Anomaly Detection in Embedded Systems

Roy A. Maxion and Kymie M.C. Tan

October 2001
CMU-CS-01-157

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear in the IEEE Transactions on Computers, January 2002.

This research was supported by the U.S. Defense Advanced Research Projects Agency
(DARPA) under contracts F30602-99-2-0537 and F30602-00-2-0528.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,

of DARPA or the U.S. government.

Keywords: Anomaly, anomaly detection, coverage, dependability.

Abstract

By employing fault tolerance, embedded systems can withstand both inten-
tional and unintentional faults. Many fault-tolerance mechanisms are invoked
only after a fault has been detected by whatever fault-detection mechanism
is used, hence the process of fault detection must itself be dependable if the
system 1s expected to be fault tolerant. Many faults are detectable only
indirectly, as a result of performance disorders that manifest as anomalies
in monitored system or sensor data. Anomaly detection, therefore, is of-
ten the primary means of providing early indications of faults. As with any
other kind of detector, one seeks full coverage of the detection space with
the anomaly detector being used. Even if coverage of a particular anomaly
detector falls short of 100%, detectors can be composed to effect broader
coverage, once their respective sweet spots and blind regions are known.
This paper provides a framework and a fault-injection methodology for map-
ping an anomaly detector’s effective operating space, and shows that two
detectors, each designed to detect the same phenomenon, may not perform
similarly, even when the event to be detected is unequivocally anomalous,
and should be detected by either detector. Both synthetic and real-world
data are used.

1 Introduction

As computer systems become more miniaturized and more pervasive, they
will be embedded in everyday devices with increasing frequency, even to the
point at which domestic and industrial consumers may not be aware of their
presence. Some truck tires, for example, will soon have a processor and a
pressure sensor /transponder embedded in the rubber, because this is cheaper
than fitting in-hub pressure sensors in the wheels of old trailers on big rigs.
Some laptop-computer batteries contain an embedded computer to track the
charge remaining, thereby ensuring that battery’s memory travels with the
battery even when it is moved to another laptop computer. Disk drives may
contain one or two embedded computers (one controller, one DSP chip). Even
operating systems like Unix are being embedded in television set-top boxes
(enabling pausing a live television broadcast), vending machines, Internet
appliances, and the International Space Station (for controlling vibration
damping) [1].

Many of these devices with embedded computers will be intrinsically
safety-critical or mission-critical, and therefore will require a higher level of
dependability than usual — automobile and aircraft engine controllers are one
example. It is presumed that fault tolerance, which is one way of achieving
high dependability, will be employed in such devices.

Several methods of fault tolerance require that a fault be detected before
bringing fault-tolerance measures to bear on it. One salient example is re-
covery blocks [2] [3]. Fault detection, therefore, is an essential first step in
achieving dependability. If the detector is not reliable, the fault-tolerating
mechanisms will not be effective, because they will not be activated.

Faults can be detected either explicitly or implicitly. When a fault is
detected explicitly it is typically through pattern recognition, wherein a sig-
nature is detected that is directly linked to a particular fault. When a fault
is detected implicitly, it is usually due to having detected some indirect indi-
cator, such as an anomaly, that may have been caused by the fault. System-
performance anomalies are often the only indicators of problems, because
some faults have no stable, explicit signature; they’re indicated only through
unusual behaviors. One such example is the fault condition known as an
Ethernet broadcast storm, which is indicated indirectly by anomalously-high
packet traffic on a network [4]. Another example is an increasing error rate
reported by software sensors, and observed in system event logs; disk surface
failures can be indicated this way [5] [6]. In the Ethernet example, measures

of packet traffic served as a sensor. In system event logs, many different mea-
sures are available [7]. As noted in [4] there can be many sensors measuring
the state of a network, system or process. These sensors can be hardware or
software, although recent trends have been mainly toward software sensors
[8].

The data produced by such sensors are referred to as sensor data or a
sensor-data stream. The data in the sensor-data stream can be numeric
or categorical. Numeric data are usually continuous, are on a ratio scale,
have a unique zero point, and have mathematical ordering properties (e.g.,
taking differences or ratios of these measures makes sense). Categorical data,
sometimes referred to as nominal data, are discrete, usually consist of a
series of unique labels as categories, and have no mathematical ordering
properties (e.g., an apple is not twice an orange) [9]. It seems likely that as
computing power increases, more of the sensor data will be in the form of
categorical data [8] [10], hence anomaly detectors will be required to operate
primarily on categorical data, presenting a real challenge to developers and
users of such sensors, because categorical data are much more difficult to
handle statistically than numeric data are. This paper focuses on detecting
anomalies in categorical data.

An anomaly occurring in such sensor data is often the indirect or implicit
manifestation of a fault or condition somewhere in the monitored system or
process. Detecting such anomalies, therefore, can be an important aspect of
maintaining the integrity, reliability, safety, security and general dependabil-
ity of a system or process. Since anomaly detection is on the front line of
many fault-tolerance and dependability mechanisms, it is essential that it is,
itself, reliable. One way to gauge its reliability is by its coverage.

Coverage is a figure of merit that gauges the effectiveness of a detection
or testing process. Historically, a system’s coverage has been said to be the
proportion of faults from which a system recovers automatically; the faults
in this class are said to be covered by the recovery strategy [11].

Coverage can also be viewed as the probability that a particular class of
conditions or events is detected before a system suffers consequences from a
missed or false detection. Another definition of coverage, and the one used
in this paper, is: a specification or enumeration of the types of conditions
against which a particular detection scheme guards [12]. More succinctly, the
coverage of an anomaly detector is the extent to which it detects, correctly,
the events of a particular anomaly class. The motivation for the concern
with coverage is that one needs to know if and when one’s anomaly detection

system will experience a Type I error (a true null hypothesis is incorrectly
rejected) or a Type II error (a false null hypothesis fails to be rejected), so
that one can take precautionary measures to compensate for such errors. If
an anomaly detector does not achieve complete coverage, its suitability for
use should be scrutinized carefully. Anomaly classes will be discussed in
Section 6.

This paper addresses the issues of how to assess the coverage of an
anomaly detector, how to acquire ground-truth test data to aid in that as-
sessment, how to inject anomalous events into the test data, and how to map
the coverage of the detector in terms of sweet spots (regions of adequate
detection) and blind regions (regions of inadequate detection). Once a de-
tector’s coverage map is ascertained, it can be used to judge the suitability of
the detector for various situations. For example, if the environment in which
the detector is deployed will never experience a condition in the detector’s
blind region, then the detector can be used without adverse consequences.

2 Problem and objective

A critical problem is that there is little clarity in the literature regarding the
conditions under which anomaly detection works well or works poorly. To
gain that clarity it is necessary to understand the details of precisely how an
anomaly detector works, i.e., what the detector sees, and what phenomena
affect its performance as the stream of sensor data passes through the detec-
tor’s range of perception. Similarly, one would want to know how a sorting
algorithm views the data it is sorting, as well as which characteristics of the
data, e.g., presortedness, impinge on the algorithm’s efficacy.

The objectives of the present work are (1) to understand the details of
how an anomaly detector works, as a stream of sensor data passes through the
detector’s purview; and (2) to use that understanding to guide fault-injection
experiments in which anomalies are injected into normal background data,
the outcome of which is a map illustrating the detector’s regions of sensitivity
and/or blindness to anomalies. The results will address such questions as:

e What is the coverage of an anomaly detector?
e How does one assess that coverage?

e Do all anomaly detectors have the same coverage, for a given set of
anomalies embedded in background data?

e Can anomaly detectors be composed to attain greater coverage than
that achieved by a single anomaly detector used alone?

