Scalable Real-time Parallel Garbage Collection
for Symmetric Multiprocessors

Perry Sze-Din Cheng

September 2001
CMU-CS-01-174

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee

Guy Blelloch (Co-chair)
Robert Harper (Co-chair)
Peter Lee
Urs Hoelzle, University of California Santa Barbara

Copyright © Perry Cheng 2001

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring
organization.

Scalable Real-time Parallel Garbage Collection for
Symmetric Multiprocessors

Perry Cheng
Carnegie Mellon University

September 24, 2001

CONTENTS

3 Three Copying Collectors

3.1 Tricolor Abstraction,
3.2 Copying Collectors e
83 Cheney’s Algorithin . . v ¢ w5 s o 5 ¢ 0 s ws n v 555 s 58
3.4 Baker’s Algorithm
3.5 O’Toole and Nettles’s Replicating Collector
3.6 Space Analysis Lo
3.7 Comparing Baker and Nettles

A Simple Parallel, Concurrent Real-time Collector

4.1 Allocation Synchronization
4.2 Copy-copy Synchronization
4.3 Copy-write Synchronization
4.4 Starting and Stopping a Collection
4.5 Scalable Parallelism: Sharing Work
4.6 Shared Stack Lo
4.7 Rooms - Enforcing Access Restrictions
4.8 Real-time Issues 0oL,
4.9 Presentation of Algorithm
4.10 Correctness of Write
4.11 Time and Space Bounds

A More Realistic Collector
51 CRCW o e
5.2 Global Variables
5.3 Stacks and Stackletso o 0oL o oL
5.3.1 Stacklet States,
5.3.2 Stacklet Reclamation
5.4 Fast Allocation
5.5 DBatched Write Barrier
5.6 Reducing Double Allocation
5.7 Reducing Conservatism
5.8 LatgeObjetts ¢ 5 : v 5 2 s 5o s 9 8 0 s v i o a3 650 5 55
5.9 Small Objects oL
5.10 Eliminating Interrupt.o oo v ...
5.11 Improving Room Usage
5.12 Gray Primary vs. Gray Replica
5.13 Actual Algorithm oo oL oL
5.14 Compiler Issues L o
5.14.1 Lowering the Cost of Allocate and Write.

CONTENTS 3

5.14.2 Register Assignment 71

5.15 Parallelism Without Real-Time Bounds 72
5.16 Time and Space Bounds 72
6 Empirical Lessons 78
6.1 Scalability 78
6.1.1 Reducing Intra-Room Time 79
6.1.2 Reducing False Contention 79
6.1.3 The Cost of Load Balancing 79
6.1.4 Graph Traversal Ordering 80
6.1.5 Tactical Load Balancing 81
6.1.6 Parallel Processing of Threads 82

6.2 Real-time Issues, 82
6.2.1 Using High-Resolution Timer 82
6.2.2 Scheduling Collection 83

6.3 Turning the Collector Off 84
6.3.1 Processing Stacklets 85

7 Implementation 87
Tol, SML : 5 : 5 : s @ s 8 ¢ 5 ¢ 5 3 % 56 5 8 s & 2 e e 87
7.2 Data Representation, . 88
7.3 Activation Records: Stack vs. Heap 89
7.4 Placement of Special Values 90
7.5 Other Aspects of TILT oo 91
7.6 Adding Parallelism to TILT 91
7.7 Scheduler 93
7.8 Platforms oL 94
7.9 Measurments Lo oo e e 94
7.10 Weak Barrierso o 95
7.11 Heap Resizing o 95
7.12 Work: Completion and Real-Time Bounds 95
7.13 Other Collector Details 96
7.14 Interface 97
8 Benchmarks 99
8.1 Benchmark Characteristics 101
8.2 Composite Benchmarks, 102

8.3 Cost of Write Barrier 108

Chapter 1

Introduction

1.1 Memory Management: Static, Stack, and Heap

Memory is a scarce but valuable resource. Because processors can only hold
a very limited amount of information, memory is necessary for temporary
data storage. The correct and efficient allocation of this precious resource
is the goal of memory management.

The most primitive type of memory management is static allocation,
which is used in Fortran 77 programs and for global data structures of most
programming languages. In this discipline, the programmer decides at com-
pile time the maximum size of various data structures and chooses how
much memory is allocated for each structure. Since the sizes are fixed at
compile time, the resultant memory addresses of these structures are also
fixed. Memory is allocated to the program when it starts and deallocated
only when the program exits.

Procedural languages permit local variables and recursive functions. Since
a multiple but unknown number of local variables may be simultaneously
active, static allocation cannot be used to hold their values. However, the
LIFO pattern of function calls permits the use of stack allocation. Typi-
cally, a large memory region is reserved for the program stack. Lach time a
function is called, a new region is allocated from the bottom of the program
stack for the activation record which holds the function’s local variables.
When the function returns, all the inner function calls must have already
terminated. Thus, there are no activation record below the current one,
allowing the space for the current activation record to be returned.

Most applications, particularly symbolic processing and modelling, have
data usage patterns that are neither static nor stack-like. They create data

CONTENTS 4

9

10

A

Experiments 110
9.1 The Cost of Parallelism and Incrementality 111
9.2 Measuring Scalability of Collector 115
9.3 Overall Scalability L115
9.4 Breakdownoftime 117
0.5 Difect of Load-Balafieiig « : « s 5 s #5 5 = v 5 ¢ 54 ¢n 2 w s 118
9.6 DataSize . . s :n s 6 s 55 8¢ w6 ww o8 s 5w FE @ s 118
9.7 Contention, : . : @35 ¢ 8: 850 55 @3 8¢ 98 83 120
9.8 Measuring Real-time Response: Maximum Pause and Utiliza-
167} + LN T R R L B 121
9.9 Overall Real-time Response 122
9.10 Effectivess of 2-phase Optimization 126
9.11 Time Traces o v i i vt 128
9.12 Scheduling Policy 129
9.13 Batching Granularity 133
9.14 Real-time Response with Multiple Processors 135
Discussion and Conclusion 137
10.1 Future Direction 137
10.1.1 Dynamic Granularity 137
10.1.2 Space Concerns 137
10.1.3 More Tuning 138
10.2 Collector Flexibility 138
10.3 Results o o o i o e 139
Code Convention 140

CHAPTER 1. INTRODUCTION 6

whose lifetimes are unpredictable. To support such applications, heap man-
agement can be used. A heap is an area of memory in which allocation
and deallocation can be performed in any order. Unlike static and stack
allocation, the heap discipline offers complete flexibility to the programmer
over the lifetime of their data. However, proper deallocation is no longer a
simple matter.

1.2 Heap Memory Management: Explicit vs. Au-
tomatic

Many languages (e.g. C, C++, Pascal, Fortran 90) require the programmer
to explicitly free objects that are no longer used by the program. Failure
to do so may cause space leaks that lead to eventual memory exhaustion.
Even a slow space leak is unacceptable in long-running server applications!.
On the other hand, freeing an object before all references to it are deleted
creates dangling pointers. The program may later dereference a dangling
pointer causing erroneous execution or a memory fault.

An alternative approach most commonly found in functional languages
(e.g. Lisp, ML, Haskell) is automatic memory management. In such sys-
tems, the programmer does not explicitly return memory to the runtime
system. Rather, the runtime system automatically reclaims memory that
is no longer used by the program. The runtime subsystem which performs
memory reclamation is called the garbage collector.

Jones gives several reasons for using garbage collection (GC) of which
the most compelling is that the application problem requires it [44]. For
example, when removing an item from a data structure, whether the item
should be deleted depends on whether the data structure held the last refer-
ence [13]. Answering this could require a hard to enforce global convention
or unnecessary data replication. A related argument for using GC is based
on software engineering principles. Good software design relies on proper
abstraction and modularity. The success of this approach in dealing with
code complexity often depends on minimizing the size of module interfaces
[55]. However, the global nature of data liveness can greatly complicate
interfaces [76]:

An unequivocal statement about the general superiority of explicit or
automatic memory management cannot be made. With regard to program-
ming ease and software engineering, garbage collection is the clear winner.

'Early versions of X servers had slow memory leaks that would force weekly to monthly
reboots.

CHAPTER 1. INTRODUCTION 7

Explicit memory management is often the source of many errors in com-
plex systems. The existence of products that detect memory errors like
Purify [62] and the common use of so-called conservative collectors [14]
indicate the frequency and severity of such memory problems. However,
the relative space and time performance of garbage collection versus ex-
plicit malloc/free is unclear. In some cases, the programmer may have
application-specific information that permits an optimized memory man-
agement that is more efficient than any general garbage collector.

For more details about collection techniques and issues, including algo-
rithms for uncooperative environments and distributed collection, the reader
should consult Jone’s excellent comprehensive survey [44] or Wilson’s report
[75] on the general problem of garbage collection.

1.3 Memory Graphs

From the garbage collector’s point of view, a program operates by reading
memory locations, writing memory locations, and performing computations
on register values. The program accesses data in memory by repeated mem-
ory dereferences starting with registers values. At any point in execution,
the set of data the program can reach is the reachable data. However,
the program may only access a data subset called ‘the live data. In gen-
eral, it is impossible to determine the live data without effectively executing
the program. Thus, all garbage collectors and almost all explicit memory
management make the safe approximation that all reachable data shall be
considered live. Unreachable data can be safely considered dead and the
occupied space can be reclaimed.

Directed graphs are useful for representing memory and much of the
terminology of garbage collection stems from graph theory. Under a graph
interpretation, data objects are nodes, pointers are edges, and registers form
the roots of the graph. In diagram 1.1, 8 objects are shown. The four objects
to the left are reachable from the registers and are live. The remaining four
objects, encircled by the dashed line, are not reachable from the registers
and are dead. The memory occupied by these objects may be reused. As
a program executes, the memory graph will by modified by the addition
of nodes through allocation and rearrangement of the edges through field
updates. These modifications will effect the reachability of the nodes and
create more work for the collector. Because the collector considers the pro-
gram to be a pesky process that continually changes the graph, the user
program is often called the mutator.

CHAPTER 1. INTRODUCTION 8

()
Register 1

ﬁﬁréaghable
/ \

\
| 7 ||
!
I

N—_
=

Figure 1.1: Example memory graph. The objects inside the dashed area are
unreachable from the registers and are dead.

1.4 Classical Algorithms

There are 3 basic collection techniques, all implemented for LISP in the
1960’s. They are reference counting, mark-sweep collectors, and copying
collectors. All subsequent garbage collectors descended from these rudi-
mentary algorithms through refinement, hybridization, and the addition of
features for performance goals. The interested reader should consult Jone’s
reference work [44].

1.4.1 Reference Counting

One of the first general-purpose methods for heap management is reference
counting [18]. Each object has an additional field for storing the reference
count which is the number of references to that object from elsewhere. As
the program executes, references counts are updated to reflect modifications
in the memory graph. If a reference count ever falls to zero, the object is
unreferenced and unreachable so the space for that object can be reclaimed
by the system. Diagram 1.2 shows an example of a pointer modification.
Originally, Register 2 refers to object X as shown in the left. Then, the
register is modified to point to object Y, accompanied by an increment of
Y’s count and a decrement of X’s count. Since the count of X has fallen to
zero, its space can be reclaimed after decrementing the counts of its referents.
This technique qualifies as garbage collection because the maintenance of the

CHAPTER 1. INTRODUCTION 9

s A
Register 1 [Register 2]
\ J

1 1
/ X
y / __________ g
1 2 1 1 }
\ Y Bz /B|
\
3\\\]\ _/ \/ B //
D C Unreclatified Garbage

Figure 1.2: Example of Reference Counting

reference counts can be automated by the compiler.

Unfortunately, simple reference counting is incapable of reclaiming cyclic
data. We show this by continuing with the example from Diagram 1.2, When
we deallocate X, we must decrement A’s count from 2 to 1 since X refers to A.
Although A is no longer reachable from the roots, its count does not fall to
zero because it forms a cycle with B and so neither object can be reclaimed.
What is worse, objects reachable from the cycle, like C (and eventually D),
are also unreclaimed. Special reference counting techniques that can handle
cycles exist but are very complex and have potentially exponential running
time [63, 60, 4].

One advantage of reference counting is the interleaving of reference count
operations with program execution. The incremental work of count manip-
ulations does not cause long delays and has as good memory locality as
that of the program. In addition, objects are reclaimed as soon as they
become unreachable. However, these advantages are offset by the high cost
of maintaining the counts and the difficulties with cycles.

1.4.2 Mark-Sweep and Compaction

With mark-sweep, the program performs no extra manipulations during
execution. Instead, collection work is performed only when memory is ex-
hausted. At this point the collector traverses all reachable data, recording
each visited object as live by setting a per-object mark-bit. When the traver-
sal is complete, all objects that are not marked are dead and can be swept

CHAPTER 1. INTRODUCTION 10

away for later reuse. Those that are marked are alive but their mark bits
must be cleared for the next garbage collection. In contrast to reference
counting, the program pays no extra maintenance during normal execution
and cyclic data structures are not problematic. On the downside, mark-
sweep is not naturally incremental [30], and the traversal cost is always
proportional to the entire heap (rather than to what is reclaimed).

Like reference counting, the original mark-sweep collector was a non-
moving collector in that objects are never relocated. However, this can
lead to a fragmented heap in which sufficient space exists for allocation but
the space is unusable because it is greatly fragmented. In a mark-compact
collector, after determining what objects are live, the collector relocates all
live objects to the bottom of the heap leaving a contiguous unused area in
the top of the heap [64, 17, 34, 45]. The difficulty of the relocation stems
from relocating objects over existing objects, updating references to reflect
the relocation, and using little additional space. In addition, it is important
though not crucial to maintain spatial ordering to retain good cache locality
when the program resumes.

1.4.3 Copying Collector

As in a basic mark-sweep collector, the program performs no extra work
during normal execution with a basic copying collector[29, 15]. Space is
allocated from a contiguous from-space until it is exhausted at which point
the collector is invoked. The collector traverses the reachable data, copying
each encountered object into an equally-sized to-space. To correctly copy
the memory graph, each object in the from-space has a forwarding pointer to
its copy in to-space. After the copying is complete, the roles of from-space
and to-space are switched and allocation continues.

Figure 1.3 shows a picture of memory at the end of a garbage collection,
just prior to the flip. All the live data has been copied and the only task
that remains is to change Register 1’s contents from A to AA and Register
2’s from C to CC.

To see why the forwarding pointer is crucial, consider the scenario in
Figure 1.4. The middle graph shows to-space after all objects have been
copied but in which CC has not been fully processed, as evidenced by its
pointer to from-space. To process CC, the collector must copy CC’s referent
D. However, without forwarding pointers, the collector does not know that
D had been previously copied to DD and thus incorrectly generates another
copy DD2. The final graph labelled to-space-after is clearly not isomorphic
to the original graph from-space.

CHAPTER 1. INTRODUCTION 11

r A e a

Register 1 Register 2
. J \ J

fromspace A/ \ B\ / C\ dead] D // /

tospace A\A (B]% CC | DD | =<—Reclaimed Space —*

Figure 1.3: An example of memory state at the end of a copying collection
immediately prior to updating the registers with the replicas in to-space.
Dead objects in from-space are marked by a slashed line through the object.
Forwarding pointers are shown with dotted arrow. Corresponding objects
have related names (e.g. AA is A’s replica).

fromspace tospace-before tospace-after

A AA AA

~—
~—_
~—

\B C BB+ CC 8\13 dc

D DD DD DD2

Figure 1.4: Without forwarding pointers, a directed acyclic graph is incor-
rectly copied.

CHAPTER 1. INTRODUCTION 12

Because copying collectors maintain a contiguous free memory area, al-
locations costs are extremely low. Because objects are copied at each collec-
tion, fragmentation is not a problem. The main drawback is the apparent
doubling of memory consumption caused by having two semi-spaces. In fact,
we argue in Section 3.6 why the relative extra space required by a copying
collector is actually not as much.

1.4.4 Comparison

The table below summarizes the strengths and weakness of the 3 basic col-
lection algorithms described before.

Ref. Count Mark-Sweep Mark-Compact | Copying
Incremental °
Immediate Reclamation °
Cyclic data structures ° ° °
Defragmentation ® °
Time Overhead O(ptr assign) | O(Live 4+ Dead) | O(Live + Dead) | O(Live)
Space Required Live Live Live 2 Live
Passes over Memory = 2 2-4 1

1.5 Generations

The first mark-sweep-compact and copying collectors were stop-and-collect.
That is, objects are allocated from a large store of free memory. When
the store is exhausted, the mutator is stopped and the collector is invoked.
Because a substantial amount of data must often be processed, the collec-
tion can significantly delay the mutator. These long pauses motivated the
development of generational copying collectors which reduce average pause
times as well as reduce the overhead of collection. Generational collection is
based on the weak generational hypothesis which asserts that most objects
die relatively soon after they are allocated [22, 50, 72]. The key observation
in generational collection is that collection effort can be made more efficient
and faster if collection is focused on areas where most objects are dead.
The simplest generational copying collector reserves a region called the
nursery from which the program allocates. Whenever the nursery is ex-
hausted, a minor collection is triggered. In a minor collection, live data is

CHAPTER 1. INTRODUCTION 13

copied from the nursery to the from-space, thus freeing the nursery for fur-
ther allocation. When the from-space eventually fills up, a major collection
takes places. Like the semi-space collector, data is copied from the from-
space to the to-space. The introduction of a nursery allows young and old
objects to be separated. Initially, an object is young and is thus allocated
from the nursery. Only after the object has survived one or more minor
collections does it get tenured into the from-space which hold old objects.
Minor collections are efficient because the nursery contains young objects
most of which are dead so collecting the nursery reclaims more space for a
given amount of work than a collection in a semispace collector where the
ratio of live objects is higher. Pauses resulting from minor collections are
short because the nursery is typically small and contains mostly dead data.
Because most collections are minor, generational collectors have generally
lower overhead due to the increased average efficiency and shorter average
pause times. However, the major collections still cause significant delays to
the mutator.

Though generations were originally developed for copying collectors, they
have been successfully applied to mark-sweep and reference counting collec-
tors [20, 3].

1.6 Incrementality and Concurrency .

Though generational collectors reduce average pause times, the eventual
major collection still causes a long delay unacceptable to many applications.
In fact, even simple reference counting fails to bound pause times due to
cascading deallocations. For example, discarding the root of an otherwise
unreferenced tree would cause a program stall proportional to the size of the
tree.

There are two ways to reduce pause times: incremental collection and
concurrent collection. Incremental collectors eliminate long delays by break-
ing up a collection into many segments and explicitly interleaving the seg-
ments with the mutator. In contrast, concurrent collectors run the collector
and mutator in separate threads. The thread scheduler can arbitrarily in-
terleave the two threads on a single processor or, more commonly, run them
concurrently on a multiprocessor. Because the terms incremental and con-
current are not used consistently throughout the literature, we give our own
definitions here.

While both incremental and concurrent collectors can bound pause times,
they deal with different issues. In incremental collectors where the muta-

CHAPTER 1. INTRODUCTION 14

tor explicitly invokes the collector, there are few synchronization issues.
In addition, the close coupling between mutator and collector allows the
algorithm to guarantee timely completion of the collection by setting the
collection rate higher than the allocation rate. In contrast concurrent col-
lectors take advantage of multiple processors, potentially giving the mutator
fuller resource utilization. However, the simultaneous execution of mutator
and collector introduces fine-grained synchronization problems. Of course,
a concurrent algorithm can also run on a uniprocessor with pre-emptive
thread-scheduling. On multiprocessors, a collector may be both concurrent
and incremental. Each user thread periodically and independently switches
from mutator work to collector work as specified by the program. Since
the scheduler may run multiple such threads on different processors, the
collector and mutator execute simultaneously.

1.6.1 Reference Counting

To make reference counting incremental, Weizenbaum eliminates most de-
lays caused by eager recursive freeing by delaying the freeing of descendant
nodes [73]. Rather, the subnodes are deallocated only when the parent node
is reallocated. De'lreville uses a concurrent reference counting collector for
Modula-2+ [21]. To handle concurrent count manipulations, each mutator
thread records its pointer updates and relies on a separate collector thread to
perform the count manipulations. However, these collectors fail to process
large objects incrementally and so may still experience arbitrary pauses.

1.6.2 Mark-Sweep

Concurrent mark-sweep collectors were first studied as a theoretical exercise
[69, 23, 47] but have remained popular [78]. During the marking phase,
the collector maintains the invariant that all live data has been visited or
is reachable from a set of cells that it has yet to process. To maintain this
invariant, the collectors trap all mutator pointer writes with a write barrier.
These algorithms primarily differ in how aggressively they handle data that
dies during a collection.

1.6.3 Copying

As for copying collections, the best-known incremental version is by Baker
[5]. When a collection begins, the objects referenced by the roots are copied
to to-space and the roots are redirected to these to-space copies. Since the
to-space copy is incomplete, there are references from to-space objects to

CHAPTER 1. INTRODUCTION ' 15

from-space objects. The collector maintains the illusion that the mutator
is accessing a complete to-space copy by using a read-barrier. Each time a
pointer value is read into a register, a check is made as to whether the pointer
is in from-space. If so, the a to-space copy is made if it does not already
exist. Finally, the register is loaded with the to-space version. In addition,
new objects are allocated in to-space to complete the illusion. However,
these new objects cannot be collected even if they die before the end of the
current collection. The most serious disadvantage of Baker’s algorithm is the
high overhead of the heavyweight read-barrier. Memory read operations are
very frequent and even a read barrier of several instructions greatly increases
code size, consumes additional cycles, and reduces instruction cache hits.

More recently, Nettles and O’Toole have introduced a class of concur-
rent copying collectors called replicating collectors. Like Baker’s Algorithm,
reachable data is copied while the program is executed. However, the muta-
tor accesses the complete from-space copy rather than the partial to-space
copy. A write-barrier is used to ensure that all reachable data is eventually
copied and that the two copies remain consistent.

Doligez et al. adopts the replication scheme to a multiprocessor setting
[25, 24]. In his framework, each thread maintains a nursery generation
which contains thread-local objects. A global shared older generation is
used to hold mutable or globally shared data. Each user thread copies its
live data into the shared area when it exhausts its local area. A dedicated
thread manages the shared area with a mark-sweep collector. To maintain
the invariant that there are no pointers from the shared area to a local
area, updates in the shared area may result in copying a local area object
and all its descendants. One advantage of the Doligez collector is that it
requires little global synchronization since different threads never copy the
same objects.

1.7 Parallelism and Scalability

In the past, most research in garbage collection has focused on uniprocessors
rather than on multiprocessors. This focus has shifted as multiprocessors
become more ubiquitous. Dual and quad-processor desktop machines are
already commonplace and we can only expect this trend to continue. On
the software side, the popularity of Java has gained garbage collection more
attention that it has ever had before.

Standard concurrent algorithms which have one GC thread are unsuit-
able for large multiprocessors. Clearly, the allocation demands of an arbi-

CHAPTER 1. INTRODUCTION 16

trarily large number of threads cannot be satisfied by one dedicated thread.
In order to scale, the collection itself must be parallelized by running multiple
collection threads. Halstead and Crammond parallelized copying collectors
by solving the problem of multiple copiers [35, 19]. However, they found that
many processors were often idle because all the copying work is occurring
on other processors. As with any parallel computation, evenly distributing
the work with low overhead is critical to the efficient use of all processors.
Endo found that without careful distribution of collection work, the speedup
on a 64-processor UltraSparc was only around 4. Using work-stealing, he
increased the speedup to 28 when running with 64 processors [27].

1.8 Real-time Collection

Real-time applications have a justly deserved reputation of being tough to
develop. Unlike typical optimization problems where the goal is to improve
overall or average performance, real-time applications are judged by their
worst-case behavior. A real-time design is only as good as its weakest link.

A real-time collector comprises two important features: pauses are bounded
by some reasonably small value and the mutator can make sufficient progress
between pauses. Different collectors meet these conditions with varying de-
grees of success and their viability depends on application needs. It is impor-
tant to note that a collector must also complete collection within a reason-
able time. A “real-time” collector which merely stops collections whenever
it runs out of time would be hard real-time but useless if it never finishes a
collection. In such cases, memory is soon exhausted. As with other real-time
applications, the most important distinction among real-time collectors is
the strength of the guarantee.

An orthogonal characteristic of real-time applications is the granularity
of the bounds. For interactive programs, such as mouse tracking and other
user interface response, pause times on the order of 50 ms may be sufficient.
However, applications such as missile guidance, robotic manipulation, avion-
ics, satellite control, and multimedia may require response times at the 1
ms to 10 ms range.

Without the assistance of specialized hardware, the best reported real-
time bounds come from a generational, copying system developed for a
telephony infrastructure [28]. Engelstad and Vandendorpe report aver-
age and worst-case times of 0.5 ms and 3 ms for a particular application
on a Sund4/SPARC2. Because their collector takes advantage of certain
application-specific properties, it is unclear how their time bounds general-

CHAPTER 1. INTRODUCTION 17

ize. Other real-time bounds are shown in Table 1.1.

1.9 Overview

It is important to distinguish between the environment that a collector ad-
dresses and the techniques that are used. The ideas of reference count-
ing, mark-sweep, copying, generations, replication, read-barriers, and write-
barriers are all techniques. In contrast, stop-and-collect, incrementality,
concurrency, real-time, and parallelism are features that significantly im-
pact an application. If an application requires interactive response times,
then a stop-and-collect collector of any sort is unacceptable. For reference,
we list below the definitions of various terms.

incremental Algorithm explicitly interleaves the mutator with segments of
collector work. Such algorithms typically guarantee sufficient progress.

concurrent Algorithm is robust against any interleaving of mutator and
collector such as might occur on a multiprocessor with an adversarial
scheduler.

parallel Algorithm permits and takes advantage of simultaneous execution
of multiple collector threads.

scalable Algorithm performs load-balancing using scalable synchronization
techniques so that collection work scales.

soft real-time Bounds on pause times and collection frequencies are usu-
ally met. Slight application glitches are acceptable.

hard real-time Bounds on pause times and collection frequencies must be
met. The application must run smoothly and even one glitch can be
catastrophic.

As an overview of the collectors covered in this introduction, Diagram
1.5 illustrates some possible environments. To give a sense of the state of
the garbage collection field, Table 1.1 compares a number of collectors with
respect to the features discussed earlier.

1.10 Contributions of Dissertation

The thesis of this dissertation is that

CHAPTER 1. INTRODUCTION 18

Stop-Collect

Incremental

Real-time

Concurrent-Good

[e

Concurrent-Bad Mutator

Collector

Parallel Stop-Collect

Parallel Incremental

Parallel, Concurrent,
Real-time

Figure 1.5: Interleavings of mutator and collector under various configura-
tions. The light gray boxes represent the mutators while the dark gray boxes
represent collection work. The unshaded boxes in the Concurrent-Bad case
corresponds to processor stalls arising from non-parallelization.

19

:&W:@:@.—dg 9 @d 'Iosun =23ediput \,VN:M O 9 QQHNVA@ »:vm [] _QM :Aﬁ e L _vw ~v 11 8 :A—A_ S I9 —m Joddans
. . . ﬁ . o e

UL 93AITeA HGW_ZYU 1099+ ._:U owI0s JO O — 1 % S ~U np
-ut (8] ol® V:v_ -@2:' X'w A_ I3SIPp P _Nx ~ S 9 mﬁpmﬁAm:HCU @hﬂw—m@_ 4 . _ 9 @N-

\AQOO .va ,Hm:h,uﬂﬂ
1 B . 9JLIM . .
MMMHMO Y i o ° swg H..w 0 ° o % =
3 S-YaeA sw g ° ¢ [1] 3usyp “polplg
oM G-NIRA n [] ﬂO. “p
[Tpea], IsLIRq SjLIMA e 26, 1D 79 uodeg
n—v@.\smuv—hﬁ prosidne INA J@Cudﬁ SJLIM swa = at R6, 6& opuy
doomg-y1e MMM JaLIRq)M o St 4 o 36 [z¥] ueB1agsjeny
NIRA "Adop I9LIIRq QLM . w GT-¢§ 5 A wa“ [1g] 1w g0 wir
urel st hd e ®, [6%] Lo[ea ‘esorer]
Xdo .,w Ionaeq 9jtIm w1 - [vz ‘szl v 92 29810Q
QooBO- °d REYRRCISIEY TR 0Z1-0§ ° p 56 —m@_ dnrein) ‘uewdijeg
SQ-yIRN sw O0g ° = ¢ [1] ssopy ‘uospny
[[rwpeaay, sut 0g-g 26, l6¢ * 7
&do aapang Sy - c6 s '86] b 15 SOMON
Z, < 2 TouIeq peat ° o : 1.¢] Kessouuap]
o dop sw g 26,
= Xdop TonIRq PRl . ° D 16] [L] 1oyeg
T - JoLueq 9jlIm ° ° * ‘ 87] ‘| 12 pelspesuy
S neh Pl e Fe 2 o €6, [g€] sso “Ayipey
) juno)) "Joy ° 16, ﬁ =
Q (dewsy]) deomg-y1e] Be. 1,9] Buireyg
o ors N | se[puey joelqo ‘IaluIRq 93LIM m ° 06, [zg] sur|
m o ja0ddns [\ “denueq pead ° ° 5 g [0z] a111ava1 2]
Z, £dop 5 ° ° 38, : [g2] esenyg
~ dor 10 sypo[300[qo ‘IaLLieq peal . ° s [g] 11 ‘s ‘reddy
. D 1oD I9l1IRq 9)LIM ‘IDLIIRY PRI d ° p : [61] puowruaely
Xdop tan lreq peal = ey
= doomq-y1 A9LMIEq 9 LM . ° g [9€] pesisiel
ot SN IR IR 93LIM 5 vw» Sm”_ 1Mo]] ‘UURTLIDqaLT]
m pro %mm.ES $300] 999[qo “IerITeq SaM ° KH [¢2] 1e8upn
P %Qo& A JOLLIRQ 9)LIM ° o ” _M.i w:om .w::vm
< 2 Iaureq peal * 9 \.» [69] a19918
H Ad e ° ° i : _HM.N_ ‘v 79 esyli(y
®) oD L1 e
yoedwo))-aepy Ted
. 69 . [5T] Asuayp
unon * ° oL = . {[6¢] uospoypog ‘[pyoius]
nwmeO oY T [SF ‘7€ ‘21 '79] v 42 siopuneg
S-YIRIA ° 09 Hm\._ WNRQUIZIDAN
‘ {[g1] surjo
odAT 10 09, [oD
1 10393[[00) uo s319Y oIre owr | jwermo | [ejuow [eg] Ayarenomy
-1redq Tesy o sgpoed s
) -aIoU] -wop PA

CHAPTER 1. INTRODUCTION 20

Garbage collection for shared-memory multiprocessors can be
made theoretically and practically efficient.

