
Multiagent Learning in the Presence of Agents
with Limitations

Michael Bowling

May 14, 2003
CMU-CS-03-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Manuela Veloso, Chair

Avrim Blum
Tuomas Sandholm

Craig Boutilier (University of Toronto)

Copyright c© 2003 Michael Bowling

This research was supported by United States Air Force Grants Nos. F30602-98-2-0135 and F30602-00-2-0549 and
by United States Army Grant No. DABT63-99-1-0013. The views and conclusions contained in this document are
those of the author and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, by the United States Air Force, the United States Army, or the US Government.



Keywords: machine learning, multiagent systems, game theory, reinforcement learning, mul-
tiagent learning, policy gradient methods, non-stationary environments, variable learning rate,
game-playing, robot soccer



Abstract

Learning to act in a multiagent environment is a challenging problem. Optimal behavior for one
agent depends upon the behavior of the other agents, which are learning as well. Multiagent envi-
ronments are therefore non-stationary, violating the traditional assumption underlying single-agent
learning. In addition, agents in complex tasks may have limitations, such as physical constraints
or designer-imposed approximations of the task that make learning tractable. Limitations prevent
agents from acting optimally, which complicates the already challenging problem. A learning
agent must effectively compensate for its own limitations while exploiting the limitations of the
other agents. My thesis research focuses on these two challenges, namely multiagent learning and
limitations, and includes four main contributions.

First, the thesis introduces the novel concepts of a variable learning rate and the WoLF (Win
or Learn Fast) principle to account for other learning agents. The WoLF principle is capable of
making rational learning algorithms converge to optimal policies, and by doing so achieves two
properties, rationality and convergence, which had not been achieved by previous techniques. The
converging effect of WoLF is proven for a class of matrix games, and demonstrated empirically for
a wide-range of stochastic games.

Second, the thesis contributes an analysis of the effect of limitations on the game-theoretic con-
cept of Nash equilibria. The existence of equilibria is important if multiagent learning techniques,
which often depend on the concept, are to be applied to realistic problems where limitations are
unavoidable. The thesis introduces a general model for the effect of limitations on agent behavior,
which is used to analyze the resulting impact on equilibria. The thesis shows that equilibria do
exist for a few restricted classes of games and limitations, but even well-behaved limitations do not
preserve the existence of equilibria, in general.

Third, the thesis introduces GraWoLF, a general-purpose, scalable, multiagent learning algo-
rithm. GraWoLF combines policy gradient learning techniques with the WoLF variable learning
rate. The effectiveness of the learning algorithm is demonstrated in both a card game with an in-
tractably large state space, and an adversarial robot task. These two tasks are complex and agent
limitations are prevalent in both.

Fourth, the thesis describes the CMDragons robot soccer team strategy for adapting to an un-
known opponent. The strategy uses a notion of plays as coordinated team plans. The selection of
team plans is the decision point for adapting the team to its current opponent, based on the out-
come of previously executed plays. The CMDragons were the first RoboCup robot team to employ
online learning to autonomously alter its behavior during the course of a game.

These four contributions demonstrate that it is possible to effectively learn to act in the presence
of other learning agents in complex domains when agents may have limitations. The introduced
learning techniques are proven effective in a class of small games, and demonstrated empirically
across a wide range of settings that increase in complexity.
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Chapter 1

Introduction

Applications involving or requiring multiple agents (e.g., robot soccer, search and rescue, auto-
mated driving, auctions and electronic commerce, information agents) are becoming commonplace
as physical robots and software agents become more pervasive. This dissertation focuses on the
problem of an agent1 learning a successful course of action in domains that involve other external
learning agents.

An agentis the combination of three components: perception, reasoning and action. An agent
receives observations about the state of the environment, and chooses an action from those avail-
able to the agent. The reasoning component is responsible for mapping the received percepts into
a choice of action. Agents commonly have some goal. This may be a desirable state of the envi-
ronment to achieve, or a signal to maximize. This work focuses onlearningas part of the agent’s
reasoning component. Learning in agents involves adapting the mapping of observations to actions
through interaction with the environment. Since agents are goal directed, learning seeks to adapt
this mapping from percepts to actions in order to improve the agent’s goal achievement.

Learning has been studied extensively in single-agent tasks where a robot is acting alone in
an unchanging environment. There are a number of advantages of employing learning agents
in these tasks. Learning greatly simplifies the problem of agent programming by removing the
developmental burden of accurate models and optimal reasoning with respect to those models.
Learning also allows a robot to adapt to unforeseen difficulties or changes in the environment. In
multiagent environments, learning in agents is both more important and more difficult.

In multiagent domains, agents are forced to interact with other agents, which may have in-
dependent goals, assumptions, algorithms, and conventions. In order for agents to handle these
environments, they must employ some ability to adapt to the other agents’ behavior. Since the
other agents are also adapting, this presents a very difficult learning problem that violates the basic
stationarity assumption of traditional techniques for behavior learning. Even defining a desirable
policy for the agent is difficult, since it depends on the policies of the other agents, which are also
improving through experience. This thesis contributes and evaluates learning algorithms that learn
in complex domains in the presence of other learning agents.

Realistically, agents havelimitationsand so are not always capable of acting optimally. They

1Since this work focuses on the multiagent environments using the framework of stochastic games, we will use the
terms robot, agent, player, and even opponent interchangeably. As this dissertation demonstrates, these techniques are
applicable to both software and physical agents, and for a variety of competitive and non-competitive domains.

17
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may have physical limitations (e.g., broken actuators or partial observability) that make them inca-
pable of certain behavior. They also may be employing approximations or abstractions of the task
in their learning, and so sacrifice optimality in order to learn more quickly. They may not even
be learning at all. Limitations are unavoidable in large and complex environments, and create sce-
narios where the other agents involved may not appear to be acting rationally. Multiagent learning
techniques that are practical must address the possibility of limitations, both their own and others’.
Effective learning agents should be capable of compensating for their own limitations and those
of their teammates, while exploiting limitations in other, possibly adversarial, agents. This thesis
also examines how limitations impact learning, and demonstrates effective learning techniques for
accounting for limitations in agent behavior.

1.1 Objective

This thesis seeks to answer the question,

Can an agent effectivelylearn to act in the presence ofother learning agentsin com-
plexdomains when agents may havelimitations?

By learning, we mean the process of an agent changing its behavior through experience to
improve its ability to achieve a goal or accumulate long-term reward. Learning occurs through the
agent’s interaction with the environment: gaining percepts and rewards from the world and taking
actions to affect it.

Learning is complicated by the existence ofother agentsalso acting in the environment. We
assume these other agents areexternalagents, that is, they are not under the control of the same
agent programmer or designer. They are still likely to have goals of their own and to be learning to
achieve those goals. As external agents, though, we can make few, if any, assumptions about their
goals, algorithms, protocols, assumptions, or capabilities.

Complex domainsare primarily domains with a very large or continuous set of possible con-
figurations. In these domains, the pertinent dynamics of the environment depend on features that
are either continuous or in their joint product are beyond enumeration. Often the complexity actu-
ally comes from the other agents in the domain. For example, in spatial domains the state of the
environment usually includes the state or position of the agents themselves. So, the complexity of
the domain inherently increases with the increase in the number of agents. These domains require
the use of approximations by agents in order to act effectively in the domain.

Finally, limitations are anything that prevent agents from acting optimally. With our definition
of complex domains, limitations are unavoidable. For example, approximation itself limits the
agents from selecting optimal actions. Limitations also affect both our own agent as well as the
other agents in the environment. Learning with limitations implies both accounting for the agents
own inability to act optimally, as well as exploiting limited opponents or compensating for limited
teammates.
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1.2 Approach

This thesis question is examined in the context of the framework of stochastic games. Stochastic
games were first studied extensively in the field of game theory, but can be viewed as a general-
ization of Markov decision processes (MDPs). MDPs have served as the foundation of much of
the research in single-agent control learning. Stochastic games subsume both MDPs as well as the
more well-known game theoretic model of matrix games. Like matrix games, stochastic games do
not always have a well-defined notion of optimal behavior for a particular agent. The most com-
mon solution concept in these games is Nash equilibria, intuitively defined as a particular behavior
for all the agents where each agent is acting optimally with respect to the other agents’ behavior.
All stochastic games have at least one Nash equilibria. But, equilibria are only sensible if all the
agents are fully rational, optimal, and unlimited. Since our goal includes learning with limited
agents, we do not make equilibria the explicit goal of learning. We will, though, use it as a tool to
understand the multiagent learning problem.

We approach this thesis question by first examining the issue of multiagent learning in stochas-
tic games when agents are not limited. We then consider how limitations affect the multiagent
learning scenario. We use the techniques developed in the unlimited setting to address the more
challenging problem of learning with limited agents. Our ultimate goal, though, of handling lim-
ited agents influences our approach to multiagent learning even in unlimited settings. Our approach
is to develop techniques that are theoretically justifiable in analyzable and unlimited settings but
scale well to practical and challenging problems.

An important factor in our approach is the strong emphasis on how learning algorithms per-
form in self-play. Our interests are in techniques that are general and applicable to many multiagent
problems, as well as being robust to a variety of learning situations. Therefore we must acknowl-
edge the fact that the other agents’ designers may be equally as innovative, or well-read in the latest
literature. Hence, it is important to consider situations where the other agents are using the same
or similarly advanced techniques. Hence, our analysis, theoretical and empirical, will examine
situations of self-play, while also seeking to examine situations beyond self-play.

The final important point of our approach is our consideration of both competitive and non-
competitive multiagent settings. We seek to avoid making assumptions about the goals or rewards
of the other agents, and do not expect a priori that their behavior is cooperative or adversarial.
Our theoretical and empirical examinations will look at both competitive and non-competitive
domains. This generality, however, will also prevent the work from completely addressing some
specific multiagent environments where stricter assumptions can be made. For example, we do
not focus on the interesting and challenging problem of a team of agents cooperating to globally
maximize a known and common objective. In the team learning task, the issue is one of distributed
computation and learning, as opposed to the issues of strategic decision making and learning,
which is the emphasis of our work.

1.3 Contributions

The key contributions of this dissertation are four-fold.
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Variable learning rate and the WoLF principle for rational and convergent learning. Ratio-
nality and convergence are two properties we introduce as desirable for a multiagent learning algo-
rithm. Previous learning techniques do not simultaneously achieve both properties. We present the
concept of a variable learning rate and the WoLF (“Win or Learn Fast”) principle toward achiev-
ing these properties. We demonstrate that WoLF is both theoretically grounded and evaluate it
empirically in a variety of stochastic games.

Analysis of restricted policy spaces and their effect on equilibria. We introduce a novel and
general model of the effect of limitations on agent behavior. We use this model to analyze the
resulting impact of limitations on the concept of Nash equilibrium. This result not only affects
our own investigation but has far reaching consequences for research on multiagent learning, in
general.

GraWoLF as a general-purpose scalable multiagent learning algorithm. GraWoLF combines
the WoLF variable learning rate with policy gradient learning techniques. The algorithm directly
addresses the thesis question of effective learning in complex domains with other limited agents.
We introduce the algorithm and show compelling empirical results of its applications in complex
and challenging problems. This includes a robot learning task where learning and evaluation was
done on the robot platform itself. This is the first application of any explicitly designed multiagent
reinforcement learning techniques to domains with intractable or continuous state spaces.

Play-based team strategy for adapting to an unknown opponent. CMDragons is a RoboCup
small-size robot soccer team faced with the challenge of competing against a variety of completely
unknown opponents. We developed and implemented a team strategic architecture built around
the notion of plays as coordinated team plans, with the ability to adapt play selection during the
course of a game. The CMDragons team represents the first use of online learning by a RoboCup
robot team to autonomously alter its behavior during the course of a game, improving its behavior
against its specific opponent. We demonstrate both the effectiveness of learning in the challenging
multiagent domain of robot soccer. We also present this approach as an example of learning being
effectively integrated into a fully implemented system.

1.4 Guide to the Thesis

Here we outline the chapters that follow.

Chapter 2 – A Framework for Multiagent Learning. In this chapter we present the general frame-
work of stochastic games as a description of multiagent domains. We arrive at this frame-
work by examining the two simpler frameworks: Markov decision processes for single-agent
domains, and matrix games for state-less multiagent domains. We review the basics of these
frameworks, exploring both results from reinforcement learning and game theory. This chap-
ter forms the foundations upon which the rest of our work is built.
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Chapter 3 – Categorization of Previous Work. We present a novel categorization of the related
work addressing our thesis question of multiagent learning. We examine both game theo-
retic techniques for solving stochastic games, as well as previous algorithms for learning
within the stochastic game framework, drawing connections between the two bodies of liter-
ature. We introduce the typology of equilibria learners and best-response learners as a useful
classification of previous multiagent learning algorithms. This chapter also motivates our
introduction of the WoLF principle for rational and convergent learning in the next chapter.

Chapter 4 – WoLF: Rational and Convergent Learning. We define two desirable properties for
a learning algorithm in a multiagent setting: rationality and convergence. We show that the
previous work discussed in Chapter 3 does not simultaneously achieve these properties. We
then introduce the WoLF variable learning rate as a key contribution of this dissertation. We
prove that WoLF can make a rational learning algorithm known not to converge, converge in
a subclass of matrix games. We then demonstrate the effectiveness of the WoLF principle in
a more practical form in a variety of stochastic games, with enumerable, but relatively large
state spaces.

Chapter 5 – Analyzing Limitations. We examine limitations in the multiagent learning problem.
We present a formal definition for the effect of limitations on agent behavior. We then use
this formalization to investigate the effect of limitations on the concept of equilibria, an
important concept for learning in stochastic games. We show that equilibria do not exist in
general when agents are limited, even with very well-behaved limitations. We do, though,
prove that equilibria do exist for a number of subclasses of games and limitations. We also
demonstrate that a WoLF algorithm can effectively learn and converge to these equilibria
when they exist.

Chapter 6 – GraWoLF: Learning with Limitations. This chapter introduces the GraWoLF al-
gorithm, a general-purpose multiagent learning technique capable of learning in large games
even in the presence of other limited agents. This technique combines policy gradient as-
cent techniques using a policy parameterization with the WoLF principle to learn in complex
domains with other learning agents. We demonstrate the effectiveness of this technique in
two interesting domains, one with an intractably large state space, and the other being a real
robot task with a continuous state space.

Chapter 7 – Team Adaptation. We examine the problem of a team of agents adapting to a par-
ticular adversary. This problem has many similarities to our investigation of learning in
stochastic games, but also has many differences. We describe our CMDragons small-size
robot soccer team, which employed a play-based team architecture that adapted during a
game to the current opponent.

Chapter 8 – Conclusion. We conclude this work with a review of our contributions along with a
consideration of future work in the area of multiagent learning.

All readers should begin with Chapter 2, which provides the mathematical grounding as well
as the foundational background critical to our addressing of the thesis question. Those interested
in the WoLF or GraWoLF contributions should either continue to Chapter 3 to gain perspective on
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previous techniques for multiagent learning, or proceed to Chapter 4. Those interested in under-
standing the challenge limitations pose to the Nash equilibrium concept in stochastic games could
skip these two chapters and go on to Chapter 5. Those interested in the application of WoLF to
complex problems could proceed from Chapter 4 to Chapter 6. Chapter 6 refers to results in Chap-
ter 5, but does not depend critically on ideas from that chapter. Chapter 7 is an independent result
from these previous chapters and could be read at any time, although, the foundations of Chapter
2 may still be helpful to the reader.



Chapter 2

A Framework for Multiagent Learning

Frameworks are models of reality. As such, they are an important foundation for the generation and
evaluation of new ideas. They establish the “rules of the game,” crystallize the core issues, provide
a common basis of study, make intrinsic assumptions visible, provide a general perspective on large
classes of problems, help to categorize the variety of solutions, and allow comparison with other
models of reality. It is with all of these reasons in mind that we begin this work by introducing a
framework for multiagent learning.

Specifically, we consider the framework of stochastic games. Stochastic games are best viewed
as the synthesis of two simpler frameworks: Markov decision processes and matrix games. See
Figure 2.1 for an overview of this synthesis. Markov decision processes have been prominently
explored in the field of reinforcement learning, while matrix games are the foundational concept
of the field of game theory. Markov decision processes are a single agent, multiple state model.
Matrix games, on the other hand, are a multiagent, but single state model. Stochastic games can
be seen as unifying and subsuming these two frameworks, defininga multiagent, multiple state
framework. Since stochastic games share concepts with these two separate frameworks, it is useful
to consider them each independently. The separate presentation also helps to crystallize the core
issues in stochastic games as they are distinguished from these simpler models. This chapter, in
addition, outlines the key concepts and results that we make use of later in the work.

We begin in Section 2.1 with a very brief overview of the general model of an agent and
agent learning, which underlies all of the frameworks we discuss. In Section 2.2 we focus on
Markov decision processes. We provide an overview of the model, relevant solution concepts,
and basic theoretical foundations. We then explore some standard learning algorithms as well as
some extensions that use approximation to apply learning to problems with intractably sized state
spaces. This work is very relevant to our consideration of agent limitations in Chapters 5 and 6. In
Section 2.3 we present the framework of matrix games. We discuss the various solution concepts,
a classification of games, and basic theory. Finally, in Section 2.4 we present the stochastic game
framework. In its entirety this Chapter overviews the necessary foundations upon which the rest
of this work is built.

23
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Figure 2.2: Agent framework: agents are distinguished from their environment and are composed
of perception, reasoning, and action.

2.1 Agent Framework

All agents have three key components: perception, reasoning, and action. These three components
operate within the context of some environment as shown graphically in Figure 2.2. The percepts
an agent receives depends on the environment, and the actions the agent performs, in turn, affects
the environment. The frameworks we describe in this chapter define a specific structure for the
environment: how it is affected by the agent’s actions, how it affects the agent’s percepts, and
whether other agents are involved. With general but careful assumptions about the environment,
agents can effectively reason about appropriate actions to select.

In learning agents, which are the focus of this work, there are two additional factors. First, the
details of the environment are initially unknown. The agent only receives information about the
environment through its interaction, that is, by selecting actions and observing their effects through
its perceptual inputs. Second, there is an additional input signal which is the agent’s reward. This
reward depends on the environment and the agent’s actions. The reasoning portion of the agent is
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Figure 2.3: Multiagent framework: multiple agents all distinguished from their environment and
composed of perception, reasoning, and action.

a learning process that repeatedly interacts with the environment with the goal of maximizing the
rewards it receives over time.

Another common consideration in learning frameworks is the issue of observability. What is
the nature of the agent’s perception? A common assumption and one that we focus on in this work
is that the environment is fully observable. This means that an agent’s perception consists of the
entire relevant state of the environment. Some models relax this assumption by allowing the agent
to receiveobservationsthat are contingent upon, but do not uniquely determine, the full state of the
environment. Although, this work focuses on fully observable environments, in our examination
of agent limitations in Section 5 we consider the affect of observability on agent behavior. We
also, in Section 6, show results of learning in a robot problem that violates the fully observable
assumption.

This work is focused on learningin the presence of other agents. Figure 2.3 depicts this graph-
ically. Instead of a single agent perceiving, reasoning, and acting in an environment, there are
multiple complete agents. These agents also receive perceptions, reason, and act on the environ-
ment. Additionally, they may be learning agents as well, adapting their actions to maximize their
own reward signal over time.

We now look at three formalizations of the agent and multiagent frameworks: Markov deci-
sion processes, matrix games, and stochastic games. Markov decision processes correspond to
the basic agent framework of Figure 2.2. Matrix games consider multiple agents in a single-state
environment, that is rewards to the agents depend solely on the agents’ actions. Stochastic games
correspond to the full multiagent framework depicted in Figure 2.3. Although, ultimately we focus
on the subsuming model of stochastic games, it is very useful to understand the simpler models
(see again Figure 2.1). For completeness, we briefly mention the category that is the intersection,
rather than the union, of matrix games and Markov decision processes. These are single state,
single agent models and are referred to ask-armed bandit problems. They amount to the problem
of selecting from which ofk slot machines to receive a stochastic payoff. These problems have
many similarities to Markov decision processes and for further information we recommend Kael-
bling, Littman, and Moore’s reinforcement learning survey (1996). We now explore the models of
Markov decision processes, matrix games, and finally stochastic games, in turn.
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Figure 2.4: Graphical depiction of the Markov decision process (MDP) framework. Not all actions
and transitions are shown.

2.2 Markov Decision Processes

Markov decision processes are the foundation for much of the research in single agent control
learning. AMarkov decision process(MDP) (Bellman, 1957; Sutton & Barto, 1998) is a tuple,
(S,A, T, R), where,

• S is the set of states,

• A is the set of actions,

• T is a transition function,S×A× S→ [0, 1], such that,

∀s ∈ S ∀a ∈ A
∑
s′∈S

T (s, a, s′) = 1,

• andR is a reward function,S×A→ R.

This definition is depicted graphically in Figure 2.4. The transition function defines a probability
distribution over next states as a function of the current state and the agent’s action. The reward
function defines the reward received when selecting an action from the given state. The agent
interacts with an MDP by alternating between perception and action. the agent observes the state
at timet, st, and selects an actionat. The agent receives the rewardrt = R(st, at), and the agent
observes the new state,st+1 drawn from the probability distribution specified byT (st, at, st+1).
We use the notation,

s0, a0, r0, s1, a1, r1, . . . st, at, rt, . . .

to refer to a single trace of execution for a given MDP and selection of actions.
Notice that this is a single agent formalization of the agent framework. The agent’s perceptions

are the current state of the environment from the setS. The agent’s reasoning process, or learning
algorithm, processes the observed state and reward and is responsible for selecting an action from
the setA. This closes the loop of agent perception, reasoning, and action.
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Figure 2.5: Single player grid soccer where agentB selects its actions randomly. The initial state
is shown on the left and an example of the transitions and associated probabilities are given for a
particular state and action on the right. Notice that fifty percent of the timeA’s action is executed
first, causing it to lose the ball and the game to reset to the initial state. In addition, ifB selectsH or
E it does not move and soA still loses the ball and returns to the initial state. The other outcomes
all have equal probability.

2.2.1 An Example: Single Player Grid Soccer

Consider the soccer-inspired grid domain with twenty cells and two agents,A andB. An example
state is shown in Figure 2.5. In the single player definition of the domain, the agent, marked by
A, is in possession of the ball and is trying to score in the left goal. The state is defined by the
non-identical positions of the agent and a defender, markedB. This defines a state space,S, where
|S| = 20 × (20 − 1) = 380. The actions are movements in the four compass directions:N, S, E,
W, and the hold action,H. The next state is determined by the selected action of the agent and a
randomly selected action of the defender. The defender’s action is selected from the same set of
four compass directions and the hold action, all with equal probability. The agent’s and defender’s
actions are then executed in random order, where an action to move into the other agent’s location
is handled specially. If the defender tries to move into the agent’s location it does not move. If
the attacker moves into the defender’s location the state is reset to the initial configuration which
is the state shown in Figure 2.5. A reward of 1 is received when the agent enters the goal, i.e.,
selects theE action from the two leftmost, central grid locations. The state, in this case, is then
reset to the initial configuration. For all other cases, the reward is zero. These rules formally define
a stochastic transition function,T , and reward function,R. An example of the transitions and
associated probabilities for a single state and action are shown in Figure 2.5.

2.2.2 Solution Concepts

The goal of a learning agent in an MDP is to learn a policy so as to maximize its long-term reward.
The transition functionT and reward functionR are not known in advance, and only samples are
received as the agent selects actions in the environment. A policy,π, is a mapping that defines the
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probability of selecting an action from a particular state. Formally,π ∈ S×A→ [0, 1], where,

∀s ∈ S
∑
a∈A

π(s, a) = 1.

When learning in MDPs, the space of policies considered is often restricted to only deterministic
policies, whereπ(s, a) ∈ {0, 1}. Since stochastic policies are an important feature of some recent
work in MDPs, which we overview in Section 2.2.3, as well as our work in stochastic games, we
focus on this more general class.

The goal of maximizing long-term reward can be formulated in a number of different ways.
We concentrate on thediscounted rewardformulation with some of our results also applying to the
average rewardformulation.

Discounted Reward

In the discounted reward formulation, immediate reward is preferred over future reward. Specifi-
cally, the value of a policy,π, at state,s, with a discount factor,γ ∈ [0, 1), is,

V π(s) =
∞∑
t=0

γtE{rt|s0 = s, π}, (2.1)

whereE{rt|s0 = s, π} is the expected reward received at timet given the initial state iss and
the agent follows the policyπ. V π is called the policy’s state value function. This formulation
is similar to the economic principle of interest and investment, where utility now is traded against
larger future utility. It can also be understood as describing the possibility that the process itself will
terminate after any step with probabilityγ, after which no additional reward can be accumulated.
Another reason for considering discounted reward is that it simplifies the mathematics.

Using this formulation, the goal of the agent is to learn an optimal policy,π∗, that maximizes
discounted future reward at all states,

∀π ∀s ∈ S V π∗(s) ≥ V π(s).

A policy’s value function is known to be the unique solution to a recursive equation called the
Bellman equation (Howard, 1960),

V π(s) =
∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V π(s′)

)
. (2.2)

The value function for all optimal policies is identical, denotedV ∗, and must satisfy an even
stronger relation called the Bellman optimality equation,

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
. (2.3)

Notice that this must be the case since a suboptimal policy can be improved by changing the
policy to select the action that maximizes the parenthesized expression on the right-hand side of
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Equation 2.2. In essence the Bellman optimality equation requires that the policy’s value already
maximizes this expression. This fact of policy improvement is the basis for a number of learning
algorithms, two of which are examined in the next section. In addition, the optimal value function
also defines an optimal policy. Specifically, the policy that deterministically selects the action that
maximizes the right-hand side of Equation 2.3 is an optimal policy.

Another useful concept is a policy’s state-action value function, also known as itsQ-values.
This defines the expected discounted reward of choosing a particular action from a particular state
and then following the policyπ. From Equation 2.2 we can write this as,

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′). (2.4)

Similarly, the optimalQ-values, denotedQ∗, satisfies,

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

= R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a∈A

Q∗(s′, a). (2.5)

Notice that the policy improvement rule from above now corresponds to changing the policy to
select the action that maximizes itsQ-value for the current state. By consideringQ-values we can
also completely define the space of optimal policies. An optimal policy is any policy that from
states has all of its probability assigned to actions that maximizeQ∗(s, a).

Average Reward

An alternative formulation is that ofaverage reward. Although we focus on discounted reward,
some of our theoretical results in Chapter 5 also apply to the average reward formulation. In this
formulation the value of a policy is its long-term expected reward per time step. Mathematically,
the value of a policy,π, at state,s, is,

V π(s) = lim
T→∞

T∑
t=0

1

T
E{rt|s0 = s, π}. (2.6)

A common assumption, which usually accompanies examinations of this reward formulation, is
that the MDP isunichain. An MDP is unichain if and only if, for all policies, there exists an
ergodicset of states (i.e., any state in the set can be reached with non-zero probability from any
other state in the set), and all states outside this set aretransient(i.e., after some finite point in time
it will never be visited again). This assumption forces the value of a policy to be independent of
the initial state. From any initial state, the policy is guaranteed to end up in the ergodic class, and
any state in the ergodic class must have the same average reward for a given policy.

2.2.3 Reinforcement Learning

Reinforcement learning (RL) is both a field and a class of algorithms concerned with the problem
of learning in MDPs. We build extensively on ideas and algorithms from RL and so we briefly
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describe some basic algorithms here. We also examine a few recent developments for applying
learning to very large MDPs. This will provide both a motivation and a foundation for our consid-
eration of limitations and learning in later chapters.

The crux of most RL techniques is the learning of a value function. As we noted in Sec-
tion 2.2.2, the optimal value function defines an optimal policy. Also, a policy’s value function can
be used to improve that policy. The traditional goal of RL algorithms is to compute the optimal
value function for an unknown and arbitrary MDP. The algorithms select actions and receive ob-
servations of the reward and the next state reached according to the reward function and transition
probabilities. We look at two different algorithms that use these inputs:Q-Learning and Sarsa(λ).
Both of these techniques make use of a similar idea for estimating a value function calledtemporal
differencing(Sutton & Barto, 1998).

Temporal differencing is the idea of turning Equations 2.4 or 2.5 into assignment operators.
Since we want a value function that satisfies one of those equations, we can simply force the
equation to hold by changing the left-hand side to equal the right. Roughly speaking, Q-learning
will do this for Equation 2.5 and Sarsa(λ) will do this for Equation 2.4. In both cases, though,
sinceT is not known, they will use a stochastic estimation procedure based on samples fromT
through experience with the environment. This latter idea is that of temporal differencing. We will
generally use the name temporal differencing to refer to the updating of a value function based on
the current estimate of the value of future states, whether estimation is used or not. In Chapter 3
we will see how the idea of temporal differencing will help unify some of the existing game theory
and reinforcement learning algorithms for stochastic games.

Q-Learning

One of the most basic RL algorithms isQ-learning (Watkins, 1989). The algorithm learns the
optimal state-action value function,Q∗, which also defines an optimal policy. In its simplest form,
the learner maintains a table containing its current estimates ofQ∗(s, a). It observes the current
states and selects the actiona that maximizesQ(s, a) with some exploration strategy. Upon
receiving a reward,r, and observing the next state,s′, it updates its table ofQ-values according to
the following rule,

Q(s, a)← Q(s, a) + α

(
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

)
, (2.7)

whereα ∈ (0, 1) is the learning rate.
Under certain conditions, whenQ is updated according to this rule, it is guaranteed to converge

to the optimalQ∗. The specific conditions are (i) every state-action pair is updated an infinite
number of times. And, (ii)α is appropriately decayed over time; specifically, ifαt is the learning
rate used at timet, then it must satisfy,

∞∑
t=0

αt =∞
∞∑
t=0

α2
t <∞.

Condition (ii) is a standard requirement for stochastic approximation. Condition (i) emphasizes the
importance of the exploration strategy. Throughout this work we assume that suitable exploration
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policies are used (see (Singh, Jaakkola, Littman, & Szepesvári, 2000a)). One such exploration
policy is ε-greedy. With this policy, the action currently estimated to be optimal is selected with
probability1 − ε, otherwise, with probabilityε, a random action is chosen. Ifε > 0 approaches
zero over time, then this satisfies Condition (i) with the agent’s actions approaching the optimal
actions.

Sarsa(λ)

Sarsa (Rummery & Niranjan, 1994; Sutton & Barto, 1998) is another RL algorithm that learns a
state-action value function. However, instead of learningQ∗ it learnsQπ for the current policy,
but then selects actions so as to maximize its currentQ estimates. As we noted above, this change
of policy, necessarily improves the values of the policy. In its simplest form, it is very similar to
Q-learning. It maintains a table ofQ-values. It observes the current state,s, and selects action,
a = argmaxaQ(s, a), with some exploration strategy. Upon receiving a reward,r, observing the
next state,s′, and selecting action,a′, by the same method, it updates its table according to,

Q(s, a)← Q(s, a) + α
(
r + γQ(s′, a′)−Q(s, a)

)
, (2.8)

whereα is, again, the learning rate. Under the same conditions asQ-learning, this rule is also
guaranteed to converge toQ∗ (Littman & Szepesv́ari, 1996).

Since theQ-table now estimates the value of the current policy,Qπ, there is an additional
optimization that can be used to speed this estimation. It is commonly called an eligibility trace.
One way of viewing eligibility traces is that they propagate errors inQ value estimates more
quickly through the table. An eligibility trace,e(s, a), defines the state-action pair’s responsibility
for the current error in Q-values. After observing state,s, selecting action,a, receiving rewardr,
observings′ and selectinga′, it updates its trace andQ-table according to,

∀ŝ ∈ S â ∈ A e(ŝ, â) ← λγe(ŝ, â) +

{
1 if ŝ = s andâ = a
0 otherwise

(2.9)

Q(ŝ, â) ← Q(ŝ, â) + αe(ŝ, â)
(
r + γQ(s′, a′)−Q(s, a)

)
, (2.10)

whereλ ∈ [0, 1] is a parameter controlling the amount of error propagated. Ifλ is zero, notice that
this becomes the basic Sarsa rule. Ifλ is one, the rule becomes similar to a Monte-Carlo estimation
of the value of the policy. In practice, a value ofλ strictly between zero and one can often greatly
speed learning. The best choice ofλ, though, varies from problem to problem.

Approximation

The above learning algorithms require a table of state-action values. Many problems, though, have
an enormous or continuous state space making state enumeration impossible. Large state spaces
are problematic due to both the required memory of storing a table of values and the vast amounts
of training experience needed to experience the transitions. This critical problem has received vast
treatment in the reinforcement learning literature (for a summary of this work see Chapter 8 in
(Sutton & Barto, 1998) or Section 6 of (Kaelbling et al., 1996)).
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The problem of scalability is also one of the critical problems that motivates the emphasis
of this thesis on learning when agents have limitations. The proposed solutions to this problem
involve approximation and generalization. Approximation is needed to reduce the number of pa-
rameters that need to be optimized. This is the usual tradeoff of learning suboptimal policies in
exchange for more efficient learning. Generalization is needed so that training experience can be
used more efficiently. We present some of the specifics of these techniques and their effect on
the learning problem, specifically from a multiagent perspective, in Chapter 5. We also describe
in detail in Chapter 6 one particular technique, policy gradient ascent (Williams & Baird, 1993;
Sutton, McAllester, Singh, & Mansour, 2000; Baxter & Bartlett, 2000), and use it in constructing
a scalable multiagent learning algorithm.

2.2.4 The Markov Assumption

Markov decision processes are called such since they satisfy theMarkov Assumption. Basically,
this requires that the next state and reward to the agent is fully specified by the current state and
agent’s action. We can state this property formally.

Definition 1 A decision process isMarkovianif and only if, the sequence of states (st ∈ S), actions
(at ∈ A), and rewards (rt ∈ R), satisfies

Pr
{
st = s, rt = r|st−1, at−1, . . . , s0, a0

}
= Pr

{
st = s, rt = r|st−1, at−1

}
,

that is, if the next state depends only on the previous state and agent’s action, and not on the history
of states and actions.

An agent’s selection of actions isMarkovianif and only if,

Pr
{
at = a|st, st−1, at−1, . . . , s0, a0

}
= Pr

{
at = a|st

}
,

that is, if the agent’s next action depends only on the current state. Sometimes we refer to a
Markovian policy asstationarysince the policy does not change with respect to time.

The MDP framework and our definition of a policy, by construction, are Markovian. When we
explore the multiagent framework of stochastic games later in this chapter, this property comes
into question.

2.3 Matrix Games

Matrix games were first examined in the field of game theory to specifically model strategic inter-
actions of many decision makers. Amatrix gameor strategic game(von Neumann & Morgenstern,
1944; Osborne & Rubinstein, 1994) is a tuple(n,A1...n, R1...n), where,

• n is the number of players,

• Ai is the set of actions available to playeri (andA is the joint action spaceA1 × . . .×An),

• andRi is playeri’s payoff function,A→ R.
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The players select actions from their available set and receive a payoff that depends onall the
players’ actions. These are often called matrix games, since theRi functions can be written as
n-dimensional matrices. The actions then correspond to specifying the value of a particular di-
mension, and the joint actions correspond to particular entries in the reward matrices. Since we
are interested in learning, we will focus on agents repeatedly playing the same matrix game. In
game theory, this is called arepeated game. Since this thesis focuses on learning and, therefore,
is not interested in the one-shot playing of a matrix game, we will use both terms to mean agents
repeatedly playing and learning a matrix game.

As in MDPs, the agents in a repeated game have an explicit action set. Unlike MDPs, though,
the environment has no state and so the agents’ only perception is the actions of the other agents,
or maybe just their own reward. The agents must reason or learn through experience how to select
their action to maximize their observed reward.

2.3.1 Examples

Table 2.1 contains a number of example matrix games. The games (a)–(e) are two player games,
i.e. n = 2, and (f) is a three player game, i.e.n = 3. The table only specifies the games’
Ri matrices and not the individual players’ action sets, which unless otherwise defined are just
assumed to be indices into the reward matrices. Also, in two player games, the player specifying
the row index is always player 1, and the column player always player 2.

Matching pennies (a) and rock-paper-scissors (b) are two children’s games that can be captured
as matrix games. In matching pennies the players’ actions are “Heads” (H) and “Tails” (T). Player
one takes a dollar from player two if their choices match, and gives a dollar if their choices differ.
Rock-paper-scissors is a similar game with each player having three actions: “Rock” (R), “Paper”
(P), and “Scissors” (S). The rules specify that “Rock” loses to “Paper”, “Paper” loses to “Scissors”,
and “Scissors” loses to “Rock”. Otherwise the game is a tie. The winner, if there is one, takes a
dollar form the loser.

The coordination game (c) and Bach–or–Stravinsky (d) are completely different games. In
the coordination game, both players simply desire to agree on their action choice, but have no
preferences between them. In Bach–or–Stravinsky two friends are deciding independently what
concert to attend. Player 1 prefers Bach, while player 2 prefers Stravinsky, but both prefer to be
together over being apart.

In Colonel Blotto (e) (Gintis, 2000), two generals are allocating armies between two battle-
fields. The first general has four armies, while the second only has three. The general with the
most armies at a battlefield gets one victory point, plus the number of opponent armies defeated.
Ties give no points to either general. Each action, i.e., row or column, corresponds to the possible
allocation of its armies to the two battlefields.