These issues are addressed using fault injection, a well-known technique
for evaluating detection systems [13] [14]. Synthetic data are used to address
the usual problem of determining ground truth. To facilitate simplicity and
clarity, the most basic type of anomaly detection is used, namely that of a
sliding-window detector moving over a univariate stream of categorical data.
Anomalous sequences are considered to be contiguous. Temporal anomalies,
not addressed here, can be treated similarly if they are aggregated using an
appropriate feature-extraction mechanism.

3 What is an anomaly?

According to Webster’s dictionary, an anomaly is something different, ab-
normal or peculiar; a deviation from the common rule; a pattern or trait
taken to be atypical of the behavior of the phenomenon under scrutiny. This
definition, fitting as it may be for everyday purposes, is too vague to be
scientifically useful. A more apt definition is this: an anomaly is an event
(or object) that differs from some standard or reference event, in excess of
some threshold, in accordance with some similarity or distance metric on
the event. The reference event is what characterizes normal behavior. The
similarity metric measures the distance between normal and abnormal. The
threshold establishes the minimum distance that encompasses the variation
of normalcy; any event exceeding that distance is considered anomalous. The
specifics of establishing the reference event, the metric and the threshold are
often situation-specific and beyond the scope of this paper, although they
will be addressed peripherally in Section 7.1.

Determining what constitutes an anomalous element in a stream of nu-
meric data is intuitive; a data element that exceeds, say, the mean plus three
standard deviations may be considered anomalous. Determining what consti-
tutes an anomaly in categorical data, which is the specific problem addressed
here, is less intuitive, since it makes no sense to compute the mean and stan-
dard deviation (or any other numerically-based measure) of categorical values
such as cat or blue, even if these categories are translated into numbers. In
categorical data, anomalous events are typically defined by the probabilities
of encountering particular juxtapositions of symbols or subsequences in the

data stream; i.e., symbols and subsequences in an anomaly are juxtaposed
in unexpected ways.

Categorical data sets are comprised of sequences of symbols. The collec-
tion of unique symbols in a data set is called the alphabet. Typically, a data
set will be characterized in terms of what constitutes normal behavior for the
environment from which the data were drawn. The data set so characterized
is called the training data. Training data may be obtained from some appli-
cation, e.g., a process-control application that is providing monitored data
for consumption by various analysis programs. Training data are obtained
from the process over a period of time during which the process is judged to
be running normally. Within these normal data, the juxtapositions of sym-
bols and subsequences would be considered normal, provided that no faults
or unusual conditions prevailed during the collection period. Once the train-
ing data are characterized (termed the training phase), characterizations of
new data, monitored while the process is in an unknown state (either normal
or anomalous), are compared to expectations generated by the training data.
Any sufficiently unexpected juxtaposition in the new data would be judged
anomalous, the possible manifestation of a fault.

4 Anomaly causes and manifestations

What causes an anomaly, and what does an anomaly look like? An example
from a semiconductor fabrication process illustrates. If one attaches a sensor
to an environment, such as the plasma chamber of a reactive ion etcher,
the sensor data will comprise a series of normal categorical values (given a
normally operating etcher). When a fault occurs in the fabrication process,
the fault will be manifested as an event (a series of sensor values) embedded
in otherwise normal sensor data. That event will contain one or more data
values that are related to the normal data values in one of two ways: (1)
the embedded event could contain symbols commonly found and commonly
juxtaposed in normal data; (2) the embedded event could contain symbols
and symbol juxtapositions that are anomalous with respect to those found
in normal data. Thus the fault could manifest itself as an event injected
into a normal stream of data, and that event could be regarded as normal or
it could be regarded as anomalous. There are three phenomena that could
make an event anomalous:

Foreign symbols. A foreign symbol is a symbol not included in the
training-set alphabet. For example, any symbol, such as a Q, not in the
training-set alphabet comprising A B C D E F would be considered a for-
eign symbol. Detection of events containing foreign symbols, called foreign-
symbol-sequence anomalies, is straightforward.

Foreign n-grams/sequences. An n-gram (a set of n ordered elements)
not found in the training dataset (and also not containing a foreign symbol)
is considered a foreign n-gram or foreign sequence, because it is foreign to
the training dataset. A foreign n-gram event contains n-grams not present
in the training data. For example, given an alphabet of A B C D E F, the
set of all bigrams would contain AA AB AC ... FF, for a total of 6* = 36
(in general, for an alphabet of a symbols, the total possible n-grams = o”).
If the training data contained all bigrams except CC, then CC would be a
foreign n-gram. Note that if a foreign symbol (essentially a foreign unigram)
appears in an n-gram, that would be a foreign-symbol event, not a foreign
n-gram event. In real-world, computer-based data it is quite common that
not all possible n-grams are contained in the training data, partly due to the
relatively high regularity with which computers operate, and partly due to
the large alphabets in, for example, kernel-call streams.

Rare n-grams/sequences. A rare n-gram event, also called a rare
sequence, contains n-grams that are infrequent in the training data. In the
example above, if the bigram AA constituted 96% of the bigrams in the
sequence, and the bigrams BB and CC constituted 2% each, then BB and
CC would be rare bigrams. An n-gram whose exact duplicate is found only
rarely in the training dataset is called a rare n-gram. The concept of rare
is determined by a user-specified threshold. A typical threshold might be
.05, which means that a rare n-gram would have a frequency of occurrence
in the training data of not more than 5%. The selection of this threshold is
arbitrary, but should be low enough for “rare” to be meaningful.

5 The ken of an anomaly detector

An anomaly detector determines the similarity, or distance, between some
standard event and the possibly-anomalous events in its purview; it can’t
make decisions about things it can’t see. The purview of a sliding-window
detector is the length of the window. Since not all anomalies are the same
size as the detector window, and such size differentials can affect what the

—— Encompassing———

—— Whole——
— [afalaala/A[AA[AIAA[0]d]a]d da] >
L Internal—! L_Background

L Boundary Condition—
L Boundary Condition—

Figure 1: The ken of an anomaly detector: different views of an anomaly
(depicted by AAAAAA) embedded in a sensor-data stream (depicted by
ddddd) from the perspective of a sliding-window anomaly detector. Arrows
indicate direction of data flow.

detector detects, it is useful to pursue the idea of a detector’s ken, or range.

The word ken means the extent or range of one’s recognition, comprehen-
sion, perception or understanding; one’s horizon or purview. Thus it seems
appropriate to ask, what is the ken of an anomaly detector? The univariate
case is shown in Figure 1 which depicts a stream of sensor data (ddddd)
into which an anomalous event (AAAAAA) has been injected. The right-
directed arrows indicate that the data are moving to the right with respect
to the detector window, as time and events pass.

The width of the window through which the detector apprehends the
anomaly can take on any value, typically based on the constraints of the
environment or situation in which the detector is being used. The extent
to which the detector window overlaps the anomaly can be thought of as
the detector’s view of the anomaly. It is natural to focus on the case in
which the window is the same size as the anomaly and the entire anomaly
is captured exactly within the window. This is called the whole view. There
are, however, a number of other cases, illustrated in the figure. When the size
of the detector window is less than the length of the anomaly, the detector
has what is called an internal view. For the case in which the detector

window is larger than the anomaly, both anomalous and normal background
data are seen - this is the encompassing view. Irrespective of the width
of the window, as time passes and an anomalous event moves through the
window, the event presents itself to the detector in different perspectives.
Of particular interest are situations termed external boundary conditions,
used interchangeably here with the term boundary conditions. These arise
at both ends of an injected sequence embedded in normal data, when the
leading or trailing element of the anomaly abuts the normal data. Boundary
conditions occur independently of the relative sizes of the detector window
and anomaly (except in the degenerate case of size one). In a boundary
condition, the detector sees part of the anomaly and part of the background
data. The background view sees only background data, and no anomalies.

It will be shown later that the detector views and conditions just dis-
cussed will be important in determining precisely what an anomaly detector
is capable of detecting, as well as what may cause an anomaly detector to
raise an alarm, even when it should not. Note that these conditions depend
on the size of the injected event relative to the size of the detector window.
Table 1 summarizes the conditions.