To support this claim, I present a theoretically efficient garbage collec-
tors for symmetric multiprocessors. In particular, the collectors are parallel,
real-time, and space-safe. Proofs of time and space bounds are given. In
real-time applications, space bounds are as important as time bounds since
hard real-time applications must avoid virtual memory. In addition to the-
oretical aspects, I have implemented these collectors for a runtime system
for ML, programs. The implementations are evaluated using a set of bench-
marks. Measurements of collector overhead and pause times are presented.
It is worth restating that these collectors are the first to combine scalable
parallelism and provable real-time bounds.

The most important contributions of this dissertations are:

e Abstract model for garbage collection.

e Abstract collector algorithms that are parallel, real-time, and space-
safe.

e Proofs of bounded time and space in the abstract models.
e Implementing lock-free load-balancing.

e Proper treatment of global variables, stacks, and generations in the
presence of concurrency and real-time bounds.

e The first implementation of a real-time, parallel, copying collector for
shared memory multiprocessors.

e Performance evaluation confirming good parallelism and real-time be-
havior as well as quantifying the costs of parallelism, load-balancing,
concurrency, and real-time bounds.

1.11 Structure of Dissertation

This chapter presented the problem of memory management and briefly
reviewed the state of garbage collection and concludes with the contributions
of this dissertation.

Chapter 2 presents a simplified abstract machine model. The abstraction
is useful for hiding unnecessary implementation details and allows a crisp
presentation and analysis of the algorithms. As a review of copying collectors

CHAPTER 1. INTRODUCTION 21

and for illustration of the model, Chapter 3 presents three copying collectors
in the abstract model and compares them.

Chapter 4 introduces a simple parallel, concurrent, real-time algorithm
for the simple abstract model [12]. Proofs of time, space, and correctness are
presented. The chapter ends with a discussion of how to obtain a parallel,
non-concurrent collector.

To bridge the gap between the simple model and an actual implemen-
tation environment, Chapter 5 will present a more realistic model adding
features such as threads, program stacks, and global variables. The ab-
stract algorithm is then extended to handle these additional features while
retaining the essential properties of the original algorithm.

Finally, we present details of the implementation in Chapter 7. The
benchmarks and their memory characteristics are included in Chapter 8.
Chapter 9 evaluates the performance of the collectors and probes the prac-
tical limits of the algorithms.

Chapter 10 discusses some possible future work and concludes.

Chapter 2

Simple Model

2.1 Motivation

There are several reasons for using simplified abstract models. Models make
simplifying assumptions and hide details specific to a language or platform.
As a result, they permit concise descriptions of algorithms and thorough
analysis. However, generalizing from theoretical models can be dangerous.
If unrealistic simplifications are made, the model has little utility since no
reasonable implementation is possible or else the theoretical results do not
transfer. For garbage collection, the model will encompass the abstract
machine, the user application, and the collector itself. It is important that
the abstract machine corresponds to actual hardware and that the requisite
supports from the compiler, if any, are reasonable. In this chapter, a simple
abstract model is given that accurately reflects current hardware. This naive
application model is not representative of most compilers and the collector
explicated in this model are inefficient in practice. Chapter 5 will present a
realistic model and collector suitable for implementation.

2.2 Machine Model

The machine model is based on modern shared-memory multiprocessors.
The abstract machine has P processors sharing a single memory. Each pro-
cessor has r registers and executes standard single-processor instructions:
reading from shared memory, writing to shared memory, and instructions
affecting local registers. In addition, there are three synchronization con-
structs: TestSet , FetchAdd , and Interrupt . For convenience, programs
in this model are expressed in a C-like language. Appendix A gives more

22

CHAPTER 2. SIMPLE MODEL 23

details on code convention such as types, helper functions, and pre-declared
local variables. The semantics of TestSet and FetchAdd are given below.
Both instructions execute atomically in that the processor executing this in-
struction cannot be interrupted during the instruction and no other proces-
sor can access the memory location in question while the atomic instruction
is executing.

int TestSet(int *addr) { int FetchAdd(int *addr, int incr) {
if (*addr == 0) { temp = *addr;
*addr = 1; *addr += incr;
return O; return temp;
} }
return 1;
}

The Interrupt (f) instruction interrupts all processors and execute a
supplied function f on all processors. Both concurrent and nested interrupts
are forbidden so code must be careful not to issue Interrupt from separate
processors nor use Interrupt from inside the interrupt handler f.

2.3 Application Interface

The user program is multi-threaded and its threads are mapped onto the
processors by a pre-emptive scheduler. The details of the scheduler is be-
yond the scope of the model. User threads may freely use register-only
instructions as the collector is only concerned with memory accesses and
allocations. There are 5 classes of instructions given below. The Compute
instructions are compiled normally whereas the remaining four depend on
the collector.

Compute performs any computation involving only local regis-
ters.

Allocate(n) allocates and returns a new object with » uninitial-
ized fields.

InitField(s,i,v) initializes the i** field of object s with v.

Read(s,?) returns the i** field of object s.

Write(s,z,v) writes v into the i** field of object s.

Several conventions govern how the user program may use these instruc-
tions. At any point, there can only be one incompletely initialized object
per processor and the fields of an object must be initialized in order. Thus,

CHAPTER 2. SIMPLE MODEL 24

after each Allocate(n) instruction, there must follow n InitField(s,s,v) in-
structions before another Allocate(n) instruction. Uninitialized fields may
not be accessed with Read(s,i) or Write(s,i,v) . Thus, there are never any
references from the heap to a partially initialized object. For convenience,
the last allocated object and the next uninitialized field are always available
in the variables lastObject and lastObjectField. If lastObjectField
equals the length of lastObject, then all fields have been initialized. We
stress that the use of these two variables is only a convenience as it is possible
for InitField to keep track of these variables explicitly.

In addition, a CREW (concurrent-read-exclusive-write) model is assumed
for the application. That is, multiple reads but not multiple writes to a given
memory location can be issued by the program threads. This assumption
is not unreasonable for many applications which avoid concurrent writes so
the parallel algorithm runs correctly. This assumption will be relaxed in
Chapter 5.

Finally, a small number of values (including the values 0 and 1) are
reserved for the collector and are not admissible memory addresses. This
condition is easily met on most systems usually automatically.

Normally, the compiler translates Read(s,i) , Write(s,i,v), and InitField(s,,v)
as given below. With certain garbage collectors, one or more of these instruc-
tions may require additional actions called a barrier. That is, a read-barrier
entails modifying the standard translation of Read(s,i) . Similarly, a write-
barrier and initialization-barrier would respectively modify Write(s,i,v) and
InitField(s,¢,v) . In describing the collectors, the definitions of these 3 in-
structions are omitted when the following standard translation applies:

Read(s,7) s[i]
Write(s,:,v) s[i] = v
InitField(s,;,v) s[i]l = v

2.4 Collector Interface

In addition to full access to all hardware instructions, the collector can
determine object layout and access object-related fields with the following
functions:

CHAPTER 2. SIMPLE MODEL 25

Len(s) returns the length of the object s

IsPtr(s,i) returns whether the i** field of object s contains a
pointer.

Forward(s) returns the address that stores the forwarding pointer
of the given object.

Count(s) returns the address that stores count information of
the given object. Section 4.8 discusses how this field
is used.

Because the collector requires access to the registers that the application
uses, the collector is assumed to execute under a separate register set and
also have access to the application registers through a special object Regs
with NumRegs fields.

The implementation of these functions and conventions depend heavily
on the language and compiler choices. Section 7.4 describes the choices made
in our implementation as well as some alternatives.

2.5 Memory Parameters

For each run of an application, the resulting memory graph can be charac-
terized by a number of parameters. At any given moment ¢, the number
of reachable objects is Ny, the number of reachable fields is Ry, and D; is
the maximum depth of any field. Finally, we take N, R, and D to be the
maximum values of the corresponding time variables over the course of the
application run. Depth is a combination of tree depth from the register set
and object size and is defined by the following:

FieldDepth(f) = ObjDepth(s) + ¢ where £ = &s[i]
ObjDepth(s) = min FieldDepth(f) + 1 all fields f and *f = s

2.6 Definitions

In order to prove the correctness of various synchronizations, it is necessary
to discuss the interleavings of concurrent threads of execution. The notion of
ordering program lines is useful for describing interleavings and this ordering
is well-founded since our memory model assumes total sequential ordering.
For each program line «, the first and last memory instruction of that line,
if any, are denoted by FirstMem(«) and LastMem(«). Because a line of
code has multiple memory instructions, there are multiple notions of a line

CHAPTER 2. SIMPLE MODEL 26

executing before another line. The weak notion of ordering states that a
line begins execution before another line does while the stronger notion
ensures that a line begins finishes execution before another line has even
begun. Since only memory instructions are observable, we can formalize
these notions into the following definitions and properties.

Definition 1 (Definition of - and =) a — 3 if FirstMem(«) precedes
FirstMem(B). o = f if LastMem(«) precedes FirstMem(3).

Property 1 (Properties of -+ and =) 1. a — 3 and f — v implies
o —* Y

a= 3 and B = v implies a = vy
o = [implies o« —

a = [and [— v implies o« — v

SN

a = 3 is equivalent to o — 3 when both o and B involve only one
memory instruction

Chapter 3

Three Copying Collectors

To illustrate the models presented in Chapter 2 and cover some background
material, this chapter reviews three well-known copying collectors: Cheney’s
copying collector, Baker’s real-time copying collector, and O’Toole and Net-
tles’s replicating collector [15, 8, 58]. Before doing so, we introduce some
terminology and a useful abstraction.

3.1 Tricolor Abstraction

Both mark-sweep and copying collectors are called tracing collectors because
they traverse the reachable memory graph in order to determine garbage.
During the traversal, each object in memory can be assigned one of three
colors: white, gray, or black. Objects that have not been visited by the
collector are white. A gray object has been visited by the collector but
has not been completely processed because its fields have not been scanned.
Black objects have been visited and completely processed and will not be
visited by the collector again. The color abstraction maintains the invariant
that: black objects cannot point to white objects.

At the beginning of a collection, all objects are white. The collector starts
the traversal by visiting all objects referenced by the register set, coloring
them gray. A gray object is processed by first scanning its pointer fields and
coloring each referent gray. Then, the scanned object is colored black. The
tracing continues until there are no gray objects. At this point, all reachable
objects have been fully processed and are black. This completion holds since
all roots are black and all objects reachable from the roots are neither gray
by hypothesis nor white by the invariant. Thus, the remaining objects are
white and unreachable.

27

CHAPTER 3. THREE COPYING COLLECTORS 28

Additional actions are performed depending on the collector. For mark-
sweep collectors, the mark-bit is set when the object is colored gray. For
copying collectors, graying an object includes making a copy of the object in
to-space. In addition, scanning the fields of a gray objects requires updating
them before blackening.

3.2 Copying Collectors

In a copying collector, the original memory graph in from-space is called the
primary while the copy generated by the collector in to-space is called the
replica. The one-to-one correspondence established by forwarding pointers
between a primary object and its replica allows us to assign the same color
to both the primary and its replica. Of course, there are never any replica
white objects since the copying collector never copies unreachable objects.

Primary gray objects always have a forwarding pointer to their replica
objects. However, the contents of the replica gray objects depend on the
particular copying collector. The fields may be left temporarily uninitialized
or may be the same as the primary fields. How the set of gray objects
is maintained and the order in which the memory is traversed are both
dependent on the collector. For example, the original copying collector by
Fenichel and Yochelson traverses the graph using a recursive depth-first
algorithm [29].

3.3 Cheney’s Algorithm

Rather than implicitly storing the set of gray objects in the program stack
using recursion, Cheney uses an iterative algorithm and a queue to store
the gray objects. Because a queue is used, Cheney’s algorithm traverses the
graph in a breadth-first order. More importantly, it maintains the invariant
that all replica gray objects are contiguous in to-space. This arrangement
allows the queue to always be represented with only two pointers, a scan
pointer that marks the boundary of black and gray objects and a free pointer
marking the end of gray objects and the beginning of free space.

Since Cheney’s algorithm is a stop-and-copy semispace collector, there
are no barriers at all. However, the collector is not real-time at all. The
only interface to the collector is through Allocate. The code for the entire
collector is shown in Figure 3.1. An example showing the Cheney algorithm
in action is given in Figure 3.2.

CHAPTER 3. THREE COPYING COLLECTORS 29

1 heap from(0), to(0); 15 ptr Allocate(int n) {

. 16 result = from.alloc(n);
2 woid Gollest() { 17 if (result == NULL)
3 scan = to.bottom;

. . . 18 Collect();
4 for (i=0; i<NumRegs; i++) _
5 R [il = ¢ R 1) 19 result = from.alloc(n);
vegstil = bobyiRegsiill; 20 return result;
6 while (scan < to.cursor) { 21}
7 prim = scan;
8 for (i=0; i<Len(prim); i++) 22 ptr Copy(ptr prim) {
9 if (IsPtr(prim,i)) 23 if (*Forward(prim) != NULL)
10 prim[i] = Copy(prim[il); 24 return *Forward(prim);
11 scan += Len(prim); 25 rep = to.alloc(Len(prim));
12 } 26 memCopy (prim, rep, Len(prim));
13 swap(&from, &to); 27 Forward(prim) = rep;
14 } 28 return replica;
29 }

Figure 3.1: Cheney’s Collector

3.4 Baker’s Algorithm

In order to reduce pause times, Baker designed an incremental copying col-
lector that interleaves collection work. Each time n fields are allocated, the
collector copies kn fields for some parameter k& (> 1). For small values of £,
the pauses are smaller but the effective heap occupancy is higher because
the collection takes longer to complete. In particular, the maximum heap
occupancy is R(1 + 1/k) compared to R for a stop-copy collector.

When the collection starts, the objects referenced by the collector are
immediately grayed and execution resumes. When the collector is on, allo-
cation is from to-space and accompanied by some collection work. Through-
out collection, the mutator is only allowed access to the to-space objects.
To maintain this to-space invariant, Baker uses a read-barrier so that the
program cannot directly access the pointer fields of replica gray objects to
reach the primary copy. Instead, the read barrier checks if the pointer is
in from-space. If so, a replica copy, if it does not already exist, is created.
The barrier then returns the to-space copy. When there are no more gray
objects, the collection is complete and from-space can be discarded. Since
the mutator has only accessed to-space objects, all new objects can refer
only to black objects at the end of the collection.

CHAPTER 3. THREE COPYING COLLECTORS 30

A

B_

~—_

A
//
F
A

scan toSpace.cursor

c

scan toS pace.cursor

scan toSpace.cursor

scan

Figure 3.2: Example of 4 successive states of a Cheney-style copying collec-
tion starting with one gray object obtained from the root set and ending
with no gray objects when the collection is complete. The left portion of
each state shows the from-space. To emphasize the contiguity of gray ob-

jects in to-space, the right portion shows memory in linear order. Pointers

in from-space object that have been used by the collector are not shown.

toSpace.cursor

CHAPTER 3. THREE COPYING COLLECTORS 31

o~ O Ot LW N =

—
N = O ©

13
14
15
16
17
18
19
20
21
22

heap from(k), to(k);
ptr scan;
int GCOn = 0;
ptr Allocate(int n) {
if ('GComn) {
result = from.alloc(n);
if (result != NULL)
return result;
GCOn = 1;
scan = to.bottom;
to.cursor2 = to.top;
for (i=0; i<NumRegs; i++)
Regs[i] = Copy(Regs[il);
}
result = to.topAlloc(n);
Work(k#*n) ; ‘
if (scan == to.cursor) {
GCOn = 0;
swap(&from, &to);
}
return result;
}

23
24
25
26
2%

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

ptr Read(ptr s, int i) {
if (IsPtr(s,i))
return Copy(s[il);
return s[i];

}

void Work(int workLeft) {

while (scan < to.cursor) {
prim = scan;
for (i=0; i<Len(prim); i++)
if (IsPtr(prim,i))
prim[i] = Copy(prim[il);
scan += Len(prim);
if ((workLeft -= Len(prim)) < 0)
break;
}
}
ptr Copy(ptr prim) {

if (*Forward(prim) '= NULL)
return *Forward(prim);

rep = to.alloc(Len(prim));

memCopy (prim, rep, Len(prim));

*Forward(prim) = rep;

return rep;

Figure 3.3: Baker’s Collector. Note the presence of a read barrier and the

absence of a write barrier.

CHAPTER 3. THREE COPYING COLLECTORS 32

3.5 O’Toole and Nettles’s Replicating Collector

More recently, Nettles, O’Toole, Pierce, and Haines proposed a new type of
incremental collector called replicating collectors [59, 58]. Like Baker’s col-
lector, a replicating collector incrementally constructs a copy of the memory
graph in to-space as the program proceeds. However, unlike Baker’s real-
time collector, the mutator is permitted to access only the primary, the
from-space invariant. Since the primary graph is complete, no read barrier
is necessary.

However, mutations can create an inconsistency between the primary
and replica, preventing a correct flip or collection termination. Note that
the inconsistency can arise in Baker’s collector but poses no problem since
the flip occurs at the beginning of the collection so the possibly inconsistent
portion of the from-space copy has in effect already been discarded. In a
replicating collector, consistency between the two copies is maintained with
a write barrier. If the object being modified has not been copied, then no
action is taken. Otherwise, the replica copy is modified to mirror the change
in the primary copy.

During a collection, the mutator continues to allocate new objects which
must be in from-space in order to maintain the from-space invariant. Some
of these objects will be live at the end of the collection but are not reachable
from the replica gray objects. There are at least two methods to ensure that
all live objects are replicated. In their original paper [59], O’Toole stipulates
that the collector must periodically obtain all the roots so that all live data
can be accessed. Alternatively, the collector can conservatively assume that
all data allocated during a collection is live.

To illustrate the idea of replication, Figure 3.4 presents a simplified ver-
sion of O’Toole and Nettles’s collector. Whereas O’Toole and Nettles’s col-
lector rescans the roots and is concurrent, our version of their algorithm is
incremental and replicates all data allocated during collection.

3.6 Space Analysis

Cheney’s algorithm requires a minimum of 2R space since each semi-space
contains a complete copy of the memory graph at the end of collection.

On the other hand, Baker’s collector requires additional space since the
mutator continues to allocate during the collection. In particular, an addi-
tional amount of R/k may be allocated before collection completes. How-
ever, the space requirement is not simply (2 + %)R space. Instead, when

=
N = OO

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0 -1 O U W R

heap from(0), to(0);
ptr scan;
int GCOn = 0;

ptr Allocate(int n) {
if (!GCOn) {
result = from.alloc(n);
if (result !'= NULL)
return result;

GCOn = 1;
scan = to.bottom;

to.cursor2 = to.top;
for (i=0; i<NumRegs; i++)
Copy(Regs[il);
}

Work(k#*n) ;
rep = to.topAlloc(n);

© prim = from.reserveAlloc(n);
*Forward(prim) = rep;

if (scan == to.cursor) {
GCOn = 0;
for (i=0; i<NumRegs; i++)
Regs[i] = *Forward(Regs[il);
swap(&from, &to);
}
return primary;

28
29
30
31
32
33
34
35
36
37

38

39
40

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58

59

CHAPTER 3. THREE COPYING COLLECTORS 33

void Write(ptr s, int i, val f) {
rep = *Forward(s);
s[i] = £;
if (rep !'= NULL) {
if (IsPtr(s,i))
repli]l = Copy(£);

else
replil = £;

}
}
void InitField(ptr s, int i,

val £) {

Write(s,i,f);

}

void Work(int steps) {
while (scan < to.cursor) {
prim = scan;
for (i=0; i<Len(prim); i++)
if (IsPtr(prim,i))
prim[i]l = Copy(prim[il);
scan += Len(prim);
if ((steps -= Len(prim)) < 0)
break;
}

}

ptr Copy(ptr prim) {
if (*Forward(prim) != NULL)
return *Forward(prim);
rep = to.alloc(Len(prim));
memCopy (prim, rep, Len(prim));
*Forward(prim) = rep;
return rep;

Figure 3.4: Simplified O’Toole/Nettles’s Collector. Unlike Baker’s collector,
this collector has replaced a read barrier with a write barrier.

CHAPTER 3. THREE COPYING COLLECTORS 34

the program is in equilibrium and is running under the minimum possible
space, the collector runs continuously. Thus, we must consider the effect of
the next collection. At the beginning of the second collection, there is R live
data but it occupies (1 + %)R space. During the collection, the R space is
used to copy the live data while another %R amount of data is allocated. At
the end of the collection, we are in an equilibrium state where R live data is
spread out over %R space. The total space consumed just prior to the end
of this collection is (2 + %) R.

During a collection in a replicating collector, data allocated is replicated
so one might believe the minimum space requirement is (24 %) R. However,
since the primary copy of data allocated during the collection is discarded
at the end of collection, there is only an increase of %R space over Baker’s
collector. In equilibrium, there is R live data spread over (1+ %)R space as
a collection starts. During collection the R live data is copied to to-space.
At the same time, an additional % is allocated in from-space and the same
amount in to-space. At the end of collection, we reach the same equilibrium
state and have used (2 + %)R space.

3.7 Comparing Baker and Nettles

Both Baker’s collector and Nettles’s replicating collector traverse and copy
R data. In addition, a replicating collector must copy %R data during
collection. In a real collector, for reasonably large values of k, this space cost
is small. The bigger difference results from the fact that Baker uses a to-
space invariant and Nettles uses a from-space invariant. These two invariants
are maintained with a read barrier and a write barrier, respectively.

The cost of conditional read barriers is very high due to the high fre-
quency of read instructions. Without hardware support, read barriers greatly
increase code size and disrupts the instruction cache, causing an overall time
increase of perhaps 30% [74, 79]. Further, although the allocation-driven
collection run smoothly, objects copied as a result of the read barrier are
processed at unpredictable times since that collection work is indirectly un-
der control of the mutator. For instance, when a collection first starts, few
from-space objects have been copied and so most read instructions will ac-
cess an uncopied object. This causes the mutator to be stalled much more
at the beginning of collection than near the end. Further, a program that
is traversing a large data structure during collection will probably suffer
more pauses than a compute-intensive task. The unpredictable cost of a
conditional read-barrier makes it less suitable for real-time tasks.

CHAPTER 3. THREE COPYING COLLECTORS 35

On the other hand, replicating collectors use a write barrier which has
a sufficiently low cost that it has been successfully used in many collectors.
First, writes occur less frequently than reads. More importantly, the write
barrier does not need to be as tightly coupled to the mutator as the read bar-
rier. Even without a write barrier, the mutator can continue to run correctly
although the replication will then be incomplete. In contrast, Baker’s read
barriers cannot be deferred as the mutator relies on the result of the read
barrier. On the other hand, since the mutator does not immediately require
the result of the write barrier, we can defer the main action of the write bar-
rier by recording updates into a mutation log and later processing the log.
This reduces the cost of a write barrier to merely several instructions, caus-
ing minimal disruption to the mutator. Deferring the write barrier with a
write log also permits optimizing certain cases such as coalescing repeatedly
modified locations. Even when real-time response is not important, overall
increased efficiency makes batching updates more attractive. For example,
generational collectors implement write barriers to trap back-pointers using
a sequential write log [40] or card-marking [68].

Chapter 4

A Simple Parallel,

Concurrent Real-time
Collector

Due to the greater efficiency and predictability of write barriers, it is natural
to use an incremental replicating collector rather than Baker’s algorithm as
the basis of a parallel, concurrent real-time collector. However, a straight-
forward extension in which multiple mutator/collector threads are mapped
onto multiple processors fails in various ways. The next three sections in-
troduce and solve the problems of synchronization, scalable parallelism, and
real-time bounds. These components are then assembled into the algorithm
which is then analyzed. Appendix A gives details on the pseudo-code con-
ventions.

4.1 Allocation Synchronization

The simplest form of synchronization involves the simultaneous execution
of two mutators. The allocation code (line 7 in I'igure 3.4) retrieves space
from the contiguous from-space area using four instructions: read, compare,
add, and update. Unfortunately this instruction sequence is not atomic and
two mutators may end up with the same allocated space. The FetchAdd
instruction solves this by combining 3 of the instructions (read, add, and
update). The overflow comparison is performed afterwards. The processor
that causes the overflow initiates a collection using Interrupt .

36

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR37

fromspace tospace

before copying

after copying

Figure 4.1: Incorrect replication can arise with multiple copiers if copy-copy
synchronization is not performed. After the incorrect copying, the from-
space and to-space versions are not isomorphic.

4.2 Copy-copy Synchronization

Any scalable garbage collector must be parallel. However, simultaneous
execution of multiple collectors creates a copy-copy synchronization problem
when two or more collectors try to copy the same object. In Figure 4.1 before
the copying, there are two replica gray objects A’ and B’ which reference
a common white object C. If two separate collectors scan A’ and B’ at the
same time, both will detect the lack of forwarding pointers and will copy
the object C. This results in an incorrect replica graph in which there are
two copies of C.

To ensure that only one copier gains access to the object being written,
the collector uses a TestSet instruction on the forwarding address field.
The atomicity of TestSet ensures that only one copier succeeds in accessing
the object. This designated copier is in charge of copying the object and
installing the forwarding pointer. The remaining copiers, if any, wait for the
forwarding pointer to be installed by the designated copier. Alternatively,
these copiers may immediately move on to other work and come back later
when the forwarding pointer has been installed.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR38

Mutator Copier replica primary
read primary ~ a
write primary — b
write replica b b
write replica a b

Figure 4.2: Lost update due to concurrent execution of mutator and copier.

4.3 Copy-write Synchronization

A different form of synchronization arises because the collector is concurrent
and permits simultaneous execution of a mutator and a collector. In par-
ticular, a problem can arise if the mutator modifies a memory location at
the same time as when the collector copies that location. Figure 4.2 shows
the problematic interleaving of instructions in which the mutator modifies
both copies between the copier’s operations causing the resulting update to
be lost. After both mutator and copier have run, the replica still has the
old value a while the primary has the new value b.

In finding the appropriate synchronization for the copy-write conflict
above, one important goal is to keep the burden on the mutator as low as
possible so that the program execution is minimally disrupted. Further,
although each object is copied only once, there is no bound on how many
times it will be mutated. To efficiently prevent the conflict, the mutator
checks if the copier is copying the modified location before updating the
replica. If so, the above interleaving may occur so the mutator must wait
for the copier to finish updating the replica before performing its replica
update.

We note that there is no write-write conflict possible since we assumed
the application runs under a CREW modecl. We show in Chapter 5 how this
restriction can be removed.

4.4 Starting and Stopping a Collection

When a collection is initiated, there may be partially initialized objects.
While these objects are live, they require special treatment. If no additional
measures are taken, they will be copied and scanned by the collector. How-
ever, the uninitialized pointer fields may contain garbage values, causing the
collector to memory fault. The solution is for the collector, upon startup,
to copy the current uninitialized object and to designate that only fields

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR39

preceding the current field should be copied. This is relatively simple since
the collector already maintains a count field. The problem is more difficult
if the mutator is allowed to initialized the fields out of order. In that case,an
approach like that taken by the JVM in which all fields are initially zeroed
may be more attractive then.

No special problem exists for turning the collector off. Since the collector
by design has processed all objects and mutations by the end of collection,
only the root set (i.e. register set) needs to be modified. Since this set is
small, termination takes only constant time.

4.5 Scalable Parallelism: Sharing Work

Halstead implemented the first parallel garbage collector for MultiLISP
based on Baker’s algorithm [35]. Copy-copy conflicts are handled by lock-
ing objects to prevent multiple access. However, there is no mechanism for
sharing collection work. The need for sharing work has since been borne
out empirically by Endo’s parallel mark-sweep collector. Endo’s work is the
first to consider a collector for a sizeable (; 8) symmetric multiprocessor.
He notes that, without properly sharing work among all the processors, a
speedup of only 4 is possible on a 64-processor machine [27].

The necessity of sharing collection work is not unique to garbage col-
lection but to all parallel application. If work is assigned to only a few
processors, then other processors are not fully utilized. For example, mul-
. tiple threads may cooperate in building a large tree in parallel. During
collection, the only references to the tree may be the pointers to the root
which exist only in the processors’ registers. Because of the copy-copy syn-
chronization, only one processor will gray the root of the tree and hence be
solely responsible for copying the tree. Figure 4.3 shows how this bottleneck
can produce arbitrarily bad work imbalance.

In a stop-copy parallel collector, the imbalance in work distribution
causes underutilized processors to idle, waiting for collection to terminate.
In a concurrent system, these processors are permitted to resume execution
and continue to allocate without having performed any collection work. In
the degenerate case, the collector is effectively sequential and for sufficiently
large multiprocessors, the collector will fall more and more behind, leading
to eventual memory exhaustion.

