specified to the system by providing:

1. The transform it applies to,

2. A function for checking whether it is applicable for a given transform and its

parameters,

46 CHAPTER 2. BACKGROUND

3. A function for returning the resulting (often smaller) transforms from applying

the break down rule once, and

4. A function for returning the entire mathematical formula from applying the

break down rule once.

The function in item 3 returns the transforms that would appear in the resulting

mathematical formula from applying the break down rule and that could be further

factored. Since many break down rules specify several different factorizations, this

function actually returns all possible sets of resulting transforms.

The formula generator uses a representation which we have called a “ruletree”

extensively as an intermediate representation. The search engine also heavily uses

this representation and it is a common interface between the two modules. A ruletree

is very similar to a split tree which was introduced in Section 2.2.3, and most of the

remaining document will use the two terms interchangeably.

A ruletree is an efficient representation of a factorization. A ruletree consists of

nodes that specify the following:

1. The transform and its parameters represented by the node,

2. The break down rule that has been applied to this transform,

3. The children of the node, if any, and

4. Any formula compiler options specific to this node and its subtree.

Figure 2.5 shows an example ruletree.

There is a one to one correspondence between ruletrees and mathematical for-

mulas representing the transform factorizations. The formula generator can take a

fully specified ruletree and transform it into a mathematical formula for exporting

to the formula generator. The formulas are written in a specially designed language

called SPL (Signal Processing Language) (Xiong, 2001; Xiong et al., 2001; Auslander

et al., 1996). Hence the formula compiler is also called the SPL compiler. The SPL

language also supports certain directives to the SPL compiler, such as indicating that

a particular portion of the formula should be implemented as unrolled code.

2.5. SPIRAL 47

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_3
22�DCT II 22�DCT IV 22�DST IV 22�DST II

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV DSTIV2 DSTII2

DCTII 2 DSTII2

RuleDCT4_3

RuleDCT4_3

Figure 2.5: Example ruletree.

2.5.3 Implementation

The formula generator and the search engine have been implemented in the computer

algebra system GAP (Groups, Algorithms, and Programming) (Schönert et al., 1995;

GAP) with the share package AREP (Egner and Püschel, 1998). Some useful code

for manipulating structured matrices was already available in AREP, and GAP also

provides a powerful, high-level programming language. For both of these reasons, the

formula generator was implemented in GAP. Since the search engine must heavily

interact with the formula generator, it was also written in GAP.

Specifications for transforms and break down rules are currently given as records

in GAP. However, even more user-friendly methods for specifying new transforms or

break down rules may be developed in the future.

The formula compiler is written in C and can be used stand alone if desired.

Code has been written in GAP to write out a formula to a file and to call the formula

compiler externally. Further, timing information can be returned to the search engine

through some additional interface code in GAP.

The verifier has been written as a number of shell scripts. These scripts call the

formula compiler and run the resulting code. Further, there has been code developed

in GAP to interface with the verifier.

48 CHAPTER 2. BACKGROUND

2.5.4 User Interface

The SPIRAL system is available for download at http://www.ece.cmu.edu/~spiral.

Installation is a simple, few step process. Upon starting up SPIRAL, a command line

prompt is presented. GAP provides a powerful command line interface, including

history and completions. SPIRAL simply uses the standard GAP command line

interface.

A user can then simply specify a transform with a simple command such as:

spiral> t := Transform("DFT",2^20);

which specifies t to be a DFT of size 220. Then by running:

spiral> Implement(t);

the user can obtain a fast implementation for this DFT. In particular, the system

performs a number of searches trying to find the fastest implementation possible in

30 minutes. This generates a C or Fortran (depending on the system default) file

in the user’s current directory containing the fast implementation of this DFT. Of

course, many other options are available.

The SPIRAL system comes with a considerable amount of documentation. This

documentation is provided in a number of forms including text, postscript, and at

the SPIRAL prompt.

Further, the command line interface provides researchers with an easy interface

for experimentation. For example, transforms can be specified, particular split trees

grown, runtimes obtained, and search algorithms tested, all with rather simple func-

tion calls.

Several functions are also provided for testing the SPIRAL system. These include

verification of the specified break down rules and of the generated code. They also

include basic tests that the installation was performed correctly and that the native C

or Fortran compiler works correctly. Many of the major components of the SPIRAL

system have their own test and verification routines.

2.6. SUMMARY 49

2.6 Summary

This chapter described the Walsh-Hadamard Transform in detail, explaining how

it can be factored. It compared the WHT with several other transforms that we

have investigated. We presented split trees as a simple but important representation

for the factorization of signal transforms. We discussed the search spaces for signal

transforms and introduced specific subspaces for the WHT. The chapter introduced

the concept of stride for nodes in WHT split trees. Also, we described a package for

timing WHT formulas that is used in this thesis. Finally, we presented the SPIRAL

system, providing the necessary background for understanding how the search engine

fits within the overall system.

50 CHAPTER 2. BACKGROUND

Chapter 3

Optimizing Performance with the

Search Engine

The search engine is one of the major components of the SPIRAL system and a major

contribution of this thesis. The other major components of the SPIRAL system

generate and implement in code different factorizations of arbitrary, user-specified

signal transforms. Many different factorizations, and thus possible implementations,

can be generated for a given transform. By running these implementations, it is

possible to collect runtimes for the different implementations on a given machine. The

search engine then uses this machinery and the runtimes of different implementations

to search for the fastest implementations possible for given transforms.

Search plays a critical role in the SPIRAL system for two main reasons:

1. There is a very large number of different implementations that the SPIRAL

system can produce for any one transform.

2. These different implementations have a very wide variance in runtimes.

Thus, it is crucial to have an intelligent method to search through this space of

implementations to find the fastest one possible.

We have implemented a number of different search methods in the SPIRAL system.

All of these methods are capable of optimizing arbitrary, user-specified transforms.

Not only do these methods search over different formulas (or equivalently, different

factorizations) for a given transform, but most are also capable of searching over

different formula compiler options that control how the formula is compiled into code.

51

52CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

We begin with a brief overview of the different search methods available in the

SPIRAL system in Section 3.1. In Section 3.2, we describe the two different search

spaces that are considered and how the search methods search over these spaces in

general. Next, Section 3.3 describes the search engine’s user interface and available

options. Section 3.4 returns to the individual search methods and provides more

details about the implementation of each method. Finally, Section 3.5 provides results

from using the search engine.

The reader is encouraged to review Section 2.5 for additional details about the

SPIRAL system. Details about the search method STEER have been omitted from

this chapter since they are the topic of Chapter 4. Further, the user manual for the

search engine appears in Appendix A.

3.1 Overview of the Search Methods

This section briefly discusses each of the search methods available in the SPIRAL

system. For each of the search methods, this section presents the basic idea behind

the method without going into details about how the method is implemented in the

SPIRAL system. After further discussion, Section 3.4 then provides more details

about each of the search methods and their implementation in the SPIRAL system.

Exhaustive Search

Exhaustive search is the most basic search method. It generates all possible formulas

for a given transform and exhaustively times each one to determine the fastest one.

This search method is only possible for very small transform sizes, as the number of

possible formulas for most transforms grows very large as the transform size increases.

Dynamic Programming

Dynamic programming has been one of the most common approaches to search in

this type of domain (Johnson and Burrus, 1983; Frigo and Johnson, 1998a; Haent-

jens, 2000; Sepiashvili, 2000). Dynamic programming builds up a table of the best

formulas found for each transform and size. For a particular transform and its ap-

plicable rules, dynamic programming considers all possible sets of children. For each

3.1. OVERVIEW OF THE SEARCH METHODS 53

child, dynamic programming substitutes the best split tree found for that transform.

Dynamic programming makes the assumption that the fastest split tree for a partic-

ular transform is also the best way to split a node of that transform in a larger tree.

For many transforms, dynamic programming times very few formulas and still is able

to find reasonably fast formulas.

Random Search

A very different approach is to generate a set of random formulas, time them and

choose the fastest. This approach assumes that while there is a wide variance of

runtimes between formulas, there are enough fast formulas that at least one can be

found randomly. This approach has the advantage that it can time as few or as

many formulas as the user desires, but the disadvantage of blindly generating random

formulas.

Hill Climbing Search

As a refinement of random search, hill climbing search tries to successively modify an

initially random implementation to find faster implementations. A number of random

restarts are performed to generate a new random implementation occasionally.

STEER

As a refinement of random and hill climbing search, STEER (Split Tree Evolution

for Efficient Runtimes) uses a stochastic, evolutionary search approach (Singer and

Veloso, 2001b). STEER’s approach is very similar to genetic algorithms (Goldberg,

1989) except that instead of using a bit vector representation, it uses split trees as its

representation. STEER uses evolutionary operators to stochastically guide its search

toward more promising portions of the space of formulas. STEER has the advantage

of searching a larger portion of the space of formulas than dynamic programming

while still remaining tractable unlike exhaustive search.

Timed Search

We have also developed a meta-search method that uses the above search methods to

find the fastest implementation possible given a limited amount of time to search. This

54CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

method takes advantage of the strengths of the different search methods to produce

a fast implementation while also limiting the search to only take the specified length

of time. The idea is for a user to be able to ask for the best DFT of size 220 that the

system can find in 30 minutes, for example.

3.2 Search Spaces

The search methods actually perform searches over two different spaces:

• The space of possible factorizations, and

• The space of possible options to the formula compiler.

These two different spaces are searched simultaneously as a transform’s implementa-

tion is determined by both the chosen formula and the options passed to the formula

compiler. However, we will now consider each search space separately.

3.2.1 Search Over Factorizations

Usually, the search methods begin by generating one or a few different factorizations

of a given transform. These formulas are then implemented in code and timed. Based

on this runtime information, the search method currently being used then generates

a new formula or set of formulas to be timed. This process is then repeated until the

search method reaches a stopping condition or until the space of formulas that the

search method considers is exhausted.

To perform a search over possible factorizations, these search methods must control

the formula generator and how it applies break down rules to produce formulas.

Further, this must be done irrespective of the transform or available break down rules

as new user-specified transforms and break down rules can be specified to the system.

First, a suitable representation for factorizations needed to be chosen to be used by

both the formula generator and the search engine as a common interface. The formula

generator takes a transform definition and a set of break down rules and produces

a mathematical formula written in SPL (see Section 2.5.2) that represents a given

factorization of the desired transform. However, these formulas were not an ideal

3.2. SEARCH SPACES 55

representation for interfacing between the search engine and the formula generator

for a couple reasons:

• The mathematical formula for a factorization obscures the important aspects of

the factorization. Given just a formula, it is not easy to determine which break

down rules have been applied or what intermediate transforms occurred during

the recursive application of break down rules. Further, although the transforms

at the leaves appear in the formula, they are intermixed with the necessary

mathematical structures for combining these leaves appropriately.

• Formulas can require a large amount of memory storage. The mathematical

formulas not only include the leaf transforms to be computed, but also all

the necessary mathematics to recombine these leaves to compute the overall

transform. These extra mathematical structures often require a large amount

of memory to store.

Instead, we decided to use split trees (see Section 2.5.2) as a representation for

interfacing between the search engine and the formula generator. This was chosen for

several reasons:

• The particular break down rules used and the intermediate transforms were are

all immediately accessible from the split tree. This allows the search methods

to easily inspect and manipulate the split trees to generate new factorizations

to be considered.

• A split tree can be easily converted into an SPL formula.

• A split tree usually requires significantly less memory storage in comparison to

the corresponding SPL formula.

Second, the formula generator needed to provide methods for generating valid split

trees or portions of valid split trees as the search engine required. Random search, hill

climbing search, and STEER all require the ability to generate random split trees for

a given transform. Exhaustive search requires the ability to generate all possible split

trees. Dynamic programming requires the ability to generate all possible immediate

children of a given node in a split tree. All three of these different split tree generation

methods were implemented as functions in the formula generator and are used by the

search engine.

56CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

3.2.2 Search Over Options to the Formula Compiler

Most of the search methods not only search over different factorizations, but also can

search over options to the formula compiler. At the time of this writing, the only

option to the formula compiler that significantly changes its generated code is the

level of code unrolling. It is also possible to specify different options to the native

C or Fortran compiler which could change the actual generated executable. The

search engine allows for searches over different levels of code unrolling. Currently,

the search engine does not allow for searches over different options to the native C

or Fortran compiler; however, different options can be specified with each call to a

search method.

All of the code that the formula compiler generates is either straight-line code

(that is simply a linear sequence of statements) or such code contained in loops.

Straight-line code is very efficient in that it specifies exactly what operations are to

be performed with no overhead. However, it can be very difficult for C and Fortran

compilers to optimize very long blocks of straight-line code. Further, straight-line

code is particularly bad for instruction cache performance. Thus, it is often preferred

to generate code with some loops. However, this has the disadvantage of requiring

overhead for maintaining the loop variables and for calculating indices into the input

and output vectors based on these loop variables.

Given an SPL formula, the formula compiler begins by generating code that con-

tains many loops and only very short straight-line code sections. Then, based on the

unrolling options specified, some of these loops are unrolled to generate longer sec-

tions of straight-line code (also called unrolled code). The formula compiler actually

allows for code unrolling to be specified with two different methods:

1. A global option can be set, specifying a size. All loops whose data accesses are

of the specified size or smaller are unrolled. This allows for very reasonable code

to be generated by setting just one single option.

2. Local options can be set specifying particular portions of the SPL formula that

are to be implemented as straight-line code. This allows a much greater degree

of freedom than the global option in that one piece of code can be unrolled while

another left with its loops even though they may access they same amount of

data.

Thus, the search engine allows for two different types of searches over code un-

3.3. USER INTERFACE 57

rolling based on these two methods for specifying the degree of unrolling to the formula

compiler:

1. A search can be made over the size to be set for the global unrolling option. The

user can specify a minimum and maximum size over which to search, limiting

the search to reasonable portions of the search space.

2. A search can also be performed over placement of local unrolling specifications.

Any node in a split tree can be marked for local unrolling, indicating that the

entire subtree rooted at that node should be unrolled. Thus, if a node is marked

for unrolling, then all nodes in its subtree are implicitly marked for unrolling.

The user can specify a minimum and maximum size over which to search. Then,

any node of the minimum size and smaller are always marked for unrolling and

no node larger than the maximum size is ever marked for unrolling. Search is

then performed over whether to mark for unrolling nodes of sizes between the

minimum and maximum.

Exactly how these searches are implemented is dependent on the search method being

used. It is not possible to simultaneously search over global and local unrolling options

as this does not make sense. By default, most of the search methods do not perform

either of these searches but simply use a default global unrolling size.

3.3 User Interface

Each of the search methods can be directly called. While many of the search methods

have a large number of options available, reasonable defaults are provided for all

options. So, for example, using STEER to search for a fast implementation of a DFT

of size 215 can be achieved by the simple command:

spiral> STEER(Transform("DFT", 2^15));

Most of the search methods return the split tree corresponding to the fastest imple-

mentation that it found, as well as the formula compiler options used.

The user may specify two different sets of options, namely options for the search

method and options that are directly passed to the formula compiler. The user only

needs to specify the options for which a non-default value is desired. The available

58CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

options for each of the search methods as well as for the formula compiler may be

listed by calling the appropriate function. For example, the following call uses STEER

to search for fast C implementations of the DFT of size 215 while using a population

size of 500 and setting the random number generator seed to 7:

spiral> STEER(Transform("DFT", 2^15),

> rec(popSize:=500, seed:=7),

> rec(language:="c"));

Note that the population size and random seed are options to the STEER search

method which are grouped together in a GAP record, while the desired implementa-

tion language is an option to the formula compiler.

The search engine also provides a simple, high-level function for implementing

a transform, called “Implement”. This function will automatically search for a fast

implementation of the given transform and then produce a file containing the C or

Fortran code for that fast implementation. Thus, by the simple call:

spiral> Implement(Transform("DFT", 2^15));

a user can have a file created in the current directory that contains a fast implemen-

tation of a DFT of size 215. Implement can also take a number of options so that

the user can specify the implementation language, the filename to be used, the search

method to be used, or a number of other options. By default, Implement obtains a

fast implementation by one of two methods:

1. If the search engine has already found a fast implementation of the desired

transform, the corresponding C or Fortran code is generated.

2. Otherwise, the timed search method is used, allowing 30 minutes to search by

default. The corresponding C or Fortran code for the fastest implementation

that this search finds is then generated.

The search engine automatically keeps track of the best implementations that it

has found so far for all of the transforms considered. These implementations are

stored in a hash table as a split tree along with its corresponding formula compiler

options. By using the formula generator and the formula compiler, Implement can

easily take such a split tree and formula compiler options and create the corresponding

3.4. DETAILS ABOUT SEARCH METHODS 59

C or Fortran code. Further, these best found implementations may be saved to a file

and then reloaded during a different session with the SPIRAL system.

Many of the major components of the SPIRAL system provide test and verification

routines. These allow the user to test that the system has been installed correctly and

that it is working properly. The search engine provides a test routine that tests each

the different search methods. This is particularly useful in that for a search method

to work correctly most of the other infrastructure in the SPIRAL system must also

work correctly in order to produce runtimes, and thus testing the search engine also

tests most of the SPIRAL system.

Further, the search engine also has a substantial user manual. This manual is

accessible both at the SPIRAL prompt and in a text file. A user can type at the

SPIRAL prompt:

spiral> ?Search

to begin reading the search engine user manual. Further, the user can request at the

SPIRAL prompt information about any of the search methods or most of the other

functions available in the search engine simply by typing a question mark followed by

the function name. The user manual is duplicated in Appendix A.

3.4 Details about Search Methods

This section details the different search methods provided in the search engine.

3.4.1 Exhaustive Search

The exhaustive search method begins by requesting the formula generator to produce

all possible split trees for the given transform. This is only feasible for very small

sized transforms. Then exhaustive search times each of these split trees and returns

the one that runs the fastest.

Currently, exhaustive search does not perform a search also over unrolling param-

eters, largely because this would greatly increase the search space of an already very

large one. However, it is possible to manually conduct a search over global unrolling

by calling exhaustive search multiple times, each time with a different global unrolling

size set in the formula compiler options.

60CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

It is also possible to limit the time exhaustive search uses. If the time limit expires

before exhaustive search has timed every formula, it simply returns the fastest split

tree it found thus far.

3.4.2 Dynamic Programming

Dynamic programming builds a table of the best implementations that it has found

for different transforms and transform sizes. For efficiency reasons, this table is im-

plemented in the search engine as a hash table. A key to the hash table is a transform

and its size, and the stored data is the fastest split tree and formula compiler options

found for implementing that transform and size.

Given a transform and size, dynamic programming begins by checking whether it

has a fast implementation already stored in its table. If it does, this implementation

is returned. Otherwise, dynamic programming requests all possible sets of immediate

children of the given transform from the formula generator. Each set of immediate

children corresponds to a different split tree that dynamic programming will grow

and time, before choosing the fastest.

For each possible immediate child, dynamic programming recursively calls itself to

determine the fastest split tree that dynamic programming can find for that transform

and size. Once this is determined, dynamic programming substitutes this fast split

tree for the immediate child of the originally given transform. Thus, given a set of

immediate children, dynamic programming recursively calls itself on each of these

children to determine fast split trees to grow under these immediate children. The

entire new split tree then is timed.

Dynamic programming then has timings for one split tree for each of the possible

sets of immediate children of the given transform. The fastest one is chosen, stored

in dynamic programming’s table, and returned.

Thus, dynamic programming not only finds a fast implementation for the given

transform and size but also for any of the possible descendents of that transform.

However, dynamic programming makes a very strong assumption:

Dynamic Programming Assumption: The fastest split tree for a par-

ticular transform and size is also the best way to split a node of that

transform and size in a larger tree.

3.4. DETAILS ABOUT SEARCH METHODS 61

That is, dynamic programming does not consider the context in which the transform

is being computed — the same subtree is always grown for the same transform and size

irrespective of its location in a larger split tree. One might expect this assumption not

to hold for at least a couple reasons: (1) the state of the cache may be very different

at the time a subtree is computed depending on its location within the larger split

tree, and (2) the stride at which some subtrees are computed is dependent upon their

location within the larger split tree.

For many transforms dynamic programming times relatively few formulas com-

pared to other search methods. However, if the number of possible sets of immediate

children grows linearly or faster with the size of the transform, dynamic program-

ming becomes infeasible for larger transform sizes. This is true for the WHT if no

restrictions are placed on the standard break down rule. Because the break down

rule for WHT (2n) can create any set of children such that the product of the sizes

of the children is 2n, the number of possible sets of children is 2n−1, the number of

ordered partitions of n. Thus, dynamic programming would time 2n−1 split trees

for WHT (2n), assuming it already determined the best split trees for all smaller

sizes. However, by restricting the break down rule to produce just binary WHT split

trees, dynamic programming becomes very efficient, timing at most n− 1 formulas to

determine the best formula of size 2n given the best formulas for all previous sizes.

While dynamic programming has been frequently used, it is not known how far

from optimal it is at larger sizes where it can not be compared against an exhaustive

search. While exhaustive search can not be used at larger sizes, other search tech-

niques with different biases will explore different portions of the search space. This

exploration may find faster formulas than dynamic programming finds or provide ev-

idence that the dynamic programming assumption holds in practice. Thus, exploring

other search techniques besides just dynamic programming has the advantage of ei-

ther producing better results or validating the use of dynamic programming as a fast

method.

As a generalization of the dynamic programming approach, k-best dynamic pro-

gramming not only keeps track of the best formula for each size but also the best k

formulas (Haentjens, 2000; Sepiashvili, 2000). This softens the assumption that the

best formula of a given size is the best way to split a node of that size in a larger split

tree, allowing for the fact that a sub-optimal formula at a given size might be the

optimal way to split a node of that size in a larger tree. Unfortunately, moving from

62CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

standard 1-best to just 2-best dynamic programming more than doubles the number

of formulas that must be timed.

It is also possible to specify a time limit for dynamic programming to search.

However, it is possible that when the time limit expires that dynamic programming

has not yet timed a single formula of the given transform (rather it has only been

timing smaller transforms). In this case, no split tree can be returned. However, if

at least one split tree for the given transform has been timed, then the fastest one

found thus far is returned.

In the search engine, dynamic programming can search over global unrolling or

over local unrolling parameters. To search over global unrolling settings, dynamic

programming is essentially called multiple times, once for each possible global un-

rolling setting. Searching over local unrolling settings is slightly more complicated.

The following cases occur:

• If dynamic programming is called with a node of size equal to or smaller than

the minimum local unrolling size, then the node is set to be locally unrolled.

• If dynamic programming is called with a node of size larger than the maximum

local unrolling size, then the node is not set for local unrolling.

• Otherwise, one of the following two cases applies:

– If both children are marked for local unrolling, then the split tree is timed

both with the node marked and with it not marked for local unrolling.

– Otherwise, the node is not set for local unrolling. (This is required since

marking this node for local unrolling would mean that all of its children

would be unrolled by virtue of the parent being unrolled.)

3.4.3 STEER, Random Search, and Hill Climbing Search

STEER is discussed extensively in Chapter 4 and so a detailed discussion of STEER

is omitted here. Random search and hill climbing search both use much of the same

code as STEER.

Random search is simply implemented as a call to STEER with the number of

generations set to one. That is, random search generates a number of random im-

plementations which are timed. The fastest implementation is then returned. As

3.4. DETAILS ABOUT SEARCH METHODS 63

random search is just a front end to STEER, all of the options that are available in

STEER are also available to random search (as long as they do not pertain to the

evolutionary operators). If the same implementation is randomly generated multiple

times, the implementation is only timed once.

Random search has the advantage that the user can decide exactly how many for-

mulas are to be timed by the search method before it returns the best implementation

it found. Further, specifying a time limit is equally meaningful, allowing the user to

specify how long random search takes before returning the fastest implementation it

found. However, random search does not take advantage of any information provided

by knowing the timings of different split trees.

Hill climbing search in the search engine is a refinement of random search, but

not as sophisticated as STEER. Hill climbing search begins by generating a random

implementation and timing it. Then it randomly applies a mutation to this imple-

mentation, using the mutations defined for STEER (see Section 4.3.3), and times this

new implementation. If the new implementation is faster, hill climbing continues by

applying a mutation to this new implementation and the process is repeated. Other-

wise if the original implementation was faster, hill climbing applies another random

mutation to the original implementation and the process is repeated. After a cer-

tain number of mutations, the process is restarted with a completely new random

implementation. See Table 3.1 for pseudo-code of the hill climbing search method.

The user can specify how many mutations are to be performed before doing a

restart. In particular, an absolute maximum number of mutations before restarting

can be specified, as well as a maximum number of mutations without making an

improvement in the runtime (that is, without accepting the new implementation)

before restarting. Further, the user can also specify how many restarts are to be

performed in a similar manner. An absolute maximum number of restarts can be

specified, as well as a maximum number of restarts without making an improvement

in runtime of the best implementation found thus far.

If the same implementation is derived again during the process, it does not need

to be timed again since the hill climbing search method stores all timed implementa-

tions and their runtimes for quick access. If a time limit is specified, then the best

implementation found thus far is returned when the time limit expires. Further, hill

climbing search can search over global and local unrolling options since much of its

code is based on parts of STEER’s code.

64CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

Table 3.1: Pseudo-code for the hill climbing search method.

HillClimb(Transform)

BestTime = ∞
While ContinueRestarting do

CurrentImp = RandomImplementation(Transform)

CurrentTime = Time(CurrentImp)

While ContinueMutating do

NewImp = Mutate(CurrentImp)

NewTime = Time(NewImp)

If NewTime < CurrentTime then

CurrentImp = NewImp

CurrentTime = NewTime

done

if CurrentTime < BestTime then

BestImp = CurrentImp

BestTime = CurrentTime

done

return BestImp

3.4.4 Timed Search

The timed search method is really a meta-search algorithm in that it calls the other

search methods to find a fast implementation of the given transform. The idea is to

find the best possible implementation by using different search methods, constrained

to searching for only a specified length of time. However, if the time limit is set

unusually large, then timed search can be used simply as a meta-search algorithm for

calling multiple other search algorithms to find a fast implementation.

All the other search methods allow for a time limit to be specified. Many of

them can always return the best implementation found thus far when the time limit

expires. However, some search methods like dynamic programming may not have

timed a full split tree of the given transform by when the time limit expires, and thus

can not return an implementation. It should be noted that it is not possible to set

interrupts in GAP; so, most of these methods check the time at strategic places in

3.5. RESULTS 65

their code. Thus, it is possible for the search methods to actually take longer than

allowed. Unfortunately, this is not avoidable, but should not be a significant problem

in most cases as checks are made fairly often.

The user can specify which search methods should be called by timed search

including the order in which they are called. For each search method, the user can also

specify what options should be passed to the search method and what the maximum

time limit should be for the search method. Further, the user can specify an overall

time limit which is not to be exceed. This overall time limit may cause some of the

later search methods not to be called at all, and some of the search methods to be

limited to less time than specified for those particular search methods.

By default, timed search will search for a fast implementation for 30 minutes.

It begins by calling random search, limiting it to only generate 10 formulas. This

default ensures that at least some implementation is quickly found. Then, dynamic

programming and next STEER are called, both with the default options. Dynamic

programming often can find a good implementation in relatively little time, while

STEER can sometimes find faster implementations given more time. If time still

remains then dynamic programming is called again, keeping the 4-best formulas this

time and also doing a search over local unrolling options. Finally, STEER is again

called with any remaining time, allowing it to search over local unrolling options, to

use a larger population, and to perform mutations and cross-overs on more imple-

mentations each generation.

3.5 Results

In this section, we present some results from the search engine. Section 3.5.1 com-

pares the different search methods across many different transforms on a Pentium.

Section 3.5.2 shows results when the search methods are also allowed to search over

local unrolling parameters. Finally, Section 3.5.3 shows results collected on a Sun.

3.5.1 Search Method Comparison

Figures 3.1 through 3.6 compare several of the different search methods at finding

fast implementations of different transforms across many sizes. All of these runs were

conducted on a Pentium III 900 MHz machine running Linux 2.2.17, using the 3.1

66CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

version of the SPIRAL system. For all of these runs, C code was generated by the

SPL compiler. Except the timed search method, none of the other search methods

searched over unrolling parameters but instead used a default global unrolling of all

nodes of size 25 and smaller. There are two different types of plots shown in these

figures:

• Plots showing the runtimes of the fastest formulas found. The runtime of the

fastest formula found by the given search method for each size is divided by the

runtime of the fastest formula found for that size by 1-best dynamic program-

ming (that is, the default dynamic programming that only keeps the single best

formula for each transform and size). This ratio of runtimes is then plotted,

and thus lower points correspond to finding faster formulas.

• Plots showing the number of formulas timed by the different search methods.

A search algorithm spends almost all of its time running different formulas to

collect runtimes. Thus, the number of formulas timed is a good measure of

the total time spent by the search algorithm. Note the logarithm scale along

the y-axis. The random search method is not displayed in these plots as it

always generated 100 random formulas (although it is possible, particularly at

smaller sizes, that fewer were timed since duplicates are not timed repeatedly).

An additional line is included for these plots representing the total number of

possible formulas using the default rules in the SPIRAL system. Timed search

may time the same formula multiple times through the various search methods

it calls, and thus at very small sizes may time more formulas than shown for

the “All Formulas” line. Further, the lines for dynamic programming include

the number of formulas timed of smaller sizes as well as the current size (since

these formulas must be timed), and thus at small sizes, dynamic programming

may time more formulas than shown for the “All Formulas” line.

