
An Integrated Contextual Information Service
for Pervasive Computing Applications

Glenn Judd and Peter Steenkiste

January 2003
CMU-CS-03-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abridged version published in the Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications. Dallas-Fort Worth, TX. March 2003.

Abstract

Pervasive computing applications are increasingly leveraging contextual information from several
sources to provide users with behavior appropriate to the environment in which they reside. If
these sources of contextual information are used and deployed in an ad hoc manner, however, they
may provide overlapping functionality, fail to provide needed functionality, and require the use of
inconsistent interfaces by applications. To overcome these problems, we introduce a Contextual
Information Service that provides applications with contextual information via a virtual database.
Unlike previous efforts, our service provides applications a consistent, lightweight, and powerful
mechanism for obtaining contextual information, and includes explicit support for the on demand
computation of contextual information. We show, using a Contextual Information Service pro-
totype and example applications that we have implemented, how this approach can be used by
proactive applications to adapt their behavior to match a user’s current environment.

This research was funded in part by DARPA under contract number N66001-99-2-8918, by NSF under award
number CCR-0205266. Additional support was provided by Intel. Glenn Judd was supported by a DoD National
Defense Science and Engineering Graduate (NDSEG) Fellowship.

Keywords: pervasive computing, context-aware

1 Introduction

Fueled by advances in processing power, storage capacity, and battery life, the proliferation of mo-
bile computing devices is rapidly turning the focus of computing away from personal computers
and towards a collaboration between mobile devices, personal computers, and servers. Unfortu-
nately, the increased usage of mobile devices has also increased the amount of user effort required
to operate these devices. As part of the Aura Project [1] at Carnegie Mellon University, we are in-
vestigating how applications can proactively adapt to the environment in which they operate, thus
providing users with more intelligent application behavior and allowing users to focus on higher
level tasks.

To provide adaptive applications with environmental information, we have developed a Con-
textual Information Service that provides applications with properties of both physical entities and
available resources such as: the location of people, the location and properties of printers, the
amount of network bandwidth available, the CPU load on various servers etc. This contextual in-
formation is provided by several individual “Contextual Information Providers” that are organized
into a virtual database. Synthesizing this contextual information allows applications to adapt to
environmental and resource changes without user intervention.

To show how this Contextual Information Service enables proactive and adaptive applications,
we will consider two simple motivating examples. In the first example we will consider a user,
George, who is giving a presentation at a meeting with a remote participant. The Contextual In-
formation Service will allow George to perform tasks such as selecting a conference room with
both a video projector and enough wireless bandwidth for videoconferencing. It will also allow
him to discover the whereabouts of late participants to the meeting. In the second example, we
will show how the Contextual Information Service can assist a user, Jane, who has demanding net-
work bandwidth requirements in a bandwidth scarce environment. In this example, the Contextual
Information Service will allow Jane to move to a location where her bandwidth demands can be
met.

Designing a contextual information service is, however, a difficult task both because of the
diversity of the information involved and the complexity of the queries that must be supported.
Consider some of the requests that might be used to implement the scenarios described above:

• What devices are in room 160?

• What is the expected bandwidth in room 160 between 2 p.m. and 3 p.m. tomorrow?

• Where is Jane now?

In addition, since we desire to support a wide variety of applications beyond the given scenar-
ios, we consider a wide variety of contextual information requests such as:

• What devices does John currently have with him?

• When will network bandwidth be best, within the next hour, to flush my distributed file
system’s cache?

• What is the compute server’s load likely to be in the next minute?

1

• Inform me whenever John moves more than 50 meters.

• Where is the closest color printer with an empty print queue?

A simplistic approach to providing the information desired in the requests listed above is to
write custom contextual information services, as needed. Unfortunately, using such an ad hoc
approach will result in multiple services with multiple interfaces, which will complicate application
development. Moreover, even services that function well individually could become fractured and
inefficient when deployed and used in conjunction with other contextual services.

An attractive alternative is to store contextual information in a database. Databases are a well-
understood technology and they directly address the problems listed above by providing cleanly
organized data via a single consistent interface. In addition, using a database allows clients to
remain lightweight since they can issue powerful queries for contextual information from several
sources using a lightweight interface. Unfortunately, a static database precludes on demand gather-
ing of contextual information; this restriction has limited both the functionality and the scalability
of previous efforts. Moreover, contextual information often has meta-data associated with it (such
as accuracy and freshness) and databases do not directly support this.

To overcome these limitations, we have developed a Contextual Information Service (CIS) that
is organized as a virtual database: it provides applications with an SQL-like [2] query interface
but the information is stored, or collected on-demand, by a distributed infrastructure of contextual
information providers. This approach allows us to retain the ability for applications to easily syn-
thesize information from several sources of contextual information while avoiding the limitations
of a static database. Moreover, contextual information providers that do not require features such
as on demand computation of results are able to utilize an ordinary database for implementation.

Our discussion proceeds as follows: Section 2 outlines service interface requirements. Sec-
tion 3 outlines our service and service interface architecture. Section 4 introduces major service
interface functions. Section 5 discusses related work. Section 6 briefly describes our Contextual
Service Interface implementations. Section 7 describes our deployed Contextual Information Ser-
vice prototype. Sections 8 and 9 discuss implementation of the examples mentioned above, and
Section 10 concludes our discussion.

2 Requirements of the Contextual Information Service

In this section we discuss requirements and design guidelines for both the Contextual Information
Service and the interface used to access the CIS. (Adding security and privacy is discussed in [3].)
Sections 3 and 4 will then illustrate how these requirements are satisfied.

2.1 Allow Clients to Easily Synthesize Required Contextual Information

The CIS should provide clients with contextual information while requiring minimal effort on
the part of the client. To accomplish this, we must allow clients to easily synthesize contextual
information from several contextual information providers. This greatly simplifies the efforts of
application developers since clients may issue rich queries for contextual information, and relieves

2

developers of the burden of manual contextual information synthesis. In addition, support for rich
queries shifts the burden of contextual information synthesis off of the client and into the CIS.

Moreover, to further reduce the burden on clients, the CIS should support callback functions
that reduce the need for polling by clients. Lastly, CIS clients and contextual information providers
should not be required to implement every aspect of the interface; clients and providers need only
support the subset of the features in the interface that they desire or that are feasible to implement.