Since the collection is driven by the gray objects, work can be shared
among the processors by storing gray objects that need to be scanned in a
shared stack. Researchers have found that a depth-first traversal achieved

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA40

fromspace tospace

[Gray Objs 1] [Gray Objs 2]
/

large tree

[Gray Objs 1] [Gray Objs 2}
/

Figure 4.3: Load imbalance can be arbitrarily bad as illustrated by this
two-processor example. Near the beginning of collection, each processor
has one gray object in its gray set. Both objects reference a single object
which is the only access point to a large tree. For correctness, the copy-
copy synchronization ensures that only one of the two processors copies the
object. In this case, since processor 1 copies the object, that object is in
processor 1’s gray set. However, since this is the only reference into the
large tree, processor 2 will not be able to participate in coping any portion
of that tree.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA41

with a stack leads to better cache locality than the breadth-first ordering
induced by a queue. A local stack of gray objects is maintained by each
processor. At the beginning of a segment of collection work, the processor
fetches some work from the shared stack and performs some work. After-
wards, the leftover work from the local stack is returned to the shared stack.
This structure ensures that all collection work does not remain on only a
few processors’ local stacks.

Let us revisit the pathological example from before in which each pro-
cessor has a reference to only the root of a large tree. As before, one of
the two processors gains access to the root node and copies it. After per-
forming some copying work, the local stack of this processor will contain
a number of gray objects. When these gray objects are transferred to the
shared stack, both processors can participate in copying the tree. Thus, the
second processor only idles for a limited amount of time.

4.6 Shared Stack

Since multiple processors access the shared stack, it is important that con-
flicts are handled to minimize contention. Unfortunately, neither TestSet
nor FetchAdd can directly implement a push or pop operation. Even if this
direct approach is possible, it may excessively increase the cost of the stack
operations. On the other hand, both locks and opportunistic synchroniza-
tion sequentialize access to the shared stack, defeating the goal of scalability.

Our solution is based on the observation that while a push and a pop
cannot execute concurrently, it is not difficult to permit multiple pushes and
multiple pops by using the FetchAdd instruction.

A push onto the shared stack involves a reservation followed by the actual
data transfer. The cursor on the shared stack is atomically incremented
using the FetchAdd instruction by an amount depending on the number of
items that need to be pushed. After each processor reserves its own area
in the shared stack, it can transfer data into the shared stack. Since the
FetchAdd instruction is non-blocking, the push is not sequentialized.

Before popping k items, the client cannot reliably check how many items
are in the global stack before the actual pop since other processors may
execute between the check and pop. Instead, the client simply assumes that
there are enough items in the global stack and corrects for the error if the
FetchAdd indicates that there were fewer items. Figure 4.4 gives the code
for pushing and popping.

Because the shared stack of this section relies on the absence of concur-

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA42

1 void SharedPush(stack local, stack global) {

2 gCursor = FetchAdd(global.cursor, local.cursor);
3 memCopy(local.data, global.data + gCursor, local.cursor);
4 local.cursor = 0;

5 }

6 int SharedPop(stack local, stack global, int k) {
7 gCursor = FetchAdd(global.cursor, -k) - k ;

8 if (gCursor < 0) {

9 if (gCursor + k < 0) {

10 FetchAdd(global.cursor, k);

11 k = 0;

12 }

13 else {

14 FetchAdd(global.cursor, -gCursor);

15 k += gCursor;

16 gCursor = 0;

17 1

18 }

19 memCopy(global.data + gCursor, local.data, k);
20 return k;
21 }

Figure 4.4: Functions for transferring data between local stacks and the
global stack.

rent pushes and pops, a higher-level mechanism for enforcing this condition
is required for a complete solution. In the next section, we describe several
such methods.

4.7 Rooms - Enforcing Access Restrictions

Simply enforcing the absence of concurrent pushes and pops among pro-
cessors can be easily achieved by using a shared variable with two possi-
ble values (Push and Pop). However, it is not obvious when this variable
should change since the number of processors participating in the shared
stack access as the collection proceeds is unknown a priori. If the collector
is lock-step parallel, we would know to switch state whenever all P proces-
sors have accessed the stack by using a barrier synchronization. However,
lock-step parallelism is unsuitable since different collection work takes differ-
ing amount of time and since such close coupling precludes concurrency. For

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA43

efficient support of the shared stack, a more general form of synchronization
is necessary.

The rooms synchronization abstraction provides a more relaxed form of
synchronization than barrier synchronization. The abstraction consists of
a number of rooms, each able to contain any number of processors, with
the invariant that no two rooms may be simultaneously non-empty. For the
purposes of the shared stack, two rooms are required. When a processor is
in the first room, it is allowed to push onto the shared stack. If it is in the
second room, it may pop from the shared stack. Since processors cannot be
in both rooms simultaneously, concurrent pushes and pops cannot occur.

When a processor wants to enter a room, it puts itself on a waiting
list associated with that room. Initially, since no room is active, the first
processor to request access to the room will succeed by opening the door
to that room. Eventually, the processor will have completed the operations
associated with that room and need to exit the room. At the same time,
other processors may have requested access to other rooms, creating various
waiting lists. When the last processor leaves the room, it opens the door
for another room, allowing those on that room’s waiting list to enter the
room. It is important that when a processor leaves its room that it opens
up the door to another room rather than simply leave. Otherwise, the next
active room will be determined at random, leading to possible unfairness.
To ensure fairness, a processor that leaves a room must check and open the
doors in some cyclical order.

For efficiency, the waiting lists are implemented like deli queues in which
customers take a number. Three counters are used to simulate the queue for
each room. The first counter Cur indicates which numbers are being served.
Another counter Wait indicates the highest number that has been reserved
by a customer waiting to be served. Finally, the counter Prev indicates the
number of the last served customer. At any point, we have the invariant that
Prev < Cur < Wait. The first inequality is strict if the room is active and
the second inequality is strict if the waiting list for that room is non-empty.

Associated with each room is a user-supplied exit function called a fi-
nalizer which is run by the last processor to leave the room. This has no
additional synchronization cost and provides a useful functionality since the
exit function is guaranteed to be executed by only one processor. As shown
later, this feature is particularly useful for shared data structures.

Figure 4.5 shows a simplified implementations of the rooms abstraction
with two rooms.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR44

4.8 Real-time Issues

Although the simple Baker’s algorithm presented in Chapter 3 is an incre-
mental collector, it neglects to handle arbitrarily large objects and is thus
unsuitable as a real-time collector. In particular, the pause can be no smaller
than the time it takes to gray the largest live object. To bound the pause
times of our collector, objects are scanned incrementally with the help of a
counter field indicating which field has been copied. When an object is first
copied and gray, the counter field is initialized to the length of the object.
Whenever a gray object is removed from the local stack for scanning, the
counter field indicates the number of fields (starting from the front of the
object) that remains to be scanned. If an object is too large, only some
of its fields are scanned. In that case, the counter field is updated to re-
flect how many fields remain and the object, still gray, is returned to the
work stack. In addition, the count field is used to support the copy-write
synchronization.

4.9 Presentation of Algorithm

The ideas introduced in the previous sections can be combined to form a
scalably parallel, concurrent, real-time garbage collector. Figure 4.6 shows
the functions that the mutator calls directly and Figure 4.7 shows the func-
tions that form the main body of the collector. Together with the code
in Figure 4.5 and some helper functions from Appendix A, these form the
entire algorithm for the collector.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR45

0 =1 O Ot e N

ol e
N = O O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

shared int Which = -1;

shared int Prev[2] = 0,0;
shared int Cur([2] = 0,0;
shared int Wait[2] = 0,0;

void EnterRoom(int i) {
oldWait = FetchAndAdd(&Wait[il,1) + 1;
while (oldWait > Curl[i])

if (CompareAndSwap(&Which,-1,i) == -1) {
Curl[i] = Wait[i];
break;

}

int ExitRoom(finalizert £){
oldPrev = FetchAndAdd(&Prev[Which],1) + 1;
if (oldPrev == Cur[Which]) {
for (k=0; k<2; k++) {
newWhich = (Which + k) % 2;
if (Cur([newWhich] < Wait[newWhich]) {
Which = newWhich;
Cur [Which] = Wait[Which];
if (f == NULL)
return -1;
return (*f)();
}
}
Which = -1;
}

return -2;

}

Figure 4.5: Simplified implementation of the rooms abstraction for two
rooms with finalizers. A processor which is not the last processor to leave
the room exits with a code of -2. A code of -1 signifies that a processor is last
to leave the room but no finalizer was given. Obviously, the finalizer must

be coded to avoid returning either of these two values to avoid confusion.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR46

1 heap from(k), to(k); 20 val Read(ptr p, int i) {
2 int GCOn = 0O; 21 return p[i];
3 ptr Allocate(int n) { 22}
4 prim = FetchAddPtr(&from.cursor, n); 23 void InitField(ptr s, int i, val v) {
) if (prim + n * fieldSize > 24 s[i] = v;
from.reserveTop) { 25 if (GCOn) {
6 if (prim <= from.reserveTop) { 26 vR = IsPtr(s,i) ? Gray(v) : v;
7 assert(GCOn == 0); 27 (*Forward(s))[i] = vR;
8 Interrupt(CollectorOn); 28 }
9 } 29 lastField++;
10 . else 30 Collect(k);
11 assert(0); 31 }
.}g it (acon) { 32 vo?d Write(ptr‘p, int i, val v) {
14 rep = FetchAddPtr(&to.cursor, n); 33 az (IsPtr{p,l))
15 *Forward(prim) = rep; 34 graY(Ptlj);
16 *Count (rep) = 03 35 plil = v;
17 } 36 if (Forward(p) I= NULL) {
18 e 37 while (Forward(p) == 1) ;
return prim;
19 } 38 T f Forward(p); '
39 while (Count(r) == -(i+1)) ;
40 vR = IsPtr(p,i) 7 Gray(v) : v;
41 r[i] = vR;
42 }
43 Collect(k);
44 }

Figure 4.6: Mutator interface to a scalably parallel, concurrent, real-time
collector for the simple model.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA7

1 local stack 1Stk; 41 void CollectorOn() {
2 shared rooms rooms(2); 42 Synch();
3 shared stack gStk; 43 GCOn = 1;

. . 44 Synch();
4 void Collect(int k) { 45 r = FetchAddPtr(&to.cursor, Len(last0bj));
5 EnterRoom(rooms, 0); N

. . ’ 46 *Forward(lastObj) = r;

6 for (i=0; i<k; i++) { 47 *Count (r) = lastCount;
7 it (isEmpty(1Stk)){ 48 PushStack(1Stk,r);
8 SharédPop(lStk, gstk, 1); 49 for (i=0; i<NumRegs; i++)
18 1fbi:§‘f‘1°ty(lstk)) 50 it (IsPtr(Regs,i))
i } ’ 51 Gray(Regs[il);
19 CopyLoc (popStack(15tk)); 52 SharedPush(1Stk,gStk);
13 } ’ 53 Synch();
14 TransitionRoom(rooms, 1); S
15 SharedPush(1Stk, gStk); 55 void CollectorOff() {
16 if (ExitRoom(rooms,Empty)) 56 Synch();
17 Interrupt(CollectorOff); 57 for (i=0; i<NumRegs; i++)
18 } 58 if (IsPtr(Regs,i))
19 void CopyLoc(ptr p) { 28 GCOnRigz.m = *(Formard(Regs[il));
20 r = *Forward(p); . ’

. 61 Synch();
21 i = *Count(r) - 1; 62)
22 *Count(r) = —-(i+1);
23 f = plil;
24 fR = IsPtr(p,i) ? Gray(fR) : £f;
25 r[i] = fR;
26 *Count(r) = i;
27 if (i > 0)
28 pushStack(1Stk, p);
29 }

30 ptr Gray(ptr p) {
31 if (TestSet(Forward(p)))

32 while (#Forward(p) == 1) ;

33 else {

34 r = FetchAddPtr(&to.cursor, Len(p));
35 *Count (r) = Len(p);

36 *Forward(p) = r;

37 pushStack(1Stk, p);

38 }

39 return *Forward(p);

40 '}

Figure 4.7: Main body of a scalably parallel, concurrent, real-time collector
for the simple model. The function TransitionRoom can be synthesized by
running ExitRoom immediately followed by EnterRoom. The code for Sync
is omitted since barrier synchronization is a standard construct.

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA48

4.10 Correctness of Write

In this section, we give a proof of the correctness of the Write instruction as
it involves one of the more delicate synchronizations, the copy-write conflict.
What the collector must ensure is that the execution of the collector will
not interfere with updates to the replica of the Write instruction. The proof
makes use of the definitions and properties introduced in section 2.6. A full
proof of correctness for the whole algorithm is beyond the scope of this
thesis.

Theorem 1 (Correctness of Write) Concurrent copying and modification
of the same object will not result in inconsistency between the primary and
the replica.

Proof: As mentioned before, the copy-write conflict can occur as a result
of an incorrect interleaving of the memory operations of Write and CopyLoc.
In particular, lines (35) and (41) of Write and lines (23) and (25) of CopyLoc.
For reference, we show the relevant lines of the two functions:

v CopyLoc Write

22 *Count(r) = -(i+1); 35 plil = v;

23 £ = plil; 38 while (Count) == -(i+1)) ;
25 r[i] = fR; 41 r[i] = vR;

26 *Count(r) = 1i;

A conflict cannot arise if these operations do not overlap at all because
either (41) — (23) or (25) — (35). Further, if (35) — (23), then the copier
only sees the new value and so the ordering of (41) and (25) does not matter.

Finally, we consider the case where (23) — (35). In this case, the copier
has read the old value and we must ensure that (25) — (41) in order for the
replica to end with the remaining value. Preventing the copier from running
last in this case is achieved with lines (22) and (26) of CopyLoc and with
line (38) of Write.

If (22) = (38), then (38) = (26) since the loop will not finish until (26)
executes. Since 25 — 26 and 38 — 41, we have 25 — 41 by transitivity.

Alternatively, (38) — (22). Since (35) = (38) and (22) = (23), we have
(35) = (23). In this case, the copier reads the new value and whether (41)
and (25) executes last does not matter. -

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORA49

4.11 Time and Space Bounds

Given an application with maximum reachable space R, maximum structure
count N, and maximum depth D, we show the collector algorithm will re-
quire at most 2(R(14+1.5/k)+N+5FD) memory locations, for any constant
k > 1. Furthermore, each of the four memory instructions will take at most
ck time, for some (small) constant ¢, and an application process will never
be interrupted for more than ck time. Here we define a time unit as the
maximum time taken by any machine instruction. As with Baker’s classic
sequential real-time collector [5], adjusting the parameter k gives a natural
tradeoff between space and time. In terms of the quality of the space bound,
Baker showed a bound of 2(R(1 4 1/k)) for his sequential read-barrier col-
lector for fixed-sized structures. The factor of 2 comes from the two spaces
and the 1/k comes from the incremental nature of the algorithm. Baker
also described an extension to arbitrary sized structures that require an ex-
tra header word and hence required 2(R(1 + 1/k) + N) memory. Baker’s
algorithms were read-barrier algorithms. A write-barrier version using repli-
cation would require 2(R(141.5/k)+ N) memory since structures allocated
while the collector is on have to be allocated twice. The additional 5PD
term arises in our collector from three effects: the stack we use to store copy
pointers (PD), allocations of large structures can happen before the incre-
mental steps that are counted agaiust the allocation (2P D), and the extra
time it takes to traverse the DAG (2PD). These are described in more detail
in the proof of Lemma 3. Although the first effect could possibly be removed
by somehow overlapping the stack with the data, and the second effect does
not appear for small structures, we do not see any way to remove the last.
Some PD term seems inherent in any multiprocessor collector. We note,
however, that for many parallel applications PD is likely to be much less
than R. This is because to quickly traverse structures in a parallel program
they have to be relatively shallow.

In many applications both nondeterminism and the number of processors
can affect the maximum reachable space, structure count, and depth. One
might wonder, therefore, about the utility of being able to bound memory
in terms of reachable space if determining the reachable space itself might
be nondeterministic. As a partial solution to this problem, however, else-
where we have shown bounds on the maximum reachable space of parallel
programs [11].

We first consider the time bounds. Figure 4.8 shows the call graph for all
the collector routines. The functions at the bottom (pushStack, popStack,
and Allocate when the collector is on) take constant time since they only

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORS50

InitField Write*

Allocate
Collect.

{Enter/Exit/Trans}Room* LopyLoc CollectOff CollectOn
Gray* Synch*

PopStack PushStack

Figure 4.8: The call graph for the collector routines. The transitive edges
have been left out.

call primitives, loop a constant number of times, or call assert(0) which
terminates the program. The routines marked with a * are the only ones
which have control structures that might loop (or possibly recurse) for more
than a constant number of iterations. In the following discussion recall that
any interrupt received while executing a collector function is delayed until
the function completes.

Lemma 1 The while loops in Gray and Write take constant time, and
therefore Gray and CopyLoc take constant time.

Proof: A header of the primary copy of an object will remain with value 1 for
constant time since the processor that sets it to 1 (the designated copier) only
executes about 10 instructions before resetting it to the forwarding address.
Other processors can therefore only wait constant time in the while loop
in Gray (Figure 4.7, line 33) and the first while loop in Write (Figure 4.6,
line 38). This implies that Gray and hence CopyLoc take constant time. For
the second while loop in Write (Figure 4.6, line 40), Count(r) can have a
particular negative value only for constant time since only CopyLoc can set
it to a negative value and CopyLoc takes constant time. =

Lemma 2 Collect takes at most ck time, for some constant c.

Proof: Executing k copy steps (calls to CopyLoc) takes time proportional to
k by Lemma 1. Putting the up to k values back onto the shared stack takes
time at most proportional to & since it just involves a single FetchAndAdd
and a loop to put them in. Finally, we use properties of the shared stack
described in Section 4.7 to bound the time of the synchronizations. A pro-
cessor will wait at EnterRoom for no more time than required by another
processor to copy k locations, plus the time to put the values back on the
shared stack. Also, it will wait at TransitionRoom for no more time than re-
quired by another processor to copy k locations. Finally, ExitRoom requires

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTOR51

no waiting at all assuming the normal case in which the collector does not
finish. We show below that when the collector does finish, the interrupt
handler code will take at most constant time. Therefore the total time for
Collect is proportional to k& =

Theorem 2 Fach of the memory instructions will take at most ck time, for
some constant c.

Proof: The function Write takes at most ck time since it calls Collect
which takes time proportional to k¥ (Lemma 2) and its two while loops take
constant time (Lemma 1). Similarly for InitField. Allocate contains no
loops and only calls constant-time functions. Read does a direct read with
no barrier. =

Theorem 3 A processor will never be interrupted by CollectorOff and
CollectorOn for more than ck time, for some constant c.

Proof: When an interrupt is initiated the interrupt handlers CollectorOn
and CollectorOff on each processor will have to wait until all processors
complete their current memory instruction (if running one) because of the
barrier synchronization (synch) at the start of each handler. This will take
time at most proportional to k. Since we assume there are only a constant
number of registers, turning them all grey in CollectorOn and forwarding
them in CollectorOff will also take at most constant time. =

Theorems 2 and 3 together guarantee that the client (mutator) processors
never have to wait for more than constant time for the collector. If concerned
that the “constant” for the interrupt might be large (depending on the
number of registers), it is easy to show that no more than 2 interrupts will
occur every M/P instruction cycles, where M is the memory size and P is
the number of processors.

We now consider bounds on space. In the following discussion lower case
r,n, and d will refer to the properties of the memory graph at a particular
time, while upper case R, N, and D refer to the maximum over time.

Lemma 3 If the memory graph has r reachable space, n objects, and d depth
when the collector starts, then the maximum space required in to-space before
the collector is turned off is bounded by r(1+ 2/k) + n + 5Pd, where P is
the number of processors.

Proof: The replicas of the reachable objects along with their header
require r + n locations. We show that at most 2r/k + 4Pd locations can

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORb52

be allocated while copying, and that the shared stack requires no more
than Pd space. We will count each pair of locations that are allocated (the
primary and replica copies) against the InitField that fills them. Since the
memory is actually claimed at the Allocate before the InitField, and each
processor can in the worst case allocate d locations before filling them, this
accounting will allow 2Pd extra locations to be created beyond our count.
This will account for 2Pd out of the 2r/k + 4 Pd mentioned above.

Now consider the s collector rounds taken while the collector is on (a
round is one pass of Collect from EnterRoom to ExitRoom). We denote
by p; (pi < P) the number of processors that are executing the Collect
during round ¢ (0 < ¢ < s). On round ¢ at most 2p; locations will be
“allocated” since only some of the processors executing the Collect come
from an InitField and each of those allocates a pair of locations (recall
that they are allocated in an amortized sense since the space is actually
allocated by the previous Allocate) .

Consider the memory graph in which we view each object as a chain
of nodes each representing one of its locations. Since our algorithm copies
the last location of an object first, we will view the chain as starting at
the end of the object. Each node (location) in this new graph will have
as its descendents the previous location in the object, and the first node of
the chain of the object pointed to by the location (assuming it contains a
pointer). Define all the locations at depth [in this graph as being on level
l (depth is defined as the shortest path assuming unit weight edges from
any root of the graph). It is not hard to show that the graph has at most
d levels. We say a level is completed if all the locations on that level have
been copied. After a round ¢ define [; as the level such that level /; and all
previous levels are completed, but level /; + 1 is not completed. Since all
locations at level [; are copied, all uncopied locations in level [; + 1 must
be in the shared stack as the next location to be copied by their respective
object. 1o see this, consider the two cases. If the node is not the first in a
chain then its parent in the memory graph is the previous location in the
chain, and since the corresponding location has been copied, the location in
question must be in the shared stack as the next to be copied. If the node is
the first in a chain and its parent has been copied, then the Gray executed
on this parent would have put this object in the shared stack.

Since all the uncopied locations in level [;41 are in the shared stack, this
implies that on round 2 + 1 the collector will either complete level [; + 1 by
processing all the elements in the shared stack, or copy at least kp; locations
(since each p; will copy k locations unless the shared stack is empty). Out
of all the rounds, at most d of them can finish a level since there are only

CHAPTER 4. A SIMPLE PARALLEL, CONCURRENT REAL-TIME COLLECTORS53

d levels. These d rounds can allocate at most 2P locations each for a total
of 2Pd. For the rest of the rounds every kp; locations copied will allocate
at most 2p; locations, so for copying a total of r locations, at most 2r/k
locations will be allocated. The total allocated will therefore be 2r/k+2Pd.

Finally, each processor expands nodes in depth-first order and so the
local stack has at most d nodes. Thus, the shared stack contains at most
Pd items. The total space is therefore (r+n)+2Pd+ (2r/k+2Pd) + Pd =
r(1+ 2/k) + n+ 5Pd. =

Theorem 4 Given an application with mazimum reachable space R, maz-
imum object count N, and mazimum depth D, our collector algorithm re-
quires at most 2(R(14+1.5/k)+ N)+5PD memory locations, for any positive
integer constant k.

Proof: When the first collection begins, there is at most R reachable
space, with IV objects, and maximum depth D, and so the amount of space
consumed by the from-space and to-space when the collection is over are re-
spectively R(14+1/k)+ N and R(14+1/k)+ N +5PD. When the second col-
lection starts, the new from-space contains at most R live data but because
of the last collection occupies a total of R(1+4 1/k) + N. When the second
collection is over, the new to-space will again contain R(1+1/k)+ N +5PD
but the from-space contains an extra R/k so that the total space consump-
tion now is 2(R(1+1.5/k)+N)+5PD. Since the end of the second collection
is in the state of the first collection, we have reached a steady state. Thus,
the maximum space consumed is 2(R(1+4 1.5/k)+ N)+ 5PD.

Chapter 5

A More Realistic Collector

Although the simplified model of the previous chapter allowed a crisp pre-
sentation of the core ideas that are needed for a scalable, real-time collector,
many of the issues that arise in a realistic implementation were ignored.
In this chapter, we examine the various problems that arise in designing a
collector for real programming languages. Some of these issues are feature
related such as handling stacks of activation records, multiple threads of
execution, and global variables. The remaining issues focus on improving
runtime performance by reducing the cost of allocation, the write barrier,
double allocation, and the overhead of context switching from excessively
fine-grained interleaving of collector work.

Two important constructs that were omitted in the simplified model are
global variables and stacks of activation records. Neither construct is nec-
essary and some compilers do eschew using them. However, most compilers
do use them and it is unreasonable to constrain compiler design choices so
severely because the garbage collector cannot cope with them. Naively, we
can extend our garbage collector to handle global variables and stack values
by treating them as if they were registers. However, as we will see, this
simple extension will make a real-time bound impossible in general.

To support these constructs, we augment the mutator interface with
the following primitives for accessing global variables and stack frames. We
note that most compilers internally use these primitives and so it is generally
simple to modify its code generator to emit the appropriate code.

54

CHAPTER 5. A MORE REALISTIC COLLECTOR 55

AllocateStack(n) allocates a new activation record with n slots.

ReadFrame(?) reads the value from the #* slot of the current
activation record.

WriteStack(z,v) writes v into the 7** slot of the current activation
record.

ReadGlobal(z) reads the value of i*" global variable.

WriteGlobal(i,v) writes the i** global variable with v.

In the simplified model, the algorithm used the Interrupt instruction
to initiate and terminate collections. Unfortunately, this abstract instruc-
tion does not easily map onto an instruction. Even if it were possible, it
is probably undesirable to halt all processors at arbitrary points to initiate
and terminate garbage collection since some program points correspond to
inconsistent heap states. Even if we consider program points that are consis-
tent, including the ability to decode the stack and registers may result in a
large space overhead. In the revised algorithm, we deal with the very impor-
tant issue of collector initiation and termination explicitly without relying
on any unrealistic primitive.

In the original model, the application was assumed to be CREW. While
many applications do avoid concurrent writes or perhaps use a mechanism
for fine-grained synchronization, the CREW model still imposes a minor but
important restriction on the applicability of the collector. To eliminate this,
we extend the algorithm to handle concurrent writes. In the new mode,
the application may be CRCW (concurrent-read-concurrent-write) and the
collector will still correctly replicate the memory graph. Of course, the
correctness of synchronizations within the application correctness is outside
the province of the collector.

5.1 CRCW

The original collector model is CREW so that no two processors can modify
the same heap location. The separation in time ensures that the write
barrier can work correctly. Recall that the write barrier consists of three
parts. The first portion modifies the primary object. The remaining parts
of the write barrier is executed later in batch mode. If the modified field
contains the a pointer value, the overwritten value is updated to ensure
that the application does not “hide” some reachable data. Finally, the new
value, which is retrieved from the primary location, is replicated in the
replica location.

CHAPTER 5. A MORE REALISTIC COLLECTOR 56

Writer 1 Writer 2 primary replica

a a

write primary

read primary
write primary
read primary
update replica

o o o o oo
T o oo

update replica

Figure 5.1: Lost update due to concurrent modifications to the same loca-
tion.

Even in the CREW case, multiple writes to the same primary location
is possible. Due to the batching of the write barrier, the current value in
the primary location is not necessarily the overwriting value of a mutation
except for the last mutation. Nonetheless, the write barrier is correct since
the replica needs to only contain the final corresponding primary value,
rather than iterate through all the changes of the primary.

In the CRCW case, multiple writes to the same location may be simul-
taneously issued by different processors. A synchronization problem similar
to the copy-write can occur if two processors write to the same location
but their primary reads and replica updates are pathologically interleaved.
Unlike the copy-write synchronization, there are three relevant actions here:
modifying the primary, reading the current value from the primary, and
updating the replica. In the pathological interleaving shown in Figure 5.1,
the writes to the primary are performed in one order but the reads in the
opposite order.

This interleaving is very unlikely for the read and update are very close
in time (separated by at most a few instructions) whereas the entire write-
read-update cycle takes many instructions since there is a thread context
switch between the write and read. This switch arises from the optimiza-
tion discussed in Section 5.5. Nonetheless, the interleaving is possible if the
operating system swaps out one of the processors. A lock-based mechanism
is possible but more expensive than the coarse-grained solution that we pro-
pose using the rooms synchronization. We permit the read-update portion
of the write barrier to execute only when a processor is in the write-barrier
room. For éfﬁciency, we would perform the read-update portion of multiple
writes each time we enter the room. The write-barrier room ensures that
the if the read-update portion of one processor overlaps with the write of

CHAPTER 5. A MORE REALISTIC COLLECTOR 57

Wiriter 1 Writer 2 primary replica
a a
write primary b a
Enter Room b a
read primary b a
write primary c a
update replica c b
Leave Room b b
Enter Room b b
read primary c b
update replica c ¢
Leave Room € c

Figure 5.2: One possible resolution of the bad interleaving from Figure 5.1.
Writer 2’s potentially lost update is delayed by the room synchronization so
that it occurs after Writer 1’s update.

another processor, then that second processor’s read-update portion can-
not overlap with the read-update portion of the first processor. The second
read-update is then correctly delayed until the next activation of the write-
barrier room. The bad interleaving from Figure 5.1 would be turned into
the correct interleaving of Figure 5.2.

5.2 Global Variables

Almost all languages provide variables with global scope. These variables
can always be accessed by any procedure, much like the register set. In fact,
we can extend our garbage collector to handle global variables by treating
them exactly as if they were registers. Thus, the values of the global variables
are grayed at the beginning of the collection. At the end of collection,
the global variables are replaced with their replica values. However, global
variables and registers differ in one important respect. For any machine,
the register set is fixed and is typically small while the number of global
variables is application-specific and sometimes large. In fact, using an initial
implementation of the collector which handled global variables in the naive
fashion just suggested, several benchmarks failed to have real-time behavior.

It is clear that any scheme that requires modifying a potentially un-
bounded number of memory locations will fail to be real-time. Thus, global

CHAPTER 5. A MORE REALISTIC COLLECTOR 58

variables must be replicated like heap objects. We do this by assigning two
locations to each global variable. During any particular collection cycle, one
of the location serves as the primary copy of the global variable used by the
mutator while the other serves as the replica location used by the collector.
Much like the semi-space, the roles of these two sets of global locations are
swapped at the end of each collection.

To support this mechanism, the compiler needs some minor modifica-
tions. One approach is to assign two consecutive memory addresses to each
global variable. A flag is used to indicate to the mutator which copy is the
primary. Depending on whether the flag is stored in a register or not, this
change costs one or two extra instructions. A more sophisticated approach
can be used to remove this slight penalty. In most architectural conven-
tions (e.g. SPARC, PPC, Alpha), global variables are not accessed with a
single memory instruction since a RISC encoding does not always reserve
enough bits to store an absolute address. Instead, the register convention
reserves a single register (global base) to point to a table of the locations to
the actual global variables. Thus, an unmodified load or store of a global
variable already requires two instructions: one to load the address of the
global variable from the table and one to load or store the actual value.
Since the global variable mechanism is already indirect, the value of the
flag can be incorporated with no additional instructions by maintaining two
global tables and using the global base register to select between them.