Finally, three player matching pennies (f) adds an additional player to the matching pennies
game. Player 1 gets one dollar for matching player 2. Player 2 gets one dollar for matching player
3, and player 3 gets one dollar fornot matching player 1. The three dimensional tensor shown in
the Table is somewhat challenging to follow. Player 1 selects the row index, player 2 selects the
column index, and player 3 selects the left or right column of matrices.
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(a) Matching Pennies (b) Rock–Paper–Scissors
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(c) Coordination Game (d) Bach–or–Stravinsky
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4-0
3-1
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1-3
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(e) Colonel Blotto
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1

H
0
T

0 1
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H
T

(
1

H
0
T

0 1

)
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H
T

(
1 0
1 0

)
R2(〈·, ·,T〉) =

H
T

(
0 1
0 1

)

R3(〈·, ·,H〉) =
H
T

(
0 0
1 1

)
R3(〈·, ·,T〉) =

H
T

(
1 1
0 0

)
(f) Three Player Matching Pennies

Table 2.1: Examples of matrix games.
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2.3.2 Solution Concepts

The goal of a learning agent in a matrix game is to learn a strategy that maximizes its reward.
A pure strategyis one that deterministically selects a single action. However, pure strategies in
matrix games can often be exploited. For example, consider matching pennies in Table 2.1(a). If
the player plays either action deterministically then the other player can guarantee to win a dollar
by playing the appropriate action. Amixed strategyfor playeri, σi(ai ∈ Ai), specifies a probability
distribution over actions. These are the strategies we focus on. We useσi to refer to one particular
player’s strategy, andσ to refer to a strategy for all of the players, called thejoint strategy. We
extend the reward function,Ri, to be defined over mixed strategies as well,

Ri(σ) =
∑
a∈A

Ri(a)Πn
i=1σi(ai).

We also useσ−i to refer to a joint strategy for all of the players except playeri. Finally, we will use
the notation〈σi, σ−i〉 to refer to the joint strategy where playeri follows σi while the other players
follow their policy fromσ−i.

In MDPs a solution is defined as the policy with the highest value according to some reward
formulation, such as discounted reward. In matrix games, no single optimal strategy exists. A
strategy can only be evaluated if the other players’ strategies are known. This can be illustrated in
the matching pennies game (Table 2.1 (a)). In this game, if player 2 is going to playH, then player
1’s optimal strategy is to playH, but if player 2 is going to playT, then player 1’s optimal strategy
is to playT. In this game, there is no strategy, pure or mixed, that is optimal independent of the
opponent. What does exist is an opponent-dependentsolution, or set of solutions. This is called a
best-response.

Definition 2 For a matrix game, thebest-response functionfor player i, BRi(σ−i), is the set of
all strategies that are optimal given the other player(s) play the joint strategyσ−i. Formally,
σ∗i ∈ BRI(σ−i) if and only if,

∀σi ∈ PD(Ai) Ri(〈σ∗i , σ−i〉) ≥ Ri(〈σi, σ−i〉),

wherePD(Ai) is the set of all probability distributions over the setAi, i.e., the set of all mixed
strategies for playeri.

The major advancement that has driven much of the development of matrix games and game theory
is the notion of a best-response equilibrium orNash equilibrium(Nash, Jr., 1950).

Definition 3 A Nash equilibriumis a collection of strategies for all players,σi, with

σi ∈ BRi(σ−i).

So, no player can do better by changing strategies given that the other players continue to follow
the equilibrium strategy.

What makes the notion of equilibrium compelling is that all matrix games have a Nash equilibrium,
although there may be more than one.
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2.3.3 Types of Matrix Games

Matrix games can be usefully classified according to the structure of their payoff functions. Two
common classes of games areteam gamesandzero-sum games. In team games (e.g., coordination
game in Table 2.1(c)) all agents have the same payoff function, so a joint action in the best interest
of one agent is in the best interest of all the agents. In zero-sum games, there are two agents, and
one’s reward is always the negative of the other (i.e.,∀a ∈ AR1(a) +R2(a) = 0).1 The games (a),
(b), and (e) in Table 2.1(a) are examples of such a game. The termgeneral-sum gamesis used to
refer to all types of games, although often means only non-zero-sum games. Notice that games (d)
and (f) from Table 2.1 are neither team games nor zero-sum, despite looking very similar to a team
game and zero-sum game, respectively.

One appealing feature of zero-sum games is that they contain a unique Nash equilibrium.2 This
equilibria corresponds to the game’s minimax solution, or the mixed strategy that maximizes the
worst-case expected reward. This equilibrium can be found as the solution to a linear program.
The linear program has|A1| parameters, one for each action,σ(a1 ∈ A1). These parameters are
the player’s probability distribution over actions, and so the linear program is,

Maximize: min
a2∈A2

∑
a1∈A1

σ(a1)R1(〈a1, a2〉)

Subject to:
∑
a1∈A2

σ(a1) = 1

σ(a1) ≥ 0 ∀a1 ∈ A1.

The solution to this linear program is player 1’s equilibrium strategy. Player 2’s strategy could be
similarly solved. In both matching pennies and rock-paper-scissors there is a unique equilibrium
corresponding to both players selecting their actions with equal probability. In Colonel Blotto the
equilibrium is also unique but is more complex:

σ1 =

〈
4

9
, 0,

1

9
, 0,

4

9

〉
σ2 =

〈
1

18
,
4

9
,
4

9
,

1

18

〉
.

For zero-sum games, an equilibrium can be computed efficiently as the solution to the above
linear program. However, finding equilibria in two-player general-sum games requires a more dif-
ficult quadratic programming solution (Mangasarian & Stone, 1964). Beyond two-players things
are even more difficult. McKelvey and McLennan (1996) survey a variety of techniques for com-
puting equilibria in matrix games, includingn-player general-sum matrix games.

This is the general case, though. In team games, where all players receive identical rewards, the
joint action that maximizes one player’s reward maximizes all players’ rewards, and is therefore a
Nash equilibrium. For example, in the coordination game, both players selecting the same action
are two equilibria. In Bach–or–Stravinsky, although not strictly a team game, these same joint

1In the class of zero-sum games we also include allconstant-sum games, since this constant can be subtracted
from all the rewards turning the game into a zero-sum game. These games have identical properties to their zero-sum
counterparts.

2There can actually be multiple equilibria, but they all have equal payoffs and are interchangeable (Osborne &
Rubinstein, 1994). That is, if〈σ1, σ2〉 and 〈σ′1, σ′2〉 are Nash equilibria, then〈σ1, σ

′
2〉 and 〈σ′1, σ2〉 are also Nash

equilibria, and∀i Ri(〈σ1, σ2〉) = Ri(〈σ′1, σ′2〉).
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strategies are again equilibria, although each player would prefer one equilibrium over the other.
In the final game, three player matching pennies, although it is not strictly zero-sum, the minimax
optimal solution where all players select actions with equal probability is the unique equilibrium.

The formal complexity of constructing a Nash equilibrium for a general matrix game is an
open problem. However, a number of related questions, such as identifying whether equilibria
with certain properties exist, is in fact known to be NP-Hard (Gilboa & Zemel, 1989; Conitzer
& Sandholm, 2003b). These results question the possible general efficiency of any equilibrium
learning algorithms, both for matrix games and for stochastic games. From a practical perspective,
this could limit the rate of convergence of equilibrium learning algorithms in their worst-case. This
fact, though, will not come into play in our analysis.

2.4 Stochastic Games

Stochastic games are a superset of MDPs and matrix games, including both multiple agents and
multiple states (see Figure 2.1). They were first examined in the field of game theory and now
more recently in the field of reinforcement learning. Astochastic game(Shapley, 1953; Filar &
Vrieze, 1997) is a tuple(n, S,A1...n, T, R1...n), where,

• n is the number of players,

• S is the set of states,

• Ai is the set of actions available to playeri (andA is the joint action spaceA1 × . . .×An),

• T is the transition function,S×A× S→ [0, 1], such that3,

∀s ∈ S ∀a ∈ A
∑
s′∈S

T (s, a, s′) = 1,

• andRi is the reward function for theith agent,S×A→ R.

This is shown graphically in Figure 2.6. Essentially, stochastic games can be thought of as
an extension of MDPs to multiple agents, and have occasionally been referred to as multiagent
MDPs (Boutilier, 1996) and competitive MDPs (Filar & Vrieze, 1997). Instead of a single agent,
there are multiple agents whosejoint action determines the next state and rewards to the agents.
Also, notice that each agent has its own independent reward function.

Stochastic games can equally be thought of as an extension of the concept of matrix games to
multiple states. Each stochastic game has a matrix game associated with each state. The immediate
payoffs at a particular state are determined by the matrix entriesRi(s, a). After selecting actions
and receiving their rewards from the matrix game, the players are transitioned to another state and
associated matrix game, which is determined by their joint action. Therefore, stochastic games
contain as subsets of the framework: MDPs (whenn = 1) and repeated games (when|S| = 1).

3If S is continuous then the following summation, along with other summations overS in this chapter, should be
replaced by an integral. Likewise, ifAi is continuous then the use of summations over action sets should be replaced
by an integral.
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Figure 2.6: Graphical depiction of the stochastic game framework. Not all actions and transitions
are shown.

2.4.1 Examples

Since MDPs and repeated games are both included in the framework of stochastic games, we have
already given some examples of stochastic games. The single player grid soccer as well as all the
matrix games in Table 2.1 are also examples of stochastic games. We introduce three specifically
multiple state and multiple agent domains to further illustrate the model of stochastic games. These
same games are also used in empirical results later in this work.

Grid Soccer

The first example is the full two player version of the example MDP described in Section 2.2.1.
This version of grid soccer was first examined by Littman (1994). There are two players, marked
A andB, that occupy non-identical locations from among the twenty grid cells. In addition, one
player is in possession of the ball. This defines a state space,S, where|S| = 20×(20−1)×2 = 760.
Each player independently selects among the actions:N, S, E, W, and the hold action,H. As in the
single player definition, these actions are then executed in random order. If an action causes the
agent possessing the ball to enter its opponent’s location, then the possession changes. Entering
the other player’s location otherwise has no effect. The player receives a reward of1 for entering
the goal with possession of the ball, and the other player receives a reward of−1. After a goal, the
game is reset to one of the two initial states, where the players locations are shown in Figure 2.7
and possession is determined randomly. Notice that in the two-player definition, the next state is
determined by the joint action of the players. An example of possible transitions and associated
probabilities are shown in Figure 2.7. From any state and joint action, there are at most two possible
next states, which are determined by the order of execution of the actions.

Grid Navigation

A non-competitive example of a stochastic game is Hu’s grid navigation domain (Hu, 1999) shown
in Figure 2.8. The agents start in two corners and are trying to reach the goal square on the
opposite wall. They receive a reward of1 for an action that enters this location, and a reward of
0 otherwise. The players have the four compass actions (i.e.,N, S, E, andW), which are in most
cases deterministic. If the two players attempt to move to the same square, both moves fail. To
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Figure 2.7: Two player grid soccer. The initial states are shown on the left, where possession is
determined randomly. An example transition from a particular state andjoint action is shown on
the right. The outcome depends on the order that the actions are executed. IfA’s action is executed
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Figure 2.8: Grid navigation game. The dashed walls represent the transitions that are uncertain,
i.e., trying to cross the walls will fail with probability1/2.

make the game interesting and force the players to interact, from the initial starting position the
North action is uncertain, and it moves the player North with probability0.5. Hence, the optimal
path for each agent is to move laterally on the first move and then move North to the goal, but if
both players move laterally then the actions fail. So the players must coordinate their actions.

Goofspiel

Goofspiel (or The Game of Pure Strategy) was invented by Merrill Flood while at Princeton (Flood,
1985). The game has numerous variations, but here we focus on the simple two-player,n-card
version. Each player receives a suit of cards numbered1 throughn, a third suit of cards is shuffled
and placed face down as the deck. For each round, the next card is flipped over from the deck,
and the two players secretly select a card. They are revealed simultaneously and the player with
the highest card wins the card from the deck, which is worth its number in points. If the players
choose the same valued card, then neither player gets any points. Regardless of the winner of the
round, both players discard their chosen card. This is repeated until the deck and players hands are
exhausted. The winner is the player with the most points. The standard version of the game uses
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n VALUE(det) VALUE(random) |S| |S × A| SIZEOF(π orQ)
4 −2 −2.5 692 15150 ∼ 59KB
8 −20 −10.5 3× 106 1× 107 ∼ 47MB
13 −65 −28 1× 1011 7× 1011 ∼ 2.5TB

Table 2.2: Facts about goofspiel. The table shows the number of states and state-actions, and the
size of a stochastic policy orQ table for goofspiel depending on the number of cards,n. The
VALUE columns list the worst-case value of the best deterministic policy and the random policy
respectively.

all thirteen cards in a suit (n = 13), but smaller versions can also be considered.

This game can be described using the stochastic game model. The state is the current cards in
the players’ hands and deck along with the upturned card. The actions for a player are the cards in
the player’s hand. The transitions follow the rules as described, with an immediate reward going
to the player who won the upturned card. Since the game has a finite end and we are interested in
maximizing total reward, we use the discounted reward framework and set the discount factorγ to
be1. We discuss reward formulations in the next section.

This game has numerous interesting properties. First, notice that this game is zero-sum, and
as with many zero-sum games any deterministic strategy can be soundly defeated. In this game,
a deterministic strategy can be defeated by simply choosing the card valued one higher than the
player’s deterministically chosen card. The defeating strategy will win every card except one,
and so the deterministic strategy will lose by at least sixty-five (

∑
i=1...12 i − 13 = 65). On the

other hand, randomly selecting actions is a reasonably good policy in comparison. The defeating
strategy for the random policy is to select the card matching the value of the upturned card (Ross,
1971). The random strategy, in this case, would have an expected loss of twenty-eight points.
These values along with the same worst-case values for other sizes of the game are summarized in
Table 2.2.

The third property is related to the tractability of solving the game. Notice that the number
of states and state-action pairs grow exponentially with the number of cards. With the standard
sized game,n = 13, the state space is so large that just storing one player’s policy orQ-table
would require approximately 2.5 terabytes of memory. Gathering data on all of the state-action
transitions would require over1010 playings of the game4. Table 2.2 shows the number of states
and state-action pairs as well as the policy size for three different values ofn.

This game epitomizes the need for approximation and generalization techniques as we dis-
cussed for the single-agent learning problem in Section 2.2.3. We return to this game in Chapter 6,
where we present compelling results of learning in this challenging setting.

4Examining the number of states at each round, we find that it grows until the midpoint of the game is reached and
then it contracts. Each game can only visit one state and action for each round, so the number of games must be at
least the number of state-action pairs in the largest round. In the 13 card game, there are3.5× 1010 state-action pairs
in round 7, thus requiring at least that many games to experience each transition. Of course, if the other player is not
cooperating in the exhaustive search of the state space, many more games must be played.
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2.4.2 Solution Concepts

Stochastic games borrow solution concepts from both MDPs and matrix games. Like MDPs, the
goal for playeri in a stochastic game is to learn a policy that maximizes long-term reward. A policy
for playeri, πi is a mapping that defines the probability of selecting an action from a particular
state. Formally,πi ∈ S×A→ [0, 1], where,

∀s ∈ S
∑
a∈A

π(s, a) = 1.

Since deterministic strategies can be exploited in matrix games, deterministic policies can also be
exploited in stochastic games. Therefore, we cannot restricted ourselves to deterministic policies as
is common with the study of MDPs. Throughout this work, we consider the full space of stochastic
policies. We useπi to refer to a policy for playeri. We useπ to refer to a joint policy for all the
players, withπi being playeri’s policy within that joint policy. We use the notationΠi to be the
set of all possible stochastic policies available to playeri, andΠ = Π1 × . . . × Πn to be the set
of joint policies of all the players. We also use the notationπ−i to refer to a particular joint policy
of all of the players except playeri, andΠ−i to refer to the set of such joint policies. Finally, the
notation〈πi, π−i〉 refers to the joint policy where playeri follows πi while the other players follow
their policy fromπ−i.

Reward Formulations

The reward formulations of discounted reward and average reward also can be applied to stochastic
games to quantify the value of a policy. In the discounted reward framework, the value of the joint
policy π to playeri at state,s, with discount factor,γ, is,

V π
i (s) =

∞∑
t=0

γtE{rti|s0 = s, π}, (2.11)

whereE{rti|s0 = s, π} is the expected reward to playeri received at timet given the initial state
is s and the agents follow the joint policyπ. Notice that this is nearly identical to Equation 2.1 for
MDPs, except that each agent has a separate value function and it depends on the joint policy of
the agents. Similarly, the average reward formulation in stochastic games is defined as,

V π
i (s) = lim

T→∞

T∑
t=0

1

T
E{rti|s0 = s, π}. (2.12)

As with MDPs, we can also defineQ-values for a given player for a particular joint policy. For
the discounted reward framework, this corresponds to,

Qπ
i (s, a) = Ri(s, a) + γ

∑
s′∈S

T (s, a, s′)V π
i (s′).

As with MDPs, it will often be much easier for learning algorithms to focus onQ-values instead
of state values.
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Best Response and Equilibria

Notice that a policy for a player can only be evaluated in the context of all the player’s policies.
This is the same difficulty faced by matrix games and the same solution concepts can be applied
from matrix games. Since the set of stochastic games also contains all matrix games, we know
that there is no optimal policy independent of the policies of the other players. The concept of
best-response, though, can be defined.

Definition 4 For a stochastic game, thebest-response functionfor player i, BRi(π−i), is the set
of all policies that are optimal given the other player(s) play the joint policyπ−i. Formally,π∗i ∈
BRi(π−i) if and only if,

∀πi ∈ Πi ∀s ∈ S V
〈π∗i ,π−i〉
i (s) ≥ V

〈πi,π−i〉
i (s).

We can also define the concept of a best-response equilibrium or Nash equilibrium.

Definition 5 For a stochastic game, aNash equilibriumis a collection of policies, one for each
player,πi, such that,

πi ∈ BRi(π−i).

So, no player can do better by changing policies given that the other players continue to follow the
equilibrium policy.

2.4.3 Types of Stochastic Games

The same classification for matrix games can be used with stochastic games.Team gamesare ones
where all the agents have the same reward function.Zero-sum gamesare two-player games where
one player’s reward is always the negative of the other’s. Andgeneral-sum gamesrefer to all types
of reward structures. In addition, stochastic games can also be classified based on their transition
function. A single-controller stochastic gameis a game where transition probabilities depend on
the state and the action of only one of the players. Formally, this corresponds to,

∀s, s′ ∈ S ∀a, a′ ∈ A a1 = a′1 ⇒ T (s, a, s′) = T (s, a′, s′).

Similarly, in no-control stochastic games, no player’s action affects the transition probabilities.
Formally,

∀s, s′ ∈ S ∀a, a′ ∈ A T (s, a, s′) = T (s, a′, s′).

Like matrix games, zero-sum stochastic games have a unique Nash equilibrium, although find-
ing this equilibrium is no longer as trivial. We examine techniques for solving stochastic games in
Chapter 3.

2.4.4 The Markov Assumption

The Markov assumption from Markov decision processes still holds in stochastic games but it has
a different form.
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Definition 6 A multiagent decision problem isMarkovian if and only if, the sequence of states
(st ∈ S), joint actions (at ∈ A), and rewards (rti ∈ R) satisfies

Pr
{
st = s, rti = ri|st−1, at−1, . . . , s0, a0

}
= Pr

{
st = s, rti = ri|st−1, at−1

}
,

that is, if the next state and rewards depend only on the previous state andall of the agents’ actions,
but not on the history of states and actions.

From the game’s perspective, stochastic games are Markovian, but from a single agent’s per-
spective, the process is not Markovian. Specifically, the transition probabilities associated with
a single agent’s action from a state are not stationary and change over time as the other agents’
action choices change. These choices are likely influenced by the past history of play, and so the
history of play influences the future transition probabilities when revisiting a state. Therefore, from
a single agent’s perspective, the environment no longer appears stationary or Markovian.

This is one of the key challenges of learning in multiagent environments. The Markov assump-
tion and the stationarity property are critical to single-agent reinforcement learning research. This
violation of basic assumptions requires new techniques to be developed to learn effective policies
in stochastic games.

2.4.5 Relationship to Matrix Games and MDPs

In addition to subsuming MDPs and matrix games, stochastic games have further connections to
these simpler frameworks. Consider fixing stationary policies for all but one of the agents. The
resulting decision process for the remaining agent is a Markov decision process. The MDP’s states
and the player’s action set are the same as in the original stochastic game. The transition function
is composed of the stochastic game’s transition function with the other players’ policies. Formally,
let T be the stochastic game transition function andπ−i ∈ Π−i be a fixed policy for all the other
agents, then the MDP transition function̂T is,

T̂ (s, ai, s
′) =

∑
a−i∈A−i

π−i(s, a−i)T (s, 〈ai, a−i〉 , s′).

So, if the other agents are stationary and not learning, the problem simply reduces to the problem
of learning to act in an MDP.

There is also a connection between matrix games and stochastic games. A Nash equilibrium
policy in a stochastic game can be reduced to Nash equilibrium strategies in a set of associated
state-specific matrix games. These matrix games are defined by theQ-values of the particular
equilibrium policy. Formally, letπ∗ be a Nash equilibrium for a stochastic game. The joint strategy
where playeri plays actionai with probabilityπ∗i (s, ai) is a Nash equilibrium for the matrix game
whereRi(a) = Qπ∗(s, a). This fact can be seen by observing that ifπ∗ did not define a Nash
equilibrium of the matrix game defined byQπ∗(s, ·), then some player could play a different action
at states to improve its strategy in that matrix game. This would also improve the value of the
player’s overall policy and so the joint policy is not an equilibrium of the overall stochastic game,
proving the fact by contradiction. This relationship of stochastic game equilibria to equilibria in
the game’s state-wise matrices will be a useful fact for devising learning algorithms, as we will see
in Chapter 3.
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2.4.6 Behavioral Policies

In our presentation of repeated games and stochastic games we have restricted our attention to
Markovian policies, i.e., policies whose action distributions depend only on the current state. This
was intentional as this work will exclusively examine the learning of Markovian policies. However,
these policies are a subset of a larger class of policies, calledbehavioral policies. Behavioral
policies depend not only on the current state but also on the complete history of past states and
joint actions.

Let Hk : (S × A)k be the set of all possible histories of lengthk of past states and associated
joint actions. Then, let,H = ∪∞i=0Hk, be the union of possible finite length histories. A behavioral
policy for playeri, is a mapping,πi : H × S×Ai → [0, 1], where,

∀h ∈ H ∀s ∈ S
∑
a∈A

π(h, s, a) = 1.

Markovian policies are contained within this set as policies satisfying,

∀h1, h2 ∈ H ∀s ∈ S π(h1, s, a) = π(h2, s, a).

One could also consider the set ofk-Markov policies, where the policy has the same distribution
over actions for any histories that agree on the lastk state and joint-action pairs. As with Markov
policies, a notion of value for joint policies can also be defined for behavioral policies, using either
a discounted or average reward formulation.

Repeated Games

Behavioral policies have been studied mostly in the framework of repeated games, where they are
called behavioral strategies (Osborne & Rubinstein, 1994). Since repeated games have a single
state, a behavioral strategy is a mapping from histories to the probability of selecting a particular
action. It is a well-studied phenomenon in game theory that in repeated games there exist additional
Nash equilibria when considering the space of behavioral strategies. These additional equilibria
can also be strictly better than all Nash equilibria involving just Markovian strategies.

The canonical example of this is in the prisoner’s dilemma. The game is shown in Table 2.3.
Notice that the only Nash equilibrium of the game is the pure strategies where both players choose
action D. In the repeated game with behavioral strategies, other equilibria exist. In particular,
consider theTit-for-Tatstrategy, which is a 1-Markov behavioral strategy. The strategy playsC on
the first playing, and afterward plays the same action its opponent played on the previous playing.
For discounted reward with a suitably high value ofγ or for average reward, Tit-for-Tat by both
players is a Nash equilibrium. Also, it nets both players an average reward of 3, as opposed to the
Markovian equilibrium where both receive a reward of 1.

Folk Theorems

There are a collection of theorems referred to as folk theorems, since their originator is unknown,
that generalize the idea of Tit-for-Tat (Osborne & Rubinstein, 1994). The essence of these results is
that under a variety of reward formulations, for anystrictly enforceableandfeasibleset of payoffs
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R1 =
C
D

(
3
C

0
D

4 1

)
R2 =

C
D

(
3
C

4
D

0 1

)

Table 2.3: The prisoner’s dilemma matrix game.

to the players, there exist equilibrium behavioral strategies that achieve these payoffs. Strictly
enforceable means all players receive a payoff larger than their minimax optimal value (i.e., the
value of the game if it were zero-sum). Feasible means the payoffs equal a convex combination of
the payoffs associated with the joint actions of the game. The proofs involve constructingtrigger
strategiesthat play a particular sequence of joint actions (whose average or discounted value equals
the target value), and punishing any deviance by the other player from this sequence by playing the
strategy that forces them to get their minimax value. Since following along with the trigger gets a
higher value, the other player has no incentive to deviate and be punished.

The power of the folk theorems is that certain communally beneficial play, such as both players
choosingC in the prisoner’s dilemma, can be justified as an equilibrium. The problem with the folk
theorems is that any feasible and enforceable payoffs to the players can be justified as achievable
by some behavioral strategy Nash equilibrium. In addition, from the perspective of prescribing a
particular behavior, these equilibria really depend on an announcement of strategy. That is, the
other player needs to know the specific trigger strategy being played in order to comply. In our
learning paradigm there is no announcement and the game is unknown, and so requires exploration.
It’s not clear that these trigger strategies, or their subgame perfect variants (Osborne & Rubinstein,
1994), would operate well in these circumstances.

Our Focus on Markov Policies

As we have mentioned, this work will focus on Markovian policies. Although there are specific
situations where behavioral policies can offer a strictly superior equilibrium solution, such as in
prisoner’s dilemma, they also add a number of complications. First, many games, such as zero-
sum games, receive no benefit from the use of behavioral policies. Second, as the folk theorems
demonstrate, there are an infinite number of equilibria in the space of behavioral strategies, with
little justification for one over the other. Finally, behavioral polices severely increase the complex-
ity of the learning problem. If one considers the number of states for an agent as distinguishable
choice points, then the number of these grow exponentially as thek in k-Markov policies increases.
For example, consider the grid navigation game in Section 2.4.1. The number of choice points for
this game grows from 73 for 0-Markov policies, to 84,264 for 1-Markov polices, to approximately
108 for 2-Markov policies. In this domain, the history of very recent actions is probably not even
particularly helpful. A more helpful class of behavioral policies would be ones that could make
decisions contingent upon the last joint action selected in every state. Such a class of polices would
need to define actions for well over10100 states.

Obviously a line has to be drawn on the space of policies considered in order for learning to
be tractable. Investigations in domains similar to prisoner’s dilemma will want to examine a larger
class of policies, such ask-Markov. Sandholm and Crites (1996) did just that when exploring
reinforcement learning algorithms in iterated prisoner’s dilemma. In the present work, we simply
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draw that line around Markovian policies. Although not a focus of this work, we believe many
of the techniques described in this thesis still should have applicability in learning more general
classes of policies.

2.5 Summary

In this chapter we presented the framework of stochastic games as a general model of multiagent
interaction. We also described the subsumed frameworks of Markov decision processes, studied in
the reinforcement learning community, and matrix games, studied in the field of game theory. We
presented examples of problems using these models, including problems that will be the testbed
for empirical experiments later in this work. We also introduced the key solution concepts and al-
gorithms for MDPs: discounted and average reward, value functions, optimal policies, and simple
reinforcement learning techniques. We presented an overview of the key solution concepts in ma-
trix games: best-responses and Nash equilibria. Finally, we showed how stochastic games merges
these two frameworks combining the challenges of learning to maximize reward over time with
the strategic problems of multiple interacting agents. In the next chapter, we examine techniques
for finding solutions and learning within the framework of stochastic games.



Chapter 3

Categorization of Previous Work

In this chapter we explore previous work on solving and learning in stochastic games. We also
review work on agent limitations, focusing primarily on handling limitations within the context of
decision making.

We begin by examining algorithms forsolvingstochastic games, which amounts to finding a
Nash equilibrium for the game. These algorithms were developed within the field of game theory,
and therefore do not concern themselves with mechanisms for learning to play an equilibrium. We
present these algorithms because equilibria is an important concept for the learning paradigm, and
they also have strong connections to individual learning algorithms.

We then explore the variety of algorithms forlearning in stochastic games. We separate the
algorithms into two classes: equilibrium learners and best-response learners. These algorithms
differ on the specifics of what they are explicitly seeking to optimize. We make heavy use of
this distinction in Chapter 4 when we introduce desirable properties of learning algorithms. We
also discuss the algorithms’ connections to their game theoretic counterparts for solving stochastic
games.

Finally, we examine previous work in handling agent limitations in a decision making context.

3.1 Finding Equilibria

The first algorithm presented for finding a Nash equilibrium in a stochastic game was due to Shap-
ley (1953) along with his statement of the stochastic game framework. The algorithm solved zero-
sum games using an iterative dynamic programming process. Since then, numerous techniques
have been proposed. Before we examine a few of these methods, we look at the basic assumptions
and goals motivating these algorithms.

Game theory is concerned with Nash equilibria primarily as a predictive concept. That is,
individually rational and knowledgeable agents will only play Nash equilibria. Finding equilibria
is then important for the purpose of predicting behavior. The algorithms from game theory have
some very strong assumptions.

1. The game,(n, S,Ai, T, Ri), is fully known.

2. The goal is to compute the value of a Nash equilibrium, i.e., the expected discounted (or
average) reward for all the players of playing an equilibrium.

47
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1. Initialize V arbitrarily.

2. Repeat,

(a) For each state,s ∈ S, compute the matrix,

Gs(V ) =

[
ga∈A :

R(s, a)+
γ
∑

s′∈S T (s, a, s′)V (s′)

]
.

(b) For each state,s ∈ S, updateV ,

V (s)← Value [Gs(V )] .

Table 3.1: Shapley’s value-iteration algorithm for finding equilibria in zero-sum stochastic games.

3. No concern is given to how this behavior might arise in actual multiagent interactions.

Learning algorithms, which we discuss later, reject most of these assumptions. Many of the
learning algorithms, though, have a strong similarity to one of these “counterpart” methods from
game theory. We note the similarities with these algorithms when we explore the specific learning
algorithms. In addition, some of these algorithms also have a temporal differencing flavor, which
we introduced in Chapter 2 in the context of solving MDPs. This connection provides further
insight into the relationship between multiagent and single-agent techniques.

All of these algorithms use the concept of a value function over states,V π(s). Most of the tech-
niques focus on zero-sum stochastic games, so there is a unique Nash equilibrium value function.
The goal of these algorithms is to converge to this “optimal” value function,V ∗(s).

We first explore Shapley’s original iterative algorithm for zero-sum games, and then examine
two other iterative techniques: Pollatschek and Avi-Itzhak, and Van der Wal. We then examine
how the game can be solved as a linear program. Finally, we look at fictitious play, that involves
“playing” the stochastic game to find a solution.

3.1.1 Shapley

Shapley’s algorithm (1953) for computing a Nash equilibrium in a zero-sum stochastic game was
a direct result of his existence proof of equilibria in these games. The algorithm is shown in
Table 3.1. The algorithm uses a temporal differencing technique to backup values of next states
into a simple matrix game,Gs(V ). The value functionV is then updated by solving the matrix
game for a Nash equilibrium value at each state. Since the stochastic game is zero-sum, these
intermediate matrix games are also zero-sum, and therefore have a unique value.

Notice the algorithm is nearly identical to value iteration for MDPs, with the “max” operator
replaced by the “Value” operator. The algorithm also shows that equilibria in stochastic games
are solutions to Bellman-like equations. The algorithm’s value functionV converges toV ∗ which
satisfies the following equations,

∀s ∈ S V ∗(s) = Value [Gs(V
∗)] . (3.1)
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1. Initialize V arbitrarily.

2. Repeat,

πi ← ∀s ∈ S Solvei [Gs(V )]

V (s) ← E
{∑

γtrt|s0 = s, πi

}
.

Table 3.2: Pollatschek & Avi-Itzhak’s policy-iteration algorithm for finding equilibria in zero-sum
stochastic games. The functionGs is the same as presented in Table 3.1.

The crucial fact in proving convergence ofV is to show that the value function mapping in
Step 2 of Table 3.1 is a contraction mapping under the max-norm. LetPV be the value function
resulting from applying Step 2 to the functionV . Formally,P is a contraction mapping under the
max norm if and only if,

||PV − PV ∗||max < γ||V − V ∗||max. (3.2)

SinceV ∗ satisfies Equation 3.1 thenPV ∗ = V ∗. It is fairly easy to see that this condition is enough
to show that repeated applications of Step 2 results inV ’s decreasing distance toV ∗, resulting in
convergence.

3.1.2 Pollatschek & Avi-Itzhak

Just as Shapley’s algorithm is an extension of value iteration to stochastic games, Pollatschek &
Avi-Itzhak (Pollatschek & Avi-Itzhak, 1969) introduced an extension of policy iteration (Howard,
1960). The algorithm is shown in Table 3.2. Each player selects the equilibrium policy according
to the current value function, making use of the same temporal differencing matrix,Gs(V ), as in
Shapley’s algorithm. The value function is then updated based on the actual rewards of following
these policies.

Like Shapley’s algorithm, this algorithm also computes the equilibrium value function, from
which can be derived the equilibrium policies. This algorithm, though, is only guaranteed to con-
verge if the transition function,T , and discount factor,γ, satisfies a certain property. In particular,
γ < 1/3, or the following holds,

max
s∈S

∑
s′∈S

(
max
a∈A

T (s, a, s′)−min
a∈A

T (s, a, s′)

)
<

1− γ
γ

.

This amounts to a limit on the overall effect the players’ actions can have on the transition function.
For example, the extreme of no-control stochastic games satisfies this property.

A similar algorithm by Hoffman & Karp (Hoffman & Karp, 1966) which alternates the policy
learning, rather than it occurring simultaneously, avoids the added assumption. Obviously, this
requires control over when the other agents in the environment are learning, and so limits the
usefulness of the technique from our learning perspective.
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1. Initialize V arbitrarily.

2. Repeat,

(a) Compute an optimal policy for player two,

π2 ← ∀s ∈ S Solvei [Gs(V )] .

(b) Repeatλ times,∀s ∈ S,

V (s)← max
a1∈A1

∑
a2∈A2

π2(s, a2)

(
R(s, 〈a1, a2〉) + γ

∑
s′∈S

T (s, 〈a1, a2〉 , s′)V (s′)

)
.

Table 3.3: Van der Wal’s class of algorithms depending on the value of the parameter,λ ∈ N∪{∞}.
If λ = 1 then the algorithm is equivalent to Shapley’s algorithm in Table 3.1. Ifλ = ∞ then the
algorithm is the Hoffman and Karp variant of Pollatschek & Avi-Itzhak’s algorithm in Table 3.2.

3.1.3 Van der Wal

The similarity of Shapley’s algorithm to value iteration, and the Pollatschek and Avi-Itzhak al-
gorithm to policy iteration, suggests a mixture of the two techniques might be possible. This is
precisely the family of algorithms explored by Van der Wal (Van der Wal, 1977) using a inte-
ger parameterλ ∈ N ∪ {∞}. This parameter determines the number of steps of lookahead in
computing the new value function. Theλ serves a similar purpose to the parameterized temporal
differencing algorithms, such as Sarsa(λ ∈ [0, 1]), providing a continuum between a pure policy
iteration approach, and a pure value iteration approach.

Like Shapley and Hoffman and Karp,V converges toV ∗, and equilibrium policies can be
constructed for both players by solvingGs(V

∗).

3.1.4 Linear and Nonlinear Programming

As we discussed in Section 2.3.3, equilibria can be computed for zero-sum matrix games by solving
a particularly constructed linear program. For two-player general-sum matrix games, an equilib-
rium can be found as a solution to a nonlinear program with a quadratic objective function and
linear constraints (Mangasarian & Stone, 1964).

General mathematical programming techniques can also be extended to stochastic games. For
zero-sum stochastic games, the objective functions and constraints remain linear. For two-player
general-sum stochastic games, the solution now requires solving a nonlinear complementarity
problem. Filar and Vrieze (Filar & Vrieze, 1997) give a thorough treatment of mathematical
programming in stochastic games, both for zero-sum and general-sum. Although, these are highly
efficient methods for finding equilibria in known games, they do not fit well with the learning
assumptions of incremental experience.
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3.1.5 Fictitious Play

The final algorithm for finding equilibria in a known stochastic game is the technique of fictitious
play. This was first proposed as a technique for finding equilibria in matrix games (Brown, 1949;
Robinson, 1951) and was later extended to stochastic games (Vrieze, 1987). Fictitious play is also
the algorithm that most easily fits into a learning paradigm. The stochastic game version of the
algorithm is shown in Table 3.4.