”» DW < AS | DW = AS | DW > AS
Conditions
Internal X
Boundary X X X
Encompassing X

Table 1: Conditions of interest that ensue with respect to detector-window

size (DW) and anomaly size (AS).

6 Anomaly space

It is important to note that anomalies can be composed of subsequences of
various types, three of which were identified in Section IV: foreign symbols,
foreign n-grams and rare n-grams. A fourth type is a common n-gram, an
n-gram that appears commonly (not rarely) in the normal data. Henceforth

the terms n-gram and sequence will be used interchangeably, i.e., foreign
n-gram and foreign sequence refer to the same thing.

That an anomalous sequence can be composed of several different kinds
of subsequences, along with the concept of internal sequences and boundary
sequences, gives rise to the idea of creating a map of the anomaly space
for sliding-window detectors. Given such a map, it should be possible to
determine the extent to which that map is covered by a particular anomaly
detector. It is not the goal of this paper to do that, but rather to show
that two detectors can have unexpectedly different coverages, even when
encountering the same events embedded in the same data; that is, different
detection capabilities will arise from the use of different metrics and different
detectors.

An anomaly-space map is shown in Figure 2. The map is described in
the figure caption and in the paragraph following it. The window size of the
detector, relative to the size of the anomaly, is shown in the three columns
of the figure: detector window size less than anomaly size, detector win-
dow size equal to the anomaly size, and detector window size greater than
the anomaly size. For each of these conditions the figure addresses three
kinds of anomalies: foreign-symbol-sequence anomalies (sequences compris-
ing only foreign symbols); foreign-sequence anomalies (sequences comprising
only foreign sequences); and rare-sequence anomalies (sequences comprising
only rare sequences).

The following material expands the description of a cell by selecting as
an example the anomaly type FF Al AB, depicted at the upper left of the
figure. This is a sequence of foreign symbols (FF) composed of alien internal
sequences (Al) and having alien external boundaries (AB). The term alien is
an umbrella term used to refer to sequences that do not exist in the normal
(training) data, irrespective of the characteristics that make them foreign,
unlike the more closely-defined terms foreign symbol and foreign sequence.

FF is a foreign-symbol-sequence anomaly composed only of foreign sym-
bols. In this specific case, when the anomalous sequence FF Al AB slides
past a detector window whose size is less than the size of the anomaly, the
detector will first encounter the leading edge of the anomaly. That lead-
ing edge will be alien, i.e., the sequence containing the first element of the
anomaly and the normal element immediately preceding it is not a sequence
that exists in the normal (training) data, and therefore will be anomalous.
As the anomaly moves through the detector window, each internal, detector-
window-sized subsequence of the anomaly will be alien. As the anomaly

Foreign-Symbol-Sequence Anomalies

DW < AS

DW = AS

DW > AS

FF ALAB | FF - AB | FF AE AB

Foreign-Sequence Anomalies

DW < AS | DW = AS | DW > AS
FS Al AB FS AE AB
FSRIAB | FS-AB | ESREAB
FS CI AB ESCEAB
FS Al RB FS AE RB
FSRIRB | FS-RB | ESRERB
FS CI RB ESGCERB
FS AI CB FS AE CB
FSRICB | FS-CB | ESRECB
FS CI CB ESCECB

Rare-Sequence Anomalies

DW < AS | DW = AS | DW > AS
RS Al AB RS AE AB
RSRIAB | RS-AB | RS RE AB
RS CI AB RSCEAB
RS Al RB RS AE RB
RSRIRB | RS-RB | RS RE RB
RS CI RB RS-GCERB
RS Al CB RS AE CB
RSRICB | RS-CB | RS RE CB
RS CI1CB RS CEGCB

10

Figure 2: Anomaly space. The first two letters in each cell identify the type
of anomalous sequence (FS: foreign-sequence anomaly; RS: rare-sequence
anomaly; FF: foreign-symbol-sequence anomaly). The next two letters iden-
tify the type of condition (internal (alien, rare or common) or encompassing
(alien, rare or common)); the last two letters refer to the boundary conditions
(alien, rare or common). DW < AS indicates detector window smaller than
anomaly size; DW > AS analogously indicates window larger; when DW =
AS there are no internal or encompassing conditions, indicated by dashes
replacing the middle two letters. Impossible conditions are struck out.

Data stream— .. +

00000
0000
000
00

Sliding a size 6 detector window
over an injected anomaly.

A[alalalala
@)
00
000
0000
00000
o00000
00000
0000
000
00
O

Size of detector window: 6

HAHHHH L

O

00
000
0000
00000

length of anomalous

sequence

Size of foreign-symbol sequence injected: 6

A: marks the elements of the injected anomalous sequence.

O O O O O O :elements comprising external boundary conditions.

@ @ ® ® ® @ : elements comprising anomalous sequence.

+ : marks the elements of the background data that have been incorporated
into the sequences comprising the external boundary conditions.

Figure 3: Foreign-symbol-sequence anomaly injected into background data.
External boundary conditions are shown for detector window size of 6 and

anomaly size of 6: DW = AS.

passes out of the window, its trailing edge will form another alien boundary.

Figure 3 illustrates a sliding-window detector moving over an anomaly
injected (synthetically) into a data stream. The detector window and the
anomaly size are the same: DW = AS = 6. The shaded boxes depict the
injected FF anomaly, which raises an alarm as the detector window is po-
sitioned exactly over it. Ten sequences result from the interaction between
the background and the injected anomaly. These ten sequences comprise
the boundary conditions that may affect the response of the detector as its
window slides over the injected anomaly, depending on whether or not addi-
tional anomalies are caused by the anomaly-background boundary interac-
tions. The composition of an injected anomaly, as well as the position of the
injection in the background data, must be carefully controlled to avoid the
creation of additional anomalies at the boundaries of the injection; Section
7.4 provides details.

11

Note that the anomalies depicted in Figure 2 reflect the restricted needs
of an experimental regime, and do not express all of the conditions that
might be encountered in a real-world environment. In the FSRIRB anomaly,
for example, all of the subsequences comprising the internal condition are
rare, and all the subsequences that make up the external condition are rare.
In the real world, the subsequences comprising these conditions might be a
mixture of rare, foreign and common. The anomaly space is constructed as it
is in order to effect experimental control and to reduce confounding in which
a detector’s response cannot be attributed to any single phenomenon, but
rather is due to the interaction of several phenomena.

7 Mapping the detection regions

Different detectors may cover different parts of the anomaly space depicted in
Figure 2. This section describes an experiment showing how well a selected
portion of the anomaly space is covered by two different detectors, Markov
and Stide, whose detection mechanisms will be explained below. The selected
portion of the space is foreign-sequence anomalies as shown in the fifth row
of the foreign-sequence section of the figure: FS RI RB, FS — RB, and FS RE
RB. Because the last of these is not possible, focus is limited to the first two.
These cells were chosen because they contain events that would unequivo-
cally be termed anomalous by both of the detectors used in the experiment:
both anomalies are foreign sequences with rare boundary conditions. For the
case in which the detector window size is less than the anomaly size, the
subsequences that make up the internal conditions are all rare, hence FS RI
RB. For the case in which the detector window size is equal to the anomaly
size, no internal conditions will be extant, hence FS — RB. The sequence FS
RE RB is not possible, because the sequences that make up the encompass-
ing condition will contain the foreign sequence FS. Sequences that contain
foreign subsequences will themselves be foreign sequences; consequently it is
not possible to have a rare sequence that contains a foreign subsequence.

The following subsections describe the detectors used in the coverage-
mapping experiment, the methods for generating the data used to test detec-
tor coverage (background data, anomaly data and anomaly-injected testing
data), and the regime for running the detectors in the experiment.