5.3 Stacks and Stacklets

When a function is called, it allocates additional temporary storage called
an activation record for saving its return address and storing its temporary
values. Since entries and exits of functions are LIFO and an activation record
persists only while its function is active, activation records can be allocated
in a stack discipline. Like global variables, the stack contains pointers into
the heaps and these pointers must be considered as roots. Since the process
of starting and stopping a collector takes time proportional to the number
of roots, the pause time of a collector would depend on how deep a stack is
when the collection is starting and stopping. Unfortunately stack depth is
theoretically unbounded and is, in practice, large for certain programs (e.g.
highly recursive algorithms, GUI applications, or layered protocols).
One might wonder why activation records are different from heap-allocated

objects. Is it possible to allocate activation records from the heap so that
although the activation records are no longer contiguous, no other special

CHAPTER 5. A MORE REALISTIC COLLECTOR 59

consideration is necessary? The crucial difference between activation records
and heap-allocated objects comes from the desire to avoid a write barrier
for the activation records since programs typically modify the stack more
frequently than heap objects. Because of this, the stack must be treated
like the register set and thus constitutes the root set. For a collection to
proceed correctly, the collector must obtain all the roots in the stack at the
beginning of the collection and modify them all at the end of collection. In
essence, due to the lack of a write barrier, the stack can be considered an
extension of the register set. One alternative is to limit activation records
to be read-only and to compensate by a combination of chaining and field
replication.

To limit the time for processing activation records when the collection
starts or stops, the activation records are arranged into fixed-size stacklets
which are chained together to form a logical stack. Stacklets and cactus
stacks have been previously used in parallel fine-grained thread-scheduling
to facilitate cheap parallel function calls and space management suitable for
many-threaded applications [33]. Normally, a function allocates an activa-
tion record from the bottom of a stacklet in the same way it does from a
stack. Likewise, deallocating an activation record simply requires increment-
ing the stack pointer. However, since the stacklet is of limited size, some
modifications are necessary. When a function tries to allocate an activation
record but fails because the stacklet is exhausted, a new stacklet is created,
a link between the old and new stacklet is created, and the activation record
is allocated from the new stacklet. In addition, the return address of the
topmost activation record is modified to point to some glue code whose later
invocation signifies that the current stacklet is empty. When this occurs, the
current stacklet is removed from the stacklet chain and the previous stacklet
is restored.

One advantage of stacklets over stacks is in the efficient use of the address
space. In single-threaded programs, a large piece of memory is reserved for
the program stack. If the program ever memory faults near the bottom of
the program stack, the operating system will recognize this as a result of
growing the stack and map in additional pages of memory. Unfortunately,
this scheme does not work when there are many threads of execution be-
cause the address space may not be large enough to reserve large amounts
of memory for every thread. Many systems overcome this problem by forc-
ing the user to specify a maximum stack size for each thread prior to its
execution. However, it may be difficult or impossible to compute such a
maximum for some programs. Stacklets avoid this problem by dynamically
allocating memory to the stack chain of a thread only when it is needed so

CHAPTER 5. A MORE REALISTIC COLLECTOR 60

the maximum amount of memory wasted per stack chain is limited to the
size of one stacklet.

More importantly, stacklets break up the stack in a way that allows
the collection to manipulate the stack concurrently with the program. In
particular, since stacklet switching is mediated by runtime routines, the
collector is always aware of which stacklet is active. Consequently, it can
work on the other stacklets of a stack chain. In this way, we can limit the

work so that only one stacklet is processed when the collector is turned on
and off.

5.3.1 Stacklet States

At the beginning of a collection, the collector must take a snapshot of all the
root values. Because of real-time limits, it is not possible for every thread’s
stacklets to be scanned for roots. Fortunately, it is sufficient that any stack-
let be copied before it is reused. In this way, the application can be resumed
without processing all the stacklets. To ensure that copying and processing
is done correctly, each primary stacklet has one of six states: Locked, Ac-
tive, Suspended, SuspendedCopyPending, Frozen, and ActiveCopyPending.
Their meanings are given below:

e Locked. Stacklet is being manipulated by a processor. This state is
used to guarantee exclusive ownership.

e Active. Stacklet is in use by the mutator.
e Suspended. Stacklet is not in use by the mutator.

e ActiveCopyPending. Stacklet is active but a replica stacklet has
been assigned to it. When the stacklet is next suspended, it needs to
be copied to the replica and the replica must be inserted into the work
stack.

e SuspendedCopyPending. Stacklet is inactive but must be copied
before resumption.

e Frozen. Stacklet is not active. A replica stacklet has been assigned
to it and the primary is consistent with it.

Except for the copying operation from the primary to the replica stacklet,
primary stacklets are manipulated by the mutator. When a collection is
occurring, some of the primary stacklets will have replica stacklets which

CHAPTER 5. A MORE REALISTIC COLLECTOR 61

thread yield or push
e =

thread resume or pop

Suspended

thread\yield or push

c@ll finds heap rpf

to stacklet CollectorOn

Suspended
CopyPending

Active
CopyPending

Figure 5.3: State transitions of primary stacklets. To avoid clutter, the
transitions to and from the Locked state are omitted.

collector does stacklet work

are being processed by the collector. To indicate the amount of work that
has been done by the collector, a replica stacklet maintains a state. The
four possible states are listed below.

e Uncopied. Replica stacklet has not been copied from primary.
e Copied. Replica stacklet has been copied from primary.

e Decoded. The locations in the replica stacklet that contain heap
references have been identified. ‘

e Processed. The stacklet’s roots values have been processed.

5.3.2 Stacklet Reclamation

Stacklets are the components of a thread’s stack and its liveness depends
on the thread’s execution. In particular, a stacklet is dead when a thread
pops the oldest activation record on the stack. Because glue code is used to
switch between stacklets, the collector knows exactly when a stacklet dies. In
contrast, any particular heap-allocated object’s liveness can be determined
only by tracing a potentially large portion of the heap. Since concurrent

CHAPTER 5. A MORE REALISTIC COLLECTOR 62

collectors do not have the luxury of tracing the entire heap without the
heap changing as it traces, all tracing concurrent collectors suffer some con-
servatism in what is detected as garbage. In particular, an object may be
live and reachable when the collector copies it but dies before the collection
is over. This leads to some unreachable data being present at the end of
collection.

In languages with exceptions and exception handlers, the compiler may
allocate a heap object for the exception record which holds the free variables
of the exception handlers including the current stack pointer. Recording
the stack pointer in the exception record allows rapidly jumping to the
exception handler rather than unwinding the stack. However, the possibility
of pointers from heap objects to stacklets leads to the odd situation that the
collector may copy an object which references a dead stacklet. This can
arise if a stacklet which is referenced by an exception record was live at the
beginning of a collection. Next, the thread for this stacklet exits, causing
the stacklet to be deallocated. Finally, the collector finally processes the
exception record and detects a reference to a dead stacklet. However, since
this case can arise only if the exception record is already dead, the collector
can safely cease further processing of the exception record. It is also possible
that the stacklet has died but has been reallocated for a different thread.
In that case, the collector will update the exception record to reference
the wrong stacklet. In fact, there is no right stacklet to refer to since the
exception record is actually dead. However, there is no harm in allowing the
exception record to reference any stacklet.

In general, a stacklet can be referenced by the scheduler, objects in the
heap, or by the collector when it intends to later process the stacklet. De-
termining when the stacklet can be safely deallocated is itself a memory
management question. A simple answer is to leave stacklets in the heap
so that their management falls out naturally. However, this arrangement
defeats one of the advantages of stacks: reclamation occurs at the first pos-
sible moment. This immediacy is particularly important for applications
that generate many short-lived threads. Instead, we considered two alter-
natives. First, a simple reference counting scheme was used. The lack of
cycles and infrequency of updates makes reference counting feasible. The
only point of interest, beside care in maintaining the reference count, is
using FetchAdd only when necessary. Alternatively, stacklets can be conser-
vatively collected. That is, once it is detected that a stacklet is potentially
referenced by the collector, then the stacklet is not deallocated until the
end of the collection cycle. Reference counting is the more accurate method
but requires more modifications to the collector. In practice, both methods

CHAPTER 5. A MORE REALISTIC COLLECTOR 63

work well.

5.4 Fast Allocation

Functional languages tend to allocate frequently and the implementation
of Allocate(n) and InitField(s,i,v) presented before is too fine-grained,
resulting in an interleaving of the mutator and collector that requires too
many function calls, running code that saves and restores execution contexts,
and calling FetchAdd very frequently. Similarly, the way Write(s,i,v) was
implemented is too heavyweight. The simplified algorithm was originally
designed so that time bounds could be placed on each memory operation.
In practice, this was more extreme than necessary and it suffices to bound
the time on a set of memory operations. In other words, we can reorder the
collection work to reduce the overhead. The extent to which the reordering
can take place depends on how fine-grained the collection needs to be.

To avoid an excessive number of calls to the collector, Allocate(n) and
InitField(s,i,v) can be modified to support a 2-level memory allocation
scheme. The primary level consists of the from-space heap which is shared
by all processors. In addition, each processor maintains a local pool of
memory from which objects are allocated using a lightweight code sequence
short enough to be universally inlined. Field initialization is simplified to
the absolute minimum of writing the field, deferring the associated collection
work until later. When the local pool is exhausted, the collection work
associated with the Allocate(n) and InitField(s,?,v) s of the objects in
the exhausted pool is performed before a new pool of memory is fetched
from the heap.

With this two-level scheme, most allocations will avoid the expensive
FetchAdd and collection work and have the same cost as an allocation in
a standard copying collector. In addition, cache behavior is improved since
related objects, which are those manipulated by one processor, have im-
proved spatial locality. Finally, local pools make it possible for the space for
copying an object to be eagerly allocated before a processor is certain it will
be the copier. If it should fail to be a copier, the memory is easily returned
to its local pool. Without local pools, however, memory already allocated
from a shared heap cannot be returned without destroying the contiguity of
the unallocated space in the heap. The ability to eagerly allocate space also
allows the busy-wait in the copy-copy synchronization for small objects to
be eliminated.

CHAPTER 5. A MORE REALISTIC COLLECTOR 64

5.5 Batched Write Barrier

The need for a write barrier stems from the collector’s incrementality. Since
the collector is replicating, the program may modify the primary version
after the collector has generated the replica. The barrier ensures that the
replica is kept up-to-date. In addition, the mutations of the program may
hide part of the memory graph so that the collector does not actually reach
all live data. Again, the write barrier ensures that the data cannot be hidden
by recording the references that are overwritten by the mutations.

In particular, if the i** field of object = containing pointer value y is
updated with pointer value z, the write barrier grays the object y and if =
has been copied, performs the corresponding update to z’s replica and, in
so doing, grays object z. Even modifications of non-pointer field requires
that the replica be correspondingly modified. The code associated with
these actions is substantial compared to the actual pointer update which
is one instruction. Inlining this code is impractical. Even a function call
may be unacceptable because of the disruption to the instruction cache and
processor pipeline. Instead, we elect to only record the relevant information,
the triple < z,1,y >, deferring the processing for later. The value z is not
necessary since it is obtainable from @ and ¢. Further, if the updated location
contains a non-pointer value, y may be omitted. This form of recording is
similar to the write barrier required in a generational collector, except that
a generational collector needs to record only x + ¢ since it is concerned only
with detecting the locations of intergenerational references. In contrast,
reference counting buffers need to record x + 1, y, and z.

5.6 Reducing Double Allocation

While the collector is on, all objects that are allocated in from-space by
the mutator must be copied into to-space. This allocation barrier policy is
necessary to preserve the reachability invariant. As with the write barrier,
the code for this double allocation, in comparison to the normal allocation,
is substantial. Deferring the double allocation is simple and does not even
have an additional recording cost like the write barrier. All that is required
is to replicate all objects in the current local pool whenever a new local pool
is about to be allocated.

In preliminary experiments, however, we found the space cost of the
double allocation to be substantial. This can be seen in the following anal-
ysis. Consider an application which in steady-state has L live data and is

CHAPTER 5. A MORE REALISTIC COLLECTOR 65

running with a fixed-sized heap of H. The liveness ratio is then r = L/H.
At the start of the collection, there is L live data which needs to be copied
by the end of the collection. During the collection, L/k additional data is
allocated and hence copied. This increases the effective survival rate from r
to (r+r/k)/(14 r/k). For typical values of » = 0.2 and k = 2, the survival
rate is increased from 20% to 27% which increases the collection time by
35%.

To reduce double allocation, we divide collection into two phases, non-
replicating and replicating. In the first phase, we perform collection without
replicating newly allocated data, so that at the end of this phase only data
that was live at the beginning of the collection will have been copied. We
then recompute all the roots and start a second much shorter collection dur-
ing which all newly allocated objects are copied. At the end of the second
phase, the replica memory graph is complete and the collection can be termi-
nated. The two-phase scheme greatly reduces double allocation by confining
it to a short second phase. In the first phase, L data is copied while L/k data
is allocated. Of the allocated data, Lr/k is live and so we copy Lr/k data
plus the additional Lr/k? since we are performing double allocation. The
final effective survival rate is reduced to (r+7r2/k+r2/k?)/(1+r/k+r?/k?),
which, using r = 0.2 and k = 2 as before, yields 20.7% which is only slightly
above the original survival rate. The two-phase algorithm requires an extra
global synchronization and root set computation. However, our experiments
show that this cost is more than compensated for by the reduced copying.

5.7 Reducing Conservatism

When the program mutates a pointer reference from y to z, it is clear that
z must still be live at that point. y might or might not be dead at this
point. To ensure that the program does not hide a reference of y in its
register set or stack which will interfere with collection termination, the write
barrier always copies y as well. This may cause the collector to copy more
than necessary. Fortunately, the two-phase optimization of the previous
section can be used to modify the write barrier to reduce this conservatism.
The new write barrier copies the overwritten referents only in the second
phase of the collection. Since the first phase of the collection is already
incomplete, skipping part of the write barrier does not affect correctness.
This optimization is successful at reducing over-retention of objects because
most objects are processed in the first phase.

CHAPTER 5. A MORE REALISTIC COLLECTOR 66

5.8 Large Objects

In the algorithm described before, the fields of an object are copied and
scanned in order. At any point in time, at most one field is scanned by a
processor. While allowing incrementality, this scheme prevents the collection
of even a large object from occurring in parallel.

The processing of large objects can be parallelized by breaking them up
into large segments and associating a tag with each segment. The tags are
stored as extra header words of the object. The size of the segment can be
chosen for an appropriate degree of parallelism. A smaller segment leads
to increased parallelism but at the cost of increased space overhead due to
more segment tags. When a large object is being scanned by the copier or
being modified by the write barrier, the relevant segment tag rather than
the object tag is consulted. These additional fields require the following
additional interface between the collector and compiler:

NumSeg(s) returns the number of segments of object s.
SegStart(s,i) returns the first location of the i** segment of object s.
SegEnd(s,1i) returns the last location of the i** segment of object s.

5.9 Small Objects

In our previous algorithm large and small objects were treated in the same
way. Because of the need to incrementally collect large objects, small objects
are also treated incrementally and copied one field at a time. This turned out
to have a significant overhead. Therefore, instead of copying and scanning
the fields of a small object one at a time, the entire object is locked down and
the object is copied all at once. In addition to reducing the synchronization
operations, the object no longer needs to be added to and removed from the
work stack nor have its tag reinterpreted for every scanned field.

5.10 Eliminating Interrupt

Without access to a hardware Interrupt instruction, the collection must
be initiated and terminated by software means. The collector’s state is
stored in a global variable with four possible values: On, 0ff, PendingOn,
and PendingOff. Initially, the collector is 0Off. When a processor fails to
allocate space, the collection needs to started through the cooperation of
all processors. The processor initiating the collection changes the state to

CHAPTER 5. A MORE REALISTIC COLLECTOR 67

PendingOn so that other processors will know to initiate collection. Simply
waiting for other processors to begin collection by letting their allocations
fail is insufficient since other processors may, for example, enter the collector
merely to process its write list. Similarly, when a processor detects that the
collection is over, it changes the collector state to PendingOff so that the
other processors will know to execute CollectorOff.

The introduction of an explicit state variable is also important for im-
plementing the optimization that reduces double allocation and improves
real-time response.

5.11 Improving Room Usage

In the original algorithm, the shared stack can be accessed by a processor
only if a processor is in the correct push or pop room. In addition, the
collection work itself (the calls to CopyLoc) are performed inside the pop
room (see the Collect function in Figure 4.7). In fact, it is also correct to
perform the collection work outside the room. Reducing the work and time
spent inside a room is desirable because of the improved parallelism possible.
In particular, while one processor is copying objects in the pop room, the
other processors currently in the room may not leave the room even if it has
finished its work early. More importantly, processors waiting for access to
the push room cannot enter that room until the slowest processor is done
copying objects in the push room. Given that the time for copying objects
is far greater than for accessing the shared stack, this code motion is quite
important.

However, moving the collection work outside the push room invalidates
the important invariant that the local stacks are non-empty only inside a
room. As a result, confirming that the global stack is empty inside the push
room does not guarantee that there may not be gray objects still remaining
in some processor’s local stack. Detecting this is important because it is nec-
essary for triggering the end of a collection. To overcome this inconsistency,
an additional counter is associated with the work stacks. Initially, after the
roots have been processed, the local stacks’ counters as well as the shared
stack’s counter are zero. Whenever items are transferred from the shared
stack to a local stack, the counters of both stacks are incremented. When
items are returned from the local stack, both counters are decremented but
only if the local stack’s counter is non-zero, allowing stack operations to
occur in any order. Thus, the shared stack’s counter tracks how many lo-
cal stacks are non-empty. The new termination criterion becomes requiring

CHAPTER 5. A MORE REALISTIC COLLECTOR 68

that the shared stack is empty at the same time that the shared counter is
zero. Note that the local stack can become non-empty when objects that
are allocated during collection are replicated or when objects are grayed due
to the write barrier.

However, not all work that is eventually done stems from the shared
stack. In particular, the collector must replicate objects that are being al-
located by the program whenever a thread is suspended. Pushing this work
onto the shared stack by entering the push room interferes with detecting
termination. It may be that whenever collection is about to be terminated,
a processor happens to push on some work resulting from double allocation.
In fact, whenever the shared work arising from the original roots is com-
pleted, the collection is mostly over. What we want is for work from double
allocation to not count as shared work unless the collection is still ongoing
anyway. If the collection is still proceeding, then this replication work may
be shared. This can be accomplished by introducing another push room
from which termination cannot be triggered. Thus, the double-allocation
work is shared without interfering with termination detection.

5.12 Gray Primary vs. Gray Replica

In a tracing collector, the frontier set must be maintained as the memory
graph is traversed. If the collector is a copying variant, there is a choice
of whether the frontier set contains the primary or the replica versions of
the objects. In Cheney’s algorithm, the replica version is stored, allowing a
compact representation of the frontier set. Our algorithm stores the primary
version of the objects so that the copy-write synchronization can later be
used to ensure that modification of the primary object by the mutator and
the concurrent copying of the primary object fields into the replica proceed
correctly.

It is possible to maintain the frontier set as a collection of replica objects
while retaining access to the correspond primary object. To do so, the first
field of each replica object stores a backward pointer to the primary object.
This field never requires additional since it is unnecessary for objects with no
data fields or whose fields have already been copied. Distinguishing whether
the object has been copied or not falls out naturally from whether the object
is gray and is thus in the work stack. Note that for large objects, a back-
pointer per segment may be required. Alternatively, the primary object can
be stored in such cases. By maintain the replica versions of gray objects, it
is possible to retain some of the contiguity that Cheney’s algorithm offers.

CHAPTER 5. A MORE REALISTIC COLLECTOR 69

In the presence of multiple copiers, there are multiple areas of to-space that
are being simultaneously filled. Thus, instead of a single area of memory
containing gray objects, there are multiple gray regions. The size of the
gray regions depends on the granularity of allocation of the collector. For
real-time and parallel behavior, it is important that the granularity not be
too high.

5.13 Actual Algorithm

To present the ideas elaborated in this chapter more precisely, we give the
pseudo-code for the new collector in Figures 5.5, 5.6, and 5.7. In order
for the code to not be unnecessarily large, some simplifying assumptions
that do not materially affect the algorithm were made. First, the code
only considers large objects. In an actual implementation, small objects
can be treated as a special case in order to avoid an extra segment tag.
Second, we assume that there is exactly one application thread per processor.
This thread’s stack chain is associated with a per-processor array stacklet
references Stacklets. The array active count is indicated with the integer
variable NumStacklets. This simplification is necessary so as to not entangle
the collector code with a particular scheduling mechanism. Third, stacklets
are allocated by NewStacklet and managed through reference counting.
However, the reference count manipulations are elided in the pseudo-code
to avoid clutter. Finally, the processing of global variables has been elided.

In addition, we make use of a function called ObtainRoots which obtains
the root locations of a stacklet. The implementation of this function depends
greatly on the compiler and is not essential to the algorithm. The copying
of data from the primary stacklet to the replica stacklet is performed by
CopyStacklet.

As in the collector of Chapter 4, we assume that the collector runs on
its own stack and register set. Since the cluster of routines comprising the
collector is not recursive, the per-processor stacks for the collector can be
bounded in size and pre-allocated.

5.14 Compiler Issues

5.14.1 Lowering the Cost of Allocate and Write

An examination of the 8 functions in Figure 5.7 that comprise the mutator
interfaces shows that the compiler can inline all of the functions without sig-

CHAPTER 5. A MORE REALISTIC COLLECTOR 70

nificant cost. Of the 8 functions, only 3 of them (AllocateStack, Allocate,
and Write) are significant. The cost of AllocateStack is only a few instruc-
tions and is distributed over a function call. The branch is almost always
correctly predicted and the call to StackletExhausted rarely taken. How-
ever, Allocate may be frequent in functional languages while Write occurs
with mutable data structures. Fortunately, the stores into the write list in
Write will almost certainly be cache hits. The remaining cost of these two
functions are the space checks if (ap > al) and if (wp > wl).

In many circumstance, multiple space checks can be coalesced. For ex-
ample, a program which allocates and initializes a pair and then a triple
can be optimized to a program which performs the check of both allocations
before the initialization. For example,

1 x = Allocate(2); 1 x = Allocate(5);

2 InitField(x, 0, 55); 2 y=x+ 2;

3 InitField(x, 1, 56); Besasigs 3 InitField(x, O, 55);
4 y = Allocate(3); 4 InitField(x, 1, 58);
5 InitField(y, 0, 57); 5 InitField(y, 0, 57);
6 InitField(y, 1, 58); 6 InitField(y, 1, 58);
7 InitField(y, 2, 59); 7 InitField(y, 2, 59);

To express the more general optimization, it is necessary to break up
Allocate into two instructions SpaceCheck and Allocate as follows:

ptr SpaceCheck(int n) {
if (ap + n > al) {
Collect(n);
}

ptr Allocate(int n) {
ap += n;
return ap - n;

}

CO~1 O UL WK

Consider a program represented as a graph of extended basic blocks of
straight-line code. Calls to Allocate are not moved while calls to SpaceCheck
can be moved upwardly within each block. When an Allocate is at the
beginning of a block, it can be replicated and moved to the end of all prede-
cessor blocks. However, it is incorrect to move SpaceCheck past a non-local
control instruction such as a function call unless the function (and the ones
it calls) perform no allocation. In addition, the free variables, if any, of the

CHAPTER 5. A MORE REALISTIC COLLECTOR 71

argument to SpaceCheck must remain in scope when SpaceCheck is moved.
Upward movement of calls to SpaceCheck is desirable because two adjacent
SpaceCheck instructions can be merged together by adding the arguments.
For example, eliding the calls to InitField, we might have the following
transformation:

1 SpaceCheck(2); 1 SpaceCheck(10);
2 if (...) { 2 ...
3 as: 3 if (...) A
4 SpaceCheck(3); 4
5 ... 5 ...
becomes
6 } 6 }
7 else { 7T ..
8 x= ... 8 else {
9 SpaceCheck(x); 9 x= ...
10 ... 10 SpaceCheck(x+5);
11} 11}
12 SpaceCheck(5); 12
13 ...

Compilers with inter-procedural analysis may perform this optimization
even more aggressively. However, the coalescing must not exceed the gran-
ularity of the two-layer allocation scheme.

In a similar fashion, the Write instruction can be divided into a part that
checks if there is enough space in the write list and a part that records the
actual write. The space-checking part of Write can be coalesced in the same
way as SpaceCheck. In addition, the IsPtr check can typically be done at
compile-time. In cases where this is not possible due to fully parametric
polymorphism, it is more efficient to treat the condition as true and simply
allow the collector to ignore the unneeded value.

5.14.2 Register Assignment

Compiled code for most languages and programming environments dedicate
several hardware registers for certain purposes, two of which include the
stack pointer sp and the global pointer gp which point to the current stack
frame and the current global offset table. In the mutator interface of Figure
5.4, 6 more additional global quantities exist (sl, gl, ap, al, wp, and wl).
The decision to actually dedicate registers to these variables depends on
the frequency of their use and the abundance of registers. In cases where
registers are scarce, an attractive possibility is to store all these quantities in
a per-processor structure in memory and instead dedicate only a register to

CHAPTER 5. A MORE REALISTIC COLLECTOR 72

the processor structure (ps). Memory accesses to this structure will almost
always result in a cache hit. In machines with indirect addressing, there is
no or little space cost for instruction encoding. In super-scalar processors,
it’s likely that many of the cycles will be absorbed by underutilized hardware
units.

5.15 Parallelism Without Real-Time Bounds

Much of the complexity of the algorithm in this chapter arises apparently
from the interaction of real-time bounds and the features of global vari-
ables and stacklets. To a large extent, parallelism without real-time be-
havior can be achieved by eliminating the special treatment of globals and
program stacks and using the traditional representation. In addition, the
CollectorOnand CollectorOff routines can be coalesced into a single stop-
and-copy Collect routine.

However, stacklets actually provide parallelism by allowing multiple threads
to process a single large program stack. In the same way, global variables
must also be processed in parallel to avoid pathological cases. In practice,
if the root set is well-distributed over many threads and there are not too
many processors, parallelism at this level is unnecessary. In fact, a simpler
mechanism for parallelizing stack processing may be feasible and the optimal
granularity for parallelism may well be different from that for a particular
real-time bound.

With the exception of code complexity and some slight efficiency loss, we
can almost simulate a parallel stop-and-copy collector by simply choosing a
very large allocation and mutation granularity so that the real-time bound is
very coarse. For accuracy however, a bona fide parallel, non-real-time collec-
tor was implemented for experimentation. As Chapter 9 shows, the major
gain of eliminating unneeded concurrency is a reduced memory footprint by
eliminating the % factor from the space bound. Perhaps more importantly,
the mutator’s cache behavior is improved as the fine interleaving of program
and collector is avoided.

5.16 Time and Space Bounds

The space and time bounds proved in Chapter 4 are affected by the optimiza-
tions presented in this chapter but they retain their essence. The introduc-
tion of globals and stacklets of course requires additional space even in the
absence of a garbage collector. The concurrent collector requires replication

CHAPTER 5. A MORE REALISTIC COLLECTOR 73

so this space usage is doubled. The batching up of collection work related
to allocation and mutations merely have the effect of rearranging when the
work gets done. Originally, every word allocated causes the collector to im-
mediately perform k& units of work. Now, work is delayed until, for example,
2048 words are allocated. At this point, k2048 units of work are performed.
Consequently, the collection can fall behind up to k2048 units of work per
processor and so an additional Pk2048 words of memory are required during
collection. This additional space requirement is negligible compared to the
amount of space already used. The reducing double allocation optimization
only reduces the amount of heap space required and has no cost.

The biggest change to the space bounds is in the definition of depth.
In the original algorithm, all objects were scanned one field at a time so
no parallelism is permitted. The depth defined for that algorithm was a
combination of the depth of the memory graph and the size of the largest
object. In the new algorithm, large objects are split apart so that the
segment size chosen rather than the size of the largest object is relevant.
That is, the D term can be replaced by Dyy; + S where D,p; is the depth of
- the memory graph and S is the segment size.

CHAPTER 5. A MORE REALISTIC COLLECTOR 74

1 shared int GCOdd = O; 30 void InitField(ptr s, int i, val v) {

2 local mem ra, gp, gl, sp, sl; 31 s[i] = v;

3 1local mem wp, wl, ap, al; 32 }

4 val ReadGlobal(int i){ de vl Read(ptr Py 2% 43
. 34 return p[il;

5 return gpli] [GCOdd]; 35 1

6} 36 void Write(ptr p, int i, val v) {

7 void WriteGlobal(int i, val v){ 37 if (IsPtr(p,i)){

8 gplil [Gcodd] = v; 38 _if (wp + 3 > wl)

9 } 39 WriteExhausted();

40 0] = p;

10 void AllocateStack(int n){ 41 :gEl% - ?,

e sp == 13 42 wpl2] = v;

12 if (sp < sl) { 43 wp += 3;

13 sp = StackletExhausted(sp,ra,n); 44 } ’

14 ra = StackletPop; 45 p[il = v

17 val ReadStack(int i){

18 return splil;

19 }

20 void WriteStack(int i, val v){

21 splil = v;

22}

23 ptr Allocate(int n) {

24 if (ap + n > al) {

25 HeapExhauted(n) ;

26 ap += n;

27 return ap - n;

28 }

29

Figure 5.4: Mutator interface to a scalably parallel, concurrent, real-time
collector for the realistic model.