Particularly for the DFT and also for the WHT, both random search and hill

climbing search find rather slow formulas in comparison to the other search methods

at many of the larger sizes. While it is not surprising that random search would

perform poorly, it is surprising that hill climbing search performs so poorly, sometimes

even considerably worse than random search. However, hill climbing search does not

generate as many completely random split trees as does random search. So, if the

initial completely random split trees were all poor, it may have difficulty finding

mutations that produce good split trees. Thus, STEER has an important advantage

3.5. RESULTS 67

over hill climbing in that it generates and uses a large population, and also STEER has

an advantage over random search in that it uses evolutionary operators to intelligently

search for fast implementations.

For the WHT of size 26, timed search finds a formula with a significantly faster

runtime than those found by the other tested search methods. This is because timed

search was the only search method that was allowed to search over unrolling param-

eters. Timed search begins by calling random search, DP, and STEER without any

search over unrolling parameters, and then if time remains it calls DP and STEER

again allowing them to search over local unrolling parameters. By default all the

other search methods unrolled all nodes of size 25 and smaller. The best formula that

timed search found was completely unrolled.

For the DFT and WHT, there is no one search method that always finds faster

formulas than all of the others. In fact, plain 1-best dynamic programming never

performs extremely worse than the others, but is sometimes 10% slower than some of

the other search methods. Generally, either STEER, timed search, or 4-best dynamic

programming finds the fastest formula for a given transform and size. One advantage

of the search engine is that so many different search methods are available.

However, for most of the Discrete Trigonometric Transforms (DTTs) and many of

the sizes shown, STEER finds faster formulas than all of the other search methods.

Further, STEER rarely finds a slower formula than the fastest found by all of the

other search methods. Often for size 27, STEER is able to find a formula that is

5–20% faster than that found by 1-best dynamic programming.

These plots show that the number of possible formulas grows very quickly for very

small sized transforms, forcing the search algorithms to only consider a very small

portion of the space of formulas. For dynamic programming, clearly increasing the

number of best formulas kept for each transform and size increases the number of

formulas that must be timed. For small sizes, timed search usually times the most

formulas as it calls several search algorithms. Since timed search is only allowed 30

minutes, it begins to time slightly fewer formulas at larger sizes at it requires more

time to run larger sized formulas. For larger sizes of the DFT and WHT, 4-best

dynamic programming times the most formulas of all the search algorithms. For sizes

25 to 27 for the DTTs, STEER times the most formulas.

68CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

Fastest DFT Formulas Found

0.8

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 2-Best
DP 4-Best
STEER
Hill Climbing
Random Search
Timed Search

Number of Formulas Timed

1

10

100

1000

10000

5 10 15 20

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 2-Best
DP 4-Best

STEER
Hill Climbing

Timed Search
All Formulas

Figure 3.1: Comparison of search methods for the DFT on a Pentium.

3.5. RESULTS 69

Fastest WHT Formulas Found

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 2-Best
DP 4-Best
STEER
Hill Climbing
Random Search
Timed Search

Number of Formulas Timed

1

10

100

1000

10000

5 10 15 20

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 2-Best
DP 4-Best

STEER
Hill Climbing

Timed Search
All Formulas

Figure 3.2: Comparison of search methods for the WHT on a Pentium.

70CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

D
C

T
T

y
p

e
I

D
C

T
T

y
p

e
II

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

D
C

T
T

y
p

e
III

D
C

T
T

y
p

e
IV

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

Figure 3.3: Comparison of the runtimes of the fastest formulas found by different

search methods for small sized DCTs on a Pentium.

3.5. RESULTS 71
D

S
T

T
y
p

e
I

D
S
T

T
y
p

e
II

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

D
S
T

T
y
p

e
III

D
S
T

T
y
p

e
IV

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

0.75

0.8

0.85

0.9

0.95 1

1.05

1.1

1.15

1
2

3
4

5
6

7
8

Runtime Divided by DP 1-Best Runtime

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
R

andom
 S

earch
T

im
ed S

earch

Figure 3.4: Comparison of the runtimes of the fastest formulas found by different

search methods for small sized DSTs on a Pentium.

72CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

D
C

T
T

y
p

e
I

D
C

T
T

y
p

e
II

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

D
C

T
T

y
p

e
III

D
C

T
T

y
p

e
IV

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

Figure 3.5: Number of formulas timed by different search methods for small sized

DCTs on a Pentium.

3.5. RESULTS 73
D

S
T

T
y
p

e
I

D
S
T

T
y
p

e
II

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

D
S
T

T
y
p

e
III

D
S
T

T
y
p

e
IV

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

1 10

100

1000

10000

1
2

3
4

5
6

7
8

Number of Formulas Timed

Log S
ize

D
P

 1-B
est

D
P

 2-B
est

D
P

 4-B
est

S
T

E
E

R
H

ill C
lim

bing
T

im
ed S

earch
A

ll F
orm

ulas

Figure 3.6: Number of formulas timed by different search methods for small sized

DSTs on a Pentium.

74CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

3.5.2 Local Unrolling Search

Figures 3.7 and 3.8 compare several of the search methods when also searching over

local unrolling settings for the DFT and WHT. STEER and 1-best and 4-best dynamic

programming were run on the same Pentium machine as the previous experiments but

this time allowed to search over local unrolling settings (see Section 3.2.2). The plots

compare these new runs against the previous runs that used a fixed global unrolling

setting.

For most sizes of the WHT and many of the smaller sizes of the DFT, the searches

that were allowed to search over local unrolling settings found faster implementations

than those that used a fix global unrolling setting. However, each search method

normally timed more formulas when searching over local unrolling settings than if the

same search method used a fixed global unrolling setting. Thus, if time is available

to search longer, allowing a search over local unrolling settings can produce faster

implementations.

3.5.3 Sun Results

Figure 3.9 compares several of the different search methods finding fast FFT imple-

mentations for a Sun UltraSparc IIi 300 MHz. Again, no one search method outper-

forms all of the others, but usually either STEER or 4-best dynamic programming

performs the best. As this is a slower machine, timed search tends to perform poorly

at smaller sizes than on the Pentium since it again was only allowed thirty minutes

to search.

3.6 Summary

This chapter has presented the SPIRAL system’s search engine which we have de-

signed and implemented. The search engine includes several different search meth-

ods, including exhaustive search, dynamic programming, random search, hill climbing

search, STEER, and timed search. This variety of search methods allows the user to

search different portions of the very large search space. Each of these search methods

are implemented in the SPIRAL system with an easy user interface. They have many

options that can be set, but reasonable defaults are provided for all options. Most of

3.6. SUMMARY 75

Fastest DFT Formulas Found

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2 4 6 8 10 12 14 16

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 1-Best Local Unrolling
DP 4-Best
DP 4-Best Local Unrolling
STEER
STEER Local Unrolling
Timed Search

Number of Formulas Timed

1

10

100

1000

10000

2 4 6 8 10 12 14 16

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 1-Best Local Unrolling

DP 4-Best
DP 4-Best Local Unrolling

STEER
STEER Local Unrolling

Timed Search

Figure 3.7: Comparison of search methods searching over local unrolling settings for

the DFT on a Pentium.

76CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

Fastest WHT Formulas Found

0.6

0.7

0.8

0.9

1

1.1

1.2

2 4 6 8 10 12 14 16

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 1-Best Local Unrolling
DP 4-Best
DP 4-Best Local Unrolling
STEER
STEER Local Unrolling
Timed Search

Number of Formulas Timed

1

10

100

1000

10000

2 4 6 8 10 12 14 16

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 1-Best Local Unrolling

DP 4-Best
DP 4-Best Local Unrolling

STEER
STEER Local Unrolling

Timed Search

Figure 3.8: Comparison of search methods searching over local unrolling settings for

the WHT on a Pentium.

3.6. SUMMARY 77

Fastest DFT Formulas Found

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 4-Best
STEER
Timed Search

Figure 3.9: Comparison of search methods for the DFT on a Sun.

the search methods can not only search over different formulas but also over options

to the formula compiler.

We have also presented results comparing the different search methods. We have

found that for the FFT and the WHT on a Pentium and on a Sun no one search

method outperforms all of the others, but for any given transform and size either

STEER or 4-best dynamic programming often finds the fastest formula. However, for

small sized DTTs, STEER outperforms all of the other search methods at finding the

fastest implementations. We also found that allowing the search methods to search

over local unrolling parameters usually improved the performance of the best found

implementations.

78CHAPTER 3. OPTIMIZING PERFORMANCE WITH THE SEARCH ENGINE

Chapter 4

Optimizing Performance with

STEER

This chapter presents STEER, an evolutionary algorithm for searching for the optimal

implementations of signal transforms. STEER stands for Split Tree Evolution for

Efficient Runtimes. We initially developed STEER specifically for the WHT. Then,

as the SPIRAL system developed, we re-implemented STEER in the search engine

of the SPIRAL system (see Chapter 3), extending STEER to work with arbitrary,

user-defined transforms.

We begin in Section 4.1 with a description of STEER as it was implemented to

optimize WHTs. Section 4.2 compares STEER against other search methods for

optimizing WHTs. Then, Section 4.3 presents how we modified STEER to optimize

arbitrary signal transforms in the SPIRAL system. This section includes many details

about STEER’s implementation in the SPIRAL system and its many features.

4.1 STEER for the WHT

Our first implementation of STEER explicitly searched for optimal WHT formulas.

When STEER was first implemented, the SPIRAL system had not yet been designed.

So, STEER also used the WHT package (see Section 2.3) to implement and time WHT

formulas.

Given a particular size, STEER generates a set of random WHT formulas of that

size and times them. It then proceeds through evolutionary techniques to generate

79

80 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

new formulas and to time them, searching for the fastest formula. STEER is very

similar to a standard genetic algorithm (Goldberg, 1989; Mitchell, 1996) except that

STEER uses split trees instead of a bit vector as its representation. At a high level,

STEER proceeds as follows:

1. Randomly generate a population P of legal split trees of a given size.

2. For each split tree in P , obtain its runtime.

3. Let Pfastest be the set of the b fastest trees in P .

4. Randomly select from P , favoring faster trees, to generate a new population

Pnew.

5. Cross-over c random pairs of trees in Pnew.

6. Mutate m random trees in Pnew.

7. Let P ← Pfastest ∪ Pnew.

8. Repeat step 2 and following.

All selections are performed with replacement so that Pnew may contain many copies

of the same tree. Since obtaining a runtime is expensive, runtimes are cached and

only new split trees in P at step 2 are actually run.

4.1.1 Tree Generation and Selection

Random tree generation produces the initial population from which the algorithm

searches. Note that legal split trees are not just arbitrary trees but rather have

specific structure. In a WHT split tree, all of the base two logarithms of the sizes

of the children of any node must sum to the base two logarithm of the size of the

parent. Random tree generation must always produce legal split trees. While the

method STEER uses does not uniformly generate random split trees over the space

of possible split trees, it is able to quickly generate a random split tree. Recall that

each node in the split tree is labeled with the base two logarithm of the size of the

WHT at that level. Then, the sum of the labels of the leaves of a split tree is the

root node’s label since the sum of the labels of the children of any node in the tree

must be that node’s label. Thus, random leaves can be generated until the sum of

4.1. STEER FOR THE WHT 81

the labels of all the generated leaves is the desired size. Then, a random subset of

the leaves can be chosen and made to be children of a new node. A random subset

of the remaining leaves and this new subtree can be chosen and the process repeated

until just a single tree with all the originally generated leaves has been created.

To generate the new population Pnew, trees are randomly selected from P using

fitness proportional reproduction which favors faster trees. Specifically, STEER se-

lects from P by randomly choosing any particular tree with probability proportional

to one divided by the tree’s runtime. This method weights trees with faster runtimes

more heavily, but allows slower trees to be selected on occasion. The faster a tree’s

runtime, the more likely more copies of that tree will appear in Pnew.

4.1.2 Crossover

In a population of legal split trees, many of the trees may have well optimized subtrees,

even while the entire split tree is not optimal. Crossover provides a method for

exchanging subtrees between two split trees, allowing for one split tree to potentially

take advantage of a better subtree found in another split tree (Goldberg, 1989).

Crossover on a pair of trees t1 and t2 proceeds as follows:

1. Let s be a random node size contained in both trees.

2. If no s exists, then the pair can not be crossed-over.

3. Select a random node n1 in t1 of size s.

4. Select a random node n2 in t2 of size s.

5. Swap the subtrees rooted at n1 and n2.

For example, a crossover on trees (a) and (b) at the node of size 6 in Figure 4.1

produces the trees (c) and (d).

4.1.3 Mutation

Mutations are changes to the split tree that introduce new diversity to the population.

If a given split tree performs well then a slight modification of the split tree may

82 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

2 3

5

33

6 3 4

182

20

2 2

42

6

3 7 4

14

20

2 3

5

2 4

2 2

20

2 18

3 46

3 7 4

14

20

6

3 3
(a) (b) (c) (d)

Figure 4.1: Crossover of trees (a) and (b) at the node of size 6 produces trees (c) and

(d) by exchanging subtrees.

perform even better. Mutations provide a way to search the space of similar split

trees (Goldberg, 1989).

We present the mutations that STEER uses with the WHT. A subset of the

mutations listed here could be used to potentially move from any split tree of a given

size to any other of that same size. Except for the first mutation, all of them come in

pairs with one essentially doing the inverse operation of the other. Figure 4.2 shows

one example of each mutation performed on the split tree labeled “Original.” The

mutations are:

• Flip: Swap two children of a node. The nodes of size 4 and 5 have been flipped

in the example.

• Grow: Add a subtree under a leaf, giving it children. The node of size 4 in the

example has had a subtree grown underneath it.

• Truncate: Remove a subtree under a node that could be a leaf, making the node

a leaf. The node of size 6 in the example has been truncated.

• Up: Move a node up one level in depth, causing the node’s grandparent to

become its parent. If this leaves a node with a single child, replace that node

with the single child. The node of size 5 in the example has been moved up.

• Down: Move a node down one level in depth, causing the node’s sibling to

become its parent. If this leaves a node with a single child, replace that node

with the single child. The node of size 6 in the example has been moved down

so that its old sibling of size 5 became its parent.

4.1. STEER FOR THE WHT 83

• Join: Join two siblings into one node which has as children all of the children of

the two siblings. To prevent this mutation from changing the depths of nodes,

STEER limits it to siblings which are not leaves and which have a third sibling.

The nodes of size 5 and 6 have been joined in the example.

• Split: Break a node into two siblings, dividing the children between the two new

siblings. To prevent this mutation from changing the depths of nodes, STEER

limits it to non-root nodes with at least 4 children so that the new siblings can

have at least 2 children each. The node of size 18 has been split into two nodes

in the example.

2 3

5

33

6 3 4

182

20

33

6

2 3

5

20

2 18

34

33

6

20

2 18

3 4

2 2

5

2 3 2 3

5

20

2 18

3 46

Original Flip Grow Truncate

2 3

5

33

6

20

2

3 4

13

33

6

20

2 18

3 411

2 3

20

2 18

11 3 4

2 3 3 3 33

6

2 3

5

20

11 72

3 4

Up Down Join Split

Figure 4.2: Examples of each kind of mutation, all performed on the tree labeled

“Original.”

The following theorem shows that from any valid split tree, the entire search space

of WHT split trees can be explored through a sequence of mutations.

Theorem: From any arbitrary valid WHT split tree, it is possible to obtain any

other arbitrary valid WHT split tree of the same size through a sequence of Grow,

Truncate, Up, and Down mutations.

Proof: It suffices to show that a sequence of the specified mutations

can transform any node with arbitrary children and subtrees in a valid

84 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

split tree to a node of the same size with any specified valid children

ignoring the subtrees under the new children and without changing rest of

the split tree. Given such a transformation, the desired transformation on

the entire split tree can be obtained by first producing the desired children

of the root and then recursing on each of the new children of the root.

First, if the desired transformation is for the node to become a leaf

with no children, then Truncate performed on that node would produce

the desired result. Second, if the original node has no children, then a

Grow mutation can produce the desired children. Otherwise, the following

sequence of mutations would allow such a transformation:

1. Generate all 1’s as leaves. A sequence of Grow mutations performed

on all of the leaves of the subtrees of the original node can produce

subtrees with 1’s as the only leaves.

2. Let the original node only have 1’s as children. A sequence of Up

mutations performed on every leaf 1 that is not an immediate child

of the original node but that is in the subtree rooted at the original

node will eventually cause the original node to only have leaf 1’s as

children. Note that when an Up mutation is performed on a leaf 1

that only has a single sibling, then this only child also becomes a

child of its grandparent with the parent disappearing.

3. Produce desired children. A sequence of Down mutations performed

on the leaf 1 children of the original node will produce any desired

valid set of children. Specifically, for each child of size n, a sequence

of n−1 Down mutations that move a leaf 1 child of the original node

onto the growing sibling produces a child of the original node of size

n which has n immediate children all of which are leaf 1’s. The first

Down mutation that needs to be performed for each desired child

requires that a leaf 1 child of the original node be made a child of a

sibling leaf 1, causing both leaf 1’s to become children of a new node

of size 2.

While this theorem shows that any split tree in the space of possible split trees is

reachable through a sequence of mutations from any other split tree, the sequence of

mutations presented in the proof would be very long and would be likely to generate

many trees with very poor runtimes along the way. The other mutations that STEER

4.2. SEARCH ALGORITHM COMPARISON FOR WHT 85

uses allow for other similar split trees to be reached more quickly from a given split

tree, even though these additional mutations do not increase the space of possible

split trees that are attainable through a sequence of mutations.

4.1.4 Running STEER

There is a large number of parameters that can be adjusted in STEER, including the

population size, the number of fastest formulas to be kept, the number of formulas

to be mutated or crossed over, and the number of generations to be run can all be

adjusted. For most of the experiments presented in Section 4.2, the following values

were used. A population of size 100 was used with 20 of the fastest formulas kept

after each generation, 10 pairs of formulas crossed, and 20 formulas mutated. The

algorithm was run for 200 generations or stopped earlier if 75 generations passed

without it finding a faster formula than its current best.

Figure 4.3 shows a typical plot of the runtime of the best formula (solid line)

and the average runtime of the population (dotted line) as the population evolves.

This particular plot is for WHT (222) on a Pentium III 450 MHz running Linux. The

y-axis displays the runtime in cycles and the x-axis displays the generations as the

population evolves. The average runtime of the first generation that contains random

formulas is more than twice the runtime of the best formula at the end, verifying the

wide spread of runtimes of different formulas. Further, both the average and best

runtimes decrease significantly over time, indicating that the evolutionary operators

are finding better formulas.

4.2 Search Algorithm Comparison for WHT

To evaluate STEER’s performance on finding fast WHT formulas, we have compared

it against a number of different search methods. Some of these search methods have

been specifically adapted to searching for fast WHT formulas. However, both STEER

and the random search method search through the full space of possible WHT for-

mulas.

With the WHT, there are several ways to limit the search space. One such limita-

tion is to exhaust just over the binary split trees, although there still are many binary

split trees. In many cases, the fastest WHT formulas never have leaves of size 21. By

86 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

2.2e+09

0 20 40 60 80 100 120 140

F
or

m
ul

a
ru

nn
in

g
tim

e
in

 C
P

U
 c

yc
le

s

�

Generations

average
best

Figure 4.3: Typical plot of the best and average runtime of formulas as STEER

evolves the population.

searching over just binary split trees with no leaves of size 21, the total number of

trees that need to be timed can be greatly reduced, but still becomes intractable at

larger sizes.

While dynamic programming times relatively few formulas for many transforms,

it would need to time an intractable number of formulas for large WHTs. However,

by restricting to just binary WHT split trees, dynamic programming becomes very

efficient. Between the two extremes, k-way dynamic programming considers split trees

with at most k children at any node. Unfortunately, increasing k can significantly

increase the number of formulas to be timed.

Figure 4.4 compares the best runtimes found by a variety of search techniques on

a Pentium III 450 MHz running Linux. All of the search techniques perform about

equally well except for the random formula generation method which tends to perform

significantly worse for sizes larger than 215, indicating that some form of intelligent

search is needed in this domain and that blind sampling is not effective.

Figure 4.5 compares the number of formulas timed by each of the search methods.

A logarithm scale is used along the y-axis representing the number of formulas timed.

Effectively all of the time a search algorithm requires is spent in running formulas.

The random formula generation method sometimes times less formulas than were

generated if the same formula was generated twice. The number of formulas timed

4.2. SEARCH ALGORITHM COMPARISON FOR WHT 87

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

5 10 15 20 25

R
un

ni
ng

 T
im

es
 D

iv
id

ed
 b

y
B

in
ar

y
1-

B
es

t D
P

 T
im

es

�

Log of Size

Binary 1-Best DP
Binary 2-Best DP
3-Way 1-Best DP
STEER
5000 Random Formulas
Binary NoLeaf1 Exhaustive

Figure 4.4: Comparison of best WHT runtimes found by several search methods.

1

10

100

1000

10000

100000

5 10 15 20 25

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log of Size

Binary 1-Best DP
Binary 2-Best DP
3-Way 1-Best DP
STEER
5000 Random Formulas
Binary NoLeaf1 Exhaustive

Figure 4.5: Comparison of the number of WHT formulas timed by several search

methods.

88 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

by the exhaustive search method grows much faster than all of the other techniques,

indicating why it quickly becomes intractable for larger sizes. Except for the exhaus-

tive search, the random formula generation method times many more formulas than

all the other methods and still does not find nearly as fast formulas as the other

methods. Clearly plain binary dynamic programming has the advantage that it times

the fewest formulas.

However, while binary dynamic programming found fast formulas while timing rel-

atively few formulas in the previous results, sometimes dynamic programming does

not perform as well. Figure 4.6 shows two different runs of binary dynamic program-

ming on the same Pentium machine. For sizes larger than 210, many of the formulas

found in the second run are more than 5% slower than those found in the first run.

0.9

0.95

1

1.05

1.1

1.15

1.2

5 10 15 20 25

R
un

ni
ng

 T
im

es
 D

iv
id

ed
 b

y
R

un
 1

 T
im

es

�

Log of Size

Run 1
Run 2

Figure 4.6: Two runs of dynamic programming.

An analysis of these two runs and several other runs on this same machine shows

that the major difference depends on the split tree chosen for size 24. The two fastest

split trees for that size have close runtimes. Since the timer is not perfectly accurate,

it times one split tree sometimes faster and sometimes slower than the other from run

to run. However, one particular split tree is consistently faster than the other when

used in larger sizes. This strongly argues for using a k-best dynamic programming

instead of a plain dynamic programming. Unfortunately, even if k is only 2, this more

than doubles the number of formulas that must be timed. Further, a similar problem

can arise for any chosen k if the dynamic programming assumption does not hold,

but a larger k can help simple cases like the one discussed above.

4.3. STEER IN THE SPIRAL SYSTEM 89

While this specific result is particular to the machine we were using, it demon-

strates a general problem with dynamic programming. There may be several formulas

for small sizes that all run about equally fast. However, one formula may run consid-

erably faster as part of a larger split tree than the others. So, if dynamic programming

happens to choose poorly for smaller sizes early in its search, then it can produce sig-

nificantly worse results at larger size than it would if it had choose the right formulas

for smaller sizes.

Of the search methods compared, dynamic programming both finds fast WHT

formulas and times relatively few formulas. However, we have also shown that dy-

namic programming can perform poorly if it chooses a poor formula for one of the

smaller sizes. STEER also finds fast formulas but is not as strongly impacted by poor

initial choices.

4.3 STEER in the SPIRAL System

With the development of the SPIRAL system, we ported STEER to work in the

SPIRAL system. Not only did this involve a rewrite of the code from C to GAP, but

also several significant modifications to the evolutionary operators. STEER for the

WHT relied heavily on several properties of the WHT. We modified STEER so that

it could work with any arbitrary, user-specified transform that could be specified to

the SPIRAL system. Further, we extended STEER to take advantage of many of the

features available in the SPIRAL system, including unrolling search and time limits.

4.3.1 Tree Generation and Selection

A new method for generating a random split tree was needed that could work with

arbitrary transforms. For a given transform, all applicable break down rules are found,

and a random one is chosen to be used. This break down rule can potentially produce

many different sets of possible children, and so a random set is chosen. This is then

repeated recursively for each of the transforms of the children.

This random tree generation method also does not uniformly generate random

split trees over the space of possible split trees. For example, any applicable rule is

equally likely to be chosen for a transform as another while some applicable rules may

generate only one set of children while others potentially generate many different sets

90 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

of children. However, this method is quick and works for any transform and set of

break down rules.

If the user specifies to search over global unrolling settings, then a random global

unrolling setting is generated for each split tree that is randomly generated. Currently,

this is a power of two size between the specified minimum and maximum values

inclusive (chosen uniformly over such two power sizes).

If the user specifies to search over local unrolling settings, then the random split

tree generation method must also mark nodes in the split tree for local unrolling. In

particular, any node of the specified minimum local unrolling size or smaller is marked

for local unrolling. Further, recursing from the root, any node encountered that is

not larger than the maximum local unrolling size has a 50% chance of randomly being

marked for local unrolling (and thus causing the entire subtree under that node to be

locally unrolled).

The selection process remains the same as the selection process for the WHT.

4.3.2 Crossover

Generally, crossover remains the same except the definition of equivalent nodes. Now

instead of looking for split tree nodes of the same size, crossover must find nodes with

the same transform and size. Now for crossover, the subtrees beneath two nodes of

the same transform and size are swapped between two different split trees.

However, if the user specifies to search over global unrolling values, then a crossover

of two implementations randomly could swap their global unrolling values instead of

subtrees. Crossover randomly chooses between crossing over subtrees and crossing

over global unrolling values when both choices are available, favoring crossing over

subtrees 4 to 1.

No extra work is performed by crossover if the user specifies to search over local

unrolling values. Since local unrolling is specified in the split tree, when subtrees are

swapped, their local unrolling values are also swapped. However, if a subtree does

not have local unrolling specified for its root node, but the new parent of the subtree

does, then by default the entire subtree becomes locally unrolled.

4.3. STEER IN THE SPIRAL SYSTEM 91

4.3.3 Mutation

We developed a new set of mutations since the previous ones were specific to the

WHT. We have developed three mutations that work in this general setting without

specific knowledge of the transforms or break down rules being considered. They are:

• Regrow: Remove the subtree under a node and grow a new random subtree.

• Copy: Find two nodes within the split tree that represent the same transform

and size. Copy the subtree underneath one node to the subtree of the other.

• Swap: Find two nodes within the split tree that represent the same transform

and size. Swap the subtrees underneath the two nodes.

Figure 4.7 shows an example of each of these mutations.

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_3
22�DCT II 22�DCT IV 22�DST IV 22�DST II

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV DSTIV2 DSTII2

DCTII 2 DSTII2

RuleDCT4_3

RuleDCT4_3

24

23DCT II 23DST II
RuleDST2_3RuleDCT2_2

22�DCT II 22�DCT IV 22�DST IV 22�DST II
RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_2

22�DCTII22�DCTIV2DSTII2DSTIVDCTIV2DCTII2
RuleDCT4_3 RuleDCT2_2

2DCTII DSTII2 2DCTII 2DCTIV

RuleDCT4_3
DCT IV

Original Regrow

24

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

22�DCT II 22�DCT IV 22�DST IV 22�DST II
RuleDST4_1 RuleDST2_3RuleDCT4_3RuleDCT2_2

DCTII2 DCTIV2 2DCTII 2DSTII 22�DCTIV DSTIV2 DSTII2

DCTII 2 DSTII2

RuleDCT4_3
DCT IV

RuleDCT4_3

24

23DST II23DCT II
RuleDST2_3RuleDCT2_2

22�DST II22�DST IV22�DCT IV22�DCT II
RuleDCT2_2 RuleDST4_1 RuleDST2_3RuleDCT4_3

DCTII2 DCTIV2 2DCTII 2DSTII 22�DCTIV DSTIV2 DSTII2
RuleDCT4_4

2DSTIV 2DSTII

RuleDCT4_3
DCT IV

Copy Swap

Figure 4.7: Examples of each general mutation, all performed on the tree labeled

“Original.” Areas of interest are circled.

92 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

If the user specifies to search over global unrolling values, then a fourth mutation

is added to the main three. This mutation randomly doubles or halves the global

unrolling setting associated with the given split tree (as long as this keeps the global

unrolling setting within the specifies minimum and maximum values).

If the user specifies to search over local unrolling parameters, then a different

fourth mutation is added to the main three. This mutation randomly moves a local

unrolling specification up or down one level in the split tree. More specifically, it

randomly does one of the following:

• Randomly chooses a node that is locally unrolled but is larger than the minimum

local unrolling size and whose parent is not locally unrolled. It then removes

the local unrolling for this node.

• Randomly chooses a node that is not locally unrolled but that could be and

who has at least one child that is locally unrolled. It then marks this node for

local unrolling.

4.3.4 Other User Options

In the SPIRAL system, there is a large number of options that the user can specify

to control STEER, including:

• the population size

• the number of generations to run as well as the maximum number of generations

to run without an improvement in the best found implementation

• the number of implementations to cross-over, to mutate, and to randomly gen-

erate each generation as well as the number of best implementations to keep

from generation to generation

• the local and global unrolling search parameters

• a time limit — STEER can be given a time limit which causes STEER to return

the best implementation that it has found thus far when that time limit expires

Any subset of these options can be specified easily, allowing the other options to retain

their default values.

See the search engine user manual in Appendix A for further details.