2.2 Facilitate Implementation of Efficient Information Providers

Given the diversity of the contextual information, the CIS should allow providers to use the most
convenient means of implementation. In many instances, contextual information will be fairly
static, e.g. information about building layout, personal information such as phone numbers, etc.
In these cases the most convenient implementation will typically be a database. Therefore, it is
important that the CIS allows providers of static contextual information to leverage databases in a
straightforward manner.

In other instances, however, contextual information is highly dynamic. In these cases it is often
undesirable or even impossible to statically store the information in a database. In situations such as
this, it is most appropriate to actively compute the answer to a query. For instance, a person location
provider should probably only compute the location of a person when a client is actually interested
in that person’s location. Moreover, such a provider should usually only retrieve information at
the lowest accuracy and confidence level required by the clients. For example, finding out whether
John is on campus will in general be easier than identifying the room that he is in. Lack of support
for on demand retrieval of contextual information would force contextual information sources to
constantly collect and store updates at the highest granularity and accuracy that might be desired
by any client, which would be very inefficient.

Of course, providers supporting dynamic data should be able to cache information to improve
performance and response time. Caching can be useful not only in the provider that collects the
data but also in providers that resolve more complex queries or even in the client library.

2.3 Support for Dynamic Attributes

Contextual information that is dynamic typically has uncertainty associated with it. For these types
of attributes, clients may require providers to support various meta-attributes. Examples include
accuracyandconfidence. For example, if George is looking for John, a person location provider
could inform George that John is at a particular location plus or minus some range. Similarly, the
bandwidth information provider could tell Jane that bandwidth will be poor with a high degree of
confidence.

This requirement affects the service interface in two ways. First, clients must be able to receive
these meta-attributes in query results so that they can interpret the contextual information correctly.
Second, clients must be able to specify requirements for the meta-attributes, so they can make sure
that the information provided is useful to them, without requiring the CIS to always collect the
most accurate and precise information that might possibly be needed. For example, if a client
needs to know whether John is at work, there is no need for the Contextual Information Service to
identify precisely what room he is in.

3

We desire to support the following meta-attributes of dynamic attributes:

• Accuracy. Specifies to what degree of accuracy the value of this dynamic attribute is known.
For instance, if John is looking for Dave, a person location provider could inform John that
Dave is at a particular location plus or minus some range.

• Confidence.Specifies to what degree of confidence the value and accuracy are known. For
instance, the bandwidth tracking provider could tell Jane that bandwidth will be poor with a
high degree of confidence.

• Update time. Specifies at what time this attribute value was last measured or modified.

• Sample interval. Specifies over what interval of time the attribute value was gathered. This
information is necessary when sampling attributes that change continuously with time.

2.4 Miscellaneous Requirements

2.4.1 Query Execution Time

In some instances, the timeliness of a query is important. For instance, a driver of a car desiring
to know the location of the closest restaurant cannot afford to wait several tens of seconds for an
answer.

In situations such as this, a low delay waiting for rough answer from a provider may be better
than a long delay waiting for a precise answer. Clients should be able to indicate to providers how
long they expect to wait for an answer to a query. This can also give a provider a coarse grain
indication of how much effort it should expend in processing the query (e.g. if the time limit is less
than some threshold return a cached answer; otherwise obtain fresh data).

While it would be possible to allow clients to specify further query constraints, such as a limit
on power consumed, we do not support any additional constraints since it is not clear that such
constraints would be worth the additional complexity.

2.4.2 Support for Variable Schemas

A fixed provider schema is generally desirable, nevertheless, there may be some providers that
need to support variable schemas. For instance, a device provider may provide information on
devices of widely varying capabilities. In cases such as this, we allow provider implementers to
define a schema that may vary per provider entry. So in the previous example a printer might have
a queue length attribute while a CD writer might have a speed attribute. The use of these variable
schemas should be kept to a minimum since they make implementation using common databases
more difficult.

3 System Architecture

3.1 Contextual Information Service Architecture

Figure 1 illustrates how the Contextual Information Service provides applications with a database
abstraction of the contextual information providers. Clients issue queries using the Contextual

4

Service Interface (CSInt - discussed in Section 4), the queries are decomposed by the Query Syn-
thesizer, one or more lower-level queries are forwarded (via CSInt) to individual providers, and
the results are synthesized and returned to the client application. This architecture enables client
applications to focus on the information that they desire, and reduces the need to worry about how
contextual information is retrieved. Thus even extremely thin clients can issue rich queries without
incurring the large communication and computational expenses of such queries. Unlike previous
techniques, our approach achieves this goal while allowing for efficient CIS implementation.

This approach also allows contextual information providers to be implemented efficiently with-
out sacrificing essential functionality. For example, for providers of relatively static data, we have
developed a CSInt-SQL wrapper that allows for straightforward implementation using a database
without requiring any coding. For providers of dynamic information, a database may not be an
appropriate implementation. Using a database-like interface, however, allows a consistent inter-
face to these dynamic providers. For added efficiency, we explicitly support caching at every stage
(client, query synthesizer, and information provider).

To illustrate how our approach simplifies communication with both providers that statically
store data and those that actively compute the results to queries, consider Figures 1 and 2. Under
the traditional model (Figure 2), synthesizing information from several providers requires individ-
ual communication with each provider using multiple incompatible interfaces. Applications must
include support for these interfaces and know how to synthesize the information returned. Un-
der our model (Figure 1), applications are able to synthesize contextual information from several
sources with a single query and without incurring the computational cost of query decomposition
and synthesis.

CSInt to SQL
Wrapper DB

CSInt

CSInt

CSInt

CSInt

SQL

Contextual Information Service

CIS Query
SynthesizerCSInt

Client

Contextual Information Providers

Rich Multi-
Provider Query

Simple Single-
Provider Queries

Active Comp.

Active Comp.

Figure 1: CIS architecture

3.2 Contextual Information Provider Classes

We now consider the contents of the virtual database provided by the Contextual Information Ser-
vice. A common design methodology used in database implementation is to consider various
“entities” of interest as well as the relationships between these entities. We argue that providing
information on the aspects of the contextual environment that are most relevant to mobile appli-
cations can be accomplished by providing information on entities and relationships that can be
grouped into a small number of classes.

5

Contextual Information Providers
DB

Active Comp.