Fictitious play assumes opponents play stationary strategies. The algorithm maintains informa-
tion about the average estimated sum of future discounted rewards. This is computed by maintain-
ing a total of the estimated future discounted reward that would have been received if that action
was always selected from that state,Qi(s, a)1. The algorithm then deterministically selects the ac-
tion for each player that would have done the best in the past, according toQi(s, a). The estimated
sum of future discounted rewards is computed using a simple temporal differencing backup.

1. InitializeQi(s ∈ S, ai ∈ Ai) according to specific constraints, andt→ 0.

2. Repeat for each state,s ∈ S,

(a) Let ai = argmaxai∈Ai
Qi(s, ai).

(b) UpdateQi(s, ai), ∀s ∈ S∀a′i ∈ Ai

Qi(s, a
′
i)← Qi(s, a

′
i) +R(s, 〈a−i, a′i〉) + γ

(∑
s′∈S

T (s, a, s′)V (s′)

)

where,

V (s) = max
ai∈Ai

Qi(s, ai)

t
.

(c) t→ t+ 1.

Table 3.4: Fictitious play for two-player, zero-sum stochastic games using a model.

The algorithm has a number of nice properties. It is capable of finding equilibria in both
zero-sum games and some classes of general-sum games, in particular iterated dominance solvable
games (Fudenberg & Levine, 1999). These are games where a repeated process of eliminating
strictly dominated actions leaves only a single policy for both players, which must be a Nash
equilibrium (Osborne & Rubinstein, 1994).

The algorithm is also very amenable to a more explicit agent setting. We can easily separate
the algorithm into separate processes, one for each agent, where each agent selects its action that
maximizes its ownQi(s, ai), observes the action selected by the other agent and updatesQi(s, ai).
If both players are following fictitious play then this is equivalent to the described algorithm.

1Although not strictly a Q-value in the sense of Q-learning, it still serves to measure the relative value of selecting
various actions from various states.
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Matrix Game
Solver

+
Temporal

Differencing
=

Stochastic Game
Solver

MG + TD = Solving
LP TD(0) Shapley
LP TD(1) Pollatschek & Avi-Itzhak

Hoffman & Karp
LP TD(λ) Van der Wal
FP TD(0) Fictitious Play

LP: linear programming FP: fictitious play
QP: quadratic programming

Table 3.5: Summary of algorithms for solving stochastic games. Each contains a matrix game
solving component and a temporal differencing component. “Solving” algorithms assume the
transition and reward function are known.

Its drawback is that for zero-sum games, it can onlyfindan equilibrium policy, without actually
playing according to that policy. One obvious reason for this drawback is that the algorithm is
deterministic, and cannot play stochastic policies. Since many zero-sum games do not have pure
policy equilibria, it cannot play according to any equilibrium policy. There is an approximation to
fictitious play for matrix games called smooth fictitious play (Fudenberg & Levine, 1999), which
is capable of playing mixed equilibrium. This variation, though, has yet to be generalized to
stochastic games.

3.1.6 Summary

With the exception of the mathematical programming methods, these algorithms have a similar
structure. They all have a matrix game solving component combined with a temporal differenc-
ing component. This decomposition is summarized in Table 3.5. We now examine algorithms
that learn a policy through observations of the game’s transitions and rewards. Some of direct
extensions of the equilibrium finding algorithms to conform to the basic learning assumptions.

3.2 Learning Algorithms

The focus of algorithms from game theory is to compute the value to the players, and possibly as-
sociated policies, of a Nash equilibrium for the stochastic game. Reinforcement learning presents
a different paradigm where the goal is tolearn through interaction rather thansolvefor an equi-
librium. In this paradigm, it is generally assumed that the game being played, specificallyT and
Ri are not known but must be observed through experience. Agents are required to select actions
in the environment in order to gain observations ofT andRi. The second distinguishing charac-
teristic is that these algorithms focus on the behavior of a single agent, and seek to learn a policy
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specifically for that agent. The play for other agents, especially in zero-sum games, is not under
the agent’s control. There is still a great degree of variation in whether the algorithms are required
to observe the actions selected by the other agents or the other agent’s rewards.

We distinguish between to two broad classes of learning algorithms, with very different explicit
goals. Equilibrium learners explicitly seek to estimate and converge to their policy in one of the
game’s Nash equilibria. Best-response learners seek to directly learn and play a best-response to
the other players’ policies. Although, not explicitly related to equilibria, best-response learners
have a strong connection to equilibria, which we explore further in Chapter 4 when we consider
rationality as a property of learning algorithms. These two classes of algorithms are then followed
by a brief discussion.

3.2.1 Equilibrium Learners

Equilibrium learners seek to learn and play a Nash equilibrium of the stochastic game. Since
an equilibrium is actually a joint policy, they actually seek to play their component of some Nash
equilibrium. For zero-sum games this insures optimal worst-case performance, and also guarantees
convergence to a Nash equilibrium against other equilibrium-playing opponents. For general-
sum games there is the difficulty of multiple equilibria creating an equilibrium selection problem.
This problem is ignored by most algorithms, assuming that there is either a unique equilibrium or
there is some other mechanism for solving the equilibrium selection problem. As with zero-sum
games, playing against other equilibrium-playing agents insures that the policies convergence to
the game’s unique (or selected) equilibrium.

There has been a line of research over the past decade in regards to the development of equilib-
rium learning algorithms, as well as determining their conditions for convergence. We review the
continuing development of these techniques. It is useful, though, to note that all of the algorithms
have a nearly identical structure. This is shown in Table 3.6. The algorithms differ mainly on the
final line of Step 2(b) by using different definitions of theValue operator.

Minimax-Q

Littman (1994) extended the traditional Q-Learning algorithm for MDPs to zero-sum stochastic
games. The notion of aQ function is extended to maintain the value ofjoint actions, and the backup
operation computes the value of states differently. Instead of using the “maxa∈AAi” operator in Step
2(b) of Table 3.6, it computes the unique equilibrium value of the matrix game defined by theQ
values at the current state. This is the meaning of the “Value” operator in the table. TheValue
operator is efficiently computed using the linear program from Section 2.3.3 for solving zero-sum
matrix games. It is interesting to note that this is basically the off-policy reinforcement learning
equivalent of Shapley’s “value iteration” algorithm.

This algorithm does, in fact, converge to the stochastic game’s equilibrium solution, assuming
the other agent executes all of its actions infinitely often (Littman & Szepesvári, 1996). This is
true even if the other agent does not converge to the equilibrium, and so provides anopponent-
independentmethod for learning an equilibrium solution.
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1. InitializeQ(s ∈ S, a ∈ A) arbitrarily, and setα to be the learning rate.

2. Repeat,

(a) From states select actionai that solves the matrix game u[Q(s, a)a∈A ], with some
exploration.

(b) Observing joint-actiona, rewardr, and next states′,

Q(s, a)← (1− α)Q(s, a) + α(r + γV (s′)),

where,
V (s) = Value

( [
Q(s, a)a∈A

] )
.

Table 3.6: Equilibria Learning algorithm. The differences between Minimax-Q, Nash-Q, FFQ,
and CE-Q are in theValue function and theQ values. Minimax-Q uses the linear programming
solution for zero-sum games, Nash-Q uses the quadratic programming solution for general-sum
games, FFQ and CE-Q use specialized linear programming solutions. Also, theQ values in Nash-
Q and CE-Q are actually a vector of expected rewards, one entry for each player.

Nash-Q

Hu & Wellman (1998) extended the Minimax-Q algorithm to two-player general-sum stochastic
games. The algorithm is structurally identical and is also shown in Table 3.6. The extension
requires that each agent maintainQ values for all of the agents. Also, the linear programming so-
lution used to find the equilibrium of zero-sum games is replaced with the quadratic programming
solution for finding an equilibrium in two-player general-sum games.

This algorithm is the first to address the complex problem of general-sum stochastic games.
But the algorithm requires a number of very limiting assumptions. The most restrictive of which
limits the structure ofall the intermediate matrix games faced while learning, i.e., defined by the
valuesQ(s, a ∈ A). Specifically, all of these intermediate games must have a single equilibrium.
In addition, the equilibrium in all of these intermediate games must be a global optimum, or the
equilibrium in all of these intermediate games must be a saddle point. A global optimum is a joint
action that maximizes each agent’s payoff. A saddle point equilibrium is essentially an adversarial
equilibrium. If a player deviates, it not only gets a lower payoff (the equilibrium criterion), but the
other player necessarily gets a higher, or equal, payoff. This is a non-trivial restriction since it is
not possible to predict whether the assumption remains satisfied while learning.

Convergence Difficulties. The general convergence difficulties of Nash-Q can actually be at-
tributed to the fact that value iteration with general-sum games is not a contraction mapping under
the max-norm (Bowling, 2000). Remember from Section 3.1.1 thatP is a contraction mapping
if the value function,V , is guaranteed on each application ofP to move closer toV ∗ by a factor
of γ. We consider the backup,P , for which Step 2(b) of Table 3.6 is a stochastic approximation.
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s0 s1

(0, 0)

(
1, 1 1− 2ε, 1 + ε
1 + ε, 1− 2ε 1− ε, 1− ε

)
s2

(0, 0)

Q∗(s0) = (γ(1−ε), γ(1−ε)) Q∗(s1) =

(
1, 1 1− 2ε, 1 + ε

1 + ε, 1− 2ε 1− ε, 1− ε

)
Q∗(s2) = (0, 0)

Figure 3.1: Counterexample to Nash-Q being, in general, a contraction mapping. The diagram
shows a three state stochastic game, including the Nash equilibrium values,Q∗. All transitions are
deterministic and are independent of the actions selected. The only choice available to the agents
is in states1, where the corresponding matrix game has a unique Nash equilibrium where both
players choose their second action.

Specifically, for two players this is,

PQ(s, a) = (R1(s, a), R2(s, a)) + γ
∑
s′∈S

T (s, a, s′) Value
( [

Q(s′, a′)a′∈A

] )
.

Consider the stochastic game with three states shown in Figure 3.1. States0 always transitions
to states1 with rewards 0. States1 is a2×2 game with all actions causing the game to transition to
a state,s2, where no further rewards can be received. The rewards are shown above each transition,
with commas separating the rewards to each player.

Remember that Nash-Q maintains aQ-value for each player. This is represented in theQ-
values by a comma separating the values to player 1 and player 2. Consider the followingQ
function,

Q(s0, ·) = (γ, γ)

Q(s1, ·) =

(
1 + ε, 1 + ε 1− ε, 1

1, 1− ε 1− 2ε, 1− 2ε

)
Q(s2, ·) = (0, 0).

The matrix game corresponding toQ(s1) has a unique Nash equilibrium where both players choose
their first action. Notice that||Q−Q∗||max = ε. If P is a contraction mapping then after applying
P the values should be closer toQ∗. The actual values forPQ are,

PQ(s0, ·) = (γ(1 + ε), γ(1 + ε))

PQ(s1, ·) =

(
1, 1 1− 2ε, 1 + ε

1 + ε, 1− 2ε 1− ε, 1− ε

)
PQ(s2, ·) = (0, 0).

Notice that||PQ−PQ∗||max = 2γε, which is greater thanε if γ > 0.5. Hence with the max norm,
P is not a contraction mapping.
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This fact demonstrates that it is not just the non-uniqueness of equilibria in general-sum games
that makes convergence difficult. In the above example, all of the matrix games have a single
equilibrium, but the Nash-Q mapping is still not a contraction mapping. This is the reason Nash-
Q’s additional restrictions on the structure of all intermediate matrix games is necessary, and also
brings the general applicability of Nash-Q into question.

Friend-or-Foe-Q

Littman’s Friend-or-Foe-Q (FFQ) (2001) is an equilibrium learner that extends Minimax-Q to in-
clude a small class of general-sum games. Motivated by the assumptions of Nash-Q, which re-
quired that either the game be effectively zero-sum, so each intermediate game has a saddle point
equilibrium, or the game was a team game, so each intermediate game has a global optimum. This
extension handles both of these classes of games, as well as others, that do not by themselves fit
under the Nash-Q assumptions.

The algorithm, in essence, assumes there are two competing teams of agents in the stochastic
game. So, from one agent’s perspective, every other agent is either a friend or a foe. Knowing the
labeling, or inferring the labeling from observed rewards, the agent can alter the Minimax-Q value
computation to account for these labels.

TheValue computation uses the basic zero-sum linear program, but performs the program over
the joint actions of all the agents that are on the same team. The result is a joint action for one
team that maximizes their minimum reward received over all joint actions of the other team. The
action for the agent is then their component in this equilibrium joint action. Like Minimax-Q,
FFQ is guaranteed to converge to their policy in an equilibrium for the stochastic game. Although,
since cooperative games may have multiple equilibria where policies are not interchangeable, in
practice this algorithm can suffer from an equilibrium selection problem. With an agreed upon
team convention or arbiter for the equilibrium selection problem, then the team can be guaranteed
to be playing according to the same joint policy equilibrium.

CE-Q

The final equilibrium learning technique is Greenwald & Hall’s Correlated-Q (CE-Q) (2002) that
seeks to learn to play according to an equilibrium by using the broader class ofcorrelated equi-
libria . Nash equilibria are independent stochastic distributions over player’s actions. Correlated
equilibria allow for stochastic distributions over joint actions, where players do no randomize in-
dependently. A correlated joint policy is a mapping from states and joint actions to probabilities.
Formally,π ∈ (S×A)→ [0, 1], where,

∀s ∈ S
∑
a∈A

π(s, a) = 1.

To play according to a correlated policy, players must have access to a shared randomizer. This
may be a central arbitrator that informs each player of the action they are to execute in order to
follow the correlated policy.

A correlated joint policy is an equilibrium if and only if, for each player,i, each state,s, and
each action,ai, the following holds. Letσ−i(a−i|ai) be the conditional probability that the other
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agents select joint actiona−i, given agents are following the correlated joint policyπ and agenti
is playing actionai. Then, for alla′i, the following must be true,∑

a−i∈A−i

σ−i(a−i|ai)Qπ(s, 〈ai, a−i〉) ≥
∑

a−i∈A−i

σ−i(a−i|ai)Qπ(s, 〈a′i, a−i〉).

In other words, given the knowledge about the other player’s distribution gained from one agent’s
own prescribed action, that agent gains no increase in expected payoff by playing an action differ-
ent from its prescribed action.

All Nash equilibria are correlated equilibria, so this is a more general solution concept. In
addition, for matrix games, correlated equilibria are far easier to find and involve solving a linear
program, even in the case of general-sum games.

CE-Q is the straightforward replacement of theValue function in Table 3.6 with a method to
compute the value of some correlated equilibrium. Like the Nash equilibrium, though, this concept
is not unique and so the agents must use some central arbitrator to insure they all select the same
equilibrium when computing the value of a state. This technique is more efficient than Nash-Q,
since it does not require the complex quadratic programming Nash equilibrium solver. On the
other hand, it requires some agreed upon equilibrium selection and shared randomizer in learning
and execution, respectively. Greenwald & Hall do point out that there are recent algorithms for
independent agent’s empirical play to converge to a correlated equilibria in a repeated game. These
online techniques may also be able to remove the need for a central arbitrator to act as a shared
randomizer.

Learning in Team Games

Although, not the focus of this work, there has also been recent work on the problem of learn-
ing to play in a team stochastic game, where all agents have an identical reward function. The
challenge of learning to play a Nash equilibrium in these games is not difficult in practice. Even
single-agent learning techniques can achieve this goal (Claus & Boutilier, 1998). However, the
team game assumption opens up the possibility of stronger guarantees. In particular, Wang and
Sandholm’s (2002) Optimal Adaptive Learning is guaranteed to converge in self-play to theopti-
mal Nash equilibrium in any team stochastic game. That is, the play converges to strategies that
achieve the highest possible payoffs, thus avoiding all suboptimal Nash equilibria, which other al-
gorithms often converge to. Brafman and Tennenholtz (2002a) go further, presenting an algorithm
that with arbitrarily high probability will converge in self-play to an optimal Nash equilibrium in
polynomial time. In summary, the assumption that the game is a team game is very powerful for
making stronger guarantees on the learned policies.

3.2.2 Best-Response Learners

The second class of algorithms we examine do not explicitly consider equilibria. Instead, they
simply attempt to learn a best-response to the other player’s current policies. A major considera-
tion for looking at best-response learning is that agents are not always fully rational. Playing an
equilibrium policy is only sensible when the other agents also play according to the equilibrium.
When considering limited agents, they may not be capable of learning or playing the equilibrium
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policy. Best-response algorithms have the possibility of both coping with limited teammates as
well as exploiting limited opponents.

The first best-response learning algorithm we examine is the ubiquitous single-agent learning
algorithm, Q-learning. We then explore a learning variation of fictitious play, gradient techniques,
and the class of learners known asregret-minimizingalgorithms.

Q-Learning

Q-Learning (Watkins, 1989) is a single-agent learning algorithm specifically designed to find opti-
mal policies in MDPs. In spite of its original intent it has been widely used for multiagent learning,
and not without success (Tan, 1993; Sen, Sekaran, & Hale, 1994; Sandholm & Crites, 1996; Claus
& Boutilier, 1998). It also has some theoretical merits. As observed, when the other players play
a stationary strategy, the stochastic game “becomes” an MDP, and therefore Q-learning learns to
play an optimal response to the other players.

However, Q-learning traditionally cannot learn or play stochastic policies. This prevents Q-
learners from converging to equilibria solutions for the class of zero-sum games, since they may
only have mixed policy equilibria, such as matching pennies and rock-paper-scissors from Ta-
ble 2.1. There are single-agent learning techniques, similar to Q-learning, that are capable of
playing stochastic policies (Jaakkola, Singh, & Jordan, 1994; Baird & Moore, 1999; Sutton et al.,
2000; Baxter & Bartlett, 2000). These techniques mainly address the issues of partial observability
or function approximation in single-agent decision problems. There has been no investigation of
whether such techniques might perform well in multiagent environments.

An algorithm similar to Q-learning has also been investigated within the game theory com-
munity to explore convergence to equilibria (Jehiel & Samet, 2001). They examined a class of
stochastic finite games where the transitions for any given state are deterministic and controlled
by a single player. In addition, states are never revisited and rewards are only given for the ter-
minating state, which is reached in a finite number of steps. They demonstrated that a simple
strategy of choosing the action that maximizes the current value estimate, along with a simple
Monte Carlo value update, will converge to optimal play. Here, optimal play means a strategy that
guarantees a win, if such a guarantee is possible. The algorithm essentially amounts to Q-learning
with α = 1, while using episode replay to propagate values quickly through the Q-table. This
further demonstrates that Q-learning can often be quite successful, particularly in games that do
not require stochastic play.

Opponent Modelling

Opponent modelling Q-learning (Uther & Veloso, 1997) or joint action learners (JALs) (Claus &
Boutilier, 1998) are reinforcement learning algorithms that are similar to fictitious play. The algo-
rithm is shown in Table 3.7. Explicit models of the opponents are learned as stationary distributions
over their actions (i.e.,C(s, a−i)/n(s) is the probability the other players will select joint action
a−i based on past experience). These distributions, combined with learned joint-action values from
standard temporal differencing, are used to select an action. Uther & Veloso investigated this al-
gorithm in the context of a zero-sum domain, and Claus & Boutilier examined it in the setting of
team matrix games.
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1. InitializeQ arbitrarily, and∀s ∈ S C(s)← 0 andn(s)← 0.

2. Repeat,

(a) From states select actionai that maximizes,∑
a−i

C(s, a−i)

n(s)
Q(s, 〈ai, a−i〉)

(b) Observing other agents’ actionsa−i, rewardr, and next states′,

Q(s, a) ← (1− α)Q(s, a) + α(r + γV (s′))

C(s, a−i) ← C(s, a−i) + 1

n(s) ← n(s) + 1

where,

a = (ai, a−i)

V (s) = maxai
∑
a−i

C(s, a−i)

n(s)
Q(s, 〈ai, a−i〉).

Table 3.7: Opponent modelling Q-learning algorithm
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The algorithm has very similar behavior to fictitious play. It requires observations of the oppo-
nents’ actions, but not of their individual rewards. Like fictitious play, its empirical distribution of
play may converge to an equilibrium solution, but its action selection is deterministic and does not
play mixed strategies.

Infinitesimal Gradient Ascent

The final best-response learning algorithm we examine is Infinitesimal Gradient Ascent (IGA)
(Singh, Kearns, & Mansour, 2000b). Since this technique is highly related to the approach taken
throughout this work, the algorithm is described in detail in Chapter 4. We give a brief summary
here for completeness. The basic idea is for an agent to adjust its policy in the direction of the
gradient of the value function. Against a stationary opponent, the policy will over time converge
to a local maximum. Since the value function is linear in the space of policy parameters, all local
maxima are global maxima, and so it necessarily converges to a best-response.

The algorithm was originally defined for only a two-player, two-action matrix games, where
the reward function,Ri, is known. The concept, though, has also been applied as a single-agent
learning technique to multiple state MDPs and POMDPs. These multiple state algorithms can
scale to very large state spaces by learning within a parameterized subset of the complete policy
space (Sutton et al., 2000; Baxter & Bartlett, 2000), and performing gradient ascent on the policy’s
parameters. The original analysis of IGA demonstrated that, not only does it learn best-responses,
the average reward of two agents in self-play over time converges to the value of some Nash
equilibrium for the game. These results are stated more formally in Chapter 4.

Regret-Minimizing Algorithms

There is another category of algorithms that do not directly learn an equilibrium nor learn and
play best-responses, but rather seek to minimizeregret. The main property of these algorithms is
calledno-regret, also known asuniversal consistencyor Hanan consistency. These algorithms have
primarily been investigated in single-state games, such ask-armed bandit problems and matrix
games, and so we restrict our discussion to the single-state frameworks.

Regret at timeT is the difference between the total reward received inT playings and the value
of the best stationary strategy over those same playings. Consider the context of a repeated matrix
game for playeri. Let rt be the actual value the player received at time, and letNT (a−i) be the
number of times the other players played joint actiona−i in the firstT trials. Then, mathematically,
regret at timeT is,

Regreti(T ) = max
ai∈Ai

 ∑
a−i∈A−i

NT (a−i)Ri(〈ai, a−i〉)

−( T∑
t=1

rt

)
.

In other words, regret is the difference between the total reward the agent received and the amount
of reward the agent could have received had the player known the distribution of actions but not
the order.

An algorithm achieves no-regret if and only if,

lim
T→∞

Regreti(T ) ≤ 0.
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So, the algorithm must do at least as well as if the player had known the ahead of time the distri-
bution of the other agents’ actions. Notice that against a fixed strategy, the algorithm is guaranteed
to converge in payoffs to the value of the best-response strategy. Therefore, we have classified this
algorithm with other best-response learning methods. Notice, though, that the value of the best
action for a given distribution is at least as high as the minimax-optimal value of the game, if the
game were zero-sum. Therefore, in zero-sum games, no-regret algorithms guarantee at least the
Nash equilibrium value of the game. If the opponent, though, plays suboptimally, the actual total
reward received may be higher.

Techniques that achieve this property have been discovered, and rediscovered numerous times
(Fudenberg & Levine, 1999). One of the most well-known no-regret algorithm is Littlestone and
Warmuth’s randomized weighted majority (1994). A more recent algorithm by Auer and col-
leagues (1995) relaxed the requirement that payoffs for unplayed actions were observable. More
recently, Hart and Mas-Collel (2002) introduced an algorithm with an even stronger no-regret
property. They compare the total reward received with the amount of reward the agent could have
received if instead of playing some action,ai, it played a different action,a′i, for the particular
history of play. This is a strictly stronger notion of regret, which they demonstrate can also be
achieved.

There has been comparatively little work applying these concepts to models that include state,
such as MDPs or stochastic games. One exception for stochastic games is the work of Man-
nor (2001) of extending no-regret properties to average-reward stochastic games. There has been
no work to generalize these approaches to discounted reward stochastic games.

3.2.3 Summary

Like the algorithms from the game theory literature, many of the learning techniques have an easily
distinguishable matrix game solving component and temporal differencing component. This is
summarized in the “Learning” column of Table 3.5.

One of the observations that can be made from Table 3.5 is the lack of an RL algorithm with
a multiple step backup (i.e., policy iteration or TD(λ)). One complication for multi-step backup
techniques is that they areon-policy, that is they require that the agent be executing the policy it
is learning. In a multiagent environment, this would require that the other agents also be learn-
ing on-policy, which may not be the case. Despite this limitation it is still very suggestive of
new algorithms that may be worth investigating. Also, there has been work to make an off-policy
TD(λ) (Peng & Williams, 1996; Watkins, 1989), which may be useful in overcoming this limita-
tion.

Finally, the distinction between equilibrium learners and best-response learners is very useful.
In Chapter 4 we present two important properties of multiagent learning algorithms. Generally
speaking, each class of algorithms achieves one property but not the other. The properties also
demonstrate an additional connection between the two algorithm classes by demonstrating the
relationship of best-response learners to the concept of equilibria.
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Matrix Game
Solver

+
Temporal

Differencing
=

Stochastic Game
Solver

MG + TD = Solving Learning
LP TD(0) Shapley Minimax-Q

Friend-or-Foe-Q
LP TD(1) Pollatschek & Avi-Itzhak –

Hoffman & Karp
LP TD(λ) Van der Wal –
QP TD(0) – Nash-Q
CE TD(0) – CE-Q
FP TD(0) Fictitious Play Opponent Modelling / JALs

LP: linear programming FP: fictitious play
QP: quadratic programming CE: correlated equilibria solver

Table 3.8: Summary of algorithms for solving and learning in stochastic games. Each contains
a matrix game solving component and a temporal differencing component. “Solving” algorithms
assume the transition and reward function are known. “Learning” algorithms only receive obser-
vations of the transition and reward function.

3.3 Limitations

It is commonly recognized that humans are not capable of being fully rational. There is a whole
body of work in the social sciences relating to understanding humans’bounded rationality(Simon,
1982; Rubinstein, 1998). Bounded rationality is also a reality for artificial agents. In realistic prob-
lems agent limitations are unavoidable. These limitations may be due to the physical challenges
of broken actuators, poor control of motion, or incomplete or noisy sensing. The limitations may
also be due to the use of approximation techniques mentioned in Section 2.2.3. The effect is that
agents are often incapable of optimal decision making.

In this section we focus on work examining limitations in multiagent settings. In single agent
settings, it is possible to solve the bounded rationality problem through including the agents rea-
soning constraints into the optimization problem (Russell, 1997). Essentially, this is expecting an
intelligent agent to do the best it can with its limitations. Limitations have far more implications in
multiagent environments, such as stochastic games, since a common assumption in these settings
is the rationality of the other agents.

We first examine work on defining a rational solution concept in situations where agents have
computational limitations. We, then, examine work on responding to limitations in other agents’
behavior. We follow this with a brief summary of how this work relates to our own examination of
the problem of multiagent learning in the presence of limited agents.
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3.3.1 Responding to Computational Limitations

Larson and Sandholm (2001) consider the problem of reasoning in the presence of agents with
limited computational resources. Specifically, they examine a two agent setting where agents have
intractable individual problems, but may gain an improvement on their solutions by solving the also
intractable joint problem. An agent’s strategy determines how to invest its limited computational
resources to improve its solution for its own problem, its opponent’s problem, or the joint problem.
When the deadline is reached, the agents must decide whether to simply use its own computed
solution or bargain over a joint solution. Among other results, they demonstrate that the concept of
Nash equilibrium can be extended to this setting, where the decision of computation is part of the
agent’s strategy. They call this conceptdeliberation equilibriaand present algorithms for finding
these equilibria solutions in certain situations.

The concept of deliberation equilibria has many similarities to therestricted equilibriaconcept
we present in Chapter 5. The core idea is to incorporate the agents’ limitations into their choices
of strategies. Restricted equilibria, though, incorporate limitations as restrictions on the agents’
choices, rather than incorporating limitations by adding computational decisions into their choices.
This difference, though, is a fundamental one as the two approaches solve different problems.
The complexity of decision-making in the Larson and Sandholm setting is directly due to the
computational limitations placed on the agents. In Chapter 5, the complexity of decision-making
is part of the task, and agent limitations are required in order to simplify the problem and make
learning tractable. This core difference also explains the difference in results, since restricted
equilibria are not guaranteed to exist in general.

3.3.2 Responding to Behavior Limitations

Another approach to handling to limitations is to respond to limitations in the other agents’ policy
or behavior. We examine three results in trying to exploit, or more generally account for, opponent
behavior.

Game-tree Search with Opponent Knowledge Jansen’s Ph.D. thesis (1992) examined the issue
of whether “optimal” play in the game-theoretic sense is in fact always “optimal”. In the case of
a fallible opponent that may make an incorrect evaluation of future states, the answer is naturally
no. He proposed the idea ofspeculative play, which uses a prediction function for the opponent in
determining its opponent’s moves when searching a game-tree. The thesis focuses on deterministic,
alternating-move, perfect information games, specifically a subgame of chess. He demonstrated
that using speculative play with end-game databases as knowledge of the opponent has the potential
for improving play against humans. In this work, limitations on human rationality are recognized,
and so game-theoretic optimal play is discarded for optimization against particulars of human play.

Planning with Opponent Models. Riley and Veloso (Riley & Veloso, 2000, 2002) present simi-
lar ideas forusing opponent models to make decisionsin a less abstract domain. They examine the
problem of adapting to a specific opponent in simulated robotic soccer (Noda, Matsubara, Hiraki,
& Frank, 1998). This work recognizes that modelling opponents is not a new idea and there has
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been a great deal of related research in the field of plan recognition. This work does contribute an
actual technique for using opponent models to improve the team behavior, hence learning.

The team designer provides a set of opponent models of possible behavior of the other team.
These models define a distribution of players’ positions as a function of the ball’s trajectory and
their initial positions. During play, the actual opponent is matched to one of these models through
Bayesian updating from actual observations. The model is then used to plan during set-play sit-
uations, such as throw-ins or goal-kicks. The planning uses hill-climbing on the ball-trajectory
to find a trajectory with low probability of being intercepted by the other teamgiven the matched
opponent model of their movement.The planner then determines the positions of players and their
actions so as to carry out the planned ball trajectory. This is compiled into a simple temporal net-
work which can be executed in a distributed manner by the players. They demonstrate through
controlled empirical experiments that the plans generated depend on the opponent model that is
used during planning. The effectiveness of this technique in actual play against a real opponents,
that may or may not match well with the models, is still unknown.

This technique allows a team of agents to adapt their behavior in a principled manner to better
address a specific team. This does not strictly address the problem of concurrent learning in a
multiagent setting. The critical assumption is that the opponents’ play is not changing over time.
The authors mention this briefly and provide a small change to their Bayesian update through the
addition weight sharing. A small weight is added to each model to keep its probability bounded
from zero. This effectively introduces a non-zero probability that the other team may change its
behavior after each observation. There are no results, though, of the outcome of this approach if
the other agents are also adapting. For example, it’s not clear how robust the algorithm is to the
other team employing a similar or identical approach to defending against a set-play.

Limitations as Finite Automata. Carmel and Markovitch (1996, 1997) examined a model-based
approach to multiagent learning. They introduced algorithms for efficiently learning a model of
the opponent as a deterministic finite automaton (DFA). Using this learned model, they then com-
pute the optimal best response automaton. They examined this technique in the situation of re-
peated games and showed that their technique can learn effectively against a variety of DFA op-
ponents. They also showed that their algorithm learned much more quickly (i.e., was more data
efficient) than Q-learning, a model-free reinforcement learner. It’s unknown how this compares
with a model-based reinforcement learner such as prioritized sweeping (Moore & Atkeson, 1993).

This technique, though, does not entirely address the problem of concurrent learning in a mul-
tiagent environment. Although a learning rule can be be modeled by a DFA, the number of states
that a rule requires may be huge. For example, Q-learning with a decaying learning rate would
be a completely intractable DFA. Also, the model-based learning agent is required to be strictly
more powerful than its opponent, since its learning rule both learns the opponent’s DFA and also
generates its own. It’s unclear whether any sort of fixed point would be reached or even exists if
two model-based DFA learners played each other. It’s also not certain how DFA modelling scales
to multiple state stochastic games.

All of these approaches to handling behavior limitations assume an asymmetric superiority over
the other decision making agents. In the case of constructing DFA models of opponent behavior,
there is an implicit assumption that the opponent behavior is simple enough to be constructed by
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the adapting agent. In the case of planning with opponent models, it is assumed that the opponent’s
behavior is not changing and so the learned model is accurate in predicting their future behavior.
Although the work recognizes that other agents have limitations, they do so in a way that expects
other agents to be strictly inferior. There are no results that apply these model-based techniques to
situations of self-play, where all agents use the same adaptation procedure. Larson and Sanholm’s
work on computational limitations allows for limitations on the part of both agents. They do so by
adding the complexity of computational decisions into the strategy space. Hence, their approach
does not make this assumption.

Our approach in Chapters 5 and 6 examines learning in the context of limitations on behavior.
However, we do not explicitly assume asymmetric superiority. Most of our results focus on self-
play to insure that these algorithms are robust to equally capable opponents and teammates that are
also learning.

3.4 Summary

In this Chapter we reviewed the work on solving stochastic games as well as learning in stochas-
tic games. Although, these broad areas have different goals, we note that the algorithms have
considerable similarities. For learning in stochastic games, we divided algorithms into two main
types: equilibrium learners and best-response learners. These two categories are both useful for
distinguishing the goals of an algorithm but also are useful in identifying the weaknesses of these
approaches. We look at this in Chapter 4.

We also examined work on agent limitations, specifically research that seeks to account for lim-
itations in making decisions. The most common assumption in this work is that agent limitations
are the problem of the other agent, and should be exploited. They rarely consider the robustness
of their techniques in symmetric situations where both agents are equally capable or limited. We
return to limitations, their affect on games, and learning in Chapters 5 and 6.
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Chapter 4

WoLF: Rational and Convergent Learning

In this chapter we examine the problem of learning in multiagent environments when agents are not
limited. This chapter focuses on small and comparatively simple domains where approximation
techniques, and therefore limitations, are not needed for learning.

We begin by introducing two desirable properties of learning algorithms, noticing how previous
algorithms do not simultaneously achieve these properties. We then introduce the concept of a
variable learning rateusing theWoLF, “Win or Learn Fast”, principle. In Section 4.2 we analyze
theoretically the effect of this technique in a subclass of matrix games. We prove that a WoLF
variable learning rate causes a non-convergent rational algorithm to converge to an equilibrium in
self-play. In Section 4.3 we present a practical algorithm for learning in stochastic games. We
empirically analyze this algorithm in Section 4.4, presenting results of its application in a variety
of stochastic game domains, demonstrating it as a rational and convergent learning algorithm.

4.1 Properties

In this section we present two properties that are desirable for multiagent learning algorithms.
We then examine how well previous algorithms have achieved these properties. Intuitively, the
properties formalize the idea that a learner should learn a best-response when possible. Also, the
learner should have some guarantee of convergence. Both of these properties’ formal definitions
rely on a notion of convergence which we define in the usual manner,

Definition 7 Letπt(st, a) be playeri’s probability distribution over its actions at timet. A player’s
policy is said to converge toπ∗ if and only if for anyε > 0 there exists aT > 0 such that,

∀t > T ∀a ∈ Ai |πt(st, a)− π∗(st, a)| < ε.

A player’s policy is said to converge to a stationary policy if and only if the player’s policy con-
verges toπ∗ for someπ∗ ∈ Πi.

We can now define the two desirable properties of a learning algorithm: rationality and conver-
gence.

Property 1 (Rationality) If the other players’ policies converge to stationary policies then the
learning algorithm will converge to a policy that is a best-response to the other players’ policies.

67
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This is a fairly basic property requiring the learner to learn and play a best-response policy when
the other players play stationary policies, in which case a best-response policy does indeed exist.
As we observed earlier, when other players play stationary policies, the stochastic game simply
becomes an MDP. So, this property requires that the algorithm finds an optimal policy to this
MDP.

Property 2 (Convergence) The learner will necessarily converge to a stationary policy. This prop-
erty will usually be conditioned on the other agents using an algorithm from some class of learning
algorithms.

This convergence property requires that, against some class of other players’ learning algorithms
(ideally a class encompassing most “useful” algorithms), the learner’s policy will converge. For
example, one might refer to convergence with respect to players with stationary policies, or con-
vergence with respect to rational players.

In this work, we mostly focus on convergence in the case of self-play. That is, if all the players
use the same learning algorithm, do the players’ policies converge? This is a crucial and difficult
step toward convergence against more general classes of players. In addition, ignoring the pos-
sibility of self-play makes the naı̈ve assumption that other players are in some way inferior since
they cannot be using an identical algorithm.

4.1.1 Relationship to Equilibria

Although these properties do not explicitly relate to notions of equilibria, there is still a strong
relationship. If all of the players use rational learning algorithms and their policies converge, they
must have converged to an equilibrium. This can be seen by considering one of the rational players:
since the other players converge to a stationary policy, it will converge to a best-response because
it is rational. Since this is true for all the players, then the resulting policies must be an equilibrium
(i.e., each player is playing a best response to the other players). So, equilibria are fixed points
of rational learning algorithms. In addition, if all the players use the same learning algorithm and
it’s rational and convergent in self-play, then the players are guaranteed to converge to a Nash
equilibrium. This is because the convergent property guarantees convergence, and by the previous
result, if they converge, it must be to an equilibrium.