12

7.1 Detectors

To illustrate that different detectors may cover different parts of the anomaly
space, two detectors were tested: Markov and Stide. Each of these is de-
scribed below.

7.1.1 Markov detector

Most engineered processes, including ones used by or being driven by com-
puters, consist of a series of events or states. While the process is running,
the state of the process will change from time to time, typically in an orderly
fashion that is dictated by some aspect of the process itself. Certain kinds
of orderly behavior are plausible approximations to problems in real-world
anomaly detection and, moreover, they facilitate rigorous statistical treat-
ment and conclusions. The anomaly-detection work in this paper focuses on
the kind of orderly behavior that corresponds to Markov models.

The Markov anomaly detector determines whether the states (events) in
a sequential data stream, taken from a monitored process, are normal or
anomalous. It calculates the probabilities of transitions between events in
a training set, and uses these probabilities to assess the transitions between
events in a testing set. These states and probabilities can be described by a
Markov model. The key aspect of a Markov model is that the future state
of the modeled process depends only on the current state, and not on any
previous states [15, 16].

A Markov model consists of a collection of all possible states and a set
of probabilities associated with transitioning from one state to another. A
graphical depiction of a Markov model with four states is shown in Figure 4
in which the states are labeled with the letters A, B, C and D. Although the
arcs are not explicitly labeled in the figure, they can be thought of as being
labeled with the probabilities of transitioning from one state to another,
e.g., from state A to state B. The transition probabilities can be written
in a transition matrix, as shown in Figure 5, in which the letters indicate
states and the numbers indicate transition probabilities. The probability of
transitioning from D to A, for example, is 1; from D to any other state is 0.

The transition probabilities are based on a key property, called the Markov
assumption, and can be written formally as follows. If X, is the state of a
system at time ¢, then:

P(Xt—l—l = It+1|Xt = :ct;Xt—l = T¢-1, ---,XO = :Co) = P(XH—I = :Ct_|_1|Xt = :ct)

13

Figure 4: Four-state Markov model alphabetcomprisedof foursymbols. Let-
ters indicate states; arrows indicate transition probabilities. A transition can
be made from any state to any other state, with a given probability.

Hence the probability of being in state X;;1 = y at timet+1 depends only on
the immediately preceding state X; = = at time ¢, and not on any previous
state leading to the state at time £. Therefore the transition probability, P,
denoting the progression of the system from state z to state y, can be defined
as:

Pry = P(Xip1 = y|X; = 2)

Readers interested in further details are encouraged to consult the large lit-
erature on Markov models, e.g., [15].

Weather prediction provides a nice illustration of a Markov process. In
general, one can usually predict tomorrow’s weather based on how the weather
is today. Over short time periods, tomorrow’s noontime temperature depends
only on today’s noontime temperature. The previous day’s temperature is
correlated, but provides no additional information beyond that contained in
today’s measurement. So, there is some reasonably high probability that
tomorrow will be like today. If tomorrow’s weather is not like today’s, then
one’s expectations would be violated, and one would feel surprised. The de-
gree of surprise can be used in anomaly detection: the more surprised one is
to observe a certain event or outcome, the more anomalous is the event, and
the more it draws one’s attention.

14

State)(t_}_l
A B C D

A | 0.00 1.00 0.00 0.00

B | 0.00 0.00 1.00 0.00

C [0.00 0.00 0.00 1.00

D | 1.00 0.00 0.00 0.00

Transition sequence: ABCDABCD...

Figure 5: Transition matrix for four-state Markov model (alphabet comprised
of four symbols: A, B, C and D). Letters indicate states; numbers indicate
probabilities of transitioning from one state to another. Example: probability
of transitioning from D to A is 1; probability of transitioning from D to any
other state is 0.

Basing an anomaly detector on a discrete Markov process requires three
steps. First, a state transition matrix is constructed, using the training data;
the training data represent the conditions that are considered to be normal.
For example, if sensor data are collected from an aircraft turbine that is
running under normal operating conditions, these data would be used as
training data. From these data would be constructed the state transition
matrix that represents normal turbine behavior.

The second step is to establish a metric for surprise. This is generally a
distance (or similarity) measure that determines how dissimilar from normal
a process can be, while remaining within the bounds of what is considered to
be normal operating behavior. If the threshold of dissimilarity is exceeded,
then the observed behavior, as reflected in the sensor data, is judged to be
abnormal, or anomalous. In the case of the Markov-model approach, if a
transition is judged to be highly probable (e.g., has a probability of 0.9),
then its surprise factor is 1.0 — 0.9 = 0.1. If, in this example, the threshold
were set at 0.9, then a surprise factor of 0.1 would not be anomalous. If the
surprise factor had been 0.98, for example, then the transition would have
been considered anomalous. The more the surprise factor exceeds the surprise

15

threshold, the more anomalous the event will seem. Given a threshold of 0.9,
a surprise factor of 0.91 would be deemed anomalous, but a surprise factor
of 0.99 would be regarded as fractionally more anomalous.

The third step is to examine the test data to see if they fall within the
expectations established by the training data. As each state transition in the
test data is observed, its probability of occurring in normal data is retrieved
from the transition matrix derived from the training data. If the transition
under scrutiny has a surprise factor that exceeds the surprise threshold, then
the event in the testing data is considered anomalous.

The Markov-based anomaly detector that is used in this paper is based on
the ideas presented in this section. The states in the model do not necessarily
need to correspond to single events or unigrams; a state can be composed of
a series of events, too. In a case where multiple events comprise a state, the
collection of states in the Markov model spans the combinations of unigrams
of a specified length as present in the training data. Consider, for example,
the sequence A B C D E F. A 3-element window is moved through the
sequence one event at a time: the first window position would contain A B
C; the second window position would contain B C D, and so forth. In using
a Markov model to assess the surprise factor of the transition between the
first and second windows, the states would comprise a series of three events
or unigrams, i.e., equivalent to the window size. Notice that in the transition
from the first window to the second window, the event A is eliminated, and
the event D is added. Since the events B C are common to both windows,
it is the addition of event D which drives the surprise factor. Therefore, the
resulting surprise factor reflects on the event D following the series of events
A B C. A formal description of the training and testing processes used in
conjunction with such a Markov model is given next.

Markov training stage Primitives similar to those described in [17] are
defined to facilitate the description of the training procedure. Let ¥ denote
the set of unique elements (i.e., the alphabet of symbols, or the set of states)
in a sequential stream of data. A state in a Markov model is denoted by s
and is associated with a sequence (window) of length N over the set 3. A
transition is a pair of states, (s,s’) that denotes a transition from state s to
state s’. The primitive operation shift(o, z) shifts a sequence o left by one,
and appends the element z, where z € ¥, to the end. For instance, if the
sequence o = abe, then shift(o, z) = shift(abe, z) which is equal to the new

16

sequence bez. The primitive operation next(o) returns the first symbol of
the sequence o, then left shifts o by one to the next symbol. This function is
analogous to popping the first element from the top of a stack, where the top
of the stack is the beginning of the sequence. For example, given a sequence
abede, next(abede) returns a and updates the sequence to bede.

The construction of the Markov model for normal behavior based on
training data can be described as follows:

Initialize:
o current_state = first N elements of training data and,

e o = entire training-data stream minus first N elements.

Until all the sequences of size N have been scanned from the training data:
1. Let ¢ = next(o).

2. Set next_state to shift(current_state,c).

3. Increment counter for the state current_state and for the transition
(current_state, next_state).

4. Set current_state to be next_state.

After the entire stream of training data has been processed, the probability
of the transition is computed as (s,s’) = F}S(’:)), where F(s,s') and F(s) are
the counters associated with the transition (s,s’) and s respectively.

Markov testing stage Let 0.00 indicate normal, and let 1.00 indicate
anomalous. The surprise factor (sometimes called an anomaly signal) can be
calculated from test data as follows:

Initialize:
o current_state = first N elements of training data and,

e 0 = entire training-data stream minus first N elements.

