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Abstract

We consider the problem of scheduling jobs on multiple machines with preemption with the
goal of minimizing the total flow time and the maximum flow time.

For minimizing total flow time, we give an algorithm which produces a 1 + ¢ approximate
solution in time n@(m1087/¢*) Here n is the number of jobs and m is the number of machines.
More generally, even if we have unrelated machines and consider weighted flow time, our
algorithm has running time nO(m1o8”n/€*) nrovided either P or W is poly-bounded in n.
Here W (resp. P) is the ratio between the maximum to minimum job weight (resp. size).
For minimizing the maximum flow time, we give a PTAS for a constant number of unrelated
machines.
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1 Introduction

Recently, there has been a lot of interest in scheduling problems with the goal of minimizing
flow time related metrics. In this paper, we study two basic problems for multiple machines:
Minimizing total flow time and minimizing maximum flow time.

The Model: Formally, we are given a collection of n jobs and m machines. Job j has a
processing time p; and a release date r; before which it cannot be scheduled. Without loss
of generality we assume that all p; and r; are integers. We use P to denote the ratio of the
maximum to the minimum job size. For a given schedule, the flow time of a job is defined
as the difference of the time at which the job completes and its release date, equivalently,
it is the total time that a job spends before it completes. The total (resp. maximum) flow
time refer to the sum (resp. maximum) of the flow time of all jobs.

In the unrelated machines setting, a job could possibly have different processing require-
ment on each machine. We use pj; to denote the processing time (or size) of job j on
machine k. Most of this paper (except Section 3) deals with the case when the jobs are
unweighted. In the weighted case, job j has a weight w;, and the weighted flow time of a
job is simply its flow time multiplied by its weight. We will use W to denote the ratio of
the maximum to minimum job weight.

An important issue while scheduling jobs on multiple machines is that of migration. A
schedule is said to be migratory if it can move partially executed jobs from one machine to
another. Migration of jobs is usually considered unattractive as it incurs a huge overhead
(cost) in practice. Throughout this paper we only consider non-migratory algorithms.

New Results: Our main result is an algorithm for minimizing total flow time which
produces a 1 + € approximate solution and has running time nO(mlogn/e®)  Thys for a fixed
number of machines, this gives a quasi-polynomial time approximation scheme.

The above result assumes that the machines are identical and the all jobs have equal
weight. However, it can be easily adapted to the case when the machines are unrelated.
Additionally, even if our measure is weighted flow time, but we have that either W or P is

poly-bounded in n, then our approximation scheme has running time n?(™ log?n/e?)

We do not know if the dependence on m can be made polynomial for identical machines.
However, we show a weaker result that, if m is a part of the input, then total weighted flow
time on identical machines is NP-hard to approximate within o(min{n!/*®, W1/2 P1/6 m}).
This holds even if both W and P are poly-bounded in n.

For maximum flow time on unrelated machines, our algorithm produces a 1 + € approxi-
mate solution in time O(n™/¢).

Previous Work: The first non-trivial results for the problem of minimizing the total flow
time were obtained by Leonardi and Raz [11]. They give an O(log(min{.*, P})) competitive
algorithm for identical parallel machines. They also prove tight lower bounds of Q(log »)
and Q(log P) on the competitive ratio of any online algorithm. However, their algorithm
involves migration of jobs. An equally effective algorithm in terms of competitive ratio



but which does not require job migration was given by Awerbuch et al. [2]. While these
algorithms are online, the guarantees provided by these algorithms are also the best offline
guarantees known for the problem. Infact, obtaining a constant factor approximation or a
PTAS is considered one of the major open problems in scheduling [12, 11, 2].

For weighted flow time, the only results known are for single machine due to Chekuri et
al [5]. They give an approximation scheme which has running time n©(log W log P/ ). They
also strengthen their result for the case where either P or W is poly-bounded in n. In this
case, they give an approximation scheme with running time nOUog®n/€%) " Thus our result
for weighted flow time can be thought of as extending the result of [5] to multiple machines.
However, in a way the result of [5] is more general than ours: Our result does not hold if
both W and P are arbitrary.

We do not know of any previous work on flow time for multiple unrelated machines.
However, a lot is known about the related measure of minimizing weighted completion
time. For identical machines, a PTAS is known for minimizing weighted completion time
with arbitrary m and release dates [1]. For unrelated machines, Hoogeveen et al [7] show
that minimizing total unweighted completion time with release dates in Max SNP-Hard, if m
is a part of the input. Infact, minimizing weighted completion time on unrelated machines
is Max SNP-Hard even in the absence of release dates. For weighted completion time on
unrelated machines and arbitrary release dates, a PTAS is known for fixed m [1], and for
arbitrary m, a 2 approximation algorithm based on convex programming was given by [13].