4.4. RESULTS USING STEER IN THE SPIRAL SYSTEM 93

4.4 Results Using STEER in the SPIRAL System

Many results from using STEER in the search engine have already been presented in

Section 3.5 and so no duplicated here. For small sized DTTs, STEER outperformed

all of the other search methods tested. However, for larger sized DFTs and WHTs,

STEER’s results were mixed, sometimes outperforming the other search methods but

sometimes not performing as well.

4.5 Summary

We have introduced a stochastic evolutionary search approach, STEER, for finding

fast signal transform implementations. We have described the development of STEER

both specifically for the WHT and for a wide variety of transforms in the SPIRAL

system. This later form of STEER is able to optimize arbitrary transforms, even

user-defined transforms that it has never before seen.

94 CHAPTER 4. OPTIMIZING PERFORMANCE WITH STEER

Chapter 5

Modeling Performance of

Entire Formulas

Modeling performance of signal processing algorithms is important. Performance

models can restrict the space of implementations to be searched to those that are

most promising or provide information about portions of the space that need not

be searched because they are the least promising. Further, performance models can

provide confidence that the fastest formulas have been found.

However, it is very difficult and time consuming for a human to develop an accurate

model of performance for signal processing algorithms. The complexity of modern

processors makes it very hard to understand the performance of even simple pieces

of code. Further, even if a good performance model could be developed for one

architecture and transform, it would still be difficult and time consuming to develop

models for other transforms and particularly other architectures.

Fortunately, empirical performance data can be gathered for a variety of formulas.

This data offers an interesting opportunity to use machine learning techniques to

automatically learn to predict performance. The methods that we have developed

can automatically generate a performance model given some empirical performance

data gathered on a machine of interest.

This chapter discusses our initial work in automating the modeling of performance

of signal transforms. The chapter focuses on the WHT, but similar results were

obtained for the FFT (Singer and Veloso, 2000a). Unfortunately, this work with the

FFT used a package for timing FFTs that implemented them in less than the most

95

96 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

optimal ways, and thus this work with the FFT is not reported here. However, in part

of Chapter 6, we discuss modeling performance of FFTs, using the SPIRAL package

to produce good implementations.

Chapter 6 reports on some more recent modeling work that takes a different

approach. In the current chapter, we focus on modeling the performance of entire

formulas. In Chapter 6, we focus specifically on modeling performance of subportions

of a formula, and then using performance predictions for the subportions to build a

prediction for the entire formula.

A major step in automating the modeling of performance of signal transforms

involves the selection of good features to represent a formula. In Section 5.1, we

present several possible sets of features extracted from the mathematical formulas.

We show the significant impact of these different choices both in the partition of the

performance data sets and in performance prediction. In Section 5.2, we describe how

a function approximator can be used to learn to predict runtimes for formulas. We

show that for small sizes this method can produce excellent results.

5.1 Features for WHT Split Trees

To automatically learn to predict runtimes of formulas by using machine learning

techniques, one of the major steps is to be able to represent formulas with features.

The problem of feature selection in machine learning is important. The introduc-

tion and careful analysis of different feature sets for formula prediction represents a

significant part of our work.

In selecting and evaluating features, an important question is: What aspects of

the formulas determine their runtimes? Or, equivalently, what are good features

for predicting a formula’s runtime? To answer these questions, we introduce several

different feature sets to describe WHT formulas. We then compare the feature sets

along several measures to see how well the features can differentiate formulas with

different runtimes.

5.1.1 Feature Sets

This section describes several feature sets for WHT formulas. In almost all of the

features, we take advantage of the fact that WHT formulas can be represented as

5.1. FEATURES FOR WHT SPLIT TREES 97

split trees. These features are not unique to the WHT and many have been used in

our early study of the FFT (Singer and Veloso, 2000a). However, some of the features

sets can only be used to describe binary split trees. We consider feature sets from

two broad categories, node count features and features corresponding to the shape of

the split tree. These features are chosen to capture both the size of the computations

being performed as well as the ordering of those computations and thus to hopefully

capture the runtime.

Counting Nodes

The following formula features sets count the number of nodes of various types:

• Leaf Nodes. The Leaf Nodes feature sets counts the number of different sized

leaves in the WHT split tree. The leaves of a WHT split tree correspond to the

WHTs that must actually be computed directly and that appear in the formula

represented by the split tree. Specifically, this feature set counts the number of

WHT (21)’s, the number of WHT (22)’s, the number of WHT (23)’s, and so on

that appear in the formula.

• All Nodes. One modification of the above features is to count all of the nodes of

the split tree instead of just the leaves. This not only indicates what size WHTs

must be directly computed but also what intermediate sizes are combined from

smaller ones (although this feature set can not distinguish leaf from internal

nodes).

• Leaf and All Nodes. For sufficiently large split trees, it is possible for two

different formulas to have the exact same All Nodes counts, but to have different

Leaf Nodes counts. For example, see Figure 5.1. So, a simple refinement of the

previous two feature sets is to include both.

• Left/Right Leaf Nodes. Consider again the first set of features which simply

counted all of the leaf nodes. A different refinement of this is to separate

nodes that are right children of their parents in the tree from those that are

left children. In particular, the Left/Right Leaf Nodes feature set counts the

number of left WHT (21)’s, the number of right WHT (21)’s, the number of left

WHT (22)’s, and so on in the split tree.

98 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

9

5 4

23

1 1

9

5 4

13

12

Figure 5.1: Two split trees with the same All Nodes counts but different Leaf Nodes

counts.

• Left/Right All Nodes. Combining the previous idea along with the idea of

counting all the nodes in the split tree produces yet another set of features. In

particular, the Left/Right All Nodes feature set counts the number of different

sized left and right nodes appearing in the tree, excluding the root node.

• Left/Right Leaf and Left/Right All Nodes. Once again, counting Left/Right

All Nodes can not always distinguish two trees that counting Left/Right Leaf

Nodes can distinguish. Thus, this feature set combines the two for a large set

of features that include all those in the previous two sets.

Table 5.1 gives an example of each feature set for the split tree shown in Figure 5.2.

Each row in the table corresponds to a feature set and each column corresponds

to a particular feature. For example, the column marked “leaf 1” is the feature

representing the number of leaf nodes of size 1 (corresponding to WHT (21)) in the

split tree. The entries in the table are the count of nodes of the given feature or an

X if the feature is not present in the feature set.

Features of the Shape of the Tree

All of the above features count the number of various kinds of nodes of different sizes.

Another feature category pertains to the general shape of the tree.

A simple feature is the “leftness” or “rightness” of a tree. More formally, let the

leftness of a node in a tree be the number of left children minus the number of right

children along the path from the root to the given node. Then the leftness of the tree

is defined to be the sum of the leftness of all of the tree’s nodes. The single number

feature Leftness is the leftness of a tree.

5.1. FEATURES FOR WHT SPLIT TREES 99

5

3 2

21 1 1

Figure 5.2: Example Split Tree.

Table 5.1: Example values of the different node count feature sets for the tree shown

in Figure 5.2.
leaf all right leaf left leaf right all left all

WHT size: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Leaf 3 1 0 X X X X X X X X X X X X X X X
All X X X 3 2 1 X X X X X X X X X X X X

Leaf & All 3 1 0 3 2 1 X X X X X X X X X X X X
L/R Leaf X X X X X X 1 1 0 2 0 0 X X X X X X

L/R All X X X X X X X X X X X X 1 2 0 2 0 1
L/R Leaf & X X X X X X 1 1 0 2 0 0 1 2 0 2 0 1

L/R All

• 3 nodes with leftness 0

• 1 node with leftness 1

• 1 node with leftness 2

• 1 node with leftness -1

• 1 node with leftness -2

-1 -22 1 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

5

2 1

3 2

1 1

leftness:

Figure 5.3: Leftness of nodes in example tree of Figure 5.2.

100 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

This single number feature can be expanded to provide the Vertical Profile feature

set. In particular, the Vertical Profile feature set is an array of numbers, with each

number indicating how many nodes have a particular leftness value.

For example, the split tree shown in Figure 5.2 has nodes with leftness as shown

in Figure 5.3, and a total leftness of 0 since it is balanced.

There are several possible single numbers that capture some aspect of a tree’s

depth. The Total Path Length feature is the sum of the path lengths of every node

to the root. The Average Path Length feature divides the total path length by the

total number of nodes in the tree. The Horizontal Profile feature is constructed by

counting the number of nodes at each possible depth.

For example, the split tree shown in Figure 5.2 has the following features:

• A total path length of 10

• An average path length of 10/7

and the horizontal profile is:

• 1 node at depth 0

• 2 nodes at depth 1

• 4 nodes at depth 2

5.1.2 Evaluating Features

Given that we have defined a number of different feature sets, an important task is to

evaluate them. We have used a few different methods to perform these evaluations.

Number of Partitions

Because several different formulas can have the same set of feature values, the features

can be thought of as generating a set of equivalence classes or partitions. Under a set

of features, formulas are indistinguishable if they have the same set of feature values,

while formulas are distinguishable if they have different feature values. For example,

the two split trees shown in Figure 5.1 have the same feature values under the All

Nodes feature set but have different feature values under the Leaf Nodes feature set.

5.1. FEATURES FOR WHT SPLIT TREES 101

So, a partition consists of all formulas that have the same feature values under a

particular feature set.

Ideally, we would like all of the formulas that fall into the same partition to have

very close runtimes. One straightforward method for achieving this is to create a large

number of partitions causing few formulas to fall into any one partition. Thus, a very

simple measure of the effectiveness of a set of features is the number of partitions it

creates for a set of formulas. Some results are shown in Table 5.2. For each of the

sizes of the WHT in the table, all possible binary trees were generated. The bottom

line of the table shows the number of different formulas produced. The remaining

lines show how many different partitions or equivalence classes are generated by the

different features for each set of formulas.

First, consider the top portion of Table 5.2 with node count features. The feature

sets that are refinements of other feature sets have more partitions. For example,

the All Nodes feature set has many more partitions than the Leaf Nodes feature

set, and likewise all of the Left/Right feature sets have more partitions than their

corresponding plain feature sets. The final feature set in this group, the Left/Right

Leaf Nodes and Left/Right All Nodes features, is able to almost, but not quite,

uniquely identify all the formulas. However, as the size of WHT grows, this feature

set is less and less able to uniquely identify formulas.

The middle portion of the table considers features pertaining to the shape of the

split trees. The leftness feature and the vertical profile produce more partitions than

the path length features or the horizontal profile. However, none of these features

produce as many partitions as some of the node count feature sets.

The lower portion of Table 5.2 combines the All Nodes features with some of the

shape features. Combining the leftness feature or the vertical profile greatly increases

the number of partitions over the All Nodes features while adding path lengths or the

horizontal profile does not. This indicates that the All Nodes features incorporate

more of the horizontal features than the vertical ones.

Relative Standard Deviation

While being able to partition a set of formulas into a large set of equivalence classes

is important, ultimately we want all of the formulas within a partition to have close

runtimes. A good set of features can separate formulas with significantly different

102 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

Table 5.2: Number of partitions generated by different feature sets for all binary trees

of different sized WHTs.

WHT size
Features 25 26 27 28 29 210

Node Count:
Leaf 7 11 15 22 29 40

All 13 31 68 168 384 947
Leaf & All 13 31 68 168 385 954
L/R Leaf 23 44 81 142 240 395

L/R All 45 149 523 1832 6584 23548
L/R Leaf & L/R All 49 170 617 2262 8472 31711

Shape:
Leftness 11 19 29 41 55 71

Vert Prof 20 44 96 204 428 888
Tot Path Len 8 13 19 26 33 42
Avg Path Len 8 12 20 32 47 67

Horz Prof 8 13 22 38 65 115
Vert & Horz Prof 21 54 143 394 1087 3043

Composite:
All Nodes & Leftness 36 117 373 1222 3878 12394

All Nodes & Vert Prof 36 122 409 1463 5183 18966
All Nodes & Tot Path Len 14 35 83 220 563 1533

All Nodes & Horz Prof 14 35 83 220 565 1544
All Nodes, Vert & Horz Prof 36 123 420 1535 5586 21140

All Formulas 51 188 731 2950 12234 51819

5.1. FEATURES FOR WHT SPLIT TREES 103

runtimes into different partitions so that all formulas within a single partition have

close to the same runtime. As a measure of this, we consider both the “weighted

average relative standard deviation” and the maximum relative standard deviation.

The weighted average relative standard deviation and the maximum relative stan-

dard deviation are calculated as follows:

• Let Pk be the set of formulas in partition k.

• Let ti be the runtime of formula i.

• Let mk be the mean runtime of the formulas in Pk. Then, mk = 1
|Pk|

∑
i∈Pk ti.

• Let σk be the standard deviation of the runtimes of the formulas in Pk.

Then σk =
√

1
|Pk|

∑
i∈Pk (ti −mk)2.

• Let rk be the relative standard deviation of the runtimes of the formulas in Pk.

Then rk = σk
mk

.

• The Weighted Average Relative Standard Deviation is
∑

k
|Pk|rk∑
k
|Pk|

.

• The Maximum Relative Standard Deviation is maxk rk.

The weighted average relative standard deviation indicates on average how far apart

runtimes of formulas in the same partition are. The maximum relative standard

deviation indicates how far apart runtimes of formulas are in the worst partition.

Evaluating the feature sets, the weighted average and maximum relative standard

deviations are shown in Table 5.3. For each WHT size shown in the table, formulas

for all possible binary split trees were generated. These formulas were timed using

a WHT package (Johnson and Püschel, 2000) on a Pentium III 450 MHz running

Linux.

Looking at the top portion of Table 5.3, we see that using the Left/Right features

tends to improve the standard deviation. The features that look at all nodes signifi-

cantly outperform those just using the leaves. The middle portion of the table shows

that the shape features are significantly poorer than the All Nodes features in both

measures. However, the lower portions of the tables show that the leftness feature

and vertical profile can help the weighted average of All Nodes. Overall, there several

feature sets that produce very good weighted average results and even reasonable

maximum results for sizes smaller than 210.

When considering both the relative standard deviation results along with the

number of partitions, the All Nodes features and the Leaf and All Nodes features are

104 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

T
ab

le
5.3:

W
eigh

ted
average

an
d

m
ax

im
u
m

relative
stan

d
ard

d
ev

iation
of

d
iff

eren
t

featu
re

sets
for

all
b
in

ary
trees

of

d
iff

eren
t

sized
W

H
T

s.
E

n
tries

in
each

cell
are

p
ercen

tages,
w

eigh
ted

average
follow

ed
b
y

m
ax

im
u
m

.

W
H

T
size

F
eatu

res
2

5
2

6
2

7
2

8
2

9
2

1
0

N
o
d
e

C
o
u
n
t:

L
eaf

11.0
16.5

12.4
22.7

13.6
23.9

14.2
25.9

14.3
24.1

13.9
20.4

A
ll

5.3
9.9

5.2
10.1

5.0
9.5

4.9
9.5

4.7
9.3

4.6
22.6

L
eaf&

A
ll

5.3
9.9

5.2
10.1

5.0
9.5

4.9
9.5

4.7
9.3

4.6
22.6

L
/R

L
eaf

7.7
15.2

10.1
22.1

11.8
24.5

12.7
25.2

13.0
24.7

12.8
21.6

L
/R

A
ll

0.3
2.0

0.5
3.8

0.7
5.8

0.9
8.3

1.0
8.0

1.1
17.0

L
/R

L
eaf&

L
/R

A
ll

0.1
1.7

0.2
3.1

0.3
5.8

0.5
8.3

0.6
8.0

0.7
19.6

S
h
a
p

e
:

L
eftn

ess
31.6

55.7
33.7

54.6
32.6

51.7
32.1

39.4
31.3

40.5
29.8

36.7

V
ert

P
rof

9.0
18.5

11.5
23.1

12.7
26.3

13.4
26.7

13.5
36.0

13.2
34.3

T
ot

P
ath

L
en

9.9
16.5

11.5
20.9

14.8
25.4

17.5
28.6

19.1
36.0

19.9
34.2

A
v
g

P
ath

L
en

9.9
16.5

12.8
21.6

13.0
24.4

12.6
25.4

11.8
36.0

11.3
34.2

H
orz

P
rof

9.9
16.5

11.5
20.9

11.9
24.4

11.9
25.4

11.4
36.0

10.9
34.2

V
ert&

H
orz

P
rof

8.6
18.5

10.4
23.1

10.9
26.3

11.0
26.7

10.6
36.0

10.2
34.3

C
o
m

p
o
site

:

A
ll

N
o
d
es&

L
eftn

ess
2.5

9.9
2.3

8.8
2.3

7.2
2.5

9.2
2.6

10.2
2.7

32.4

A
ll

N
o
d
es&

V
ert

P
rof

2.5
9.9

2.2
8.8

2.1
7.2

2.2
8.3

2.2
9.4

2.3
32.4

A
ll

N
o
d
es&

T
ot

P
ath

L
en

5.2
9.9

5.1
10.1

4.9
9.5

4.8
9.5

4.6
9.3

4.5
22.6

A
ll

N
o
d
es&

H
orz

P
rof

5.2
9.9

5.1
10.1

4.9
9.5

4.8
9.5

4.6
9.3

4.5
22.6

A
ll

N
o
d
es,

V
ert&

H
orz

P
rof

2.5
9.9

2.2
8.8

2.1
7.2

2.1
8.3

2.1
9.4

2.1
32.4

A
ll

F
orm

u
las

42.9
42.9

39.0
39.0

35.6
35.6

34.1
34.1

32.3
32.3

30.6
30.6

5.2. LEARNING TO PREDICT WHT PERFORMANCE 105

surprisingly impressive. Not only do these feature sets produce good relative standard

deviation results, but they do so with relatively few partitions.

5.2 Learning to Predict WHT Performance

With the features discussed in the previous section and with some training data

obtained by timing a few formulas, we can use machine learning techniques to produce

a function approximator that can quickly predict the runtimes of new formulas. Note

that this still does not solve the problem of searching through a large space of potential

formulas. However, a predicted runtime can now be obtained much more quickly than

we could have obtained an actual runtime.

While accurately predicting a formula’s runtime allows the fastest formula to be

determined through exhaustive search over all formulas, it is actually more than

necessary. In particular, accurately predicting which of two formulas runs faster

would also allow the fastest formula to be determined through exhaustive search over

all formulas. Thus, a learning algorithm need not learn the exact runtime if it can

accurately predict which of two formulas runs faster.

5.2.1 Experimental Setup

The results that are presented in this section are for WHT (28) and are similar to those

collected for other sizes, up through 210. All 2950 possible formulas corresponding to

binary trees of WHT (28) were generated and timed using a WHT package (Johnson

and Püschel, 2000) on a Pentium III 450 MHz running Linux.

We used a back-propagation neural network as the function approximator. For

all of the results presented, we used 50 hidden units, a learning rate 0.01 and a

momentum of 0.001. These parameters are not highly tuned due to the fact that they

were used across several different input feature sets (of varying number of inputs) and

across desired output (runtime or faster of two formulas).

The various node count feature sets were used as inputs to the neural network.

The set of formulas were partitioned into training, validation, and testing sets of

different sizes. Except in the cases where all of the formulas are used for both the

training and testing sets, the results presented are averages over four random splits

into training, validation, and testing sets. The neural network was allowed to train for

106 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

5000 epochs, but every 100 epochs the network was tested against the validation set

and if this produced the lowest seen error then the network was saved. So, the final

saved network was the one with lowest error on the validation set during training.

This saved network was then tested against the data in the test set.

The neural networks were trained on two different tasks: (1) to predict the run-

times of formulas, and (2) to predict which of two formulas would run faster.

5.2.2 Results

Results are shown in Table 5.4. The column marked “Cost” reports the runtime

prediction error on the test set:

• Let ci be the actual runtime of formula i.

• Let pi be the predicted runtime of formula i.

• Then the average percent error on predicting cost is

∑
i∈test−set

|ci−pi|
ci

|test−set| .

The column marked “Faster” corresponds to predicting the faster of two formulas.

This column reports the prediction error on a random sampling of pairs of formulas

in the test set:

• Let mi be 1 if the network incorrectly predicts which of pair i’s formulas run

faster and 0 otherwise.

• Then the percent error on predicting the faster of two formulas is

∑
i∈formula−pairsmi

|formula−pairs|

In particular, the number of samplings was 100 times the number of formulas in the

test set. The “Cost” and “Faster” columns should not be directly compared as they

report different measures of performance.

The Left/Right All Nodes feature set and the “Left/Right Leaf Nodes and Left/Right

All Nodes” feature set yield the best learning results. These results were quite good

with about 4% error on predicting the faster of two formulas and about 3% error

on predicting the runtimes even when trained on only 10% of the formulas. The

All Nodes feature set and the Leaf and All Nodes feature set, which were discussed

earlier for their excellent performance at partitioning the formulas, also perform well

here, obtaining about 5% error on predicting the runtimes and less than 8% error on

predicting the faster of two formulas. The Leaf Nodes and Left/Right Leaf Nodes

feature set both perform significantly worse than all of the other feature sets.

5.2. LEARNING TO PREDICT WHT PERFORMANCE 107

Table 5.4: Neural network prediction accuracy for WHT (28) with node counting fea-

tures. The column marked “Cost” is the average percent error on predicting runtime.

The column marked “Faster” is the percent mistakes on predicting the faster of two

formulas. The size of the training, validation, and test sets are shown in percentages.

Features Train Val. Test Cost Faster

100 100 100 12.67 24.14
75 10 15 13.08 25.49

Leaf 50 15 35 12.92 25.44
25 15 60 13.13 25.63
10 15 75 13.24 24.27

100 100 100 4.46 7.41
75 10 15 4.60 7.49

All 50 15 35 4.70 7.46
25 15 60 4.87 7.56
10 15 75 5.10 7.79

100 100 100 4.32 7.62
75 10 15 4.61 7.21

Leaf & All 50 15 35 4.61 7.37
25 15 60 4.85 7.43
10 15 75 5.23 7.66

100 100 100 11.71 21.33
75 10 15 12.17 21.32

L/R Leaf 50 15 35 12.13 21.56
25 15 60 12.42 21.18
10 15 75 12.66 21.80

100 100 100 1.40 3.04
75 10 15 1.79 3.06

L/R All 50 15 35 1.91 3.17
25 15 60 2.26 3.44
10 15 75 2.87 4.13

100 100 100 1.14 2.86
L/R Leaf 75 10 15 1.79 2.96

and 50 15 35 1.84 3.20
L/R All 25 15 60 2.24 3.18

10 15 75 3.02 3.76

108 CHAPTER 5. MODELING PERFORMANCE OF ENTIRE FORMULAS

5.3 Summary

To model performance of signal processing algorithms, we have explored using ma-

chine learning to learn to predict runtimes of formulas. In order to use standard

machine learning techniques, we have developed feature sets to describe split trees

representing signal transform formulas. We have explored a variety of feature sets,

identifying different feature sets with different abilities to partition formulas accord-

ing to their runtimes. Further, some simple feature sets do well at partitioning the

space of formulas according to their runtimes. By describing formulas with features,

we can present formulas to a function approximator. We showed that performance

varied according to what set of features were used. With several feature sets such

as All Nodes or Left/Right All Nodes, we showed that a neural network can learn

to accurately predict the faster of two formulas or the runtime of a formula given a

limited set of training data.

Chapter 6

Modeling Performance of

Individual Nodes

In Chapter 5, we discussed methods for modeling performance of entire WHT for-

mulas. In this chapter we take a different approach, looking at how we can model

performance of individual nodes in both WHT and DFT (FFT) split trees. For the

WHT, we consider only the leaves of the split trees, but for the FFT, we must consider

the internal nodes as well. By first learning to successfully predict performance for

individual nodes, these predictors can then be used to accurately predict for entire

formulas by summing their predictions for all of the nodes in a formula’s split tree.

We begin in Section 6.1 with a number of key observations that we made for the

WHT on a Pentium. These observations led us to develop methods for predicting

cache misses for WHT leaves as discussed in Section 6.2. Next, Section 6.3 dis-

cusses our observations for the WHT on a Sun. These new observations directed us

to develop methods for predicting actual runtimes for WHT leaves as discussed in

Section 6.4. Then, Section 6.5 discusses some of the difficulties in extending these

methods to the FFT. Finally, Section 6.6 presents methods for predicting runtimes

for FFT leaves and internal nodes.

6.1 Pentium Observations

This section discusses several important observations that we made about the WHT

that directed our research. Specifically, these observations were made on a Pentium III

109

110 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

450 MHz running Linux 2.2.5-15.

Figure 6.1 shows a scatter plot of runtimes versus level 1 data cache misses for all

binary WHT (216) split trees with no leaves of size 21. Each point in the scatter plot

corresponds to a different WHT formula. The placement of this point corresponds

to that formula’s runtime and cache misses. The plot shows that while there is a

complete spread of runtimes, there is a grouping of formulas with similar numbers of

cache misses. Both runtimes and cache misses vary considerably differing by about a

factor of 6 and 10 respectively from the smallest to the largest. Further, as the number

of cache misses decreases so does the minimal and maximal runtimes for formulas with

the same number of cache misses. The formula with the fastest runtime also has the

minimal number of cache misses.

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05

R
un

tim
e

in
 C

P
U

 C
yc

le
s

�

 Level 1 Data Cache Misses

Figure 6.1: Runtimes vs. cache misses for entire WHT (216) formulas on a Pentium.

This observation indicates that minimizing level 1 data cache misses produces a

group of fast formulas. Further, the overall fastest formula lies within this group.

Again, if we can generate all of the formulas with minimal cache misses, then we will

have a much smaller set of formulas to time to determine the one with the fastest

runtime.

The second key observation is that all of the runtime and cache misses occur in

computing the leaves. The WHT package we are using (Johnson and Püschel, 2000)

implements leaf WHTs as unrolled, straight-line code. There is no work necessary to

combine the leaf WHTs. The recursive calls to children from an internal node in the

6.1. PENTIUM OBSERVATIONS 111

WHT package simply specify which portions of the input and output data vectors are

to be operated on when calculating a smaller WHT. Additionally, the total run time

and number of cache misses of a formula is simply the sum of the runtime and cache

misses at each of the leaves.

This observation allows us to consider simply modeling performance of individual

leaves. The performance of an entire formula could then be predicted by summing

up the individual predictions for the leaves.

Figure 6.2 shows a histogram of the number of level 1 data cache misses incurred

by leaves of all binary WHT (216) split trees with no leaves of size 21. For all of the

WHT formulas, the number of cache misses incurred by each leaf was measured, and a

histogram was generated over all these leaves. The spikes in the histogram show that

the number of cache misses incurred by leaves takes on only a few possible values.

0 2 4 6 8 10 12 14 16 18

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Level 1 Data Cache Misses

N
um

be
r

of
 L

ea
ve

s

Figure 6.2: Histogram of the number of cache misses incurred by leaves of WHT (216)

formulas on a Pentium.

Thus, it is not necessary to predict a real valued number of cache misses, but

rather only to predict the correct group of cache misses out of only four groups. This

observation indicates that simple classification algorithms can be used to predict cache

misses for leaves instead of needing to use a function approximator.

Finally, we have observed both in Figure 6.2 and in a number of other similar

112 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

histograms for different sized WHTs that the number of level 1 data cache misses

incurred by leaves occurs in specific fractions of the size of the transform. In an

overall transform of size s, the number of cache misses a leaf incurs is:

• 0

• s/4

• s

• 2s or more.

These particular fractions correspond to particular features of the cache. To have no

cache misses means that all of the data that the leaf needed was already in cache. To

have as many cache misses as the size of the transform means that the leaf incurred

one cache misses for each data item. On a Pentium machine, it is possible to have as

many cache misses as a 1/4 of the size of the transform since a cache line holds exactly

four data items. Further, it is possible to have more cache misses than data items,

since a single data item may need to be accessed multiple times during a computation.

Thus, the number of level 1 data cache misses incurred by a leaf comes in only a

few specific fractions of the size of the transform being computed. This suggests the

possibility to learn across different sized WHTs by predicting cache misses in terms

of fractions of the transform size.

In summary, we observed:

• For a given size, the WHT formula with the fastest runtime has the minimal

number of level 1 data cache misses. So minimizing cache misses produces a

group of formulas containing the fastest one.

• All of the computational time and cache misses occur in the leaves of the split

trees. So predicting leaf cache misses allows predicting for entire formulas.

• The number of level 1 data cache misses incurred by a leaf is only one of a few

possible values. So we can learn categories instead of real-valued numbers of

cache misses.

• The number of level 1 data cache misses incurred by leaves are fractions of the

transform size. So learning may be able to generalize across different sizes.

6.2. PREDICTING WHT LEAF CACHE MISSES 113

6.2 Predicting WHT Leaf Cache Misses

Given the observations discussed in the previous section, we now turn to modeling

level 1 data cache misses for WHT leaves. We discuss the features used for the leaves,

then we present the learning algorithm, and finally we evaluate our approach.

6.2.1 Features for WHT Leaves

To use standard machine learning methods to predict cache misses for WHT leaves,

we need to describe the leaves with features. These features need to be able to

distinguish leaves with different cache misses. The use of good features provides a

source of domain knowledge about the WHT to our methods.

The features that we have decided to use came about from trying to model cache

misses for leaves by hand. Trying to understand cache misses is difficult, and we were

only able to understand a few simple cases by hand. However, after the attempt,

we were able to write down a number of the features that we were considering when

trying to model the cache misses.