Until all the sequences of size N have been scanned from the test data:

1. Let ¢ = next(o).

2. Surprise factor = 1 minus the transition probability of (current_state, next_state).
3. Set current_state to be next_state.

17

7.1.2 Stide detector

Stide is a sequence, time-delay, embedding anomaly detector inspired by nat-
ural immune systems that distinguish self (normal) from nonself (anomalous)
[18] [19]. The reference to “time” recognizes the time-series nature of the
categorical data on which the detector is typically deployed. Stide has been
applied to streams of system kernel-call data in which the manifestations of
maliciously altered code are regarded as anomalies [20]. Stide mimics natu-
ral immune systems by constructing templates of “self” and then matching
them against instances of “nonself.” It achieves this in several stages.

Stide training stage A database consisting of templates of “self” is con-
structed from a stream of data considered to be normal (self); these are the
training data. The stream is broken into contiguous, n-element, overlapping
subsequences, or n-grams. The value of n is typically determined empirically
[21]. Duplicate n-grams are removed from the collection, leaving only the
unique ones. These unique n-grams are stored for future fast access. This
completes the training stage.

Stide testing stage Stide compares n-grams from an unknown dataset
(testing data) to each of its unique “self” n-grams. Any unknown n-gram
that does not match a “seltf” n-gram is termed a mismatch.

Finally, a score is calculated on the basis of the number of n-gram com-
parisons made within a temporally localized region (termed “locality frame”)
[21]. Each comparison in step two (testing) receives a score of either zero
or one. If the comparison is an exact match, the score is zero; if the com-
parison is not a match, the score is one. These scores are summed within a
local region to obtain an anomaly signal. An example illustrates. Within a
local region of 20 comparisons made between “self” and unknown, if all 20
are mismatches, the score will be 20 for that particular region; if only 8 are
mismatches, the score will be 8 for that region. There are many overlapping
regions of 20 in any given data stream. Stide calculates which of these 20-
element regions has the highest score, and concludes that that region is the
locus of the anomaly.

The Stide algorithm can be described formally as follows. Let N be the
length of a sequence. The similarity between the sequence X = (zo, 1, 2, .., tn_1)
and the sequence Y = (yo, Y1, Y2, .., yn—1), is defined by the function:

18

. _J 0 ifzi=y foralli,0<i<(N-1)
Sim(X,Y) = { 1 otherwise
The expression above states that the function Sim(X,Y’) returns 0 if two
sequences of the same length are element-by-element identical; otherwise the
function returns 1.

Each sequence of size N in the test data is compared to every sequence of
size N in the normal database. Let Norm be the number of sequences of size
N in the normal database. Given the set of sequences in the normal database,
{Y0, Y1, Y5, .., Y(Norm—1)}, for the ordered set of sequences { Xo, X1, Xy, .., Xz_(v_1)}
in the test data, where X, = (s, .., 2,4 (v_1)) for 0 < s < (Z — (N —1)), and
where 7 is the number of elements in the data sample, the final similarity
measure assigned the sequence Xj is

L if Sim(X,Y;) =1 for all 7,
Sim(X,) = 0<j<(Norm—1)

0 otherwise

The expression above states that when a sequence, X, from the test data is
compared against all sequences in the normal database, the function Sim ¢(Xj)
returns 1 if no identical sequence can be found (i.e., a mismatch); otherwise
the function returns 0 to indicate the presence of an identical sequence (a
match) in the normal database.

The locality frame count (LFC) for each size N sequence in the test
data is described as follows. Let L be the size of the locality frame and
let Z be the number of elements in a data sample. For the ordered set of
sequences {Xo, X1, Xy, .., Xz_(v_1)}, where X, = (z,,.., 2,4 n-y)) for 0 <
s <(Z — (N —1)), the LFC can be described by:

) Y-+ Simg(X;) fors> 1L
LEO(X.) = { Y=o S1mg(X)) for s < L
7.2 Constructing the synthetic training data

The training data serve as the “normal” data into which anomalous events
are injected. The requirements for the training data are that a large pro-
portion of the data be comprised of common sequences, that they contain a

19

small proportion of rare sequences, and that there is a relatively high pre-
dictability from one symbol to another. The common sequences are required
to facilitate the creation of background test data that will contain no noise
in the form of naturally-occurring rare or foreign sequences. This is neces-
sary so that a detector’s response to the injected anomaly can be observed
without confounding by such phenomena. The rare sequences in the training
data are needed so that anomalous events composed of rare sequences can be
drawn from the normal training data, and then injected into the test data;
see Section 7.3 below for details. Finally, a modicum of predictability is con-
venient for emulating certain classes of real-world data (e.g., system kernel
calls) for which detectors like Stide are said to be well suited [22].

The alphabet has eight symbols: A B C D E F G and H. A larger al-
phabet could have been used, but it would not have demonstrated anything
that an 8-symbol alphabet could not demonstrate; increasing the alphabet
size would not change the outcome. Moreover, substantially more computa-
tion time is required as the alphabet size goes up. It is noted that alphabet
sizes in real-world data are typically much larger than 8; for example, the
number of unique kernel-call commands in BSM [23] audit data exceeds 200.
However, the current goal is to evaluate a detector in terms of its ability to
detect anomalies as higher-level abstract concepts, and while alphabet size
does influence the size of the set of foreign sequences and the set of possi-
ble sequences that populate the normal dataset, foreign sequences and rare
sequences retain their character irrespective of alphabet size. Maintaining a
relatively small alphabet size facilitates a more manageable experiment, yet
permits direct study of detector response.

To accommodate the requirements for predictability and data content, the
training data were generated from an eight-by-eight state transition matrix
with probability 0.9672 in one cell of each row, and 0.004686 in every other
cell, resulting in a sequence of conditional entropy 0.1 (see [24] for details).
One million data elements (symbols) were generated so that there would
be a sufficient variety of rare sequences in the sample to use them in the
construction of anomalous sequences for the test data. Ninety-eight percent
of the training data consisted of repetitions of the sequence ABCDEF G
H, seeding the data set with common sequences. This is the data set used
to train the two detectors used in this study, i.e., to establish a model of
normalcy against which unknown data can be compared.

20

7.3 Constructing the synthetic test data

Test data, containing injected anomalies, are used to determine how well the
detector can capture anomalous events and correctly reject events that are
not anomalous. The test data consist of two components: a background, into
which anomalies are injected, and the anomalies themselves. Each is gener-
ated separately, after which the anomalies are injected into the background
under strict experimental control. The background consisted of repeated se-
quences of A B C D E F G H, the most common sequence in the training
data. This was done so that the test data would not conflict with the training
data, i.e., would not contain spurious rare or foreign sequences.

7.4 Constructing the anomalous injections

Once the background data are available, anomalous events must be injected
into them to finalize the test data. The anomalies must be chosen carefully
so that when they are injected into the test data they do not introduce un-
intended anomalous perturbations, such as external boundary conditions. If
this were to happen, then a detector could react to those conditions, con-
founding the outcomes of interest. Hence, scrupulous control is necessary.

The goal is to map the detection capability of both the Stide and the
Markov anomaly detectors, and to show that their detection capabilities
may vary with respect to identical and unequivocally anomalous phenomena.
Given this objective, a single anomaly type that both detectors must be able
to detect is selected from the anomaly space in Figure 2 for the experiments.
The anomaly type selected is a foreign sequence of length AS for which all
subsequences of length less than AS that make up the internal sequences
and the boundary sequences are rare. Rare is defined to be any sequence of
detector-window length that occurs in the training data less than one percent
of the time.