CO ~1 O Ut i W N

CO W W W W WK DNNDNDNDDNDDNDNDNN /= === = = = =
TR W N = O OO U W /O OO =1O U =W~ O

W R R W W W W
O T W N = O WO -1

CHAPTER 5. A MORE REALISTIC COLLECTOR 75

union Work {
<mem, intl> graySeg;
<Imem,meml> copyRegion;
<lmem,mem> writeList;
Stacklet stacklet;

4

void HeapExhausted(int n) {
Work work;
size = Max(n, minAllocChunk);
retry:
mem = FetchAdd(from.cursor, size);
if (mem + size <= from.reserveTop)
return memn;
switch (GCState) {
case GCOff
mem = FetchAdd(from.cursor, size);
if (mem + size <= from.reserveTop)
return mem;
GCState = GCPendingOn;
case GCPendingOn:
CollectorOn();
goto retry;
case GCOn:
work.copyRegion = Jas, apl;
pushLocal(1Stk, work);
SharedPush(1Stk, gStk);
mem = FetchAdd(from.cursor, size);
if (mem + size <= from.reserveTop)
return mem;
assert(0); Fell behind
case GCPendingOff:
CollectorOff();
goto retry;

1
1

void StackletPop() {
NumStacklets—-;
Stacklet cur = Stacklets[NumStacklets];
Stacklets[NumStacklets] = NULL;

Stacklet prev = Stacklets[NumStacklets-1]

if (prev.state == SuspendedCopyPending)
ProcessStacklet(prev);

prev.state = Suspended;

Sp = prev.sp;

ra = prev.ra;

47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67

68

69
70
71

72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

void WritelistExhausted() {
Work work;
switch (GCState) {
case GCOff:
wp = writeList;
break;
case GCPendingOn:
wp = writelist;
CollectorOn();
break;
case GCOn:
case GCPendingOff:
work.writes = <JwriteList, wpl>;
pushLocal (1Stk, work);
SharedPush(1Stk, gStk);
if (GCState == GCOn)
Work(wp — writeList);
else {
Work(Infinite);
Collector0ff();
}
wp = writelist;
break;
}
}

mem StackletExhausted
(mem sp, mem ra, int n) {
Stacklet old = Stacklets[NumStacklet-1];
Stacklet new = NewStacklet();
Stacklets[NumStacklet] = new;
NumStacklets++;
old.ra = ra;
old.sp = sp;
switch (GCState) {
case GCOff:
case GCPendingOn:
old.state = Suspended;
break;
case GCOn:
case GCPendingOff:
old.state = SuspendedCopyPending;
Work work.stacklet = old;
pushLocal (1Stk, work);
SharedPush(1Stk, gStk);

}

return new.sp - n;

}

Figure 5.5: Part 1 of main body of a scalably parallel, concurrent, real-time

collector for the realistic model.

o 1O Otk W DN

DD DN B B DN DO DN DD DD b= b= b= e e = = 2
O WO TR WNRE O OOk W= OO

o R R 0 W W W W W W
WN = OWOW=IO Uk WO

CHAPTER 5. A MORE REALISTIC COLLECTOR 76

local vall[] writeList;
local stack 1Stk;

shared heap from(k), to(k);
shared stack gStk;
shared rooms rooms(2);

void Collect(int k) {
EnterRoom(rooms, 0);
SharedPop(1Stk, gStk, k)
ExitRoom(rooms);
while (k—— > O && !isEmpty(1Stk))
switch (popStack(1Stk)) {
case <Imem,int[> graySeg:
CopySegment (graySeg) ;
break;
case <Imem,meml> copyRegion:
CopyRegion(copyRegion) ;
break;
case <mem,meml> writeList:
ProcessWrites(writeList);
break;
case Stacklet stacklet:
ProcessStacklet(stacklet);
break;

}
}

EnterRoom(rooms, 1);
SharedPush(1Stk, gStk);
ExitRoom(rooms);

}

ptr Gray(ptr p) {
if (TestSet(Forward(p)))
while (*#Forward(p) == 1) ;
else {
r = FetchAddPtr(&to.cursor, Len(p));
for (i=0; i<NumSeg(Size(p)); i++) {
Work work.graySeg = (p, i);
*SegTag(r,i) = 0;
pushStack(1Stk, work);

}

*Forward(p) = r;
}
return *Forward(p);

}

44
45
46
47
48
49
50
51
52

23
54
55
56

57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

memvoid CopyRegion(<imem,mem> region)
mem cur,start,end;
<start,endl> = region;
for (cur=start; cur < end;) {
ptr p = ObjStart(cur);
Gray(p);
cur += NumWord(p);
}
}

void CopySegment(ptr p, int i) {
r = *Forward(p);
*Segtag(r,0) = -1;
for (i=SegStart(r,i);
i<=SegEnd(r,i); i++) {

£ = pl[il;
fR = IsPtr(p,i) ? Gray(fR) : f;
r[i] = £R;

}
}

void ProcessWrites(<imem,[> list) {
mem start,end;

<cur,endl> = list;
while (cur < end) {
val obj = cur[0], newObj;
int ind = curl1];
val newVal = oldVal = curl[2];
cur += 3;
if (IsPtr(obj,ind)) {
Gray(oldval);
newVal = Forward(prevVal);
}

if (Forward(obj) != NULL) {
ptr newObj = 1;
while (newObj == 1)
newObj = Forward(obj);
while (Count(r) == -(ind + 1))
(*Forward(obj)) [ind] = newVal;

}

Figure 5.6: Part 2 of main body of a scalably parallel, concurrent, real-time

collector for the realistic model.

OO =~ O O = W N~

DN R BN DN BN DD DN DN = = = = = e e s e
WO~ O TR WNRFE O O©W-IO TR W = O

CHAPTER 5. A MORE REALISTIC COLLECTOR

int ProcessStacklet(Stacklet primary)
Stacklet replica = primary.replica;
stack rStk;
retry:
switch(primary.state) {
case Suspended: assert(0);
case ActiveCopyPending:

case SuspendedCopyPending:
if (replica.state == Uncopied)
CopyStacklet(primary,replica);
else {
assert(replica.state == Copied);
ObtainRoots(replica, rStk);
while (!'isEmpty(rStk))
Gray (*(popStack(rStk)));
}

break;
case Frozen:

assert(replica.state == Copied);

ObtainRoots(replica, rStk);

while (!isEmpty(rStk))

Gray (*(popStack(rStk)));

break;
case Active:
case Locked:

}

assert(0);
goto retry;

}

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60

7

void CollectorOn() {

}

Synch();

GCOn = 1;

Synch();

r = FetchAddPtr(&to.cursor, Len(last0Obj));

*Forward(lastObj) = r;

*Count (r) = lastCount;

PushStack(1Stk,r);

for (i=0; i<NumRegs; i++)
if (IsPtr(Regs,i))

Gray(Regs[il);

for (i=0; i<NumStacklets; i++) {
Stacklets[i].state = copyPending;
Work w.stacklet = Stacklets[i];
PushStack(1Stk,w);

}

SharedPush(1Stk,gStk);

Synch();

void CollectorOff() {

which = Synch();
for (i=0; i<NumRegs; i++)
if (IsPtr(Regs,i))
Regs[i] = *(Forward(Regs[il));
for (i=0; i<NumStacklets; i++)
ProcessStacklet (Stacklets[il);
sp = *(Forward(Stack(sp)));

if (!'which)

GCOdd = 1 - GCOdd;
GCOn = O;
Synch();

Figure 5.7: Part 3 of main body of a scalably parallel, concurrent, real-time

collector for the realistic model.

Chapter 6

Empirical Lessons

The algorithm presented in chapter 5 is sufficiently detailed and realistic
that a straightforward adaptation would yield a reasonably efficient collec-
tor. In fact, the initial garbage collectors that were implemented for TILT
performed well under modest loads. However, more rigorous conditions and
demands revealed that the collector sometimes did not behave as desired.
This chapter focuses on modifications to the algorithm that are based on
lessons learned from practical experience with the garbage collector.

6.1 Scalability

Parallel algorithms must minimize processor idling in order to be scalable.
In our garbage collector, a shared data structure allows all processors access
to collection work so that no processor needs to idle. Of course, the shared
data structure must itself have scalable behavior and not cause idle. The
shared stack relies on the rooms synchronization to provide correct access
and bounded waiting time. In particular, a processor that is trying to pop
items from the stack must, in the worst case, wait for the just activated
pop room to terminate and for the push room to activate and terminate.
Since a room cannot be deactivated until all processors leave it, the wait
time is the time it takes for the last processor to exit the pop room and
for the last processor to exit the push room. Experimental results confirm
that there is significant variance in the time a processor spends in a room
even though the work a processor performs while in the room does not vary
much. These effects are attributable to poor cache behavior and to adverse
operating system interaction. Unfortunately, since the time a room is active
is the mazimum time a processor spends in the room rather than the average

78

CHAPTER 6. EMPIRICAL LESSONS 79

time, the time a room remains active increases as the number of processors
increase. This trend translates to an increase in the overall cost of the shared
stack as the number processors is increased and to poor scalability.

6.1.1 Reducing Intra-Room Time

Since the time a room is active depends on the time a processor spends in
the room, it is natural to reduce the amount of time a processor spends in
the room. When a processor is in a room, it is trying to move data between
its local stack and the shared stack. In fact, a local stack is composed of
several different stacks, each one holding a different type of work. These
stack can hold gray heap objects, globals locations, thread root locations,
ranges of gray array objects, stacklets, and, for the gencrational collector,
intergenerational references. In a typical push or pop operation, only one or
two of these types of work are actually transferred. An easy but useful op-
timization for shortening room time is to detect when no items will actually
be transfered and short-circuiting early to avoid a costly FetchAdd.

6.1.2 Reducing False Contention

Most multiprocessors implement atomic memory operations by assigning in-
formation about state or exclusive ownership to multiple memory locations.
Because of the related cache consistency issue, the cache line is typically
used as the minimal unit with a distinct state. Unfortunately, this implies
that an atomic memory operation on two distinct memory locations may
nevertheless cause memory contention if the two locations are on the same
cache line. To alleviate this problem, each memory location which is a tar-
get for an atomic memory operation like CompareAndSwap or FetchAndAdd
can be placed on a separate cache line. This is a reasonable strategy for
special collector state variables, barrier synchronization, and room synchro-
nization. However, this is not done for heap objects as many ML programs
create small objects that are much smaller than a cache line. Though we
did not do this in our implementation, it is possible to apply this strategy
to only large heap objects to avoid contention while limiting space wastage.

6.1.3 The Cost of Load Balancing

In the original algorithm, the inner loop of the collection consisted of fetching
one item of work from the shared stack to the local stack, performing one
step of work, and returning all items in the local stack. Although this
tactic provided maximum work-sharing, the high overhead and low cfficiency

CHAPTER 6. EMPIRICAL LESSONS 80

makes this strategy unworkable. To reduce the cost of load-balancing to a
reasonable level, the modified algorithm fetches F' items and performs up to
W units of work before returning all items back to the shared stack. Larger
values of F' and W reduce the relative cost of load-balancing by amortizing
the cost of accessing the shared stack over multiple items. However, large
values of F' and W may result in insufficient load-balancing. For example,
if FP exceeds the total number of work items, one or more processor may
go idle. The amount of time a processor remains idle before load-balancing
restores work to the shared stack depends on W. A reasonable choice of F
and W typically reduces the overhead of communication. For our real-time
and scalability goals, we chose F' = 50 and W = 2048..8192, resulting in 2
to 8 % percent increase in total garbage collection time. An adaptive choice
of F' and W is unnecessary since the adaptivity introduced in Section 6.1.5
generalizes the problem.

6.1.4 Graph Traversal Ordering

The order in which a collector traverses the memory graph is a basic design
point. The first tracing collector was recursive and uses a depth first or-
dering, effectively using the program stack to maintain the set of partially
visited nodes as a stack. In contrast, Cheney showed that no additional
space is necessary if the graph is traversed in breadth first order. However,
there is recent evidence that a depth first order sometimes yields superior
cache effects in the collector and the mutator.

Surprisingly, the graph traversal ordering can have a significant impact
on a parallel collector. In depth-first search (DFS), the number of partially
visited nodes (gray objects) is kept to a minimum while breadth-first search
(BFS) generates many more such nodes. Since these nodes represent the
work items, the traversal order will effect the number of items in the shared
data structure. In general, the ideal number of items in the shared stack
is high enough that the granularity of data transfer from and to the shared
stack large enough to ensure load-balancing does not have a high overhead.
On the other hand, the number of items in the shared stack should not be so
high that space is wasted. The wasted space and the overhead of managing
a large data structure can be high causing a significant overhead when the
number of processors balancing the work is comparatively low.

The advantage of load-balancing without the overhead of an overly large
working set can be obtained by using an adaptive traversal order. When the
total number of items is below a certain threshold, a BF'S ordering is used
to increase the number of work items. Otherwise, DFS is used to prevent

CHAPTER 6. EMPIRICAL LESSONS 81

unnecessary growth in the number of items. One appropriate choice for the
threshold might be the product FFP where P is the number of processors
and F' the target number of items to be fetched on a pop. Implementing this
strategy requires maintaining the total number of items which include items
in the shared stack as well as those in the P local stacks. The count of items
in the shared stack can be updated in the finalizer code of the rooms while
the count of the items in the local stacks are periodically updated by the
corresponding processor. With multiple readers but only one writer, there
is no conflict.

Other researchers have noted the significance of traversal order to ap-
plication and collector performance. Such work focuses on using a copying
collector as a convenient mechanism for reorganizing the heap for better
memory locality at various levels of the memory hierarchy [77, 56, 48].

6.1.5 Tactical Load Balancing

While it is important that there are enough items in the working set to
permit load-balancing, it is equally important to prevent unnecessary load-
balancing. In fact, most processors are already not idle during most of the
collections so no load-balancing is required. Nonetheless, even occasional
imbalance is enough that some load-balancing is necessary. To gain the
benefits of load-balancing with a low overhead, we can adopt an adaptive
strategy for load-balancing based on several observations:

e Each processor should try to exchange GG items to and from the shared
stack. GG is chosen to be sufficiently large that the cost of the transfer
amortized over the collecting of the items is acceptably low.

e A processor need not return items to the shared stack when the shared
stack already has enough items to satisfy all processors that have not
already borrowed items.

e A processor should not fetch too many items so that other processors
have no work. To do so, it must be sensitive to the total number of
items in the shared stack and all the local stacks and be weary that
processors that seem occupied may suddenly require more work.

These goals can be realized by the following tactic:

e A processor fetches items only if its local stack is empty. It fetches
0.8T or [ﬁ] items, whichever is less.

CHAPTER 6. EMPIRICAL LESSONS 82

e A processor neither fetches nor returns if it has 0.0G to 1.0G items.

e A processor returns items so it has 0.8G items if it has more than 1.0G
items. The return is skipped if S > IdleProc*T.

e Even if a processor does not fetch nor return, it must periodically
update the number of items in its local stack so that other processors
have an up-to-date count of the total size of the working set.

6.1.6 Parallel Processing of Threads

When the collector is not on, the processors are dedicated to application
threads. The scheduling may be realized with a dedicated scheduler thread
that assigns tasks to the available processors. Alternatively, all processors
cooperate by scheduling themselves. In either case, there is usually a cen-
tralized data structure that contains all application threads and associated
information. For example, the thread for a task not yet started might in-
clude a thunk or function whose execution is the task. A suspended thread
would include the state of the registers at the point of suspension as well
as the stacklets that hold the activation records. When a collection is being
started or terminated, all the threads. whether unstarted, recently active,
suspended, or reprocessblocked must be processed. All processors must gain
access to every thread to perform relevant collection work. However, since
the threads are stored in a single data structure, it is important that this
data structure is parallelizable, at least insofar as iteration is concerned.

In our implementation, the scheduler’s data structure is implemented as
a simple array and parallel iteration is easy to implement using a FetchAdd
on the array index.

6.2 Real-time Issues

6.2.1 Using High-Resolution Timer

The use of the POSIX high-resolution timer is critical for measuring real-
time behavior and for the target utilization scheduling policy described in
the next section. The accuracy and cost of the timers were determined by
calling the timer 10000 times. The minimum, average, and maximum time
between calls are 0.0006 ms, 0.0008 ms, and 0.0521 ms. In addition, the 99th
percentile time, 99.9th percentile, and 99.99th percentile times are 0.0009
ms, 0.0011 ms, and 0.0018 ms. In other words, the timers are usually very

CHAPTER 6. EMPIRICAL LESSONS 83

fast (under 1 microsecond) but 0.001% of the time, they are much slower,
taking about 50 microseconds.

The resolution of the timers ultimately limit the granularity of the col-
lector and also the application’s real-time response. Certainly, response at
the 1 ms level is possible. The limit is perhaps around 0.01 ms to 0.1 ms.
Achieving better response than this is not fundamentally difficult but does
require better real-time operating system support.

6.2.2 Scheduling Collection

The concurrent collectors are incremental, collecting kX bytes of objects
every time X bytes of objects are allocated. The parameter X controls the
granularity of the real-time response. Lower values of X will limit the pauses
by making more frequent but shorter segments of collection work. However,
larger values of X will result in lower overhead due to less context switching.
We can compute the throughput of the collector by measuring the average
number of bytes R collected per second. We define F = % as the efficiency
of the collector. Then, since collecting kX bytes takes kX /FE seconds, we
can bound the pause time by adjusting £ and X, obtaining a real-time
collector. Unfortunately, not every unit of collection work takes an equal
amount of time. In other words, F is not a constant but actually a time-
varying function F/(t). Large variations in F/(t) result in large variations in
the pause times kX /FE(t), compromising the real-time bounds.

The solution is to schedule the collection work using time as well as
work. Fortunately, the high-resolution timers used for experimentation can
also be used for scheduling the collection. The timers are not expensive,
taking about 2 microseconds per use. For achieving bounds at the millisec-
ond range, it is feasible to use them 10 to 20 times per collection segment.
However, they are not so cheap as to allow calling the timer after collect-
ing each object. By combining the notion of work-tracking and the less
frequent use of timers, real-time bounds can be met despite variations in
E(t). Of course, huge variations in E(t) will still break real-time bounds.
For example, large persistent dips in E/(t) could correspond to a page fault
or, even more severely, to being swapped out by the operating system. Un-
fortunately, no application can be real-time if its environment or operating
system is not real-time or adversarial.

However, simply making sure that each collection segment takes only
some specified time bound b is not enough. Without tying the amount of
collection to the amount of allocation, the collector may collect so slowly that
too much space is used or even cause total space exhaustion. Fortunately, it

CHAPTER 6. EMPIRICAL LESSONS 84

is only necessary that the collector execute at approximately the desired rate
k for the collection to finish without taking too much additional space. Let
A(t) be the amount allocated and C'(t) the amount collected since the current
collection started. For strict space safety, we schedule the collection so
that C'(t)/A(t) = k. However, for flexibility in scheduling, we may actually
want to simply maintain (C(t) + 5)/A(t) >= k if we are willing to tolerate
devoting S extra space for better real-time performance. .S should be chosen
to have some significant absolute value to tolerate minor variations. In
addition, it may also include a fraction of the live data, effectively decreasing
k, creating either an increase in required space usage or somewhat more
frequent collection.

Since our real-time goal is based on minimum utilization level, it is nat-
ural to consider a scheduling policy for maintaining some minimum mutator
utilization level. To do so, whenever the collector is invoked, it computes
. the maximum allowable time ¢ that it may execute without disrupting the
application to the point that the utilization level dips below the target uti-
lization level. In practice, some slack is introduced so that the collector will
only execute for time t — ¢ where ¢ is the estimated amount of time that
elapses between timer checks.

6.3 Turning the Collector Off

During a collection, the amount of collection work and when it is performed
can be controlled by the scheduling policy. As long as the space and real-
~ time goals are met, the amount of collection work can be small or large. For
example, when the application is allocating furiously, the collector might
decide to temporarily decrease collection work so that the utilization level
can be kept more even and then later increase collection work. On the other
hand, turning the collector on and off must be done atomically. Turning
on the collector requires gathering all the root values while turning off the
collector requires updating all the root values as well as flipping the spaces.
It is evident that turning off the collector is more involved than turning it on.
For example, with stacklets, collecting the root values requires only copying
a stacklet since further processing can be done later. However, updating the
root values of a stacklet will additionally require decoding the stack frames
of the stacklets, determining the locations containing the root values, and
updating these locations with the replica copy of the objects that the roots
reference.

Under a work-driven scheduling policy, the short-term (1 ms) utilization

CHAPTER 6. EMPIRICAL LESSONS 85

of the collection at the beginning(u,), middle(u;), and end (u3) of the collec-
tion will typically follow the relation ug < u; < ug. Utilizations at a slightly
coarser level (5 ms) will involve nearby utilization levels. Just prior to the
start of a collection, the utilization will be almost 1.0. While the collec-
tion is initiating, the utilization will be uz. However, the coarser utilization
will be an average of 1 and us which will be fairly high. Unfortunately, at
the end of collection the average will be between uy and wus, resulting in
a much lower average value mainly since uy is much less than 1.0. Fortu-
nately, there is actually an additional phase between the middle and end
of the collection. Normally, collection termination is signalled when shared
work is exhausted. However, we can simply allow the collector to continue
running after the shared work is exhausted. At this point, the collector only
needs to copy data that is being allocated by the application and so the
collection rate can be reduced to 1. In addition, the collection work here is
easier since the recently allocated data is contiguous and still in the cache.
In this phase, the utilization u4 will be even greater than us. By staying
in this phase and delaying the collection for the size of the coarser window
(5-10 ms), we can change the utilization level of the collector as it turns off
to an average of w4 and us.

6.3.1 Processing Stacklets

As discussed in Section 5.3, program stacks are subdivided into fixed-size
stacklets so that real-time bounds can be met. In particular, when a col-
lection is started, stacklets allow the program to resume only after at most
one stacklet per processor is copied. Using stacklets in this manner creates
the illusion of capturing the state of all stacks at a point in time without
actually doing so. This strategy is required since we are using a snapshot-
at-the-beginning approach to collection.

However, there remains a choice of which stacklets to process during a
collection. One simple strategy is simply to process any available stack.
That is, any time a thread is deactivated or a new stacklet is allocated, the
just suspended stacklet is replicated and processed. This is correct though
inefficient as these stacklets may be unnecessarily processed as when many
short-lived threads are generated or when many stacklets are temporarily
created for a deep call graph which does not persist for long. This cost can
be high when the collection lasts a long time. On the other hand, we cannot
entirely avoid processing all stacklets during a collection as this can result in
an arbitrary number of stacklets that require processing when the collection
ends.

CHAPTER 6. EMPIRICAL LESSONS 86

Copies

W—»)

Calls Returns

Figure 6.1: The application crosses the stacklet boundary three times caus-
ing the upper stacklet to be processed three times. The numbers indicate
the ordering of the events.

The solution is to delay the processing of the stacklets until all other
work is completed. Thus, until the shared stack is empty, no stacklets ex-
cepts those live at the beginning of the collection are considered. When col-
lection termination is imminent, we process all stacklets live at that point.
By limiting the time-frame in which stacklets processed, we minimize unnec-
essary work. In fact, the additional second phase described in the previous
section provides a convenient time to process stacklet. During the delaying
of collection termination, we begin to the stacklets.

One possible weakness of stacklets arises from repeatedly crossing the
stacklet boundary without using a significant portion as shown in Figure
6.1. For example, if an application happens to repeatedly make a call to a
leaf function when it is near the bottom of a stacklet, then each function
call will entail a stacklet switch. The danger to the collector in this case is
that the ancestral stacklet is repeatedly and wastefully reprocessed should
this behavior occur near the end of a collection. To overcome this, once we
enter the mode when stacklets are being reprocessed, we re-process a parent
stacklet only if the child stacklet is entirely consumed. This restores the
property that the collection work performed is proportional to the amount
of stack space allocated. However, each processor may need to process two
stacklets in the worst case.

Chapter 7

Implementation

The algorithmic design presented in the previous chapters has been kept
relatively abstract so that it remains independent, as much as possible,
of any particular language or language implementation. Of course, since
the garbage collector is a moving collector, it may not be compatible with
some languages. For example, the ability to hide pointers through pointer
arithmetic and unsafe type casts in C makes garbage collection impossible.
However, such practices are for the most part pointless and it is not difficult
to impose constraints upon the programmer so that the resulting programs
are compatible with garbage collection. By incorporating these safety con-
straints into C, many safe variants of the language have been created.

In this chapter, I will describe an implementation of the garbage collector
described in the previous chapters for the SML/TILT compiler. The chapter
begins with a description of the SML language and the TILT compiler with
emphasis on features that are relevant to the garbage collector. Finally,
we describe the interface coupling the collector and the compiler and give
details on the collector implementation.

7.1 SML

Standard ML (SML) is a statically typed programming language with first-
class functions, algebraic data-types, and a powerful module system. SML
programs are typically functional and eschew assignments. Strong typing,
garbage collection, and the lack of direct memory access combine to make
SML programs never perform illegal operations. In other words, SML pro-
grams are free from such pointer-related errors as dereferencing non-existent
memory (segmentation violation), accessing data inappropriately (corrupt-

87

CHAPTER 7. IMPLEMENTATION 88

ing program data), and dangling pointers.

Because SML is a functional language, most SML programs have a rel-
atively high allocation rate and a relatively low mutation rate compared to
programs in imperative languages like C. In fact, the only mutable types in
SML are the reference cell and the homogeneous array. Since a reference cell
can simply be considered an array of fixed size one, we will only consider
arrays henceforth. On the other hand, there are functional types and con-
structs such as tupling, recursive datatypes, first-class functions (closures),
structures, functors, and so on.

7.2 Data Representation

Whether the large variety of constructs presents significant complexity to
the garbage collector or the compiler depends to a large extent on the data
representation chosen by the compiler. One choice, which is taken by the
SML/NJ compiler, involves tagging all values and objects. For example, on
a machine with 32-bit general purpose registers, an integer might contain
31 bits of data and a 1-bit flag indicating that the value is not a pointer. In
addition, objects in the heap include a header word (or words) to indicate
the length of the object and other layout information. At the other extreme,
a tag-free collector [31] requires no extra bits or tags for decoding the register
values or memory objects. However, this comes at the cost of requiring the
compiler to generate type information and possibly require the program to
‘manipulate types at runtime. The strategy for TILT lies somewhere between
these two approaches. Tag bits are avoided so that values of integral types
map directly onto the hardware’s notion of integers, allowing fast arithmetic
and greater language interoperability. However, heap objects are still tagged
to identify the size and layout of the objects. The burden on the compiler is
also intermediate: the program must identify all the roots values which are
pointers but need not give their full types. We note, as an orthogonal issue,
that the space cost of tagging objects can often be eliminated by using the
BIBOP optimization [6].

It is important to distinguish between a tag and a type to understand
data representation. Consider a binary tree of integers whose root is stored
in a register. Under the tag-free (or typed) approach, the program indicates
to the collector that a particular register contains a node from the type of
integer binary trees. In other words, it indicates that the register contains
a pointer to an object which either contains an integer or a pair of pointers
to further nodes. On the other hand, under the tags approach, the compiler

CHAPTER 7. IMPLEMENTATION 89

only indicates that the register has a pointer. When the collector examines
the object referenced by the register, it does not know that it is a node
to a tree at all but must instead use the tag to examine the object, thus
determining the number of fields and whether each field is a pointer. Recur-
sive defined objects illustrate how tags are shallow (allowing only the object
at hand to be decoding) while types are deep (encoding everything reach-
able from the object). TILT uses the simpler tags approach but a tag-free
approach is compatible with our collector as well.

In TILT, the base values are word-sized data (bytes, words, and inte-
gers), double word-sized data (double-precision floating point values), or
word-sized pointers. Pointers refer to heap-allocated objects which are ei-
ther heterogeneous fixed-size records (tuples, recursive sums, closures, struc-
tures, functors) or a homogeneous arbitrary-size array (all arrays). Records
require header word(s) to encode the number of fields and whether each
field is a pointer. Arrays require one header word to encode the number
of fields and whether the fields are unaligned data, double-word aligned
data, or unaligned pointer fields. While the limit on array length is quite
high, the limit on a record is far lower since each field must be individu-
ally encoded. Whether multiple header words are used depends on how the
compiler chooses to compile large records. In TILT, large records, which are
rare and typically used only for structures, are compiled with indirection
and so only one header word is needed. Finally, a special tag value is used
for skipping over a range of memory. By using this skip tag, the padding
required for alignment purposes and two-level memory allocation does not
impair the collector’s ability to sequentially scan the heap.

7.3 Activation Records: Stack vs. Heap

Given the considerable difficulties of using a stack for activation records, it
is natural to consider allocating activation records on the heap as is done by
the SML/NJ compiler. At first, it seems that the problem disappears since
a “stack frame” can be treated like any other heap object. However, the
function WriteStack can no longer be compiled as a normal memory write
since it is now mutating a heap object. For correctness a write barrier must
be used, but this is far too expensive given the frequent accesses to local
variables. In some cases, one can avoid writes by not reusing stack frame
slots but instead use up new slots. However, these “initializations” are dif-
ferent from the InitField’s of objects and retain the essential property of
a mutation. In other words, activation records are difficult to handle pre-

CHAPTER 7. IMPLEMENTATION 90

cisely because we want to write to them without a write barrier, regardless
of whether they reside in a stack or a heap.

7.4 Placement of Special Values

Most compilers choose an object layout in which one or more fields are re-
served for the object’s descriptor or tag. The tag is used for describing the
object in sufficient detail so that the collector can decode the fields of the
object. In object-oriented languages like Java, the role of the tag is replaced
by the class of the object. An auxiliary table then maps the class to the
common layout for that class’s instances. Sometimes the tag data is also
used by the application as in the case of array length or for implementing
polymorphic equality in a non-type-passing framework. Systems that mini-
mize or avoid the use of tags include tag-free collection [54, 32, 16, 71] and
BIBOP allocators [6].