SQL

Corba

SNMP

Query
synthesis

logic

Client
SQL Interface

Corba Interface

SNMP Interface Active Comp.

Figure 2: Traditional client-service interaction

In particular, our architecture provides information on four classes of entities: people, devices,
physical spaces, and networks. While we hold open the possibility of adding new classes of enti-
ties, we intentionally construct our architecture to contain as succinct a representation of the world
as possible. We discuss each entity class briefly, noting alternative classes that could be considered.

Clearly pervasive applications will need information on people, devices (e.g. printers), and
physical spaces; hence, we define an information provider class for each of these. Arguably, we
could have defined classes for generic physical objects (e.g. tables) and a class for vehicles. For
now, we choose to reduce the number of entity classes in our model by treating physical objects
as “dumb” devices, and vehicles as spaces without fixed locations in the world. We could also
have defined a class for power sources; however, as these essentially amount to either an electrical
outlet in a physical space or a battery on a device, we treat these as attributes of physical spaces
and devices respectively.

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationDevice LocationPerson Devices

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationDevice LocationPerson Devices

Figure 3: Provider classes

As the behavior of many applications is tightly coupled to the ability or inability to communi-
cate, and available communication varies greatly with location, we introduce a networks class to
provide communication information to applications that require it. This is needed, for instance, if
Jane desires to know a nearby location where she can download a large multimedia file quickly, or
where on her business trip she will be entirely out of network range.

In addition to defining provider classes for each of the entity classes listed above, we define an
information provider class that tracks relationships between each pair of entity classes above (with

6

the sole exception of people and networks) as shown in Figure 3. For example, one instance of
the Person Devices class might provide information on what devices are currently being used by
particular individuals while another instance might provide information on what devices are owned
by particular individuals.

There are several other potential classes of entities that might be useful. As the need for these
classes is not clear, they are currently omitted from our architecture.

The exact set of services that comprise each of these classes is location specific. Nevertheless,
this classification provides a guideline on how services should be constructed to cleanly provide
essential contextual information. As experience is gained with this system, we may define a stan-
dard set of services that should be included in every CIS in order to allow for portable clients and
applications.

4 Contextual Service Interface Functions

We now discuss in detail the functions defined by the Contextual Service Interface. Applications
use this interface to communicate with the CIS which then uses this same interface to commu-
nicate with the individual contextual information providers (applications may contact contextual
information providers directly if they desire). We focus our discussion on the fundamental inter-
face function Query, and then briefly cover more advanced functions that are essentially extensions
of this function. We omit coverage of minor support functions.

4.1 Query

The primary function defined by the Contextual Service Interface is the Query function, and it is
likely that this is the only function that many contextual information providers will support. As
previously discussed, an SQL database makes a convenient provider implementation in some cir-
cumstances; hence, we make an effort to make using an SQL database simple while still retaining
support for the dynamic attribute requirements mentioned previously. As a result, the Query func-
tion can be viewed as a simplified SQL query with added provisions for attribute requirements,
timely execution, and support for meta-attributes in the result of the query. We now define the
Query function and its arguments:

QueryResult Query(selectedAttributes,
providerNames,
selectionExpression,
attributeReqs,
timeLimit)

• selectedAttributes.This is a list of attributes to be returned by the query. This corresponds
to the “select” clause in an SQL query.

• providerNames. A list of provider(s) that should handle the query. This corresponds to
the “from” clause in an SQL query. Many providers will only support a single entry in
this list (the name of the single provider implemented). Allowing more than one name,
however, is critical in allowing clients to express synthesis of information from multiple

7

providers. These multi-provider queries can then be used by the query synthesizer to break
this query into multiple single-provider queries. Multi-provider queries can also be used in
situations where multiple providers are implemented together (such as those implemented
via a database).

• selectionExpression.Expression that selects which entity or entities the query refers to.
This corresponds to the “where” clause in an SQL query though our expressions are more
restricted than SQL. Again, an essential element in attaining our goal of provider simplicity
is that we do not require all providers to accept all expressions. So a person location provider
might only accept expressions of the form “personID=x”.

• attributeReqs. In many instances when querying dynamic attributes, applications may need
to place constraints on the meta-attributes of the dynamic attribute that they are looking
for. For instance, an application may desire to know a person’s location with a particular
granularity: “Is Dave home or at school?” vs. “where exactly is Dave within the room?”.
Also, applications may need to know information that is fresh to a certain degree: “What is
Dave’s location (updated within the last minute)?”. To support this type of functionality, for
each of the meta-attributes listed in Section 2.3, clients may specify desired constraints in
the form of a minimum and maximum acceptable bound.

The update time constraint is special in that it allows applications to specify either a relative
or an absolute time. This gives applications the ability to require that results be fresh enough
to be useful. In addition, this constraint can be used to specify that a future or historical
value of an attribute is desired.

Again, it is important to stress that not all providers need to allow clients to specify attribute
requirements. However, for some providers it is critical to support this functionality.

• timeLimit. The time in which the client needs a reply. This argument can also be viewed as
a hint to the provider on how much effort to expend in answering the query. High time limits
imply the client desires a precise answer while low time limits imply that the client prefers a
timely answer.

The result of a query is contained in a QueryResult structure which contains one or more lists
of attributes. Each attribute list corresponds to an entity selected by the selectionExpression, and
each list contains the attributes requested by the selectedAttributes parameter. Each entry in an
attribute list is either a StaticAttribute structure or a DynamicAttribute structure. Static attribute
structures simply contain the name of the attribute and its value. In addition to name and value,
dynamic attributes may contain the additional meta-attributes discussed in Section 2.3 (the provider
implementor decides exactly which meta-attributes to include).

In addition, the QueryResult contains a completion flag that indicates whether or not the
provider was able to completely satisfy the constraints of the query. In some circumstances, for
instance, a low time limit and stringent attribute requirements will preclude the provider from sat-
isfying both. In these cases, the provider may set this flag to indicate that the answer provided does
not satisfy the attribute requirements specified. Finally, the QueryResult also contains a timestamp
of the time (local to the provider) at which the provider executed the query. This is for convenience
in interpreting times reported in results of the query.

8

While the Query call suffices in many instances, there are situations in which it is insufficient,
inefficient, or inconvenient to rely solely on the Query call. We now introduce a small number of
extensions to the query call.