It is within the scope of this study to map out only one region or type in
the anomaly space in order to illustrate what can be learned and gained by the
effort. Once that anomaly type is determined, e.g., FS RI RB, as described
in Section 7, the next step is to inject a foreign sequence composed of rare
sequences into the test data. A catalog of rare n-grams is obtained from the
training data. Rare n-grams are drawn from the catalog, and composed to
form a foreign sequence of the appropriate size. For example, the bigrams

BA, AF, FH, HE, EC, CC and CF each occurred less than 0.06% of the

21

time in the training data; consequently, these are rare bigrams. Combining
these seven bigrams produces one octagram (BAFHECCF) whose internal
sequences are made up of rare sequences of size two. This octagram was
injected into the background data.

Once the composed foreign sequence is injected into the background data,
its boundary conditions must be checked to ensure that they are all rare (be-
cause rare boundary conditions are consistent with the anomaly class being
examined). If the boundary conditions are satisfied, the procedure is finished;
if not, an attempt is made to handcraft the boundary conditions with the help
of semiautomated tools. If the handcrafting fails, then a different set of rare
sequences is selected from the catalog, and a new foreign sequence is com-
posed. The new foreign sequence is injected into the background data, and
its boundary conditions are checked. This entire procedure is repeated until
a successful injection is obtained. Note that when the size of the detector
window is greater than the size of the injection, an encompassing condition
ensues, not an internal condition; however, care is still required to ensure
that the external boundary conditions remain pertinent, even though the
focus has been moved from internal conditions to encompassing conditions.

Eight injection sizes and fourteen detector-window sizes were tested. The
procedure outlined above for creating the anomalous events, and for injecting
them, is repeated for each combination of injection size and window size,
resulting in 112 total data sets.

7.5 Scoring detector performance

Anomaly detectors are capable of only two kinds of decisions: yes, an anomaly
exists; or, no, an anomaly does not exist. Detectors are usually judged
in terms of hits, misses and false alarms. A hit occurs when the detector
determines that an anomaly is present, and an anomaly actually is present.
A miss occurs when the detector determines that no anomaly is present
when actually there is one present. A false alarm occurs when the detector
determines that there is an anomaly present when in fact there is no anomaly
present. A perfect detector would have a 100% hit rate, no misses and no
false alarms.

To effect proper scoring, ground truth (a statement of undisputed fact
regarding the test data) must be known. That is, it must be determined
exactly where anomalies have been injected into the test data, so that when
the detector issues a decision, the correctness of that decision can always be

22

assured. The injector creates a key that indicates the exact location of every
injection. Using this key, one can determine whether or not a detector’s
decisions are correct. The usual procedure for this is for the detector to
create an output file containing its decisions: 0 for no, and 1 for yes. This
file can be compared against the key, which contains a similar set of zeroes
and ones. If the two files match perfectly, the detector’s performance is a
perfect 100%; otherwise, the percent of hits, misses and false alarms can be
calculated easily.

Using the injection key file, however, is not as straightforward as it might
first appear. Due to the interaction of the detector-window size and the
particular composition of the injected event, the detector’s responses may
not always be aligned perfectly with the ones and zeroes in the key file. For
example, if the key file contains a one at the leading edge of an injected
event (which seems sensible), the detector’s response might not match. In
fact, the detector might make a variety of responses, some of them multiple,
to an injected event, and the key file must be constructed to facilitate correct
scoring for any set of responses the detector might make. For example, the
detector might decide, incorrectly, that an anomaly exists at the leading-
edge boundary of an injected event; in fact, at that boundary there is no
anomaly, so the detector’s decision would be wrong. Another example is
that the detector, depending on its window size relative to the size of the
injected event, may respond only to subsequences internal to the injected
event, but not to the event in toto. There is a danger that a detector will
respond several times to a single injected event (because it may encounter
several different views of that event), and thereby be judged mistakenly to
have false-alarmed - to have decided yes in error.

The problems with matching detector decisions against ground-truth keys
can be addressed in a variety of ways. In the present work the primary
concern is to determine whether or not a detector is completely blind to an
injected event, so the most worrisome response would be no response at all
- a miss. If the detector does not decide yes to any part of the injected
event, whether internal, whole, encompassing or boundary, then it is blind
to the event. Alternatively, if the detector does respond, there needs to be
a way to mitigate the problem of key mismatch, as described above. This
problem is addressed by requiring that the detector respond positively at
least once within the span of the injected event and the elements comprising
its boundary conditions (collectively called the incident span) in order to
have judged the event to be a hit.

23

7.6 Procedure

Each of the two detectors, Markov and Stide, was provided with the same set
of training data. From the training data, the detectors learned their models
of normal behavior. Then each detector was tested, using each of the 112
test data sets described in Section 7.4. The size of the detector window was
varied from two to fifteen, and the size of the injected events was varied
from two to nine. The restrictions on these dimensions were due to resource
limitations, since computation time and memory increase with an increase
in either dimension. Moreover, nothing new would be learned from raising
either parameter. Each detector, for each testing session, produced a decision
file which was compared to the key files for each test data set. Comparisons
that revealed detector blindness (no detection of injected anomalous events)
were charted.

Note that Stide’s locality-frame-count feature was ignored, because it
operates only as an amplifier for detected anomalies (which Stide represents
as mismatches). If a foreign-sequence anomaly is not detected by a mismatch,
then applying the locality frame count will not make the anomaly visible.
Since the task at hand is to determine whether or not the injected anomalies
were detected, amplification, which can be viewed as a post-detection process,
is not relevant for mismatch/anomaly detection under present experimental
conditions. As a consequence of this, Stide’s maximum anomalous response
is 1.

8 Results

Detection and blind regions for the Markov and Stide detectors are depicted
in Figures 6 and 7 respectively. These decision maps illustrate the detection
capability of both the Markov and the Stide detector with respect to an
injected foreign sequence composed of rare sequences.

The x-axis of each map marks the increasing size of the foreign sequence
injected into the test data; the y-axis marks the size of the detector window
required to detect a foreign sequence of a specified size. Fach star indicates
successful detection of the foreign-sequence anomaly whose size is indicated
on the x-axis, using a detector window whose size is marked on the x-axis; de-
tection specifically means that at least one positive response occurred in the
incident span, where “positive” connotes the most-anomalous value possible

24

in the detector’s range of responses. In both detectors, the most anomalous
response 1s 1. The areas that are bereft of stars indicate either detection
blindness or an undefined region. Detection blindness means that the detec-
tor was unable to detect the injected foreign sequence whose corresponding
size is marked on the x-axis, i.e., the maximum anomalous response recorded
along the entire incident span was 0 — to the detector, the anomaly appears
as being completely normal. Note that no false alarms occurred, because
background data were constructed from common sequences which do not
raise alarms.

g15 T * * * * * * *
21 ¥ * * * * x x *
213 % X * * * X X *
%12 1Ir * * * * . * * *
3y . . N Dete*cnon region . N
5’10 ’:t * * * * * * *
9 * x * * * * * *
8 »IL * * * * * * *
7 * * * * * x * *
6 + * * * * * * *
5 aly * * * * * * *
4 * * * * * * * *
3 1I' * * * * * * *
) b — e — o — e — —h— - — — k — — %
Undefined region

1 2 3 4 5 7 8
Size of foreign-sequence anomaly

Figure 6: Markov sweet and blind regions.

The undefined region is an artifact of the Markov detector and anomaly
type. Since the Markov detector is based on the Markov assumption, i.e.,
the next state is dependent only upon the current state, the smallest possible
window size is 2, or a bigram. This means that the next expected, single,
categorical element is dependent only on the current, single, categorical el-
ement. As a result, the y-axis marking the detector window sizes in Figure
6 begins at 2. Although it is possible to run Stide on a window size of 1,
doing so would produce results that do not include sequential ordering of

25

1 * * * * * x x *
|
1214 ¥ * * * * * * X
3
513 * * * * % x x *
5 |
$12 ¥ * * * * * * %
: Detection region
ou * * * * * * * *
Do ’:t * * * * * * *
9 * x * * * * XA
8 i * * * * * +7
| K
7 * * * * L o
6 + * * * */
| =
-
5 * * * L*
4 Jr * /Y"A' . i
! a7 Blind region
3 LINPR
) T e
Undefined region

1 2 3 4 5 6 7 8 9
Size of foreign-sequence anomaly

Figure 7: Stide sweet and blind regions.

events, a property that comes into play in all window sizes larger than 1.
This, together with the fact that there is no equivalent window size of 1 on
the side of the Markov detector, argued against running Stide with a window
of 1.