We next consider maximum flow time. The problem is NP-Hard even for two identical
machines, as minimizing makespan on multiple machines is a special case of this problem
where all the release dates are 0. Bender et al. [4] show that a natural greedy algorithm,
similar to Graham’s algorithm for online makespan minimization, is (3 —2/m) competitive
for identical parallel machines. However, the existence of a PTAS is left open [4, 12].

We do not know of any other work on maximum flow time in the presence of release dates.
However, a lot has been done for the case without release dates. For identical machines, a
PTAS for arbitrary m was given by Hochbaum and Shmoys [6]. For the case of unrelated
machines, Lenstra et al [10] give a 2 approximation for arbitrary m, they also show that
the approximation factor cannot be improved to better than 3/2 in polynomial time. For
constant m and unrelated machines, a PTAS was first given by Horowitz et al [8]. The time
and space complexity were subsequently improved by various authors. The best known
result is a FPTAS with a running time of n(m/e)°™ [9]. In particular, the running time
is linear in the number of jobs for constant m.

Finally, in terms our techniques, a major component of our algorithms is an idea due
to Bansal et al [3], which gives a way to store, using quasi-polynomial space, all possible
approximate profiles of jobs under SRPT.



2 Total Flow Time

In this section we consider the case when all machines are identical and all jobs are un-
weighted. The extensions are considered later in Section 3.

Let I be a problem instance with largest job size P. Without loss of generality we can
assume that all release dates are at most nP and that all jobs finish execution by time 2nP
(otherwise we could reduce the problem into two disjoint problems). Let Opt denote the
optimal schedule, we also abuse notation and use Opt to denote the total flow time under
the optimal schedule.

Lemma 1 Given I, rounding up the job sizes and release dates to a multiple of eP/n? only
increases the optimal cost of this instance by a factor of (1 + 2¢).

Proof: Given a schedule for the original instance, rounding up the job sizes adds at most
n-eP/n? = eP/n to the flow time of each job. Similarly rounding up the release dates adds
at most eP/n? to the flow time of each job. Thus, the total flow time is affected by at most
2eP < 2eOpt. O

Let I' denote this rounded instance. By Lemma 1 we can assume that all job sizes are
integers in the range [1,n2/€]. Similarly, as no release date in I is more than 2nP, all release
dates in I’ are integers in the range [1,n3¢]. We will obtain a schedule S(I') with optimum
total flow time for I'. Clearly, all events (arrivals and departures) under S(I') at integral
times in the range [1,2n3/€]. Also it directly seen that a schedule S(I) for I follows from
S(I') and that the total flow time under S(I) is at most that under S(I’). Henceforth, we
only consider I'.

First now divide all the jobs into O(% logn) classes. We say that a job with size p; lies
in class i, iff (1 +¢€)* ! < p; < (1 +¢)’. Consider the optimum algorithm. Let S;(i,)
denote the jobs of class ¢ on machine j which are alive at time ¢. Note that the class of a
job depends only on its initial processing time and hence does not change with time. It is
easy to see that on each machine the jobs are processed in the order or shortest remaining
processing time (SRPT). Thus we have that,

For any j = 1,...,m and any time ¢, at most one job in S;(i,t) has a remaining processing
time that is not in the range (1 + €)'~! and (1 + ¢€)".

We now define the state of the algorithm @Q(t) at time ¢. For each class ¢ and each machine
7, we store at most % + 1 numbers: the first % are the remaining processing times of the %
jobs in S;(7,t) with the largest remaining processing time; the last entry is the sum of the
remaining processing times of the rest of the jobs in S;(i,t). Notice that as each job has
size at most n?/e, there are at most (n?/e)'/¢ = O(n*¢) possible choices for the first 1/e
entries and n?/e possible choices for the sum of remaining sizes. Finally, since there there
are at most O(logn/e) classes and m machines, the total number of distinct states at any

step is at most nO(mlogn/e’)

The following lemma shows how this information helps us in estimating the number of



unfinished jobs at any point of time.

Lemma 2 We can estimate the number of jobs in queue at time t to within a factor of
(1 + 2€) using the information in Q(t).

Proof: If there are fewer than 1/e jobs in level i, we know their number precisely because
we store their remaining processing times precisely. Let us now consider the case when
there are more than 1/e jobs in some level i.

Suppose at first that the remaining processing times of all these jobs lies between (14¢€)'~!
and (1 + €)’. Then, by assuming that all the jobs have size (1 + €)*~! and computing the
number of jobs using the total remaining processing time, our estimate is off from the correct
number by at most a factor of 1 + e.