To conserve space, the forwarding pointer is typically placed in the same
position as the tag. For example, in a stop-and-copy collector, an overloaded
location for the primary copy holds either the tag or forwarding pointer.
In the latter case, a replica copy must exist and the tag is stored in the
replica’s overloaded location. In all allocators that we are aware of, objects
are allocated on a word-aligned boundary and so forwarding pointers only
consume one quarter of the possible bit patterns. The remaining patterns
are usually sufficient for representing the tag. In practice, without additional
effort, the loss of 2 bits in the tag representation entails a 4-fold reduction
in maximum array length and a maximum record length that is 2 less.

The same space-saving overloading can be used in an incremental collec-
tor. However, in TILT, there is one operation that requires the tag word:
determining array length. Thus, the mutator code for extracting the tag is
more involved than it would be in the case of a non-incremental collector.
An additional check on whether a forwarding pointer needs to be followed
whenever the tag is needed during a collection. Whether it is beneficial to
overload the placements of the forwarding pointer with that of the tag de-
pends on the average object size. In SML, the prevalence of relatively small
tuples and closures makes substantial the cost of an additional field and so
TILT’s object layout does overload these values. Alternatively, in languages
where average object size is greater or where there are already many required
additional fields, it is reasonable to place the tag and forwarding pointer in
different locations. In addition to potentially eliminating a mutator penalty
when accessing the tag, development and maintenance of the collector is

CHAPTER 7. IMPLEMENTATION 91

simplified. This is no small benefit as debugging a concurrent collector is no
simple task.

Another value associated with an object is the lock used for the copy-
copy synchronization and also the copy-write synchronization. As with the
tag, it is possible to place the lock in the same location as the tag by choosing
a representation where the ranges of these values are disjoint. Again, where
space is not an issue, separating the lock from the tag leads to simpler
development and maintenance.

It should be noted that while object sizes can vary greatly, arrays are
usually relatively large independent of programming language and style.
Thus, it is possible to adapt a separate strategy where the tag and forwarding
pointer do not overlap only for arrays. This strategy would be successful for
TILT (though not SML/NJ) since the mutator requires access to the tags
only for the arrays.

7.5 Other Aspects of TILT

TILT performs the coalescing optimization of section 5.14.1, merging al-
location checks and write barrier checks whenever possible. The primary
motivation for removing these checks is conservation of space and reduc-
tion in execution overhead. While the space check itself requires several
instructions (which has a slight time and space cost), there is a bigger but
less obvious cost. Each time there is a space check, there is a possibility
that space is exhausted and the collector must be invoked. Whenever the
collector is invoked, it might require computing the root set which requires
decoding the current stack frame using some compiler-generated data. Thus
the more places there are that the collector might be invoked, the more data
the compiler must include with the program, potentially causing a signif-
icant overhead. Recent work by Stichnoth suggests that with appropriate
code generation and compression that the space overhead can be reasonably
low even with preemption at every instruction [1].

7.6 Adding Parallelism to TILT

Though the SML language is single-threaded, there are extensions for adding
concurrency or parallelism. For example, the SML/NJ compiler comes with
a thread package called CML which augments SML with threads, syn-
chronous channels of communication, and a pre-emptive scheduler. In TILT,
parallelism was added through a parallel binding construct called pval ...

CHAPTER 7. IMPLEMENTATION 92

and. Unlike the standard binding construct val ... and, parallel binding
executes each bound expression in parallel. Execution does not proceed past
the plet until every binding has been executed. For example, the following
program computes the sum of a binary tree whose nodes are integers:

1 fun sumTree (Leaf v) = v

2 | sumTree (Node (x,t1,t2)) =
3 let pval sl = sumTree t1
4 and s2 = sumTree t2
5 in x + s1 + s2

6 end

In TILT, parallel binding is implemented by extending the runtime with
two thread constructs: Spawn and Wait. Spawn takes a thunk (a thread
which has not started execution) and inserts it into the scheduler’s ready
queue. When a thread calls Wait, its execution is suspended until all its chil-
dren threads have terminated. The scheduler always executes ready threads
at the head of the queue. Activating threads in this order ensures that the
parallel computation takes roughly the space of the sequential computation
plus an additional factor proportional to the number of processors. [57].

The parallel let construct is elaborated by the TILT compiler into non-
parallel constructs by using the two cxtra primitives. The sumTree exam-
ple above would be compiled into the following code where al and a2 are
gensym-ed names. The elaboration replaces each binding in the parallel
construct with a mutable result cell which is initially empty (NONE). Each
binding also leads to the spawning of a child thread which places its result
into the result cell (SOME). Finally, the parent thread does not continue ex-
ecution until all the children threads have written their answers by yielding
to the scheduler. Note that the extraction of the result from the option can
never fail thus allowing the pattern constructor check to be optimized away.
A thread will fail to generate an answer only if the thread terminates by
raising an exception. In that case, the exception is propagated to the parent
thread.

CHAPTER 7. IMPLEMENTATION 93

1 fun sumTree (Leaf v) = v

2 | sumTree (Node (x,t1,t2)) =

3 let val al = ref NONE

4 val a2 = ref NONE

5 val _ = Spawn (fn () => al := SOME (sumTree t1))
6 val _ = Spawn (fn () => a2 := SOME (sumTree t2))
7 val _ = Wait()

8 val SOME si1 = !ai

9 val SOME s2 = !a2

10 in x + sl + s2

11 end

7.7 Scheduler

In multi-threaded applications, the scheduler plays an important role in
maintaining real-time behavior. Typically, the scheduler and its data struc-
tures provide the only centralized access to threads and thus impacts garbage
collection. If interface to the scheduler is not parallelizable or not real-
time, the entire collection can potentially inherit these properties particu-
larly when the application uses many lightweight threads.

In TILT, each thread maintains a counter which indicates the state it is
in. Only threads with a count of zero are eligible for scheduling onto a pro-
cessor. When a thread is spawned, the parent thread’s count is incremented
and the child thread’s count is initialized to zero. A link connects a child
thread to its parent thread so that when the child thread terminates, the
parent’s count can be decremented. Race conditions on updating the count
are avoid by using FetchAndAdd. The count is also sometimes used by the
garbage collector to prevent a thread from being scheduled.

Scheduling is done cooperatively, avoiding the need for a dedicated sched-
uler thread. A centralized array holds references to all threads. The ordering
within the array has no particular significance. Processors that are idle can
look for a potential thread to schedule by looking for a thread in the array
with a count of zero. It can attempt to schedule the thread by incrementing
the count to one. If two processors try to schedule the thread at the same
time, one of them will fail by noticing that it incremented the count from
one to two rather than from zero to one. Finally, as mentioned before, the
array allows multiple processors to gain access to the threads in parallel
using FetchAndAdd during a collection.

CHAPTER 7. IMPLEMENTATION 94

7.8 Platforms

Both TILT and the garbage collectors have been implemented on the Alpha
under Digital Unix 4.0 and on the SPARC under Solaris (SunOS 5.5.1).
Since the empirical studies for scalability were possible only on a SPARC
SMP, we will consider that platform.

The TILT runtime system uses the Posix threads to gain access to the
underlying processors. During the initialization, the runtime creates p ad-
ditional Posix threads (p is user-specified but must be no more than the
actual number of processors). Each Posix thread is permanently mapped
to a different processor using processor_bind and thus serves as a virtual
processor. We do not rely on the scheduler at the operating system level.

7.9 Measurments

The SPARC has performance counters which are very useful for debugging
and understanding the performance of the collector. Particularly important
are the measurements for the behavior of memory subsystem. Unfortunately,
the soltware for accessing these counters only worked on a 6-processor SMP
but not on the 64-processor SMP. At a coarser level, timing information
is obtained using the Posix high-resolution timers which, on the SPARC,
provide resolution at the microsecond level. This is more than adequate for
obtaining effects at the millisecond level.

Because of the fine interleaving of execution and the amount of data
that is being collected, the bookkeeping code has a significant cost, ranging
from 1% to 15% of total execution time. Because this cost is an artifact
of experimentation, we have systematically removed these costs from the
data presented in the next section by removing the time spent in accounting
code. Fortunately, the accounting code is small and compute-bound. The
speculation that there is minimal cache disruption is borne out by the fact
that the total time spent in the application when the accounting is on is
within 1% of the total application time when the accounting is off.

To provide as real-time an environment as possible, the runtime system
performs as many mmap operations during initialization as possible. Further-
more, all the pages associated with heap are wired down so that no page
faults are taken during execution. This eliminates most pauses that are be-
yond the control of the application or collector. However, there were still
pauses related to TLB misses and the operating system simply swapping out
the process. The latter problem is ameliorated by running the application

CHAPTER 7. IMPLEMENTATION 95

at a higher priority level and running the experiments when the machine is
not, otherwise heavily utilized.

7.10 Weak Barriers

In turning the collector on and off, the algorithm from Chapter 5 uses Sync
which prevents a processor from proceeding until all processors reach the
barrier. In practice, there is useful work that can be done by a processor
before all processors arrive. The implementation distinguishes between the
normal barrier (strong) and a new weak barrier which allows a processor to
pass through before all other processors arrive. The weak barrier determines
the arrival order so that a processor can know its own arrival order. For
example, the first processor often does preliminary, non-parallelizable work
like diagnosis, computing heap sizes, and so on. The implementation did not
use this feature very aggressively. For example, it is possible for suspended
threads and stacklets to be processed before all processors arrive.

7.11 Heap Resizing

The choice of when to trigger a garbage collection greatly effects collector
overhead and performance. There are several considerations. Maintaining
low overhead requires making the collection productive by maintaining a low
survival rate. However, a low survival rate requires a large memory footprint
which may exceed physical resources and cause swapping. The policy we
use tries to compromise between these conflicting effects by attempting to
maintain a survival rate that is lower when the amount of live data is low.
The justification is that when a process uses has little live data, increasing
its footprint by a greater fraction still has little effect.

There are other reasonable strategies such as tying collection frequency
to allocation rate in order to maintain a fixed collector overhead. In any
case, the heap resizing policy is orthogonal to the basic collector algorithm.
For experimentation, a runtime parameter can be selected to fix the heap
size so that we can determine the efficacy of various collector parameters
under identical memory resources.

7.12 Work: Completion and Real-Time Bounds

In an incremental collector, the rate of the collection is proportional to the
rate of allocation with the proportionality constant &k controlled by the user.

CHAPTER 7. IMPLEMENTATION 96

In other words, each word of memory that is allocated is accompanied by
collecting k words of memory. However, collecting a word of memory is
actually composed of many smaller operations and it is not the case that
the collector processes one word of memory at a time. The reordering that
occurs in the collector is not harmful as long as in the end the accounting
guarantees that the collection is complete.

In order for the notion of collection work to be useful, it must have
the following properties. If at the beginning of collection there is up to
R live data, then the collection will be complete when at most R work
has been performed. If work has this property, then as long as R/k space is
reserved and work proceeds k times faster than allocation, the collection will
complete before space is exhausted. Secondly, each unit of work must take
at most constant time. Then, guaranteeing real-time bounds is equivalent
to guaranteeing that each collection comprises only a constant amount of
work.

In the simplified collector, one unit of work corresponded to copying one
field of an object which may include allocating the space for a new object.
However, the more realistic collector performs other significant operations
such as processing the write list, finding roots in stacklets, and copying all
. objects in a region of memory. These operations are significant in time
and should be regarded as work. However, since scanning a stacklet will
take much longer than copying one field, the work associated with a stacklet
should be much greater. Accurately determining these values is important in
. establishing real-time bounds. Ideally, one unit of work always corresponds
to one unit of time so that by doing a fixed amount of work we can control
the collection pause time. In practice, these values must be experimentally
determined and even with the best values determined by linear regression,
there will still be an imperfect correspondence between work and time.

7.13 Other Collector Details

The collector is composed of 6000 lines of C code and 500 lines of assembly
code. The assembly routines provide access to special synchronization and
memory instructions as well as providing glue between the program and the
runtime system. The system is compiled with gcc version 2.95 at optimiza-
tion level 2 including function inlining. Inlining is particularly important
because of the style in which the collector is written.

In order to provide optimized collectors, a special version of the collector
can be written for each important collector configuration. However, the soft-

CHAPTER 7. IMPLEMENTATION 97

ware maintenance problem that results is substantial. On the other hand,
more general collectors can be written with runtime checks to determine
the appropriate behavior. However, these runtime checks undermine per-
formance. To obtain both software reuse and accurate measurements, the
collector encodes key routines in a very general manner. For each required
setting, a special version of the routine is derived by creating a stub func-
tion which calls the general routine with constant flags. Inlining and other
optimizations combine to produce the required specialized version. This sit-
uation is an example of a more general optimization called staging which is
not easily available in C due to the lack of higher order functions.

7.14 Interface

As an example of how the object layout interface works, we describe the one
particular instantiation as used by the SML/TILT compiler. The object
layout descriptor is always in the word preceding the object and the length
of the object is encoded into the descriptor. There are (small) heteregenous
records and (large) homegenous arrays. (Note that the interface of a different
compiler might support large heterogeneous objects.) For large array, each
segment is 4 kilobytes in size. The interface is shown below.

CHAPTER 7. IMPLEMENTATION

R =1 O UL W N

=
[e>liNe)

[e B R i el e
NolNe JBEN I e> NN I NIVURE WSS

NI N NV U)
W = O

25

int Tag(obj p) {
return p - 1;

}

int Len(obj p) {
int tag = Tag(p);
int type = tag & 0x7;
if (tag == 1)
return (tag >> 3) & Oxif;
return (tag >> 3) << 2;

}

int IsPtr(obj p, int i) {

int tag = Tag(p);

int type = tag & 0x7;

if (type == 2 || type == 3)
return O;

if (type == 5)
return 1;

return (tag >> (8 + i)) & 1;

}

int SegStart(obj p, int i) {
return p + 4096 * (i / 4096);
}
int SegEnd(obj p, int i) {
return p + 4096 * (1 + (i / 4096));

}

98

Chapter 8

Benchmarks

This chapter describes the benchmarks that are used for the experimental
study in later chapters. Many of the benchmarks are standard for SML
while others are standard parallel algorithms. We now give some high-level
comments of the 15 benchmarks, including the size of the benchmark source
in number of lines. This count does not include the library (24,496 lines)
which is linked with all benchmarks. Later sections give more details such
as memory characteristic. Finally, we explain how these benchmarks are
combined to form more complex test cases.

All experiments, including those of this and the following chapter, were
performed on an Enterprise 10K. The Enterprise 10K is a symmetric mul-
tiprocessor with 64 250-Mhz SPARC v9 processors with 10 gigabytes of
uniform access physical memory. All experiments were performed under
Sun OS 5.7 (Solaris 2.7) when the machine is lightly loaded. Paging was
eliminated by wiring down memory pages of the heap and by ensuring that
the memory footprint was well under available physical memory.

Sequential Benchmarks

life (206 lines) The benchmark consists of running 150 generations of
Conway’s game of life. Each board is represented by a lexicographically
sorted list of cells that are alive. The board is printed every 30 generations.

knuth-bendix (538 lines) This benchmark uses the Knuth-Bendix com-
pletion algorithm to canonicalize a set of geometry rules. The program
makes frequent use of higher order functions and exception handlers.

boyer-moore (957 lines) This benchmark uses the Boyer-Moore unifi-
cation algorithm for theorem proving.

grobner basis (939 lines) This benchmark computes the Grobner basis

99

CHAPTER 8. BENCHMARKS 100

for a set of 6! degree polynomials in 7 variables.

lexgen (1181 lines) This benchmark inputs a set of regular expression
for the tokens of SML and generates an ML lexer.

tree search (474 lines) A search program which searches with back-
tracking for a solution to a solitaire game.

fit (274 lines) This benchmark computes the fast Fourier transforms on
random inputs of sizes 24,25 26 ... 218

pia (2074 lines) The Perspective Inversion Algorithm is used to decide
the location of an object from a perspective video image.

TILT (82,420 lines) This benchmark consists of running the TILT com-
piler on the lexer generator benchmark.

merge sort (40 lines) This benchmark consists of sorting 5000 items 10
times using a parallel merge sort.

red-black tree (99 lines) This benchmark creates an initial red-black
tree of 5000 nodes. The main work portion of the benchmark consists of
adding 2000 additional nodes to the base tree 200 times. The resulting tree
in each loop is discarded but the initial tree which remains alive throughout
the benchmark.

Parallel Benchmarks. Each of the parallel benchmarks can be run at
several data set sizes. A numeric suffix indicates the dataset size with 1
corresponding to the smallest data set.

convex-hull(1-4) (417 lines) This benchmark consists of computing the
convex hull of 214, 215 216 and 217 points 15 times using the recursive Jarvis
march.

barnes-hut(1-4) (775 lines) This benchmark computes 10 iterations of
an n-body problem using the Barnes-Hut algorithm. The number of particles
used is 1000, 2000, 4000, or 8000.

treap(1-4) (173 lines) This benchmark creates 10 treaps of 100000,
200000, 400000, or 800000 nodes by recursively creating subtrees in parallel
followed by union operations.

tree(1-4) (106 lines) This benchmark creates 1 fully-balanced binary
tree of 200000, 400000, 800000, or 1600000 nodes by recursively creating
subtrees in parallel. A function is then repeatedly mapped over the tree in
parallel to construct a new tree.

CHAPTER 8. BENCHMARKS 101
Benchmark | Instructions Cycles | CPI
pia 1185156669 | 1079310043 | 1.10
rbtree 1205998464 | 1079557105 | 1.12
convex-hull | 1754900789 | 1263874573 | 1.39
leroy 1289414844 591107260 | 2.18
tyan 3111942967 | 1895563773 | 1.64
fft 5747052704 | 4027762185 | 1.43
boyer 408009707 256399059 | 1.59
pmsort 560010844 426129700 | 1.31
treap 17600995054 | 13177823124 | 1.34
frank 4460410378 | 3117609964 | 1.43
lexgen 1753082945 | 1177054588 | 1.49
barnes-hut 4271612638 | 2763432168 | 1.55
life 533704210 501163241 | 1.06
msort 165135466 114262433 | 1.45
tilt 16602284193 | 10129191392 | 1.64

Figure 8.1: The number of instructions executed and cycles consumed of the
application in both user and system mode.

8.1 Benchmark Characteristics

Figure 8.1 show the number of executed instructions for each application. In
addition, the number of consumed cycles and the CPI (cycles per instruc-
tion) are show. Most benchmarks have a CPI from 1.3 to 1.6. However,
leroy’s CPI is much higher at 2.18.

Figure 8.1 show the memory behavior of the applications by measuring
the memory access and cache hit rates at the primary and secondary cache.
At the primary level, the hit rate ranges from about 7% to 26%. At the
secondary level, the hit rate is much higher, never below 95%.

Figure 8.3 shows how threaded the various benchmarks are. Clearly, all
but four of the benchmarks are single-threaded. Of the remaining four, the
number of threads ever created ranges from about 200 to 20000. However,
the maximum number of threads active at the same time is much lower,
ranging from 17 to 21. These two statistics correspond to the number of
nodes in the computation graph and the maximum length of a dependent
chain.

Figure 8.4 gives the stack usage of the benchmarks. Included are the

CHAPTER 8. BENCHMARKS 102

average size of an activation record and both the average and maximum
number of activation records in the each application’s stack. From these
figures, we can extrapolate the stacklet usage for any particular stacklet size
parameter.

Figure 8.5 shows the relative allocation and mutation intensities of the
benchmarks. Not surprisingly, convex-hull, fft, frank, and tilt had significant
amounts mutations. By combining these figures with those in Figure 8.1,
we can obtain the allocation and mutation rates.

Figure 8.6 gives object demographics based on basic object type. For
each type, the total number of bytes comprising objects of that type is given.
Certain patterns are obvious. For example, only floating-point intensive
programs have significant double-word arrays. For the most part, records
dominate since ML is a mostly functional language.

8.2 Composite Benchmarks

Of the 15 basic benchmarks, 4 of them are parallel: barnes-hut, convex-
hull, merge sort, and treap. These benchmarks are finely parallel and create
many threads dynamically.

Threads have other uses besides parallel algorithms. Interactive pro-
grams, particularly those involving graphical user interfaces, or transaction
systems like databases use threads for ease of programming for an inherently
asynchronous problem. Naturally, if these applications require more than
modest computing power, a multiprocessor is necessary.

To make sure the collector is well-behaved for applications in which the
threads may have less sharing of data such as the multi-threaded (but not
parallel) applications, we create synthetic composite benchmarks which con-
sist of running unrelated benchmarks. These test cases have few threads
with little data sharing and should provide a good complement to the paral-
lel benchmarks. For example, one such composite benchmark might consist
of 3 threads which execute 3 different sequential benchmarks in a different
order. The first thread executes A, B, and C, the second thread executes
B, C, and A, while the final thread executes C, A, and then B. Because
the different threads are usually executing different benchmarks at any one
time, they will have differing amounts and types of heap-allocated objects.
This variation provides a good test for the effectiveness of load-balancing.

CHAPTER 8. BENCHMARKS 103
Level-one cache accesses, hits, and misses
the mutator in user and system mode
Benchmark Access Hit Miss | Hit Rate (%)
pia 80109389 6129806 73979583 7.6
rbtree 444582734 | 43656535 | 400926199 9.82
convex-hull 450672634 | 83930956 | 366741678 18.62
leroy 259665807 | 23045787 | 236620020 8.88
tyan 795314519 | 170291856 | 625022663 21.41
fft 1301879787 | 254789021 | 1047090766 19.57
boyer 116918362 | 21413245 95505117 18.31
pmsort 130226388 | 23784405 | 106441983 18.26
treap 4152360969 | 795524026 | 3356836943 19.16
frank 1285841332 | 145143481 | 1140697851 11.29
lexgen 456451064 | 118767913 | 337683151 26.02
barnes-hut | 1276032968 | 116065946 | 1159967022 9.10
life 160362128 | 11628658 | 148733470 7.25
msort 52424125 6439073 45985052 12.28
tilt 79340408 5558433 73781975 7.01
Level-two cache accesses, hits, and misses
the mutator in user and system mode
Benchmark Access Hit Miss | Hit Rate (%)
pia 37610388 37402297 208091 99.45
rbtree 125590782 | 123259286 | 2331496 98.14
convex-hull 124285556 | 122849127 | 1436429 98.84
leroy 83065331 79303644 | 3761687 95.47
tyan 233632627 | 232118212 | 1514415 99.35
fft 470619622 | 465201594 | 5418028 98.85
boyer 33070765 32266498 804267 97.57
pmsort 41611329 41327433 283896 99.32
treap 1678023629 | 1622925483 | 55098146 96.72
frank 383365229 | 378966113 | 4399116 98.85
lexgen 106684007 | 106007469 676538 99.37
barnes-hut 468081730 | 463606379 | 4475351 99.04
life 37655098 37287419 367679 99.02
msort 14702638 14579837 122801 99.16
tilt 1199328360 | 1176842818 | 22485542 98.13

Figure 8.2: Cache access and hit rate of the applications at the primary and
secondary cache.

CHAPTER 8. BENCHMARKS 104

Number of threads
Benchmark | Total Threads | Max Threads
pia 1 1
rbtree 1 1
convex-hull - 3811 17
leroy 1 1
tyan 1 1
fit 1 1
boyer : 1 1
pmsort 301 | 17
treap 20461 21
frank 1 1
lexgen 1 1
barnes-hut 241 21
life 1 1
msort 1 1
tilt 1 1

Figure 8.3: Number of total active threads and maximum number of simul-
taneously active threads.

CHAPTER 8. BENCHMARKS

105

Stack Characteristics

Benchmark | Avg Frame Size (Bytes) | Avg # of frames | Max # of frames
pia 137 13 43
rbtree 125 17 28
convex-hull 122 22 14
leroy 143 531 1690
tyan 131 29 184
fft 132 12 20
boyer 132 43 62
pmsort 127 21 14
treap 135 33 12
frank 113 143 203
lexgen 140 26 185
barnes-hut 130 71 888
life 120 21 322
msort 124 26 644
tilt 143 131 1518

Figure 8.4: Average activation record size in bytes and the average and
maximum number of frames for each application.

CHAPTER 8. BENCHMARKS

Memory Characteristics - Collector Independent

Benchmark | Allocated (Kb) | Number of Mutations
pia 86362 13718
rbtree 531012 8969
convex-hull 80101 12531628
leroy 160610 8312
tyan 212754 224127
fft 440897 7987726
boyer 68231 8521
pmsort 31050 1446195
treap 1180282 184818
frank 818501 4176761
lexgen 92616 664047
barnes-hut 346103 16525
life 94139 19948
msort 37197 8315
tilt 1201177 12172073

106

Figure 8.5: Total objects allocated in kilobyters and the number of mutators

performed.

CHAPTER 8. BENCHMARKS

107

Allocated Object Demographics - total size (bytes) by type

Benchmark Record | Word Array | Double-word Array | Pointer Array | Alignment
pia 58896328 22914 23334768 2536 7464860
rbtree 536315760 19000 38952 2336 182949
convex-hull 58916708 19277 11086248 5967460 4153452
leroy 164331900 18865 38952 2336 53372
tyan 216253588 28183 38952 229116 35183
fft 45618384 4215046 268205536 2560 | 109919687
boyer 69436968 18865 38952 3072 25194
pmsort 29330560 19017 38952 5344 21130
treap 421293096 18865 599802672 165904 | 233569938
frank 818603072 18881 38952 10543520 143209
lexgen 93133276 964483 38952 161568 33028
barnes-hut 82777068 20622 214954896 4264 | 70654496
life 95689428 30316 38952 2336 54430
msort 36460964 18865 38952 2336 24208
tilt 1208564128 11703595 40788 7739812 479783

Figure 8.6: Object demographics by basic object type.

CHAPTER 8. BENCHMARKS 108

Mutator Execution Time (s) With and Without Write Barrier

Benchmark | Without Barrier | With Barrier | Number of Writes | Relative Cost
pia 1.591 1.686 13682 5.9%
rbtree 7.037 7.113 8939 1.0%
convex-hull 24.546 23.712 1431408 -3.4%
leroy 4.063 4.065 8283 0.0%
tyan 12.385 12.528 224099 1.1%
fIt 23.128 24.295 7987698 5.0%
boyer 2.004 1.982 8492 -1.0%
pmsort 2.591 2.446 980235 -5.6%
treap 22.396 22.591 26905 0.9%
frank 20.613 20.950 4176732 1.6%
lexgen 6.972 7.157 664014 2.7%
barnes-hut 19.593 20.337 20931 3.8%
life 2.523 2.608 19920 3.3%
msort 0.776 0.778 8286 0.3%
tilt 70.599 72.764 12175318 3.0%
AVERAGE 1.4%

Figure 8.7: Mutator execution time with and without the logging portion
of the write barrier.

8.3 Cost of Write Barrier

The integration of the write barrier into the application through inlining
makes measuring the cost of a write barrier using timers impossible. In-
stead, we measure the cost of the collection by compiling the entire program
with and without the logging portion of the write barrier. Both programs
are then executed with the semi-space collector which does not require the
information provided by a write barrier. This allows us to measure just the
cost of the logging portion of the write barrier which records the mutation
so that the collector may later perform appropriate action. We note that
the TILT compiler does not perform low-level optimization with respect to
the write barrier but instead always emits a stylized instruction sequence. A
more aggressive scheme may well reduce the cost of the write barrier through
better instruction scheduling.

Figure 8.7 shows the cost of the inlined logging portion of the write bar-
rier. Surprisingly, not all benchmarks suffered from the write barrier. In
fact, a few of them sped up with the write barrier in place. This was so sur-

CHAPTER 8. BENCHMARKS 109

prising that the experiments were run multiple times under slightly different
conditions. However, the unintuitive speedup with the barrier remained. It
is possible that the inlined write barrier caused some random shifting in the
instruction cache, an effect that has been observed by other researchers [10].
In any case, the write barrier has a typical runtime cost of 1.4% and is up
to about 5% for mutation-intensive applications.

Chapter 9

Experiments

In this chapter, we evaluate the performance of the garbage collectors by
examining the time and space performance of the benchmarks from the pre-
vious chapter. It is well-known that general statements about garbage col-
lectors are never unequivocal and often reflect the prejudices of researchers.
Even more important, the choice of programming languages and target ap-
plications has such a huge impact on garbage collection performance that
an “optimal” memory management strategy should explicitly depend on
the particular application. In the presence of shared libraries and abundant
disk space, it is reasonable to imagine an application model in which mem-
ory management initialization involves choosing a garbage collector and the
appropriate parameters. In fact, the profiling work required for this in a
well-designed system seems so small that it is surprising that such a setup
has not left migrated from the research lab to standard software practice.

Because the unlikely existence of a collector that can be superior to all
others in even a majority of circumstances, it is very important to quantify
collector performance over as wide a range of conditions as possible. Practi-
cality greatly limits the scope of any one study and the differing conditions
of various studies are so significant enough to render any direct comparison
dubious. The relative immaturity of garbage collectors for shared memory
multiprocessors makes even self-contained studies scarce.

The experimental work of this thesis will explain the performance of
the several collectors based on the algorithms described in previous chap-
ters. While effort has been taken to choose a wider and interesting range of
benchmarks, there are some deficiencies that hamper generalization. First,
there are not enough benchmark. As Seltzer et al points out in application-
specific benchmarks are much more informative than micro-benchmarks [66].

110

CHAPTER 9. EXPERIMENTS 111

However, the very specificity of a particular application makes future predic-
tions difficult unless one is lucky enough to hit on a close or perfect match.
Nonetheless, with a suitably large suite of application and an algorithm
which clearly does not unfairly take advantage of some quirk of the suite,
one can at least be confident of the ball-park of the collector’s performance.
All garbage collection studies, including this one, are primarily concerned
with two characteristics: time and space. However, because the goal of the
thesis is to design a collector that is suitable for shared memory multiproces-
sors and for real-time applications, there is a strong focus on scalability and
real-time performance. Furthermore, since there is choice of the number and
quality of processors as well as the quality and granularity of the real-time
performance, we will examine the incremental costs of these features.