Clearly the size of the leaf is important in determining a leaf’s number of cache

misses, as the size indicates the size of the problem the leaf computes and the amount

of data it needs to access on each call. A leaf’s position in a split tree is also very

important in determining its number of cache misses. The position of a leaf in a split

determines at what stride it accesses its input and output data as well as the state of

the cache when the leaf is called. However, it is not as easy to capture the position

of a leaf in a split tree with numeric features as it is for the size of a leaf.

A leaf’s stride provides some information about its position in the split tree and

describes how a leaf accesses its input and output data. Cache performance is clearly

effected by the stride at which data is accessed. A leaf’s stride can be easily deter-

mined by its position in the split tree. The stride is simply the product of the sizes

of the leaves to the right of the given leaf along the fringe of the tree. The rightmost

leaf has a stride of 1. See Section 2.2.4 for further details about stride.

To provide more context of the position of a leaf in its split tree, the size and

stride of the parent of the leaf can also be considered. These features indicate how

much data the leaf will share with its siblings and how the data is laid out in memory.

Further, given a particular leaf l, the leaf p computed immediately before l gives

114 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

information about l’s position in the tree. Specifically, this “previous” leaf p is the

leaf just to the right of l along the fringe of the tree. However, the size and stride of

the common parent between l and p (i.e., the first common node in the parent chains

of both leaves) provide information about how much data is currently in the cache

because of p and how it is laid out in memory. This is due to the fact that before l

is called p has been called enough times so that it has accessed as much data as the

size of the common parent. Further, p has accessed its data always at a multiple of

the common parent’s stride, but at the appropriate initial offsets so that the total

data brought in before l is called is exactly at the common parent’s stride. Thus, we

use the size and stride of the “common parent” in our features and not that of the

previous leaf.

Figure 6.3 gives an example split tree along with the features for each of the

leaves. Each line of the table corresponds to features for one leaf. The nodes in the

split tree are labeled by the base two logarithms of their sizes (for convenience, no two

nodes have the same size for this example). The features are actually given as base

two logarithms of the sizes and strides. Further, the rightmost leaf has no common

parent since no leaf is computed before it, and this is indicated by a “-1” value for

the common parent features.

3 8 5

2 6

7

4

13

20 Leaf Parent Common Parent

Size Stride Size Stride Size Stride

5 0 13 0 -1 -1

6 5 8 5 13 0

2 11 8 5 8 5

4 13 7 13 20 0

3 17 7 13 7 13

Figure 6.3: Example leaf features for all of the leaves in the given split tree.

In summary, we use the following six features:

• Size and stride of the given leaf

• Size and stride of the parent of the given leaf

• Size and stride of the common parent.

6.2. PREDICTING WHT LEAF CACHE MISSES 115

6.2.2 Learning Algorithm

Given these features for leaves, we can now use standard classification algorithms to

learn to predict cache misses for WHT leaves. Our algorithm is shown in Table 6.1.

Table 6.1: Algorithm for learning to predict WHT cache miss categories.

1. Run a subset of WHT formulas, collecting the number of level 1 data cache

misses for each of the leaves.

2. Divide the number of cache misses by the size of the transform, and classify

them as:

• near-zero, if less than 1/8

• near-quarter, if less than 1/2

• near-whole, if less than 3/2

• large, otherwise.

3. Describe each of the leaves with the features outlined in the previous sub-

section.

4. Train a classification algorithm to predict one of the four classes of cache

misses given the leaf features.

While the classification algorithm predicts one of the four categories for any leaf,

this can be translated back into actual cache misses. In a transform of size s, a leaf

is predicted to have:

• 0 cache misses, if near-zero is predicted;

• s/4 cache misses, if near-quarter is predicted;

• s cache misses, if near-whole is predicted;

• 2s cache misses, if large is predicted.

Further, the number of cache misses incurred by an entire formula can be predicted

by summing over all the leaves.

116 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

6.2.3 Training

We have specifically used a C4.5 decision tree (Quinlan, 1992) as the classification

algorithm in the experiments that follow, but other classification algorithms should be

usable. A decision tree was used as it allows rules that are somewhat human readable

to be extracted and analyzed.

We trained a C4.5 decision tree on a random 10% of the leaves of all binary

WHT (216) split trees with no leaves of size 21. The actual number of level 1 data

cache misses were collected for these leaves by running their trees on a Pentium.

The resulting decision tree was large with 155 nodes, and so the number of rules

that C4.5 extracted from this tree was also large with 46 rules. Some of the rules are

quite understandable and intuitive, but as a whole it is hard to understand the entire

collection. Table 6.2 shows a few example rules, one for each category. For example,

Rule C says that if the leaf is the rightmost leaf (that is, it has no common parent),

then it will incur near-quarter number of cache misses. This is to be expected on a

Pentium where a cache line holds 4 data items and since the rightmost leaf accesses

its data at a stride of 1.

Table 6.2: A few example learned rules for predicting cache misses.

Rule A:

IF

leaf_size > 2 AND

leaf_stride > 8 AND

parent_stride > 0

THEN large

Rule B:

IF

leaf_size <= 2 AND

leaf_stride > 9 AND

parent_stride > 0

THEN near-whole

Rule C:

IF

common_parent_size <= 0

THEN near-quarter

Rule D:

IF

common_parent_size > 0 AND

common_parent_size <= 8 AND

common_parent_stride <= 2

THEN near-zero

6.2. PREDICTING WHT LEAF CACHE MISSES 117

6.2.4 Evaluation

There are several measures of interest for evaluating our learning algorithm. The

simplest is to measure the accuracy at predicting the correct category of cache misses

for leaves. Since we want to predict cache misses for an entire tree, another measure

is to evaluate the accuracy of using this predictor for entire WHT formulas. Further,

we are most interested in whether it accurately predicts the fastest formulas to have

the fewest number of cache misses.

Table 6.3 evaluates the accuracy of our method at predicting the correct category

of cache misses for leaves. We tested the decision tree trained from WHT (216) data

discussed in the previous section. Specifically, we tested on leaves from different sized

formulas, using all of the formulas of the different limited formula spaces discussed in

Section 2.2.5. The error rate shown is the percentage of the total number of leaves

tested for which the decision tree predicted the wrong category. Clearly, there are

very few errors, less than 2% in all cases shown. This is surprisingly good in that

while training only on a small fraction of the total leaves of one size, the learned

decision tree can accurately predict across a wide range of sizes.

Table 6.3: Error rates for predicting cache miss category incurred by leaves.

Binary No-21-Leaf Binary No-21-Leaf Rightmost

Size Errors

212 0.5%

213 1.7%

214 0.9%

215 0.9%

216 0.7%

Size Errors

217 1.7%

218 1.7%

219 1.7%

220 1.6%

221 1.6%

We used the same decision tree as in the previous experiments to predict cache

misses for entire formulas. This was done by using the decision tree to predict a

category for each leaf in the split tree. These categories were transformed into an

actual number of cache misses as discussed in Section 6.2.2. Then the final prediction

for the entire formula was made by summing the predicted number of cache misses

incurred by each leaf within the split tree.

We then calculated an average percentage error over a test set of formulas of a

118 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

particular size as:
1

|TestSet|
∑

i∈TestSet

|ai − pi|
ai

,

where ai and pi are the actual and predicted number of cache misses for formula i.

Table 6.4 shows the error on predicting cache misses for entire formulas. Tables 6.3

and 6.4 cannot be directly compared, since Table 6.3 shows the number of leaves for

which an error is made, while Table 6.4 shows the average amount of error between

the real and predicted number of cache misses. Further, we would expect a larger

error when predicting the actual number of cache misses for an entire formula instead

of just one of four categories for a single leaf.

Except for the extreme sizes shown in Table 6.4, the learned decision tree is able to

predict within 10% of the real number of cache misses on average. This is surprisingly

good especially considering that Figure 6.1 shows that there is about a factor of 10

difference in the number of cache misses incurred by different formulas of the same

size. Further, this result is very good considering that this is predicting for entire

formulas and not just leaves and that the decision tree was only trained on data from

formulas of size 216.

Table 6.4: Average percentage error for predicting cache misses for entire formulas.

Binary No-21-Leaf Binary No-21-Leaf Rightmost

Size Errors

212 12.7%

213 8.6%

214 6.7%

215 5.2%

216 4.6%

Size Errors

217 8.2%

218 8.2%

219 7.9%

220 8.1%

221 10.4%

We are also concerned with whether the fastest formulas are predicted to have the

least number of cache misses. To test this, we have plotted the actual runtimes of

formulas against the predicted number of cache misses. Figure 6.4 shows these plots

for all the formulas within a restricted space for two different sized WHTs. The plots

clearly show that the fastest formulas in both cases also have the fewest number of

predicted cache misses. In addition, as the predicted number of cache misses increases,

so do the runtimes of those formulas.

6.3. SUN OBSERVATIONS 119

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

1e+06

2e+06

3e+06

4e+06

5e+06

2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05A
ct

ua
l R

un
ni

ng
 T

im
e

in
 C

P
U

 C
yc

le
s

�

Predicted Number of Cache Misses

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

2.0e+06 4.0e+06 6.0e+06A
ct

ua
l R

un
ni

ng
 T

im
e

in
 C

P
U

 C
yc

le
s

�

Predicted Number of Cache Misses

Figure 6.4: Runtime vs. predicted cache misses for entire formulas.

6.2.5 Summary

In summary, we have presented a method for predicting a formula’s number of level

1 data cache misses by training a decision tree to predict a leaf’s number of cache

misses to be one of only a few categories. We have also shown that this method

produces very good results across a variety of sizes, including larger sizes, even when

only trained on one particular size. This learned decision tree serves as a model of

the cache performance of formulas.

6.3 Sun Observations

Given the excellent results achieved for predicting cache misses on a Pentium, we

wished to see if the same methods would work on other architectures. In particular,

we began by collecting data on a Sun UltraSparc IIi 300 MHz machine to see if the

same observations described in Section 6.1 for the Pentium would carry over to the

Sun.

Figure 6.5 shows a scatter plot of runtimes versus level 1 data cache misses for

all binary rightmost WHT (218) split trees with no leaves of size 21. Unlike on the

Pentium, the fastest formula on the Sun does not also have the minimum number

of level 1 data cache misses. This is unfortunate, in that even if we could learn to

predict level 1 data cache misses for a Sun, this would not aid in finding the fastest

120 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

formula.

1.5e+07

2.5e+07

3.5e+07

4.5e+07

5.5e+07

6.5e+07

0.0e+00 4.0e+05 8.0e+05 1.2e+06 1.6e+06

R
un

tim
e

in
 C

P
U

 C
yc

le
s

�

Level 1 Data Cache Misses

Figure 6.5: Runtimes vs. cache misses for entire WHT (218) formulas on a Sun.

There is a great deal of structure in Figure 6.5. By also collecting the level 2 cache

misses for these same formulas, some of this structure becomes understandable. The

slower formulas with few level 1 data cache misses have a large number of level 2

cache misses which cause the slower runtimes. Further, all of the formulas with about

6× 105 level 1 data cache misses and larger have relatively few level 2 cache misses.

This suggests that by minimizing the correct linear combination of level 1 data

cache misses and level 2 cache misses, it may be possible to generate a small group

of formulas that includes the fastest formula on a Sun. However, this adds an extra

level of difficulty in that the correct linear combination must be determined.

Instead of pursuing this direction, we have decided to directly model runtimes of

leaves. While learning to model level 1 data cache misses on a Pentium provided

a number of advantages in terms of learning, actually learning runtimes for leaves

has the advantage of directly modeling the performance measure for which we are

most interested. Further, modeling runtimes of leaves does not depend on specific

observations of how one performance measure correlates with runtime.

Since runtimes do not come in discrete values as did cache misses, we will have to

use a function approximation method instead of a classification algorithm to model

runtimes for leaves. By dividing the runtimes by the overall transform size, we will

hope to continue to learn across different transform sizes.

6.4. PREDICTING WHT LEAF RUNTIMES 121

6.4 Predicting WHT Leaf Runtimes

We now present our work in modeling runtimes of WHT leaves and demonstrate the

performance of the learned models for both a Pentium and a Sun.

6.4.1 Learning Algorithm and Training

Our algorithm for learning to predict runtimes for WHT leaves is shown in Table 6.5.

Table 6.5: Algorithm for learning to predict WHT leaf runtimes.

1. Run a subset of WHT formulas, collecting the runtimes for each of the

leaves.

2. Divide each of these runtimes by the size of the overall transform.

3. Describe each of the leaves with the features outlined in Section 6.2.1.

4. Train a function approximation algorithm to predict for leaves the ratio of

their runtime to the overall transform size.

This algorithm is very similar to the algorithm presented for learning to predict

cache misses for WHT leaves in Section 6.2.2. Again we use the same features to

describe WHT leaves. However, instead of learning one of a four categories, this

algorithm learns to predict a real valued ratio, namely the runtime divided by the

overall transform size.

In the results presented, we have used a regression tree learner, RT4.0 (Torgo,

1999), as the function approximation algorithm. Regression trees are very similar to

decision trees except that they can predict real valued outputs instead of categories.

However, other function approximators could have been used.

We trained regressions trees from data on a Pentium and also from data on a Sun.

Like when learning to predict cache misses, we trained using a random 10% of the

leaves of all binary WHT (216) split trees with no leaves of size 21. Further, we trained

different regression trees on the leaves from 500 random binary WHT (216) split trees

with no leaves of size 21. These random split trees were generated uniformly over all

possible such split trees. While there was some variation in the results from these

122 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

two different training sets, the results were largely similar. So, only results from the

regression trees trained on 500 random split trees is presented.

6.4.2 Evaluation

Again, there are several different methods for evaluating the performance of the learn-

ing algorithm at predicting runtimes. We begin by evaluating the performance of the

learned regression tree at predicting runtimes for individual leaves. Tables 6.6 and 6.7

show this performance for a Pentium and a Sun. The errors reported are an average

percentage error over all leaves in all formulas in the given test set, calculated as:

1

|TestSet|
∑

i∈TestSet

|ai − pi|
ai

,

where ai and pi are the actual and predicted runtimes for leaf i.

Table 6.6: Error rates for predicting runtimes for leaves for a Pentium.

Binary No-21-Leaf Binary No-21-Leaf Rightmost

Size Errors

213 13.0%

214 13.8%

215 15.8%

216 14.6%

Size Errors

217 11.4%

218 12.9%

219 12.6%

220 12.7%

Table 6.7: Error rates for predicting runtimes for leaves for a Sun.

Binary No-21-Leaf Binary No-21-Leaf Rightmost

Size Errors

213 8.7%

214 8.7%

215 10.9%

216 7.3%

Size Errors

217 16.5%

218 16.9%

219 18.9%

220 20.0%

In all cases, the average error rate for predicting runtimes for leaves was not greater

than 20%. This is good considering that formulas can have runtimes that vary by

6.4. PREDICTING WHT LEAF RUNTIMES 123

a factor of 2 to 10. Also, this task is considerably more difficult than predicting

categories for cache misses since the regression tree is predicting a real valued runtime

instead of just one of a few categories.

Next, we evaluate our trained regression trees by determining their accuracy in

predicting runtimes for entire formulas. This is done by using the regression trees to

predict for each leaf in a split tree and summing these prediction to determine the

predicted runtime for the entire formula. Again we calculate an average percentage

error, but this time over entire formulas. Tables 6.8 and 6.9 show this performance.

Table 6.8: Error rates for predicting runtimes for entire formulas for a Pentium.

Binary No-21-Leaf Binary No-21-Leaf Rightmost

Size Errors

213 20.1%

214 22.6%

215 25.0%

216 18.1%

Size Errors

217 14.4%

218 14.1%

219 12.5%

220 10.1%

Table 6.9: Error rates for predicting runtimes for entire formulas for a Sun.

Binary No-21-Leaf Binary No-21-Leaf Rightmost

Size Errors

213 23.5%

214 17.6%

215 25.8%

216 36.5%

Size Errors

217 13.3%

218 15.2%

219 19.8%

220 21.2%

Unfortunately, the error rates in some cases are fairly large. Further, the error

rates for predicting runtimes for entire formulas on a Pentium are considerably larger

than the error rates for predicting cache misses for entire formulas. However, runtimes

for formulas take on a whole range of values whereas cache misses for formulas were

much more concentrated at specific values, making cache misses easier to predict.

Fortunately, to aid in optimization, a predictor only needs to accurately order

formulas according to their runtimes. We do not need to be able to accurately predict

124 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

the actual runtime of formulas, but just to predict which formula will run faster than

another.

To evaluate this, we have plotted the actual runtimes of formulas against their

predicted runtimes. Figures 6.6 and 6.7 show these plots for two particular sizes.

Each dot in the scatter plots correspond to one formula in the test set with the

placement corresponding to the formula’s actual and predicted runtimes. The plots

show that as the predicted runtimes decrease so do the corresponding actual runtimes.

Further, the formulas with the fastest runtimes also have the fastest predicted runtime

or nearly the fastest predicted runtime.

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

1e+06 2e+06 3e+06 4e+06 5e+06

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

Figure 6.6: Actual vs. predicted runtimes for entire formulas for a Pentium.

Ideally, these plots should be simply a segment along the straight line y = x.

However, the scatter plots show that there is some spread in that formulas with

the same predicted runtimes have different actual runtimes and vice versa. Further,

the slope of the plots seems not to be perfectly one. For example, in Figure 6.7, the

WHT (214) formulas on the Sun predicted to take about 2.5×106 CPU cycles actually

take about 2 × 106 CPU cycles. This systematic skew may account for much of the

error shown in Tables 6.8 and 6.9.

These plots show that the learned regression trees perform well at ordering for-

mulas according to their runtimes. The formulas with actual faster runtimes are

predicted to have faster runtimes. While the error rates at predicting runtimes were

larger than we may have liked, these plots show that the learned regression trees

could still be used to find fast formulas. This is surprisingly good considering that

the regression trees were trained only on data from formulas of one particular size.

6.5. EXTENDING TO THE FFT 125

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

1e+06 2e+06 3e+06 4e+06

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

5e+07 1e+08 1.5e+08 2e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

Figure 6.7: Actual vs. predicted runtimes for entire formulas for a Sun.

6.5 Extending to the FFT

The good results of the previous sections for the WHT raise the possibility of extend-

ing these techniques to other transforms. We chose to consider the FFT next because

it is one of the most important and widely used transforms and also because it is

similar to the WHT.

The previous results for the WHT used a package for timing different WHT for-

mulas. The SPIRAL system (see Section 2.5) provides the ability to implement in

code, run, and time a wide variety of different transforms including the FFT; thus,

it was the obvious choice to replace the WHT package. However, this introduced a

number of new issues:

• The SPIRAL system has several different rules for the FFT that break it down

in very different ways.

• The SPIRAL system has no predefined leaves, but instead allows more flexibility

as the formula can specify the tree completely to the base cases of size 21 and

can also specify which portions of the tree are to be implemented as unrolled

code.

• The SPIRAL system had to be extended to allow it to keep track of the amount

of time spent in computing different subportions of a formula. Unfortunately,

the accuracy of these timings decrease as the size of the subportions being timed

decreases (it is particularly poor for transforms of size 21).

126 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

To simplify the transition from the WHT to the FFT, we decided to use just one

single break down rule for the FFT, namely the Cooley-Tukey factorization (Cooley

and Tukey, 1965):

DFT (rs) = (DFT (r)⊗ Is)T rss (Ir ⊗DFT (s))Lrsr

which is probably the most widely used factorization for the FFT. Further, this fac-

torization is very similar to that used by the WHT in that it factors a DFT of one

size into two smaller sized DFTs.

Given that the SPIRAL system has no predefined leaves, ideally we would like to

just consider the base cases of size 21 as our leaves. However, the fact that accurate

timings can not be obtained for such small pieces of code forced us to consider other

approaches. Instead, we decided to construct efficient leaves. We conducted an ex-

haustive search over all possible DFT split trees of sizes 22 to 27, implementing all of

them as entirely unrolled pieces of code. The fastest split tree for each size was then

chosen as our new leaf of that size.

With these new leaves, we then added to the SPIRAL system a rule that takes any

node of size 22 to 27 and constructs no children in the split tree. However, when this

split tree is then exported to the SPL compiler and one of these leaves are reached,

the SPL corresponding to the fastest split tree found for that leaf’s size is exported.

That is, in the search engine and formula generator, the split trees have leaves of sizes

22 to 27. However, the SPL compiler actually views a formula that has the fastest

split tree substituted for each of the leaves.

Further, the Cooley-Tukey rule was modified so that it never constructed a leaf of

size 21 so that all split trees must have leaves of sizes 22 to 27. Nodes of size 24 to 27

can be made into leaves using our new rule and thus be implemented as unrolled code,

or can be further factored using the Cooley-Tukey rule and thus be implemented with

loops.

In summary, we have assumed the following space of FFT implementations:

• Only FFT formulas derived from the Cooley-Tukey break down rule are consid-

ered.

• We have searched for optimal split trees of sizes 22 to 27 on the given architec-

ture. These are then available to use as leaves and are implemented as unrolled

code.

6.5. EXTENDING TO THE FFT 127

• All leaves must be of sizes 22 to 27.

• All internal nodes are implemented in code with loops.

This setup allows us to view modeling performance of FFT formulas in a very

similar manner as was done for the WHT. However, there is one significant remaining

difference. With the WHT, all of the runtime is spent in computing the leaves while

basically no time is spent in computing the internal nodes. However, this is not true

for the FFT. Significant computation is performed for each internal FFT node (this

arises from the twiddle factors, T rss , in the Cooley-Tukey factorization). Thus, the

total runtime of an FFT formula is more than just the sum of the runtimes spent

computing each of the leaves.

So, we decided to follow a similar approach as before and now model runtime

performance of not only leaves but also internal nodes. As indicated earlier, the

SPIRAL system can return the time spent in computing different subportions of a

split tree. However, the runtime returned for an internal node includes the time spent

computing the entire subtree rooted at that node and not just the time associated

with the individual node. While we could have trained a model to predict the runtime

for the entire subtree under an internal node, this seemed likely to fail as it would

mean that the model should be able to predict an entire formula’s runtime by simply

making a prediction for the root node.

Instead, we calculated the amount of runtime spent in computing a given inter-

nal node by taking the runtime for its entire subtree and subtracting the runtimes

obtained for its children’s subtrees. This then provides a measure of the amount of

time spent in computing the work associated just with the internal node.

This method also has an extra benefit of removing some of the error introduced

by overhead associated with obtaining the timings. In particular, sometimes the

overhead associated with obtaining timings for small sized leaves would cause the

total time of two leaves to be greater than the total runtime obtained for the parent

of the leaves. Thus, our method would calculate a negative value for the time spent

in computing the internal node. While this may seem undesirable, it actually works

well in that it cancels out the error introduced by the timing overhead.

128 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

6.6 Predicting FFT Runtimes

To predict runtimes for FFTs, we trained up two separate predictors: one for pre-

dicting leaf runtimes and one for predicting internal node runtimes. Thus, a runtime

prediction for an entire FFT split tree can be made by summing the predictions made

for all of its nodes, both leaves and internal nodes, using the appropriate predictor

for each node.

6.6.1 Learning Algorithm, Features, and Training

A runtime predictor for FFT leaves was trained exactly as was done in Section 6.4.1

for WHT leaves using the same leaf feature set. The same method can also be used

to train a predictor for FFT internal nodes as well, but the feature set needs to be

expanded to describe internal nodes. We have also explored using some additional

features for internal nodes that are not applicable for leaves.

Clearly the size and stride of an internal node or an internal node’s parent still are

easy to obtain. Since the root node has no parent, the corresponding feature values

are set to “-1” for the root node’s parent. The concept of an internal node’s common

parent needs to be slightly expanded. We define the previous leaf of a node to be

the leaf computed immediately before reaching the given node during computation,

and we define a node’s common parent to be the first node in common between the

parent chains of the node and of the node’s previous leaf.

Figure 6.8 gives an example of the features for all the nodes in the given tree.

Since all of the nodes have unique sizes in this example, the figure also provides an

example of what are the common parents for nodes in a split tree.

We have also explored additional features for internal nodes. Specifically, the

sizes and strides of the immediate children of an internal node add four additional

features. One might expect that the way an internal node is split may impact on

the runtime performance of the work associated with that internal node. Further,

the sizes and strides of the four grandchildren could be used as additional features,

further defining the internal node’s subtree. If any of the children are leaves, then

the features corresponding to the missing grandchildren are set to -1 to indicate that

the nodes do not exist. We present results using the following three different feature

sets:

6.6. PREDICTING FFT RUNTIMES 129

3 8 5

2 6

7

4

13

20

Node Parent Common Parent

Size Stride Size Stride Size Stride

20 0 -1 -1 -1 -1

13 0 20 0 -1 -1

5 0 13 0 -1 -1

8 5 13 0 13 0

6 5 8 5 13 0

2 11 8 5 8 5

7 13 20 0 20 0

4 13 7 13 20 0

3 17 7 13 7 13

Figure 6.8: Example node features for all of the nodes in the given WHT split tree.

• Original. The original six features as described earlier.

• Children. The original six features plus features describing the immediate

children of the internal node.

• Grandchildren. The original six features plus features describing the imme-

diate children and grandchildren of the internal node.

Again we used RT4.0 to train regression trees on data collected on the same

Pentium as used in the previous experiments in this chapter. For the leaf predictor,

we used a random 10% of the leaves from all of the formulas generated for DFT (216).

Likewise we trained regression trees using each of the different feature sets on a

random 10% of the internal nodes from all of the formulas generated for DFT (216).

6.6.2 Evaluation

We used two different methods to evaluate these predictors for the FFT. First, we

considered the average error rate for predicting runtimes for entire formulas. Second,

we plotted the predicted runtime against the actual runtime for individual formulas.

To do the evaluations, we generated all possible formulas for sizes 212 to 218 and timed

them. We were not confident that rightmost trees were optimal, and so without that

additional limitation it was impossible to exhaust up to size 220. Results are shown

130 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

using all three different feature sets to describe internal nodes, but in all cases the

Original feature set was used to describe the leaves (as leaves clearly do not have

children or grandchildren).

Table 6.10 shows the average error rates for predicting FFT formula runtimes

across the three different feature sets introduced in the previous subsection. The

error rates are quite good, outperforming those for the WHT in Table 6.8. For many

of the larger sizes, the error rates are less than 10%, and for no size are they greater

than 20%. Further, increasing the number of features used through the Children and

Grandchildren feature sets tends to improve the overall performance of the predictor

while slightly decreasing the performance for a few of the smaller sizes.

Table 6.10: Error rates for predicting FFT formula runtimes on a Pentium using

different feature sets.
Original Children Grandchildren

Size Errors

212 9.8%

213 15.5%

214 11.8%

215 8.7%

216 6.4%

217 8.2%

218 8.9%

Size Errors

212 11.8%

213 15.2%

214 9.6%

215 7.6%

216 5.6%

217 7.8%

218 8.8%

Size Errors

212 19.3%

213 9.3%

214 10.7%

215 7.3%

216 5.0%

217 7.3%

218 7.9%

Figures 6.9 and 6.10 are scatter plots of the actual versus predicted runtimes for

FFT formulas on the same Pentium machine. The plots show predictions for formulas

of several different sizes and using the three different features sets. Each point in the

plots corresponds to one formula with the point placed according to the formula’s

actual and predicted runtimes. Ideally all the points would fall along the line y = x

indicating that the predicted runtime equaled the actual runtime.

While there is some spread, most of the points fall very close to the ideal line

y = x. Further, the formulas with the fastest predicted runtimes are those formulas

with the fastest actual runtimes. Visually, the major difference between the different

features sets is that increasing the number of features seems to improve the overall

slope so that the predicted runtimes of the fastest formulas are more accurate.

6.6. PREDICTING FFT RUNTIMES 131

214 215

O
ri

gi
n
al

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

4e+06 6e+06 8e+06 1e+07 1.2e+071.4e+071.6e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

C
h
il
d
re

n

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

4e+06 6e+06 8e+06 1e+07 1.2e+071.4e+071.6e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

G
ra

n
d
ch

il
d
re

n

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

4e+06 6e+06 8e+06 1e+07 1.2e+071.4e+071.6e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

Figure 6.9: Predicted FFT runtimes versus actual runtimes for sizes 214 and 215.

132 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

217 218

O
ri

gi
n
al

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08 2e+08 3e+08 4e+08 5e+08
A

ct
ua

l R
un

tim
e

(in
 C

P
U

 c
yc

le
s)

Predicted Runtime (in CPU cycles)

C
h
il
d
re

n

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08 2e+08 3e+08 4e+08 5e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

G
ra

n
d
ch

il
d
re

n

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08 2e+08 3e+08 4e+08 5e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

Figure 6.10: Predicted FFT runtimes versus actual runtimes for sizes 217 and 218.

6.7. SUMMARY 133

The learned regression trees perform well at ordering formulas according to their

runtimes, predicting faster formulas to be faster. Once again, these are particularly

excellent results considering that the learned regression trees were only trained on

data from transforms of size 216 and here are predicting for both smaller and larger

sizes.

6.7 Summary

We have presented a method for predicting a WHT formula’s number of cache misses

on a Pentium by training a decision tree to predict a leaf’s number of cache misses to

be one of only a few categories. We have also shown that this method produces very

good results across sizes even when only trained on one particular size.

We have presented a similar method for predicting runtimes instead of cache misses

for WHT formulas. This method can be used on any machine and we demonstrated

its performance on two very different architectures. The learned regression trees are

able to perform very well at ordering formulas according to their runtimes, especially

considering that the regression trees were trained on data of one size and used to

predict across many transform sizes including larger sizes.