Finally, as at most one job in every level 4 lies outside the range (1 + ¢)*~! and (1 + ¢€)".
Thus our estimate above could be off by another job. However, there are at least 1/e
unfinished jobs. Thus we get an estimate within a factor of 1 4 2e. O

Thus the algorithm is a large dynamic program with O(n?/e) times nO(mlogn/ ) gtates,

and for each state store the value of the minimum total flow time that can be achieved if
that state is reached.

Now we only need to show how to update the state of the algorithm with time. When a
new job arrives, we have m choices for the machine to which this job can be assigned. Once
a machine is decided, the size of the job determines the class to which it belongs. Also,
it is straightforward to update the state, as either the job is added to the first 1/¢ jobs in
S;(i,t), or else if it is smaller that the 1/e largest jobs in its class, then its size is added to
the (1/e + 1) entry. When the algorithm works on a job in level i on machine 7,

Now consider the case when there are no arrivals. Suppose at time ¢, the algorithm
works on the state s(j) on machine j. We do not know s(j), but we can try out all possible
O(logn/e)™ choices for the different s(j) on each machine j. For a fixed choice of s(j),
clearly the algorithm works on the job with the least remaining processing time in the class
s(j)- So we either need to decrement the  + 18" entry of s(j) by one, or if there are no
more than % jobs, then the last non-zero entry is decremented by 1.

Thus we have shown that:

Theorem 1 The above algorithm gives a (1 + €) approzimation for the problem of mini-

mizing total flow time on m identical machines and runs in time pO(mlogn/e)

3 Extensions

We now consider the case when the machines are unrelated and our measure is weighted
flow time.



Let p; denote miny pji. Thus p; denotes the minimum size of j among all the machines.
Let Q = Z]- p;, and suppose that the weights are integers in the range 1,...,W. For
unrelated machines, we define P = max;; p}/ p;- Note that if the machines are identical,
this definition of P corresponds exactly to the maximum of minimum job size ratio. We
will show that the problem has a QPTAS if either W or P is polynomially bounded in n.

We first consider the case when W is polynomially bounded in n. By assigning each job
to the machine where it takes the least time, it is clear that nW @ is an upper bound on
Opt. Similarly, @ is a lower bound on Opt. Hence we will assume that our algorithm simply
ignores pj; where p;; > 2nWQ.

Next, rounding each p;; and release date up to the next multiple of eQ/(Wn?), it is easy
to see that the total flow time of each job is affected by at most eQ)/Wn and hence the total
weighted flow time is affected by at most e} < eOpt. Moreover, as usual, we can assume
that the algorithm is always working on at least one job, thus the release date of any job is
at most n@, and hence our algorithm needs to consider only O(n3W/e) time steps.

Next we round up the weights to powers of 1 + €. Clearly, this affects the solution by at
most 1+ ¢ times. Finally, observe that in the optimal schedule for this rounded instance, if
we consider a particular machine and restrict our attention to time intervals when jobs from
a particular weight class are executed, then clearly these jobs are executed in the SRPT
order.

With these observations we can directly give an algorithm based on the ideas in Section
2. For each machine and each weight class, we maintain the states under SRPT. Since
there are O(log W/e) = O(logn/e) weight classes, the number of states at each time step
is bounded by nO(™ log”n/€*)  When a job arrives, there are m choices corresponding to the
machines it can be assigned. If there are no arrivals, for each machine, we need to decide
which weight class to work on, and with each weight class which size class to work on.
Thus there (logn/€)?™ choices to choose from at each time step. Thus our algorithm can
be implemented directly as a dynamic program of size Wn?/e? = nOW times nO(mlog” n/e*),
Hence, we have a QPTAS.

We now consider the case when P is poly-bounded and W is arbitrary. As previously, Opt
is at most nQW . Next, observing that each job has size at least @ /nP on each machine, it
follows that Opt is also lower bounded by WQ/nP.

Our algorithm now is as follows. We only consider jobs with weights between ¢W/n?P
and W. Jobs with weight below eW/n?P will be added to the schedule arbitrarily. Note
that since each job has flow time at most @, this adds at most eWQ/nP < eOpt. Now,
since P is poly-bounded in n, finding a schedule for the jobs of weight between ¢W/n2P
and W reduces to the previous case, where W was poly-bounded. Thus the QPTAS for
poly-bounded P follows.



4 Dependence on the number of machines

It is clear that both total unweighted flow time and maximum flow time on unrelated
machines are Max SNP-Hard for arbitrary m [7, 10]. However, an approximation scheme
with a polynomial dependence on m might be possible for identical parallel machines. We
show a related but weaker negative result that, if m is a part of the input, minimizing total
weighted flow time is Max SNP-hard, even when both P and W are polybounded in n.