4.1.2 Previous Algorithms

In Chapter 3 we presented a number of previous algorithms for learning in matrix games and
stochastic games. We will now examine three representative algorithms from that presentation
examining whether they achieve these properties. The first two are representative of best-response
learners, and the last is representative of equilibrium learners.

Q-Learning. Q-learning’s application to stochastic games simply ignores the existence of other
agents, assuming its rewards and transitions are Markov and stationary. As a result, Q-learning
traditionally learns deterministic policies. This naive approach does satisfy one of the two proper-
ties. If the other agents play, or converge to, stationary strategies then their Markovian assumption
holds and they converge to an optimal response. So, Q-learning is rational. On the other hand, it is
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not generally convergent with other players that are also rational. This is obvious in games where
the equilibrium is a mixed policy, which Q-learning cannot learn.

There are situations for which Q-learning is known to converge in self-play, such as iterated
dominance solvable games and team games. As discussed in the context of fictitious play, iterated
dominance solvable games are ones where the repeated process of removing strictly dominated
actions from the game, leaves a single strategy for both players. Q-learning will eventually learn
not to play the inferior action (although, possibly selecting it with a decreasing exploratory proba-
bility). Once the action ceases to be played often, that actions’ rewards no longer affect the other
player’s Q-values will diminish, causing another action to be dominated for some player. This
iteratively continues until the single action remains, for which Q-learning will play. Q-learning
has also been explored in the context of team matrix games under the name independent learners
(ILs) (Claus & Boutilier, 1998). They demonstrated that ILs will converge to a Nash equilibrium,
although not necessarily a globally optimal equilibrium.

In addition to iterated dominance solvable games, there are other examples of games where
Q-learning converges to an equilibrium in self-play, e.g., the grid navigation game from Sec-
tion 2.4.1 (Bowling, 2000). The exact dividing line for convergence between games with only
mixed equilibria and games that are iterated dominance solvable is still an open problem.

Opponent Modelling Q-Learning. Opponent modelling Q-learning or joint-action learning ob-
serves the actions of the other agents. It assumes that the other players are selecting actions based
on a stationary policy, which it learns and plays optimally with respect to. Like Q-learning, it is
rational, but not convergent, since it cannot learn mixed policies. Also like Q-learning, opponent
modelling Q-learning will converge to an equilibrium in iterated dominance solvable games. The
proof of this result is similar to the analysis of the model-based version, fictitious play (Fudenberg
& Levine, 1999). In addition, joint-action learners have been demonstrated to be convergent in the
setting of team matrix games, for which they were originally designed (Claus & Boutilier, 1998).

Minimax-Q. Minimax-Q takes a different approach. This algorithm observes both the actions
and rewards of the other players and tries to learn a Nash equilibrium explicitly. The algorithm
learns and plays the equilibrium independent of the behavior of other players. These algorithms
are convergent with rational players, since they always converge to a stationary policy, so the
other players being rational will converge to optimal responses. However, these algorithms are not
rational. This is most obvious when considering a game of rock-paper-scissors against an opponent
that almost always plays “Rock”. Minimax-Q will still converge to the equilibrium solution, which
is not optimal given the opponent’s policy.

In essence, best-response learners are by definition rational, but they they are not in general
convergent. On the other hand, equilibrium learners converge but are not rational, since they
do so independently of the play of the other agents. For completeness’ sake, this holds for regret
minimizing algorithms (see (Jafari, Greenwald, Gondek, & Ercal, 2001) for empirical convergence
failures), and gradient ascent algorithms, which we discuss next.
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4.2 Theoretical Analysis

In this section we begin by examining gradient ascent as a technique for learning in simple two-
player, two-action, general-sum repeated matrix games. We look at a theoretical analysis of this
algorithm, observing that the algorithm can fail to converge. We follow by introducing the concept
of a variable learning rate, and prove that this concept, in fact, causes gradient ascent to converge.

4.2.1 Gradient Ascent

Singh, Kearns, and Mansour (Singh et al., 2000b) examined the dynamics of using gradient ascent
in two-player, two-action, repeated games. We can represent this problem as two matrices,

Rr =

[
r11 r12

r21 r22

]
Rc =

[
c11 c12

c21 c22

]
.

Each player selects an action from the set{1, 2} which determines the rewards or payoffs to the
players. If therow player selects actioni and thecolumnplayer selects actionj, then the row
player receives the payoffrij and the column player receives the payoffcij.

Since this is a two-action game, a strategy (i.e., a probability distribution over the two available
actions) can be represented as a single value. Letα ∈ [0, 1] be a strategy for the row player, where
α corresponds to the probability that the player selects the first action and1− α is the probability
that the player selects the second action. Similarly, letβ be a strategy for the column player. We
can consider the joint strategy(α, β) as a point inR2 constrained to the unit square.

For any pair of strategies(α, β), we can write the expected payoffs that the row and column
player will receive. LetVr(α, β) andVc(α, β) be these expected payoffs, respectively. So,

Vr(α, β) = αβr11 + α(1− β)r12 + (1− α)βr21 + (1− α)(1− β)r22

= uαβ + α(r12 − r22) + β(r21 − r22) + r22 (4.1)

Vc(α, β) = αβc11 + α(1− β)c12 + (1− α)βc21 + (1− α)(1− β)c22

= u′αβ + α(c12 − c22) + β(c21 − c22) + c22 (4.2)

where,

u = r11 − r12 − r21 + r22

u′ = c11 − c12 − c21 + c22.

A player can now consider the effect of changing its strategy on its expected payoff given the
other player’s strategy doesn’t change. This can be computed as simply the partial derivative of its
expected payoff with respect to its strategy,

∂Vr(α, β)

∂α
= βu+ (r12 − r22) (4.3)

∂Vc(α, β)

∂β
= αu′ + (c21 − c22). (4.4)
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In the gradient ascent algorithm a player adjusts its strategy after each iteration so as to increase
its expected payoffs. This means that the player moves its strategy in the direction of the current
gradient with some step size,η. If (αk, βk) are the strategies on thekth iteration, and both players
are using gradient ascent then the new strategies are,

αk+1 = αk + η
∂Vr(αk, βk)

∂αk

βk+1 = βk + η
∂Vr(αk, βk)

∂βk
.

If the gradient moves the strategy out of the valid probability space (i.e., the range [0, 1]) then
the gradient is forced to be zero. When considering the strategy pair in tandem, this amounts
to projecting the joint gradient onto the unit square for points on this boundary with a gradient
pointing outside of the boundary. The question to consider, then, is what can we expect to happen
if both players are using gradient ascent to update their strategies.

Notice that this algorithm isrational by the properties defined in Section 4.1. This is because
fixing the other player’s strategy causes the player’s gradient to become constant, and eventually
forces the player to converge to the optimal pure strategy response, or remain with its current
strategy if it already is a best-response. On the other hand the algorithm is notconvergent, which is
shown in (Singh et al., 2000b). This is despite the fact that the algorithm can and does play mixed
strategies.

The analysis, by Singh and colleagues, of gradient ascent examines the dynamics of the learners
in the case of an infinitesimal step size (limη→0). They call this algorithm Infinitesimal Gradient
Ascent (IGA). They observe that an algorithm with an appropriately decreasing step size will
approach the dynamics of IGA, making the analysis of the infinitesimal case of particular interest.
In the next section we briefly outline their analysis.

4.2.2 Analysis of IGA

The main conclusion of Singh, Kearns, and Mansour (2000b) is the following theorem.

Theorem 1 If both players follow Infinitesimal Gradient Ascent (IGA), whereη → 0, then their
strategies converge to a Nash equilibriumOR the average payoffs over time converge in the limit
to the expected payoffs of a Nash equilibrium.

Their proof of this theorem proceeds by examining the dynamics of the strategy pair,(α, β).
This is an affine dynamical system inR2 where the dynamics are defined by the differential equa-
tion, [

∂α
∂t

∂β
∂t

]
=

[
0 u
u′ 0

] [
α
β

]
+

[
(r12 − r22)
(c21 − c22)

]
.

If we defineU to be the multiplicative matrix term above with off-diagonal valuesu andu′, then
we can classify the dynamics of the system based on properties ofU . From dynamical systems
theory (Reinhard, 1987), ifU is invertible then there are only two qualitative forms for the dynam-
ics of the system, depending on whetherU has purely real or purely imaginary eigenvalues. This
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results in three cases:U is not invertible,U has purely real eigenvalues, orU has purely imaginary
eigenvalues. The qualitative forms of these different cases are shown in Figure 4.1. Their analysis
then proceeded by examining each case geometrically. One important consideration is that the
basic forms above are for the unconstrained dynamics, not the dynamics that projects the gradient
onto the unit square. Basically, this requires considering all possible positions of the unit square
relative to the dynamics shown in Figure 4.1.

One crucial aspect of their analysis is the consideration of points with zero gradient in the
constrained dynamics, which they show to correspond to Nash equilibria. This is also discussed
in Lemma 2. In the unconstrained dynamics, there exists at most one point with zero gradient,
which is called the center and denoted(α∗, β∗). This point can be found mathematically by setting
Equations 4.3 and 4.4 to zero and solving to obtain,

(α∗, β∗) =

(
(c22 − c21)

u′
,
(r22 − r12)

u

)
.

Notice that the center may not even be inside the unit square. In addition, ifU is not invertible then
there is no point of zero gradient in the unconstrained dynamics. But in the constrained dynamics,
where gradients on the boundaries of the unit square are projected onto the unit square, additional
points of zero gradient may exist. When IGA converges it is to one of these points with zero
gradient.

This theorem is an exciting result since it is one of the first convergence results for a rational
multiagent learning algorithm. The notion of convergence, though, is rather weak. In fact, not
only may the players’ policies not converge when playing gradient ascent but the expected payoffs
may not converge either. Furthermore, at any moment in time the expected payoff of a player
could be arbitrarily poor.1 Not only does this make it difficult to evaluate a learner, it also could be
potentially disastrous when applied with temporal differencing for multiple state stochastic games.
A cycling value of a state is a further violation of the stationary assumption upon which temporal
differencing depends. The danger is that if the delayed reward takes too much time to propagate
to the state with the responsible decision, then the reward for finally making the correct decision
could be lost if the state’s value has cycled into its period of low reward.

In the next section we examine a method for addressing this convergence problem. We then
prove that this new method has the stronger notion of convergence, i.e., players’ strategiesalways
converge to a Nash equilibrium.

4.2.3 Variable Learning Rate

We now introduce the concept and study the impact of a variable learning rate. In the gradient
ascent algorithm presented above, the steps taken in the direction of the gradient were constant.
We now allow them to vary over time, thus changing the update rules to,

αk+1 = αk + η`rk
∂Vr(αk, βk)

∂α

βk+1 = βk + η`ck
∂Vr(αk, βk)

∂β
1The idea that average payoffs converge only means that if there’s a period of arbitrarily low payoffs there must be

some corresponding period in the past or in the future of arbitrarily high payoffs.
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Figure 4.1: Qualitative forms of the IGA dynamics.

where,
`rk, `

c
k ∈ [`min, `max] > 0.

At the kth iteration the algorithm takes a step of sizeη`k in the direction of the gradient. Notice
the restrictions oǹk require that it be strictly positive and bounded, thus bounding the step sizes
as well.

The specific method for varying the learning rate that we contribute is the WoLF (“Win or
Learn Fast”) principle. The essence of this method is to learn quickly when losing, and cautiously
when winning. The intuition is that a learner should adapt quickly when it is doing more poorly
than expected. When it is doing better than expected, it should be cautious since the other players
are likely to change their policy. The heart of the algorithm is how to determine whether a player
is winning or losing. For the analysis in this section each player selects a Nash equilibrium and
compares their expected payoff with the payoff they would receive if they played according to the
selected equilibrium strategy. Letαe be the equilibrium strategy selected by the row player, and
βe be the equilibrium strategy selected by the column player. Notice that no requirement is made
that the players choose the same equilibrium (i.e., the strategy pair(αe, βe) may not be a Nash
equilibrium). Formally,

`rk =

{
`min if Vr(αk, βk) > Vr(α

e, βk) WINNING

`max otherwise LOSING

`ck =

{
`min if Vc(αk, βk) > Vc(αk, β

e) WINNING

`max otherwise LOSING

With a variable learning rate such as this we can still consider the case of an infinitesimal step
size (limη→0). We call this algorithm WoLF-IGA and in the next section show that the WoLF
adjustment has a very interesting effect on the convergence of the algorithm.

4.2.4 Analysis of WoLF-IGA

We prove the following result.

Theorem 2 If in a two-person, two-action repeated game, both players follow the WoLF-IGA
algorithm (with`max > `min), then their strategies will converge to a Nash equilibrium.
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Notice that this is the more standard notion of convergence and strictly stronger than what is true
for basic IGA.

The proof of this theorem follows closely with the proof of Theorem 1 from Singh and col-
leagues (Singh et al., 2000b), by examining the possible cases for the dynamics of the learners.
First, let us write down the differential equations that define the system with an infinitesimal step
size, [

∂α
∂t

∂β
∂t

]
=

[
0 `r(t)u

`c(t)u′ 0

] [
α
β

]
+

[
`r(t)(r12 − r22)
`c(t)(c21 − c22)

]
.

We call the multiplicative matrix with off-diagonal entriesU(t) since it now depends on the learn-
ing rates at timet, `r(t) and`c(t). At time t, the qualitative form of the dynamics is determined by
theU(t) matrix and can be summarized into three general cases,

• U(t) is not invertible,

• U(t) has purely real eigenvalues, or

• U(t) has purely imaginary eigenvalues.

The first thing to note is that the above cases do not depend ont. The following lemma is even
stronger.

Lemma 1 U(t) is invertible if and only ifU (as defined for IGA in Section 4.2.2) is invertible.
U(t) has purely imaginary eigenvalues if and only ifU has purely imaginary eigenvalues.U(t)
has purely real eigenvalues if and only ifU has purely real eigenvalues.

Proof. Since`r,c(t) is positive, it is trivial to see that(`r(t)u)(`c(t)u′) = (`r(t)`c(t))uu′ is greater-
than, less-than, or equal-to zero, if and only ifuu′ is greater-than, less-than, or equal-to zero,
respectively. Since these are the exact conditions of invertibility and purely real/imaginary eigen-
values the lemma is true. 2

SoU(t) always satisfies the same case (and therefore has the same general dynamics) as IGA
withouta variable learning rate. In the sections that follow we examine each of these cases sepa-
rately. The proofs of most of the cases proceed identically to the proof for IGA. In fact, most of
the proofs do not rely on any particular learning rate adjustment at all. Only in the final sub-case
of the final case are we forced to deviate from their arguments. This is due to the fact that variable
learning rates, in general, do not change the overall direction of the gradient (i.e., the sign of the
partial derivatives). Since most of the proof of IGA’s convergence only depends on the signs of
the derivatives, we can use the same arguments. For these cases we present only an abbreviated
proof of convergence to illustrate that the variable learning rate does not affect their arguments.
We recommend the IGA analysis (Singh et al., 2000b) for a more thorough examination including
helpful diagrams. In the remaining sub-case, where IGA is shown not to converge, we show that
in this case WoLF-IGA converges to a Nash equilibrium.

We make liberal use of a crucial lemma from their proof for IGA. This lemma implies that if
the algorithms converge then what the strategies converge to must be a Nash equilibrium.

Lemma 2 If, in following IGA or WoLF-IGA,limt→∞(α(t), β(t)) = (αc, βc), then(αc, βc) is a
Nash equilibrium.
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Proof. The proof for IGA is given in (Singh et al., 2000b), and shows that the algorithm converges
if and only if the projected gradient is zero, and such strategy pairs must be a Nash equilibrium.
For WoLF-IGA notice also that the algorithm converges if and only if the projected gradient is
zero, which is true if and only if the projected gradient in IGA is zero. Therefore that point must
be a Nash equilibrium. 2

Now we examine the individual cases.

U(t) is Not Invertible

In this case the dynamics of the strategy pair has the qualitative form shown in Figure 4.1(a).

Lemma 3 When U(t) is not invertible, IGA with any learning rate adjustment leads the strategy
pair to converge to a point on the boundary that is a Nash equilibrium.

Proof. Notice thatU(t) is not invertible if and only ifu or u′ is zero. Without loss of generality,
assumeu is zero, then the gradient for the column player is constant. The column player’s strategy,
β, converges to either zero or one (depending on whether the gradient was positive or negative). At
this point, the row player’s gradient becomes constant and therefore must also converge to zero or
one, depending on the sign of the gradient. The joint strategy therefore converges to some corner,
which by Lemma 2 is a Nash equilibrium. 2

U(t) has Real Eigenvalues

In this case the dynamics of the strategy pair has the qualitative form shown in Figure 4.1(b).

Lemma 4 When U(t) has real eigenvalues, IGA with any learning rate adjustment leads the strat-
egy pair to converge to a point that is a Nash equilibrium.

Proof. Without loss of generality, assume thatu, u′ > 0. This is the dynamics show in Fig-
ure 4.1(b). Consider the case where the center is inside the unit square. Notice that if the strategy
pair is in quadrant A relative to the center, the gradient is always up and right. Therefore, any strat-
egy pair in this region eventually converges to the upper-right corner of the unit square. Likewise,
strategies in quadrant C always converge to the bottom-left corner. Now consider a strategy pair
in quadrant B. The gradient is always up and left, and therefore the strategy eventually exits this
quadrant, entering quadrant A or C, or possibly hitting the center. At the center the gradient is
zero, and so it has converged. If it enters quadrants A or C then we’ve already shown it converges
to the upper-right or lower-left corner. Therefore, the strategies always converge and by Lemma 2
the point must be a Nash equilibrium. Cases where the center is not within the unit square or is
on the boundary of the unit square can also be shown to converge by a similar analysis, and are
discussed in (Singh et al., 2000b). 2

U(t) has Imaginary Eigenvalues

In this case the dynamics of the strategy pair has the qualitative form shown in Figure 4.1(c). This
case can be further broken down into sub-cases depending where the unit square is in relation to
the center.
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Center is Not Inside the Unit Square. In this case we still can use the same argument as for
IGA.

Lemma 5 When U(t) has imaginary eigenvalues and the center,(α∗, β∗), is not inside the unit
square, IGA with any learning rate adjustment leads the strategy pair to converge to a point on the
boundary that is a Nash equilibrium.

Proof. There are three cases to consider. The first is the unit square lies entirely within a single
quadrant. In this case the direction of the gradient is constant (e.g., down-and-right in quadrant
A). Therefore, the strategies converge to one of these corners (e.g., bottom-right corner in quadrant
A). The second case is the unit square is entirely within two neighboring quadrants. Consider the
case that it lies entirely within quadrants A and D. The gradient always points to the right and
therefore the strategy eventually hits the right boundary at which point it is in quadrant A and the
gradient is pointing downward. Therefore, in this case it converges to the bottom right corner. We
can similarly show convergence for other pairs of quadrants. The third and final case is when the
center is on the boundary of the unit square. In this case some points along the boundary have a
projected gradient of zero. By similar arguments to those above, any strategy converges to one of
these boundary points. See (Singh et al., 2000b) for a diagram and further explanation. Since in all
cases the strategy pairs converge, by Lemma 2 they must have converged to a Nash equilibrium.

2

Center is Inside the Unit Square. This is the final sub-case and is the point where the dynamics
of IGA and WoLF-IGA qualitatively differ. We show that, although IGA does not converge in
this case, WoLF-IGA does. The proof identifies the areas of the strategy space where the players
are “winning” and “losing” and shows that the trajectories are actually piecewise elliptical in such
a way that they spiral toward the center. All of the lemmas in this subsection implicitly assume
thatU(t) has imaginary eigenvalues and the center is inside the unit square. We begin with the
following lemma that considers the dynamics for fixed learning rates.

Lemma 6 If the learning rates,̀ r and`c, remain constant, then the trajectory of the strategy pair
is an elliptical orbit around the center,(α∗, β∗), and the axes of this ellipse are,[

0√
`c|u|
`r|u′|

]
,

[
1
0

]
.

Proof. This is just a result from dynamical systems theory (Reinhard, 1987) as mentioned in (Singh
et al., 2000b) whenU(t) has imaginary eigenvalues. 2

We now need the critical lemma that identifies the areas of strategy space where the players
are using a constant learning rate. Notice that this corresponds to the areas where the players are
“winning” or “losing”.

Lemma 7 The player is “winning” if and only if that player’s strategy is moving away from the
center.
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Proof. Notice that in this sub-case whereU(t) has imaginary eigenvalues and the center is within
the unit square, the game has a single Nash equilibrium, which is the center. So, the players’
selected equilibrium strategies for the WoLF principle must be the center, i.e.,(αe, βe) = (α∗, β∗).
Now, consider the row player. The player is “winning” when its current expected payoff is larger
than the expected payoffs if it were to play its selected equilibrium. This can be written as,

Vr(α, β)− Vr(αe, β) > 0. (4.5)

We can rewrite the left hand side of Inequality 4.5 by using Equation 4.1,

(αβu+ α(r12 − r22) + β(r21 − r22) + r22)−
(αeβu+ αe(r12 − r22) + β(r21 − r22) + r22).

(4.6)

Using Expression 4.6 in Inequality 4.5, we substitute the center for the equilibrium strategies, and
then simplify making use of equation 4.3, as presented in Section 4.2.1.

(α− α∗)βu+ (α− α∗)(r12 − r22) > 0 (4.7)

(α− α∗)(βu+ (r12 − r22)) > 0 (4.8)

(α− α∗)∂Vr(α, β)

∂α
> 0. (4.9)

Notice that Inequality 4.9 is satisfied if and only if the two left hand factors have the same sign.
This is true if and only if the player’s strategy,α, is greater than the strategy at the center,α∗, and
it is increasing, or it is smaller than the center and decreasing. So the player is winning if and only
if its strategy is moving away from the center. The same can be shown for the column player.2

Corollary 1 Throughout any one quadrant, the learning rate is constant.

Combining Lemmas 6 and 7, we find that the trajectories are piece-wise elliptical orbits around
the center, where the pieces correspond to the quadrants defined by the center. We can now prove
convergence for a limited number of starting strategy pairs. We then use this lemma to prove
convergence for any initial strategy pairs.

Lemma 8 For any initial strategy pair,(α∗, β∗ + β0) or (α∗ + α0, β
∗), that is “sufficiently close”

to the center, the strategy pair converges to the center. “Sufficiently close” here means that the
elliptical trajectory from this point defined when both players use1 as their learning rate lies
entirely within the unit square.

Proof. Without loss of generality assumeu > 0 andu′ < 0. This is the case shown in Figure 4.1(c).

Let l =
√

`min

`max
< 1.0, andr =

√
|u′|
|u| . Consider an initial strategy(α∗, β∗ + β0) with β0 > 0.

From Lemma 6, for any fixed learning rates for the players, the trajectory forms an ellipse
centered at(α∗, β∗) and with the ratio of its y-radius to its x-radius equal to,√

`c

`r
r.
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Since the trajectory is piecewise elliptical we can consider the ellipse that the trajectory follows
while in each quadrant. This is shown graphically in Figure 4.2. As the trajectory travels through
quadrant A, by Lemma 7, we can observe that the row player is “winning” and the column player
is “losing”. Therefore,̀ r = `min and`c = `max, so the ratio of the ellipse’s axes arer/l, and this
ellipse crosses into quadrant B at the point(α∗+β0

l
r
, β∗). Similarly, in quadrant B, the row player

is “losing” and the column player is “winning” therefore the ratio of the ellipse’s axes arerl and
the ellipse crosses into quadrant C at the point(α∗, β∗ − β0l

2).
We can continue this to return to the axis where the trajectory began. The strategy pair at

that point is(α∗, β∗ + β0l
4). So, for each orbit around the center we decrease the distance to the

center by a factor ofl4 < 1.0, and therefore the trajectory converges to the center. We can reason
identically for any other sufficiently close initial strategies on the axes. 2

Lemma 9 When U(t) has imaginary eigenvalues and the center,(α∗, β∗), is inside the unit square,
WoLF-IGA leads the strategy pair to converge to the center, and therefore to a Nash equilibrium.

Proof. The proof just involves the application of Lemma 8. Consider the largest ellipse, when
both players’ learning rates are one, that fits entirely within the unit square. This ellipse touches
the boundary of the unit square and does so at the boundary of two quadrants. Now consider
any initial strategy pair. The strategy pair follows piecewise elliptical orbits or moves along the
unit square boundary while “circling” the center, that is traveling through the four quadrants in a
clockwise or counter-clockwise fashion. At some point it must cross the boundary between the
same two quadrants mentioned above. At this point it is on or inside the largest ellipse defined
when players have a learning rate of one. Therefore we can apply Lemma 8 and so the trajectory
converges to the center. So, from any initial strategy pair the trajectory converges to the center,
which is a Nash equilibrium. 2

Lemmas 3, 4, 5, and 9 combine to prove Theorem 2. In summary, the WoLF principle strength-
ens the IGA convergence result. In self-play with WoLF-IGA, players’ strategies and their ex-
pected payoffs converge to Nash equilibrium strategies and payoffs of the matrix game. This
contributes a reinforcement-based algorithm that is provablyrational andconvergent(in self-play)
for this restricted class of repeated games. This result can be generalized beyond self-play in the
following corollary.

Corollary 2 If in a two-person, two-action repeated game, both players follow the WoLF-IGA
algorithm but with different̀min and`max, then their strategies converge to a Nash equilibrium if,

`rmin `
c
min

`rmax `
c
max

< 1.

Specifically, WoLF-IGA (with̀max > `min) versus IGA (̀max = `min) converges to a Nash equilib-
rium.

Proof. The proof is almost identical to Theorem 2. The only deviation is for the imaginary eigen-
value case where the center is inside the unit square. In this case the proof of Lemma 8 is amended.
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Figure 4.2: The trajectory of strategies using WoLF-IGA whenU(t) has imaginary eigenvalues
and the center is inside the unit square.
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Let lr =
√

`rmin

`cmax
andlc =

√
`cmin

`rmax
. Following the same argument of the trajectory through the quad-

rants, after a revolution around the center the new position is(α∗, β∗ + β0(lrlc)2). Since,

(lrlc)2 =
`rmin `

c
min

`rmax `
c
max

< 1,

the trajectory converges to the center. The remainder of the proof is identical to that of Theorem 2.
2

We return to examining WoLF outside of self-play in Section 4.4.5, where we examine this
situation empirically in a more complex domain.

4.2.5 Discussion

There are some final points to be made about this result. First, we present some further justification
for the WoLF principle as it has been used in other learning related problems. Second, we present a
short discussion on determining when a player is “winning”. Finally, we look at the knowledge the
WoLF-IGA algorithm requires. These requirements are later relaxed in a more practical algorithm
in Section 4.3.

Why WoLF?

Apart from this theoretical result, the WoLF principle may appear to be just an unfounded heuris-
tic. But actually it has been studied in some form in other areas, notably when considering an
adversary. In evolutionary game theory theadjusted replicator dynamics(Weibull, 1995) scales
the individual’s growth rate by the inverse of the overall success of the population. This causes the
population’s composition to change more quickly when the population as a whole is performing
poorly. A form of this also appears as a modification to therandomized weighted majorityalgo-
rithm (Blum & Burch, 1997). In this algorithm, when an expert makes a mistake, a portion of its
weight loss is redistributed among the other experts. If the algorithm is placing large weights on
mistaken experts (i.e., the algorithm is “losing”), then a larger portion of the weights are redis-
tributed (i.e., the algorithm adapts more quickly).

More generally, one can see a similar principle at work in worst-case analysis of amortized
algorithms. For example, consider splay trees (Sleator & Tarjan, 1985), which are structures for
maintaining a balanced binary search tree on-line. The algorithm performs a small number of tree
rotations, which balance the tree, if the item queried is near the root. If it is far from the root, then
many tree rotations are performed. If one considers the number of tree rotations as the measure of
the speed of “learning”, and the depth of the queried node as the measure of “winning” or “losing”,
then this is another example use of something like the WoLF principle. Again, small changes are
made when the algorithm is performing well, while large changes are made when it is performing
poorly.

Defining “Winning”

The WoLF principle for adjusting the learning rate is to learn faster when losing and more slowly
when winning. This places a great deal of emphasis on how to determine that a player is winning.
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In the description of WoLF-IGA above, the row-player was considered winning when,

Vr(αk, βk) > Vr(α
e, βk).

Essentially, a player is winning if it would prefer its current strategy to that of playing some equi-
librium strategy against the other player’s current strategy.

Another possible choice of determining when a player is winning is if its expected payoff is
currently larger than the value of the game’s equilibrium (or some equilibrium if multiple exist). If
we consider the final subcase in Section 4.2.4, then mathematically this would correspond to,

Vr(αk, βk) > Vr(α
∗, β∗). (4.10)

It is interesting to note that in zero-sum games with mixed strategy equilibria these two rules are
actually identical.

In general-sum games, though, this is not necessarily the case. This situation should bring to
light the differences between the two methods. There exist general-sum, two-player, two-action
games with points in the strategy space where the player is actually receiving a lower expected
payoff than the equilibrium value, but not lower than the expected payoff that the equilibrium
strategy would receive against the other player’s strategy. Essentially, the player is not doing poorly
because its strategy is poor, but rather because of the play of the other player. It is at this point
that the gradient is likely to be moving the strategy away from the equilibrium, and therefore if
Inequality 4.10 was used, the player would move away from the equilibrium quickly, discouraging
convergence.2

Requirements

The gradient ascent and WoLF gradient ascent algorithms make some strict requirements on the
knowledge that is available to the player. Specifically, basic gradient ascent requires the following
to be known: the player’s own payoff matrix (i.e.,Rr for the row-player), and the actual distribution
of actions the other player is playing (βk for the row-player). These two requirements are both very
strong, particularly the latter. Often the payoffs are not known and rather need to be learned via
experience, and even more often only the action selected by the other player is known (if even that)
but not the player’s distribution over actions.

WoLF gradient ascent proceeds to add a further requirement that a Nash equilibrium must also
be known. In this case, this is not really extra knowledge, since it can be computed from the known
payoffs. If we want to make this algorithm more general, though, it needs to be addressed how the
algorithm determines whether it’s winning or losing when an equilibrium is not known because
the payoffs are not known. In the next section, we look at an algorithm that removes all of these
knowledge constraints and we give empirical results on more general stochastic games, not just
two-player, two-action matrix games.

2An example of such a matrix game is,Rr =

[
0 3
1 2

]
, Rc =

[
3 2
0 1

]
, with the strategy point,(α, β) =

(0.1, 0.9). The only Nash equilibrium is(0.5, 0.5). Hence,Vr(α∗, β) = 0.7 < Vr(α, β) = 1.02 < Vr(α∗, β∗) = 2,
and so the two rules would disagree. Notice the gradient,∂Vr(α, β)/∂α = −0.8, is negative causingα to decrease
away from the equilibrium.
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1. Let α ∈ (0, 1] andδ ∈ (0,∞] be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
.

2. Repeat,

(a) From states select actiona according to mixed strategyπ(s) with suitable exploration
(see Footnote 3).

(b) Observing rewardr and next states′,

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
.

(c) Stepπ closer to the optimal policy w.r.t.Q,

π(s, a) ← π(s, a) + ∆sa ,

while constrained to a legal probability distribution,

∆sa =

{
−δsa if a 6= argmaxa′ Q(s, a′)∑
a′ 6=a δsa′ otherwise

δsa = min

(
π(s, a),

δ

|Ai| − 1

)
.

Table 4.1: Policy hill-climbing algorithm (PHC) for playeri.

4.3 A Practical Algorithm

We now present a more general algorithm using the WoLF principle to vary the learning rate.
We begin by describing a simple rational algorithm, policy hill-climbing (PHC), that does not
converge. This algorithm is similar to gradient ascent, but does not require as much knowledge.
We then describe WoLF-PHC, which varies the learning rate according to an approximate notion
of winning. In Section 4.4, these algorithms are examined empirically in a number of domains
from matrix games to zero-sum and general-sum stochastic games.

4.3.1 Policy Hill-Climbing

We first present a simple rational learning algorithm that is capable of playing mixed strategies. It
is a simple extension of Q-learning and is shown in Table 4.1. The algorithm, in essence, performs
hill-climbing in the space of mixed policies. Q-values are maintained just as in normal Q-learning.
In addition the algorithm maintains the current mixed policy. The policy is improved by increasing
the probability that it selects the highest valued action according to a learning rateδ ∈ (0,∞].
Notice that whenδ = ∞ the algorithm is equivalent to Q-learning, since with each step the pol-
icy moves to the greedy policy executing the highest valued action with probability1 (modulo
exploration).

This technique, like Q-learning, is rational and converges to an optimal policy if the other play-
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1. Let α ∈ (0, 1], δl > δw ∈ (0, 1] be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a) From states select actiona according to mixed strategyπ(s) with suitable exploration
(see Footnote 3).

(b) Observing rewardr and next states′,

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
.

(c) Update estimate of average policy,π̄,

C(s) ← C(s) + 1

∀a′ ∈ Ai π̄(s, a′) ← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′)) .

(d) Stepπ closer to the optimal policy w.r.t.Q. Same as PHC in Table 4.1(c), but with

δ =

{
δw if

∑
a′ π(s, a′)Q(s, a′) >

∑
a′ π̄(s, a′)Q(s, a′)

δl otherwise
.

Table 4.2: WoLF policy-hill climbing algorithm (WoLF-PHC) for playeri.

ers are playing stationary strategies. The proof follows from the proof for Q-learning (Watkins,
1989), which guarantees theQ values converge toQ∗ with a suitable exploration policy.3 π con-
verges to a policy that is greedy according toQ, which is converging toQ∗, and therefore converges
to a best response. Despite the fact that it is rational and can play mixed policies, it still is not con-
vergent. We show examples of its convergence failures in Section 4.4.

4.3.2 WoLF Policy Hill-Climbing

We now introduce a modification to the naı̈ve policy hill-climbing algorithm that encourages the
desired convergence property without sacrificing the rational property. The algorithm uses a vari-
able learning rate with the WoLF, “Win or Learn Fast”, principle. The full algorithm is shown in
Table 4.2.

As a reminder, the WoLF principle results in the agent learning quickly when it is doing poorly
and cautiously when it is performing well. This change in the learning rate aids in convergence by
not overfitting to the other players’ changing policies. There’s an expectation that the other players’
policies are likely to change in cases when things seem “too good to be true”. Practically, the al-
gorithm requires two learning parameters,δl > δw. The parameter that is used to update the policy
depends on whether the agent is currently determined to be winning or losing. This determination
is done by comparing whether the current expected value is greater than the current expected value

3We continue our assumption that an exploration policy suitable for online learning is used. See Section 2.2.3.
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of playing theaverage policy.If the current expected value is lower (i.e., the agent is “losing”),
then the larger learning rate,δl, is used, otherwiseδw is used. The average policy is intended to
take the place of the unknown equilibrium policy. For many games, averaging over greedy policies
does, in fact, approximate the equilibrium (e.g., this is a property of fictitious play (Vrieze, 1987)).
In summary, WoLF-PHC introduces (i) two learning rates, and (ii) the determination of winning
and losing using the average policy as an approximation for the equilibrium policy.

WoLF policy hill-climbing is still rational, since only the speed of learning is altered. Its
convergence properties, though, are quite different. In the next section we show examples that this
technique converges to best-response policies for a number and variety of stochastic games.

4.4 Results

We now show results of applying policy hill-climbing and WoLF policy hill-climbing to a number
of different games. The domains include two matrix games that help to show how the algorithms
work and to demonstrate empirically that the WoLF variable learning rate is having the same effect
as in the theoretical results in Section 4.2. The algorithms were also applied to two multiple state
stochastic games. One is the general-sum grid navigation domain from Section 2.4.1, and the other
is the zero-sum soccer game from Section 2.4.1. We also examine a matrix game that involves
three players, instead of just two. Finally, we briefly look at the performance of WoLF in a few
experiments where training was not against an identical algorithm.

The first set of experiments involves training the players using the same learning algorithm,
i.e., self-play. Since PHC and WoLF-PHC are rational, we know that if they converge against
themselves, then they must converge to a Nash equilibrium (see Section 4.1.1). For the matrix
game experiments,δl/δw = 2, but for the stochastic game results a more aggressiveδl/δw =
4 was used. The smaller ratio was used in the matrix games toslow downthe convergence of
the WoLF algorithm to make the affects of WoLF more visible. In all cases, both theδ andα
learning rates were decreased by a factor inversely proportionate to the iterations through step (2)
of the algorithms, although the exact proportion varied between domains and are reported in the
appendix. These learning rates were set by hand, but with little or no fine tuning. In practice, an
appropriateα learning rate and decay for Q-learning should also work in for WoLF-PHC. Theδ
learning rates and decay require some amount of care to have them set appropriate for the value of
theα learning rate, i.e., we do not want to take larger steps than for which we can update values.
Also, all experiments used anε-projectionexploration with a fixed exploration rate of 5%. This
means that only enough uniform randomness is added to the policy at each action selection to
insure that all actions are selected with probabilityε/|Ai|. To satisfy the requirement as a “suitable
exploration policy” this should be decayed over time. However, in order to keep things as simple
as possible, it was kept constant.