Further, we have extended this method to predict runtimes for FFT formulas. This

required training two predictors, one for leaves and one for internal nodes. Using data

for a Pentium, we obtained very excellent results, with the regression trees accurately

predicting runtimes for FFT formulas. While the predictors were only trained on

data from one transform size, they accurately predicted for both smaller and larger

transform sizes.

134 CHAPTER 6. MODELING PERFORMANCE OF INDIVIDUAL NODES

Chapter 7

Generating Optimal

Implementations

Accurate prediction of runtimes (Chapters 5 and 6) still does not solve the problem

of determining the fastest formula from a very large number of candidates. At larger

sizes, it is infeasible to just enumerate all possible formulas, let alone obtain predicted

runtimes for all of them in order to choose the fastest. While our work in predicting

performance for formulas allowed for runtimes to be predicted much more quickly

than the formulas could be timed, it still did not provide a method that quickly

produced formulas with fast runtimes.

In this chapter, we present a method that learns to generate formulas with fast

runtimes. Out of the very large space of possible formulas, our method learns how to

control the generation of formulas to produce the formulas with the fastest runtimes.

Remarkably, our new method can be trained on data from a particular sized transform

and still construct fast formulas across many sizes. Thus, our method can generate

fast formulas for many sizes, even when not a single formula of those sizes has been

timed yet.

The learned decision and regression trees of Chapter 6 that predict performance of

WHT and FFT nodes are used by this work as the sole source of runtime information

for a given platform. By using a number of concepts from reinforcement learning

combined with information from these predictors, our method is able to generate

formulas that have the fastest known runtimes.

We begin by describing our initial approach to the problem and how it led to the

135

136 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

algorithm we have designed and implemented. After discussing this algorithm, we

then provide other views of our method. Finally, we evaluate our method’s perfor-

mance for two different machines and two different transforms.

7.1 Approach

We approach the question of generating fast formulas as a control learning problem.

Given a transform and size, we want our algorithm to grow a split tree for that

transform that runs as fast as possible. Figure 7.1 illustrates this process for the

WHT. We begin in (a) with a root node of the desired size. Next, we grow in (b) the

best possible children. Here there are choices for which children are to be grown and

our method needs to learn to make the choice that will produce the fastest possible

split tree. Then, we recurse on each of the children, which is started in (c).

20 20

4 16

20

4 16

2 2

(a) (b) (c)

Figure 7.1: Example of growing a fast WHT split tree.

We first try to formulate the problem in terms of a Markov decision process (MDP)

and reinforcement learning. In the end, our formulation is not an MDP but does

borrow many concepts from reinforcement learning.

7.1.1 Basic Formulation

An MDP is a tuple (S,A, T, C), where S is a set of states, A is a set of actions,

T :S × A → S is a transition function that maps the current state and action to

the next state, and C:S × A → < is a cost function that maps the current state

and action onto its real valued cost. Reinforcement learning provides methods for

7.1. APPROACH 137

finding a policy π:S → A that selects the best action at each state that minimizes

the (possibly discounted) sum of costs incurred.

We now turn to trying to formulate this problem in terms of MDPs. Let the states

in the reinforcement learning problem be nodes in a split tree that have no children

but have not been decided to be leaves. Then the start state is just a root node of

the given transform and size with no children. The available actions in each state are

the different ways to grow children for that node or to leave the node as a leaf (if the

node’s size is small enough).

Ideally, the cost function should be:

• the leaf’s runtime (or cache misses) when making a node a leaf, and

• the internal node’s runtime when giving children to a node.

Note that for the WHT, there is no runtime associated with internal nodes, and thus

the cost function would be zero when giving children to a node. This causes the total

cost of growing an entire split tree to simply be the runtime of the entire formula.

The goal is then to minimize the sum of the undiscounted costs over building an

entire split tree. We want to use undiscounted costs since constructing a split tree

only requires a finite number of steps.

7.1.2 Details and Difficulties

There is a number of details that need to be filled in with respect to this basic

formulation. Further, one significant difficulty also becomes apparent upon trying to

fill in these details.

State Representation

We need a state representation for the nodes within a split tree so that we can use

standard reinforcement learning algorithms. For the WHT, we have used a modified

form of the leaf features described in Section 6.2.1 that expands the feature set to

describe any node in a split tree. Specifically, we have used the features:

• Size and stride of the given node

• Size and stride of the parent of the given node

138 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

• Size and stride of the common parent to this node.

The first two pairs of features are the same as for leaves except now they pertain to

any node within the split tree. Note that the root node has no parent, and thus the

corresponding feature values are set to “-1” for the root node.

The concept of a node’s common parent is more difficult to understand in this

setting. We define the previous leaf of a node to be the leaf computed immediately

before reaching the given node during computation. However, the previous leaf of a

given node is not always known when constructing a fast split tree. For example, if

we expand the root node into two children, then the previous leaf of the left child is

not known since the right child of the root may still be expanded.

However, it is still possible, without expanding the entire tree, to know what the

common parent would be between any given node and its previous leaf that will be

later constructed. Consider the following cases:

• The root node has no common parent, as there is no previous leaf computed

before reaching the root node. Thus, the common parent feature values are set

to “-1” for the root node.

• If the given node is not the rightmost child of its parent, then some descendant

of the sibling to the right of the given node will be the given node’s previous

leaf. Thus, it must be the case that the parent of the given node is also its

common parent.

• If the given node is the rightmost child of its parent, then the previous leaf for

this given node is also the previous leaf for its parent since the rightmost child

is called first from a parent. So, in this case, the node’s common parent is its

parent’s common parent. Note that if its parent’s common parent is not defined

(for example, its parent is the root), then the node’s common parent is likewise

undefined and the corresponding feature values are set to “-1”.

Figure 7.2 gives an example of the features for all the nodes in the given tree.

Since all of the nodes have unique sizes in this example, the figure also provides an

example of what are the common parents for nodes in a split tree.

For the FFT, we have used the same features as above, but also the two additional

feature sets used to describe internal nodes that were introduced in Section 6.6.1.

7.1. APPROACH 139

3 8 5

2 6

7

4

13

20

Node Parent Common Parent

Size Stride Size Stride Size Stride

20 0 -1 -1 -1 -1

13 0 20 0 -1 -1

5 0 13 0 -1 -1

8 5 13 0 13 0

6 5 8 5 13 0

2 11 8 5 8 5

7 13 20 0 20 0

4 13 7 13 20 0

3 17 7 13 7 13

Figure 7.2: Example node features for all of the nodes in the given WHT split tree.

These feature sets expand states to also account for the sizes and strides of the given

node’s immediate children and grandchildren.

Cost Function

Ideally, we would use the actual runtime of leaves and internal nodes to determine

the cost function. However, this requires determining the runtime for these nodes

even when the split tree is not fully grown. Unfortunately, it is not possible to run a

partially grown split tree with the SPIRAL system or with the WHT package we are

using.

However, Chapter 6 discussed how we can learn to predict cache misses or runtimes

for leaves and internal nodes. So, we can approximate our desired cost function by

using these learned predictors. In particular, we will use the following cost function:

• the leaf’s predicted performance when making a node a leaf,

• zero when giving children to a WHT node, and

• the internal node’s predicted performance when giving children to a FFT node.

The predictors have several advantages:

140 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

• They can make predictions much quicker than we could time a formula (even if

we had a formula to time in this case).

• Since they are using the same features to describe nodes as we are using to

describe nodes in our MDP state space, no extra work needs to be done to

translate features.

This change causes our method to rely on the predictors and to only be as good

as they are. Further, if a cache miss predictor is used, then our method will construct

formulas with minimal cache misses, instead of explicitly the fastest formulas. How-

ever, on a Pentium we have shown that the fastest WHT formulas have the minimal

number of cache misses.

Also the choice of predictor can influence how many formulas are generated with

the same expected performance. Since there are many formulas with the same number

of cache misses and our cache miss predictor produces discrete valued outputs, it

would be expected that using a cache miss predictor will cause our algorithm to

generate several formulas with the same predicted performance. On the other hand,

runtimes tend to be much more continuous, and so it is likely using a runtime predictor

will lead to many fewer formulas with the exact same predicted performance.

Transition Function

Defining a transition function for this formulation is difficult. If two children of

the root node are grown, then several questions arise, such as: which node is the

next state, when will we transition back to the sibling node, and what should the

transition function be from a leaf node? It is possible to answer these questions in

specific ways, but then the Markov property may no longer hold. Lagoudakis and

Littman (2000) discuss one approach for coping with this difficulty. They determine

the Monte Carlo return for all but one of the next states, fixing the current policy.

Then they continue learning on the one remaining next state. However, we can take

a different approach, departing from the MDP framework, since we can formulate our

problem to be deterministic and off-line.

Clearly actions are deterministic in that a node will always be given the children,

if any, specified by the action. Further, the cost function is deterministic and known

if we use a learned predictor. We will define a value function over our states and show

how it can be computed off-line.

7.1. APPROACH 141

7.1.3 Value Function

First consider a value function over WHT nodes in a fully specified split tree. The

value of a leaf node is simply its predicted performance, that is, the cost of making

that node a leaf. The value of an internal node is then the sum of the performance

measures of all the leaves in the subtree rooted at the internal node. More formally,

V (node) =
∑

leaf∈subtree
PredictedPerformance(leaf).

Thus, the value of the root node is the performance of the entire split tree. We can

rewrite this value function recursively in terms of the values of the children of the

given node. The value of a node is the sum of the values of its children if it is an

internal node or the predicted performance if it is a leaf. So,

V (node) =

{
PredictedPerformance(node), if node is a leaf∑
children V (child), otherwise

.

The value function over FFT nodes is similar but must take into account that

work must be performed at the internal nodes and not just the leaves. So, we have

V (node) =
∑

leaf∈subtree
PredictedPerformance(leaf)

+
∑

internalNode∈subtree
PredictedPerformance(internalNode)

and then recursively

V (node) =

{
PredictedPerformance(node), if node is a leaf

PredictedPerformance(node) +
∑
children V (child), otherwise

.

Thus, the value of an internal node is the predicted work associated with that node

plus the values of its children.

Now we will define the optimal value function over the specified state space for

the WHT. If a state must be a leaf, then its value is its predicted performance.

However, the optimal value of a node that could be an internal node or a leaf must

consider both possibilities. If a state can have children, then we wish to find the

subtree (possibly the subtree that simply makes the node a leaf) that minimizes the

predicted performance summed over all the leaves. That is,

V ∗(state) = min
subtrees

∑
leaf∈subtree

PredictedPerformance(leaf).

142 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

Again, we can rewrite this value function recursively in terms of the values of the

possible children of the state. The optimal value of a state is the sum of the values

of all the children in the optimal subtree rooted at this state, or the predicted per-

formance if the optimal subtree for the state is to be a leaf. Mathematically, let the

leaf performance of a state be:

LeafPerf (state) =

{
PredictedPerformance(state), if state can be a leaf

∞, if state cannot be a leaf

and the splitting value of a node be:

SplitV (state) = min
splittings

∑
child∈splitting

V (child),

where the minimum over splittings minimizes over all possible sets of immediate

children of a state and has a value of infinity if the state cannot have children. Then,

V ∗(state) = min{LeafPerf (state), SplitV (state)}.

For the FFT, we again must account for the runtime cost associated with internal

nodes. So, we have:

V ∗(state) = min
subtrees

∑
leaf∈subtree

PredictedPerformance(leaf)

+
∑

internalNode∈subtree
PredictedPerformance(internalNode).

When rewriting this recursively, LeafPerf remains the same as for the WHT. Assum-

ing the Original feature set is used, we have:

SplitV (state) = min
splittings

PredictedPerformance(state) +
∑

child∈splitting
V (child),

and then

V ∗(state) = min{LeafPerf (state), SplitV (state)}.

If the Children or Grandchildren feature sets are used, then the state space already

captures the immediate children. In these cases, SplitV ’s minimum must be taken

over all possible grandchildren or great-grandchildren. While the child is determined

from the state of the given node, the child’s full state feature values must account for

the chosen grandchildren or great-grandchildren.

7.2. ALGORITHM 143

7.2 Algorithm

This recursive formulation of the value function suggests dynamic programming for

computing it. For any state that could be a leaf, we can determine its value as a

leaf by querying the predictor to get its predicted performance. For any state that

could have children, the dynamic programming routine can then recursively call itself

with each of the possible children, memoizing computed values for efficiency. The

algorithm is shown in Table 7.1. For the WHT, let the PredictedPerformance of

internal nodes be zero.

Table 7.1: Algorithm for computing values of states.

ComputeValues(State)

if V(State) already memoized

return V(State)

Min = ∞
if State can be a leaf

Min = PredictedPerformance(State)

for SetOfChildren in PossibleSetsOfChildren(State)

Sum = 0

for Child in SetOfChildren

Sum += ComputeValues(Child)

Sum += PredictedPerformance(State)

if Sum < Min

Min = Sum

V(State) = Min

return Min

Note that for the FFT feature sets Children and Grandchildren, this algorithm

must be modified. Since the state space also describes a state’s immediate children,

no loop over possible sets of children is needed. However, to determine a child’s

state description, it is necessary to consider the possible children or grandchildren

of this child. Thus, the algorithm remains very similar but loops over possible sets

of grandchildren or great-grandchildren of the given state instead of possible sets of

immediate children.

144 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

With the value function determined for all relevant states, the next step is to

produce fast formulas. For a given size, the algorithm looks up the value of a root

node of that size. It then considers all possible sets of children of the root node and

determines their values. Any set of children whose sum of values equals the root

node’s value is then predicted to be one of the best ways to split the root node. This

procedure is then repeated for each child, building up a set of fast split trees.

The algorithm for generating fast split trees is shown in Table 7.2. For simplicity,

the algorithm is shown only for binary trees. Leaf() creates a leaf node from the given

state, Node() creates a split tree node with the corresponding subtrees as children, and

MatchingChild() creates the state for the left child of the specified state when given

the right child. As before, the loop over possible children would need to be modified

to loop over possible grandchildren or great-grandchildren if the FFT feature sets

Children or Grandchildren are used.

Table 7.2: Algorithm for generating fast split trees.

FastTrees(State)

Trees = {}
if State can be a leaf

if V(State) == PredictedPerformance(State)

Trees = { Leaf(State) }
for RightChild in PossibleRightChildren(State)

LeftChild = MatchingChild(State, RightChild)

if V(LeftChild) + V(RightChild)

+ PredictedPerformance(State) == V(State)

for RightSubtree in FastTrees(RightChild)

for LeftSubtree in FastTrees(LeftChild)

Trees = Trees ∪ { Node(LeftSubtree, RightSubtree) }
return Trees

Note that ComputeValues cannot easily keep track of the best split tree as there

may be several formulas with the best predicted performance. This is particularly

true when using a cache miss predictor since many formulas have the exact same

number of cache misses.

Due to the fact that we have made a number of approximations in our learning

7.3. OTHER VIEWS 145

algorithms, it is possible that some error has been introduced. Thus, we want the

ability to not only produce the formula or formulas that all have the best predicted

performance, but also a larger set of formulas that all have close to the optimal

predicted performance. In our code, the FastTree algorithm has been extended to

allow for a tolerance, producing split trees that have up to the tolerance more runtime

or cache misses than what is predicted to be optimal.

7.3 Other Views

Section 7.1 presented our original approach to the problem. This section expounds

on how our final algorithm can be viewed.

The algorithm we have presented is similar to solving an MDP. However, we did

not give a well defined transition function for this problem, and thus did not actually

frame it as an MDP. We do have a model of the system in that we know what actions

do and we know the cost function since it is represented by the learned predictor.

This allows us to compute the value function off-line.

Since a node’s value only depends on the possible subtrees that could be grown

underneath it, dynamic programming is an efficient method for computing the value

function. While both this method and the dynamic programming search method

discussed in Chapter 3 use a variation of the basic concept of dynamic programming,

there are significant differences between the two methods:

• The dynamic programming algorithms are performed over different feature

spaces. ComputeValues uses at least six features to describe a state in the

dynamic programming. The earlier dynamic programming search method only

used the transform and its size. That is, ComputeValues distinguishes between

nodes of the same size but in different locations in the split tree, whereas the

dynamic programming search method does not. Thus, ComputeValues uses

a much richer representation and makes a much weaker assumption in using

dynamic programming.

• Values in the dynamic programming algorithms are obtained in different ways.

ComputeValues uses a learned predictor to determine the values of nodes, while

the dynamic programming search method actually times split trees to determine

values. Thus, the method presented in this chapter pays a one time cost to run

146 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

some formulas to gather data to train a performance predictor. Once this is

done, the learned predictor can be used for many different transform sizes and

to make predictions much more quickly than actually timing formulas.

• ComputeValues only uses the learned predictor for getting values for leaves and

the runtime associated with internal nodes. The values of internal nodes are

computed by summing the values of the children. The dynamic programming

search method actually times all subtrees that it considers.

While ComputeValues considers all possible sets of children of a given state, it

is considerably more efficient than exhaustively constructing all possible split trees

and making performance predictions for them. By computing and memoizing values

of states, ComputeValues saves significant computation over an exhaustive search

approach. For example, suppose we split WHT (220) into WHT (28) and WHT (212).

Then if we were performing exhaustive search, we would have to recompute the value

for all possible subtrees of WHT (28) every time we choose a different possible subtree

for WHT (212) (and there are many possible trees for both). Since ComputeValues

memoizes its results, it only has to compute a value once for WHT (28) as the left

child of the root and once for WHT (212) as the right child of the root.

Thus, this problem is well suited for using dynamic programming. The problem

has overlapping subproblems in that the value for a particular state is repeatedly

needed as illustrated in the above example. Further, by using a powerful state space

representation that captured information about the location of a node in a split tree,

we could assume optimal substructure — that is, optimal solutions to the problem

contain optimal solutions to subproblems. For example, the best subtree for the

WHT (28) node in the previous example is largely independent of the subtree grown

for the WHT (212) node, but it is dependent on the fact that the WHT (28) node

was the left child of the WHT (220) root node. The features chosen capture this later

information but not the former, allowing optimal substructure to be assumed.

7.4 Evaluation

Evaluating our method is difficult since the optimal formula for larger sizes is un-

known. However, for the WHT, we can compare our algorithm against the best

formulas found by searches over limited portions of the space as we did to evaluate

7.4. EVALUATION 147

the predictors in Chapter 6. That is, for sizes 216 and smaller we exhaustively time

all binary WHT formulas with no leaves of size 21, and for sizes 217 and larger we ex-

haustively time all rightmost binary WHT formulas with no leaves of size 21. These

subspaces of WHT formulas contain the fastest formulas found from performing a

variety of different searches. For the FFT, we exhaustively time the defined space

and compare our results, but this is only possible up to about size 218 (which took a

considerable amount of time to collect the data).

We have used the decision tree learned in Section 6.2 that predicted cache misses

for WHT leaves and the regression trees learned in Section 6.4 that predicted runtimes

for WHT leaves. Further, we used the regression trees learned in Section 6.6 that

predicted runtimes for FFT nodes. Since these decision and regression trees were

trained on leaves from binary trees with no leaves of size 21, our algorithm only

constructs binary trees with no leaves of size 21. This can be easily extended by

training a decision or regression tree on a broader class of formulas.

7.4.1 Using the WHT Cache Miss Predictor

We begin with the results from using the learned decision tree that predicted cache

misses for WHT leaves on a Pentium. Since many split trees can have the same

number of cache misses, it is not surprising that many states have the same value,

and thus our algorithm produces several trees that it predicts to be fast. Table 7.3

displays three different results for different sizes.

The first column gives the transform size. The second column shows how many

formulas our method generated that it predicted to have the minimal number of cache

misses. All of the formulas constructed have a very similar structure, allowing for the

same number of formulas to be generated across many sizes. Note that this is a very

small number compared to the thousands of formulas of the complete search space.

The third column checks whether the fastest formula found by a limited exhaustive

search was among those constructed by our algorithm. We can see that, remarkably,

the learning algorithm generates the fastest known formulas for all sizes, including

sizes larger than the training size.

The last column shows the largest n where all n of the fastest formulas found

by a limited exhaustive search were also generated by our method. For example, for

size 220, our method constructed all of the fastest 16 formulas found by a limited

148 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

Table 7.3: Results from generating fast WHT formulas using Pentium data and a

cache miss predictor.

Number of Generated Top N Fastest

Formulas Included the Known Formulas

Size Generated Fastest Known in Generated

212 101 yes 77

213 86 yes 4

214 101 yes 70

215 86 yes 11

216 101 yes 68

217 86 yes 15

218 101 yes 25

219 86 yes 16

220 101 yes 16

exhaustive search, but did not generate the 17th fastest formula. For all sizes, our

method generates the fastest formula as well as many of the formulas that are very

close to the fastest.

Figure 7.3 compares the histograms of runtimes for WHT (220) formulas generated

by our method and for all rightmost binary WHT (220) formulas with no leaves of size

21. Notice the different scales along both axes. Clearly our method is constructing

formulas with runtimes amongst the fastest found by the more exhaustive method.

7.4.2 Using WHT Runtime Predictors

Next, we evaluate our method while it is using the learned regression trees that

predicted runtimes for WHT leaves. Here we evaluate the approach both on Pentium

and Sun data. We have used the same learned regression trees as were described and

evaluated in Section 6.4 and that were trained using data from 500 random WHT (216)

split trees with no leaves of size 21.

Because the learned regression trees predict real-valued runtimes instead of only

one of a few categories, most formulas have different predicted runtimes. So, our

generation method normally would only produce a single formula which it believes to

7.4. EVALUATION 149

1.5 2 2.5 3 3.5 4

x 10
8

0

20

40

60

80

100

120

140

160

180

Running Time in CPU Cycles

N
um

be
r

of
 F

or
m

ul
as

1.6 1.8 2 2.2 2.4

x 10
8

0

1

2

3

4

5

6

Running Time in CPU Cycles

N
um

be
r

of
 F

or
m

ul
as

(a) (b)

Figure 7.3: Histograms of runtimes for (a) all rightmost binary WHT (220) formulas

with no leaves of size 21 and (b) the formulas generated by our method for WHT (220)

using a cache miss predictor on Pentium data.

run as fast as possible. To evaluate, we have given our generation method a tolerance

and had it generate all formulas that it believes will have up to that tolerance more

runtime than the predicted fastest one. We began with a small tolerance and increased

it as necessary to generate as many formulas as necessary to perform the evaluations

described below.

Tables 7.4 and 7.5 show the results of using our method to generate fast WHT

formulas for a Pentium and for a Sun. The first column shows the size of the WHT

transform being generated. The second column shows when during the generation

process the best known formula (through a limited exhaustive search) is generated.

For example, on the Pentium (Table 7.4) the fourth WHT (220) formula generated by

our method is the fastest known formula, while the first three formulas generated by

our method were actually slower than this fourth one.

The third column shows how much slower the first generated formula is compared

to the fastest known formula. The fourth column shows how many of top 100 best

known formulas are generated if we allow our method to only generate 100 formulas.

Finally the fifth column shows the first best known formula that was not in the top

100 formulas generated.

These results are quite excellent, especially considering the fact that our method

only uses training data from one size (216 in this case). Our method always generated

150 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

Table 7.4: Evaluation of generation method using a WHT runtime predictor for a

Pentium.

Size

Generated

formula X is

best known

formula

First generated

formula is X%

slower than best

known formula

Number of top 100

best known formulas

in top 100 generated

formulas

First best known

formula not in top

100 generated for-

mulas

213 5 3.4% 69 19

214 4 3.0% 63 19

215 3 2.1% 68 16

216 4 1.7% 63 18

217 5 0.1% 54 36

218 4 2.0% 60 24

219 1 0.0% 44 36

220 4 1.7% 64 24

the fastest known formula within the first five formulas it generated for the Pentium

and within the first 50 formulas it generated for the Sun. This is excellent considering

the literally thousands or tens of thousands of formulas that are possible. Further,

except for a few sizes on the Sun, the very first formula our method generated had a

runtime within 6% or less of the fastest known formula. Again this is great considering

that the formulas of the same size can have a factor of 2 to 10 spread in runtimes.

Also, our method was able to generate about 50 of the top 100 fastest known

formulas even when our method was limited to generating only 100 formulas. For the

Pentium, our method was also able generate all of the top 15 formulas for each size

(often many more) while being limited to generating only 100 formulas. For the Sun,

our method was sometimes unable to generate the fourth fastest known formula for

a few particular sizes when being limited to generating only 100 formulas.

Overall, our method more easily generates fast formulas for the Pentium than

for the Sun, but still for the Sun our method is able to generate the fastest known

formula in the first 50 or less formulas that it produces. Thus, by timing a few

random formulas of one particular size to be used as training data, our method can

be used to generate very fast formulas for different transform sizes including larger

sizes. Often the very first formula it produces has a runtime very close to the fastest

known formula. Further, if one is willing to time a few additional formulas for each

7.4. EVALUATION 151

Table 7.5: Evaluation of generation method using a WHT runtime predictor for a

Sun.

Size

Generated

formula X is

best known

formula

First generated

formula is X%

slower than best

known formula

Number of top 100

best known formulas

in top 100 generated

formulas

First best known

formula not in top

100 generated for-

mulas

213 14 77.7% 20 6

214 20 12.8% 70 24

215 1 0.0% 68 38

216 2 4.3% 70 20

217 7 18.0% 47 10

218 38 5.9% 46 7

219 17 3.3% 46 4

220 47 1.4% 52 4

size, the fastest known formula can be found. While we have evaluated our method on

a Pentium and a Sun, our method should work across any architecture. Our method

does not depend on any observations specific to those machines.

7.4.3 Using FFT Runtime Predictors

Finally, we used the learned regression trees that predicted runtimes for FFT leaves

and internal nodes to generate fast FFT implementations. We use a similar evaluation

as used with the WHT runtime predictors, but this time evaluate across the three

different feature sets. We evaluate against an exhaustive search of all possible formulas

from the space we considered (see Section 6.5) for sizes 212 to 218. Recall that the

trained regression trees were trained only on data for FFTs of size 216.

Table 7.6 displays the results of using our generation method to construct fast FFT

implementations. With any of the feature sets, our method was able to construct the

fastest known FFT formula of sizes 214 to 216 within the first 10 formulas that it

generated. However, the Grandchildren feature set tends to outperform the other

feature sets. Using the Grandchildren feature set, our method was able to generate

the fastest known formula as its first produced formula for three of the sizes. Further,

for the other sizes, either the first generated formula was nearly as fast as the best

152 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

known or the best known formula was generated within the first several formulas

generated.

Table 7.6: Evaluation of generation method using FFT runtime predictors for a Pen-

tium. “Place” = generated formula X is best known formula. “Slower” = first

generated formula is X% slower than best known formula.

Original Children Grandchildren

Size Place Slower Place Slower Place Slower

212 58 37.5% 203 21.1% 16 14.3%

213 6 40.0% 86 49.8% 1 0.0%

214 3 12.4% 8 13.6% 2 13.6%

215 7 24.9% 6 20.6% 1 0.0%

216 9 24.5% 2 16.3% 1 0.0%

217 217 77.4% 533 18.7% 82 3.6%

218 165 2.4% 27 18.4% 11 6.5%

Again these results are quite excellent considering the huge search space of formu-

las and the wide spread of runtimes. Further, our method has only seen timings for

formulas of size 216 and yet can construct fast formulas for both smaller and larger

sizes.

Figure 7.4 compares our generation method against the search engine’s dynamic

programming search method for sizes 212 to 220. The search engine’s dynamic pro-

gramming used the default options (and thus was a 1-best DP) and searched over

the same space of possible formulas as our generation method. In this plot, we used

the Grandchildren feature set with our generation method. We plot separate lines

for the fastest timing out of the first one, twenty, and hundred formulas our method

generated. Exhaustive search is also displayed for sizes up to 218.

From the figure, it can be seen that our generation method is able to find faster

formulas than the dynamic programming method in the search engine for sizes up

through 219, even when our method is limited to only generating 20 formulas. While

performance of our generation method tends to degrade at size 220, it is still able to

find a formula within the first 100 generated that had a runtime within 5% as fast

as that found by dynamic programming. Further, this is still surprisingly good that

while only being trained on data from size 216 our method is able to still perform well

at size 220.

7.5. SUMMARY 153

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

12 14 16 18 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
Exhaust
Generate 1
Generate 20
Generate 100

Figure 7.4: Comparison of our generation method against dynamic programming and

exhaustive search.

7.5 Summary

We have introduced a method for learning to generate fast implementations of signal

processing algorithms. We demonstrated its effectiveness along several dimensions:

• It can be applied to different transforms (FFT and WHT).

• It can be applied across different machines (Pentium and Sun).

• It can be used with different performance measures (runtime and cache misses).

The results that we obtained were excellent, constructing the fastest known formula

within the first few generated formulas and often the first formula constructed was

very fast. Further, this method can generate fast formulas across many sizes including

larger sizes while only being trained on data from one particular size.

This method provides an alternative to searching as we described in Chapter 3.

Our method constructs fast formulas of a given transform size without even timing

a single formula of that particular size. Often the very first formula generated had a

runtime very close to the fastest known formula, but a small search over the top few

formulas generated could be performed to determine the fastest one.

154 CHAPTER 7. GENERATING OPTIMAL IMPLEMENTATIONS

Chapter 8

Related Work

This discussion of related work begins in Section 8.1 with some other related work

within the SPIRAL group. Section 8.2 focuses on other signal transform optimiza-

tion work. Then, Section 8.3 describes some related work in the similar area of linear

algebra. Broadening the scope, Section 8.4 discusses some related work in optimiza-

tion and modeling of more general numerical algorithms. Optimization has been of

great importance in compiler design, and Section 8.5 discusses some of the work in

automatically tuning the optimizations that a compiler applies. Next, Section 8.6

discusses work in using machine learning to guide search in combinatorial problems.