4.2 PostQuery

In many instances, clients may need to repeatedly obtain the same result from a provider. While in
some instances this can be accomplished via repeated Query calls, this can be inconvenient; more-
over, repeated Query calls may fail to provide needed functionality. For example, consider a client
that desires to hourly receive network bandwidth measurements sampled over 1 hour intervals.
Implementing this via repeated Query calls would require the client to suspend execution waiting
for the completion of each call. Further, processing overhead between each call would cause the 1
hour sample intervals to drift.

To relieve clients of the burden of repeated Query calls, reduce communication overhead, and
remedy the problems discussed above, we introduce a function we call PostQuery. Providers that
support this call simply execute the specified query repeatedly at a given interval and use a callback
to send results to the client at a host and port specified by the client. PostQuery is defined as
follows:

QueryID PostQuery(selectedAttributes,
providerNames,
selectionExpression,
attributeReqs,
timeLimit,
execInterval,
queryClient)

Arguments to this function are the same as the Query call with the exception of two new
arguments defined as follows:

• execInterval. Period at which to execute this query.

• queryClient. The client (hostname and port) to report the results to.

The QueryID returned is a handle that is used to tell which posted query a particular callback is
generated from and to stop execution of the posted query.

4.3 PostCondTrigger & PostModTrigger

While using PostQuery instead of repeated Query calls can be useful, the amount of work per-
formed by the client is essentially unchanged. In some circumstances, we may wish to push some
of this work into the CIS. This can increase simplicity of client code and reduce power consump-
tion at the client.

Consider, for instance, the airport bandwidth example mentioned previously (and described in
detail in Section 9). Jane’s client needs a way for bandwidth sampling to take place, but it only
wants to be informed when the available bandwidth drops below a certain threshold. For this type

9

of functionality we introduce the PostCondTrigger function where clients are informed of query
results only when a specified condition holds. PostCondTrigger is defined as follows:

QueryID PostCondTrigger(selectedAttributes,
providerNames,
selectionExpression,
attributeReqs,
timeLimit,
execInterval,
triggerExpression,
queryClient)

Arguments to this function are the same as to PostQuery with the exception of one additional
argument defined as follows:

• triggerExpression. Predicate that controls when the callback will be triggered.

Note that PostCondTrigger can fundamentally be considered a PostQuery call that only sends
information when the given triggerExpression holds. It is important to take into consideration the
fact that while some providers may be able to track each and every value change of its attributes,
others may require active work to measure attributes (or may have attributes that are constantly
in flux). For this reason we retain the execInterval parameter which tells these types of providers
how often to check for changes (clients may also request notification of any and all changes from
providers that can support this functionality).

Finally, while PostCondTrigger allows clients to receive information when some absolute con-
dition holds, there are situations where applications may need notification of a relative change in
attribute value. For these situations we introduce the function PostModTrigger which is defined
below:

QueryID PostModTrigger(selectedAttributes,
providerNames,
selectionExpression,
attributeReqs,
timeLimit,
execInterval,
triggerAttributes,
triggerDeltas,
queryClient)

Arguments to this function are the same as PostCondTrigger where the triggerExpression is
replaced by triggerAttributes and triggerDeltas:

• triggerAttributes. List of attributes to watch for changes.

• triggerDeltas. List of values (corresponding to this triggerAttributes) which will cause the
callback to be executed when a given attribute changes by more than its corresponding trig-
gerDelta entry.

10

5 Related Work

We now compare and contrast the design we have presented with previous approaches. Subsequent
sections will then discuss our implementation.

5.1 Context Architectures

Many systems have been developed for providing applications with contextual information in a
distributed environment. Schilit’s Active Map system [4] [5] can be viewed as a location-based
publish-subscribe system for contextual information dissemination. Under this system, location
tagged contextual information is published to an Active Map Server which then disseminates the
information to interested applications. Steggles [6] and Harter [7] discuss a three tier contextual
information architecture. The first tier consists of producers and consumers of contextual informa-
tion which send updates and contextual queries to a set of second tier of CORBA-based servers.
This second tier communicates with a database, which makes up the third tier, in order to process
updates and queries. This third tier may be bypassed if performance needs require. Brown [8]
and Schmidt [9] use a physical note metaphor for developing context aware applications. Applica-
tions post notes of interest, and an action triggers when a given condition holds. EasyLiving [10],
stores contextual information in a single database. This allows applications to retrieve contextual
information using powerful queries. The Context Toolkit [11] [12] uses three types of components
(termed “widgets” by the authors) to gather, observe, and process context. Hong’s Context Frame-
work [13] is an infrastructural approach that supports event and query based access to contextual
information.

5.2 Contributions of the Aura Contextual Information Service

Unlike previous work, we explicitly include strong support for contextual information providers
that actively compute the results to requests for contextual information. Our explicit support allows
dynamic computation of contextual information to be efficient and scalable. For instance, unlike
previous systems, we explicitly support the caching of dynamically generated results, and provide
means for caches to realize when the results that they contain are insufficient to satisfy a query.

A key feature, lacking in other systems, that enables the dynamic computation of query results
is our support for meta-attributes such as accuracy, confidence, sample time, and sample interval
duration as discussed in Section 2.3. The lack of support for meta-attributes in other systems
hampers the expression of notions such as future and historical values of attributes. In addition,
lack of support for meta-attributes mandates hand tuning of values such as sample interval, and,
as a result, many previous systems cannot support on demand computation of continuously valued
contextual information in a scalable manner.

For example, each new location sensor in Steggles [6] and Harter [7] increases the update load
on the network and the central database. This system attempts to mitigate this load by reducing the
sample interval and allowing updates to bypass the database, but these stopgap measures do not
fundamentally change the fact that the load increases directly with the number of sensors. With our
architecture, it is possible to create systems that only query sensors (or other sources of contextual
information) that produce information that clients are actively interested in. In addition, these

11

information sources need only be queried at a resolution that clients actually require (as opposed
to always sampling at the finest granularity that clients might possibly be interested in).