When the results show policy trajectories, these correspond to a single training run of the
algorithm showing a prototypical trajectory over time. Many training runs have been performed in
each domain, all with very similar trajectories to the ones shown in this work.



4.4. RESULTS 85

4.4.1 Matching Pennies and Rock-Paper-Scissors

The algorithm was applied to the zero-sum matrix games, matching pennies and rock-paper-
scissors (see Table 2.1). As a reminder, in both games the Nash equilibrium is a mixed strategy
consisting of executing all actions with equal probability. As mentioned, a small learning rate ratio
and a large number of trials were used in order to better visualize how the algorithm learns and
converges.

Figure 4.3 shows the results of applying both policy hill-climbing and WoLF policy hill-
climbing to the matching pennies game. WoLF-PHC quickly begins to oscillate around the equi-
librium with ever decreasing amplitude. Without the WoLF modification, PHC oscillates around
the equilibrium, but with no appearance of converging. This is even more obvious in the game of
rock-paper-scissors. The results in Figure 4.4 show trajectories of the players’ strategies in policy
space through one million steps. Policy hill-climbing circles the equilibrium policy without any
hint of converging, while WoLF policy hill-climbing very nicely spirals toward the equilibrium.
The behavior is similar to the theoretically proven behavior of WoLF-IGA.
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Figure 4.3: Matching pennies: the strategy for one of the players, as a probability distribution,
while learning with PHC and WoLF-PHC. The other player’s strategy looks similar.

4.4.2 Gridworld

We also examined Hu’s grid navigation domain (Hu, 1999), introduced in Section 2.4.1 and repro-
duced in Figure 4.5. As a reminder, the agents start in two corners and are trying to reach the goal
square on the opposite wall. The game is made more interesting by making the North action from
the initial state uncertain, only succeeding with probability 0.5. This results in the game having
two deterministic equilibria where one player moves laterally on the first move while the other
moves North.
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WoLF policy hill-climbing successfully converges to one of these equilibria. Figure 4.5 shows
an example trajectory of the players’ strategies for the initial state while learning over 100,000
steps. In this example the players converged to the equilibrium where Player 1 moves East and
Player 2 moves North from the initial state. This is evidence that WoLF policy hill-climbing can
learn an equilibrium even in a general-sum game with multiple equilibria. The results are similar
for PHC, showing that WoLF is not needed for (nor does it hinder) convergence in this particular
game. This demonstrates that PHC’s main convergence difficulties are in competitive games or
nearly competitive games (as we will see in three player matching pennies). This is not surprising
since, as we mentioned in Section 4.1.2, other best-response learners have been shown to converge
to equilibria in cooperative or nearly cooperative games. For example, Q-learning, in fact, has been
demonstrated to converge to a pure strategy equilibrium in the grid navigation game (Bowling,
2000).

4.4.3 Soccer

The final domain is the comparatively large zero-sum game, grid soccer, introduced by Littman
(1994) to demonstrate Minimax-Q. This domain was discussed in Section 2.4.1. Figure 4.6 re-
produces an example initial state of this domain. Unlike the grid navigation domain, the Nash
equilibrium for this game requires a mixed policy. In fact any deterministic policy can always be
defeated.

Our experimental setup resembles that used by Littman (1994). Each player was trained in
self-play for one million steps. After training, the player’s policy was fixed and a challenger
using Q-learning was trained against the player. This determines the learned policy’s worst-case
performance and gives an idea of how close the player was to the equilibrium policy, which would
perform no worse than losing half its games to its challenger. Unlike Minimax-Q, WoLF-PHC and
PHC generally oscillate around and through the target solution and so at some points in time may
be close to the equilibrium but a short time later be very far from it. In order to account for this,
training was continued for another 250,000 steps and evaluated after every 50,000 steps. The worst
performing policy was then considered the value of the policy for that learning run. In addition,
the Q-values were initialized optimistically, i.e.,∀s, a Q(s, a) = 1, as is common for encouraging
appropriate exploration (Brafman & Tennenholtz, 2002b; Sutton & Barto, 1998).

Figure 4.6 shows the percentage of games won by the different players when playing their
challengers. “WoLF” represents WoLF policy hill-climbing trained against another WoLF policy
hill-climber. “PHC(L)” and “PHC(W)” represent policy hill-climbing in self-play withδ = δl and
δ = δw, respectively. “WoLF(2x)” represents WoLF policy hill-climbing trained with twice the
training (i.e., two million steps). The performance of the policies were averaged over fifty training
runs and the standard deviations are shown as the lines beside the bars. The relative ordering by
performance is statistically significant.

WoLF-PHC does very well. Its learned policy is close to the equilibrium and continues to
improve with more training. The exact effect of the adjustment can be seen by its out-performance
of PHC, using either the larger or smaller learning rate. This shows that the success of WoLF is not
simply due to changing learning rates, but rather to changing the learning rate at the appropriate
time to encourage convergence. Further training for PHC has statistically little effect on either the
performance or variance, even up to three million steps of training. This suggests that the learned
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policies continue to oscillate wildly through the space of possible best-responses.
The speed of convergence of WoLF-PHC is approximately the same as the reported results for

Minimax-Q (Littman, 1994). Specifically, Littman reports that in a similarly constructed experi-
ment Minimax-Q with one million steps of self-play training won 37.5% of the games against its
challenger4. A direct experimental comparison would be needed to make any stronger statements
about the rates of convergence. Nevertheless it is compelling that WoLF-PHC is converging to the
equilibrium with a speed at all comparable to a learner designed explicitly to learn this equilibrium.

4.4.4 Three Player Matching Pennies

The previous domains only involve two players. We have also examined WoLF in the multiple
player matrix game, three player matching pennies, shown in Table 2.1(f). As a reminder, this
game has a single Nash equilibrium corresponding to the players randomizing equally between
both actions.

Figure 4.7 shows the results of all three players using WoLF-PHC in this domain. The results
are shown for two different learning rate ratios:δl/δw = 2 andδl/δw = 3. Notice that with the
larger ratio WoLF converges to the equilibrium just as in the other experiments, but with a lower
ratio it does not converge. This is the first domain we have examined where the ratio of the two
learning rates seems to be important to WoLF. This is due to the fact that it takes extra time for one
player’s strategy change to propagate through the extra player before affecting the original player’s
optimal strategy. It is still very interesting that WoLF converges at all since another sophisticated
technique, smooth fictitious play, fails to converge in this game (Fudenberg & Levine, 1999).

The fact that the ratio of learning rates could be important for convergence is not, in theory, a
problem. This fact only adds an additional requirement with regards to the decay of the learning
rates. In particular, the learning rates should decay in such a way that their ratio approaches infinity,
i.e.,

lim
t→∞

δl(t)

δw(t)
=∞.

This is in addition to the usual requirements for a gradient following step-size, i.e.,

∀x ∈ {l, w} lim
t→∞

δx(t) = 0 and
∞∑
t=1

δx(t) =∞.

All of these properties can be simultaneously achieved. One example schedule of decay satisfying
these properties is,

δl(t) =
1

t0.9
δw(t) =

1

t
.

Although the dependence of convergence on the ratio of learning rates is not a problem, it is still
an interesting and open problem of what games require larger ratios and why.

4The results are not directly comparable due to the use of a different decay of the learning rate. Littman’s exper-
iments with Minimax-Q used an exponential decay which decreases too quickly for use with WoLF-PHC. Note that
with infinite training Minimax-Q provably converges to the equilibrium and win half its games versus its challenger.
Our results show that WoLF also seems to be moving closer to the equilibrium with more training.
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4.4.5 Results Beyond Self-Play

The previous experiments have been examining WoLF-PHC in self-play, i.e., with all the players
using the same algorithm. Corollary 2 (Section 4.2.4) gives a sliver of theoretical evidence that
WoLF may learn well against other learners. In this section we present some results examining
this empirically.

Matrix Game

The first experiment examining WoLF in situations outside of self-play is the situation described
in Corollary 2. We examine the learning of WoLF-PHC against unmodified PHC in rock-paper-
scissors. Figure 4.8 shows the trajectories of the players. The corollary predicted convergence,
and the proof gave the intuition that the convergence rate would depend on the ratio of the learning
rates of both players. In this experiment, we see convergence to the Nash equilibrium, and the
convergence is slower than with two WoLF learners (see Figure 4.4(b)) as is consistent with the
theoretical results..

Soccer

Since Littman’s soccer game (see Figure 4.6) is the most complex game we have examined thus
far, we now consider whether WoLF might converge in this domain against different opponents.
The first opponent is unmodified policy hill-climbing as above, and the second opponent is Q-
Learning. Neither opponents are convergent in self-play, but both are rational. So, if play is going
to converge, it must be to a Nash equilibrium. The experimental setup is exactly as in Section 4.4.3.
Training is performed for one million steps, and then the resulting policy is frozen and a challenger
is trained to find that policy’s worst case performance. As before, the closer the policy is to winning
half of its games with its challenger, the closer the policy is to the equilibrium.

Figure 4.9 shows the results. As before we show the percentage of games won against its
challenger as a measure of the distance from the equilibrium policy. The results are shown for
both one million steps of training and twice that amount, both when training against unmodified
PHC and against Q-learning. There are two important observations. The first is that the learned
policy is comparatively close to the equilibrium (the result of PHC in self-play is also shown for
comparison). Second, it appears that more training does move the policy closer to the equilibrium
giving evidence of convergence.

None of these empirical resultsprovesconvergence either in situations of self-play or otherwise.
The results do give evidence that a variable learning rate and the WoLF principle can encourage
convergence in an otherwise non-convergent rational learning algorithm. Specifically, WoLF-PHC
has been shown in a variety of domains to effectively converge to best-response policies, despite
the wild non-stationarity of other learning agents using the same or different learning algorithms.
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4.5 Summary

In this chapter, we introduced two properties that are desirable for a multiagent learning algorithm:
rationality and convergence. We noted that previous algorithms do not simultaneously achieve
these properties. We proposed the concept of a variable learning rate toward achieving these prop-
erties. In particular we introduced the WoLF, “Win or Learn Fast”, principle as a particular variable
learning rate.

We examined this technique theoretically for learning in two-player, two-action matrix games.
We proved that this technique causes infinitesimal gradient ascent, which is not convergent, to
converge in these games. We also generalized this result beyond self-play, demonstrating that both
players do not need to be using WoLF, in order for it to have a converging effect.

We then describe an implementation of the WoLF principle in a general stochastic game learn-
ing algorithm. We then explored this algorithm empirically in a large variety of stochastic games,
including both single state and multiple state, zero-sum and non-zero-sum, two-player and three-
player games. We also empirically examined several situations beyond self-play including play
against a non-WoLF policy hill-climber as well as play against a simple Q-learning algorithm.
These results validate the theoretical results that WoLF can cause rational algorithms to converge.

This analysis focused on simple games with few states and actions, where approximation and
therefore agent limitations were unnecessary. In the next chapter, we begin our investigation of
agent limitations and their effect on games. In Chapter 6 we return to the WoLF principle in the
context of learning in the presence of limitations.
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Figure 4.4: Rock-paper-scissors: trajectories of the two players’ strategies while learning with (a)
PHC, and (b) WoLF-PHC through one million iterations.
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Figure 4.5: Gridworld: trajectories of two players’ policies for the initial state while learning with
WoLF-PHC. The dashed walls in the grid represent the actions that are uncertain.



92 CHAPTER 4. WOLF: RATIONAL AND CONVERGENT LEARNING

A

B

G
O

A
LG

O
A

L

0

10

20

30

40

50

WoLF WoLF(x2) PHC(L) PHC(W)
0

10

20

30

Minimax-Q
40

50

%
 G

am
es

 W
on
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is statistically significant. The reported performance of Minimax-Q (Littman, 1994) is shown by
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Chapter 5

Analyzing Limitations

The solution concept of Nash equilibria depends on all of the agents playing optimally. From the
agent development perspective, agents have limitations that prevent this from being a reality. In the
previous chapter we examined abstract stochastic games with a small number of states. In these
domains a consideration of limitations was unnecessary. In order for learning algorithms to be
applied to more interesting and realistic problems, a consideration of limitations is required.

This analysis is not only useful for our further examination of learning with limitations in
Chapter 6, but is an important consideration for multiagent learning, in general. The solution
concept of Nash equilibria is a critical foundation for most of the multiagent learning research to
date. Equilibrium learners obviously rely critically on the existence of equilibria in order to have an
explicit solution to learn1. Best-response learners also depend on the existence of equilibria, since
these are the only possible convergence points when playing other best-response learning agents.
Therefore, this analysis is critical to any exploration of multiagent learning in realistic problems,
where agents are necessarily limited.

In this chapter we analyze the affect of agent limitations on the Nash equilibrium concept in
stochastic games. We begin by examining the source of common agent limitations. Following
this enumeration, we propose two different models for the effect of limitations on agent behavior:
implicit gamesand restricted policy spaces. We then use these models to explore the impact
limitations have on the Nash equilibrium solution concept. We define the notion ofrestricted
equilibria, which explicitly accounts for agent limitations. We then analyze theoretically under
what conditions restricted equilibria are guaranteed to exist. Finally, we explore learning in simple
cases where restricted equilibria are guaranteed to exist. We show empirically, that the WoLF-PHC
algorithm from Section 4.3.2 is capable of learning restricted equilibria when they exist.

1It should be noted that in the case of Minimax-Q, the algorithm and solution concept are still well-defined. A
policy that maximizes its worst-case value may still exist even if limitations make it such that no equilibrium exists.
However, this minimax optimal policy might not be part of any equilibrium. Later (in Section 5.2, Fact 5), we present
an example of a zero-sum stochastic game and agent limitations where the minimax optimal policies exist but do not
comprise an equilibrium.

95
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5.1 Limitations

The working definition of limitation in this work isanything that can restrict the agent from learn-
ing or playing optimal policies. Broadly speaking, limitations can be classified into two cate-
gories: physical limitations and rational limitations. Physical limitations are those caused by the
interaction of the agent with its environment and are often unavoidable. Rational limitations are
limitations specifically chosen by the agent designer to make the learning problem tractable, either
in memory or time. We briefly explore some of these limitations informally before presenting a
formal model of limitations that attempts to capture their effect within the stochastic game frame-
work.

5.1.1 Physical Limitations

One obvious physical limitation is that the agent simply is broken. A mobile agent may cease to
move or less drastically may lose the use of one of its actuators preventing certain movements.
Similarly, another agent may appear to be “broken” when in fact the motion is simply outside its
capabilities. For example, in a mobile robot environment where the “rules” allow robots to move
up to two meters per second, there may be a robot that is not capable of reaching that speed. An
agent that is not broken, may suffer from poor control where its actions are not always carried out
as desired, e.g., due to poorly tuned servos, inadequate wheel traction, or high system latency.

Another common physical limitation is hardwired behavior. Most agents in dynamic domains
need some amount of hard-wiring for fast response and safety. For example, many mobile robot
platforms are programmed to immediately stop if an obstacle is too close. These hardwired actions
prevent certain behavior by the agent, which is often unsafe but is potentially optimal.

Sensing is a common area of agent limitations encompassing everything from noise to partial
observability. Here we’ll mention just one broad category of sensing problems: state aliasing. This
occurs when an agent cannot distinguish between two different states of the world. An agent may
need to remember past states and actions in order to properly distinguish the states, or may simply
execute the same action in both states.

5.1.2 Rational Limitations

Rational limitations are a requirement for agents to learn in even moderately sized problems. Tech-
niques for making learning scale, which often focus on near-optimal solutions, continue to be pro-
posed and investigated in the context of single-agent learning. These techniques for scaling are
likely to be more necessary in multiagent environments which tend to have larger state spaces. We
now examine a few specific methods.

In domains with sparse rewards one common technique is reward shaping, e.g., (Mataric,
1994). A designer artificially rewards the agent for actions the designer believes to be progressing
toward the sparse rewards. This can often speed learning by focusing exploration, but also can
cause the agent to learn suboptimal policies. For example, in robotic soccer moving the ball down
the field is a good heuristic for goal progression, but at times the optimal goal-scoring policy is to
pass the ball backwards to an open teammate.
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Subproblem reuse also has a similar effect, where a subgoal is used in a portion of the state
space to speed learning, e.g., (Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998; Bowl-
ing & Veloso, 1999). These subgoals, though, may not be optimal for the global problem and so
prevent the agent from playing optimally. Temporally abstract options, either provided (Sutton,
Precup, & Singh, 1998) or learned (McGovern & Barto, 2001; Uther, 2002), also enforce a partic-
ular sub-policy on a portion of the state space. Although in theory, the primitive actions are still
available to the agents to play optimal policies, in practice, abstracting away primitive actions is
often necessary in large or continuous state spaces.

Parameterized policies are receiving a great deal of attention as a way for reinforcement learn-
ing to scale to large problems, e.g., (Williams & Baird, 1993; Sutton et al., 2000; Baxter & Bartlett,
2000). The idea is to give the learner a policy that depends on far less parameters than the entire
policy space actually would require. Learning is then performed in this smaller space of parame-
ters using gradient techniques. This simplifies and speeds learning at the expense of possibly not
being able to represent the optimal policy in the parameter space.

5.1.3 Models of Limitations

This enumeration of limitations shows that there are a number and variety of limitations with which
agents may be faced, and they cannot be realistically avoided. In order to understand their impact
on equilibria we model limitations formally within the stochastic game framework. We introduce
two models that capture broad classes of limitations:implicit gamesandrestricted policy spaces.

Implicit Games. Limitations may cause an agent to play suboptimally, but it may be that the
agentis actually playing optimally in a different game. If this new game can be defined within the
stochastic game framework we call this animplicit game, in contrast to the original game called the
explicit game. For example, reward shaping adds artificial rewards to help guide the agent’s search.
Although the agent is no longer learning an optimal policy in the explicit game, it is learning an
optimal policy of some game, specifically the game with these additional rewards added to that
agent’sRi function. Another example is due to broken actuators preventing an agent from taking
some action. The agent may be suboptimal in the explicit game, while still being optimal in the
implicit game defined by removing these actions from the agent’s action set,Ai. We can formalize
this concept in the following definition.

Definition 8 Given a stochastic game(n, S,A1...n, T, R1...n) the tuple(n, S, Â1...n, T̂ , R̂1...n) is an
implicit game if and only if it is itself a stochastic game and there exist mappings,

τi : S× Âi ×Ai → [0, 1],

such that,

∀s, s′ ∈ S ∀âi ∈ Âi T̂ (s, 〈âi〉i=1...n , s
′) =

∑
a∈A

Πn
i=1τi(s, âi, ai) T (s, 〈ai〉i=1...n , s

′).

Theτi’s are mappings from the implicit action space into stochastic actions in the explicit action
space.
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Reward shaping, broken actuators, and exploration can all be captured within this model. For
reward shaping the implicit game is(n, S,A1...n, T, R̂1...n), whereR̂i adds the shaped reward into
the original reward,Ri. In this case theτ mappings are just the identity,τi(s, a) = a. For the
broken actuator example, leta0

i ∈ Ai be some null action for agenti and letabi ∈ Ai be some
broken action for agenti that under the limitation has the same effect as the null action. The
implicit game, then, is(n, S,A1...n, T̂ , R̂1...n), where,

T̂ (s, a, s′) =

{
T (s, 〈a0

i , a−i〉 , s′) if ai = abi
T (s, a, s′) otherwise

R̂(s, a) =

{
R(s, 〈a0

i , a−i〉) if ai = abi
R(s, a) otherwise

,

and,

τi(s, a) =

{
a0
i if a = abi
a otherwise

.

Forε exploration, as with broken actuators, onlyT̂ andR̂ need to be defined. They become just the
ε combination ofT or R with the transition probabilities or reward values of selecting a random
action.

Limitations captured by this model can easily be analyzed with respect to their effect on the
existence of equilibria. We now restrict ourselves to discounted reward stochastic games, where
equilibria existence is known. Using the intuitive definition of an equilibrium as a joint policy such
that “no player can do better by changing policies,” an equilibrium in the implicit game achieves
this definition for the explicit game. Since all discounted reward stochastic games have at least
one equilibrium, so must the implicit game, which is also in this class. This equilibrium for the
implicit game is then an equilibrium in the explicit game, given that the agents are limited.

On the other hand, many of the limitations described above cannot be modeled in this way.
None of the limitations of abstraction, subproblem reuse, parameterized policies, or state aliasing
lend themselves to being described by this model. This leads us to our second, and in many ways
more general, model of limitations.

Restricted Policy Spaces. The second model is that ofrestricted policy spaces, which models
limitations as restricting the agent from playing certain policies. For example, a fixed exploration
strategy restricts the player to policies that select all actions with some minimum probability. Pa-
rameterized policy spaces have a restricted policy space corresponding to the space of policies that
can be represented by their parameters. We can define this formally.

Definition 9 A restricted policy spacefor playeri is a non-empty and compact2 subset,Πi ⊆ Πi.

It should be straightforward to see that parameterized policies, exploration, state aliasing (with
no memory), and subproblem reuse all can be captured as a restriction on policies that the agent
can play. Therefore they can be naturally described as restricted policy spaces. In addition, value

2SinceΠi is a subset of a bounded set, the requirement thatΠi is compact merely adds that the limit point of any
sequence of elements from the set is also in the set. The assumption of compactness may at first appear strange, but it
is not particularly limiting, and is critical for any equilibrium analysis.
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Physical Limitations Implicit Games Restricted Policies
Broken Actuators X X
Hardwired Behavior X X
Poor Control X
State Aliasing X
Rational Limitations Implicit Games Restricted Policies
Reward Shaping or Incentives X
Exploration X X
State Abstraction/Options X
Subproblems X
Parameterized Policy X

Table 5.1: Common agent limitations. The column check-marks correspond to whether the limita-
tion can be modeled straightforwardly using implicit games and/or restricted policy spaces.

function approximation can also be modeled as a restricted policy space. Value function reinforce-
ment learning involves some mapping from values to a distribution over actions, such asε-greedy
or Boltzmann mappings. Since value function approximation limits the space of values, it corre-
spondingly limits the space of policies.

Unlike implicit games, an analysis of the existence of equilibria under the model of restricted
policy spaces is not at all straightforward. Since the model captures most of the really interesting
limitations, such an analysis is precisely our focus of the next section. Before moving on to this
investigation, though, we summarize our enumeration of limitations in Table 5.1. The limitations
that we have discussed are listed, including which model most naturally captures their effect on
agent behavior.

5.2 Restricted Equilibria

In this section we define formally the concept ofrestricted equilibria, which account for agents’
restricted policy spaces. We then carefully analyze what can be proven about the existence of
restricted equilibria. The results presented range from somewhat trivial examples (Facts 1, 2,
3, and 4) and applications of known results from game theory and basic analysis (Theorems 3
and 7) to results that we believe are completely new (Theorems 4, 5, and 6), as well as a critical
counterexample to the wider existence of restricted equilibria (Fact 5). But all of the results are in
a sense novel since this specific question has received no direct attention in the game theory nor
the multiagent learning literature.

5.2.1 Definition

We begin by defining the concept of equilibria under the model of restricted policy spaces. First,
we need a notion of best-response that accounts for the players’ limitations.

Definition 10 A restricted best-responsefor player i, BRi(π−i), is the set of all policies fromΠi
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that are optimal given the other player(s) play the joint policyπ−i.

In our consideration of limitations, it is necessary to use a more relaxed definition of optimality
for the discounted reward framework than what was presented in Chapter 2. In particular, it may
be the case with limitations that it is not possible to simultaneously maximize the value at every
state. That is, for some policyπ−i, there may not exist any policy,πi ∈ Πi, such that,

∀π′i ∈ Πi ∀s ∈ S V
〈πi,π−i〉
i (s) ≥ V

〈π′i,π−i〉
i (s).

Instead of this stronger notion, we relax optimality to only require an optimal policy to maximize
the value of some specified initial state,s0 ∈ S. We can define this formally.

Definition 11 Throughout this chapter unless otherwise stated, we say thatpii ∈ Πi is optimal
given the other player(s) play the joint policyπ−i, if and only if,

∀π′i ∈ Πi V
〈πi,π−i〉
i ≥ V

〈π′i,π−i〉
i ,

whereV π
i = V π

i (s0) under either the average reward or discounted reward frameworks.

We now use our notion of a best-response set to define an equilibrium.

Definition 12 A restricted equilibriumis a joint policy,πi=1...n, where,

πi ∈ BRi(π−i).

So, no player can within their restricted policy space do better by changing policies given that all
the other players continue to follow the equilibrium policy.

5.2.2 Existence of Restricted Equilibria

We can now state some results about when the existence of equilibria are preserved by restricted
policy spaces, and when they are not. Unless otherwise stated (as in Theorems 4 and 6, which only
apply to discounted reward), the results presented here apply equally to both the discounted reward
and the average reward formulations. We will separate the proofs for the two reward formulations
when needed. The first four facts show that the question of the existence of restricted equilibria
does not have a trivial answer.

Fact 1 Restricted equilibria do not necessarily exist.

Proof. Consider the rock-paper-scissors matrix game with players restricted to the space of deter-
ministic policies. There are nine joint deterministic policies, and none of these joint policies are a
restricted equilibrium. 2

Fact 2 There exist restricted policy spaces such that restricted equilibria exist.

Proof. One trivial restricted equilibrium is in the case where all agents have a singleton policy
subspace. The singleton joint policy must be a restricted equilibrium. 2
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Fact 3 If π∗ is a Nash equilibrium andπ∗ ∈ Π, thenπ∗ is a restricted equilibrium.

Proof. If π∗ is a Nash equilibrium, then we have

∀i ∈ {1 . . . n} ∀πi ∈ Πi V π∗

i ≥ V
〈πi,π∗−i〉
i .

SinceΠi ⊆ Πi, then we also have

∀i ∈ {1 . . . n} ∀πi ∈ Πi V π∗

i ≥ V
〈πi,π∗−i〉
i ,

and thusπ∗ is a restricted equilibrium. 2

On the other hand, the converse is not true; not all restricted equilibria are of this trivial variety.

Fact 4 There exist non-trivial restricted equilibria that are neither Nash equilibria nor come from
singleton policy spaces.

Proof. Consider the rock-paper-scissors matrix game from Table 2.1(b). Suppose the column
player is forced, due to some limitation, to play “Paper” exactly half of the time, but is free to
choose between “Rock” and “Scissors” otherwise3. This limitation is a restricted policy space that
excludes the only Nash equilibrium of the game. We can solve this game using the implicit game
model, by giving the limited player only two actions,s1 = (0.5, 0.5, 0) ands2 = (0, 0.5, 0.5),
which the player can mix between. This is depicted graphically in Figure 5.1. We can solve the
implicit game and convert the two actions back to actions of the explicit game to find a restricted
equilibrium. Notice this restricted equilibrium is not a Nash equilibrium. 2

The Fact 4 example has a convex policy space, i.e., all linear combinations of policies in the
set are also in the set. The Fact 1 counterexample has a non-convex policy space. This suggests
that restricted equilibria may exist as long as the restricted policy space is convex. We can prove
this for repeated games, but unfortunately it is not generally true for stochastic games.

Theorem 3 When|S| = 1, i.e., in repeated games, ifΠi is convex, then there exists a restricted
equilibrium.

Proof. One might think of proving this by appealing to implicit games as was used in Fact 4.
If Πi was a convex hull of afinite number of strategies, then this would be possible. In order to
prove it for any convexΠi, we apply Rosen’s theorem about the existence of equilibria in concave
games (Rosen, 1965). In order to use this theorem we need to show the following:

1. Πi is non-empty, compact, and convex.

2. V π
i as a function overπ ∈ Π is continuous.

3This is an example of reducing the number of parameters that need to be learned, in this case from two to one.
Although this reduction of parameters is small, it illustrates the use of limitations to simplify and, therefore, speed
learning.
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Figure 5.1: Example of a restricted equilibrium that is not a Nash equilibrium. Here, the column
player in rock-paper-scissors is restricted to playing only linear combinations of the strategies
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3. For anyπ ∈ Π, the function overπ′i ∈ Πi defined asV
〈π′i,π−i〉
i is concave.

Condition 1 is by assumption. In repeated games, whereS = {s0}, we can simplify the definition
of a policy’s value from Equations 2.11 and 2.12. For discounted reward we get,

V π
i =

1

1− γ
∑
a∈A

Ri(s, a)Πn
i=1πi(s0, ai), (5.1)

For average reward, the value is just the value of the one-shot matrix game given the players’
policies. This is equivalent to settingγ = 0 in Equation 5.1. Equation 5.1 shows that the value
is a multilinear function with respect to the joint policy and therefore is continuous. So Condition
2 is satisfied. Observe that by fixing the policies for all but one player Equation 5.1 becomes a
linear function over the remaining player’s policy and so is also concave satisfying Condition 3.
Therefore Rosen’s theorem applies and this game has a restricted equilibrium. 2

Fact 5 For a stochastic game, even ifΠi is convex, restricted equilibria do not necessarily exist.

Proof. Consider the stochastic game in Figure 5.2. This is a zero-sum game where only the payoffs
to the row player are shown. The discount factor isγ ∈ (0, 1). The actions available to the row
player areU andD, and for the column playerL andR. From the initial state,s0, the column player
may select eitherL orR which results in no rewards but with high probability,1− ε, transitions to
the specified state (regardless of the row player’s action), and with low probability,ε, transitions to
the opposite state. In each of the resulting states the players play the matrix game shown and then
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Figure 5.2: An example stochastic game where convex restricted policy spaces do not preserve the
existence of equilibria.

deterministically transition back to the initial state. Notice that this game is unichain, where all the
states are in a single ergodic set, thus satisfying the average reward formulation requirement.

Now consider the restricted policy space where players have to play their actions with the same
probability in all states. So,

Πi = {πi ∈ Πi|∀s, s′ ∈ S ∀a ∈ A πi(s, a) = πi(s
′, a)} . (5.2)

Notice that this is a convex set of policies. That is, if policiesx1 andx2 are inΠi (according to
Equation 5.2), then for anyα ∈ [0, 1], x3 must also be inΠi, where,

x3(s, a) = αx1(s, a) + (1− α)x2(s, a). (5.3)

This can be seen by examiningx3(s′, a) for anys′ ∈ S. From Equation 5.3, we have,

x3(s′, a) = αx1(s′, a) + (1− α)x2(s′, a) (5.4)

= αx1(s, a) + (1− α)x2(s, a) (5.5)

= x3(s, a). (5.6)

Therefore,x3 is in Πi and henceΠi is convex.
This game, though, does not have a restricted equilibrium. The four possible joint deterministic

policies,(U,L), (U,R), (D,L), and(D,R), are not equilibria. So if there exists an equilibrium
it must be mixed. Consider any mixed strategy for the row player. If this strategy playsU with
probability less than1

2
then the unique best-response for the column player is to playL; if greater

than 1
2

then the unique best-response is to playR; if equal then the unique best-responses are to
play L or R deterministically. In all cases all best-responses are deterministic, so this rules out
mixed strategy equilibria, and so no equilibria exists. 2

Convexity is not a strong enough property to guarantee the existence of restricted equilibria.
Standard equilibrium proof techniques fail for this example due to the fact that the player’s best-
response sets are not convex, even though their restricted policy spaces are convex. Notice that
the best-response to the row player mixing equally between actions is to play either of its actions
deterministically, but, linear combinations of these actions (e.g., mixing equally) are not best-
responses.

This intuition is proven in the following lemma.
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Figure 5.3: An illustration of the demonstration by contradiction that the best-response functions
are upper hemi-continuous.

Lemma 10 For any stochastic game, ifΠi is convex and for allπ−i ∈ Π−i, BRi(π−i) is convex,
then there exists a restricted equilibrium.

Proof. The proof relies on Kakutani’s fixed point theorem. We first need to show some facts
about the restricted best-response function. First, remember thatΠi is non-empty and compact.
Also, note that the value (with both discounted and average reward) to a player at any state of a
joint policy is a continuous function of that joint policy (Filar & Vrieze, 1997, Theorem 4.3.7 and
Lemma 5.1.4). Therefore, from basic analysis (Gaughan, 1993, Theorem 3.5 and Corollary 3.11),
the set of maximizing (or optimal) points must be a non-empty and compact set. SoBRi(π−i) is
non-empty and compact.

Define the set-valued function,F : Π→ Π,

F (π) = ×ni=1 BRi(π−i).

We want to showF has a fixed point. To apply Kakutani’s fixed point theorem we must show the
following conditions to be true,

1. Π is a non-empty, compact, and convex subset of a Euclidean space,

2. F (π) is non-empty,

3. F (π) is compact and convex, and

4. F is upper hemi-continuous.

Since the Cartesian product of non-empty, compact, and convex sets is non-empty, compact, and
convex we have condition (1) by the assumptions onΠi. By the facts ofBRi from above and the
lemma’s assumptions we similarly get conditions (2) and (3).

What remains is to show condition (4). Consider two sequencesxj → x ∈ Π andyj → y ∈ Π
such that∀j yj ∈ F (xj). It must be shown thaty ∈ F (x), or justyi ∈ BRi(x). Let v beyi’s value
againstx. By contradiction assume there exists ay′i with higher value,v′ thanyi; let δ = v′ − v.
Since the value function is continuous we can choose anN large enough that the value ofy′i against
xN differs fromv′ by at mostδ/44, and the value ofyi againstxN differs fromv by at mostδ/4,
and the value ofyNi againstxN differs from yi againstxN by at mostδ/4. The comparison of
values of these various joint policies is shown in Figure 5.3. Adding all of these together, we have
a point in the sequenceyn>Ni whose value againstxn is less than the value ofyi againstxn. So
yni /∈ BRi(x

n), and thereforeyn /∈ F (xn) creating our contradiction.
We can now apply Kakutani’s fixed point theorem. So there existsπ ∈ Π such thatπ ∈ F (π).

This meansπi ∈ BRi(π−i), and therefore this is a restricted equilibrium. 2

4This value is arbitrarily selected and is only required to be strictly smaller thanδ/3.
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The consequence of this lemma is that, if we can prove that the sets of restricted best-responses
are convex then restricted equilibria exist. As we have stated earlier this was not true of the coun-
terexample in Fact 5. The next four theorems all further limit either the restricted policy spaces or
the stochastic game to situations where the best-response sets are provably convex. We will first
examine a specific class of restricted policy spaces, and then examine specific classes of stochastic
games.

A Subclass of Restricted Policies

Our first result for general stochastic games uses a stronger notion of convexity for restricted policy
spaces.

Definition 13 A restricted policy spaceΠi is statewise convexif and only if it is the Cartesian
product over all states of convex strategy sets. Equivalently, if for allx1, x2 ∈ Πi and all functions
α : S→ [0, 1], the policyx3(s, a) = α(s)x1(s, a) + (1− α(s))x2(s, a) is also inΠi.

Effectively, this amounts to the probability distribution over actions at each state must be specifi-
able independently of the distribution specified for other states. In this case, we can guarantee that
a restricted equilibrium exists.

Theorem 4 In the discounted reward formulation, ifΠi is statewise convex, then there exists a
restricted equilibrium.

Proof. With statewise convex policy spaces, there exist optimal policies in the strong sense as was
originally presented in Section 2.4.2. Specifically, there exists a policy that can simultaneously
maximize the value of all states. Formally, for anyπ−i there exists aπi ∈ Πi such that,

∀s ∈ S ∀π′i ∈ Πi V
〈πi,π−i〉
i (s) ≥ V

〈π′i,π−i〉
i (s).

Suppose this were not true, i.e., there were two policies each which maximized the value of differ-
ent states. We can construct a new policy that in each state follows the policy whose value is larger
for that state. This policy will maximize the value of both states that those policies maximized, and
due to statewise convexity is also inΠi. We will use that fact to redefine optimality to the strong
sense for this proof.

We now make use of Lemma 10. First, notice the lemma’s proof still holds even with this
new definition of optimality. We just showed that under this redefinition,BRi(π−i) is non-empty,
and the same argument for compactness ofBRi(π−i) holds. So we can make use of Lemma 10
and what remains is to prove thatBRi(π−i) is convex. Sinceπ−i is a fixed policy for all of the
other players, this defines an MDP for playeri (Filar & Vrieze, 1997, Corollary 4.2.11). So we
need to show that the set of polices from the player’s restricted set that are optimal for this MDP
is a convex set. Concretely, ifx1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) =
αx1(s, a) + (1 − α)x2(s, a) is also optimal for anyα ∈ [0, 1]. Sincex1 andx2 are optimal in the
strong sense, i.e., maximizing the value of all states simultaneously, then they must have the same
per-state value.
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Here, we will use the notationV x(s) to refer to the value of policyx from states in this fixed
MDP. The value function for any policy satisfies the Bellman equations, specifically,

∀s ∈ S V x(s) =
∑
a

x(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x(s′)

)
. (5.7)

Forx3 then we get the following,

V x3(s) =
∑
a

x3(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
(5.8)

=
∑
a

(αx1(s, a) + (1− α)x2(s, a))

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
(5.9)

= α
∑
a

x1(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
+

(1− α)
∑
a

x2(s, a))

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
. (5.10)

Notice thatV x3(s) = V x1(s) = V x2(s) is a solution to these equations, and therefore is the unique
solution for the value ofx3. Therefore,x3 has the same values asx1 andx2, and hence is also
optimal. ThereforeBRi(π−i) is convex, and from Lemma 10 we get the existence of restricted
equilibria under this stricter notion of optimality, which also makes the policies a restricted equi-
librium under our original notion of optimality, that is, only maximizing the value of the initial
state. 2

Subclasses of Stochastic Games

Unfortunately, most rational limitations that allow reinforcement learning to scale are not statewise
convex restrictions, and usually have some dependence between states. For example, parameter-
ized policies involve far fewer parameters than the number of states, which can be intractably large,
and so the space of policies cannot select actions at each state independently. Similarly subprob-
lems force whole portions of the state space to follow the same subproblem solution. Therefore,
these portions of the state space do not select their actions independently. One way to relax from
statewise convexity to general convexity is to consider only a subset of stochastic games.