Finally, Section 8.7 discuss more general work in applying artificial intelligence to

signal processing.

8.1 Other SPIRAL Related Work

There has been a considerable amount of related work produced by others within the

SPIRAL research group. Much of this related work has already been discussed in this

thesis, much of it in Section 2.5 on the SPIRAL system. However, there is some other

related work in the SPIRAL research group that has not already been described.

Kumhom et al. (2000; 2001) describe a method for designing, optimizing and

implementing dimensionless FFTs (Auslander et al., 1997) on FPGAs. They fol-

low a process very similar to the SPIRAL system, but adapted for designing FPGA

hardware instead of implementations on standard desktop uniprocessors. They out-

line different possible implementations in a mathematical framework and provide a

155

156 CHAPTER 8. RELATED WORK

method for mapping these onto the FPGA hardware. Further, they conduct an ex-

haustive search over a particular limited subspace of possible implementations. Since

obtaining actual runtimes would require reconfiguring the FPGA for each implemen-

tation and doing so would be very time consuming, they use a model to determine

the performance of different implementations.

Park et al. (2000; 2001) introduce dynamic data layout as a method for improving

cache performance by reorganizing data layout in the middle of computations. While

performing a data reorganization during computation can be expensive, it can improve

cache performance so significantly that the overall runtime is improved. Determining

when to apply these reorganizations introduces a new degree of freedom and thus

another potential area to be searched. Results were shown for both the FFT and the

WHT.

8.2 Signal Transform Optimization

Most of the early work in signal transform optimization was concerned with minimiz-

ing the number of arithmetic operations necessary to compute a transform. However,

others have also considered optimizations that yield more efficient code on real com-

puter platforms while not changing the number of arithmetic operations.

8.2.1 Minimizing Arithmetic Operations

There has been a large amount of work in designing efficient algorithms for signal pro-

cessing transforms that minimize the number of arithmetic operations; for example,

(Heideman, 1988; Burrus, 1997; Tolimieri et al., 1997; Nussbaumer, 1982; Rao and

Yip, 1990). Most of these efficient algorithms factor a signal transform in a specific

way that leads to efficient computation in terms of the number of arithmetic oper-

ations that must be performed. These factorization methods can be represented by

break down rules that describe how a signal transform can be computed by combining

smaller or different signal transforms. This thesis builds off this work in that we use

these break down rules to generate formulas representing a given transform.

One interesting variant to these approaches has been to use binary decision dia-

grams and related structures to efficiently implement the WHT and other transforms

(Clarke et al., 1997; Zhao, 1996).

8.2. SIGNAL TRANSFORM OPTIMIZATION 157

Most of the prior signal processing optimization work has concentrated on simply

minimizing the number of arithmetic operations without consideration of how fast

those operations could be performed on a real machine. Most of the algorithms effi-

cient in arithmetic operations really represent a whole class of algorithms that can be

represented by different formulas. There is a large number of different formulas with

the exact same number of operations that represent the same transform. Because of

the complexity of modern processors, these formulas can have very different runtimes

despite having the same number of operations. This thesis is concerned with optimiz-

ing and modeling performance on real machines — not just minimizing the number

of operations but also adapting to the computer platform.

8.2.2 Optimizing Signal Transforms for Real Computers

There are many efficient implementations of the FFT that are available today, some

of which are listed at (Frigo and Johnson, 1998b). Some of these implementations

are hand tuned for particular platforms while others simply try to provide efficient C

or FORTRAN code. However, most of these implementations do not automatically

adapt their code to the particular platform that it is being run on.

Probably the most similar work to ours is that of Frigo and Johnson on FFTW

(Frigo and Johnson, 1998a; Frigo, 1999). FFTW is an adaptive package that produces

efficient Fast Fourier Transform (FFT) implementations across a variety of machines.

FFTW consists of two major components. The first component is a “codelet” gener-

ator that produces optimized sequences of unrolled code (called codelets) for specific

small sized FFTs. The codelet generator deterministically uses a set of well known

algorithms to generate the specified FFT. This is then simplified as much as possible

to reduce the number of operations, and a few transformations are performed that

lead to more efficient code across platforms. The second major component is the

planner and executor that determines and executes a strategy for combining the gen-

erated codelets to compute the desired FFT. The codelets are combined using only

the Cooley-Tukey FFT algorithm (Cooley and Tukey, 1965). A constrained dynamic

programming search is used to find a fast way to factor the desired FFT according

to the Cooley-Tukey. Dynamic programming assumes that the optimal implementa-

tion of a particular sized FFT is still optimal if used as a subpart of a larger FFT.

Adaptation to the particular machine being used is performed at this stage as actual

implementations are timed during the dynamic programming search.

158 CHAPTER 8. RELATED WORK

There is a number of similarities and differences between FFTW and our work:

• The WHT package described in Section 2.3 that we have used in some of the

experiments presented in this thesis is similar to FFTW in its use of small,

optimized, unrolled pieces of code. However, the more general SPIRAL system

does not use this notion, and allows the space of possible small, unrolled formulas

to be searched as well. The codelets generated by FFTW are the same across all

platforms and are not adapted to the particular platform as the general SPIRAL

framework allows. When we did construct leaves for the FFT in the SPIRAL

system in Section 6.5, we used the SPIRAL system to search for optimized

leaves tuned for the particular architecture being used.

• Both FFTW and our work have used search to find fast implementations adapted

to the particular machine being used. FFTW uses only dynamic programming

to search for optimal implementations. We have not only used a variety of dy-

namic programming variations, but have also developed other search methods.

• FFTW only uses the Cooley-Tukey algorithm for combining its codelets. This is

similar to the WHT package which only uses one specific rule for decomposing

WHTs into smaller WHTs. However, the general SPIRAL framework has a

number of different break down rules that may be applied when searching for

an optimal FFT.

• FFTW constrains dynamic programming to only search in the space of right-

most split trees, while our work has not been limited to this much smaller set

of split trees.

• As its name implies, FFTW explicitly considers just FFTs. While many other

transforms can be constructed with FFTs and thus computed with FFTW

(Vuduc and Dremmel, 2000), the general SPIRAL system has the advantage

of explicitly describing different transforms (even user specified ones) and dif-

ferent break down rules specific to those transforms.

Other researchers have extended FFTW in different ways. Vuduc and Dremmel

(2000) extended FFTW to also be able to compute DCT Type II.

Gatlin and Carter (2000) extended FFTW to allow it to unroll and interleave

loops implementing the butterfly operation. Finding the best amount of unrolling

8.3. LINEAR ALGEBRA ALGORITHM OPTIMIZATION 159

and interleaving for each node in the split tree introduces a new degree of freedom in

the algorithm. A search over a set of reasonable levels of interleaving is made at each

node while holding the level of interleaving at all other nodes fixed to some predefined

default. Then, the best level of interleaving found for each node individually is used

in one split tree as the best possible. Thus, Gatlin and Carter assume that the global

optimum can be found by doing local searches at each node. We have not made this

assumption and in fact provide a wide variety of search methods for trying to find an

optimal implementation.

UHFFT is another package for computing FFTs (Mirković and Johnsson, 2001).

While not sharing any code, UHFFT is basically FFTW with a few extensions.

UHFFT extends the break down rules that can be used to combine codelets be-

yond Cooley-Tukey to two others: split-radix and prime factor. They also seem to

use a model to find fast implementations based on performance data of the codelets,

but this is unfortunately not explained in detail.

8.3 Linear Algebra Algorithm Optimization

In the closely related field of linear algebra, optimization has followed a somewhat

similar development as in signal processing. The Basic Linear Algebra Subprograms

(BLAS) (Lawson et al., 1979; Dongarra et al., 1988, 1990) has become a standard

library of basic linear algebra routines, consisting of vector and matrix operations.

Computer platform vendors are encouraged to develop highly tuned implementations

of the BLAS for their particular platform, allowing applications that use the BLAS to

be efficient across a variety of platforms. However, there has been some more recent

work in developing automatic methods for finding fast implementations for the BLAS.

Both PHiPAC (Bilmes et al., 1997, 1998) and ATLAS (Whaley and Dongarra,

1998) search for optimal implementations of matrix multiplication, and PHiPAC can

also search for optimal implementations of a number of other linear algebra algo-

rithms. Both approaches have developed a set of parameterized linear algebra al-

gorithms. This constitutes a significant portion of their contribution and is roughly

similar to the known factorizations of signal processing algorithms. PHiPAC and AT-

LAS then perform optimization by searching over the space of possible parameters to

these algorithms. Generally, several “exhaustive” searches are run on small portions

of the search space, guided by a pre-specified overall search. While their work requires

160 CHAPTER 8. RELATED WORK

a fair bit of intelligent selection of portions of the parameter space to search over, our

work has concentrated more on developing good search algorithms that consider the

entire space of possible implementations.

Using PHiPAC, Vuduc et al. (2001; 2000) use machine learning and statistical

modeling to optimize matrix multiplication. Specifically, they use PHiPAC to gen-

erate three different implementations of matrix multiplication. Then they wish to

choose the best implementation given the sizes of the matrices to be multiplied. They

train up three different methods to predict the fastest implementation: (1) a support

vector machine, (2) a regression model, and (3) a novel cost minimization method.

Their use of machine learning to develop models of performance is similar to ours.

However, we consider literally thousands of different implementations, while they only

choose between three. On the other hand, they learn across all of the dimensions of

the input matrices, while we only learn across a single transform size.

Also, Vuduc et al. (2001; 2000) present an interesting early stopping criterion for

random search based on a statistical test. This statistical test allows random search

to be stopped early when it is sufficiently likely that the search has already found

a sufficiently fast implementation (where sufficiently likely and sufficiently fast can

be user defined). This test could potentially be implemented in the SPIRAL sys-

tem’s random search method. Unfortunately, the method assumes a uniform random

distribution over generated random implementations, which is not the case with the

SPIRAL system’s random search method.

SPARSITY is a system for optimizing code for sparse matrix multiplication (Im,

2000; Im and Yelick, 2001). In their optimization for register reuse, they have devel-

oped by hand a performance model which requires a few parameters to be set based

on performance data and an analysis of matrices typical to the problem at hand.

8.4 Numerical Algorithm Optimization and

Modeling

Beyond the signal processing and linear algebra fields, considerable work has been

invested in optimizing a broad range of numerical algorithms, for example (Press

et al., 1992; Dongarra and Grosse, 2000). Again, much of this work has focused

on developing efficient algorithms by hand. However, there has been some effort in

8.4. NUMERICAL ALGORITHM OPTIMIZATION AND MODELING 161

developing adaptable libraries, some of which are outlined in (Veldhuizen and Gannon,

1998).

Lagoudakis and Littman (2000) use reinforcement learning to learn to select be-

tween algorithms for solving sorting or order statistic selection problems. For each

of these problems, they consider using two different algorithms that perform better

in different portions of the input space. Again, this is considerably different from

our problem where there is a very large number of possible implementations. Their

method depends on being able to select a different algorithm at each recursive step

and to gather runtimes as the algorithm is being computed. They use reinforcement

learning to learn which algorithm to select based on the input parameters for the cur-

rent recursive call. In the SPIRAL framework, it is not easy to gather runtimes and

choose break down rules in the middle of computing a particular transform. However,

we likewise have borrowed concepts from reinforcement learning to construct fast im-

plementations of signal transforms, but we have done this off-line by using learned

performance models.

Brewer (1995; 1994) uses statistical modeling to optimize algorithms for parallel

machines. In Brewer’s framework, the user provides a few different implementations to

solve the same problem. This is in sharp contrast to the very large number of different

signal processing implementations available. Given a few different implementations,

Brewer’s system then runs the implementations with different input parameters. The

system then uses linear regression to predict that implementation’s runtime across

different inputs. The terms or features that are used in the linear regression must

be specified by the user and are based on the problem inputs. Then, given a specific

set of problem inputs, the system chooses to use the implementation whose model

predicts the fastest runtime. While we also have developed models of performance,

we have developed the models along different dimensions. With so few different

implementations, Brewer develops a separate model for each implementation, but

the model predicts along different problem inputs. Likewise, we have also developed

models that predict well across different transform sizes. However, our work has

also developed models of performance across the different implementations of the

same transform so that a single model could predict the runtime of all the different

implementations.

Gatlin and Carter (1999) describe what they call an architecture-cognizant ap-

proach to divide and conquer algorithms. They specifically give results for matrix

162 CHAPTER 8. RELATED WORK

multiply and 2D Point Jacobi. They consider two or three different alternatives that

can be chosen at each level in the divide and conquer algorithm. They assume that

at least one of these alternatives is what they call an isolator variant which allows

searching for fast implementations of any subtree below the variant without consid-

ering alternatives for other portions of the tree. To search for a fast implementation,

they then use a modified form of dynamic programming that takes into account these

isolator variants. Unfortunately, in our problem, we do not have isolator variants

since runtime and even the set of legal split trees are dependent on the parent chain

of any node in our split trees.

Mitchell et al. (2001) run a number of benchmarks on a given machine. Using

this performance information, regression is then used to instantiate the parameters

of pre-defined performance models. Each of these models correspond to a different

pattern of memory access. Given a piece of code to be optimized, a static analysis of

its array reference patterns is performed. These array reference patterns are matched

to their corresponding performance models. Guided by the performance models, legal

transformations of the access patterns are considered. In the experiments shown they

only choose between two different transformations.

8.5 Tuning Compiler Optimizations

While we have focused on optimizing implementations from a particular field, some

similar research has been conducted in trying to find the right compiler optimizations

to apply to arbitrary code so as to produce the most efficient executable. Some of

the same issues are raised in that there are many different compiler optimizations

or transformations that can be applied. Different choices of these optimizations can

produce code with significantly different runtimes. This section surveys some of the

efforts that have attempted to adapt their choice of compiler optimizations to a given

architecture based on runtime feedback.

To learn to schedule straight-line code for an Alpha 21064 architecture, Moss et al.

(1997) describe a method that uses supervised learning and McGovern and Moss

(1998) describe a related method that uses reinforcement learning. They consider

different legal re-orderings of the instructions within a single basic block, using a

greedy scheduler that tries to find the best next instruction to add to the partially

grown schedule. They define the learning task to determine a preference between

8.5. TUNING COMPILER OPTIMIZATIONS 163

two candidate instructions to be added next to the schedule. With such a predictor

learned, they could find the best next instruction to schedule by asking it to predict

for each pair of possible instructions that could be scheduled next.

This work is similar to ours in that they use machine learning techniques to try

to optimize a piece of code. However, their framing the learning task to learn a

preference between pairs of alternatives differs from our approach to learn to predict

performance for alternatives. They assume that at any point in the schedule there are

relatively few possible instructions to consider, while we are forced to consider many

different ways to split a node in a split tree. Like our work, one of the most important

and challenging problems they face is to develop a feature set for this scheduling task.

One further contrast to our work is that these code schedulers are both trained

and tested on runtime information collected from a simulator. This simulator does

not account for any stalls due to cache or TLB misses. We have always evaluated

our work against actual runtimes collected on real machines. Cache performance is

of great concern in our application area and can not be ignored.

GAPS uses a genetic algorithm approach to optimizing the compilation of Fortran

programs for parallel architectures (Nisbet, 1998). The genetic algorithm specifically

considers different optimization transformations that can be applied and can be ap-

plied in different orders. Similar to STEER, GAPS uses domain specific knowledge

in its evolutionary operators. Further, GAPS actual compiles code and runs it to

evaluate individuals just as STEER does.

Iterative compilation is used to optimize which transformations are applied during

complication of different applications for an embedded processor (Kisuki et al., 2000;

Bodin et al., 1998a). This work compiles different implementations of the same source

code, searching for the fastest one. Specifically, a grid search is conducted over possible

values for parameters to each of the transformations. This type of search was not

feasible in our problem domain since their was no smooth space of parameters to be

tuned but rather simply a set of different formulas to be searched through.

GCDS chooses between different transformations to apply to different blocks of

code, trying to optimize for both speed and code size for an embedded processor

(Bodin et al., 1998b). To do this, GCDS uses a pre-defined model which has param-

eters that are set from code profiling. While we have looked at optimizing different

performance measures, we have not tried to optimize multiple performance measures

simultaneously like GCDS.

164 CHAPTER 8. RELATED WORK

Chow and Wu (1999) use fractional factorial design to control their search over

different compiler options to use on an IA64. They consider nine compiler options

which can either be turned on or off. This provides them a larger search space to

consider than many other approaches consider, but still is relatively small (29) in

comparison to our many thousands of different implementations.

8.6 Combinatorial Problems and

Machine Learning

Combinatorial problems such as satisfiability, the traveling salesman problem, and

graph coloring present an interesting challenge to design algorithms that are as effi-

cient as possible for as many instances as possible. We are not aware of any approaches

to combinatorial problems that try to tune themselves to the given computer archi-

tecture. Instead, there has been a considerable amount of work in trying to reduce

the total number of nodes visited in the search tree explored since such a reduction

can have a huge impact on runtime. While much of the work in this area has focused

on developing good heuristics, this section focuses on work that automatically tunes

an approach to the combinatorial problem for a given instance or class of instances.

STAGE learns to improve search performance for local search algorithms for a wide

variety of optimization problems (Boyan and Moore, 1998; Boyan, 1998). Local search

algorithms such as hill climbing and simulated annealing impose a neighborhood

relation on different potential solutions or states. Local search algorithms begin with

one state and then consider other neighbors, looking for either real solutions or better

quality solutions. STAGE learns an evaluation function that predicts the outcome

of applying a particular local search algorithm starting from different states. A hill

climbing search then uses this evaluation function to find a good state in which to start

the original local search algorithm. This process is repeated, each time retraining the

evaluation function on the new trajectory taken by the local search algorithm starting

from the newly found good start state. Two important steps are left to the user: (1)

defining a good set of features to use in learning the evaluation function, and (2)

choosing a learning method to learn the evaluation function. It would be interesting

to see how STAGE would perform at improving the SPIRAL system’s hill climbing

search method, but defining a good set of features may be difficult.

8.7. ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING 165

Zhang and Dietterich (1995; 1996) use reinforcement learning to learn how to

control search for job-shop scheduling. To solve the job-shop scheduling problem,

they use an iterative improvement algorithm that has only 2 main improvements that

can be applied to the current potential solution. However, these improvements can

be applied to different subparts of the potential solution. They use TD(λ) to learn a

value function on different states or potential solutions. This value function is then

used with a one-step look-ahead random-sample greedy search to determine the next

improvement to make. One of the important steps in their work is to define a good

set of features to describe a state or potential solution in this domain. They perform

training on smaller sized instances and are able to get good results applying their

learned value function to larger sized instances.

Moll et al. (1999; 2000) describe two different variations on the previous two works

(those of Boyan and Moore and of Zhang and Dietterich). One of these variations

tries to combine the best of both of the previous two methods.

Adapting their previous work in algorithm selection (Lagoudakis and Littman

2000; also discussed in Section 8.4), Lagoudakis and Littman (2001) use reinforce-

ment learning to choose between seven different branching rules when trying to solve

#SAT, the problem of finding the number of satisfying assignments for a given boolean

formula. Branching rules select which literal to assign a value next during the search

and thus can greatly impact the size and shape of search tree. Again one of the chal-

lenging problems they faced was determining features to use to describe the current

state of the search. Unfortunately, they had difficulty in this direction and choose to

only use one simple feature, the number of variables remaining to be assigned. They

then use reinforcement learning to learn to choose between the different branching

rules given the number of variables.

8.7 Artificial Intelligence and Signal Processing

Artificial intelligence has been widely used in the field of signal processing. However,

most of this work has been applying artificial intelligence techniques to signal pro-

cessing applications instead of optimizing signal transforms. For example, artificial

intelligence has been used in filtering, imaging processing, speech processing, and

pattern recognition. Neural networks are a commonly used technique as evidenced

by the ongoing IEEE Workshop on Neural Networks for Signal Processing and (Luo

166 CHAPTER 8. RELATED WORK

and Unbehauen, 1997). Additionally, evolutionary algorithms have been applied as

well, for example (Sharman et al., 1995).

Chapter 9

Conclusions and Future Work

The goal of this thesis has been to develop methods to automate the modeling and

optimization of the performance of signal transforms. We have been particularly

interested in developing methods that use learned performance models to aid in opti-

mizing performance so that a fast implementation can be obtained more quickly than

with standard search methods. To do this, we have focused on learning to control the

generation of formulas, learning to make the best choices in how to factor a transform.

We have developed a powerful technique for generating optimized implementations

of signal transforms by using automatically learned performance models. Without

timing a single formula of a given transform size, our method is able to construct fast

formulas for a given transform by making good choices in how that transform should

be factored. These constructed formulas usually have runtimes within 6% of the

fastest formula ever found and often this fastest formula is one of the first 50 formulas

constructed. Thus, this generation method eliminates the need of search methods to

time a large number of formulas. Instead, for a given transform our method times a

few formulas of one size to train machine learning techniques to automatically learn

to predict performance. With these performance models, our method then learns to

control the generation of formulas of the given transform across both smaller and

larger transform sizes.

We have tested this generation method in several different situations, but there

also remains work to extend it to others. For each new transform, a new performance

model must be automatically learned. We have done this for two different transforms,

namely the WHT and the FFT. Likewise, for each new computing platform, a new

167

168 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

performance model must also be automatically learned. We have tested our method

on both a Pentium and a Sun and would expect that it should immediately work on

any uniprocessor. Given a performance model for a given transform and computing

platform, our method is able to immediately generate fast implementations across

many sizes.

To provide performance models for this generation method, we used machine

learning techniques to automatically learn to predict performance of signal transform

implementations. With performance data being easily collected by simply running a

set of formulas, the difficult problems were defining the appropriate machine learning

task and choosing a good set of features to describe signal transform factorizations.

We contributed the idea of framing the machine learning task to learn to predict

performance for individual nodes in split trees. While the predictors were trained

on this task, they could still accurately predict for entire formulas. Also, this task

allowed them to learn to predict accurately across transform sizes. Further, we have

contributed several different feature sets to describe signal transform split trees and

individual nodes within those split trees.

Prior to developing our generation method that constructs fast signal transform

implementations, we had implemented the search engine and its variety of different

search methods. These provided an opportunity to explore the search space of several

different transforms. While the generation method has the advantage of being able to

construct fast implementations for many transform sizes without performing a search,

the search engine has the advantage currently of being able to optimize many different

transforms including new, user-defined transforms. The generation method has only

been tested with the FFT and WHT, and other transforms may require developing

new features.

9.1 Contributions

This thesis makes three major contributions:

1. A search engine with several different search methods for finding fast

implementations of a variety of signal transforms.

We have developed a search engine within the SPIRAL system for optimizing a

wide variety of signal transforms, including new user-specified transforms. The

9.1. CONTRIBUTIONS 169

search engine includes several different search methods, including exhaustive

search, dynamic programming, random search, hill climbing search, STEER,

and timed search. The variety of search methods allow the large search space

to be explored in different ways, with different search methods outperforming

the others depending on the chosen transform and size. Most of these search

methods can search over both formulas and compiler options, allowing the search

methods to fully tune the resulting implementations.

We developed a new search technique for this domain, STEER, which uses a

stochastic evolutionary approach to optimize signal transforms. STEER out-

performs all other search methods at finding fast implementations of small sized

DTTs. The timed search method allows a user to easily apply several of the

different search methods to finding a fast implementation while limiting the

search to a specified length of time.

2. Automatic methods for modeling and predicting performance of sig-

nal transforms.

We have developed methods to automatically model the performance of sig-

nal transforms. We looked at trying to explicitly model both the performance

of entire formulas and then the performance of individual nodes within split

trees. We found that modeling performance of entire formulas only worked well

for small sizes, while modeling performance of individual nodes worked well

at larger sizes. Our performance models for individual nodes could be used

to predict performance for entire formulas by summing predictions made for

individual nodes.

These models were automatically learned by providing machine learning tech-

niques with performance data collected on a real machine by running different

implementations. We have developed and analyzed a number of different feature

sets for describing FFT and WHT formulas and their split tree nodes.

By modeling performance of individual split tree nodes, we have obtained excel-

lent prediction results. We have shown this to be effective for (1) different trans-

forms, (2) different machines, and (3) different performance measures. Further,

this method can be trained on data from one transform size and still predict

very well across many sizes, both larger and smaller.

3. A method for automatically generating fast implementations.

We have developed a method that can automatically generate fast FFT and

170 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

WHT implementations. This method uses the learned performance models for

individual split tree nodes. The very first formula that this method produces

often has a runtime that is within 6% of the runtime of the fastest known

formula. Further, this method is able to construct the fastest implementations

known usually within the first 50 formulas that it generates. These results are

particularly good for several reasons:

• There is a very wide spread of runtimes for a transform, often a factor of

2 to 10, and yet this method can often get within 6% of the fastest known

with its very first formula constructed.

• There are literally tens of thousands of formulas in the search spaces our

method considers for some transform sizes, and yet this method can usually

generate the fastest known formula within the first 50 that it produces

(often within much fewer than 50).

• This method never sees a timing for formulas other than those of size 216

and yet it can construct fast formulas for both larger and smaller sizes,

from 212 to 220.

We have demonstrated that this generation method can work well on different

machines (Pentium and Sun), with different transforms (FFT and WHT), and

with different performance measures (runtime and cache misses).

9.2 Future Directions

There are many interesting ways in which this work could be extended. We begin

with some general extensions to the overall contributions of this thesis. Many of

these extensions would influence both the modeling and optimization as well as the

entire SPIRAL system. Then, we discuss more specific extensions toward particular

contributions of this thesis.

9.2.1 General Extensions

In this thesis, we have focused on standard uniprocessor workstations. It would be

interesting to extend this work to multiprocessors or to specialized hardware design.

On multiprocessors, there may be many significantly different ways to implement the

9.2. FUTURE DIRECTIONS 171

same factorization in code. These new degrees of freedom may require extending our

optimization and modeling techniques to account for them. When optimizing signal

transforms for special purpose hardware, it may be necessary to not only consider

runtime, but also a number of other performance measures such as code size, energy

consumed, number of gates used, or amount of wiring necessary.

All of this work has assumed that the user has an arbitrary input vector. However,

for many applications, the input vectors used may be highly structured allowing for

even faster implementations. It is not clear how this might influence the optimization

and modeling of transforms tuned to particular classes of input vectors.

This work has focused on signal transforms without respect to the context in which

they are run in real applications. The state of the machine and particularly the state

of the cache at the time the transform starts computing could potentially make a

significant impact on the performance of different implementations. Analyzing real

applications may also provide an opportunity to extend this work to other signal

processing algorithms beyond just transforms.

Chapter 8 on related work discussed many different fields in which automated

optimization have been applied. It would be interesting to see how easily this work

could be extended to any of those application fields or many others.

9.2.2 Search Engine Extensions

There are many different extensions that could be made to the search engine. We

begin with some extensions to the existing search methods and then discuss broader

issues about the entire search engine.

Random split tree generation does not produce trees uniformly across all possible

trees. Having a uniform random generation method may be preferable to the current

method. However, this requires determining the number of all possible subtrees for

each of the children of a given transform and size. With a uniform random tree

generation method, it would then be interesting to extend our random search method

with the early stopping method suggested by Vuduc et al. (2001).

While we have implemented a hill climbing search method, we have not spent

much time tuning its default options. Further, it could be fairly easily extended to

be simulated annealing, allowing for split trees with worse runtimes to be chosen

occasionally. Extending the hill climbing search method to use STAGE (Boyan and

172 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Moore, 1998) to aid in optimization would also be interesting, although developing

the right set of features might be difficult.

In the search engine, STEER has a very limited set of mutations. One of the

difficulties of trying to find new or better mutations is that they need to work with

any transform or break down rule that is defined to the SPIRAL system. One method

around this would be to design mutations that only could be applied when certain

conditions were met for the transform or break down rule in question. STEER’s

default options also have not been well tuned within the search engine. It would be

interesting to see how changing options such as population size, number of mutations

and cross-overs, and number of generations influences STEER’s performance.

An interesting question would be whether seeding STEER’s initial population with

good split trees would be beneficial. These good split trees could come from a previous

run of dynamic programming or from the generation method. However, sometimes

seeding a genetic algorithm with good individuals can cause it to perform poorly

because diversity is quickly eliminated from the population as the good individuals

strongly dominate the random ones.

Another possible extension to STEER would be to allow it to evolve several pop-

ulations simultaneously. These different populations could consist of the same trans-

form but across different sizes, or even different transforms and sizes. This would

allow a good split tree found for one transform and size to be crossed-over with a

subtree in a larger sized transform, for example.

While the search engine already contains quite a few different search methods,

there may still be others worth trying. One idea would be to profile different rules

while generating random split trees. Several random split trees could be generated

and timed such that every possible rule and set of immediate children is generated

for the root. After enough data is collected, then split trees could be generated such

that the root is more likely to be split with rules and into immediate children that

have been found through the profiling to have faster runtimes. At this stage, then

profiling could continue at the level of the immediate children of the root, and the

process repeated.

While the search engine in the SPIRAL system has only been tested for optimizing

runtimes, it should work immediately for any other performance measure. However,

it is not clear how this might influence the relative performance of the different search

methods. Further, it would be interesting to extend the system to try to optimize

9.2. FUTURE DIRECTIONS 173

multiple performance measures simultaneously.