Consider an instance of 3-Partition (SP15). This consists of a set A of 3m elements,
an integer bound B > 0; for each z € A a integer size s(z) s.t. B/4 < s(z) < B/2 and
s.t. Y rca8(z) = mB. The question is whether A can be partitioned into m disjoint sets
Ay, Ag, ..., Am such that, for 1 <4 < m, > ., s(a) = B. 3-Partition is known to be
strongly NP-Complete. In particular, it is NP-complete for B = O(m*).

Given an instance of 3-Partition, we transform it as follows. There are m machines. Each
element z € A corresponds to a job, with size s(z), weight m and is released at time ¢ = 0.
Next at each time instance ¢t = B +i/m?, for i = 0,1,2,...,Bm®, m jobs each with size
1/m? and weight 1/m are released. Thus the total number of these small jobs is Bm®.

If the 3-partition has a solution, we can use it to schedule the jobs arriving at ¢ = 0, and
then schedule the jobs of weight 1/m as they arrive. Now, each of the weight m job has
flow time at most 3B, and each of the Bm® jobs of weight 1/m has flow time 1/m?. Thus
the total weighted flow time is 3m - 3B - m + 1/m? - Bm5 = O(Bm?).

On the other hand if there is no 3-partition, there is at least one weight m job (call
it J) unfinished by time B. Consider the situation by time Bm3/2, if J is still there, it
contributes at least Bm*/2 to the flow time, else there are least m? jobs each of weight 1/m
piled up during Bm?/2 and Bm?, contributing O(Bm?*).

As B = O(m*) and P < Bm? = O(m%) and W = m? and n = Bm® = O(n'%), W
and P are polybounded in the number of jobs, and we have an inapproximability factor of
Q(min{n!/10, W1/2 p1/6 m}).

5 Maximum Flow Time

In this section we consider minimizing the maximum flow time on m unrelated machines.
We give an algorithm that runs in time O(nm/ ¢) and produces a (1+ €) approximation. We
begin with some easy observations.

1. As first come first served (FCFS) is optimum for minimizing the maximum flow time
on a single machine. It follows that for every machine, the jobs assigned to that
machine are executed in FCFS order.

2. As in Section 3, let pj denote ming pj; and Q = > ; Pj- By assigning each job to the
machine where it takes the least time, it is clear that ) is an upper bound on Opt.



Furthermore, we can assume that all the release dates are at most () and all jobs finish
execution by time 2@ (else, the problem can be reduced to two smaller problems).
Finally, since there are n jobs, there is some job whose size on every machine is at
least @/n. Thus Q/n is a lower bound on Opt.

3. Let § > 0 be an arbitrary real number. Note that rounding up the release date of each
job to the next multiple of § increases the maximum response by at most 6. Similarly,
rounding up each p;; to the next multiple of § and increase the maximum flow time
by at most nd.

We now describe the algorithm. If some p;; > 2Q for some j,k, we just set p;; = oo.
Choose § = €Q/4n?. Round each pjx and 7; up to the next multiple of §. Time increases in
multiples of §, and all events take place only at multiples of §. Thus, we need to consider
only O(n?) time steps.

The algorithm maintains a state of the < wal,t, w1, ws,...,wy, > where ¢t denotes the
time, w; represents the total work present on each machine j, 1 < j < m at time ¢, and
val is minimum value of the maximum flow time that can be achieved at time ¢ and for the
particular values of w;.

It is trivial to update the state of the algorithm, at each time step or event. If there is an
arrival J; at time ¢ and we assign it to machine j algorithm updates the sate as w; = w; +p;;
and val = max{val,w; + p;;}. If no arrival takes place, the algorithm simply decrements
w; for each non-zero w;.

Thus the algorithm is a dynamic program of size O(n3/¢) times n?(™/¢) and updating an
entry for a state requires O(m) time. Thus we have that

Theorem 2 The mazimum flow time on multiple unrelated machines and arbitrary release
dates can be approzimated to within a factor of 1+ € in time nC(m/9),

6 Open Problems

Obtaining a constant approximation or a PTAS for total unweighted flow time is a major
open problem. Also, we do not know if the dependence in m can be made polynomial (or
sub-exponential) for the total unweighted flow time problem or even for the maximum flow
time problem. Settling this would be very interesting.

A PTAS for weighted flow time on a constant number of machines would be a significant
breakthrough. An interesting intermediate goal might be to extend the result of Chekuri et
al [5] to multiple machines and arbitrary P and W (i.e. obtain an approximation scheme
with running time O (nPov(logWilog P;1/6m)) when both W and P are arbitrary).
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