9.1 The Cost of Parallelism and Incrementality

One can view our parallel, real-time, copying collector as a highly enhanced
copying collector. Since our basic collector is not generational, an appro-
priate basis for comparison is the Cheney copying collector. Its simplicity
permits a very direct comparison, enabling us to isolate the costs of the
mechanisms that enable parallelism and incrementality.

We examine the performance of the collection portion of the benchmarks
under a series of garbage collectors, starting with the Cheney collector and
ending with a parallel, real-time collector. Since the initial collector is not
parallel, the comparison can be made only running on one processor. Of
course, running a parallel collector on one processor is pointless. We do
so only to understand the performance costs. In fact, the order in which
we enable features is chosen to facilitate measurement. Finally, the perfor-
mance changes that result when the benchmark is parallel and running on
a multiprocessor will be examined later under heading of scalability.

Cheney We start with the Cheney collector which is a semispace collector
and uses an implicit queue to store the set of gray objects.

Local Stack The next collector uses an explicit stack to store the gray
objects. An explicit stack introduces several important changes. In
addition to the space of the stack, the explicit data structure requires
emptiness and overflow checks and will introduce different cache be-
havior from the Cheney scan. Most importantly, since a stack is used
to traverse the memory graph, the nodes will be visited in depth-first
order rather than in breadth-first order under Cheney.

CHAPTER 9. EXPERIMENTS 112

- Space Check When there is only one collector, space for copied objects are
allocated from the contiguous space at the end of the to-space heap.
However, with multiple collectors, a 2-level collector-allocation scheme
is used. Collectors allocate large blocks of memory from the to-space
heap as needed. During collection, a processor copies an object into
space allocated from the processor’s local block. The main cost of the
2-level is the space check in the local block that is now required.

Multiple Allocators As with multiple collectors, multiple allocators re-
quire a 2-level mutator-allocation in which each processor allocates
large blocks of memory [rom the from-space heap. Objects are then
locally allocated from each block. Even in the original Cheney semis-
pace collector, a space check for heap exhaustion is needed. However,
this scheme will now introduce multiple local space check failures be-
fore a global space check fails. The frequency of the local space check
failing of course depends on the block size. Each space check failure
will introduce heap fragmentation as well as time lost due to context
switching, and block allocation.

Work Tracking Real-time collectors must be able to bound the amount of
work that is done per increment of collection. To do so, the collector
must track the amount of work that is done as the collection proceeds.
Even proper load-balancing requires work tracking in order to ensure
that work is periodically returned to the shared stack. In particular,
the collector tracks the number of objects and fields that are copied
and scanned as well as other work such as stacklets and globals.

Shared Stack An explicit data structure for storing gray objects permits
a greater flexibility in traversal order. In addition, it facilitates work
management and allows load-balancing using a shared data structure.
The third collector we examine adds a shared stack which stores all
work that is distributed among the processors including gray objects,
stacklets, globals, and so on. The work sharing carries several costs:
room synchronization to ensure proper access and memory traffic from
transferring data between the private stacks and the shared stack.

Copy-copy Synchronization To make the collector behave correctly in
a multiprocessor environment, we must synchronize between multiple
processors that are collecting. In particular, we add the copy-copy
synchronization which gains exclusive access to each object before al-
locating space for the new object and installing the forwarding pointer.

CHAPTER 9. EXPERIMENTS 113

The dynamic cost varies depending on the amount of contention. If
there is no contention, the lone processor gains access using compare-
and-swap instruction and later installs the forwarding pointer. If there
is contention, all but one processor will detect that it must wait for
some processor to install forwarding pointer. This fourth collector is
a full-fledged parallel collector with load-balancing.

Relaxed Incrementality Finally, we add incrementality to the collector.
An incremental collector interleaves the collection work with program
execution so there are greater consistency problems. For example,
the root set changes during the collection and so the root set must
be scanned both at the start and the end of a collection. If we use
the optimization to reduce double allocation, a third scan is required.
An incremental collector is also more conservative than a stop-copy
collector, because it fails (to a degree dependent on the particular
collector) to recognize data that becomes garbage during the collection
and instead copies useless data. Finally, the more frequent alternation
between the collector and the mutator requires running more context
switching code and may also impact the cache performance.

Unrelaxing The frequency of collection in the previous collector is kept
the same as the non-incremental collector. The from-space and to-
space heaps are expanded in size so that, after space is reserved for
allocation during collection, the effective heap size is the same as a
non-incremental collector. This choice is biased towards keeping time
performance the same at the cost of increased space usage. In contrast,
this collector makes the opposite tradeoff and constrains the heaps
to the original size, resulting in far more collections. Note that this
restriction in heap usage is more conservative than necessary since it
assumes the worst-case scenario for how much data survives.

Figure 9.1 shows the differential cost of the various collectors. Note that
we have excluded time spent in the application and accounting code. In
general, the baseline collector takes up from 5% to 30% of total execution
time and, aside from the cost of the inlined portion of the write barrier
discussed in Section 8.3, the application time is unaffected by the different
collector parameters.

3.4
3.2

2.8
- 2.6
24
.22

1.8
1.6
1.4

- 12

0.8

0.6
0.4H

0.2

CHAPTER 9. EXPERIMENTS 114

Component costs from semispace stop—copy to semispace parallel-concurrent

+ multiple allocator = 0.06

[1 + work tracking = 0.06

[] + shared stack = 0.06

+ copy—copy = 0.12

+ relaxed incrementality = 0.24

Q'
A

Bl Stop-Copy=1.0
Bl + local stack =0.11

T T T T T I I I I T ! T

CHAPTER 9. EXPERIMENTS 115

9.2 Measuring Scalability of Collector

The scalability of the collector is evaluated with two types of multi-threaded
benchmarks. The first set of benchmarks are data-parallel, employ fine-grain
parallelism, and are typical of large scientific computation. The second set
of benchmarks run relatively unrelated threads of execution and is perhaps
more characteristic of transaction systems or asynchronous programs. In the
first category are the benchmarks convex-hull, barnes-hut, tree, and treap
(see Chapter 8). To focus on the scalability issue, these experiments all use
the semispace stop-copy parallel collector. In addition, we artificially hold
the heap size fixed to keep the collection load approximately equal across
the number of processors. In general, the scalability of the application and
the collector is determined by the decrease in execution time as the number
of processors increases so speedup at b processors is defined by % where
T} is the execution time at & processors. Collector and application speedup
can be defined by limiting T to time spent in those portions. However, since
the collector is asynchronous, the program as a whole is generally not in the
same mode. Instead, we must sum the amount of time spent in the collector
across the processors. Thus, if GC, ; with 1 < k < n is the amount of time
spent by the k'h processor in garbage collection when the program is run

with n processors, then collector speedup is defined by % In fact,

the amount of time spent by all processor is the total work and so linear
speedup is equivalent to constant work.

9.3 Overall Scalability

The effects of load balancing on the coarsely parallel benchmark can be
seen in figure 9.1. Not surprisingly, the application work (Mutator) remains
constant even as the number of processors increases. The almost total ab-
sence of communication and synchronization at the application level leads
to almost no idle time. In contrast, garbage collection time remains fairly
constant only when load-balancing is on. Without load-balancing, the idle
time (GC-Idle) doubles the cost of garbage collection.

The scalability of the collector and the application for 3 of the finely
parallel benchmarks are show in Figure 9.2. Each benchmark is run with 1
to 32 processors. At 16 processors, the collector experiences a work increase
of 15% to 30% while the application’s increase ranges from 20% to 35%.
As the number of processors increase, the collector fares better than the
application. At 32 processors, the collector’s work increase compared to the

CHAPTER 9. EXPERIMENTS

116

T
—— mutator
9H - - g
L all

- —- perfect

Speedup (Time vs. Processors)

T |\ e

gl — mutator

Speedup (Time vs. Processors)
T T T

leroy—fft-rbtree

Speedup (Time vs. Processors)
T T

T

9.5H — mutator
9~ ~ ¢

all

85H —- perfect

life—fft-rbtree

Speedup (Time vs. Processors)

rbtree-msort-frank

Speedup (Time vs. Processors)

— mutator | .

[

L

barnes-hut4
Speedup (Time vs. Processors)

— mutator
S
- all

pe
>
L o O

- —- perfect

2T rar

C-UNWANONE O
T

| P 01 i e g (ot R, e e e,

treap4

Figure 9.1: Spéedup curves for 6 benchmarks. The first three (leroy-fft-
rbtree, rbtree-msort-frank, and life-fft-rbtree) and coarsely parallel while
the last three (barnes-hut4, treap4, tree4) are finely parallel.

CHAPTER 9. EXPERIMENTS 117

Scalability (Work vs. Processors)

35 T T T I I I T I T IR T e T T T I T T T T T T T T T T T T I I T T T T AT ITITRTTTTTTT

GC

7 GC-lde | o o
_ Mutator .
3L 8 Mutator-Idie |

N

=
u
o1

e
(4]

-
N
(4]

-

e
N
ol

Normalized Work(Execution times * Num of Procs)

o
2

o
o
o

i |

24 28 32 4 8 12 16 20 24 28

4 8 12 16 20 24 28 32

o

4 8 12 16 20

barnes-hut4 treap4 treed

Figure 9.2: Total processor time spent in the fine-grain parallel benchmarks.
The components are listed in top-down order in the legend but bottom-up
in the graphs.

uniprocessor case ranges from 60% to 90% while the application’s increase
varies from 150% to 225%.

9.4 Breakdown of time

Figure 9.2 presents the times spent in various phases states for three fine-
grain parallel benchmarks. The bottom portion of each bar corresponds to
total time spent in collection. The next portions, in ascending order, are idle
time assigned to collection, application execution, and idle time assigned to
execution. In general, we see that the collector has much less idle time than
the application.

CHAPTER 9. EXPERIMENTS 118

Scalability (Work vs. Processors)
8 TITTT

[T TTTTTTT LI L L O B

I
C=WOrK |

I
775 Il G
GC—ROOmEnter ..
CC=FOOMEXE | &5 8 s oy n 1 57 s A i 5 5 3 7 608 5 B0 O 0B 0 U6 2 565 0

GO-Commm |7 7o m o o mee s vre s v onia s s siosm v o i o rimst & 50232 % it 20 8 o
GOoIHIB: 7o s o s o s o s s e s i < i

|

l

L]

L]

{1

... R I
B R 1) l
.................. |
- |
....... |
. |

. l

|

l

l

12 16 20 24 28 32

Balance NoBalance
treap3 treap3

Figure 9.3: Total processor time spent in garbage collection for the treap
benchmark with and without load balancing. The components are listed in
top-down order in the legend but bottom-up in the graph.

9.5 Effect of Load-Balancing

Figure 9.3 shows the work expended in various phases of the garbage collec-
tor for the treap3 benchmark. The left portion shows the collector running
with load-balancing and the right portion without. The impact of load-
balancing is dramatic. At 32 processors, the collector runs 4 times slower
without load-balancing as processors collectively spent 75% total time idling.

9.6 Data Size

Figure 9.4 shows work in collection phases for the treap benchmarks running
with 4 different dataset sizes. The amount of live data for the 4 variants

CHAPTER 9. EXPERIMENTS 119

Scalability (Work vs. Processors)
6 TTTTTTT T T I T T I T T I T A T T v T T e T T v T T e T T T T e T e T e T T v e v e T T T T T L T T T T T T T TTTTTTOOTNT
B 7B s s oo s 0 minie ses o s @ w8 i % o 4SS KR K SR % R S B % G s X R sw s - GC-Work
N R TR £ GC-RoomEnter ||
55 GC_RoomExit
?525_ ... %fv, GC—COmm

S BB | B8 GC-Idle L

0.75
0.5
0.25

4 8121620242832 4 8 121620242832 4 8 121620242832 4 8 121620242832
treap1 treap2 treap3 treap4

Figure 9.4: Total processor time spent in garbage collection for the treap
benchmark at different dataset sizes. The components are listed in top-down
order in the legend but bottom-up in the graph.

CHAPTER 9. EXPERIMENTS 120

Objects Contended
Procs Copied | Contentions | Objects (%)
1 14075421 0 0.00%
2 14296079 6416 0.05%
3 14303370 22499 0.16%
4 14303803 16398 0.11%
5 14309196 16834 0.12%
6 14310896 16045 0.11%
7 14312917 16152 0.11%
8 14316009 9868 0.07%
9 14326286 12098 0.08%
10 14326319 9043 0.06%
11 14330439 11143 0.08%
12 14329960 9526 0.07%
13 14332350 5182 0.04%
14 14334568 9007 0.06%
15 14335984 5538 0.04%
16 14338083 4536 0.03%

Figure 9.5: Contention for copying objects for the convex-hull4 benchmark.

are approximately 2 Mb, 4 Mb, 8 Mb, and 16 Mb. Clearly, the parallelism
suffers when the data set size is too low. By the last two variant, the collector
is scaling well again. We conclude that it is difficult to scale well when each
processor collects much less than 0.5 Mb.

9.7 Contention

With many processors garbage collecting, it is plausible that the copy-copy
synchronization would be exercised. That is, multiple processors try to
copy the objects at the same time. This can be detected if a processor
fails to find a forwarding pointer in a primary object but fails to become
the designated copied. In that case, the processor will spin-wait for a few
cycles before some other processor copies the object. Figure 9.5 shows the
number of such occurrences for the convex-hull4 benchmarks as the number
of processors varies from 1 to 16. The amount of contention is very low,
never exceeding 0.2%. Other benchmarks show even lower contention rate.

CHAPTER 9. EXPERIMENTS 121

9.8 Measuring Real-time Response: Maximum Pause
and Utilization

The real-time behavior of the collector is evaluated by running all bench-
marks on one processor with a semispace concurrent collector. Traditionally,
a collector is real-time when its maximum pause time is low. That is, a col-
lector which pauses the a program for only 30 millisecond is deemed very
responsive for a task like mouse-tracking which require reaction at a granu-
larity of 50 ms. On the other hand, the pauses make the collector unsuitable
for an application requiring response times under 10 ms.

However, we argue that maximum pause time can paint too rosy a pic-
ture, being too limited a quantity for evaluating responsiveness. In partic-
ular, even with a maximum pause time of 30 ms, there is no guarantee that
the collector might not run almost back-to-back with the mutator unable to
make sufficient progress. In effect, there is a 60 ms pause during which the
mutator’s access is so limited that it is effectively nil. The problem is that
statistics about the pause time do not characterize when the pauses occur.

A burst of short pauses is not much different from a single long pause.
Mutato

Collector

Two Near Pauses

To capture both the size and placement of pauses, we propose a notion
of utilization. In any time window, we define the utilization of that window
to be the fraction of time that the mutator executes. For some fixed window
size s, the utilization level of the program is a function of execution time.
The minimum utilization over the entire execution captures the minimum
access that the mutator has to the processor. For example, the mouse-
tracking code may require 1 ms to execute at a granularity of 50 ms. In
that case, the mutator must have a minimum utilization of 2 % at 50 ms
granularity.

The MMU (minimum mutator utilization) is a function of window size
and generalizes both maximum pause time and collector overhead. The
maximum pause time is the window size at and below which the MMU is
zero. The collector overhead is the complement of mutator utilization at the
granularity of the total execution time.

CHAPTER 9. EXPERIMENTS 122

In the context of a dynamically recompiling SELF compiler, Holzle noted
that a burst of short pauses behaves like a single long pause to the user [39].
He proposed clustering short pauses together whenever such the pauses col-
lectively consume more than 50% of the time. However, clusters more than
0.5 second apart are not grouped together. In our framework where dis-
ruptions are not necessarily observed by a person, the metric cannot involve
human-relevant constants and so our our 2-variable utilization function char-
acterizes pause distribution more generally.

9.9 Overall Real-time Response

We show the real-time response of the collector by examining the utiliza-
tion curves of the various benchmarks for the uniprocessor case. This will
establish the typical real-time response of the benchmarks as well as point
out the differences in the memory demands of the various benchmarks. In
subsequent sections, we examine the effects of various parameters and opti-
mizations on real-time response and space usage.

The first requirement on a successful empirical evaluation of a concurrent
collector is to show both the inadequacies of non-concurrent collectors and
how these are addressed by a concurrent collector. To demonstrate this, we
compare the real-time response of two concurrent collectors (semispace and
generational) against a semispace concurrent collector. Figure 9.6 contains
the utilization curves for 12 single-threaded benchmarks run on a single pro-
cessor. In each graph, the solid curve, dashed curve, and the dot-dash curve
correspond to the minimum mutator utilization of the benchmarks as they
are respectively run with the semispace non-concurrent, generational non-
concurrent, and semispace concurrent collector. All utilization curves inde-
pendent of benchmark or collector method exhibit a characteristic shape.
Utilization generally rises gradually as the granularity is increased. In addi-
tion, each curve has a granularity region where the utilization rises sharply.
This steep rise occurs at a granularity approximately equal to the length of
the slowest collection cycle and is dependent on the maximum amount of
live data an application generates. Finally, utilization curves are not strictly
monotone as seen in the dips in the curves. However, these decreases are
necessarily limited in scope.

If we compare the non-concurrent collectors (Figure 9.6), we see that
the generational collector does better in 7 of the cases, the semispace does
better in 2 of the cases. In the remaining 3 cases, the semispace collector
does better at finer granularity but worse at coarser granularity. At first, it

MMU

MMU

MMU

MMU

0.75

0.5

0.25

0.75

0.5

0.25

0.75

0.5

0.25

0.75

0.5

0.25

CHAPTER 9. EXPERIMENTS 123

1 1
— Semi e B — Semi]
— - Gen - — - Gen P
.~ ConcV” 0.75 075t|... Conc|
/ S >
/ = 05 = 05
= =
/
Lo 025} 0.25
./ /
/ boyer . / fft .
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms) Granularity (ms)
1 = 1 p—
— Semi - — Semi o — Semi P
—-Gen | 7 — -Gen | , — - Gen .
Conc 0.751 ... Conc 0.751}. .. Conc /
/ 5 / =)
/ % 0.5 / % 0.5
/ /
/ 0.25 Y o 0.25
- o
-y . / lexgen .
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms) Granularity (ms)
1 1 —
— Semi — Semi oy — Semi —-
— - Gen —=-Gen | , 7 — - Gen
Conc o T T T 0751 ... Conc 0.75 Conc
o))
= 05 = 05
= =
0.25 0.25 I
R
"y pmsort
0 0
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms) Granularity (ms)
1 1 -
— Semi — Semi — Semi = =
— - Gen — - Gen — - Gen
--- Conc 0.7511... conc 0.751|... Conc
))
= 05 = 05
= =
0251 .. 025f ...
............ tyan
0 0
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms) Granularity (ms)

Figure 9.6: Comparing Utilization of semispace, generational, and concur-
rent collectors.

CHAPTER 9. EXPERIMENTS 124

might seem that the generational collector, which is designed for low latency,
would do better. In fact, the major collectors of a generational collector are
exactly like the collections of a semispace collector in that they must copy
all live data. When there is a fixed size constraint, this worst case of a gen-
erational collector can do even worse than a semispace collector since the
generational collector must reserve space for a nursery, effectively reducing
heap space on a major collection. In our benchmarks, the cases where the
generational collector does much better correspond to executions in which
no major collections were required. For both non-concurrent collectors, the
left end of the utilization curve falls to zero at the point of the slowest col-
lection. The utilization curve for the concurrent collector shows a different
shape. There are two flat regions connected by a steeper area. This steeper
area corresponds to the length of the slowest collection cycle. Compared to
the non-concurrent collectors, this area is not as steep due to the smooth
effect of the concurrent collector. The flatter area left of the steep connec-
tion corresponds to the granularities between a full collection cycle and an
increment of collection work. Finally, the utilization curve falls to zero when
we reach the maximum pause time of the concurrent collector. In all cases,
some portion of the (lat region ol the concurrent collector outperforms the
non-concurrent collectors. For example, in the tilt benchmark, the concur-
rent collector performs better at a granularity of 3 ms to 500 ms. On the
other hand, the life benchmark does better with a concurrent collector only
when granularity is between 3 ms to 20 ms. The variation is explained by
the amount of live data. At the coarser granularities, the concurrent col-
lector flattens out to a lower utilization since the overhead of a concurrent
collector is greater than a non-concurrent collector as discussed in Section
9.1

As a summary, Figure 9.7 shows the utilization curves in one graph for
the single-threaded benchmarks for the concurrent collector with a typical
parameter setting. Most importantly, a target utilization scheduling pol-
icy was used with a target utilization of 0.15. In addition, an allocation
batching size of 8K was used, the collector was run with the 2-phase opti-
mization enabled. Below about 30 ms, we see that the utilization curves of
the benchmarks are closely clustered, indicating that the scheduling policy
is successful at achieving predictable real-time response despite the large
variance in the memory demands of differing benchmarks. At a coarser
granularity (30 ms to 300 ms), the utilization curves begin to diverge. The
upward kink in a benchmark’s utilization curves approximately indicate the
duration of the slowest garbage collection. For example, the kinks in the life
and tilt benchmark are respectively furthest left and right as their collection

CHAPTER 9. EXPERIMENTS 125

Mutator Utilization with SemiConcStackRelaxTarget0.15 collector

1 I I T T T T T
— boyer
— — fft
o 091 - — frank T
N
» leroy
S —— lexgen
o pe
2 081 —o— |ife et
= -e~rr}sor1 N
® || o pia .
5 07T — pmsort S
2 —+— rbtree N
© tyan —o0—9
o o
> : .
205 SO e e
S BT AT
§
= 04} b
D
S
803]
=
=
£ A |
0.2 i
E
S
=
01r .
O 1 1 1 I 1 |
3 5 10 30 100 300 1000 4000

Granularity (Window size in milliseconds)

Figure 9.7: MMU vs granularity (ms) of semispace collectors (concurrent
collector with target utilization of 0.15.

CHAPTER 9. EXPERIMENTS 126

Without Opt. With Opt.
Benchmark | Allocated (Kb) | Bytes Copied (Kb) | Bytes Copied (Kb) | Savings (%)
life 94139 51585 28231 45.3
tyan 212755 60606 46669 23.0
rbtree 531012 205438 150153 26.9
leroy 160611 70969 40490 42.9
fft 401341 170999 117153 315
boyer 68232 24931 15174 39.1
frank 818501 399085 250668 37.2
lexgen 121721 57396 35611 38.0
msort 37197 18797 11584 38.4
pia 86364 57759 30351 47.5
pmsort 31449 12034 7613 36.7
tilt 1210497 243170 171607 29.4

cycle are the shortest and longest of all the benchmarks. As the granularity
increases, the utilization curve asymptotically reaches the average utilization
whose complements is the overall overhead of garbage collection.

9.10 Effectivess of 2-phase Optimization

The amount of data that is copied by the concurrent collector equals that
data that is alive at the beginning of the collection and all the data that is al-
located during the collection. As discussed in section 5.6, this can greatly in-
crease the effective survival rate of the collector compared to non-concurrent
collector. The 2-phasc optimization minimizes this problem by dividing the
collection into an initial longer phase which does not copy newly allocated
data and a second shorter phase which does copy newly allocated data. Fig-
ure 9.10 shows the amount of data that is allocated with and without the
optimization for the single-threaded benchmarks. In both cases, the col-
lector is run with a work-driven scheduling with & = 2.0. For reference,
the amount of data allocated and the space savings that the optimization
provides are included. The optimization significantly reduces the amount
of data that is copied by 23.0% to 47.5%. Reducing the amount of data
translates into both a time and space improvement

CHAPTER 9. EXPERIMENTS 127

Utilization over time of tilt-c1c

Mutator Utilization

P = >G4 ety ety Sepaat 2GC 15 < >GC
;
gty el ammen e ww S s il
ng_ S T T e w w s s e R . T T e T TR i1 11 - PR
0.8_ e T T R S R O I E R R R R B P —
0.7_ e cob v e sofiBucere smunslrr s wenbrammwepssr mbouresepBrostdBadbsr e e e =
o
go‘e_ L ss s s s nawans e v % 6w 6 v I I 1T L B I T Y U TTITYITY T
©
N
Sosk bl
5
s
304 -« -, . BB HLE - b Y e e BIHLIERE - - - - - - - - {IHBABRIRE - - - - - - - - s s e e e
So
03

0‘2 -~

0_1 % Piidsn s iisa ek s s @i sl T s e P @R iR Ay of RIS X P UG A S IO RN R BTSN B S R DS =
~Gc 14" ~ac15 ~GC

4
3 R R T R R R R T Y o Y i R LY R Y TR R R N EEEY T TEET O ETEEEY A EER R R TYTT -

Collection Rate

Heap Size (Mb)

Time (milliseconds)

Figure 9.8: Utilization Information of tilt benchmark with k£ = 1.25.

CHAPTER 9. EXPERIMENTS 128

9.11 Time Traces

During the implementation, debugging, and evaluation of the collector and
runtime system, it because useful to collect temporal information about the
application and collector. For example, rather than simply record the total
number of bytes allocated, it would be interesting to know the how many
bytes were allocated at various points in the execution. To achieve this, the
runtime system associates a state with each processor which indicates what
type of code the processor was executing. Possible states include being in
the scheduler, being idle, running the application, and the many possible
sub-states of the collector (scanning for roots, processing globals, processing
gray objects, and so on). At the end of execution, the runtime emits a time
trace of all the states the processors experience including the type of state,
when the state occurred, how long the state was for, and the utilization level
during that state. In addition, state-specific information such as the amount
of allocation or collection that was done.

These time traces allow the various properties of the collector and appli-
cation as it executes to be visualized. Figure 9.8 shows a time trace of the
tilt benchmark using a work-driven scheduling with k& = 1.25. The graphs
show only 14 seconds of the execution, corresponding to garbage collection
cycles 11 through 16. The top 2 plots of the figure shows the utilization
levels at the 100 ms and 5 ms granularities. The third plot shows the ratio
of collection work done to the amount allocated since the start of the most
recent collection cycle. The bottom plot shows the size of the heap. The
utilization curves are as expected, nearing 100% when the collector is off
and falling to a much lower level (20% to 40%) when a collection is ongoing.
Utilization never quite reaches 100% due to the cost of bookkeeping and
context switching. The utilization curve at the coarser 100 ms granularity
is very smooth with variations typically under 10%. In contrast, the 5 ms
utilization curve is very spiky, showing typical variations of 20% and some-
times up to 60% (at the end of collection 14). A lower variance in the coarser
granularity makes sense if we view a utilization curve as a moving average
whose window size correspond to our granularity. The sharp downward
spikes in the 5 ms utilization curve are problematic for real-time responses.
They typically appear at the end of every collection but sometimes occur in
the middle of a collection as well (collections 13 and 15). As suggested in
earlier chapters, turning the collector off is difficult since it must be done
atomically. In addition, the variation in the types of collection and cache
performance contributes to utilization variation. In the third plot, we see
that the collection rate has a sharp upward spike at the beginning of each

CHAPTER 9. EXPERIMENTS 129

collection. The high ratio arises from having to initiate the collector before
any allocation during collection has begun. After the spike, the collection
rate quickly reaches a stead-state constant value of 1.25 and then slowly falls
to zero after the collection is over. It is unsurprising that the collection rate
is 1.25 since the scheduling policy we use performs work in the amount of
1.25 times the amount allocated (up to roundoff error). Finally, the heap
size rises monotonically with a fairly constant slope, indicating allocation
rates ranging from about 13 Mb/sec to 25 Mb/sec when the collector is off
to about 5 Mb/sec when the collector is on.

9.12 Scheduling Policy

The downward spikes in the 5 ms utilization curves suggests a low MMU
but a good overall utilization. The problem is to reorganize when the col-
lection is performed to avoid the undesired spikes. In earlier chapters, we
described a scheduling policy designed to specifically achieve a good MMU.
The policy is parameterized with a desired target utilization and then tries
to avoid going below this level. Figure 9.9 examines the same benchmark in
the same time interval as the one shown in Figure 9.8 but with a schedul-
ing policy of a target utilization of 0.15. Like the old trace, the new trace
exhibits a greater variation in the 5 ms utilization curve than in the 100
ms utilization curve. However, the downward spikes in the new 5 ms curve
are much less pronounced. In particular, the scheduling policy is successful
at ensuring that the curve never dips below the 15% level. However, the
upward spikes are still present. In fact, they are impossible though unneces-
sary to eliminate. For example, suppose a given 5 ms window already has a
15% utilization. The 5 ms window that follows this window by 1 ms inherits
the utilization history of the last 4 ms. To maintain a constant utilization,
the next 1 ms must have the same utilization as the lost 1 ms. It may be
impossible or too costly to ensure if the mutator executes for more than 1
ms without allocation. The stability in the target utilization policy how-
ever introduces usually minor local variations in the collection rate of about
0.15. However, there are more significant differences in collection rate across
collection cycles (k = 1.8 for collection 13 and k = 2.5 for collection 12).
Generally, a low collection rate leads to a higher utilization level since
the collector is running less frequently. However, the target utilization policy
almost alway achieves a better utilization level even with a lower average
collection rate. For example, the examples in Figures 9.8 and 9.9 shows
that the latter policy can achieve an MMU of 0.15 at approximately k = 2.0

CHAPTER 9. EXPERIMENTS 130

Utilization over time of tilt—c1e

o
[}

Mutator Utilization
o
[6)}

=
»

o
w

o
N

©
o

Collection Rate
n w E

e

o

N w S
o o o

Heap Size (Mb)

&
o

o

0] 2000 4000 6000 8000 10000 12000 14000
Time (milliseconds)

Figure 9.9: Utilization Information of tilt benchmark with target utilization
0.15.