The y-axis also begins at 2, because the type of anomalous event on
which the detectors are being evaluated requires that a foreign sequence be
composed of rare sequences. A foreign sequence of size one is an event that
contains a single element that must be both foreign and rare at the same time;
this is not possible. As a result, both Figures 6 and 7 show an undefined
region corresponding to a detector window of size two and an anomaly of
size one.

By charting the performance spaces of Stide and the Markov-based detec-
tor with respect to a foreign sequence composed of rare sequences, one is able
to observe the nature of the gain achieved by employing the conditional prob-
abilities of the Markov detector (that are absent in Stide). The significant
gain in detection capability endowed by the use of conditional probabilities
is illustrated by the blind region depicted in Figure 7. It is interesting to

26

note that, for the exact same datasets, using a detector window of length 9,
Stide’s detection coverage is just 56% of Markov’s. As the detector window
size decreases to 2, Stide’s coverage decreases to only 12.5% of that of the
Markov detector. At this window size, however, the Markov detector still
has 100% coverage of the space, which is a tremendous difference.

The results show that although the Markov and Stide detectors each
use the concept of a sliding window, and are both expected to be able to
detect foreign sequences, their differing similarity metrics significantly impact
their detection capabilities. In the case of Stide, even though there is a
foreign sequence present in the data stream, it is visible only if the size of
the detector window is at least as large as the foreign sequence composed of
rare subsequences — a requirement that the Markov detector does not have.
Therefore, even if a fault does manifest as a foreign sequence in the data,
it doesn’t necessarily mean that Stide, which claims to be able to detect
“unusual” sequences, will detect such a manifestation. It should be noted,
therefore, that the selection of a similarity metric can have critical effects on
the performance of a detector, and these choices should be made with care
and with understanding of the metric.

9 Real-world data

The results shown in previous sections were based on synthetic data that were
generated specifically to test the different anomaly detectors described. This
section provides a link to real-world data, and shows that the manifestations
of live anomalies in system kernel-call data are consistent with the anomaly-
space map of Figure 2.

The live experiment consisted of a cyberattack on a RedHat 6.2 Linux
system. The attack exploited a vulnerability in glibc (standard C library)
through the su program (a program that switches a user from one account to
another, given that the user provides appropriate credentials). The library
allows a user to write an arbitrary format string. The exploiting program
writes a carefully crafted string which interrupts the execution of su, allowing
the user to run a script or program with root privileges. The exploit permits
the user to switch accounts without providing credentials. Running su with
and without the exploit should produce kernel-call data with and without
anomalies due to the exploit itself. Kernel-call data on the victim machine
were logged using the IMMSEC kernel patch, provided by the Computer

27

Immune Systems Research Group at the University of New Mexico.

The attack was scripted so that it could be repeated reliably and auto-
matically. The following procedure was run three times, using standard su
(with normal user interaction, providing credentials to switch from user to
root) to obtain normal (training) data, and run three more times using the
su exploit to obtain the anomalous (test) data:

1. Start a session as a regular user.
2. Turn on syscall logging for the su program.

3. Run the exploit as the regular user; verify that it was successful in
giving the user a shell with root privileges.

4. Turn off syscall logging for the su program; move the log file to a
permanent location.

5. Clean up the environment and log out.

The monitored kernel-call data were examined by both an experienced
system programmer and a set of automated tools to find all the minimal for-
eign sequences that appeared in the attack data, but not in the normal data.
A minimal foreign sequence is a foreign sequence in which no shorter foreign
sequence is embedded. The programmer and tool results were compared and
found to be mutually consistent. The system programmer confirmed, through
systematic analysis, that all of the foreign sequences were direct manifesta-
tions of the attacks. Seventeen foreign-sequence anomalies were discovered
in the su exploit; no foreign symbols were found, and there was no variability
in the kernel-call data for the three attacks. The foreign-sequence anomalies
ranged in length from 2 to 5, with one anomaly of length 5, five anomalies
of length 3, and eleven anomalies of length 2. Some anomalies were unique;
others were repeated in the data. Details are shown in Figure 8.

When using a detector window of size 2, which is the smallest possible
size that covers an anomaly of length two, the real-world foreign-sequence
anomalies in Figure 8 had compositional characteristics like the ones shown
in the anomaly space in Figure 2. All of the anomaly descriptions are the
same as the ones described in the anomaly space, except for the second one,
which is eight characters instead of six or four, like the rest. The anomaly (F'S
RI RB FB) shown in the figure is from live data, and its composition reflects

28

Anomaly Size | Anomaly Contents | Anomaly Description

5 91,5,5,108,90 FS RI RB

3 45,5 FS RI RB AB
3 5,5,5 FS RI RB

3 5,5,5 FS RI RB

3 5,5,5 FS RI RB

3 5,5,5 FS RI RB

2 6,4 FS RB AB
2 4.4 FS - AB

2 4.4 FS - AB

2 4.4 FS - AB

2 4.4 FS - AB

2 4.4 FS - AB

2 4.4 FS - AB

2 4.4 FS - AB

2 5,4 FS RB AB
2 4,23 FS - AB

2 23,11 FS RB AB

Figure 8: Foreign-sequence anomalies, discovered in real-world information-
warfare attack data, showing the size of each of the 17 anomalies, the events
comprising each anomaly, and the anomaly description in accordance with
the anomaly space of Figure 2. Anomaly contents are numerical encodings
of kernel calls.

the broader set of conditions pertaining to uncontrolled, real-world data, as
opposed to the more compact formulations in the anomaly space which are
for well-behaved anomalies like the ones found in the synthetic data. The
F'S, as usual, indicates the base type of the anomaly: foreign sequence. The
RI indicates that all of the internal conditions are rare. The RB indicates
that all of the sequences comprising the left boundary are rare, and the AB
indicates that all the sequences comprising the right-boundary are alien.

10 Discussion and conclusion

This paper has addressed fundamental issues in anomaly detection. The
results are applicable in any domain in which anomaly detection in categorical

29

data is conducted.

The paper has shown how to assess the coverage of an anomaly detec-
tor, and has also illustrated many subtleties involved in doing so. There
are myriad factors to be considered carefully; the process is not straightfor-
ward. Meticulous attention needs to be paid to the interactions between an
anomalous event and the normal environment in which it is embedded, i.e.,
external boundary conditions, internal conditions, encompassing conditions,
and common, rare and foreign sequences that compose an anomalous event.
Unless all of these factors are accounted for, error may be the biggest enemy
of a correct mapping.

The coverage maps for two different anomaly detectors were shown to be
strikingly different. This might come as a surprise to someone who believes
that applying any anomaly detector to a stream of sensor data would be
satisfactory, or that either of two detectors would detect the same events. One
detector, Stide, which was specifically designed to detect foreign sequences,
was shown to be blind to over half of a region it purports to cover. When
used in its original role as a detector for information-warfare intrusions, Stide
has been operated in a region of the detection space that is about six by six
in terms of window size vs. anomaly size. It is interesting that in that region
Stide is blind to 36% of the space, whereas the Markov detector covers 100%
of that same region.