Another important contribution of our research is that we leverage techniques commonly used
in the database community in order to develop a powerful and efficient Contextual Information
Service without actually requiring the use of a database for provider implementation. This ap-
proach allows applications to focus on the information that they desire while greatly reducing their
need to worry about how it is obtained. In addition, our architecture reduces the load on mobile
hosts by offloading query processing onto the CIS (without requiring manual construction of inter-
mediate proxies as previous efforts have). Also, when databases are appropriate, our architecture
allows them to be seamlessly integrated as contextual information providers without the need for
any coding. Thus we are able to retain the benefits of an SQL-like query language while avoiding
the limitations of mandating implementation in an actual database.

The Contextual Information Service is also the first context architecture to treat networks as
first class contextual entities. As network connectivity can have tremendous impact on application
performance, we enable applications to ascertain what type of network connectivity they can expect
at a given location and time. This allows applications to intelligently adapt to current or expected
network conditions. For example, a mobile device might realize that network connectivity may
soon be lost and perform critical tasks while connectivity is still available.

Probably the closest efforts to ours are the Context Toolkit and Context Framework. The Con-
text Toolkit, however, lacks critical features required for on demand generation of contextual in-
formation such as support for the previously mentioned meta-attributes. In addition, the Context
Toolkit does not provide a powerful query interface that allows applications to automatically syn-
thesize results from several contextual providers. Aggregation of results from several providers
must be managed manually providers and clients.

Like the Context Framework, we advocate an infrastructural approach to providing contextual
information to clients. From the information published so far, the Context Framework appears to
lack support for critical meta-attributes (though it does include support for confidence) that allow
for on demand computation of contextual information. This limits both functionality and scal-
ability as discussed previously. Also, while we target low-level contextual information (people
location, device properties, etc.) and provide a powerful interface to automatically synthesize this
low-level contextual information, the Context Framework appears to target higher level informa-
tion and automatic conversion of complex data types (e.g. PDF to PostScript). As such, portions
of the Context Framework are largely complimentary to our work.

5.3 Other Related Work

There has been work on adding support for uncertainty to static databases [14] [15]. Our work
differs from efforts such as these in that we do not assume that all attributes of entities we are
interested in are stored in a static database, rather they can be computed dynamically. Further, our
interest with uncertainty is for the purposes of communicating some constraints on meta-attributes
to providers and allowing providers to report observed meta-attributes. We are not interested in
extending SQL’s selection expression to support operations on uncertainty.

More recent efforts such as TinyDB [16] and Cougar [17] have developed database like systems
for querying data in ad hoc sensor networks. These systems are similar to ours in that they provide

12

access to a virtual database. Unlike these systems, however, we make no assumption about the
source of the data, and, in particular, we do not assume that we are querying streaming data from
sensors. We also support a wider range of meta-attributes than these systems (e.g. sample intervals
in addition to sample frequency). Finally, these systems make no effort to model a user’s contextual
environment as our CIS does.

Systems such as Jini [18] and UPnP [19] provide mechanisms for discovering and using ar-
bitrary network deployed services. Our goals are different: we propose a service for providing
contextual information to applications via the particular interface that we have discussed.

Note that while provisions for security and privacy are critical in many situations, they are
beyond the scope of our current discussion. A related effort in the Aura Project [3] has enhanced
the contextual interface discussed here with a certificate based security and privacy system that
allows users to control their contextual information.

6 Service Interface Implementation

Our solution for interface communication was to use an SQL-like query language encoded in XML
[20] and transported over HTTP [21]. Both XML and HTTP are well established and widely de-
ployed standards. Over this communication substrate, we define a small set of query functions that
clients and providers use for communication. By encoding queries in this manner, we can retain
the benefits of SQL (ease of provider implementation for static providers and powerful queries)
while avoiding the overhead requiring provider implementation via a database. In addition, by
allowing providers to decide the types of queries they support, we allow for both simple clients
and providers.

We also considered several variants of remote procedure call for this purpose, but we chose
not to use them for a variety of reasons. In the case of CORBA [22], much of the functionality
provided was seen to be extraneous and rather heavy for extremely thin clients and providers.
SOAP [23] was viewed as too immature since the standardization effort was ongoing at the time
we commenced this work. RMI [24] is unattractive for non-Java applications. RPC-2 [25] is
unattractive for Java implementations, and, in addition, it is increasingly passed over in many
Internet settings in favor of HTTP based protocols (such as SOAP). Should, however, one of these
communication mechanisms or another communication mechanism become extremely attractive
in the future, we could replace the current XML/HTTP mechanism.

6.1 Available Contextual Information Service Libraries

We currently have two Contextual Information Service libraries: a C implementation and a Java
implementation. Our C-based implementation provides both client-side and service-side support
for direct access to the Contextual Service Interface functions defined previously. XML processing
is implemented using the implementation of the DOM API provided by Apache’s Xerces project
[26].

In addition to basic support, our Java implementation provides functionality to make develop-
ing clients and providers easier. For clients, the Java implementation provides three different sets
of methods for calling interface functions:

13

• Direct methods. These methods provide direct access to the Contextual Service Interface.
That is, clients supply all arguments to these functions as defined in Section 4. This gives
clients complete control, but can be somewhat verbose.

• Parser based methods.These methods simplify clients by allowing them to use SQL-like
expressions to construct queries.

• Attribute value retrieval methods. These methods provide simple means for clients to
retrieve a single value using a simple key (e.g. “What is Jane’s phone number?”) without
worrying about more advanced features such as attribute requirements.

For providers, the Java implementation has support for writing providers from the ground up,
and convenience methods to make tasks such as error checking queries easier. Support is also pro-
vided for exporting any SQL database (with JDBC support) as a contextual information provider;
this allows basic providers to be developed without any coding. This useful capability is a direct
result of the support for multiple implementations designed into the Contextual Service Interface.
Our Java implementation uses the DOM API implementation present in JDK 1.4 for XML pro-
cessing.

6.2 Communication Performance

While our focus in our library implementation thus far has not been on performance, we have
run some initial tests to determine how our implementation performs. All of our tests were con-
ducted on providers and clients implemented in Java and running under JDK 1.4 on Windows 2000
machines.

We measured the response time of the Contextual Service Interface compared to a mature
communication protocol: RMI. The providers resided on a Pentium II 500 MHz machine with 128
MB of RAM attached to a wired 100 Mbps Ethernet while the clients resided on a Pentium III 600
MHz machine with 128 MB of RAM attached to a 11 Mbps wireless LAN (with a maximum actual
throughput of around 5 Mbps). The different subnets were connected through a routed backbone.