Currently most of the search methods can search over both local and global un-

rolling options to the SPL compiler. Further, the user can specify a set of options

to pass to the native C or Fortran compiler. However, it is non-trivial to extend

the search methods to search over other SPL compiler options or to search over any

options to the native compiler. One of the difficulties in doing this is that different

compiler options require different types of searches by the various search methods.

For example, how dynamic programming searches over local unrolling is very different

from how it searches over global unrolling, and both of these are different than how

STEER searches over each of them. It may be possible, though, to come up with

categories that most options fall into and then augment each of the search methods

to correctly search over any option specified for each of the different categories.

9.2.3 Modeling and Generation Extensions

Many of the extensions that would be desirable for our modeling work would likewise

be desirable for our generation of fast implementations, largely due to the fact that

the generation method is heavily dependent on the predictors that it uses.

All of our previous modeling and generation work has focused on particular trans-

forms and took advantage of particular properties of those transforms. Extending

this work to handle a broader range of transforms or even arbitrary user-specified

transforms would be desirable. However, this presents some challenges. For example,

the DTTs are considerably different from the FFT and the WHT in that they have

many different break down rules for one transform and yet those break down rules

have no degrees of freedom in application (such as how to factor the size). This would

require investigating into different feature sets.

Since the SPIRAL system has more break down rules for the FFT than just the

Cooley-Tukey, it would be desirable to extend our modeling work to consider these

other rules. This would require incorporating features that indicate what rule is used

at different nodes. Further, at least one of the break down rules for the FFT factor

it into DTTs. Our feature sets have assumed binary split trees, but both the WHT

and the FFT can have non-binary split trees.

Extending our modeling and generation methods to work without the use of spe-

cially designed leaves would be desirable. One of the reasons that we created leaves

174 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

for the FFT was that it was difficult to get accurate timings for very small transforms,

particularly size 21. It may be possible to get accurate times by other methods or

to compensate in some way for the inaccurate timings that are obtained. Changing

exactly what is modeled may also alleviate the need for timings of such small sizes;

for example, with the Grandchildren feature set, nodes with grandchildren that are

of size 21 could account for the runtime of the node’s entire subtree.

All of the models discussed in this thesis were trained on and predicted for one

particular transform and machine. Learning across different transforms and machines

so that the learned model could still predict well given a new transform and/or new

machine would be very exciting but probably rather difficult. This would require

new features that describe transforms and their associated break down rules and new

features that would describe different architectures. Being able to collect enough data

to learn across different transforms or different machines could be difficult. To collect

data across different architectures, it may be possible to use a good simulator where

different architectural parameters can be changed (e.g., cache size). Having a model

that could predict well across different architectural parameters could also be useful

in guiding the design of new architectures.

In this thesis, we used basically one training methodology without exploring how

variations could impact performance for the predictors or the generation method. It

would be good to minimize the amount of data collected for training, and so studying

the impact of training set size on performance would be useful. Further, it would be

interesting to know if training with data across several transform sizes could allow

the predictor to perform well with less training data. It could also be useful to have

a method that could design the particular formulas that it timed, having it attempt

to maximize the information gained with each formula timed.

Finally, as an engineering task, integrating the learning and generation method

into the SPIRAL system would allow these methods to be more widely used.

9.3 Concluding Remarks

This thesis has shown the usefulness of machine learning techniques in optimizing

signal transform implementations. One of the major contributors to this success is the

fact that runtime performance data can be easily collected for a set of different signal

transform implementations. This ability to obtain runtime performance data allowed

9.3. CONCLUDING REMARKS 175

for feedback during search and provided data to train machine learning techniques to

be able to automatically learn to predict performance for different implementations.

Further, defining a good machine learning task and a good set of features were key

to being able to accurately model performance. Finally, we have developed a novel

method for controlling the generation of formulas to immediately produce the fastest

ones without even timing a single formula of the given size.

176 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Bibliography

L. Auslander, Jeremy R. Johnson, and R. W. Johnson. Automatic implementation of

FFT algorithms. Technical Report 96-01, Department of Mathematics and Com-

puter Science, Drexel University, Philadelphia, PA, June 1996.

L. Auslander, Jeremy R. Johnson, and R. W. Johnson. Dimensionless fast Fourier

transforms. Technical Report DU-MCS-97-01, Department of Mathematics and

Computer Science, Drexel University, Philadelphia, PA, 1997.

K. G. Beauchamp. Applications of Walsh and Related Functions. Academic Press,

1984.

Rudolf Berrendorf and Bernd Mohr. PCL — The Performance Counter Library, 2000.

http://www.fz-juelich.de/zam/PCL/.

Jeff Bilmes, Krste Asanović, C. Chin, and Jim Demmel. Optimizing matrix multiply

using PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In

Proceedings of International Conference on Supercomputing, pages 340–347, July

1997.

Jeff Bilmes, Krste Asanović, C. Chin, and Jim Demmel. The PHiPAC v1.0 matrix-

multiply distribution. Technical Report TR-98-35, International Computer Science

Institute, Berkeley, CA, 1998.

F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and E. Rohou. Itera-

tive compilation in a non-linear optimisation space. In Workshop on Profile and

Feedback-Directed Compilation, in conjunction with the International Conference

on Parallel Architectures and Compilation Techniques (PACT98), 1998a.

Francois Bodin, Zbigniew Chamski, Christine Eisenbeis, Erven Rohou, and André

Seznec. GCDS: A compiler strategy for trading code size against performance in

177

178 BIBLIOGRAPHY

embedded applications. Technical Report RR-3346, Institut National de Recherche

en Informatique et en Automatique (INRIA), 1998b.

J. A. Boyan. Learning Evaluation Functions for Global Optimization. PhD thesis,

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1998.

J. A. Boyan and A. W. Moore. Learning evaluation functions for global optimization

and boolean satisfiability. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAI), 1998.

Eric A. Brewer. Portable High-Performance Supercomputing: High-Level Platform-

Dependent Optimization. PhD thesis, Massachusetts Institute of Technology, 1994.

Eric A. Brewer. High-level optimization via automated statistical modeling. In Pro-

ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 80–91, 1995.

C. S. Burrus. Notes on the FFT, 1997. http://www-dsp.rice.edu/research/fft/fftnote.ps.gz.

S.C. Chan and K.L. Ho. Direct methods for computing discrete sinusoidal transforms.

IEE Proceedings, 137(6):433–442, 1990.

K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler op-

timizations. In Proceedings of the 2nd workshop on Feedback-Directed Optimization,

1999.

E. M. Clarke, M. Fujita, and W. Heinle. Hybrid spectral transform diagrams. Tech-

nical Report CMU-CS-97-149, Computer Science Department, Carnegie Mellon

University, 1997.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

Fourier series. Mathematical Computation, 19:297–301, 1965.

J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear

algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1–17,

1990.

J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of

FORTRAN basic linear algebra subroutines. ACM Transactions on Mathematical

Software, 14(1):1–17, 1988.

BIBLIOGRAPHY 179

Jack Dongarra and Eric Grosse. Netlib, 2000. http://www.netlib.org.

S. Egner and M. Püschel. AREP – Constructive Representation Theory and Fast

Signal Transforms. GAP share package, 1998.

http://www.ece.cmu.edu/∼smart/arep/arep.html.

M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT.

In Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing, volume 3, pages 1381–1384, 1998a.

Matteo Frigo. A fast Fourier transform compiler. In Proceedings of the 1999 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 169–180, 1999.

Matteo Frigo and S. G. Johnson. benchFFT FFT software, 1998b.

http://www.fftw.org/benchfft/doc/ffts.html.

GAP. GAP – Groups, Algorithms, and Programming. The GAP Team, University of

St. Andrews, Scotland, 1997. http://www-gap.dcs.st-and.ac.uk/∼gap/.

Kang Su Gatlin and Larry Carter. Architecture-cognizance divide and conquer algo-

rithms. In Proceedings of Supercomputing ’99, 1999.

Kang Su Gatlin and Larry Carter. Faster FFTs via architecture-cognizance. In Pro-

ceedings of the International Conference on Parallel Architectures and Compilation

Techniques (PACT 2000), 2000.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley, Reading, MA, 1989.

Gavin P. Haentjens. An investigation of Cooley-Tukey decompositions for the FFT.

Master’s thesis, Department of Electrical and Computer Engineering, Carnegie

Mellon University, Pittsburgh, PA, May 2000.

M. T. Heideman. Multiplicative Complexity, Convolution, and the DFT. Springer-

Verlag, New York, 1988.

Eun-Jin Im. Optimizing the Performance of Sparse Matrix-Vector Multiplication.

PhD thesis, Department of Computer Science, University of California at Berkeley,

Berkeley, CA, 2000.

180 BIBLIOGRAPHY

Eun-Jin Im and Katerhine Yelick. Optimizing sparse matrix computations for register

reuse in SPARSITY. In Proceedings of the International Conference on Computa-

tional Science, Lecture Notes in Computer Science 2073, pages 127–136. Springer-

Verlag, 2001.

Howard W. Johnson and C. Sidney Burrus. The design of optimal DFT algorithms

using dynamic programming. In IEEE Transactions on Acoustics, Speech, and

Signal Processing, volume 31, pages 378–387, April 1983.

J. Johnson, R. Johnson, D. Padua, and J. Xiong. Searching for the best FFT formulas

with the SPL compiler. In Proceedings of the 13th International Workshop on

Languages and Compilers for Parallel Computing, 2000.

Jeremy Johnson and Markus Püschel. In search of the optimal Walsh-Hadamard

transform. In Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, pages 3347–3350, 2000.

T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and H.A.G. Wijshoff. Iterative com-

pilation in program optimization. In Proceedings of the 8th International Workshop

on Compilers for Parallel Computers (CPC2000), pages 35–44, 2000.

Pinit Kumhom. Design, Optimization, and Implementation of a Universal FFT Pro-

cessor. PhD thesis, Drexel University, Philadelphia, PA, 2001.

Pinit Kumhom, Jeremy R. Johnson, and Prawat Nagvajara. Design, optimization,

and implementation of a universal FFT processor. In Proceedings of the 13th Annual

IEEE International ASIC/SOC Conference, pages 182–186, 2000.

Michail G. Lagoudakis and Michael L. Littman. Algorithm selection using reinforce-

ment learning. In Proceedings of the Seventeenth International Conference on Ma-

chine Learning, pages 511–518, San Francisco, 2000. Morgan Kaufmann.

Michail G. Lagoudakis and Michael L. Littman. Learning to select branching rules in

the dpll procedure for satisfiability. In Electronic Notes in Discrete Mathematics

(ENDM), Volume 9, LICS 2001 Workshop on Theory and Applications of Satisfi-

ability Testing (SAT 2001), 2001.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms

for FORTRAN usage. ACM Transactions on Mathematical Software, 5:308–323,

1979.

BIBLIOGRAPHY 181

Fa-Long Luo and Rolf Unbehauen. Applied Neural Networks for Signal Processing.

Cambridge University Press, 1997.

D. Maslen and D. Rockmore. Generalized FFTs – A survey of some recent results.

In Proceedings of the 1995 DIMACS Workshop in Groups and Computation, pages

183–238, 1995.

Amy McGovern and Eliot Moss. Scheduling straight-line code using reinforcement

learning and rollouts. In Proceedings of the 11th Neural Information Processing

Systems Conference (NIPS ’98), 1998.

Dragan Mirković and Lennart Johnsson. Automatic performance tuning in the uhfft

library. In Proceedings of the International Conference on Computational Science,

Lecture Notes in Computer Science 2073, pages 71–80. Springer-Verlag, 2001.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,

1996.

Nick Mitchell, Larry Carter, and Jeanne Ferrante. A modal model of memory. In Pro-

ceedings of the International Conference on Computational Science, Lecture Notes

in Computer Science 2073, pages 81–96. Springer-Verlag, 2001.

R. Moll, A. G. Barto, and T. J. Perkins. Learning instance-independent value func-

tions to enhance local search. In In Advances in Neural Information Processing

Systems 11 (NIPS-11), pages 1017–1023, Cambridge, MA, 1999. MIT Press.

R. Moll, T. J. Perkins, and A. G. Barto. Machine learning for subproblem selection.

In Proceedings of the Seventeenth International Conference on Machine Learning,

pages 615–622, San Francisco, 2000. Morgan Kaufmann.

J. Eliot B. Moss, Paul E. Utgoff, John Cavazos, Doina Precupand Darko Stefanovic,

Carla Brodley, and David Scheeff. Learning to schedule straight-line code. In

Proceedings of Advances in Neural Information Processing Systems 10 (NIPS ’97),

1997.

J. M. F. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, and M. M.

Veloso. SPIRAL: Portable Library of Optimized Signal Processing Algorithms,

1998. http://www.ece.cmu.edu/∼spiral/.

182 BIBLIOGRAPHY

Andy P. Nisbet. GAPS: Iterative feedback directed parallelisation using genetic algo-

rithms. In Workshop on Profile and Feedback-Directed Compilation, in conjunction

with the International Conference on Parallel Architectures and Compilation Tech-

niques (PACT98), 1998.

H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-

Verlag, Heidelberg, Germany, 2nd edition, 1982.

N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna. Dynamic data layouts for

cache-conscious factorization of DFT. In Proceedings of the International Parallel

and Distributed Processing Symposium (IPDPS), 2000.

N. Park and V. K. Prasanna. Cache conscious Walsh-Hadamard transform. In Pro-

ceedings of the International Conference on Acoustics, Speech, and Signal Process-

ing, 2001.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 2nd edition, 1992.

Markus Püschel, Bryan Singer, Manuela Veloso, and J. Moura. Fast automatic gen-

eration of DSP algorithms. In Proceedings of the International Conference on

Computational Science, Lecture Notes in Computer Science 2073, pages 97–106.

Springer-Verlag, 2001a.

Markus Püschel, Bryan Singer, Jianxin Xiong, José M. F. Moura, Jeremy Johnson,

David Padua, Manuela Veloso, and Robert W. Johnson. SPIRAL: A generator

for platform-adapted libraries of signal processing algorithms. Journal of High

Performance Computing Applications, 2001b. Submitted.

John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1992.

K. R. Rao and P. Yip. Discrete Cosine Transform. Academic Press, Boston, 1990.

Martin Schönert et al. GAP – Groups, Algorithms, and Programming. Lehrstuhl D

für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany,

fifth edition, 1995.

David Sepiashvili. Performance models and search methods for optimal FFT imple-

mentations. Master’s thesis, Department of Electrical and Computer Engineering,

Carnegie Mellon University, Pittsburgh, PA, May 2000.

BIBLIOGRAPHY 183

Ken C. Sharman, Anna I. Esparcia Alcazar, and Y. Li. Evolving signal processing

algorithms by genetic programming. In First International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications, pages 473–480,

1995.

Bryan Singer and Manuela Veloso. Automated formula generation and performance

learning for the FFT. Technical Report CMU-CS-00-123, Computer Science De-

partment, Carnegie Mellon University, 2000a.

Bryan Singer and Manuela Veloso. Learning to predict performance from formula

modeling and training data. In Proceedings of the Seventeenth International Con-

ference on Machine Learning, pages 887–894, San Francisco, 2000b. Morgan Kauf-

mann.

Bryan Singer and Manuela Veloso. Learning to generate fast signal processing imple-

mentations. In Proceedings of the Eighteenth International Conference on Machine

Learning, pages 529–536, San Francisco, 2001a. Morgan Kaufmann.

Bryan Singer and Manuela Veloso. Stochastic search for signal processing algorithm

optimization. In Proceedings of the ACM/IEEE SC2001 Conference, 2001b.

Gilbert Strang. The discrete cosine transform. SIAM Review, 41(1):135–147, 1999.

R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transforms and

Convolution. Springer-Verlag, New York, 2nd edition, 1997.

L. Torgo. Inductive Learning of Tree-based Regression Models. PhD thesis, Depart-

ment of Computer Science, Faculty of Sciences, University of Porto, 1999.

Todd L. Veldhuizen and Dennis Gannon. Active libraries: Rethinking the roles of com-

piler and libraries. In Proceedings of the SIAM Workshop on Object Oriented Meth-

ods for Inter-operable Scientific and Engineering Computing. SIAM Press, 1998.

Martin Vetterli and Henri J. Nussbaumer. Simple FFT and DCT algorithms with

reduced number of operations. Signal Processing, 6:267–278, 1984.

Richard Vuduc, Jeff Bilmes, and James W. Demmel. Statistical modeling of fee-

back data in an automatic tuning system. In MICRO-33: Workshop on Feedback-

Directed Dynamic Optimization, 2000.

184 BIBLIOGRAPHY

Richard Vuduc, James W. Demmel, and Jeff Bilmes. Statistical models for automatic

performance tuning. In Proceedings of the International Conference on Computa-

tional Science, Lecture Notes in Computer Science 2073, pages 117–126. Springer-

Verlag, 2001.

Richard Vuduc and James W. Dremmel. Code generator for automatic tuning of nu-

merical kernels: Experiences with FFTW. In ICFP 2000: Workshop on Semantics,

Application, and Implementation of Program Generators, 2000.

Z. Wang. Fast algorithms for the discrete w transform and for the discrete fourier

transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-

32(4):803–816, 1984.

R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In

SC’98: High Performance Networking and Computing: Proceedings of the 1998

ACM/IEEE SC98 Conference, 1998.

Jianxin Xiong. Automatic Optimization of DSP Algorithms. PhD thesis, Department

of Computer Science, University of Illinois, Urbana-Champaign, IL, 2001.

Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. SPL: A language

and compiler for DSP algorithms. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pages 298–308,

2001.

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop

scheduling. In Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence (IJCAI), pages 1114–1120, 1995.

Wei Zhang. Reinforcement Learning for Job-Shop Scheduling. PhD thesis, Computer

Science Department, Oregon State University, Corvallis, Oregon, 1996.

Xudong Zhao. Verification of Arithmetic Circuits. PhD thesis, Computer Science

Department, Carnegie Mellon University, Pittsburgh, PA, 1996.

Appendix A

Search Engine User Manual

This appendix contains the user manual for the search engine. This manual is available

as a text file when downloading the SPIRAL system. Also, the manual is available

at the SPIRAL prompt by typing:

spiral> ?Search

to begin reading the search engine user manual. Further, the user can request at the

SPIRAL prompt information about any of the search methods or most of the other

functions available in the search engine simply by typing a question mark followed by

the function name.

A.1 The Search Engine

This chapter describes the search module. The search module uses different search

algorithms to find fast implementations of given transforms (or more generally SPLs).

The first sections begin with information about a couple high level functions for in-

teracting with the search module (see “Implement” and “TestSearch”). “Implement”

allows an SPL to be quickly implemented. “Implement” can be used to search for a

fast implementation, but only uses the default search options for the different search

methods. “TestSearch” runs a number of quick tests of the search module.

185

186 APPENDIX A. SEARCH ENGINE USER MANUAL

The next sections give a much more detailed explanation of the different search meth-

ods provided and how they can be called separately (see “Search Method Overview”,

“General Search Options”, “ExhaustiveSearch”, “DP”, “RandomSearch”, “HillClimb”,

“STEER”, and “TimedSearch”). “ImplementRuleTree” can then be used to imple-

ment the best ruletrees that these search methods find.

The next sections give some more details about how the search module keeps track of

the best found implementations and how you can retrieve these (see “BestFoundTable”,

“BestFoundLookup”, “BestFoundSave”, “BestFoundRead”).

The final sections discuss HashTables and how you can use them to store partial

results from the different search methods and then later re-use those results (see

“HashTables”, “HashSave”, “HashRead”, “HashTable Creation”, and “HashTable

Example”).

Type “?>” to read the next section of the search module documentation.

A.2 Implement

Usage: Implement(<spl> [, <Implement-search-options>])

Implements the <spl> in code, creating a file containing the code.

Returns: a record with the ruletree implemented, its runtime in nanoseconds, the

SPL Options used, and the file name where the code was written.

By default, Implement will use the BestFound Implementation when available and

create the corresponding code. If no BestFound Implementation is available for the

specified spl, Implement will then conduct, by default, a 30-minute search for a fast

implementation. These defaults can be changed by passing an options record.

Optionally, an options record can be passed containing any of the following fields:

spiral> PrintSpecImplementOptionsRecord();

rec(

A.2. IMPLEMENT 187

file := <filename>,

language := "f77" | "c",

search := "BestOrTimedSearch" | "BestFound"

| "DP" | "TimedSearch"

| "OneRandom" | "RandomSearch"

| "HillClimb" | "STEER"

| "ExhaustiveSearch",

timeLimit := false | <minutes>,

searchOpts := <searchOptionsRecord>,

SPLOpts := <SPLOptionsRecord>,

verbosity := <non-negative integer>

);

Specifying file changes the name of the file to be created with the resulting code. This

filename should not contain an extension (that is no “.c” or the like). The file name

should be passed as a string. The default file name is created by “DefaultFileName-

SPL”. Generally this is a file in the current directory with the file name containing

the transform name and its parameters.

Specifying the language changes what language the resulting code is implemented

in. Note that currently search methods BestOrTimedSearch, BestFound, and Timed-

Search only return the best found implementation which may be in a different lan-

guage (this will be fixed in the future). A different set of languages may be available

on your machine, call PrintSpecImplementOptionsRecord() to see which languages

are available. This setting overrides any setting of language in the SPLOpts.

Valid search methods for finding fast implementations are:

"BestOrTimedSearch" : uses BestFound implementation,

or a 30-minute "TimedSearch" if none

"BestFound" : uses BestFound implementation, if it exists

"OneRandom" : creates a single random implementation

"TimedSearch" : uses several search methods for a specified length

of time, returns BestFound implementation

"RandomSearch" : picks best out of a number of

random implementations

188 APPENDIX A. SEARCH ENGINE USER MANUAL

"DP" : dynamic programming search

"STEER" : genetic algorithm

"HillClimb" : performs a hill climbing search

"ExhaustiveSearch" : exhaustive search

The search method “BestOrTimedSearch” is used by default.

Specifying an integer for the timeLimit causes the search algorithm to be limited to

(roughly) that many minutes. This option overrides any given in searchOpts.

Specifying the searchOpts provides the opportunity to provide the search method with

extra options. This must be a valid options record for the specified search method.

Specifying the SPLOpts changes the options passed to the SPL compiler for producing

the implementation. Note that search methods that return a BestFound implemen-

tation may override these options.

Verbosity levels:

0 = Print nothing, tell search algorithm to print nothing

1 = Print nothing

2 = Print final best

3 = Print methods used to determine final implementation

Example calls:

Implement(Transform("DFT", 8));

Will implement a DFT of size 8 in the file named DFT_8.f77 (if f77

is the default language). Will use the BestFound Implementation

if available. Otherwise, will conduct a 30-minute search.

Implement(Transform("DFT", 8), rec(timeLimit:=5));

Same as above, but will only conduct a 5-minute search if no

BestFound implementation is available.

Implement(Transform("DFT", 8), rec(search:="BestFound"));

Only implement the transform in code if a BestFound Implementation

A.3. TESTSEARCH 189

is available.

Implement(Transform("DCT4",32),

rec(search:="DP", language:="c", file:="mydct"));

Implement a DCT type 4 of size 32 in the file "mydct.c" using the

C programming language. Search for a fast implementation using

dynamic programming (DP).

Implement(Transform("WHT",10),

rec(search:="STEER",

searchOpts:=rec(localUnrolling:=true),

SPLOpts:=rec(dataType:="complex")));

Implement a WHT of size 2^10 that works on complex input data.

Use STEER to search for a fast implementation and allow it to

search over localUnrolling.

A.3 TestSearch

Call “TestSearch()” with no arguments to run quick tests of the search module. This

is used to check that your installation is correct and that the search module is working

correctly (at least for a few simple cases, the functions return reasonable values).

Note: If “TestSearch()” causes a fatal error while testing BestFound Implementation,

and if you have some implementations stored in the BestFoundTable that you want,

then type:

BestFoundTable := savedBestFoundTable;

to restore the BestFoundTable to its state prior to “TestSearch()” being called.

190 APPENDIX A. SEARCH ENGINE USER MANUAL

A.4 Search Method Overview

There are five main search methods provided:

’ExhaustiveSearch’ -- exhausts over all possible ruletrees.

’DP’ -- performs dynamic programming.

’RandomSearch’ -- generates random ruletrees,

searching for the fastest.

’HillClimb’ -- performs hill climbing search.

’STEER’ -- a stochastic evolutionary search algorithm

(similar to a genetic algorithm).

’TimedSearch’ -- a meta-search algorithm that calls others with

specific time limits.

Each algorithm takes an “SPL” as its first argument. This can be a transform or a

more general SPL for which a fast implementation is to be searched.

All of these algorithms take a search options record as an optional second argu-

ment. This record contains various options that modify how the search algorithm

work. Call “PrintSpec<SearchAlg>OptionsRecord()” to get a list of the options

available for the specific search algorithm. See the file “search/config.g” or run

“Merge<SearchAlg>OptionsRecord(rec())” for defaults.

All of these algorithms take an optional final argument that specifies options to the

SPL compiler. Call “PrintSpecSPLOptionsRecord()” to find out more about the SPL

options.

All of the algorithms return some form of data structure containing the best imple-

mentation it found.

In general exhaustive search is only possible for very small transforms. Dynamic

programming usually times relatively few formulas (except when a transform has a

rule with a high branching factor), but still achieves good results. STEER times more

formulas than DP, but often finds faster ones. RandomSearch can be used to time as

many or few formulas as one would like. STEER or HillClimb is to be preferred over

RandomSearch unless you only want to time a small number of formulas.

A.4. SEARCH METHOD OVERVIEW 191

Each of these search methods are described in detail in the following sections (see

“ExhaustiveSearch”, “DP”, “RandomSearch”, “HillClimb”, and “STEER”), after a

description of some of the general search options (see “General Search Options”). In

the following examples, options are given for illustration not because they are good

options to provide; further, runtimes were gathered on different loaded machines and

thus are not representative.

A.4.1 General Search Options

The following search options are common to many of the algorithms:

timeLimit := false | <minutes>,

localUnrolling := true | false,

localUnrollingMin := <positive int>,

localUnrollingMax := <positive int>,

globalUnrolling := true | false,

globalUnrollingMin := <positive int>,

globalUnrollingMax := <positive int>,

bestFound := "save" | "none"

Time limit specifies the maximum number of minutes that a search algorithm should

continue searching. Setting this to false allows the search algorithm to continue

searching until it is finished. Most, but not all, search algorithms (notably not DP)

can give back a reasonable result after any amount of time. Since GAP does not have

an interrupt mechanism, it is quite possible for a search algorithm to take considerably

more time than specified. A check on time is only conducted at certain points in the

loops/recursion of the search algorithms.

Local unrolling specifies to the SPL compiler exactly which portions of the ruletree

are to be unrolled. If a specific node in the ruletree is marked for unrolling, then the

SPL compiler will unroll the code for that node and its subtree.

Global unrolling specifies to the SPL compiler that ALL nodes of the given size and

smaller are to be unrolled.

192 APPENDIX A. SEARCH ENGINE USER MANUAL

Setting “localUnrolling” to “false” causes the search algorithms to only search through

ruletrees without any nodes marked for unrolling. Setting “localUnrolling” to “true”

causes the search algorithms to search through the space of ruletrees with nodes

marked for unrolling. Specifically, all nodes of size “localUnrollingMin” and smaller

are marked for unrolling, while those of size greater than “localUnrollingMin” and less

than or equal to “localUnrollingMax” are considered both with and without unrolling.

Turning on search over local unrolling turns off all global unrolling specified to the

SPL compiler.

Setting “globalUnrolling” to “true” causes the search algorithms to search over differ-

ent settings for the global unrolling. Specifically they search from “globalUnrolling-

Min” to “globalUnrollingMax”, inclusive, going by factors of 2 (that is, they con-

sider globalUnrollingMin, globalUnrollingMin×2, globalUnrollingMin×4, etc ... until

globalUnrollingMin×2k > globalUnrollingMax).

It is not allowable to search over both local and global unrolling.

Setting “bestFound” to “save” causes the search modules to try to save their best

found implementations for SPLs into the BestFoundTable. If they did not find one

faster than previously found, then nothing happens. Setting “bestFound” to “none”

causes the search modules to do nothing with the BestFoundTable. (See also “Best-

FoundTable”.)

A.4.2 ExhaustiveSearch

Usage: ExhaustiveSearch(<spl>

[, <Exhaustive-Search-options-record>, <SPLOptionsRecord>])

Note that if you wish to specify an Exhaustive-options-record or a SPL-options-record,

then you must specify both. To leave one blank, just pass “rec()” in its place.

Searches over all possible ruletrees and returns the one with the fastest runtime.

Currently does NOT search over local or global unrolling parameters, just different

ruletrees.

A.4. SEARCH METHOD OVERVIEW 193

Returns: fastest ruletree

Search Options:

spiral> PrintSpecExhaustiveSearchOptionsRecord();

rec(

timeLimit := false | <minutes>,

bestFound := "save" | "none",

verbosity := <non-negative integer>

);

Run “MergeExhaustiveSearchOptionsRecord(rec());” to determine defaults.