It is not necessarily bad for an anomaly detector to have less than perfect
coverage, as long as the user knows the limitations of the detector. If a
detector has suboptimal coverage, it may be possible to deploy the detector
in situations where it doesn’t need to operate in the part of the space in
which it is blind. It will never be possible to assure this, however, if the
detector’s coverage is not mapped.

Can multiple anomaly detectors be composed to attain greater cover-
age than that achieved by a single anomaly detector used alone? It seems
clear from the two maps produced here that one detector can be deployed
to compensate for the deficiencies of another. In the present case it may
appear that the Markov detector should simply replace Stide altogether, but
because each detector has a different operational overhead, it may not be
straightforward to determine the best mix for a compositional detection sys-
tem. Also, one should be reminded that in the present work only one cell of
the anomaly space depicted in Figure 2 has been examined; determination
of overall coverage awaits examination of the rest of the cells as well. When
deploying anomaly detectors in embedded or mission-critical systems, it is

30

essential to understand the precise capabilities of the detectors, as well as
the characteristics of the spaces in which they will operate.

Although the real-world experiment with live systems and data was lim-
ited in scope, it still illustrates two important things. First, the anomaly
types depicted in Figure 2 were demonstrated to exist in real-world data;
they are not mere artifacts of a contrived environment. Second, the response
of a detector to a specified type of anomaly will not change, whether the
anomaly is found in synthetic data or in real-world data; consequently, the re-
sults obtained from having evaluated an anomaly detector on synthetic data
will be preserved faithfully when applied to real data; that is, predictions
made with synthetic data will be sustained when transferred to real-world
environments.

Some important lessons have been learned. A blind region in an anomaly-
space map will always grow as the foreign sequence grows. This means that
longer foreign sequences may constitute vulnerabilities for the detection al-
gorithms considered here. Nevertheless, it is undoubtedly better to know the
performance boundaries of a detector so that compensations can be made
for whatever its weaknesses may be. Synthetic data have been effective
in mapping anomaly spaces. Synthetic data may be the only avenue for
creating such maps, because they permit running experiments in which all
confounding conditions can be controlled, allowing absolute calibration of
ground truth. Although real-world data is appealing for testing detection
systems, real-world ground truth will always be difficult to obtain, and not
all of the desired conditions for testing will occur in real data in a timely
way. Finally, and most importantly, the anomaly-space framework provides
a mechanism that bridges the gap between the synthetic and real worlds,
allowing evaluation results to transfer to any domain through the anomaly-
space abstraction.

11 Acknowledgements

The work herein was supported by the U.S. Defense Advanced Research
Projects Agency (DARPA) under contracts F30602-99-2-0537 and F30602-
00-2-0528. Many other people contributed in various ways; the authors are
grateful to Kevin Killourhy, Pat Loring, Bob Olszewski, Sami Saydjari and
Tahlia Townsend for their help. This paper draws on Kymie Tan’s forthcom-
ing dissertation [25].

31

References

(1]

2]

3]

[4]

[5]

[6]

[7]

[8]

Stephen Cass, “Little Linuxes,” [EFEE Spectrum, vol. 38, no. 3, pp.
23-25, March 2001.

Peter A. Lee and Tom Anderson, Fault Tolerance: Principles and Prac-
tice, Springer—Verlag, Vienna, Austria, second edition, 1990.

Brian Randell, “System structure for software fault tolerance,” IFKEE
Transactions on Software Engineering, vol. SE-1, no. 2, pp. 220-232,
June 1975.

Roy A. Maxion and Frank E. Feather, “A case study of ethernet anoma-
lies in a distributed computing environment,” [IEEFE Transactions on

Reliability, vol. 39, no. 4, pp. 433-443, October 1990.

Michael M. Tsao, Trend Analysis and Fault Prediction, Ph.D. thesis,
Computer Science Department, Carnegie Mellon University, Pittsburgh,
PA, May 1983.

Roy A. Maxion and Daniel P. Siewiorek, “Symptom based diagnosis,” in
IEEE International Conference on Computer Design (ICCD-85), 1985,
pp- 294-297. 07-10 October, Port Chester, NY.

Michael F. Buckley, Computer FEvent Monitoring and Analysis, Ph.D.
thesis, Carnegie Mellon University, Department of Electrical and Com-
puter Engineering, Pittsburgh, PA, May 1992.

Teresa F. Lunt, “A survey of intrusion-detection techniques,” Computers
& Security, vol. 12, no. 4, pp. 405-418, June 1993.

S. S. Stevens, “On the theory of scales of measurement,” Science, vol.

103, no. 2684, pp. 677-680, June 1946.

Beth A. Schroeder, “On-line monitoring: A tutorial,” IEEE Computer,
vol. 28, no. 6, pp. 72-78, June 1995.

Thomas F. Arnold, “The concept of coverage and its effect on the relia-
bility model of a repairable system,” IEFEE Transactions on Computers,

vol. C-22, no. 3, pp. 251-254, March 1973.

32

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Daniel P. Siewiorek and Robert S. Swartz, Reliable Computer Systems,
Digital Press, Burlington, MA, second edition, 1992.

Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer, “Fault
injection techniques and tools,” [EEFE Computer, vol. 30, no. 4, pp.
75-82, April 1997.

Jeffrey A. Clark and Dhiraj K. Pradhan, “Fault injection - a method
for validating computer-system dependability,” [EEE Computer, vol.
28, no. 6, pp. 47-56, June 1995.

David R. Cox and Hilton D. Miller, The Theory of Stochastic Processes,
Wiley, New York, 1965.

James D. Hamilton, Time Series Analysis, Princeton University Press,
Princeton, New Jersey, 1994.

Somesh Jha, Kymie M. C. Tan, and Roy A. Maxion, “Markov chains,
classifiers, and intrusion detection,” in 1/th IEEE Computer Security
Foundations Workshop, Los Alamitos, California, 2001, pp. 206-219,
IEEE Computer Society Press, 11-13 June, Cape Breton, Novia Scotia,
Canada.

Stephanie Forrest, Steven A. Hofmeyer, and Anil Somayaji, “Computer
immunology,” Communications of the ACM, vol. 40, no. 10, pp. 88-96,
October 1997.

Stephanie Forrest, Steven A. Hofmeyer, Anil Somayaji, and Thomas A.
Longstaff, “A sense of self for unix processes,” in [EEE Symposium
on Security and Privacy, Los Alamitos, CA, 1996, pp. 120128, IEEE
Computer Society Press, 06-08 May, Oakland, CA.

Steven Hofmeyr, Stephanie Forrest, and Anil Somayaji, “Intrusion de-
tection using sequences of system calls,” Journal of Computer Security,

vol. 6, no. 3, pp. 151-180, 1998.

Christina Warrender, Stephanie Forrest, and Barak Pearlmutter, “De-
tecting intrusions using system calls: Alternative data models,” in 1999
IEEE Sympostum on Security and Privacy, Los Alamitos, CA, 1999, pp.
133-145, IEEE Computer Society Press, 09-12 May, Oakland, CA.

33

[22]

23]

[24]

[25]

Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and Rajesh
Cherukuri, “Self-nonself discrimination in a computer,” in I[EEE Sym-
posium on Research in Security and Privacy, Los Alamitos, CA, 1994,
pp- 202-212, IEEE Computer Society Press, 16-18 May, Oakland, CA.

Sun Microsystems, “Sunshield basic security module guide,” Techni-
cal report 805-2635-10, Sun Microsystems, Inc., Palo Alto, California,
October 1998.

Roy A. Maxion and Kymie M. C. Tan, “Benchmarking anomaly-based
detection systems,” in International Conference on Dependable Systems

and Networks, Los Alamitos, California, 2001, pp. 623 — 630, IEEE
Computer Society Press, 25-28 June, New York, New York.

Kymie M. C. Tan, Defining the operational limits of anomaly-based
intruston detectors, Ph.D. thesis, Melbourne University, Department of
Computer Science, Melbourne, Victoria, Australia, 2001.

34