To compare the two communication methods, we performed a simple “ping-pong” test where
each client called a method on a provider that does nothing except return to the client. We timed
runs of 1,000 consecutive calls and averaged the measured time over the 1,000 calls. We then
repeated this test 20 times, computed a global average, and computed a confidence interval for that
global average. Table 1 shows our results.

Average 95% Confidence Interval
CSInt 7.76 ms +/- 0.29 ms
RMI 3.85 ms +/- 0.23 ms

Table 1: CSInt and RMI Response Time

Our results show that the Contextual Service Interface (CSInt in the table) executes an empty
call in roughly twice the time required for an empty RMI call. While we do not expect to entirely
match the performance of RMI for this test (RMI is a binary protocol HTTP/XML is text based),

14

we do expect that future implementations can significantly narrow this performance gap. Currently
we are using computationally expensive serialization and deserialization methods such as the XML
DOM API which unnecessarily creates a tree representation of the serialized call. Switching to the
SAX API should provide a significant speed increase.

7 Contextual Information Service Prototype

We have deployed a Contextual Information Service prototype consisting of several Contextual
Information Providers and a prototype Context Synthesizer. As depicted in Figure 4, we have
deployed one provider for each of the classes defined previously in Figure 3.

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationPerson Devices

People

Devices

Space

Access PointAccess Point Devices

People Location

Access Point
Coverage

Person Devices Static Device Location

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationPerson Devices

People

Devices

Space

Access PointAccess Point Devices

People Location

Access Point
Coverage

Person Devices Static Device Location

Figure 4: Deployed Contextual Information Providers

7.1 Context Synthesizer

As shown in Figure 1, the Context Synthesizer accepts queries from clients, decomposes them,
queries the appropriate Contextual Information Providers, and then synthesizes the results for re-
turn to the client. Our current synthesizer is a simple model that does not yet implement more
advanced functionality such as query optimization. Additional research is required to extend dis-
tributed query processing techniques to efficiently operate on Contextual Information Providers.
Nevertheless, our current Context Synthesizer is already capable of allowing clients to synthesize
large amounts of contextual information using very simple queries while imposing very little load
on the client.

7.2 Static Contextual Information Providers

The contextual information providers shown in Figure 4 in normal typeface were implemented
using a simple database. CIS’s explicit support for provider implementation via a database al-
lowed for trivial implementation of these static contextual information providers. For instance,
the PersonDevices provider is implemented as an SQL relation with attributes personID and de-
viceID. In addition to easing provider implementation, implementing multiple providers with a

15

single database reduced the amount of communication required since the synthesizer can issue a
single multi-provider query rather than multiple simple queries.

7.3 Dynamic Contextual Information Providers

Providers depicted in Figure 4 in underlined italicized type required custom code to implement.
We discuss each of these briefly.

7.3.1 Access Point Provider

The Access Point Provider gathers information regarding current, past, and future (predicted) band-
width at 802.11 access points using information obtained via SNMP [27]. This provider makes
extensive use of dynamic attributes and attribute requirements to provide users with a variety of
information while only retrieving SNMP information as needed. By default, bandwidth at each
access point is sampled at a coarse granularity. This allows some rough bandwidth information to
be provided for all access points without overburdening the system. When a user requests more
fine grained bandwidth information, the sampling rate may increase (until the minimum sample
interval of 1 second is reached).

The sample time and sample interval meta-attributes allow the provider to determine if the user
is asking for current, past, or future bandwidth information. Bandwidth information is logged to
disk to allow for information regarding past bandwidth. Near term predictions of bandwidth use
the most recently observed bandwidth as a prediction of future bandwidth. Long term predictions
of bandwidth use historical information from the previous week.

7.3.2 Access Point Device Provider

The Access Point Device Provider provides information regarding which devices are currently
associated with a given access point or which access point a given device is attached to. This
provider also uses SNMP to obtain this information. As this information is much more expensive
to obtain than bandwidth information, it must be sampled at a much coarser granularity (1 minute
minimum sample interval).

7.3.3 Space Provider

The Space Provider uses both custom code and a database to provide information regarding physi-
cal spaces. This provider is capable of providing both distance based information (how far apart are
two locations) as well as structural information (what rooms are on the second floor of Wean Hall).
This provider uses a hybrid hierarchical-spatial data type known as an Aura Location Identifier
(ALI) to provide both hierarchical and spatial representations of location. For more information
on this provider see [28].

7.3.4 People Location Provider

The People Location Provider provides location information from a variety of sources. If the
person being located uses a device on the wireless network, this provider will attempt to use the

16

Access Point Device Provider to locate this device in the wireless network. The Network Location
provider may then be contacted to determine the area covered by the access point to which the user
is attached. Two additional methods of locating users are also used. First, a user’s appointment
calendar may be queried to determine where the user is currently scheduled to be. Second, the
user’s desktop machine (if any) may be queried to determine if the user is currently logged in and
active.

7.3.5 Dynamic Contextual Information Provider Performance

To determine what kind of performance we can expect from providers of dynamic contextual in-
formation, we measured the response time of typical queries on our access point providers. During
these tests, the access point providers were actively gathering data from over 600 access points on
CMU’s wireless network. (The bandwidth information was gathered every 10 seconds while the
cell population information was gathered every hour with the exception of a small number of cells
for which it was gathered every two minutes.) For the Access Point Provider test, we queried the
total bandwidth at a single access point. For the Access Point Devices Provider Test, we retrieved
a list of all devices at a single access point (approximately 4 devices were present at the time the
test was run).

Both the Access Point Provider and the Access Point Devices Provider were run on the same
machine: a 1.5 GHz machine with 256 MB of RAM. The client was run on a 300 MHz machine
with 128 MB of RAM (these tests used JDK 1.4 beta 3). For these tests, we timed runs of 100 con-
secutive queries and averaged the measured time over the 100 queries. We then repeated this test
20 times, computed a global average, and computed a confidence interval for that global average.
Table 2 shows our results.

Average 95% Conf. Int.
AP Provider 13.87 ms +/- 0.53 ms

AP Devices Provider 16.04 ms +/- 0.70 ms

Table 2: AP providers query time

These results show that despite the large amount of work to constantly sample over 600 access
points, our access point information providers can provide timely network information to applica-
tions.