Verbosity levels:

0 = Print nothing

1 = Pretty print final best tree

2 = Also print how many measurements to do

3 = Print all trees as measured

Examples:

spiral> W := SPLNonTerminal("WHT", 3);;

spiral> ExhaustiveSearch(W);

#I no. trees: 1 3 3 3 3 3

#I 3 measurements to do

Best Rule Tree:

WHT(3) {RuleWHT_1}

|--WHT(1) {RuleWHT_0}

‘--WHT(2) {RuleWHT_1}

|--WHT(1) {RuleWHT_0}

‘--WHT(1) {RuleWHT_0}

! 215

RuleTree(

RuleWHT_1,

194 APPENDIX A. SEARCH ENGINE USER MANUAL

SPLNonTerminal("WHT", 3), [

RuleTree(RuleWHT_0, SPLNonTerminal("WHT", 1)),

RuleTree(

RuleWHT_1,

SPLNonTerminal("WHT", 2), [

RuleTree(RuleWHT_0, SPLNonTerminal("WHT", 1)),

RuleTree(RuleWHT_0, SPLNonTerminal("WHT", 1))

])

])

spiral> ExhaustiveSearch(W, rec(verbosity:=1), rec(language:="c"));;

#I no. trees: 1 3 3 3 3 3

Best Rule Tree:

WHT(3) {RuleWHT_1}

|--WHT(1) {RuleWHT_0}

‘--WHT(2) {RuleWHT_1}

|--WHT(1) {RuleWHT_0}

‘--WHT(1) {RuleWHT_0}

! 216

spiral>

A.4.3 DP

Usage: DP(<spl> [, <DP-options-record>, <SPL-options-record>])

Note that if you wish to specify a <DP-options-record> or a <SPL-options-record>,

then you must specify both. To leave one blank, just pass “rec()” in its place.

“DP()” runs dynamic programming on the given spl. Specifically, dynamic program-

ming considers all applicable rules to the given transform, and all possible sets of

children generated by those rules. For each child, it looks up in its table the fastest

implementation of that transform. If no such entry exists yet in its table, then DP

recursively calls itself on the child. Once DP has found the best implementation for

the child, it substitutes this ruletree in as a subtree of the root in place of the child.

A.4. SEARCH METHOD OVERVIEW 195

DP then times all such trees, determines the fastest one, and enters that in its table.

Returns: List of records. Each record contains a ruletree and the measured time for

that ruletree. Fastest ruletree is first entry in the list. The list has <nBest> many

entries, from the fastest to the <nBest> fastest formulas found.

Search Options:

spiral> PrintSpecDPOptionsRecord();

rec(

timeLimit := false | <minutes>,

localUnrolling := true | false,

localUnrollingMin := <positive int>,

localUnrollingMax := <positive int>,

globalUnrolling := true | false,

globalUnrollingMin := <positive int>,

globalUnrollingMax := <positive int>,

bestFound := "save" | "none",

nBest := <positive integer>,

optimize := "minimize" | "maximize",

hashTable := <hashTable>,

verbosity := <non-negative integer>

);

Run “MergeDPOptionsRecord(rec());” to determine defaults.

An nBest of 1 is the standard DP. Increasing nBest causes DP to not only keep in its

list the best implementation for each SPL and size, but the nBest such implementa-

tions.

By setting optimize to “maximize” it is possible to cause DP to maximize the mea-

sured event instead of the usual minimization.

DP uses a hash table to store its list of best implementations. It is possible to pass

a hash table to DP for it to use and so that you can keep the resulting hash table

when DP finishes. Note that any entries in the hashTable will be assumed to the best

implementations by DP. You can create a new hashTable for use with DP by calling

196 APPENDIX A. SEARCH ENGINE USER MANUAL

“HashTableDP()”.

Verbosity levels:

0 = Print nothing

1 = Show recursive calls to DP

2 = Show best trees found found each recursive call to DP

3 = Show how many trees must be fully expanded and how many were timed

4 = Show formulas that are being timed.

Examples:

spiral> DP(SPLNonTerminal("DCT2", 4));

DP called on SPLNonTerminal("DCT2", 4)

1 tree(s) to fully expand

DP called on SPLNonTerminal("DCT2", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DCT2(2) {RuleDCT2_0} ! 67

DP called on SPLNonTerminal("DCT4", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DCT4(2) {RuleDCT4_0} ! 84

1 tree(s) timed at this level

Best Trees:

DCT2(4) {RuleDCT2_2}

|--DCT2(2) {RuleDCT2_0}

‘--DCT4(2) {RuleDCT4_0} ! 124

3 total trees timed

[rec(

ruletree := RuleTree(

RuleDCT2_2,

SPLNonTerminal("DCT2", 4), [

RuleTree(RuleDCT2_0, SPLNonTerminal("DCT2", 2)),

A.4. SEARCH METHOD OVERVIEW 197

RuleTree(RuleDCT4_0, SPLNonTerminal("DCT4", 2))

]),

measured := 124)]

spiral> DP(SPLNonTerminal("DCT4", 4), rec(nBest:=2), rec());

DP called on SPLNonTerminal("DCT4", 4)

10 tree(s) to fully expand

DP called on SPLNonTerminal("DCT2", 4)

1 tree(s) to fully expand

DP called on SPLNonTerminal("DCT2", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DCT2(2) {RuleDCT2_0} ! 67

DP called on SPLNonTerminal("DCT4", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DCT4(2) {RuleDCT4_0} ! 83

1 tree(s) timed at this level

Best Trees:

DCT2(4) {RuleDCT2_2}

|--DCT2(2) {RuleDCT2_0}

‘--DCT4(2) {RuleDCT4_0} ! 124

DP called on SPLNonTerminal("DST2", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DST2(2) {RuleDST2_0} ! 65

DP called on SPLNonTerminal("DST4", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DST4(2) {RuleDST4_0} ! 83

DP called on SPLNonTerminal("DCT3", 4)

1 tree(s) to fully expand

198 APPENDIX A. SEARCH ENGINE USER MANUAL

DP called on SPLNonTerminal("DCT3", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DCT3(2) {RuleDCT2_0 ^ T} ! 73

1 tree(s) timed at this level

Best Trees:

DCT3(4) {RuleDCT2_2 ^ T}

|--DCT3(2) {RuleDCT2_0 ^ T}

‘--DCT4(2) {RuleDCT4_0} ! 135

DP called on SPLNonTerminal("DST3", 2)

1 tree(s) to fully expand

1 tree(s) timed at this level

Best Trees:

DST3(2) {RuleDST2_0 ^ T} ! 70

10 tree(s) timed at this level

Best Trees:

DCT4(4) {RuleDCT4_5 ^ T} ! 162

DCT4(4) {RuleDCT4_3}

|--DCT2(2) {RuleDCT2_0}

‘--DST2(2) {RuleDST2_0} ! 170

18 total trees timed

[rec(

ruletree := RuleTree(RuleDCT4_5, "T", SPLNonTerminal("DCT4", 4)),

measured := 162), rec(

ruletree := RuleTree(

RuleDCT4_3,

SPLNonTerminal("DCT4", 4), [

RuleTree(RuleDCT2_0, SPLNonTerminal("DCT2", 2)),

RuleTree(RuleDST2_0, SPLNonTerminal("DST2", 2))

]),

measured := 170)]

spiral>

A.4. SEARCH METHOD OVERVIEW 199

A.4.4 RandomSearch

Usage: RandomSearch(<spl>

[, <RandomSearch-options-record>, <SPL-options-record>])

Note that if you wish to specify a RandomSearch-options-record or a SPL-options-

record, then you must specify both. To leave one blank, just pass “rec()” in its

place.

RandomSearch generates random ruletrees and times them, keeping track of the

fastest one it has found so far. Technically, RandomSearch() is just a front in to

STEER(), passing the correct options to only generate and time random formulas.

Returns: The fastest implementation found as an “individual” which is a record

consisting of fields for a ruletree, SPLOptions, the measured event (usually runtime),

and a few other fields not of importance.

SearchOptions:

spiral> PrintSpecRandomSearchOptionsRecord();

rec(

numFormulas := <positive integer>

seed := <integer>

timeLimit := false | <minutes>,

localUnrolling := true | false,

localUnrollingMin := <positive int>,

localUnrollingMax := <positive int>,

globalUnrolling := true | false,

globalUnrollingMin := <positive int>,

globalUnrollingMax := <positive int>,

bestFound := "save" | "none",

verbosity := <non-negative integer>

);

Run “MergeRandomSearchOptionsRecord(rec());” to determine defaults.

200 APPENDIX A. SEARCH ENGINE USER MANUAL

numFormulas specifies how many random formulas to generate. Note that is possible

that RandomSearch will not time this many formulas as it will not time the exact

same formula twice.

seed specifies a random seed for use with the random number generator.

Verbosity levels:

0 = Print nothing

1 = Print final best

2 = Print formulas being timed

Example:

spiral> RandomSearch(SPLNonTerminal("DFT",16), rec(numFormulas:=10),

> rec(globalUnrolling:=8));

Summary:

Indiv 1: DFT(16) {RuleDFT_1}

|--DFT(4) {RuleDFT_1 ^ T}

| |--DFT(2) {RuleDFT_0}

| ‘--DFT(2) {RuleDFT_0}

‘--DFT(4) {RuleDFT_1}

|--DFT(2) {RuleDFT_0}

‘--DFT(2) {RuleDFT_0} ! 2861

rec(

IsIndiv := true,

operations := IndivOps,

ruletree := RuleTree(

RuleDFT_1,

SPLNonTerminal("DFT", 16), [

RuleTree(

RuleDFT_1, "T",

SPLNonTerminal("DFT", 4), [

RuleTree(RuleDFT_0, SPLNonTerminal("DFT", 2)),

A.4. SEARCH METHOD OVERVIEW 201

RuleTree(RuleDFT_0, SPLNonTerminal("DFT", 2))

]),

RuleTree(

RuleDFT_1,

SPLNonTerminal("DFT", 4), [

RuleTree(RuleDFT_0, SPLNonTerminal("DFT", 2)),

RuleTree(RuleDFT_0, SPLNonTerminal("DFT", 2))

])

]),

SPLOpts := rec(

dataType := "complex",

globalUnrolling := 8,

language := "fortran",

compflags := "’-O -fomit-frame-pointer -malign-double’"),

measured := 2861,

fitness := 1/2861)

spiral>

A.4.5 HillClimb

Usage: HillClimb(<spl>

[, <HillClimb-options-record>, <SPL-options-record>])

Note that if you wish to specify a HillClimb-options-record or a SPL-options-record,

then you must specify both. To leave one blank, just pass “rec()” in its place.

HillClimb performs a hill climbing search. It begins by generating a random im-

plementation and timing it. Next, it applies a random mutation to generate a new

implementation which is then timed. If this new implementation is faster, then a

random mutation is applied to the new implementation and otherwise a random mu-

tation is applied to the original implementation. Mutations are applied a specified

number of times, searching for a fast implementation. Then the process is restarted

with a new random implementation.

202 APPENDIX A. SEARCH ENGINE USER MANUAL

Returns: The fastest implementation found as an “individual” which is a record

consisting of fields for a ruletree, SPLOptions, the measured event (usually runtime),

and a few other fields not of importance.

SearchOptions:

spiral> PrintSpecHillClimbOptionsRecord();

rec(

timeLimit := false | <minutes>,

localUnrolling := true | false,

localUnrollingMin := <positive int>,

localUnrollingMax := <positive int>,

globalUnrolling := true | false,

globalUnrollingMin := <positive int>,

globalUnrollingMax := <positive int>,

bestFound := "save" | "none",

numRestart := <positive integer>

quitRestart := <positive integer>

numMutate := <positive integer>

quitMutate := <positive integer>

seed := <integer>

hashTable := <hashTable>

verbosity := <non-negative integer>

);

Run “MergeHillClimbOptionsRecord(rec());” to determine defaults.

numRestart specifies the maximum number of times HillClimb will restart with a

random implementation.

quitRestart specifies the maximum number of restarts without seeing an improvement

in the best found implementation.

numMutate specifies the maximum number of mutates HillClimb will perform before

restarting.

A.4. SEARCH METHOD OVERVIEW 203

quitMutate specifies the maximum number of mutates (before restarting) without

seeing an improvement in the current implementation.

seed specifies a random seed for use with the random number generator.

HillClimb keeps track of all the formulas it has timed so far (to avoid duplicating

timings). This information is kept in a hash table. It is possible to pass a hash table

to HillClimb for it to use and so that you can keep the resulting hash table when

HillClimb finishes. Note that any entries in the hashTable will be assumed to have

correct timings. You can create a new hashTable for use with HillClimb by calling

HashTableHillClimb().

Verbosity levels:

0 = Print nothing

1 = Print final best

2 = Print restart count

3 = Print restart best found so far

4 = Print formulas being timed

Example:

spiral> HillClimb(Transform("DST2",8), rec(numRestart:=3), rec());;

Restart 1

10 mutations tried

New Best Found:

DST3(8) {RuleDST2_2 ^ T}

‘--DCT3(8) {RuleDCT2_2 ^ T}

|--DCT3(4) {RuleDCT2_2 ^ T}

| |--DCT3(2) {RuleDCT2_0 ^ T}

| ‘--DCT4(2) {RuleDCT4_0}

‘--DCT4(4) {RuleDCT4_3 ^ T}

|--DCT3(2) {RuleDCT2_0 ^ T}

‘--DST3(2) {RuleDST2_0 ^ T} ! 336

Restart 2

15 mutations tried

New Best Found:

204 APPENDIX A. SEARCH ENGINE USER MANUAL

DST3(8) {RuleDST2_3 ^ T}

|--DST4(4) {RuleDST4_1}

| ‘--DCT4(4) {RuleDCT4_1}

| ‘--DCT2(4) {RuleDCT2_2}

| |--DCT2(2) {RuleDCT2_0}

| ‘--DCT4(2) {RuleDCT4_0}

‘--DST3(4) {RuleDST2_3 ^ T}

|--DST4(2) {RuleDST4_0}

‘--DST3(2) {RuleDST2_0 ^ T} ! 307

Restart 3

11 mutations tried

No better finds than previous 307

7 total trees timed

Best Found Implementation:

DST3(8) {RuleDST2_3 ^ T}

|--DST4(4) {RuleDST4_1}

| ‘--DCT4(4) {RuleDCT4_1}

| ‘--DCT2(4) {RuleDCT2_2}

| |--DCT2(2) {RuleDCT2_0}

| ‘--DCT4(2) {RuleDCT4_0}

‘--DST3(4) {RuleDST2_3 ^ T}

|--DST4(2) {RuleDST4_0}

‘--DST3(2) {RuleDST2_0 ^ T} ! 307

A.4.6 STEER

STEER stands for Split Tree Evolution for Efficient Runtimes

Usage: STEER(<spl> [, <STEER-options-record>, <SPL-options-record>])

Note that if you wish to specify a STEER-options-record or a SPL-options-record,

then you must specify both. To leave one blank, just pass “rec()” in its place.

A.4. SEARCH METHOD OVERVIEW 205

STEER is a stochastic evolutionary search algorithm for finding fast implementations.

STEER is very similar to a genetic algorithm.

Returns: The fastest implementation found as an “individual” which is a record

consisting of fields for a ruletree, SPLOptions, the measured event (usually runtime),

and a few other fields not of importance.

SearchOptions:

spiral> PrintSpecSTEEROptionsRecord();

rec(

timeLimit := false | <minutes>,

localUnrolling := true | false,

localUnrollingMin := <positive int>,

localUnrollingMax := <positive int>,

globalUnrolling := true | false,

globalUnrollingMin := <positive int>,

globalUnrollingMax := <positive int>,

bestFound := "save" | "none",

popSize := <positive integer>

numGens := <positive integer>

quitGen := <positive integer>

bestKept := <non-negative integer>

crossed := <non-negative integer>

mutated := <non-negative integer>

injected := <non-negative integer>

seed := <integer>

fitnessFun := ReciprocalFitness | MeasuredFitness

| <user-specified-function>

hashTable := <hashTable>,

verbosity := <non-negative integer>

);

Run “MergeSTEEROptionsRecord(rec());” to determine defaults.

206 APPENDIX A. SEARCH ENGINE USER MANUAL

popSize specifies the size of the population. That is, popSize formulas are present in

the population each generation.

numGens specifies the maximum number of generations that STEER will be allowed

to run.

quitGen specifies that after the given number of generations without finding a faster

formula than the current best, STEER should stop.

bestKept specifies the number of distinct fastest formulas to keep from generation to

generation.

crossed specifies the number of formulas to cross-over each generation. Note that

crossed/2 pairs of formulas are crossed-over.

mutated specifies the number of formulas to be mutated each generation.

injected specifies the number of new random formulas to be injected into the popula-

tion each generation after the first.

Note that it must be that popSize >= bestKept + crossed + mutated + injected.

seed specifies a random seed for use with the random number generator.

fitnessFun specifies a function used to calculate the fitness of a formula given its

measured event. The higher the fitness, the better the formula.

STEER keeps track of all the formulas it has timed so far (to avoid duplicating

timings). This information is kept in a hash table. It is possible to pass a hash

table to STEER for it to use and so that you can keep the resulting hash table when

STEER finishes. Note that any entries in the hashTable will be assumed to have

correct timings. You can create a new hashTable for use with STEER by calling

HashTableSTEER().

Verbosity levels:

0 = Print nothing

1 = Print final best

A.4. SEARCH METHOD OVERVIEW 207

2 = Print generation count

3 = Print population stats for each generation

4 = Print formulas being timed

Example:

spiral> STEER(SPLNonTerminal("DCT1",4),

> rec(seed := 348, bestKept := 2, verbosity := 1), rec());

Summary:

Indiv 1: DCT1(4) {RuleDCT1_3 ^ T}

|--DCT1(2) {RuleDCT1_3}

| |--DCT1(1) {RuleDCT1_0}

| ‘--DCT1(1) {RuleDCT1_0}

‘--DCT1(2) {RuleDCT1_3}

|--DCT1(1) {RuleDCT1_0}

‘--DCT1(1) {RuleDCT1_0} ! 149

Indiv 2: DCT1(4) {RuleDCT1_3}

|--DCT1(2) {RuleDCT1_3 ^ T}

| |--DCT1(1) {RuleDCT1_0}

| ‘--DCT1(1) {RuleDCT1_0}

‘--DCT1(2) {RuleDCT1_3 ^ T}

|--DCT1(1) {RuleDCT1_0}

‘--DCT1(1) {RuleDCT1_0} ! 153

rec(

IsIndiv := true,

operations := IndivOps,

ruletree := RuleTree(

RuleDCT1_3, "T",

SPLNonTerminal("DCT1", 4), [

RuleTree(

RuleDCT1_3,

SPLNonTerminal("DCT1", 2), [

RuleTree(RuleDCT1_0, SPLNonTerminal("DCT1", 1)),

RuleTree(RuleDCT1_0, SPLNonTerminal("DCT1", 1))

208 APPENDIX A. SEARCH ENGINE USER MANUAL

]),

RuleTree(

RuleDCT1_3,

SPLNonTerminal("DCT1", 2), [

RuleTree(RuleDCT1_0, SPLNonTerminal("DCT1", 1)),

RuleTree(RuleDCT1_0, SPLNonTerminal("DCT1", 1))

])

]),

SPLOpts := rec(

dataType := "real",

globalUnrolling := 32,

language := "fortran",

compflags := "’-O -fomit-frame-pointer -malign-double’"),

measured := 149,

fitness := 1/149)

spiral>

A.4.7 TimedSearch

Usage: TimedSearch(<spl>

[, <TimedSearch-options-record>, <SPL-options-record>])

Note that if you wish to specify a TimedSearch-options-record or a SPL-options-

record, then you must specify both. To leave one blank, just pass “rec()” in its

place.

TimedSearch is a meta-search algorithm; that is, it calls other search algorithms to

do the real search. It runs for a specified length of time, limiting the called search

algorithms to certain amounts of time. The idea is that this algorithm can be used

to find the best ruletree possible in say 30 minutes (or any specified length of time).

Returns: Best Found Implementation (this is a record containing a ruletree, the SPL

Options used, and the measured amount of time). Note that TimedSearch does a

BestFoundLookup and returns the resulting implementation; so, it is possible for

TimedSearch to return a ruletree that none of the called search algorithms timed

A.4. SEARCH METHOD OVERVIEW 209

during the execution of TimedSearch.

Search Options:

spiral> PrintSpecTimedSearchOptionsRecord();

rec(

timeLimit := <minutes>,

searches := ["<searchMethod1>", <SearchOpts1>, <timeLimit1>,

...

"<searchMethodN>", <SearchOptsN>, <timeLimitN>]

verbosity := <non-negative integer>

);

Run “MergeTimedSearchOptionsRecord(rec());” to determine defaults.

timeLimit specifies the overall time limit for the entire search. This can not be set to

false as in the other search algorithms.

Setting searches determines which search algorithms are called from TimedSearch,

with which search options, and for how long. Each search method is called in turn,

passed its respective search options. Each search method has its time limit set to be

the minimum of timeLimitK and of the remaining global time.

searchMethodK must be a string and the name of a valid search algorithm.

searchOptsK must be a valid search options record for searchMethodK.

timeLimitK must be an integer representing the maximum time in minutes, or false

if searchMethodK is to be allowed to run up to the maximum global amount of

remaining time.

The default is to run RandomSearch on 10 formulas, then to run DP, next STEER,

and then to run 4-best DP over localUnrolling and finally STEER over localUnrolling

with a larger population (see config.g).

Verbosity levels:

0 = Print nothing, tell search algorithms to print nothing

1 = Print nothing

210 APPENDIX A. SEARCH ENGINE USER MANUAL

2 = Print final best

3 = Print search algorithms being called

A.5 BestFoundTable

The BestFoundTable keeps track of the best found implementations for the different

SPLs. The search algorithms will save the best implementations that they find to

the BestFoundTable. Currently, none of the search algorithms use the table to guide

their search.

You can interact with the BestFoundTable using the functions “BestFoundLookup”,

“BestFoundSave”, and “BestFoundRead”.

A.5.1 BestFoundLookup

Usage: BestFoundLookup(<spl> [, <SPL-options-record>])

Looks up the best found implementation for the given spl.

Returns: a list of BestFoundImpl records consisting of the ruletree, the actual full

SPLOptions, and the measured time.

If no SPL-options-record is passed, then BestFoundLookup returns a list of the

(equally) fastest implementations across all possible SPL Options (such as language

or dataType). That is, if there is a BestFound Implementation for the given spl in

both C and Fortran, it will only return the one that is fastest, unless they are equally

fast in which case both will be returned.

If an SPL-options-record IS passed, then BestFoundLookup returns a list of the

(equally) fastest implementations across only those implementations having the same

values for the SPL Options listed in the variable BestFoundDifferFields. By default,

BestFoundDifferFields includes the fields dataType and language.

So, if you want to get the BestFound Implementation for a DFT of size 16 implemented

A.6. HASHTABLES 211

in C (but irrespective of the used dataType), try:

BestFoundLookup(Transform("DFT",16), rec(language:="c"));

A.5.2 BestFoundSave

Usage: BestFoundSave(<filename>)

Saves the BestFoundTable to the specified filename (given as a string). This allows

later retrieval of the Table.

A.5.3 BestFoundRead

Usage: BestFoundRead(<filename>)

Reads the BestFoundTable in the specified filename (given as a string). This over-

writes (without saving) the current BestFoundTable. In case of error in reading the

file, the current BestFoundTable is not overwritten.

A.6 HashTables

Hash tables are efficient ways to store certain types of data. They are used in several

places in the search module. For example, the BestFoundTable is implemented as a

HashTable with particular wrapper functions. Also, DP and STEER use HashTables

to store partial results. These hash tables can be saved to files and later reused to

avoid duplicating work already done by the search algorithms.

In particular, DP uses a HashTable to store the nBest ruletrees that it has found

for a given spl. STEER uses a HashTable to store entire implementations to avoid

re-running the same implementation multiple times.

The most common reason why you would want to use HashTables is to save DP’s

212 APPENDIX A. SEARCH ENGINE USER MANUAL

partial results. This is particularly useful, if, for example, you run DP on a transform

of a particular size, but later may want to run DP on a larger size of that transform.

By saving off DP’s HashTable and then later reusing it, DP can avoid duplicating its

earlier work. An example is shown in the section “HashTable Example”.

The following sections describe how to save, restore, and create HashTables as well as

give an example (see “HashSave”, “HashRead”, “HashTable Creation”, and “HashTable

Example”).

A.6.1 HashSave

Usage: HashSave(<HashTable>, <filename>)

Saves the given HashTable to the specified filename (given as a string). This allows

later retrieval of the HashTable.

A.6.2 HashRead

Usage: HashRead(<filename>)

Returns the HashTable that was stored in the specified file (filename should be passed

as a string).

A.6.3 HashTable Creation

HashTableDP() creates a HashTable for use with DP.

HashTableSTEER() creates a HashTable for use with STEER.

A.6.4 HashTable Example

spiral> myHashTable := HashTableDP();

A.6. HASHTABLES 213

HashTable

spiral> DP(Transform("DFT",32), rec(hashTable:=myHashTable), rec());

...

spiral> HashSave(myHashTable, "DP_DFT32.hash");

spiral> quit;

$

...

spiral> myHashTable := HashRead("DP_DFT32.hash");

HashTable

spiral> DP(Transform("DFT",1024), rec(hashTable:=myHashTable), rec());

...

	Title
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Thesis Problem and Approach
	1.2 Infrastructure
	1.3 Performance Optimization by Searching
	1.4 Performance Modeling
	1.5 Generating Fast Implementations
	1.6 Thesis Contributions
	1.7 Document Outline

	2 Background
	2.1 Signal Transforms
	2.2 Walsh-Hadamard Transform
	2.2.1 WHT Definition
	2.2.2 Break Down Rules
	2.2.3 Split Trees
	2.2.4 Stride
	2.2.5 Search Space

	2.3 WHT Timing Package
	2.4 Other Transforms
	2.5 SPIRAL
	2.5.1 System Design
	2.5.2 Representation
	2.5.3 Implementation
	2.5.4 User Interface

	2.6 Summary

	3 Optimizing Performance with the Search Engine
	3.1 Overview of the Search Methods
	3.2 Search Spaces
	3.2.1 Search Over Factorizations
	3.2.2 Search Over Options to the Formula Compiler

	3.3 User Interface
	3.4 Details about Search Methods
	3.4.1 Exhaustive Search
	3.4.2 Dynamic Programming
	3.4.3 STEER, Random Search, and Hill Climbing Search
	3.4.4 Timed Search

	3.5 Results
	3.5.1 Search Method Comparison
	3.5.2 Local Unrolling Search
	3.5.3 Sun Results

	3.6 Summary

	4 Optimizing Performance with STEER
	4.1 STEER for the WHT
	4.1.1 Tree Generation and Selection
	4.1.2 Crossover
	4.1.3 Mutation
	4.1.4 Running STEER

	4.2 Search Algorithm Comparison for WHT
	4.3 STEER in the SPIRAL System
	4.3.1 Tree Generation and Selection
	4.3.2 Crossover
	4.3.3 Mutation
	4.3.4 Other User Options

	4.4 Results Using STEER in the SPIRAL System
	4.5 Summary

	5 Modeling Performance of Entire Formulas
	5.1 Features for WHT Split Trees
	5.1.1 Feature Sets
	5.1.2 Evaluating Features

	5.2 Learning to Predict WHT Performance
	5.2.1 Experimental Setup
	5.2.2 Results

	5.3 Summary

	6 Modeling Performance of Individual Nodes
	6.1 Pentium Observations
	6.2 Predicting WHT Leaf Cache Misses
	6.2.1 Features for WHT Leaves
	6.2.2 Learning Algorithm
	6.2.3 Training
	6.2.4 Evaluation
	6.2.5 Summary

	6.3 Sun Observations
	6.4 Predicting WHT Leaf Runtimes
	6.4.1 Learning Algorithm and Training
	6.4.2 Evaluation

	6.5 Extending to the FFT
	6.6 Predicting FFT Runtimes
	6.6.1 Learning Algorithm, Features, and Training
	6.6.2 Evaluation

	6.7 Summary

	7 Generating Optimal Implementations
	7.1 Approach
	7.1.1 Basic Formulation
	7.1.2 Details and Difficulties
	7.1.3 Value Function

	7.2 Algorithm
	7.3 Other Views
	7.4 Evaluation
	7.4.1 Using the WHT Cache Miss Predictor
	7.4.2 Using WHT Runtime Predictors
	7.4.3 Using FFT Runtime Predictors

	7.5 Summary

	8 Related Work
	8.1 Other SPIRAL Related Work
	8.2 Signal Transform Optimization
	8.2.1 Minimizing Arithmetic Operations
	8.2.2 Optimizing Signal Transforms for Real Computers

	8.3 Linear Algebra Algorithm Optimization
	8.4 Numerical Algorithm Optimization and Modeling
	8.5 Tuning Compiler Optimizations
	8.6 Combinatorial Problems and Machine Learning
	8.7 Artificial Intelligence and Signal Processing

	9 Conclusions and Future Work
	9.1 Contributions
	9.2 Future Directions
	9.2.1 General Extensions
	9.2.2 Search Engine Extensions
	9.2.3 Modeling and Generation Extensions

	9.3 Concluding Remarks

	Bibliography
	A Search Engine User Manual
	A.1 The Search Engine
	A.2 Implement
	A.3 TestSearch
	A.4 Search Method Overview
	A.4.1 General Search Options
	A.4.2 ExhaustiveSearch
	A.4.3 DP
	A.4.4 RandomSearch
	A.4.5 HillClimb
	A.4.6 STEER
	A.4.7 TimedSearch

	A.5 BestFoundTable
	A.5.1 BestFoundLookup
	A.5.2 BestFoundSave
	A.5.3 BestFoundRead

	A.6 HashTables
	A.6.1 HashSave
	A.6.2 HashRead
	A.6.3 HashTable Creation
	A.6.4 HashTable Example