CHAPTER 9. EXPERIMENTS

o
©

Minimum Mutator Utilization over all windows of given size
o o o o o - o
\V] w EES (&3 » ~ [o¢]

e
b

131

Mutator Utilization with SemiConcStackRelaxRate2.00 collector

T T T T T T T
— boyer
- = fft
| - — - frank i
-+ leroy
—— lexgen =
[| —o— life e = e]
-+ - msort . 2 .
|| o pia o -
—— pmsort R //
—+— rbtree - o o .
| il 2 2l 7
o tyan o B /— e ©
. : o)t — T T iy :
i Pe \+//\ / e R '—.8.-6
| PRT Loy e BT .
a&J' ei}) ‘./'gl !~ il
i '/"}8/ S i §
| :9=* / /
/ ('/.+'. _ / /
i = =T / /)
e S
- [PO ’ / '
- // ...+' _./- /./,"/ -
4 ..'+."< """" 4+—++H’+++//
| g g AT e e |
./‘:'10' //'__/__ e — — —t T
o =T
= !] !]]
3 5 10 30 100 300 1000 4000

Granularity (Window size in milliseconds)

Figure 9.10: MMU vs granularity (ms) of semispace collectors (concurrent
collector with work rate of k = 2.0.

ouliguUIy Fulvy

CHAPTER 9. EXPERIMENTS 132

| 2tar=0.25
| 2 tar=0.20
{1 xtar=0.15
{ = i
{1 3
3
1 b
1 3
1 n
0 2 4 6 8 10 0 1 2 3 4 5 6 7
Max Heap Size(Mb) Max Heap Size(Mb)
1 T T T T 1 T T T T T T
— k=2.0
— - k=15
09¢/. 1 09K " 118 1
tar=0.10
0.8} 4 0.8 }| —e— tar=0.15 4
—o - tar=0.20
. . - e tar=0.25
0.7F| - o tar=0.30 & 0.7F 1
0.6 0.6 1
g 0.5 g 0.5
s s
0.4F 04}
031 0.3F /d
oo o0-e0080 —OY0
02t 02t 18 =9 1
01F 0 F leroy 1
ol— . L . L " ol , . . L L
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms)
>
é 4
2 tar=0.20 1]
»tar=0.15 4
= tar=0.10 J]
3 k=1.25]
Y k=15]
3 =2.0]
0 10 20 30 40 50 0 2 4 6 8 10 12 14
Max Heap Size(Mb) Max Heap Size(Mb)
1 T T — T T T 1 T T T T T T
— k=2.0 — k=2.0
| — - k=15 | | — - k=15 i
091 _ k125 091 . _ k=125
- tar=0.10 -+ tar=0.10
0.8}| —e— tar=0.15 4 0.8 }| —=— tar=0.15
—o - tar=0.20 —o - tar=0.20
- e tar=0.25 o
0.7r] 0.7r|- o tar=0.30 g 1
3 7884
0.6 0.6 1
=) =
S 05F = 05F 1
= =
0.4t 0.4F 1
0.3 0.3} g
0.2 021 1
o1} 0.1} fit 1
0 L L s L L ol— . L . L s
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms)

Figure 9.11: Utilization curves and space usage of 3 benchmarks (boyer,
leroy, tilt, fft) when run with a semispace concurrent collector with 8 differ-
ent scheduling policies.

CHAPTER 9. EXPERIMENTS ' 133

while the former policy achieves an MMU of 0.08 at k¥ = 1.25. To give a
better overall impression of how the policies differ, we show the utilization
curves that correspond to Figure 9.7 in Figure 9.10. Figure 9.10 shows
the utilization curves for the usually inferior work-driven scheduling with
k = 2.0. Compare to the former figure, we see that the utilization curves,
particularly at the finer granularity, show great separation. In general, one
cannot predict a priori the utilization level a given k value will generate
without additionally knowing the allocation rate of the program.

Finally, we examine in more detail the effect of scheduling policy on
utilization on four selected benchmarks (boyer, leroy, tilt, and fft) in Figure
9.11. In each graph, we have plotted the utilization curves under both
the work-driven policy for (k = 2.0,1.5,and1.25) and also under several
target utilization policy with targets of 0.10 to 0.30. These curves have
the typical shapes that occur for concurrent collectors. In most cases, the
best utilization left of the kink is achieved using a target policy with the
highest target. In the boyer case, the target policies outperform the work-
driven policies in terms of utilization but require about 5% more space for
equal performance. The space requirements jump sharply when the target
is increased from 0.25 to 0.30 suggesting that 0.30 is nearing the maximum
achievable utility. The fact that less space is required at target levels 0.25
than at 0.20 is counterintuitive and is explained by the dynamic nature
of garbage collections. Changing a collection parameter can affect when
collections occur and thus the amount of live data that is present, ultimately
changing space requirements. In the tilt case, even the target policy with the
lowest target outperforms the work-driven policy with the lowest collection
rate and requires less heap space. In the leroy case, the target policy provides
better utilization but requires about 7% more space. Finally, the fft case is
the only benchmark tested in which the work-driven policy outperforms the
target utilization policy although, in compensation, it requires more space.

9.13 Batching Granularity

Chapter 5 introduced the notion of batching up collection work to avoid
overly frequent context switches. Work related to both allocation and mu-
tations were batched. Of the two, batching up collection work due to al-
location is the more important of the two for real-time behavior. This is
probably due to the functional nature of most SML programs. The greater
the amount of allocation work that is batched up before collection, the more
the collector must run for before the application is resumed. Thus, the

CHAPTER 9. EXPERIMENTS 134

[} [

N N

c <

10 2 T

j=d e o B

i) D

o 1 o 1

8 8]

< .] < 5 . . i
0 2 4 6 8 10 12 14 0 0.5 1 1.5 2 2.5

GC Time (s) GC Time (s)
1 T T T T T T 1 T T

— 1kb — kb
— - 2kb — - 2kb

0.9r . 4kb g 09 4 kb 4
. — 8kb - — 8kb

0.8F| — 12kb 4 0.8} —— 12kb J
—o - 16kb —o- 16kb

0.7 E 071 1

0.6 4 0.6}

g 0.5 g 0.5
= =

04r =2 0.4F

0.3F 0.3

0.2t 0.2

0.1F rbtree 01 r

ol—e . . L L L ol e L L L . .
3 10 30 100 300 1000 4000 3 10 30 100 300 1000 4000
Granularity (ms) Granularity (ms)

Figure 9.12: MMU vs granularity (ms) and GC cost of the boyer and life
benchmarks for 6 batching granularities: 1 Kb, 2 Kb, 4 Kb, 8 Kb, 12 Kb,
and 16 Kb.

CHAPTER 9. EXPERIMENTS 135

granularity of the batching will impact the real-time response and utiliza-
tion curves. Figure 9.12 shows the utilization curves of two benchmarks
(boyer and tilt) as the batching granularity for allocation varies from 1 Kb
to 16 Kb. In both cases, the 1Kb batching granularity provides the best
utilization at fine granularity but the worst at coarse granularity. On the
other hand, a 16 Kb batch size provides good utilization at coarse but not
fine granularity. As far as overhead, a small batching size leads to frequent
context switches and a greater GC cost as seen in the increasing GC times
in the lift benchmark. However, the reverse trend in the rbtree benchmark
suggests competing effects such as cache locality.

9.14 Real-time Response with Multiple Proces-
sors

By design, the collector is simultaneously parallel and real-time so it is
natural to ask whether the real-time behavior is affected when there are more
processors. Figure 9.13 shows the utilization curves for the tree benchmark
when run with 1 to 8 processors. The curves are relatively closely clustered
with better utilization at the 3 ms end for 1 processor. This is probably
due to the lower cost of the barrier and room synchronizations when there
are fewer processors. On the other hand, the 8-processor case does better
at coarser granularity because the amount of data that is copied does not
increase linearly with the number of processors. As more processors are
added to the parallel computation, more of the computation graph is active
at any time, leading to an increased maximum heap size. At 8 processors,
the maximum heap size is 50% greater than at 1 processor.

CHAPTER 9. EXPERIMENTS 136

Scheduling Policy

TUWUTUVUUTUTUU

i nwmimn
=NWHLUIOON00

30 40 50 60 70
Max Heap Size(Mb)

o
-
o
N
o
[er]
o

09|

0.8

bo b

VTUUUUUUDO

0.7

L VO 1 | I
ONOOULHWN =
1

0.6

MMU
o
o

0.3

0.2

0.1

O 1 1 1 1 1 1
3 10 30 100 300 1000 4000

Granularity (ms)

Figure 9.13: MMU vs granularity (ms) for 1 to 8 processors.

Chapter 10

Discussion and Conclusion

10.1 Future Direction

In this section, we list some optimization that seem promising given the
current empirical results and experience gained from experimenting with
the collector.

10.1.1 Dynamic Granularity

The granularity of the buffering of work related to allocation and muta-
tion and also the fixed size of stacklets are chosen to balance overhead and
real-time response. At different points of execution, one or the other of
these concerns are more important. A changing granularity may be able to
capture additional advantage. For example, we can use a coarse allocation
granularity when the collection is off to reduce overhead and fragmentation.
Near the end of a collection when utilization is of particular concern, the
allocation granularity is reduced to limit pause times. Similar remarks apply
to the stacklet size. In addition, the collector may dynamically subdivide a
suspended stacklet into smaller portions to avoid unnecessary work.

10.1.2 Space Concerns

One long-standing complain against copying collector is that it takes up
twice as much memory as a mark-sweep or other non-moving collector. Sim-
ilarly, one can argue that incremental collectors take an additional 7{— amount
of space. In practice, this sort of analysis is naive and does not hold.

Most garbage collector will fare poorly when the heap size is set to about
the amount of live data. With such high survival rates or low headroom,

137

CHAPTER 10. DISCUSSION AND CONCLUSION 138

collections are unproductive, yielding little space for much effort. Under
more reasonable parameters, for example when only half the heap is used,
then the additional space required by a collector is only half as costly. Only
a direct comparison of a copying collector and mark-sweep collector under
a range of space parameters can identify the real space cost of a copying
collector.

It is reasonable to assume that some applications will benefit from a
hybrid scheme where mark-sweep or even reference counting is sometimes
used. However, to retain space safety, it is necessary to retain the ability to
move objects, thus requiring all the machinery of this collector. It remains
a challenge to preserve the properties of the collector while permitting only
parts of the heap to be moved. Once this is possible, the door is open to
exploring train algorithms or variants of mark-sweep-compact collectors.

10.1.3 More Tuning

There are places where the algorithm can be specialized. For example, when
the collector is about to turn off, objects that are double allocated have the
property that the objects that they reference either already have replicas or
are about to be double-allocated. Thus, it is possible to avoid maintaining
gray objects altogether.

10.2 Collector Flexibility

While the garbage collector we have designed and implemented has been
classified scalably parallel and real-time, the complexities of the algorithm
actually improves flexibility. It subsumes many of the other collector ar-
rangements. For example, by setting the allocation granularity to infinite,
the collector becomes a stop-and-copy collector. Also, running a single-
threaded application on a dual-processor machine will result in a scheduling
policy like that of a collector traditionally called concurrent. Of course, such
an arrangement does not necessarily guarantee completion. If such a condi-
tion exists however our collector, unlike the traditional concurrent collector,
can begin to operate in a space-safe manner.

Although the flexibility of adaptation already exists in the collector, more
work needs to be done to specialize the code so that optimal performance
can be obtained under varying conditions. Further, more study is required
to determine whether such conditions can be learned as the application
executes or whether profiling is necessary.

CHAPTER 10. DISCUSSION AND CONCLUSION 139

10.3 Results

In this dissertation, we explored the thesis of constructing a garbage collec-
tor for a shared memory multiprocessor. We have argued why it is desirable
and, in some cases, necessary that the collector be both scalably parallel
and real-time. To show the feasibility of this goal, we designed an incremen-
tal, concurrent, parallel collector algorithm in the context of an abstract
machine modelling standard symmetric multiprocessors. The collector is
deemed suitable because it is provably real-time and space-efficient. In par-
ticular, every memory operation has a constant time bound independent of
the application’s memory characteristics. Also, given the memory charac-
teristics of the program, an upper bound can be computed on how much
space the collector and application jointly consumes. It should be noted
that a space bound is often just as important as a time bound since many
real-time applications run on embedded devices where memory is scarce.

However, the initial abstract model and algorithm are too naive. We
discussed the shortcomings of the model and the necessary extensions to
both the model and algorithm to make them practical. The changes fall
into two categories. First, the initial model had an excessively limited inter-
face to the compiler. Without overcoming limitations, the collector would
not be generally useful. The challenge is in making the modifications while
maintaining the crucial real-time and scalability property of the collector.
Second, a number of algorithmic improvements were made to greatly in-
crease the general efficiency of the collector.

Finally, this algorithm was implemented in the context of an SML com-
piler for evaluation. Using a set of 15 benchmarks, the collector was tested on
an Enterprise 10K. The collector’s scalability is impressive, giving a speedup
from 24 to 29 when running with 32 processors. In all cases, the collector
showed better parallelism than the application program. To evaluate real-
time response, we used a notion that measures the minimum access that the
application has to the processor. In contrast to the traditionally reported
maximum pause time, the notion of utilization is superior in establishing
suitability for particular real-time applications. In the 5 ms range, the col-
lector is able to provide the application with at least 15% to 35% access to
the processor at all times even running on a uniprocessor. We conclude that
it is feasible and practical to use a parallel, real-time collector.

Appendix A

Code Convention

The code for various algorithms is written in a C++-like language. For
convenience, we introduce several additional constructs described below.
The intent of the language is to allow concise expression of the algorithms
while keeping the language close enough to an actual language for direct
implementation.

Language-level deviations, language additions, and machine assumptions
include:

Type casts are omitted.

Undeclared local variables have scope from the point of definition to
the end of the current block. Local variables i, j, k are reserved to be
at type int.

Global variables are always annotated with local to indicate that they
are processor specific or with shared to indicate that they are globally
shared by all processors.

We assume that the size of an integer and a pointer are the same. The
type long will not be used.

The C union type is augmented so that it is a safe sum type. The
switch construct is used to case-analyze the value where the labels
are now replaced by the union possibilities. For example, a sum

140

APPENDIX A. CODE CONVENTION 141

type with two possibilities might be declared and used as follows:

union IntDouble {
int x;
double y;

}

void AddFive(IntDouble v) {
switch (v) {
case int x: v.x = 5 + v.x; break;
case double y: v.y = 5.0 + v.y; break;

k

O O W =1 OOt W N

—

}

e We add tupling as a primitive notion and denote it by <
The same notation is used for constructing a tuple, projecting from a
tuple, and the tuple type. For example,

1 typedef <int, intD> intPair;

2 intPair functionalSwap(intPair p) {
3 int x,y;

4 <x, y> = p;

5 return <y, x>;

6 }

We will also make use of the following types, macros, and functions:

e fieldSz - the size of a ficld, in bytes
#define fieldSize sizeof(int)

FetchAddPtr - an obvious macro
#define FetchAddPtr(base, fields) FetchAdd(base, fields * fieldSize)

e val - a mutator value which may or may not be a pointer
typedef val int;

e ptr - a mutator value which is a pointer to the beginning of an object
typedef void* ptr;

e mem - a memory address
typedef val* mem;

APPENDIX A. CODE CONVENTION 142

e assert(inv) - built-in C function that checks that the invariant inv
holds

e memCopy(src,dest,n) - built-in C function that copies n locations
from src to dest

e stack - an object representing a stack of ptr items

struct stack {
ptr *data;
ptr cursor;

int isEmpty(stack stk) { return stk.cursor == 0; }
void pushStack(stack stk, ptr d) { stk.datalstk.cursor++] = 4; }
ptr popStack(stack stk) {

1
2
3
4 stack() { cursor = 0; data = (ptr *) malloc(n * sizeof(ptr)); }
5
6
7
8 if (stk.cursor)

9 return stk.datal[--stk.cursor];
10 return NULL;

11 }

12}

e heap - an object representing a heap area

APPENDIX A. CODE CONVENTION 143

27
28
29

struct heap {

mem bottom; /* Bottom of the heap area */

mem reserveTop; /* Top of heap less reserve area */
mem top; /* Top of the heap area */

mem cursor; /* Allocation pointer of the heap area */
mem cursor2; /* Additional cursor Baker’s Algorithm */

heap(int k) {

if (k == 0)
reserveTop = top
else

reserveTop = top - (top - bottom) / (1+k);

}

mem alloc(int n) {

if (cursor + n >= reserveTop)
return NULL;

cursor += n;

return cursor;

}

mem reserveAlloc(int n) {

if (cursor + n >= top)
return NULL;

cursor += n;

return cursor;

}

mem topAlloc(int n) {
cursor2 -= n;
return cursor2;

}

Bibliography

[1]

[2]

[3]

James M. Stichnoth anf Guei-Yuan Lueh and Michal Cierniak. Support
for garbage collection at every instruction in a Java compiler. In PLDI
[61], pages 118-127.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent
collection on stock multiprocessors. ACM SIGPLAN Notices, 23(7):11-
20, 1988.

Joe Armstrong and Robert Virding. One-pass real-time generational
mark-sweep garbage collection. In Henry Baker, editor, Proceedings
of International Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, Computer Science Laboratory,
Ellemtel Telecommunications Systems Labo ratories, Alvsjo, Sweden,
September 1995. Springer-Verlag.

David Bacon, Dick Attanasio, Han Lee, and Stephen Smith. Java with-
out the coffee breaks: A nonintrusive multiprocessor garbage collector.
In Proceedings of SIGPLAN 2000 Conference on Programming Lan-
guages Design and Implementation, ACM SIGPLAN Notices, Vancou-
ver, June 2000. ACM Press.

Henry G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280-94, 1978. Also AI Laboratory
Working Paper 139, 1977.

Henry G. Baker. Optimizing allocation and garbage collection of spaces
in MaclLisp. In Winston and Brown, editors, Artificial Intelligence: An
MIT Perspective. MIT Press, 1979.

Henry G. Baker. The buried binding and dead binding problems of Lisp
1.5: Sources of incomparability in garbage collector measurements. Lisp
Pointers, 4(2):11-19, April 1992.

144

BIBLIOGRAPHY 145

[8]

[9]

[10]

[11]

[18]

[19]

Henry G. Baker and Carl E. Hewitt. The incremental garbage collection
of processes. Al memo 454, MIT Press, December 1977.

Yves Bekkers and Jacques Cohen, editors. Proceedings of International
Workshop on Memory Management, volume 637 of Lecture Notes in
Computer Science, St Malo, France, 16-18 September 1992. Springer-
Verlag.

Emery Berger. Measurement methodology. Personal communications,

2001.

Guy Blelloch and John Greiner. A provable time and space efficient im-
plementation of nesl. In Proceedings of First International Conference
on Functional Programming, May 1996.

Guy E. Blelloch and Perry Cheng. On bounding time and space for
multiprocessor garbage collection. In PLDI [61], pages 104-117.

Hans-Juergen Boehm and David R. Chase. A proposal for garbage-
collector-safe C compilation. Journal of C' Language Translation, pages
126-141, 1992.

Hans-Juergen Boehm and Mark Weiser. GGarbage collection in an unco-
operative environment. Software Practice and Ezperience, 18(9):807—
820, 1988.

C. J. Cheney. A non-recursive list compacting algorithm. Communica-
tions of the ACM, 13(11):677-8, November 1970.

Fah-Chun Cheong. Almost tag-free garbage collection for strongly-
typed object-oriented languages. Technical Report CSE-TR-126-92,
University of Michigan, 1992.

Jacques Cohen and Alexandru Nicolau. Comparison of compacting
algorithms for garbage collection. ACM Transactions on Programming
Languages and Systems, 5(4):532-553, 1983.

George E. Collins. A method for overlapping and erasure of lists. Com-
munications of the ACM, 3(12):655-657, December 1960.

Jim Crammond. A garbage collection algorithm for shared memory
parallel processors. International Journal Of Parallel Programming,
17(6):497-522, 1988.

BIBLIOGRAPHY 146

[20]

[21]

[22]

[24]

John DeTreville. Experience with concurrent garbage collectors for
Modula-2+4. Technical Report 64, DEC Systems Research Center, Palo
Alto, CA, August 1990.

John DeTreville. Heap usage in the Topaz environment. Technical
Report 63, DEC Systems Research Center, Palo Alto, CA, August 1990.

L. Peter Deutsch and Daniel G. Bobrow. An efficient incremental auto-
matic garbage collector. Communications of the ACM, 19(9):522-526,
September 1976.

Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise in cooper-
ation. In Lecture Notes in Computer Science, No. 46. Springer-Verlag,
New York, 1976.

Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In Conference Record of the
Twenty-first Annual ACM Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices. ACM Press, January 1994.

Damien Doligez and Xavier Leroy. A concurrent generational garbage
collector for a multi-threaded implementation of ML. In Conference
Record of the Twentieth Annual ACM Symposium on Principles of Pro-
gramming Languages, ACM SIGPLAN Notices, pages 113-123. ACM
Press, January 1993.

Toshio Endo. A scalable mark-sweep garbage collector on large-scale
shared-memory machines. Master’s thesis, University of Tokyo, Febru-
ary 1998.

Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-
sweep garbage collector on large-scale shared-memory machines. In
Proceedings of Iligh Performance Computing and Networking (5SC’°97),
1997.

Steven L. Engelstad and James E. Vandendorpe. Automatic storage
management for systems with real time constraints. In Paul R. Wilson
and Barry Hayes, editors, OOPSLA/ECOOP ’91 Workshop on Garbage
Collection in Object-Oriented Systems, Addendum to OOPSLA’91 Pro-
ceedings, October 1991.

BIBLIOGRAPHY 147

[29]

[30]

[31]

32]

[36]

37]

Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage collector
for virtual memory computer systems. Communications of the ACM,
12(11):611-612, November 1969.

John K. Foderaro and Richard J. Fateman. Characterization of VAX
Macsyma. In 1981 ACM Symposium on Symbolic and Algebraic Com-
putation, pages 14-19, Berkeley, CA, 1981. ACM Press.

Benjamin Goldberg. Tag-free garbage collection for strongly typed pro-
gramming languages. ACM SIGPLAN Notices, 26(6):165-176, 1991.

Benjamin Goldberg and Michael Gloger. Polymorphic type reconstruc-
tion for garbage collection without tags. In Conference Record of the
1992 ACM Symposium on Lisp and Functional Programming, pages
53-65, San Francisco, CA, June 1992. ACM Press.

Seth Goldstein. Lazy Threads: Compiler and Runtime Structures for
Fine-Grained Parallel Programming. PhD thesis, University of Califor-
nia at Berkeley, Fall 1997.

B. K. Haddon and W. M. Waite. A compaction procedure for variable
length storage elements. Computer Journal, 10:162-165, August 1967.

Robert H. Halstead. Multiple-processor implementations of message
passing systems. Technical Report TR-198, MIT Laboratory for Com-
puter Science, April 1978.

Robert H. Halstead. Implementation of Multilisp: Lisp on a multipro-
cessor. In Steele [70].

Wade Hennessey. Real-time garbage collection in a multimedia pro-
gramming language. In Eliot Moss, Paul R. Wilson, and Benjamin
Zorn, editors, OOPSLA/ECOOP 93 Workshop on Garbage Collection
in Object-Oriented Systems, October 1993.

Maurice Herlihy and J. Eliot B Moss. Lock-free garbage collection
for multiprocessors. IEFE Transactions on Parallel and Distributed
Systems, 3(3), May 1992.

Urs Holzle. A third-generation self implementation: Reconciling respon-
siveness with performance. In Peter Dickman and Paul R. Wilson, edi-
tors, OOPSLA 94 Workshop on Multi-Language Object Models. ACM
Press, October 1994.

BIBLIOGRAPHY 148

[40] Richard L. Hudson and Amer Diwan. Adaptive garbage collection for
Modula-3 and Smalltalk. In Jul and Juul [46].

[41] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection
for mature objects. In Bekkers and Cohen [9].

[42] Lorenz Huelsbergen and Phil Winterbottom. Very concurrent mark-&-
sweep garbage collection without fine-grain synchronization. In Jones
[43], pages 166-175. ISMM is the successor to the IWMM series of
workshops.

[43] Richard Jones, editor. Proceedings of the First International Symposium
on Memory Management, volume 34(3) of ACM SIGPLAN Notices,
Vancouver, October 1998. ACM Press. ISMM is the successor to the
IWMM series of workshops.

[44] Richard E. Jones. Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. Wiley, July 1996. With a chapter on
Distributed Garbage Collection by R. Lins.

[45] H. B. M. Jonkers. A fast garbage compaction algorithm. Information
Processing Letters, 9(1):25-30, July 1979.

[46] Eric Jul and Niels-Christian Juul, editors. OOPSLA/ECOOP ’90
Workshop on Garbage Collection in Object-Oriented Systems, Ottawa,
October 1990.

[47] H. T. Kung and S. W. Song. An efficient parallel garbage collection
system and its correctness proof. In IEEF Symposium on Foundations
of Computer Science, pages 120-131. IEEE Press, 1977.

[48] Michael S. Lam, Paul R. Wilson, and Thomas G. Moher. Object type
directed garbage collection to improve locality. In Bekkers and Cohen

[9].

[49] Martin Larose and Marc Feeley. A compacting incremental collector
and its performance in a production quality compiler. In Jones [43],
pages 1-9. ISMM is the successor to the IWMM series of workshops.

[50] Henry Lieberman and Carl E. Hewitt. A real-time garbage collec-
tor based on the lifetimes of objects. Communications of the ACM,
26(6):419-429, 1983. Also report TM-184, Laboratory for Computer
Science, MIT, Cambridge, MA, July 1980 and AI Lab Memo 569, 1981.

BIBLIOGRAPHY 149

[51]

Tian F. Lim, Przemyslaw Pardyak, and Brian N. Bershad. A memory-
efficient real-time non-copying garbage collector. In Jones [43], pages
118-129. ISMM is the successor to the IWMM series of workshops.

Rafael D. Lins. A shared memory architecture for parallel cyclic ref-
erence counting. Microprocessing and Microprogramming, 32:53-58,
September 1991.

John McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Communications of the ACM, 3:184-195,
1960.

Mike McGaughey. Bounded-space tagless garbage collection for first or-
der polymorphic languages. In Proceedings of the Eighteenth Australian
Computer Science Conference (ACSC ’95), volume 17(1) of Australian
Computer Science Communications, pages 380-388, Glenelg, South
Australia, January 1995. Also appears as: Technical report 94/208,
Department of Computer Science, Monash University.

Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall,
1988.

David A. Moon. Garbage collection in a large LISP system. In Steele
[70], pages 235-245.

Girija J. Narlikar and Guy Blelloch. Space-efficient implementation of
nested parallelism. In Proceedings of the Sizth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 1997.

Scott M. Nettles, James W. O’Toole, David Pierce, and Nicholas
Haines. Replication-based incremental copying collection. In Bekkers
and Cohen [9].

James W. O’Toole and Scott M. Nettles. Concurrent replicating
garbage collection. Technical Report MIT-LCS-TR-570 and CMU-
CS-93-138, MIT and CMU, 1993. Also LFP94 and OOPSLA93 Work-
shop on Memory Management and Garbage Collection.

E. J. H. Pepels, M. C. J. D. van Eekelen, and M. J. Plasmeijer. A
cyclic reference counting algorithm and its proof. Technical Report
88-10, Computing Science Department, University of Nijmegen, 1988.

BIBLIOGRAPHY 150

[61]

[62]
[63]

[64]

Proceedings of SIGPLAN’99 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices, Atlanta, May
1999. ACM Press.

Pure Software, Los Altos, CA. Purify, 1992.

Jon D. Salkild. Implementation and analysis of two reference counting
algorithms. Master’s thesis, University College, London, 1987.

Robert A. Saunders. The LISP system for the Q-32 computer. In E. C.
Berkeley and Daniel G. Bobrow, editors, The Programming Language
LISP: Its Operation and Applications, pages 220-231, Cambridge, MA,
1974. Information International, Inc.

Jacob Seligmann and Steffen Grarup. Incremental mature garbage col-
lection using the train algorithm. In O. Nierstras, editor, Proceedings
of 1995 FEuropean Conference on Object-Oriented Programming, Lec-
ture Notes in Computer Science, University of Aarhus, August 1995.
Springer-Verlag.

Margo Seltzer. The case for application-specific benchmarking. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems (HotOS
VII), March 1999.

Ravi Sharma and Mary Lou Soffa. Parallel generational garbage col-
lection. In Andreas Paepcke, editor, OOPSLA’91 ACM Conference on
Object-Oriented Systems, Languages and Applications, volume 26(11)
of ACM SIGPLAN Notices, pages 16-32, Phoenix, Arizona, October
1991. ACM Press.

Patrick Sobalvarro. A lifetime-based garbage collector for Lisp systems
on general-purpose computers. Technical Report AITR-1417, MIT Al
Lab, February 1988. Bachelor of Science thesis.

Guy L. Steele. Multiprocessing compactifying garbage collection. Com-
munications of the ACM, 18(9):495-508, September 1975.

Guy L. Steele, editor. Conference Record of the 1984 ACM Symposium
on Lisp and Functional Programming, Austin, TX, August 1984. ACM
Press.

Andrew Tolmach. Tag-free garbage collection using explicit type pa-
rameters. In Proceedings of SIGPLAN’94 Conference on Programming

BIBLIOGRAPHY 151

[72]

[78]

[79]

Languages Design and Implementation, volume 29 of ACM SIGPLAN
Notices, pages 1-11, Orlando, FL, June 1994. ACM Press. Also Lisp
Pointers VIII 3, July—September 1994.

David M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. ACM SIGPLAN No-
tices, 19(5):157-167, April 1984. Also published as ACM Soft-
ware Engineering Notes 9, 3 (May 1984) — Proceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, 157-167, April 1984.

J. Weizenbaum. Knotted list structures. Communications of the ACM,
5(3):161-165, 1962.

Skef Wholey and Scott E. Fahlman. The design of an instruction set
for Common Lisp. In Steele [70], pages 150-158.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Bekkers
and Cohen [9].

Paul R. Wilson. Uniprocessor garbage collection techniques. Technical
report, University of Texas, January 1994. Expanded version of the
IWMM92 paper.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective
static-graph reorganization to improve locality in garbage collected sys-
tems. ACM SIGPLAN Notices, 26(6):177-191, 1991.

Taichi Yuasa. Real-time garbage collection on general-purpose ma-
chines. Journal of Software and Systems, 11(3):181-198, 1990.

B. Zorn. Designing systems for evaluation: A case study of garbage
collection. In Jul and Juul [46].