Theorem 5 Consider no-control stochastic games, where all transitions are independent of the
players’ actions, i.e.,

∀s, s′ ∈ S ∀a, b ∈ A T (s, a, s′) = T (s, b, s′).

If Πi is convex, then there exists a restricted equilibrium.

Proof (Discounted Reward). This proof also makes use of Lemma 10, leaving us only to show
thatBRi(π−i) is convex. Just as in the proof of Theorem 4 we will consider the MDP defined for
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playeriwhen the other players follow the fixed policyπ−i. As before it suffices to show that for this
MDP, if x1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) = αx1(s, a)+(1−α)x2(s, a)
is also optimal for anyα ∈ [0, 1].

Again we use the notationV π(s) to refer to the traditional value of a policyπ at states in this
fixed MDP. SinceT (s, a, s′) is independent ofa, we can simplify the Bellman equations (Equa-
tion 2.2) to,

V x(s) =
∑
a

x(s, a)R(s, a) + γ
∑
s′

∑
a

x(s, a)T (s, a, s′)V x(s′) (5.11)

=
∑
a

x(s, a)R(s, a) + γ
∑
s′

T (s, ·, s′)V x(s′). (5.12)

For the policyx3, the value of states is then,

V x3(s) = α
∑
a

x1(s, a)R(s, a) + (1− α)
∑
a

x2(s, a)R(s, a) +

γ
∑
s′

T (s, ·, s′)V x3(s′). (5.13)

Using equation 5.12 for bothx1 andx2 we get,

V x3(s) = α(V x1(s)− γ
∑
s′

T (s, ·, s′)V x1(s′)) +

(1− α)(V x2(s)− γ
∑
s′

T (s, ·, s′)V x2(s′)) +

γ
∑
s′

T (s, ·, s′)V x3(s′) (5.14)

= αV x1(s) + (1− α)V x2(s) +

γ
∑
s′

T (s, ·, s′) (V x3(s′)− αV x1(s′)− (1− α)V x2(s′)) (5.15)

Notice that a solution to these equations isV x3(s) = αV x1(s) + (1 − α)V x2(s), and the Bellman
equations must have a unique solution. Hence,V x3(s0) is equal toV x1(s0) andV x2(s0), which are
equal since both are optimal. Sox3 is optimal, andBRi(π) is convex. Applying Lemma 10 we get
that restricted equilibria exist. 2

Proof (Average Reward). An equivalent definition to Equation 2.6 of a policy’s average reward
is,

V π
i (s) = dπ(s)

∑
a

π(s, a)R(s, a), (5.16)

wheredπ(s) defines the distribution over states visited while followingπ after infinite time. For a
stochastic game or MDP that is unichain, we know that this distribution is independent of the initial
state. In the case of no-control stochastic games or MDPs, this distribution becomes independent
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of the actions and policies of the players, and depends solely on the transition probabilities. So
Equation 5.16 can be written,

V π
i (s) = d(s)

∑
a

π(s, a)R(s, a). (5.17)

As before, we must show thatBRi(π−i) is convex to apply Lemma 10. Consider the MDP defined
for playeri when the other players follow the policyπ−i. It suffices to show that for this MDP, if
x1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) = αx1(s, a) + (1−α)x2(s, a) is also
optimal for anyα ∈ [0, 1]. Using Equation 5.17, we can write the value ofx3 as,

V x3
i (s) = d(s)

∑
a

x3(s, a)R(s, a) (5.18)

= d(s)
∑
a

(αx1(s, a) + (1− α)x2(s, a))R(s, a) (5.19)

= d(s)

(∑
a

αx1(s, a)R(s, a) +
∑
a

(1− α)x2(s, a)R(s, a)

)
(5.20)

= α

(
d(s)

∑
a

x1(s, a)R(s, a)

)
+ (1− α)

(
d(s)

∑
a

x2(s, a)R(s, a)

)
(5.21)

= αV x1
i (s) + (1− α)V x2

i (s). (5.22)

Thereforex3 has the same average reward asx1 andx2 and so is also optimal. SoBRi(π−i) is
convex and by Lemma 10 there exists an equilibrium. 2

We can now merge Theorem 4 and Theorem 5 allowing us to prove existence of equilibria for
a general class of games where only one of the player’s actions affects the next state.

Theorem 6 Consider single-controller stochastic games (Filar & Vrieze, 1997), where all transi-
tions depend solely on player 1’s actions, i.e.,

∀s, s′ ∈ S ∀a, b ∈ A a1 = b1 ⇒ T (s, a, s′) = T (s, b, s′).

In the discounted reward formulation, ifΠ1 is statewise convex andΠi6=1 is convex, then there
exists a restricted equilibrium.

Proof. This proof again makes use of Lemma 10, leaving us to show thatBRi(π−i) is convex. For
i = 1 we use the argument from the proof of Theorem 4. Fori 6= 1 we use the argument from
Theorem 5. 2

The previous results have looked at stochastic games whose transition functions have particular
properties. Our final theorem examines stochastic games where the rewards have a particular
structure. Specifically we address team games, where the agents all receive equal payoffs.

Theorem 7 For team games, i.e.,

∀i, j ∈ {1, . . . , n} ∀s ∈ S ∀a ∈ A Ri(s, a) = Rj(s, a),

there exists a restricted equilibrium.
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Proof. The only constraints on the players’ restricted policy spaces are those stated at the beginning
of this section: non-empty and compact. SinceΠ is compact, being a Cartesian product of compact
sets, and player one’s value in either formulation is a continuous function of the joint policy, then
the value function attains its maximum (Gaughan, 1993, Corollary 3.11). Specifically, there exists
π∗ ∈ Π such that,

∀π ∈ Π V π∗

1 ≥ V π
1 .

SinceVi = V1 we then get that the policyπ∗ maximizes all the players’ rewards, and so each must
be playing a restricted best-response to the others’ policies. 2

5.2.3 Summary

Facts 1 and 5 provide counterexamples that show the threat limitations play to equilibria. Theo-
rems 3, 4, 6, and 7 give us four general classes of stochastic games and restricted policy spaces
where equilibria are guaranteed to exist. The fact that equilibria do not exist in general raises
concerns about equilibria as a general basis for multiagent learning in domains where agents have
limitations. On the other hand, combined with the model of implicit games, the presented theo-
retical results lay the initial groundwork for understanding when equilibria can be relied upon and
when their existence may be in question. These contributions also provide some formal foundation
for applying multiagent learning in limited agent problems.

5.3 Learning Restricted Equilibria

At the beginning of this chapter we highlighted the importance of the existence of equilibria to
multiagent learning algorithms. This section presents results of applying a particular learning
algorithm to a setting of limited agents. We use the best-response learner, WoLF-PHC (Bowling
& Veloso, 2002a) introduced in Chapter 4. Recall that this algorithm is rational, that is, it is
guaranteed to converge to a best-response if the other players’ policies converge. In addition, it has
been empirically shown to converge in self-play, where both players use WoLF-PHC for learning
and the players are not limited. In this section we apply this algorithm in self-play to repeated
games with limited players. Since the algorithm is rational, if the players converge their converged
policies must be an equilibrium.

The specific limitations we examine fall into both the restricted policy space model as well as
the implicit game model. One player is restricted to playing strategies that are the convex hull
of a subset of the available strategies. From Theorem 3, there exists a restricted equilibrium with
these limitations. For the limited player, the WoLF-PHC algorithm is modified slightly so that the
player maintains Q-values of its restricted set of available strategies and performs its usual hill-
climbing in the mixed space of these strategies. The unlimited player is unchanged and completely
uninformed of the limitation of its opponent.

5.3.1 Rock-Paper-Scissors

The first game we examine is rock-paper-scissors. In Chapter 4 we presented results of WoLF-
PHC applied to this matrix game. These results are shown again, in a slightly different format, in
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Figure 5.4: Rock-paper-scissors: strategy trajectories when learning with WoLF-PHC. Also see
Figure 4.4.

Figure 5.4. Each graph shows the mixed policy the player is playing over time. The labels to the
right of the graph signify the probabilities of each action in the game’s unique Nash equilibrium.
Observe that the players’ strategies converge to this learning fixed point.

Figure 5.5 shows the results of restricting player 1 to a convex restricted policy space, defined
by requiring the player to play “Paper” exactly half of the time. This is the same restriction as
shown graphically in Figure 5.1. The graphs, again, show the players’ strategies over time, and the
labels to the right now label the game’s restricted equilibrium, which accounts for the limitation
(see Figure 5.1). The player’s strategies now converge to this new learning fixed point. If we
examine the expected rewards to the players, we see that the unrestricted player gets a higher
expected reward in the restricted equilibrium than in the game’s Nash equilibrium (1/6 compared
to 0). In summary, both players learn optimal best-response policies with the unrestricted learner
appropriately taking advantage of the other player’s limitation.

5.3.2 Colonel Blotto

The second game we examined is “Colonel Blotto” from Figure 2.1(e). As a reminder, in this
game, players simultaneously allot regiments to one of two battlefields. If one player allots more
armies to a battlefield than the other, they receive a reward of one plus the number of armies the
other player allotted to the battlefield, and the other player loses this amount. If the players tie,
then the reward is zero for both. In the unlimited game, the row player has four regiments to allot,
and the column player has only three.

Figure 5.6 shows experimental results with unlimited players. The labels on the right signify
the probabilities associated with the Nash equilibrium to which the players’ strategies converge.
Player 1 is then given the limitation that it could only allot two of its armies, the other two would
be allotted randomly. This is also a convex restricted policy space. Therefore by Theorem 3, it has
a restricted equilibrium. Figure 5.7 shows the learning results. The labels to the right correspond
to the action probabilities for the restricted equilibrium, which was computed by hand. As in
rock-paper-scissors, the players’ strategies converge to the new learning fixed point. Similarly, the
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Figure 5.5: Rock-paper-scissors: strategy trajectories when learning with WoLF-PHC and Player
1 must play “Paper” with probability1
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Figure 5.6: Colonel Blotto: strategy trajectories when learning with WoLF-PHC.

expected reward for the unrestricted player resulting from the restricted equilibrium is considerably
higher than that of the Nash equilibrium (compare0 to −14/9), as the player takes advantage of
the other’s limitation.

There is one final observations about these results. In Section 5 we discussed the use of rational
limitations to speed learning. Even in these very small single-state problems, our results demon-
strate that limitations can be used to speed learning. Notice that convergence occurs more quickly
in the limited situations where one of the players has less parameters and less freedom in its policy
space. In the case of the Colonel Blotto game this is a dramatic difference. (Notice the x-axes
differ by a factor of four!) In games with very large state spaces this will be even more dramatic.
Agents will need to make use of rational limitations to do any learning at all, and similarly the less
restricted agents will likely be able to benefit from taking advantage of the more limited learners5.

5Strictly speaking, restricted agents are not always at a disadvantage. In zero-sum games, such as those for which
results are presented here, and team-games where all players rewards are identical, restrictions can never benefit the
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Figure 5.7: Colonel Blotto: strategy trajectories when learning with WoLF-PHC and Player 1 is
forced to randomly allot two regiments.

5.4 Summary

We analyzed the effect of limitations on the Nash equilibrium solution concept in stochastic games.
We investigated sources of different limitations and defined the model of restricted policy spaces as
a generalization of limitations effects on agent behavior. We then proposed restricted equilibria as
a solution concept that accounts for agent limitations and explored when restricted equilibria can
be guaranteed to exist. In general, even with well-behaved agent limitations, restricted equilibria
cannot be guaranteed to exist. We did define several general classes of stochastic games and
restricted policy spaces where equilibria are guaranteed to exist. We finally examined learning of
restricted equilibria. We demonstrated empirically that the WoLF-PHC algorithm is capable of
converging to restricted equilibria in matrix games, when they exist.

agent. In general-sum games, such as Bach or Stravinsky from Table 2.1(d), this is not true. In this case, an imposed
restriction, such as the row player being forced to select its first action, can actually improve the agent’s equilibrium
value. See (Gilboa & Samet, 1989; Littman & Stone, 2001).



Chapter 6

GraWoLF: Learning with Limitations

In realistic and complex domains, agent limitations are unavoidable. Tasks with intractably large
or continuous state spaces require the imposing of limitations to make learning even possible. In
Chapter 5 we explored the effect of limitations on the Nash equilibrium concept. In this Chapter
we examine the effect of limitations on learning. Although, equilibria are not guaranteed to exist
when agents are limited, we still want agents that can learn when they or others are limited.

We introduce GraWoLF1 as a general-purpose, scalable, multiagent learning algorithm. Gra-
WoLF combines policy gradient techniques developed for approximate single-agent learning, with
the WoLF multiagent learning principle to account for other simultaneously learning agents. The
algorithm learns within the confines of a limited space of parameterized policies, and incorporates
WoLF into this best-response learner. The variable learning rate accounts for the other learn-
ing agents with the possibility of exploiting their limitations (recall the simple examples of this
exploitation from Section 5.3). This combination allows GraWoLF to handle both its own and
others’ limitations.

We begin by presenting two very different domains for which we have applied the GraWoLF:
goofspiel and keepout. Goofspiel is a card game with an intractably large state space. Keepout is an
adversarial robot task where we examine both learning on physical robots, as well as experiments
in simulation. After presenting these complex domains, we introduce the GraWoLF algorithm.
After describing GraWoLF in detail, we also describe tile coding, a method for approximating
large or continuous state spaces. We use tile coding to apply GraWoLF to our two tasks. Before
discussing the application and results of applying GraWoLF to these problems we examine issues
of evaluation. We then show compelling results of GraWoLF learning simultaneously both in
goofspiel, keepout with simulated robots, and keepout with the robots themselves. The goal of this
evaluation is to examine whether GraWoLF is capable of learning in these challenging domains,
and how WoLF affects learning.

6.1 Two Complex Domains

Later in this chapter we present experiments of applying GraWoLF to two complex tasks. We
begin by presenting these two tasks as motivation for the development of the GraWoLF algorithm.

1GraWoLF is short for “Gradient-based Win or Learn Fast”, and the ‘a’ has the same sound as in “gradient”.
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Figure 6.1: Keepout: an adversarial robot task. The top robot is trying to get inside the circle while
the bottom robot is trying to stop it.

Following the two domain descriptions, we give a brief summary of the similarities and differences
of these two domains.

6.1.1 Goofspiel

The first domain is goofspiel, the card game presented in Section 2.4.1 to illustrate the framework
of stochastic games. It would be helpful to review the rules and details of the game that are
presented in that section. In summary, two key points are: (1) the number of states of the game
is far too large for learning without approximation. This requires agents to employ limitations to
make learning possible. (2) The random policy is actually quite a good policy for this domain. We
will use the random policy as the starting point for learning.

6.1.2 Keepout

Keepout is an adversarial robot task, and is shown in Figure 6.1. The robot at the top of the figure
is the attacker and is trying to reach the circle in the center of the field. The robot closer to the
circle is the defender and is trying to prevent this from happening. If the attacker reaches the circle,
then it receives a reward of one and the defender receives a reward of negative one. These are the
only rewards in the task. When the attacker reaches the circle or ten seconds elapses, the trial is
over and the robots reset to their initial positions, where the attacker is a meter from the circle and
the defender half-way between. The robots simultaneously learn in this environment each seeking
to maximize its own discounted future reward. For all of our experiments the discount factor used
was 0.8 for each full second of delay.

The robots themselves are part of the CMDragons ’02 robot soccer team, which competes in
the RoboCup small-size league. The complete team will actually be explored in depth in Chapter 7.



6.1. TWO COMPLEX DOMAINS 115

Here, we will only describe the details relevant to this learning task. First, the learning algorithm
itself is situated within a large and complex architecture that already contains effective solutions
for many aspects of the task. The team employs a global vision system mounted over the field. This
input is processed by an elaborate tracking module that provides accurate positions and velocities
of the robots. These positions and velocities comprise the input state for the learning algorithm.
The team also uses robust modules for obstacle avoidance and motion control. The actions for
the learning algorithm then involve providing target points for the obstacle avoidance module.
Situating the learning within the context of this larger architecture focuses the learning. Rather
than having the robot learn to solve well understood problems like path planning or object tracking,
the learning is directed at the heart of the problem, the multi-robot interaction.

Second, the system control loop that is described above has inherent, though small, latency.
Specifically, after an observed change in the world, 100ms will elapse before the robot’s response is
executed. This latency is overcome for the robot’s own position and velocity by predicting through
this latency period using knowledge of past, but not yet executed, actions. Since the actions of the
opponent robots are not known, this prediction is not possible for other robots. Latency effectively
adds an element of partial observability to the problem, since the agents do not have the complete
state of the world, and in fact have separate views of this state. Notice, that this also adds a tactical
element to successful policies. A robot can “fake” the opponent robot by changing its direction
suddenly, since the other robot will not be able to respond to this change for a full latency period.
Notice also that such movement must be stochastic, otherwise the opponent could predict the fake
and respond prior to observing the change of direction.

Third, the system components not only add to the system latency, but they also cause further
violations of the Markov property. Specifically, state-of-the-art solutions for vision and tracking, as
well as fast path planning, involve maintaining state. For example, our navigation module employs
Execution-extended Rapidly-exploring Random Trees (ERRTs) (Bruce & Veloso, 2002). This
method uses waypoints from previously generated paths to bias path generation. The waypoint
cache often has a large effect on the actual motion taken by the robot in navigating to a target
point. This adds yet another element of partial observability to the task. It is certainly possible to
expose the memory of the various subcomponents to the learning agent, but this would not solve
the challenge entirely. First, the added input would cause a further state explosion since structures
like a waypoint cache are extremely high-dimensional. Second, the waypoint cache (or similar
such memory components) of the other agents is certainly not observable, and so this violation of
the Markov property cannot be avoided.

In summary, this task involves numerous challenges. These challenges include continuous
state and action spaces, elements of partial observability due to system latency, and violation of the
Markov assumption since many of the system components have memory. None of these imposed
limitations on agents match the criteria needed for equilibria to exist from Chapter 5.

6.1.3 Summary

These tasks are quite different but do have some similarities. Goofspiel isfully observableand
discrete. The domain is fully observable since both players know the exact state of the game at any
moment, i.e., there is no hidden information either in the state or in their hands. This is not to say
it is a perfect information game, like Chess, because the players do not know the action the other
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player will select. Goofspiel has a discrete and finite (albeit very large) state space.
Keepout, however, is neither of these. It ispartially observableandcontinuous. Latency results

in each player knowing their own true position, but not their opponents. Technically, the players
do not even know their own position exactly since their position is only a Kalman filtered estimate
based on noisy observations. Partial observability extends further if one considers the state of
memory-based components. Also unlike goofspiel, the state space is continuous and, therefore,
infinite, which is an inherent challenge of any robot learning task.

The two domains do have a number of similarities. They are adversarial, intractable for state
enumeration, and in both domains deterministic policies can be exploited by the other agent. Notice
that exploitable deterministic policies is true for many multiagent tasks, e.g., rock-paper-scissors
and Colonel Blotto from Section 2.3 and grid soccer from Section 2.4.1. In Section 2.4.1, we
also described how deterministic policies in goofspiel can be soundly defeated by an opponent
that always plays one higher than the player’s deterministic policy. In comparison, the worst-case
performance of the random policy is far better than that of the best deterministic policy. Keepout is
similar. Since the defender always has less distance to travel to intercept the attacker, the attacker’s
only chance of success is to use system latency to its advantage. If the attacker changes directions,
the defender will not be able to respond for a short time. If the attacker, though, changes directions
in a deterministic way, the defender can anticipate and change directions simultaneously. Therefore
the attacker necessarily must follow a stochastic policy to avoid being exploited.

6.2 Gradient-based WoLF

GraWoLF is a multiagent learning algorithm capable of scaling to complex problems such as goof-
spiel and keepout. The algorithm combines two powerful ideas. The first is the use of a parameter-
ized policy and learning as gradient ascent in the policy’s parameter space. The second is the use
of a WoLF variable learning rate to adjust the gradient ascent step size. We will briefly overview
these techniques and then describe how they are combined into a complete reinforcement learning
algorithm. We finally describe a technique called tile coding for creating the feature vectors that
are critical to GraWoLF. Tile coding is used in the application of this algorithm to goofspiel and
keepout.

6.2.1 Policy Gradient Ascent

Policy gradient techniques (Williams & Baird, 1993; Sutton et al., 2000; Baxter & Bartlett, 2000)
are a method of reinforcement learning with function approximation. Traditional approaches ap-
proximate a state-action value function, and result in a deterministic policy that selects the action
with the maximum learned value. Alternatively, policy gradient approaches approximate a pol-
icy directly, and then use gradient ascent to adjust the parameters to maximize the policy’s value.
There are three good reasons for the latter approach. First, there is a whole body of theoretical
work describing convergence problems using a variety of value-based learning techniques with
a variety of function approximation techniques (see (Gordon, 2000) for a summary of these re-
sults). Second, value-based approaches learn deterministic policies, and as we mentioned earlier
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deterministic policies in multiagent settings are often easily exploitable2. Third, we have already
demonstrated the successful application of gradient techniques for simultaneous learning in both
matrix games and stochastic games with enumerable state spaces (see Chapter 4).

We use the policy gradient technique presented by Sutton and colleagues (Sutton et al., 2000).
Specifically, we define a policy as a Gibbs distribution over a linear combination of features of
a candidate state and action pair. Letθ be a vector of the policy’s parameters and letφsa be
an identically sized feature vector for states and actiona, then the Gibbs distribution defines a
stochastic policy according to,

πθ(s, a) =
eθ·φsa∑
b e

θ·φsb
.

Sutton and colleagues’ main result was a convergence proof for the following policy iteration rule
that updates a policy’s parameters,

θk+1 = θk + δk
∑
s

dπk(s)
∑
a

∂πθk(s, a)

∂θ
fwk

(s, a). (6.1)

For the Gibbs distribution this becomes,

θk+1 = θk + δk
∑
s

dπk(s)
∑
a

φsa

(
πθk(s, a)fwk

(s, a)
)

(6.2)

Hereδk is an appropriately decayed learning rate.dπk(s) is states’s contribution to the policy’s
overall value. This contribution is defined differently depending on whether average or discounted
start-state reward criterion is used. For discounted reward with a start-state, which we denote,s0,

dπ(s) =
∞∑
t=0

γtPr(st = s|s0, π).

fwk
(s, a) is an independent approximation ofQπk(s, a) with parametersw, which is the expected

value of taking actiona from states and then following the policyπk. For a Gibbs distribution,
which is what we use in this work, Sutton and colleagues showed that for convergence this approx-
imation should have the following form,

fwk
(s, a) = wk ·

[
φsa −

∑
b

πθk(s, b)φsb

]
. (6.3)

As they point out, this amounts tofw being an approximation of the advantage function,Aπ(s, a) =
Qπ(s, a)− V π(s), whereV π(s) is the value of following policyπ from states. It is this advantage
function that we estimate and use for gradient ascent.

Using this basic formulation we derive an on-line version of the learning rule, where the pol-
icy’s weights are updated with each state visited. The summation over states can be removed by

2Deterministic policies are not a requirement for value-based approaches, yet any technique for mapping the
learned values into a distribution over actions still cannot learn mixed equilibria. This is because, in the case of
mixed equilibria, the value of all actions in the mixed strategy are the same. A mapping has no way of appropriately
distinguishing between two games with very different mixed equilibria but identical equilibrium value.
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updating proportionately to that state’s contribution to the policy’s overall value. Since we are
visiting states on-policy then we only need to weight later states by the discount factor to account
for their smaller contribution. Ift time has passed since the trial start, this turns Equation 6.2 into,

θk+1 = θk + γtδk
∑
a

φsa · πθk(s, a)fwk
(s, a). (6.4)

Since the whole algorithm is on-line, we do the policy improvement step (updatingθ) simul-
taneously with the value estimation step (updatingw). We do value estimation using gradient-
descent Sarsa(λ) (Sutton & Barto, 1998) over the same feature space as the policy. This requires
maintaining an eligibility trace vector,e. The update rule is then, if at timek the system is in state
s and takes actiona transitioning to states′ after time∆t and then taking actiona′, we update the
trace and the weight vector using,

ek+1 = λγ∆tek + φsa, (6.5)

wk+1 = wk + ek+1αk

(
r + γ∆tQwk

(s′, a′)
−Qwk

(s, a)

)
, (6.6)

whereλ is the Sarsa parameter andαk is an appropriately decayed learning rate. The addition of
raisingγ to the power∆t allows for actions to take differing amounts of time to execute, as in
semi-Markov decision processes (Sutton & Barto, 1998).

The policy improvement step then uses Equation 6.4 wheres is the state of the system at stepk
and the action-value estimates from Sarsa,Qwk

, are used to compute the advantage term. We then
get,

fwk
(s, a) = Qwk

(s, a)−
∑
a

πθk(s, a)Qwk
(s, a). (6.7)

This forms the crux of GraWoLF. What remains is the selection of the learning rate,δk. This is
where the WoLF variable learning rate is used.

6.2.2 Win or Learn Fast

WoLF (“Win or Learn Fast”) is a method for changing the learning rate to encourage convergence
in a multiagent reinforcement learning scenario. Notice that the policy gradient ascent algorithm
above does not account for a non-stationary environment that arises with simultaneous learning in
stochastic games. All of the other agents actions are simply assumed to be part of the environment
and unchanging. WoLF provides a simple way to account for other agents through adjusting how
quickly or slowly the agent changes its policy.

As was discussed in its application to policy hill-climbing in Chapter 4, since only the rate
of learning is changed, algorithms that are guaranteed to find (locally) optimal policies in non-
stationary environments retain this property even when using WoLF. We have shown that in stochas-
tic games with simultaneous learning but without limitations, WoLF has both theoretical and em-
pirical evidence of it encouraging convergence in algorithms that do not otherwise converge. Re-
call that the intuition for this technique is that a learner should adapt quickly when it is doing more
poorly than expected. When it is doing better than expected, it should be cautious, since the other
players are likely to change their policy.
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The WoLF principle naturally lends itself to be combined with policy gradient techniques
where there is a well-defined learning rate,δ. With WoLF we replace the original learning rate
with two learning rates,δw < δl, to be used when winning or losing, respectively. In Chapter 4
we used a notion of winning and losing by comparing the value of the current policy,V π(s), to
the value of the average policy over time,V π̄(s). So, if V π(s) > V π̄(s) then the algorithm is
considered winning, otherwise it is losing. This was shown to be quite successful. With the policy
gradient technique above we can define a similar rule that examines the approximate value, using
Qw, of the current weight vector,θ, with the average weight vector over time,θ̄. Specifically, we
are “winning” if and only if,∑

a

πθ(s, a)Qw(s, a) >
∑
a

πθ̄(s, a)Qw(s, a). (6.8)

When winning in a particular state, we update the parameters for that state usingδw, otherwiseδl.

6.2.3 GraWoLF

GraWoLF is the combination of policy gradient ascent learning with WoLF. A feature vector over
state and action pairs,φsa, is used for the parameterization of the policy and for the approximation
of the policy’s value. Gradient updates are then performed on both the value estimate using Equa-
tion 6.6 and the policy using Equation 6.4. WoLF is used to vary the learning rateδk in the policy
update according to the rule in inequality 6.8. This composition can be essentially thought of as an
actor-critic method (Sutton & Barto, 1998). Here the Gibbs distribution over the set of parameters
is theactor, and the gradient-descent Sarsa(λ) is thecritic. The WoLF principle is adjusting how
the actor changes policies based on response from the critic. The complete details are shown in
Table 6.1.

The missing ingredient for applying this algorithm to a particular task is the definition ofφsa.
This is task dependent and must define the critical features of a particular state and action. This
is where approximation and generalization enter into the learning to make learning tractable. We
now examine one particular method for generating feature vectors from a large or continuous state
space. We use this technique for our learning in both goofspiel and keepout.

6.2.4 Tile Coding

Tile coding (Sutton & Barto, 1998), also known as CMACS (Albus, 1971), is a popular technique
for creating a set of boolean features from a set of continuous features. In reinforcement learn-
ing, tile coding has been used extensively to create linear approximators of state-action values
(e.g., (Stone & Sutton, 2001)).

The basic idea is to lay offset grids or tilings over the multidimensional continuous feature
space. A point in the continuous feature space will be in exactly one tile for each of the offset
tilings. Each tile has an associated boolean variable, so the continuous feature vector gets mapped
into a very high-dimensional boolean vector. In addition, nearby points will fall into the same tile
for many of the offset grids, and so share many of the same boolean variables in their resulting
vector. This provides the important feature of generalization. An example of tile coding in a two-
dimensional continuous space is shown in Figure 6.2. This example shows two overlapping tilings,
and so any given point falls into two different tiles.
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1. Let α ∈ (0, 1], δl > δw ∈ (0, 1], andβ ∈ (0, 1] be learning rates. Initialize,

w← ~0 θ ← ~0 θ̄ ← ~0 e← ~0

2. Define,

πθ(s, a) =
eθ·φsa∑
b e

θ·φsb
,

Qw(s, a) = w · φsa,
fw(s, a) = Qw(s, a)−

∑
a

πθ(s, a)Qw(s, a).

3. Repeat,

(a) From states select actiona according to mixed strategyπθ(s).

(b) Observing rewardr and next states′ with elapsed timet,

e ← λγte + φsa

w ← w + α (r + γQw(s′, a′)−Qw(s, a))

θ ← θ + γtδ
∑
a

e · πθ(s, a)fw(s, a).

where,

δ =

{
δw if

∑
a πθ(s, a)Qw(s, a) >

∑
a πθ̄(s, a)Qw(s, a)

δl otherwise
.

(c) Maintain an average parameter vector,

θ̄ ← (1− β)θ̄ + βθ.

(d) If s′ is s0 or the trial is over thent← 0 ande← ~0. Otherwiset← t+ 1.

Table 6.1: GraWoLF, a scalable e multiagent learning algorithm.

Tiling One

Tiling Two

Figure 6.2: An example of tile coding a two dimensional space with two overlapping tilings.
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Another common trick with tile coding is the use of hashing to keep the number of parameters
manageable. Each tile is hashed into a table of fixed size. Collisions are simply ignored, meaning
that two unrelated tiles may share the same parameter. Hashing reduces the memory requirements
with little loss in performance. This is because only a small fraction of the continuous space is
actually needed or visited while learning, and so independent parameters for every tile are often
not necessary. Hashing provides a means for using only the number of parameters the problem
requires while not knowing in advance which state-action pairs need parameters.

6.3 Evaluation

Evaluation is actually part of the ongoing research in the field of multiagent learning and is a
difficult problem for a number of reasons. The standard single-agent method of evaluation is to
compare an agent’s performance over time with the value of optimal performance. Since stochastic
games do not have optimal policies independent of the others’ policies, such a comparison is not
possible.

One straightforward evaluation technique for games is to have two learning algorithms learn
against each other and simply examine the expected reward over time. This technique also has
problems. First, this technique is not useful if one is interested in learning in self-play, where both
players use an identical algorithm. In the case of a symmetric competitive game, such as goofspiel,
the expected reward of the two agents is necessarily zero, providing no information. Secondly,
other multiagent algorithms that were reviewed in Chapter 3 simply have not been applied to tasks
as large and complicated as goofspiel and keepout. Making these algorithms applicable to such
complex problems is a challenging problem in itself and well beyond the scope of this work.

Another common evaluation criterion is that of convergence. This is true in single-agent learn-
ing as well as multiagent learning. Convergence was also our focus in Chapter 4 where we ex-
amined convergence of joint policies to that of the equilibrium. Since equilibria requires that all
players are doing as well as they can given the others’ policies, this is a compelling result for the
effectiveness of learning. Although convergence to an equilibrium is an ideal criterion for small
problems, there are a number of difficulties with using this in evaluating learning with limitations.
First, when we account for agent limitations then equilibria may cease to exist as was demonstrated
in Chapter 5. This makes convergence of policies impossible. Second, policy gradient techniques
learn only locally optimal policies. They may converge to policies that are not globally optimal
and therefore necessarily not an equilibrium.

Although convergence to equilibria, and therefore convergence in general, is not a feasible
criterion we still want learning agents to learn something in self-play. We propose and use three
different evaluation techniques to examine learning in goofspiel and keepout:challengers, im-
provement over the initial policy, andexpected value during learning. The first two techniques
investigate the effectiveness of the policy being learned. Evaluation of a policy must always be
with respect to some specific policy for the other agents, and as we show these two methods exam-
ine two different possible opponent policies for comparison. The final evaluation method examines
the expected rewards to the playerswhile learning. Although, convergence of policies may not be
possible, actual rewards of the players may converge or at least be more or less stable.
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Challengers. The evaluation technique of challengers was first used by Littman to evaluate
Minimax-Q (Littman, 1994). We also used the technique in evaluating WoLF-PHC in Section 4.4.3.
The idea is to evaluate the quality of a learned policy by examining its worst-case performance.
We take an agent trained with another simultaneously learning agent, and then freeze its policy,
and train a challenger to specifically defeat the learned policy. This technique can be viewed as
measuring a number of different things. First, it measures the robustness of the learned policy to
different opponents. Second, in unlimited adversarial settings it measures the closeness of the pol-
icy to the equilibrium. The policy that maximizes the performance against its challenger is part of
an equilibrium to the game. Third, the challenger value is the performance that would be attained
if the learning agent were to stop learning, letting the other agent continue learning. Obviously,
higher values against its challenger is desirable.

Improvement over the initial policy. In evaluation using challengers, the learned policy is eval-
uated with respect to its worst-case performance, where policies are trained to defeat it. We can
also examine the value of a learned policy against other policies. These comparisons will require
some additional terminology. In two player games, value is determined by the two players’ poli-
cies. When referring to a particular value, we will write it as “x v. y” wherex andy will refer to
a policy for player one and player two, respectively. There are three policies we will consider in
this evaluation:R, LL , andLR . R simply refers to the random policy, i.e., the initial policy for
the agents.LL refers to a policy trained in self-play against another learning agent.LR refers to a
policy trained against another agent following the random policy, and so is not learning.

We want to examine the question of whether learning improved the agent’s performance. There
are two different ways of examining this question. One method is to consider whether the agent
would prefer to switch back to its initial policy at the end of training. This amounts to comparing
whetherLL v. LL is greater thanR v. LL . A second method is to consider the hypothetical outcome
if the agent had not bother learning at all. This amounts to comparing whetherLL v. LL is greater
thanR v. LR . Notice in the second case, comparison is to the value of the policy that the other
agent would have learned if the agent had chosen not to learn.

These two comparisons, though, are actually redundant. One would expect thatR v. LR is
less thanR v. LL , since the learning in the former case is specifically focused on defeating the
random policy. So, if the first method of comparison were to hold, i.e., thatLL v. LL is greater
thanR v. LL , then we get the following,

R v. LR < R v. LL < LL v. LL ,

and so the second method of comparison holds as well. For this reason we focus on the first method
of comparison in determining whether the agent’s policy improved with learning.

Expected value during learning. The final technique is to examine the actual values of the
policies being played during learning. Even if policies do not converge, expected rewards might
converge. This evaluation technique is specifically targeting the question of whether learning os-
cillates as was observed in smaller problems in Section 4.4. This will also help isolate the effect of
WoLF on these reward oscillations.
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6.4 Results

Applying GraWoLF to a task involves finding an appropriate parameterization of the state and
action space through the specification of the feature vectorφsa. We have already described tile
coding as a general method for doing this, but there are still many variables in its application. The
method of tiling is very important to the overall performance of learning as it is a powerful bias on
what policies can be learned. The major decisions to be made are how to represent the state as a
vector of numbers, which of these are tiled together, and the size and number of tiles used. The first
and third decision determines what states are distinguishable, and the second and third determines
how generalization works across distinguishable states. Despite the importance of the tiling in
both tasks, we essentially selected what seemed like a reasonable tiling, and used it throughout our
results.

Our results in both tasks compare three different learning algorithms. The algorithms only
differ in the learning rates used and are named WoLF, Fast, and Slow. WoLF is the algorithm as
shown in Table 6.1. Slow and Fast are identical but do not vary the learning rate, instead fixingδ
to beδw or δl, respectively. The goal of these learning experiments is to answer two questions.

1. Can GraWoLF learn effectively in these complex tasks?

2. What effect does the WoLF principle have on learning?

We answer the first question by simply looking at GraWoLF’s performance primarily along the
first and second dimensions of evaluation: challengers and improvement over the initial policy.
We address the second question by comparing the results of using the WoLF variable learning rate
with the Fast and Slow fixed rates, focusing on the first and third evaluation techniques: challengers
and expected value during learning.