8 Presentation Scenario

We now illustrate how our Contextual Information Service prototype can be used to implement
the scenarios mentioned earlier. (To simplify discussion, in these scenarios users interact with
“Aura clients” that contact the CIS on behalf of users.) Consider the presentation scenario briefly
mentioned previously:

George works on a campus equipped with a Contextual Information Service and a wireless
LAN. He is planning on giving a presentation at a meeting where there will be a remote participant;

17

George will bring a laptop equipped with a video camera and wireless network card which will
allow the remote user to participate in the meeting.

Our CIS allows George’s Aura client to select a video projector equipped conference room that
is covered by two independent wireless access points. His Aura client is able to determine that both
of these access points will be highly likely to have bandwidth adequate for the videoconference for
the duration of the meeting. As the time of the meeting arrives, a participant is absent. The
Contextual Information Service allows George to determine that this participant is not on campus.

This scenario consists of two independent tasks:

1. Find a conference room that meets the requirements specified.

2. Find the late user.

Both the network bandwidth and person location information required are dynamic attributes.
To retrieve this information, the ability to specify requirements on meta-attributes is essential.
Likewise, the meta-attributes discussed previously are important in interpreting the results returned
by the providers. For example, specifying requirements for the updateTime and sampleInterval
meta-attributes of bandwidth allows us to specify that we desire a prediction of future bandwidth
over a specified interval. The Contextual Information Service can then return a prediction and also
give an indication of how confident it is in this prediction via the confidence meta-attribute.

The following SQL-like psuedocode illustrates how George’s client can find a conference room
meeting his requirements using a single query() call (the psuedocode maps directly to the parame-
ters required by query):

Select APCoverage.room, APCoverage.apName
From Space, Device, DeviceLocation,

APCoverage, AccessPoint
Where Space.type = "Conference"

and Space.ali within "ali://cmu/wean"
and DeviceLocation.room = Space.name
and DeviceLocation.id = Device.id
and Device.type = "Projector"
and APCoverage.room = Space.name
and AccessPoint.apName = APCoverage.apName
and AccessPoint.mbpsTotal < 1.0

Require mbpsTotal.sampleTime = start of meeting
mbpsTotal.sampleInterval = meeting length

TimeLimit none

This query returns a list of conference rooms with projectors with access points likely to have
ample bandwidth. A quick inspection of this list allows George’s Aura client to find a conference
room that is covered by multiple suitable access points.

To demonstrate the feasibility of this scenario, we implemented a simple client that queries our
prototype CIS for this information. Limitations in our current synthesizer require the above query
to be split into two parts: First obtain a list of candidate conference rooms and access points. Next,
check the predicted bandwidth for each access point.

18

We measured the response time of the above queries on our CIS prototype. Each query was
executed 10 times, and an average time was computed. This process was repeated 20 times, and
then an overall average and confidence interval for that average were computed as shown in Table 3.
These measurements show that our prototype CIS allows George to find a suitable location in
approximately 1 second. (The disparity in times for the two queries relates to the complexities of
the queries involved and the fact that our Context Synthesizer does not attempt query optimization.)

Average 95% Conf. Int.
Conference Room Query 1.187 s +/- 0.013 ms

Bandwidth Query 0.077 s +/- 0.013 ms

Table 3: George scenario query time

Now we illustrate how our CIS enables George to locate the late meeting participant. This
query uses attribute requirements to specify that fresh location information is desired, but only a
very rough accuracy is necessary (is John on campus or not).

Select location
From PersonLocation
Where PersonID = John’s UID
Require location.updateTime within 2 minutes of present time

location.accuracy within 500 meters of actual location
TimeLimit 1 minute

Now in resolving this query, our prototype Person Location Provider can potentially use loca-
tion information from a variety of sources. For instance, we gather information from user calen-
dars, user login information, as well as the location of a user’s wireless device. The wireless device
location is the most accurate of these. Unfortunately, obtaining a list of devices in a single wireless
cell takes several seconds. As there are over 600 wireless cells in our wireless network, access
points must be queried infrequently. Hence, despite the relatively fine spatial resolution obtained
from wireless device location, the location provider must use this information sparingly.

Average 95% Conf. Int.
Location Query 0.446 s +/- 0.014 ms

Table 4: Simple location query time

Table 4 shows the response time of our prototype Person Location Provider (the average shown
was computed using 20 runs of 20 queries each). In this test, the location of the user to be located
was known to the People Location Provider. Clearly, a simple location query can be executed
quite quickly. Hence, a location provider can use any additional time provided by the TimeLimit
parameter to perform a more exhaustive search. For example, the 1 minute TimeLimit parameter
in the above location query, indicates both that George can afford to wait some time for the query
to complete, and that George desires the location provider to expend a large amount of effort, if
necessary, to locate John.

19

As can be seen in this example, the ability of clients to communicate attribute requirements is
critical to providing clients with the information they desire in an efficient manner. We have further
shown how our CIS allows simple contextual information providers to be efficiently implemented
while still supporting more complex providers.

9 Bandwidth Advisor Scenario

Now consider the bandwidth advisor scenario:
Jane is waiting to depart on a business trip in an airport equipped with a wireless network.

A Contextual Information Service is deployed at the airport providing information on the network
and the physical layout of the airport. During her wait, Jane has been making some last minute
changes to a very large graphically rich document she needs to email to her office. Shortly before
her plane is scheduled to depart, she makes her final edits and clicks send. Unfortunately, a jumbo
jet has arrived recently at an adjacent gate, and deplaning passengers are saturating the network
cell in which Jane resides. Fortunately, Jane’s mail client discovers from information gleaned
from the CIS that she will miss her plane if she waits in her current location for her mail to finish
sending. A quick scan of the surrounding area reveals that there is excellent bandwidth a short
distance away. Following her device’s suggestions, Jane switches locations, and is able to send
her email before catching her flight.

As determining exactly when Jane needs to use large amounts of bandwidth is outside the
scope of our discussion (a related effort is working on this task), we use an abridged version of this
scenario consisting of the following steps:

1. Watch for low available bandwidth (i.e. high utilization) in the current cell (AccessPoint).
(The identity of the current cell is determined locally on Jane’s device.)