6.4.1 Goofspiel

We now look at applying GraWoLF to the task of goofspiel. We start with describing the details
of how the feature vector,φsa, is computed for the particular task, and then show the results of
learning.

Applying GraWoLF

We represent a set of cards, either a player’s hand or the deck, by five numbers, corresponding to the
value of the card that is the minimum, lower quartile, median, upper quartile, and maximum. This
provides information as to the general shape of the set, which is what is important in goofspiel.
The other values used in the tiling are the value of the card that is being bid on and the card
corresponding to the agent’s action. An example of this process in the 13-card game is shown
in Table 6.2. These values are combined together into three tilings. The first tiles together the
quartiles describing the players’ hands. The second tiles together the quartiles of the deck with the
card available and player’s action. The last tiles together the quartiles of the opponent’s hand with
the card available and player’s action. The tilings use tile sizes equal to roughly half the number
of cards in the game with the number of tilings greater than the tile sizes to distinguish between
any integer state values. Finally, these tiles were all then hashed into a table of size one million
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My Hand 1 3 4 5 6 8 11 13

Opp Hand 4 5 8 9 10 11 12 13

Deck 1 2 3 5 9 10 11 12
Quartiles × × × × ×

Card 11
Action 3



〈1, 4, 6, 8, 13〉 ,
〈4, 8, 10, 11, 13〉 ,
〈1, 3, 9, 10, 12〉 ,

11, 3ww� (Tile Coding)

φsa ∈ {0, 1}106

Table 6.2: Representation of an example state-action pair using quartiles to describe the players’
hands and the deck. These numbers are then tiled and hashed with the resulting tiles representing
a boolean vector of size106.

in order to keep the parameter space manageable. We do not suggest that this is a perfect or even
good tiling for this domain, but as we will show the results are still very interesting.

Experiments

The exact details of the parameters and learning rates used for these experiments can be found in
the appendix. Throughout training and evaluation runs, all agents followed anε-greedy exploration
strategy withε = 0.05. That is, with 5% probability a random action was taken instead of the
selected action. This insured that the value of all actions would continuously be updated. The
initial policies and values all begin with zero weight vectors. With a Gibbs distribution, zero
weights correspond to the random policy, which as we have noted is a relatively strong policy. We
now look at each method of evaluation in turn.

Challengers. In our first experiment we trained the learner in self-play for 40,000 games. After
every 5,000 games we stopped the training and trained a challenger against the agent’s current
policy. The challenger was trained on 10,000 games using Sarsa(λ) gradient ascent with identical
learning rate parameters. The two policies, the agent’s and its challenger’s, were then evaluated
on 1,000 games to estimate the policy’s worst-case expected value. This experiment was repeated
thirty times for each algorithm.

The learning results averaged over the thirty runs are shown in Figure 6.3 for suit sizes of
n = 4, 8, and13. The baseline comparison is with that of the random policy, a competitive policy
for this game. All three learners improve on this policy while training in self-play. The initial dips
in the8 and13 card games are due to the fact that value estimates are initially very poor making
the initial policy gradients not in the direction of increasing the overall value of the policy. It
takes a number of training games for the delayed reward of winning cards later to overcome the
initial immediate reward of winning cards now. Lastly, notice the effect of the WoLF principle. It
consistently outperforms the two static step size learners. This is identical to the effect shown in
Chapter 4 for stochastic games with enumerable state spaces and no limitations
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Figure 6.3: Goofspiel: results against challengers. The improvement of WoLF over random, Fast,
and Slow after 40,000 training games is statistically significant for all three values ofn at 95%
confidence.
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Figure 6.4: Goofspiel: Learned policies versus the random policy. The y-axis is the expected
winnings as a fraction of the total points available in the game.

Improvement over the initial policy. The second experiment examines whether learning causes
an improvement over the initial policy. As we described in Section 6.3, we simply compare
LL v. LL to R v. LL , that is does learning improve the policy. Since goofspiel is a symmetric
zero-sum game, the expected values of policies learned in self-play are necessarily zero. Hence,
the desired improvement amounts toR v. LL being negative, which is the same asLL v. R being
positive.

A policy was trained with GraWoLF in self-play over 40,000 games and then evaluated against
the random policy for 1,000 games. The results averaged over thirty runs for all three suit sizes are
shown in Figure 6.4. For all three sizes of games, the learned policies are significantly better than
the random policy. This demonstrates that GraWoLF is making a distinct improvement over its
initial random policy, which we have repeatedly noted is a relatively strong policy in this domain.

We can also examine how well the learned policy in self-play compares to the random policy
as learning progresses. The value of the learned policy versus the random policy after every
5,000 trials of training in self-play are shown in Figure 6.5. Each point consists of 1,000 games
of evaluation. It is interesting that the improvement over the random policy occurs very early on
in training, and then the improvement levels off or diminishes. The eventual diminishing is not
surprising since the agent being trained against begins playing the random policy, and so the initial
trials are extremely relevant toward improving against that policy. What is interesting, though, is
that performance against the random policy does not diminish a very large amount. This is true
despite the fact that the training opponent is also learning and so is significantly different from the
random policy after a few thousand trials. This suggests that, in addition to learning to optimize
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Figure 6.5: Goofspiel: Learned policies versus the random policy throughout learning. The y-axis
is the expected winnings as a fraction of the total points available in the game. For comparison
purposes, the numbers shown at the top of the bars are the absolute expected values of the learned
policies versus the random policy.

against a particular opponent, the learned policy is still generally effective against other policies.

Expected value during learning. The third experiment examines stability of the player’s ac-
tual expected value during learning, primarily examining the effect of the WoLF principle on the
learning process. Again the algorithms were trained in self-play for 40,000 games. After every
50 games, both players’ policies were frozen and evaluated over 1,000 games to find the expected
value to the players of their policies at that moment. We ran each algorithm once on just the13 card
game and plotted its expected value over time while learning. The results are shown in Figure 6.6.
Notice that the expected value of all the learning algorithms oscillates around zero. We would
expect this with identical learners in a symmetric zero-sum game. The point of interest, though, is
how close these oscillations remain around zero over time. The WoLF principle causes the policies
to have a more stable expected value with lower amplitude oscillations when compared with the
alternative of not using WoLF, i.e., using Fast or Slow. This again shows that the WoLF principle
continues to have converging affects even in complex stochastic games involving limited agents.

6.4.2 Robot Keepout

We now turn our attention to keepout, the adversarial robot task. Our main interest is learning
on the robot platform, but due to the tedium of repeated learning and evaluation we will also
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Figure 6.6: Goofspiel: Expected value of the game while learning.
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Figure 6.7: Keepout: an adversarial robot task. The top robot is trying to get inside the circle while
the bottom robot is trying to stop it. The lines show the state and action representation.

explore this problem using a simulator of our robot team. This will allow us to gather statistically
significant results and also to seed learning on the robot platform itself speeding up the training. We
first discuss the application of GraWoLF to this task, and then show results of learning experiments
in simulation and on the robot platform itself.

Applying GraWoLF

As with goofspiel the major detail to be decided in applying GraWoLF to the task is specifying
the feature vector,φsa. In this task we have a continuous state and action space. The state consists
of the Kalman filtered positions and velocities of the two robots, and the available actions are
points on the field for navigation. By observing that the radial angle of the attacker with respect
to the circle is not relevant to the task, we arrive at a seven dimensional input space. These seven
dimensions are shown by the white overlaid lines in Figure 6.7.

We apply tile coding to this entire seven dimensional space. We use 16 tiles whose size is
800mm for distance dimensions and 1,600mm/s for velocity dimensions. We simplify the action
space by requiring the attacker to select its navigation point along a perpendicular line through the
circle’s center. This is shown by the dark overlaid line in Figure 6.7. This line, whose length is
three times the distance of the attacker to the circle, is then discretized into seven points evenly
distributed. The defender uses the same points for its actions but then navigates to the point that
bisects the line from the attacker to the selected action point. The robot’s action is also included in
the tiling as an eighth dimension with the tile size along that dimension being the entire line. Hence
actions are distinguishable, but there is also a great deal of generalization. Agents select actions
every tenth of a second, i.e., after every three frames, unless the feature vector has not changed
over that time. This keeps the robots from oscillating too much during the initial parts of learning.
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Experiments

We evaluate learning both in simulation and on the robot platform. We used a simulator specifically
developed for our CMDragons robot soccer team. The simulator captures all of the important
features of our team including the critical component of latency. One drawback of the version of the
simulator used is its lack of a collision model. Although drastic collisions are rare in this domain
since both robots are actively avoiding obstacles in their navigation, small collisions still happen.
In order to allow for learning in simulation, the task was modified slightly. If the robots “collide”
in simulation with the defender between the attacker and the goal, then the trial is considered a
failure for the attacker, which receives no reward, and is ended. This same rule was employed in
learning on the robot platforms but only came into play on rare serious collisions. The result of
this modification is that the attacker is at a larger disadvantage in the simulator since trial-ending
collisions are more common. This will be noticeable in comparing the relative success of the
attacker in simulation versus the robot platform.

The exact details of the learning rates and parameters used for these experiments can be found
in the appendix. As with goofspiel, the initial policies and parameters all begin with zero weight
vectors, which corresponds to the random policy. In all of the performance graphs, the y-axis
shows the attacker’s expected discounted reward. A high value means the attacker is scoring in a
short period of time and so the attacker is doing well. The range of expected times to score for
any graph is shown to the right of the graph. All measurements of expected discounted reward are
gathered empirically over the course of 1,000 trials. All training occurred over 4,000 trails, and
takes approximately 6-7 hours of training time on the robot platform or in simulation, which runs
in real time. Unless otherwise noted, the training was always done with a simultaneously learning
opponent. The experiments in simulation were repeated ten times and the averages are shown in
the graphs.

Unlike goofspiel, keepout is not a symmetric domain, and therefore requires comparisons of
both policies learned by the attacker and by the defender. Each of our comparisons are repeated for
both players in the task. All values presented, though, will be in terms of the attacker’s expected
reward. Hence for the defender, low values are good and correspond to the attacker doing poorly
and the defender doing well.

Keepout is also considerably more complex than goofspiel, involving continuous state, partial
observability, non-Markovian transitions, and for non-simulation results, robot noise. All of these
are by themselves very challenging and at the edge of behavior learning research. Combining all of
these in an adversarial multiagent task with a comparably impoverished amount of training, makes
this a truly monumental task. Our results in this domain are, as a whole, quite compelling, but the
various methods of evaluation are not as clearly convincing as the results presented in goofspiel.
For completeness we present all of the results, although for some methods of evaluation, few or no
conclusions may be drawn. We now look at each method of evaluation in turn.

Challengers. The challengers experimental setup is similar to goofspiel, although differs slightly
due to the expense of gathering data and due to asymmetry in the task. Attacker and defender
policies are trained using simultaneous learning. The policy is then fixed and a challenger policy
is trained for 4,000 trials. The challenger policy learns using policy gradient ascent as presented in
Table 6, but does not vary the learning rate, since its opponent is stationary. It instead uses a fixed
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Figure 6.8: Keepout: Results against challengers in simulation.

rate equal toδl. The simultaneous learning was stopped after 3,000, 3,500, and 4,000 trials and a
challenger was trained, and the resulting worst-case performances averaged together. This allowed
more data to be gained from each training run. Figure 6.8 shows results averaged over ten runs.

The left side of the graph shows the performance of the learned defender policies against their
challengers, while the right side shows the performance for attacker policies against their chal-
lengers. As with goofspiel, WoLF varies the learning rate as presented in Table 6, and Slow and
Fast use a fixed learning rate ofδw andδl, respectively. Notice that since the left side of the graph
shows results for the defender policies,low is better, while for the right side,higher is better.

The defender policies trained in self-play using the WoLF variable learning rate have statis-
tically significant more robust policies then using a fixed learning rate, either Fast or Slow. The
learned attacker policy, on the other hand, is only a statistically significant improvement over the
Fast learning rate against its challenger. The Slow learning rate has an indistinguishable effect
from using WoLF when playing its challenger over the short training period.

There are a couple of possible explanations of this result. First, it may simply be that the
random policy for the attacker is such a strong policy that the the use of the slow learning rate
doesn’t result in too large a deviation from it. In the next section, we give some evidence for
this possibility. A second cause may be the particular initial values used. If we examine how
often the slow and fast learning rates are used, we find that the attacker uses its winning (slow)
learning rate for 92% of its updates, while the defender only uses it for 85%. Such a difference
may be due to the task definition and initialization of the learner’s values. For the defender, initial
value estimates of zero amounts to an optimistic assessment, since the rewards to the defender are
non-positive. For the attacker, the zero initialization amounts to a pessimistic assessment, since all
rewards are non-negative. Pessimistic initial values would make the agent seem to be winning until
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these values were overcame. This would cause the attacker to mostly use the slower learning rate,
keeping it from learning a better policy in the short learning period. Initial value estimates have
an important effect on single-agent learning, (see (Brafman & Tennenholtz, 2002b) for theoretical
results and further references to empirical results). Similar effects in the simultaneous learning
setting is, therefore, not surprising, and deserves further investigation.

Improvement over the initial policy. Since keepout is an asymmetric game, we will need to
compare both improvements in the attacker’s, as well as the defender’s, policies. This amounts to
checking the following desired values,

LL v. R > LL v. LL > R v. LL .

Another interesting comparison, since keepout is an asymmetric game, is to view the attacker
and defender as a combined team and then consider whether learning in self-play improved the
policies as a team. This comparison is similar to Swiss team tournaments in duplicate bridge,
which due to the random hands is also an asymmetric game. To compare a pair of policies,A
andD, with another pair of policies,A’ andD’ , one simply comparesA v. D’ with A’ v. D. If
the former is larger than the latter, then the original pair is superior. In keepout, we will use the
learned policies from self-play as a team and compare with the initial random policies. The learned
policies, then, are superior ifLL v. R is greater thanR v. LL .

Figure 6.9 shows the results of the values of the three key pairs of policies averaged over ten
trials: LL v. R, LL v. LL , andR v. LL . First, notice that the first half of the inequality holds,
LL v. R > LL v. LL . The second half of the inequality does not, although the difference is not
statistically significant. This suggests that although the defender certainly prefers learning over not
learning, the attacker is more ambivalent. This gives further evidence that the random policy for
the attacker is quite a good policy to begin with, even against a strong defending policy. Using the
Swiss team comparison, there is a dramatic improvement of learning for the combined policy, since
LL v. R significantly outperformsR v. LL . These combined results suggest that the learning has
a dramatic improvement on the defender’s policy, while having only little effect on the attacker’s
policy. Again, this marginal improvement may be due to the random policy being a strong policy
to begin with.

Expected value during learning. Our final evaluation tool is to examine the expected value dur-
ing learning. Rather than freezing policies while learning and performing a very time-consuming
computation of expected value, we simply averaged the actual value received over 50 trial blocks.
To reduce noise, this was averaged over ten separate learning runs. These results for all three algo-
rithms are shown in Figure 6.10. These results are shown mainly for the purpose of completeness
and we do not attempt to draw any conclusions from these results.

Robot Learning. Finally, we examine results of using GraWoLF on the real robots. We begin
with policies that were trained for 2000 trials in simulation and then perform an additional 2000
trials of training on the robots, all with simultaneous learning. Challenger evaluations are far
too time-consuming to perform on the robot platform, so evaluation was restricted to examining
improvement over the initial policy. As before, this was done by comparison to the random policy.
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Figure 6.9: Keepout: Learned policies versus the random policy.
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Figure 6.10: Keepout: Expected value of policies while learning.



134 CHAPTER 6. GRAWOLF: LEARNING WITH LIMITATIONS

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

LL v. R LL v. LL R v. LL
4.1s

2.7s

A
tta

ck
er

’s
 E

xp
ec

te
d 

R
ew

ar
d

Figure 6.11: Keepout: Learned policies versus the random policy on the robot platform. Training
was done with 2,000 trials in simulation and 2,000 trials on the robots.

The results of a single training run followed by 500 trials of evaluation are shown in Figure 6.11.
TheLL v. LL value was computed using the last 500 trials of learning, while the other values were
experimentally obtained. These results are nearly identical to the simulation results in Figure 6.9.
The desired inequality holds and the Swiss team comparison shows the learned policies are superior
to the initial policies. All of these results are statistically significant for this single run.

Learned Policies. Since keepout is an adversarial environment, we would expect good policies
to be stochastic in nature. This is true of all of the learned policies in both simulation and on
the robots. For example, the most probable action in any state visited has probability on average
around 40% in the attacker’s learned policy, and 70% in the defender’s. In some states, though, the
learned policies are nearly deterministic. Hence, the learned policies are indeed stochastic to avoid
exploitation, while still learning optimal actions in states that do not depend on the other agent’s
behavior.

Finally, one of the most compelling result of these experiments is actually observing the learned
policies. This is especially true for the policies learned on the robots themselves. Not only is it
obvious that the learned policy is stochastic, but it can also be observed that the attacker does
indeed exploit the defender’s latency to “fake” the opponent in order to reach the circle. In
addition, the defender is forced to guess the attacker’s change of direction in order to compen-
sate. A video of the resulting policies running on the robots can be found at the following URL,
“http://www.cs.cmu.edu/˜mhb/research”.
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6.4.3 Conclusion

These results, in both goofspiel and keepout, suggest that GraWoLF is capable of learning effective
policies in multiagent simultaneous learning tasks. These policies are both robust in the worst-case
and an improvement over the initial policy. In addition, the WoLF variable learning rate has the
same powerful effect observed in the results in Chapter 4. It appears to dampen oscillation and
guide the learning toward robust, near equilibrium (if they exist) policies. This was demonstrated
on two very different, yet very challenging, tasks.

6.5 Summary

In this chapter we introduced GraWoLF, a scalable multiagent learning algorithm. The algorithm
combines policy gradient ascent with the WoLF variable learning rate and can be applied effec-
tively to complex tasks when agents have a variety of limitations. Its effectiveness was demon-
strated on two very different multiagent learning tasks: goofspiel and keepout. Goofspiel is a card
game with an intractably large state space, and keepout is an adversarial robot task. We also exam-
ined the problem of evaluating simultaneous multiagent learning algorithms in complex problems
where limitations may eliminate the game’s equilibria. We proposed three techniques for evalu-
ating learning and applied these techniques to evaluating GraWoLF in our two tasks. Using these
evaluation methods, we demonstrated that GraWoLF can effectively learn in the presence of other
learning agents, even in complex tasks and faced with a variety of limitations.
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Chapter 7

Team Adaptation

In this chapter we examine the problem of a team of agents learning when faced with an unknown
opponent in a complex and dynamic environment. Specifically, we examine this problem within
the context of autonomous robot soccer. The domain we explore is the Small-Size League of
the RoboCup Initiative (Kitano, Kuniyoshi, Noda, Asada, Matsubara, & Osawa, 1997), where two
teams of five robots compete against each other. This problem has many similarities to the domains
that have been investigated in earlier chapters, but there are also some differences.

Specifically, RoboCup is not currently a domain of simultaneous learning. The team we de-
scribe in this chapter is, to our knowledge, the first RoboCup robot team to adapt to its current
opponent during the course of a game. This fact simplifies many of the issues faced in the previous
domains we examined, since we do not need to worry about convergence or equilibria. As such,
we do not currently employ variable learning rates or the WoLF principle, since it is unnecessary
when the other agents play a stationary strategy. On the other hand, this domain is considerably
more complex, and the range of possible team play is extremely broad.

We introduce the concept ofplaysas a way of codifying team strategy and coordination. Plays
then form the basis for injecting team adaptation. We give an overview of the CMDragons Small-
Size robot soccer team, focusing on the role of plays within our control architecture. We then
describe how we use aplaybookto provide multiple team behavior options, which define the
alternatives for our adapting team. We discuss the use of plays and playbooks in the RoboCup
2002 competition, as well as further evaluation within our robot simulator.

7.1 CMDragons’02

CMDragons’02 is a robot soccer team in the RoboCup Small-Size League. It is a fully autonomous
team of robots with shared perception and off-board processing. We give an overview of the
RoboCup Small-Size League emphasizing the challenges faced by an autonomous robot team. We
then describe the CMDragons’02 system, focusing on how plays and play adaptation fit into the
overall team architecture.

137
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Figure 7.1: RoboCup small-size league field and robots preparing for a competition.

7.1.1 RoboCup Small-Size

RoboCup small-size robot soccer is a competition between two teams of five robots. The competi-
tion is played on a 2.8m by 2.3m field with short, sloped walls, an orange golf ball , and FIFA-like
rules enforced by a human referee. Figure 7.1 shows a picture of the field and robots in prepara-
tion for a competition. In addition to local sensors, a team can mount a camera above the field to
provide a global and shared perception of the field. Teams also make use of off-field computers as
computation resources both to process visual information and to select team and individual actions.
There is no standard robot platform, only restrictions on the size, shape, and allowed manipulators
of the ball (e.g., non-goalie robots are not allowed to “hold” the ball). The CMDragons’02 team is
heterogeneous, consisting of two types of robots. Figure 7.2(a) shows our differential-drive robots,
which employ a two-wheel drive mechanism much like a wheelchair. Figure 7.2(b) shows our
omni-directional robots, which employ a three-wheel mechanism to independently control direc-
tion and orientation. You can also observe the kicker and dribbling mechanism, which uses back
spin to keep possession of the ball, on these robots.

Competitions are highly dynamic, where robots reach speeds over 1m/s and the ball often
travels over 2m/s and as high as 5m/s. These speeds mean, with a standard camera capturing thirty
frames per second, the system would have eight camera frames to respond to a high-powered shot
from midfield. The inherent latency in the system often accounts for half of this time, leaving little
time for deliberation and response. The constantly changing world, combined with the adversarial
nature of a competing team with unknown capabilities and behavior, are the key challenges for a
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(a) Diff-bots (b) Omni-bots

Figure 7.2: CMDragons’02 robots. (a) shows our differential drive robots, and (b) shows our
omni-directional robots.

robot team to overcome.
Since each team consists of five robots, it is also critical for the individual robots to act in a

coordinated manner. Coordination requires both robust and predictable individual robot behaviors,
as well as mechanisms for robots to combine their individual skills into an effective team behav-
ior. The highly dynamic environment requires a reactive system to take advantage of short-lived
opportunities. The competitive nature, though, requires longer-term deliberative actions to create
these opportunities, e.g., passing, screens, deflections, and positioning for rebounds. Reaction and
deliberation need to be balanced in an effective team.

Latency

Latency is another important factor in RoboCup Small-Size robot competitions. The complete
control loop from receiving information through the camera, processing the information, deliber-
ation, sending commands to the robots themselves, and execution combines to equal the system
latency. Latency is the minimum amount of time between an event occurring in the environment
and a change in the robot’s behavior in response to that event. Equivalently, it is the amount of time
between a robot choosing to take an action before the consequences of the action can be observed
in the world.

Latency is both something that is very important to minimize, as well as something that is
very important to account for. For a team’s own robots, the effects of latency can be lessened by
incorporating past commands into the state of the world. All deliberation then occurs based on the
estimated state of the world when the command will be received, rather than the state of the world
at the last observation. With accurate robot control models, most latency effects can be overcome.
On the other hand, latency as it relates to the opponent robots does not have an easy solution.
Although one can predict accurately the future state of one’s own team, one cannot do the same
for the opponent since their latent commands are not known. The result is that the true position
and velocities of the opponent robots cannot be fully known. In addition, a team can take action
knowing that the other team will be delayed in responding to its action.
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Formal Frameworks

Throughout this work we have focused on the framework of stochastic games. The Small-Size
League is a very complex domain, and could be thought of as a continuous state, partially observ-
able, zero-sum stochastic game. The physical positions, orientations, velocities, and higher-order
state of the robots and ball, along with the score, time remaining, and current game situation forms
the state of the world. For a given robot, transitions of that robot’s portion of the state are simply
the actual stochastic outcome of these actions on their state. System latency adds further issues
by requiring the state to include unobservable (by the opponent team) information about the latent
robot commands. Partial observability is also present in that the systems all have sensor noise in
perception, as well as frequent ball occlusion.

The largest difficulty in constructing such a model is that the actions and capabilities of oppo-
nent teams’ robots are completely unknown. Some robots are omni-directional (e.g., Figure 7.2(b))
allowing them to drive in any direction while simultaneously changing their orientation. Other
robots use a differential-drive system (e.g., Figure 7.2(a)), which prevents the robot from sideways
movement. All robots have acceleration constraints, but this can vary between robots. Some robots
have special ball-handling devices, such as kicking and dribbling mechanisms, which add to the
action spaces of the robots. A theory of agent limitations could be used to capture this model. The
action space available to the robots could be defined as a superset of all possible physically plausi-
ble actions allowed by the rules. Teams of robots by their design decisions impose limitations on
this superset of actions making only a small set of these actions possible for any given team.

The exercise of applying a theory of agent limitations, though, is purely academic. Such a
model is far beyond any practical use. It does, though, show that an equilibrium policy for a
team in this setting may not exist. The uncertainty, which is due to an unknown adversary, and
partial observability, which is due to latency and incomplete and noisy perception, place major
restrictions on possible behavior. As we discussed in Chapter 5, we have no guarantee that an
equilibrium exists with these limitations.

The behavior of most teams in the RoboCup Small-Size League, though, is to a large degree
fixed. The behaviors are mostly reactive considerations based on the current estimate of the world
state. Teams may enforce some commitment to assumptions, such as the position of the ball while
it is occluded. Teams may also commit to a plan of attack, such as the same robot pursuing the
ball over a period of time. Beyond these limited commitments, the overall team behavior does
not change throughout the game, and especially does not change as a function of the opponent’s
behavior. Therefore, we can assume that the opponent has a fully limited restricted policy space,
and the model becomes a POMDP, with a well-defined notion of an optimal policy. Even with
this simplification, it is still not very practical since the opponent’s behavior, although fixed, is
unknown.

Although the models are impractical, they do help one to understand the goal for a Small-Size
RoboCup team. Since the opponent is unknown, the goal is to play well against the range of likely
opponents, with the possibility of adapting behavior during the course of the game to the specific
current opponent. This is the basic goal for our CMDragons’02 team.
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Figure 7.3: Overview of the CMDragons’02 team architecture.

7.1.2 System Architecture

An overview of the complete CMDragons’02 team architecture is shown in Figure 7.3. The
perception-reasoning-action loop consists of taking a visual frame from the camera, processing
the frame, determining controls for each robot on the team, and sending these controls to the
robots using radio communication. The robots themselves perform a very high frequency servo
loop using local encoder sensors to perform the commanded control. The vision processing uses
team and robot markers to extract noisy estimates of the position and orientation of the team’s
robots, and the position of the opponent robots and the ball. The processed observation is then
integrated into the team’s shared world model using extended Kalman-Bucy filters, with a detailed
model of the field physics and sensor noise (Browning, Bowling, & Veloso, 2002).

We focus on the control process, which is represented by the two shaded boxes in Figure 7.3.
Our control system is broken into two layers: tactics and strategy. The tactics layer encompasses
the individual robot behaviors, and each robot executes tactics independently of the other robots.
The strategy layer provides the coordination mechanism and is executed for the entire team. This
distinction allows us to separately focus on robust individual robot skills as well as powerful and
adaptable team behavior. Plays comprise the core of the team’s strategy layer, and are described in
the next section. We first, though, consider the tactical level, which forms the building blocks for
plays.

Tactics are defined to be any behavior executable by a single robot. “Shoot” is a prime example
of a tactic. A list of tactics with brief descriptions is given in Table 7.1. Tactics are specified for
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each robot by the strategic play system and are executed independently. Tactics can actually be
thought of as subgoals achievable by individual robots. The strategy layer’s task is to find an
appropriate set of tactics to achieve the overall team goal. The tactic layer’s task is for a robot to
achieve the tactic subgoal as quickly and as accurately as possible. Tactics are highly parameterized
and allow for a very flexible range of definable behavior. We look at this further when we discuss
how tactics are combined into plays to define a team behavior.

Tactics make use of a robot control layer that keeps robot specific information that persists even
when a robot’s tactic changes. This layer turns the tactic into waypoints used by the navigation
layer. Fast navigation in an environment as dynamic as the RoboCup Small-Size competitions is
a very challenging problem on its own. We use an extension of Rapidly-exploring Random Trees
(RRTs), to provide fast, near-optimal, path planning and replanning for real-time multiple robot
domains. Further details of the path planning algorithm are outside of the scope of this work (Bruce
& Veloso, 2002).

The final layer of control is to compute appropriate robot velocities to move the robot along the
path generated by the navigation algorithm. We use a trapezoidal velocity profile which models
acceleration bounded constraints for robots. We decompose the problem into separate dimensions
solving the one dimensional problem using the trapezoid profile and then recombining to get a
target robot velocity. The computed robot velocities are then sent to the robot over radio com-
munication. We now examine how to combine individual robot behaviors into coordinated team
behavior. This is done through our play-based strategy engine.

In summary, tactics provide a layer of abstraction between the strategic and tactical behavior
layers. For the purpose of the strategy layer, tactics can be thought of as specifying a policy, in
the sense of selecting actions based on perceptions, for an individual robot. In this way, a set of
tactics for the entire team is essentially a joint policy. The strategic layer, since it is responsible for
assigning tactics, effectively specifies a joint policy.

7.2 Plays

The focus in this chapter is on the strategy component of our system. Given a set of tactics, which
are effective and parameterized individual robot behaviors, how do we select each robot’s behavior
to achieve the team’s goals? Our team strategy is built around the concept of aplayas a team plan,
and the concept of aplaybookas a collection of plays. We first explore the goals for the design of
a team’s strategy and then explore how plays and playbooks achieve these goals. We later focus on
how plays allow for team level adaptation to deal with an unknown opponent.

7.2.1 Goals

Obviously the main criterion for a team strategy system is performance. A single, monolithic team
strategy that maximizes performance, though, is impractical. As we have seen repeatedly in this
work, in an adversarial domain with an unknown opponent, a single optimal strategy is unlikely to
exist. Even concepts of equilibria may not exist when dealing with systems with physical and ra-
tional limitations. Instead we enumerate a set of six simpler goals, which we believe are achievable
and lead to strong overall team performance:



7.2. PLAYS 143

Tactic Description
shoot Manipulate the ball to go into the goal.
steal Manipulate the ball to remove possession of it from another

robot.
clear Manipulate the ball to go down field, away from one’s own goal.
active def Switches betweensteal andclear as appropriate.
pass Manipulate the ball toward a teammate.
dribble to position Manipulate the ball to a place on the field while keeping posses-

sion.
dribble to region Manipulate the ball to a region of the field while keeping posses-

sion.
dribble to shoot Manipulate the ball to a region of the field where a good shot can

be taken while keeping possession.
spin to region Using a spinning maneuver to move the ball to a region on the

field.
receive pass Move to receive a pass enroute.
receive deflection Move to deflect a pass toward the goal.
position for start
position for kick
position for penalty
charge ball

Special tactics used for set-plays such as kickoffs, free kicks, and
penalty shots.

position for loose ball
position for rebound
position for pass
position for deflection

Move to a position on the field to anticipate a loose ball, rebound,
pass, or deflection.

defend line Defend the ball from crossing a particular line on the field.
defend point Defend the ball from a particular point on the field.
defend lane Defend along a particular lane.
block Defend the goal a particular distance from the goal.
mark Mark an opponent preventing them from getting the ball, getting

to the goal, blocking a shot.
goalie A special tactic just for the goalie.
stop
velocity
position

Basic tactics specifying a particular velocity or position for the
robot.

Table 7.1: List of tactics along with a brief description.
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1. Coordinated team behavior,

2. Temporally extended sequences of action (deliberative),

3. Inclusion of special purpose behavior for certain circumstances,

4. Ease of human design and augmentation,

5. Ability to exploit short-lived opportunities (reactive), and

6. On-line adaptation to the specific opponent,

The first four goals require plays to be able to express complex, coordinated, and sequenced
behavior among teammates. In addition, the language must be human readable to make play de-
sign and modification simple. These goals also require a powerful system capable of executing
the complex behaviors the plays describe. The fifth goal requires the execution system to also rec-
ognize and exploit opportunities that are not explicitly described by the current play. Finally, the
sixth goal requires the system to alter its overall behavior over time. Notice that the strategy system
requires both deliberative and reactive reasoning. The dynamic environment makes a strictly de-
liberative system unlikely to be able to carry out its plan, but the competitive nature often requires
explicitly deliberative sequences of actions in order to create scoring opportunities.

We first introduce our novel play language along with the coupled play execution system. We
later examine how a playbook can be used to adapt to an opponent.

7.2.2 Play Specification

A play is a multiagent plan, i.e., a joint policy for the entire team. Our definition of a play, therefore,
shares many concepts with classical planning. A play consists of four main components:

• Applicability conditions,

• Termination conditions,

• Roles, and

• Execution details.

Applicability conditions specify when a play can be executed and are similar to planning operator
preconditions. Termination conditions define when execution is stopped and are similar to an
operator’s effects, although they include a number of possible outcomes of execution. The roles
describe the actual behavior to be executed in terms of individual robot tactics. The execution
details can include a variety of optional information that can help guide the play execution system.
We now look at each of these components individually.
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PLAY Naive Offense

APPLICABLE offense
DONE aborted !offense

ROLE 1
shoot A
none

ROLE 2
defend_point {-1400 250} 0 700
none

ROLE 3
defend_lane {B 0 -200} {B 1175 -200}
none

ROLE 4
defend_point {-1400 -250} 0 1400
none

Table 7.2: A simple example of a play.

Applicability Conditions

The conditions for a play’s applicability can be defined as any logical formula of the available state
predicates. The conditions are specified as a logical DNF using theAPPLICABLE keyword, with
each disjunct specified separately. In the example play in Table 7.2, the play can only be executed
from a state where theoffense predicate is true. Theoffense predicate is actually a fairly
complex combination of the present and past possession of the ball and its present and past position
on the field. Predicates can be easily added and Table 7.3 lists the current predicates used by our
system. Note that predicates can also take parameters, as in the case ofball x gt X, which
checks if the ball is over the distanceX down field.

Like preconditions in classical planning, applicability conditions restrict when a play can be
executed. By constraining the applicability of a play, one can design special purpose plays for
very specific circumstances. An example of such a play is shown in Table 7.4. This play uses the
ball in their corner predicate to constrain the play to be executed only when the ball is in
a corner near the opponent’s goal. The play explicitly involves dribbling the ball out of the corner
to get a better angle for a shot on goal. Such a play only really makes sense when initiated from
the play’s applicability conditions.

Termination Conditions

Termination conditions specify when the play’s execution should stop. Just as applicability condi-
tions are related to operator preconditions in classical planning, termination conditions are similar
to operator effects. Unlike classical planning, though, there is too much uncertainty in execution
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offense
defense
their ball
our ball
loose ball
ball their side
ball our side
ball midfield
ball in our corner
ball in their corner
nopponents our side N

our kickoff
their kickoff
our freekick
their freekick
our penalty
their penalty
ball x gt X
ball x lt Y
ball absy gt Y
ball absy lt Y

Table 7.3: List of state predicates.

PLAY Two Attackers, Corner Dribble 1

APPLICABLE offense in_their_corner
DONE aborted !offense
TIMEOUT 15

ROLE 1
dribble_to_shoot { R { B 1100 800 } { B 700 800 } 300}
shoot A
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R { B 1000 0 } { B 700 0 } 500 }
none

ROLE 4
defend_line { -1400 1150 } { -1400 -1150 } 1100 1400
none

Table 7.4: A special purpose play that is only executed when the ball is in an offensive corner of
the field.
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to know the exact outcome of a particular play. The termination conditions list possible outcomes
and associate aresultwith each possible outcome. The soccer domain itself defines a number of
stopping conditions, e.g., the scoring of a goal or the awarding of a penalty shot. The play’s ter-
mination conditions are in addition to these and allow for play execution to be stopped and a new
play initiated even when the game itself is not stopped.

Termination conditions, like applicability conditions, use logical formulas of state predicates.
In addition to specifying a conjunction of predicates, a termination condition also specifies the
result of the play if the condition becomes true. In the play specification, they are delineated by
the DONEkeyword, followed by the result, and then the list of conjunctive predicates. Multiple
DONEconditions can be specified and are interpreted in a disjunctive fashion. In the example play
in Table 7.2, the only terminating condition, beside the default soccer conditions, is if the team is
no longer on offense (“!” is used to signify negation). The play’s result is then “aborted”.

The results for plays are one of: succeeded, completed, aborted, and failed. These results are
used to evaluate the success of the play for the purposes of reselecting the play later. This is the
major input to the team adaptation system, which we describe later. Roughly speaking, we use
results of succeeded and failed to mean that a goal was scored, or some other equivalently valuable
result, such as a penalty shot. the completed result is used if the play was executed to completion.
For example, in the play in Table 7.2, if a robot was able to complete a shot, even if no goal
was scored, the play is considered completed. In a defensive play, switching to offense may be a
completed result in theDONEconditions. The aborted result is used when the play was stopped
without completing.