2. If the available bandwidth becomes low, find nearby locations where bandwidth is better
(APCoverage, AccessPoint).

This scenario uses a smaller number of information providers than the presentation scenario;
however, all steps require access to providers that dynamically compute the results to queries.
Hence, we make heavy use of attribute requirements.

Consider step 1 in detail. This step uses a trigger to relieve it of the burden of constantly polling
available bandwidth as illustrated in the following pseudocode excerpt:

PostCondTrigger
Select mbpsTotal
From AccessPoint
Where apName= "MyCellID"
ExecInterval 10 seconds,
Require mbpsTotal.sampleInterval 10 seconds
Trigger whenever mbpsTotal > 2.0
TimeLimit none

20

When the Access Point Provider receives this query it knows from the sampleInterval require-
ment and execInterval specified that it should begin sampling access point bandwidth every 10
seconds. The trigger expression tells the provider to inform the client whenever cell utilization is
over 2.0 Mbps. When this happens, a callback is triggered on the client and it can proceed to look
for a better access point (step 2).

Step 2 first uses a simple query to retrieve a list of nearby access points. For each of these
access points, the sampleInterval and updateTime attribute requirements are used to specify that a
prediction of bandwidth in the immediate future is required. The AccessPoint Provider then uses
current utilization information to provide a simple near term prediction. This is in contrast to the
long term bandwidth prediction required in the presentation scenario which necessitated access
to historical data, was computationally expensive, and far less accurate in the near term, but was
needed for that scenario. The ability to specify attribute requirements is essential in allowing the
Access Point Provider to decide which type of prediction is appropriate.

10 Conclusion

We have developed a Contextual Information Service that provides applications with a virtual
database view of physical entities and available resources in the local environment. Unlike pre-
vious efforts, this service provides explicit support for the on demand computation of contextual
information while allowing ordinary databases to be used whenever possible.

We have implemented a query synthesizer and a number of contextual information providers
for this service, and have shown, via examples, how this service can be used to create applications
that adapt to provide users with behavior appropriate to their local environment.

References

[1] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura: Towards Distraction-Free
Pervasive Computing. IEEE Pervasive Computing, 1 (2):22-31, 2002.

[2] Date, C.J., A Guide to the SQL Standard, Reading, Mass.: Addison-Wesley, 1987.

[3] U. Hengartner, P. Steenkiste, Protecting People Location Information. Proceedings of Work-
shop on Security in Ubiquitous Computing. Goteborg, Sweden. September 2002.

[4] B. Schilit, M. Theimer, Disseminating Active Map Information to Mobile Hosts. IEEE Net-
work, 8(5):22-32, September/October 1994.

[5] B. Schilit, N. Adams, R. Want, Context-Aware Computing Applications. IEEE Workshop on
Mobile Computing Systems and Applications. Santa Cruz, CA. December 1994.

[6] Steggles P., Webster P., Harter A., The Implementation of a Distributed Framework to Support
‘Follow Me’ Applications. Proceedings of PDPTA 1998, Las Vegas, NV. July 1998.

[7] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, The Anatomy of a Context-Aware
Application. Proceedings of MOBICOM 1999, Seattle, WA. August 1999.

21

[8] P. Brown, J. Bovey, X. Chen, Context-Aware Applications: From the Laboratory to the Mar-
ketplace. IEEE Personal Communications, 4(5):58-64. 1997.

[9] A. Schmidt, M. Beigl, H. Gellersen, There Is More to Context than Location. Computer &
Graphics, 23(6):893-901, December 1999.

[10] B. Brumitt, S. Shafer, Location Modeling for Ubiquitous Computing. Proceedings of Work-
shop on Location Modeling for Ubiquitous Computing. Atlanta, GA. September 2001.

[11] D. Salber, A. Dey, G. Abowd, The Context Toolkit: Aiding the Development of Context-
Enabled Applications. Proceedings of Conference on Human Factors in Computing Systems.
Pittsburgh, PA, May 1999.

[12] A. Dey, S. Salber, M. Futakawa, G. Abowd, An Architecture to Support Context-Aware Ap-
plications. GVU Technical Report GIT-GVU-99-23.

[13] J. Hong, J. Landay, An Infrastructure Approach to Context-Aware Computing. Human-
Computer Interaction (HCI) Journal, 16(2-3), 2001.

[14] C. Dyreson, R. Snodgrass, Supporting Valid-Time Indeterminacy. ACM Transactions on
Database Systems, 23 (1):1-57, 1998.

[15] A. Dekhtyar, R. Ross, V. Subrahmanian, Probabilistic Temporal Databases: Algebra, January
1999, University of Maryland technical report CS-TR-3987, submitted to ACM Transactions
on Database Systems.

[16] S. Madden, M. Franklin, J. Hellerstein, W. Hong, TAG: A Tiny Aggregation Service for
Ad-Hoc Sensor Networks. Proceedings of the OSDI 2002. Boston, MA. December 2002.

[17] P. Bonnet, J. Gehrke, P. Seshadri, Querying the Physical World. IEEE Personal Communica-
tions, 7 (5):10-15, 2000.

[18] Sun Microsystems, Jini Specifications, http://www.sun.com/jini/specs/

[19] UPnP Forum, Universal Plug-and-Play Documents, http://www.upnp.org/resources/documents.asp

[20] World Wide Web Consortium, Extensible Markup Language (XML),
http://www.w3.org/TR/REC-xml

[21] Fielding, R., et. al., HTTP Transfer Protocol - HTTP/1.1, June 1999, RFC 2616.

[22] Object Management Group, The Common Object Request Broker: Architecture and Specifi-
cation, 2.3 ed., June 1999.

[23] World Wide Web Consortium, Simple Object Access Protocol (SOAP) 1.1,
http://www.w3.org/TR/SOAP

[24] Sun Microsytems, Java Remote Method Invocation Specification,
ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-JDK1.2.pdf

22

[25] Srinivasan, R., RPC: Remote Procedure Call Specification Version 2, Aug. 1995. RFC 1831.

[26] The Apache Software Foundation, Xerces, http://xml.apache.org/xerces-c/index.html

[27] Case, J., et. al., A Simple Network Management Protocol (SNMP), May 1990, RFC 1157.

[28] Jiang C., Steenkiste P., A Hybrid Location Model for Ubiquitous Computing. Proceedings of
Ubicomp 2002. Goteborg, Sweden. September 2002.

23