BesidesDONEconditions, there are two other ways in which plays can be terminated. The first
is when the sequence of behaviors defined by the play are executed. As we mentioned above, this
gives the play a result ofcompleted . This will be described further when we examine the play
execution system. The second occurs when a play runs for a long time with no other termination
condition being triggered. When this occurs the play is terminated with anaborted result and a
new play is selected. This allows the team to commit to a course of action for a period of time, but
recognize that in certain circumstances a particular play may not be able to progress any further.

Roles

As plays are multiagent plans, the main component are the roles. Each play has four roles, one for
each non-goalie robot on the field. A role consists of a list of behaviors for the robot to perform
in sequence. In the example play in Table 7.2, there is only a single behavior listed for each role.
These behaviors will simply be executed until one of the termination conditions apply. In the
example play in Table 7.4, the first role has two sequenced behaviors. In this case the robot will
dribble the ball out of the corner. After the first tactic finishes, the robot filling that role will switch
to theshoot tactic and try to manipulate the ball toward the goal.

Sequencing also requires coordination, which is a critical aspect of multiagent plans. Coordina-
tion in plays requires all the roles to transition simultaneously through their sequence of behaviors.
For example, consider the more complex play in Table 7.5. In this play, one player is assigned
to pass the ball to another player. Once the pass behavior is completedall the roles transition to
their next behavior, if one is defined. So, the passing player will switch to a mark behavior, and
the target of the pass will switch to a behavior to receive the pass, after which it will switch to a
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PLAY Two Attackers, Pass

APPLICABLE offense
DONE aborted !offense

OROLE 0 closest_to_ball

ROLE 1
pass 3
mark 0 from_shot
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R { 1000 0 } { 700 0 } 500 }
receive_pass
shoot A
none

ROLE 4
defend_line { -1400 1150} {-1400 -1150} 1000 1400
none

Table 7.5: A complex play involving sequencing of behaviors.

shooting behavior.

Roles are not tied to any particular robot. Instead, they rely on the play execution system to
do this role assignment. The order of the roles presented in the play act as hints to the execution
system for filling the roles. Roles are always listed in order of priority. The first role is always the
most important and usually involves some manipulation of the ball. This provides the execution
system the knowledge needed to select robots to perform the roles and also for role switching when
appropriate opportunities present themselves.

Tactics in Roles. The different behaviors that can be specified by a role are the individual robot
tactics that were discussed in Section 7.1.2. As mentioned, these tactics are highly parameterized
behaviors. For example, thedefend point tactic takes a point on the field and a minimum and
maximum range. The tactic will then position itself between the point and the ball, within the
specified range. By allowing for this large degree of parameterization the different behaviors can
be combined into a nearly infinite number of play possibilities. The list of parameters accepted by
the different tactics is shown in Table 7.6.
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Active Tactics
shoot (A im | N oaim | D eflect 〈role 〉)
steal [〈coordinate 〉]
clear
active def [〈coordinate 〉]
pass 〈role 〉
dribble to shoot 〈region 〉
dribble to region 〈region 〉
spin to region 〈region 〉
receive pass
receive deflection
dribble to position 〈coordinate 〉 〈theta 〉
position for start 〈coordinate 〉 〈theta 〉
position for kick
position for penalty
charge ball

Non-Active Tactics
position for loose ball 〈region 〉
position for rebound 〈region 〉
position for pass 〈region 〉
position for deflection 〈region 〉
defend line 〈coordinate-1 〉 〈coordinate-2 〉 〈min-dist 〉 〈max-dist 〉
defend point 〈coordinate-1 〉 〈min-dist 〉 〈max-dist 〉
defend lane 〈coordinate-1 〉 〈coordinate-2 〉
block 〈min-dist 〉 〈max-dist 〉 〈side-pref 〉
mark 〈orole 〉 (ball | our goal | their goal | shot)
goalie
stop
velocity 〈vx 〉 〈vy 〉 〈vtheta 〉
position 〈coordinate 〉 〈theta 〉

Table 7.6: List of tactics with their accepted parameters.
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Coordinate Systems. Many of the tactics take parameters in the form of “coordinates” or “re-
gions”. These parameters can be specified in a variety of coordinate systems allowing for added
flexibility in specifying plays in general terms. We allow coordinates to be specified either as
absolute field position or ball relative field positions. In addition, the positive y-axis can also be
specified to depend on the side of the field that the ball is on, the side of field that the majority of
the opponents are on, or even a combination of these two factors. This allows tremendous flexibil-
ity in the specification of the behaviors used in plays. Regions use coordinates to specify non-axis
aligned rectangles as well as circles. This allows, for example, a single play to be general with
respect to the side of the field and position of the ball.

Execution Details

The rest of the play specification are execution details, which amount to providing hints to the
execution system about how to execute the play. These optional components are: timeout and
opponent roles. The timeout overrides the default amount of time a play is allowed to execute
before aborting the play and selecting a new play.

Opponent roles allow robot behaviors to refer to opponent robots in defining their behavior.
The play in Table 7.5 is an example of this. The first role, switches to marking one of the oppo-
nents after it completes the pass. The exact opponent that is marked depends upon which opponent
was assigned to opponent Role 0. Before the teammate roles are listed, opponent roles are de-
fined by simply specifying a selection criteria for filling the role. The example play uses the
closest to ball criterion, which assigns the opponent closest to the ball to fill that role, and
consequently be marked following the pass. Multiple opponent roles can be specified and they are
filled in turn using the provided criterion.

7.2.3 Play Execution

The play execution module is responsible for actually instantiating the play into real robot behav-
ior. That is, the module must interpret a play by assigning tactics to actual robots. This instanti-
ation consists of key decisions: role assignment, role switching, sequencing tactics, opportunistic
behavior, and termination.

Role assignment uses tactic-specific methods for selecting a robot to fill each role, in the order
of the role’s priority. The first role considers all four field robots as candidates to fill the role. The
remaining robots are considered to fill the second role, and so on. Role switching is a very effective
technique for exploiting changes in the environment that alter the effectiveness of robots fulfilling
roles. The play executor handles role switching using the tactic-specific methods for selecting
robots, using a bias toward the current robot filling the role. Sequencing is needed to move the
entire team through the sequence of tactics that make up the play. The play executor monitors the
currentactive player, i.e., the robot whose role specifies a tactic related to the ball (see Table 7.1).
When the tactic succeeds, the play is transitioned to the next tactic in the sequence of tactics, for
eachrole. Finally, opportunistic behavior accounts for changes in the environment where a very
basic action would have a valuable outcome. For example, the play executor evaluates the duration
of time and potential success of each robot shooting immediately. If an opportunistic behavior
can be executed quickly enough and with a high likelihood of success, then the robot immediately
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switches its behavior to take advantage of the situation. If the opportunity is then lost, the robot
returns to executing its role in the play.

The play executor algorithm provides basic behavior beyond what the play specifies. The play
executor, therefore, simplifies the creation of plays, since this basic behavior does not need to
be considered in the design of plays. The executor also gives the team robustness to a changing
environment, which can cause a play’s complex behavior to be no longer necessary or require
some adjustment to the role assignment. It also allows for fairly complex and chained behavior to
be specified in a play, without fear that short-lived opportunities will be missed.

The final consideration of play execution is termination. We have already described how plays
specify their own termination criteria, either through predicates or a timeout. The executor checks
these conditions, and also checks whether the play has completed its sequence of behaviors, as
well as checking incoming information from the referee. If the final active tactic in the play’s
sequence of tactics completes, then the play is considered to have completed and is terminated.
Alternatively, the game may be stopped by the referee to declare a penalty, award a free kick,
award a penalty kick, declare a score, and so on. Each of these conditions terminates the play,
but also may effect the determined outcome of the play. Goals are always considered successes or
failures, as appropriate. Penalty kicks are also considered play successes and failures. A free kick
for our team deems the play as completed, while a free kick for the opponent sets the play outcome
to aborted. Play outcomes are the critical input to the play selection and adaptation system.

7.2.4 Playbook and Play Selection

Plays define a team plan. A playbook is a collection of plays, and, therefore, provides a whole
range of possible team behavior. Playbooks can be composed in a number of different fashions.
For example, one could insure that for all possible game states there exists a single applicable
play. This makes play selection simple since it merely requires executing the one applicable play
from the playbook. A more interesting approach is to provide multiple applicable plays for various
game states. This adds a play selection problem, but also adds alternative modes of play that may
be more appropriate for different opponents. Multiple plays also give options from among which
adaptation can select. In order to support multiple applicable plays, a playbook also associates a
weight with each play. This weight corresponds to how often the play should be selected when
applicable.

Play selection, the final component of the strategy layer, then amounts to finding the set of
applicable plays and selecting one based on the weights. Specifically, ifp1...k are the set of plays
whose applicability condition are satisfied, andwi is their associated weight, thenpj is selected
with probability,

Pr(pj|w) =
wj∑k
i=1 pi

.

Although these weights can simply be specified in the playbook and left alone, they also are the
parameters that can be adapted for a particular opponent. In Section 7.3 we describe how these
weights can be changed based on past play outcomes. We will also show experiments evaluating
the importance of adaptation when the domain has a great degree of uncertainty. In our case, the
uncertainty stems from the unknown opponents.
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7.2.5 Achieving Our Goals

Our play-based strategy system, thus far described, achieves the first five goals that we set out
in Section 7.2.1. Sequences of synchronized actions provide a mechanism for coordinated team
behavior, as well as deliberative actions. Applicability conditions allow for the definition of special
purpose team behavior. The play execution system handles moments of opportunity to allow for
the team to have a reactive element. Finally, incorporating all of this into a human readable text
format makes adding and modifying plays quite easy. The final goal, which has not been addressed,
is adapting team behavior. We now examine how to incorporate adaptation into the play selection
process and evaluate its effectiveness.

7.3 Team Adaptation

Team adaptation is the problem of modifying the selection of plays from the playbook based on
past execution. The basic premise is that the best play to select depends upon the opponent, which
is unknown. Our technique has a strong similarity to WoLF and GraWoLF presented in earlier
chapters. We base adaptation on the outcome of the team’s own actions, rather than on examining
the specific behavior of the opponent. The adaptation directly address the goal, which is to better
select actions over time.

The team’s actions are plays, and so the outcome of the team’s actions are the outcomes of the
plays. We use the play evaluation results (success, failure, completed, and aborted) of past selected
plays to compute new weights for selecting the next play. A play adaptation rule,W , takes a weight
vector,w, the executed play,p, and the outcome of the play,o, and returns the play’s new weight,
i.e.,

W (w, p, o)→ (0,∞)

There are a number of desirable properties of this rule. For example, an outcome of success or
complete should not decrease the play’s weight. Similarly, aborts and failures should not increase
the weight. Another important feature is that any outcome should have a substantial effect on
the play’s weight. This is necessary since the short time span of a single game requires dramatic
weight changes if adaptation is to have an effect on the game’s outcome.

7.3.1 Competition

Our strategy system was used effectively during RoboCup 2002 against a wide range of opponents
with vastly different strategies and capabilities. We implemented a simple adaptation rule using
weight multiplication, where each outcome multiplies the play’s previous weight by a constant.
Specifically, the rule is,

W (w, p, o) =


wpS if o = succeeded
wpC if o = completed
wpA if o = aborted
wpF if o = failed

,
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whereS,C,A, F are the multiplication factors. For our specific implementation these values were
set to,

S = 4 C =
4

3
A =

3

4
F =

1

4
.

These weights are extremely aggressive. For example, scoring a goal would effective quadruple
the likelihood of selecting the play again. Likewise, being scored against would make it four times
less likely to be selected. Since success and failure (as well as complete and abort) are roughly
equivalent and opposite outcomes, we set the multipliers to be inverses. Our weight of completions
to successes was selected arbitrarily to give a significant weight to goals, while still allowing other
outcomes to effect the selection.

The competition results are difficult to evaluate in a systematic way. We present here some
anecdotal evaluation based on the competition. Overall the CMDragons team performed well in
the competition. The team advanced out of the preliminary round with a record of three wins and
one loss, and was eliminated in the quarter finals.

Two observations have resulted from the competition experience, both related to the game
against the previous year’s champion team, Lucky Star, from Ngee Ann Polytechnic University
in Singapore. This was our only loss in the preliminary round and we were defeated 2-0. The
first interesting observation is that both goals occurred in the first half, allowing no goals in the
second half, which suggests that our team effectively adapted to the opponent’s style of attack. At
the end of the game, the weights were strongly in favor of one particular play, which positioned
a defender to block off half the field to prevent crosses or rebounds from getting to the other side
of the field. Whether this result is a product of adaptation or just a statistical anomaly cannot be
known for certain, which is the problem with competition results. The second observation is that
due to Lucky Star’s speed and maneuverability, none of the offensive plays could score with any
regularity. Adaptation continued trying a variety of plays as abort results decreased the executed
play’s weight. However, adaptation among a set of plays cannot do any better than the best play
in the playbook. Although, not a surprising fact, it was illustrated to our disadvantage during this
game.

7.3.2 Evaluation

The nature of robot competitions prevent them from being a systematic evaluation in a controlled
or statistically significant way. Therefore, we have constructed a number of simplified scenarios
to evaluate our play-based team strategy. These scenarios compare whether multiple plays are
actually necessary, and also examine the usefulness of playbook adaptation.

The scenarios compare the effectiveness of four different offensive plays paired against three
different defensive behaviors. To simplify evaluation, only two offensive robots were used against
one defensive robot. The robots start in the usual “kick off” position in the center of the field. For
each scenario, 750 trials were performed in our UberSim Small-Size League simulator (Browning
& Tryzelaar, 2003). A trial was considered a success if the offense scored a goal within a 20 second
time limit, and a failure otherwise. Table 7.7 lists the specifics of the offensive plays and defensive
behaviors. The first two defensive behaviors, and first three offensive plays, formed the core of the
playbook used for RoboCup 2002.

Figure 7.4 displays an example trace of one such trial. The trace is shown as a series of frames,
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Offensive Plays
Name Attacker 1 Attacker 2
Shoot 1 shoot Aim position for rebound
Shoot 2 shoot NoAim position for rebound
Screen 1 shoot Aim mark 0 from shot
Screen 2 shoot NoAim mark 0 from shot

Defensive Behaviors
block Positions to block incoming shots
active def Actively tries to steal ball
brick Defender does not move

Table 7.7: List of offensive and defensive behaviors tested.

1 2 3 4 5 6 7

Figure 7.4: An example trace of play Screen 2 against defensive behavioractive def .

shown in temporal order (Frame 1 represents the start of the trial, with the robots in the “kick-off”
position). In each frame, the two numbered robots are the offensive team. The remaining robot
is on the defensive team, and the small shaded circle is the ball. In the first two frames, Robot
0, which is running theshoot tactic, attempts to drive around the defensive robot, but loses
control of the ball due to a collision. Meanwhile, Robot 1, which is running themark tactic, tries
to impede the defensive robot (frames 3-5). This approach is successful in this case, and Robot 1
forces a turnover. Immediately afterward, robot 1 switches roles and becomes the shooting attacker
in order to opportunistically score (frames 5-7). This example serves to illustrate one possible way
robots may be coordinated using plays.

Table 7.8 shows the play comparison results. Each trial is independent, and so the maximum
likelihood estimate of each play’s success probability is the ratio of successes to trials. Note that
there is no static strategy that is optimal against every possible opponent. Even in this simplified
scenario, the best strategy depends upon the opposing defensive behavior. In fact, each of the
offensive plays is actually the optimal response for some distribution over defensive behaviors.

Our results support the notion that play-based strategies are capable of exhibiting many differ-
ent behaviors with varying degrees of effectiveness. For instance, the screen plays, one of which
was shown in the example trace, are effective against an “active” defender that tries to steal the ball
from the offense, because the non-shooting attacker is capable of setting screens for the shooting
attacker. On the other hand, the screen plays are less effective against a “blocking” defender that
guards the goal. Against such defenses, the Shoot 1 and 2 plays, where the non-shooting robot
attempts to position itself for rebounds, are far more effective. Thus we use team adaptation to
select the best offensive strategy against the particularly encountered defense.
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Play block active def brick
Shoot 1 72.3% 49.7% 99.5%
Shoot 2 66.7% 57.3% 43.1%
Screen 1 40.8% 59.0% 92.4%
Screen 2 49.2% 66.0% 72.0%

Table 7.8: Play comparison results. For each scenario, the percentage of successes for the 750 trials
is shown. The boldfaced number corresponds to the play with the highest percentage of success
for each defensive behavior.

To explore the effectiveness of playbook adaptation, we experiment with an offensive play-
book for two robots with all four offensive plays described in Table 7.7 against a fixed defender
running eitherblock or active def . We initially used the algorithm we used in competition,
but discovered an imperfection in the approach. Due to the strength of the reinforcement for a
completed play, it is possible for a moderately successful but non-dominant play to quickly dom-
inate in weight, and remain dominant. This phenomenon did not occur in competition due to the
larger disparity in plays against a given opponent and lower success probabilities. The problem
is that there is no normalization in the weight adjustment for plays that have a higher selection
probability, and so are updated more often. Therefore, we included a normalization factor in the
weight updates. Specifically, we used the following rule,

W (w, p, o) =

{
2wp/Pr(p|w) if o = Succeeded

wpPr(p|w)/2 if o = Failed
,

where Pr(p|w) is the probability assigned top according tow.
To evaluate the performance of play adaptation using this rule, we compare the expected suc-

cess rate (ESR) of using this adaptation rule against a fixed defensive behavior. We used the results
in Table 7.8 to simulate the outcomes of the various play combinations. Figure 7.5(a) and (b) show
the ESR for play adaptation over 100 trials, which is comparable to the length of a competition
(approximately 20 minutes). The lower bound on the y-axis corresponds to the ESR of randomly
selecting plays and the upper bound corresponds to the ESR of the playbook’s best play for the
particular defense. Figure 7.5(c) shows the probabilities of selecting each play over time when
running the adaptation algorithm.

As Figure 7.5(a) and (b) indicates, against each defense the overall success rate of the offense
quickly grows toward the optimal success rate within a small number of trials. Likewise Fig-
ure 7.5(c) shows that against theblock defense, the probability of selecting either of two plays
with comparatively high individual success rates quickly dominates the probability of selecting the
two less successful plays. Clearly, the algorithm very quickly favors the more successful plays.

These results, combined with the RoboCup performances, demonstrate that adaptation can be
a powerful tool for identifying successful plays against unknown opponents. Note the contrast
here between the use of adaptation and more common machine learning approaches. We are not
interested in convergence to an optimal control policy. Rather, given the short time limit of a game,
we desire adaptation that achieves good results quickly enough to impact the game. Hence a fast,
but non-optimal response is desired over a more optimal but longer term approach.
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Figure 7.5: Expected success rates over time versus the defensive behavior (a) block and (b) ac-
tive def. (c) Expected play probabilities over time versus block. These results have all been aver-
aged over 50000 runs of 100 trials.
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7.3.3 Discussion

There are a number of qualitative advantages of using plays for team coordination: the relative
simplicity and cleanliness of the approach, and the ease with which new strategies can be specified.
Our decomposition of the team planning problem is highly hierarchical and modular. At the lowest
level, tactics specify individual robot behaviors; in the middle level, these tactics are coordinated
using the play language; and at the highest level, team adaptation specifies the overall behavior
of the team. This particular way of structuring the team allows us to easily understand, test, and
improve the system. Individual robot skills, written as tactics, end up being highly reusable and
easily incorporated into multiple plays. Moreover, a new team behavior may take only minutes to
write using the play language, after which it can be evaluated immediately.

The exact implementation of the team adaptation rule can still be improved upon. One pos-
sibility is to use a no-regret learning algorithm as discussed in Section 3.2.2. These algorithms
would fit very nicely into this experimental setup, and additionally could, over time, guarantee
performance that is nearly as good as the best play available in the playbook. On the other hand, it
is not clear how well these techniques would fair in the short time space of an actual game. Also,
if more teams begin employing adaptation during the course of a game, then the WoLF principle
used in the previous chapters could be used to help handle simultaneous learning. As with no-
regret algorithms, how well WoLF would perform in the short confines of the game is part of our
future research plans.

As a whole, this system addresses all of our goals set out in Section 7.2.1 for our team strat-
egy. It merges deliberation using coordinated extended sequences of actions, with opportunistic
reaction. In addition, it provides the ability to define circumstance-specific special purpose plays,
along with easy design and modification. Finally, it provides the mechanism for evaluating execu-
tion outcome and using this outcome to adapt play selection to the particular opponent.

7.4 Summary

In this chapter, we described a play-based team architecture for our CMDragons ’02 team of robot
soccer agents. We demonstrated how plays codify team behavior and allow for online evaluation
of team performance for the particular opponent. This evaluation can then be used to select be-
tween play alternatives. The robot team can use this evaluation to autonomously alter its play
selection, and therefore team behavior, to adapt to its particular opponent. This multiagent plan-
ning and adaptation system was used effectively in the RoboCup 2002 competition, and was the
first RoboCup robot team to adapt to its opponent during the course of a game. We also performed
evaluations of this system in simulation. We demonstrated that plays do have different results
depending upon the opponents’ behavior, and that adaptation can successfully improve team per-
formance within the course of a game.
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Chapter 8

Conclusions and Future Work

This dissertation set out to address the question,

Can an agent effectively learn to act in the presence of other learning agents in complex
domains when agents may have limitations?

In this final chapter we summarize the contributions we have presented to answer this question.
We also describe some new directions for future work that these contributions raise.

8.1 Contributions

There were four main contributions of this thesis.

Variable learning rate and the WoLF principle for rational and convergent learning. In
Chapter 4, we introduced two desirable properties for a multiagent learning algorithm and demon-
strated that previous techniques do not simultaneously achieve these properties. We then presented
two new concepts: a variable learning rate and the WoLF principle. We demonstrated these tech-
niques to be a powerful and effective mechanism for making rational and convergent learners.

The WoLF variable learning rate has both theoretical justification in making the non-converging
gradient ascent algorithm converge in a subclass of matrix games. We also demonstrated this
converging effect empirically across a wide variety of multiagent domains: zero-sum, general-sum,
two-player, three-player, matrix games, and stochastic games. The power of the WoLF variable
learning rate is also further demonstrated in its effective use in GraWoLF, another contribution of
this work and summarized below.

Analysis of restricted policy spaces and their effect on equilibria. The concept of equilibria is
a critical foundation for most of the multiagent learning research to date. However, complete ratio-
nality in the sense of optimal action selection is not possible for realistic tasks. In fact, the research
on scaling single-agent reinforcement learning to tasks with large and complex state spaces has
explicit sacrificed optimality for speed of learning. Optimality, though, is the basis for equilibria,
and so common and realistic limitations pose a substantial threat to this foundational concept. This

159
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thesis not only recognized and introduced the threat of limitations to equilibria, but also presented
an analysis of their impact.

In Chapter 5 we contributed two models of the effect of limitations on agent behavior: implicit
games and restricted policy spaces. We extended the concept of equilibria to these models and
analyzed when equilibria are guaranteed to exist. In general, equilibria may not exist even with
well-behaved agent limitations. We did find a number of broad classes of stochastic games and
limitations for which equilibria can be guaranteed. This analysis has many implications for further
research in multiagent learning on many different fronts.

GraWoLF as a general-purpose scalable multiagent learning algorithm. GraWoLF, presented
in Chapter 6, combines the WoLF variable learning rate with a policy gradient learning technique
to effectively learn in complex tasks. Learning is possible even when the learner and others are
limited, which is unavoidable in tasks that are realistic and interesting. The algorithm was success-
fully applied to learning in two complex tasks: a card game with an intractably large state space,
and an adversarial robot task. These results demonstrate effective learning in the presence of other
learning agents, in complex domains, and in the presence of agents with a variety of limitations.

In addition to the algorithm and compelling results of its application in these two tasks, we
also investigated the problem of evaluation. We proposed a number of techniques for evaluation
of multiagent learning in situations of simultaneous learning with limited agents. We employed
these three techniques, challengers, improvement over the initial policy, and expected value during
learning, in evaluating our own results. These three techniques are generally useful tools for the
difficult problem of evaluation of simultaneous learning.

A summary of the simultaneous learning domains that were investigated in this work is shown
in Table 8.1. This table lists both the key details of the game as well as a summary of which
algorithm was investigated in the domain, whether limited or unlimited agents were examined, and
whether results were specifically in situations of self-play or went beyond self-play. Notice that the
examined domains increase in complexity, beginning with simple two-player, two-action matrix
games, where WoLF-IGA was examined theoretically, and ending with keepout, an adversarial,
continuous-state, robot learning task, for which GraWoLF was applied.

Play-based team strategy for adapting to an unknown opponent. Our final contribution, pre-
sented in Chapter 7, is the development of a team strategy capable of learning and adapting to
an unknown opponent. The mechanisms were designed and implemented in the CMDragons ’02
RoboCup Small-Size autonomous robot team, but also have general applicability. Plays define
team plans for achieving a task and are sufficiently descriptive to allow for sequences of behavior,
special purpose activation, dynamic role assignment and role switching, and determination of the
play’s success or failure. These are all crucial elements for building an adaptable team. Learning
is injected into the play selection algorithm through the use of our determination of play success
and failure. Successful plays are weighted to be executed more often, while unsuccessful plays are
executed less often. Using this team strategy, CMDragons’02 was the first RoboCup robot team
to adapt to its opponent during the course of a game. We also presented the results of controlled
experiments in a simulated environment to investigate the effectiveness of plays and play-based
adaptation.
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2-Player/2-Action Matrix GamesX X X 2 1 X X X X
Matching Pennies X X 2 1 X X X X
Rock-Paper-Scissors X X 2 1 X X X X X
Colonel Blotto X X 2 1 X X X X X
3-Player Matching Pennies X X 3 1 X X X
Gridworld X X 2 73 X X X
Grid Soccer X X 2 760 X X X X
Goofspiel X X 2 1011 X X X
Keepout X X 2 ∞ X X X

Table 8.1: Summary of the explored domains. Results for WoLF-IGA and WoLF-PHC with un-
limited players can be found in Chapter 4. Results for WoLF-PHC with limited players can be
found in Chapter 5. Results for GraWoLF can be found in Chapter 6.

8.2 Directions for Future Work

This dissertation opens up new interesting directions for further research in multiagent learning.
The demonstration of effective learning in challenging tasks requiring approximation and other
agent limitations expands the potential applications of learning techniques in multiagent environ-
ments. There are also additional fundamental questions that this work lays the foundations for
considering and answering. These questions fall into four broad categories.

8.2.1 Further Theoretical Analysis of WoLF

The theoretical analysis of the effect of WoLF on learning presented in Chapter 4 is restricted to
two-player, two-action matrix games. The result is strong evidence for the power of the WoLF
variable learning rate, and when combined with the corroborating empirical results on a far wider
class of domains it is very compelling. An extended analysis of WoLF beyond two-player, two-
action matrix games, would be enlightening. The same technique that was used for our analysis is
not likely to be useful toward this goal, though, as the number of qualitatively different dynamics
increases exponentially with players and actions.

There has been recent work by Zinkevich (2003) demonstrating that Generalized Infinitesimal
Gradient Ascent (GIGA), an extension of IGA ton-action games, minimizes regret, as was defined
in Section 3.2.2. Whether an extension of WoLF-IGA might be able to make a similar guarantee
would be interesting. Work has already begun to build on our contributions of variable learning
rates and WoLF, investigating alternative rules for varying the learning rate (Banerjee & Peng,
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2002). These rules, which are similar to WoLF, may ultimately prove easier to analyze.
Subsequent to our introduction of WoLF, Conitzer and Sandholm (Conitzer & Sandholm,

2003a) contributed an algorithm that is proven to be rational and convergent in self-play for all
matrix games. Their result demonstrates that such an algorithm is possible, although the practical-
ity of their algorithm is unclear. The algorithm does not obviously generalize to stochastic games,
and convergence is enforced through requiring the agent to play the equilibrium when observing
a non-stationary opponent. This prevents the learning of something like a restricted equilibrium,
which can arise in the common case of limited agents. However, their result is still important as an
existence proof for what is achievable by a learning algorithm.

Finally, from a purely game theoretic perspective, WoLF-IGA is essentially a dynamic that
learns best-responses but also converges to a Nash equilibrium in self-play, e.g., (Kalai & Lehrer,
1993). This is a goal actively being investigated within the game theory community. An interesting
recent negative result (Hart & Mas-Colell, 2002) shows that no dynamic that adjusts its strategy
only based on its own reward matrix and the other player’s current strategy could achieve this goal.
IGA is an example of such a dynamic and therefore cannot guarantee convergence to an equilibrium
in self-play, as we saw in Chapter 4. WoLF-IGA on the other hand does not fall under this result,
since by adjusting the magnitude of the gradient through comparison with the equilibrium policy
or the average policy, it injects information related to the other players’ payoffs. Whether WoLF or
another similar simple injection of knowledge could achieve this best-response convergence goal
is of interest to the field of game theory, with implications for multiagent learning as well.

8.2.2 Asymmetric Learning

The focus of this dissertation has been on learning in self-play, where all agents are using nearly
identical or similar learning algorithms. This focus has been intentional in order to avoid a common
implicit assumption that other agents are more limited and inherently inferior. This assumption
usually manifests itself in the form of a non-learning opponent, or an opponent whose behavior
can be easily modeled. Despite our emphasis on self-play, in Chapter 4 we examined situations
outside of self-play to demonstrate the generality of this work. This brief examination could be the
seed of a very interesting direction of future study on asymmetric learning.

There are a number of different dimensions along which asymmetric learning could be stud-
ied. One consideration is that of exploiting a particular learning algorithm. Can one devise a
learning algorithm to exploit another particular learning algorithm or even a whole class of sim-
pler algorithms? Can one devise an algorithm that cannot be exploited, which is strongly related
to regret minimizing algorithms? Can such an algorithm also have well-behaved and desirable
performance in self-play? These questions relate to another dimension for exploring asymmetric
learning, which is the idea of algorithms themselves being in equilibrium. By specifying some
formulation on rewards over time, one could compute the “value” of two algorithms, and then
examine what it means for algorithms to be in equilibrium. Essentially, this amounts to consider-
ing algorithms themselves as behavioral strategies, as described in Section 2.4.6, and examining
whether two algorithms are in equilibrium. This has recently been investigated in a very theoretical
fashion (Brafman & Tennenholtz, 2002a) relying mostly on folk theorems, but thus far, the prac-
tical implications are unclear. A final interesting dimension is human-agent interaction, where a
learning agent is interacting with a learning human. Human adaptation is of a completely different
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form than most agent learning algorithms. Human policy changes are frequently to policies that
are qualitatively different, as opposed to learning through slight variations. The amount of train-
ing required for human learning is also substantially smaller. These differences from agent-agent
learning may have a major impact on the application of learning to such settings.

8.2.3 Evaluation

The goals and methods of evaluation of a multiagent learning algorithm are still very much open
research questions. Evaluation becomes considerably more complicated when considering agent
limitations. Since limitations may prevent equilibria from existing, convergence as a property
and evaluation tool is useless. This raises the question of what should learning agents learn if
equilibria do not exist? In Chapter 6, we presented and used three methods of evaluation that do
not depend on equilibria or convergence. Other evaluation tools or methods need to be investigated
and compared.

Another complication that multiagent domains add to the learning problem is that there are
multiple components to an agent’s performance. Effectiveness is determined by how adapted the
agent’s behavior is to the environment, as well as, how adapted the agent’s behavior is to the op-
ponent. In some games these two components are identical. For example, in Chess, we expect
improving play against one opponent will improve play against all opponents.1 Specifically, learn-
ing is focused on the rules of the game, or learning moves with guaranteed wins, or strong board
positions independent of how the opponent plays. On the other hand, in rock-paper-scissors, this
is not the case. In this game, learning to improve against a particular player’s strategy necessarily
causes one to play more poorly against another. Specifically, there is no need to adapt to the envi-
ronment, performance depends only on adapting to the opponent. Most realistic and non-abstract
problems are somewhere between these two extremes. The two learning tasks in Chapter 6, Goof-
spiel and Keepout, are examples of tasks that are somewhere in the middle of the continuum,
betweenall-domainandall-opponent.

Understanding this domain-opponent continuum may be helpful for both designing and eval-
uating algorithms. Different domains may require different algorithms and different methods of
evaluation. It also may be useful to evaluate how well an algorithm is adapted to the environment
independently of how well the algorithm is adapted to the opponent. Challengers or improve-
ment over the initial policies are evaluation methods more suited toward measuring how suited the
agent’s policy is to the environment, in general. On the other hand, a comparison of expected value
of policies while learning may be more suited for measuring how well the agent is adapted to the
specific opponent. More suited evaluation criteria may be able to distinguish these two compo-
nents further. In addition, evaluation may depend on where the domain falls on the continuum of
domain versus opponent. This continuum is not just important for adversarial domains, but should
also give important insight into both collaborative and other non-competitive environments.

8.2.4 Training Efficiency

A final area of further research is that of training efficiency. How can an agent learn more quickly
with less training experience? Although we believe the techniques presented in this work are

1This is not strictly true for Chess, but it is more true than in other settings due to the nature of alternating moves.
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relatively competitive in terms of learning speed, we also recognize the need for using less data.
Our learning in the Keepout task involved 4,000 trials, which is a small number by reinforcement
learning standards. This is still far too slow for adapting to a particular opponent in the course of
a soccer game, for example. The problem of learning with less data is shared with single-agent
learning tasks, and single-agent solutions also can be applied to multiagent tasks. Parameterized
policies, function approximation, eligibility traces, temporally abstract actions, and SMDPs are
single-agent solutions that have all been incorporated into our applications of GraWoLF described
in Chapter 6.

Multiagent tasks have an additional challenge or advantage related to training efficiency. How
does one reuse training data between opponents? This problem is highly related to the continuum
of games described in Section 8.2.3. Games like rock-paper-scissors offer little hope in the area
of reusing training data, while in problems with no opponent, all of the training data can be used.
The interesting problems are the cases between the extremes. For example, if the defender’s action
space in the Keepout task were changed so that it could navigate to a completely different set of
points, how relevant would previous training be for the new policy? One simple solution would be
to use the previously learned policy as the initial policy. More informed approaches of reuse is an
interesting open problem.

8.3 Summary

This dissertation contributes a number of powerful techniques for learning in the presence of other
learning agents. The cornerstone of the presented learning mechanisms is the WoLF principle for
varying the learning rate and is widely applicable. We demonstrated effective learning in domains
without state, in domains with small easily enumerable state spaces, and for complex tasks with
intractably large or continuous state spaces, where agents have a variety of physical and rational
limitations. We also demonstrated how learning could be incorporated in a coordinated team of
agents to adapt to an unknown opponent. In addition, our analysis of the effect of limitations
on the concept of equilibria is an important contribution with implications broader than just this
dissertation’s approach to multiagent learning. The thesis contributions provide both practical
algorithms and foundational theory for learning to be applied in domains with ever increasing
agent interaction. SDG2

2Johann Sebastian Bach finished many of his compositions with these initials. I echo his sentiments. See
“http://www.bachfaq.org” for more information.



Appendix A

Learning Parameters

The following are the learning and decay rates used for the results presented throughout this dis-
sertation.

Chapter 4

These are the learning rate parameters used with the algorithms: PHC, presented in Table 4.1, and
WoLF-PHC, presented in Table 4.2. For all of the values,t refers to the number of times the par-
ticular state-action pair,(s, a), has been selected in Step 2(a). This requires maintaining a separate
count for each pair. The learning rates used in matching pennies and rock-paper-scissors are pur-
posefully very small so as to better illustrate graphically the dynamics of the learning algorithms.

Matching Pennies (Section 4.4.1)

α = 1
100+ t

10000

δ = δw = 1
20000+t

δl = 2δw

Rock-Paper-Scissors (Sections 4.4.1 and 4.4.5)

α = 1
10+ t

10000

δ = δw = 1
20000+t

δl = 2δw

Gridworld (Section 4.4.2)

α = 1
1+ t

500

δ = δw = 1
1000+ t

10

δl = 4δw

Soccer (Sections 4.4.3 and 4.4.5)

α = 1
1+ t

500

δ = δw = 1
1+ t

10

δl = 4δw

Three-Player Matching Pennies (Section 4.4.4)

α = 1
10+ t

10000

δ = δw = 1
100+t

δl = 2δw
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Chapter 5

These are the learning rate parameters used with the algorithms, WoLF-PHC, presented in Ta-
ble 4.2. As above, for all of the values,t refers to the number of times the particular state-action
pair, (s, a), has been selected in Step 2(a). This requires maintaining a separate count for each
pair. The learning rates used are purposefully very small so as to better illustrate graphically the
dynamics of the learning algorithms.

Rock-Paper-Scissors (Section 5.3.1)

α = 1
10+ t

10000

δw = 1
100+t

δl = 2δw

Colonel Blotto (Section 5.3.2)

α = 1
10+ t

10000

δw = 1
20000+t

δl = 2δw

Chapter 6

These are the learning rate parameters used with the GraWoLF algorithm, presented in Table 6.1.
For all of the values,t refers to the number of times Step 3 has been repeated.

Goofspiel (Section 6.4.1)

λ = 0 α = 0.2 δl = 0.16 δw = 0.008 β = 1
1+ t

4

Keepout (Section 6.4.2)

λ = 0.5 α = 0.1
1+ t

200000

δl = 200
1+ t

20000

δw = 10
1+ t

20000

β = 1
1+ t

300
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