Alexander G. Gray

BRINGING TRACTABILITY TO
GENERALIZED N-BODY PROBLEMS IN
STATISTICAL AND SCIENTIFIC
COMPUTATION

A dissertation presented to the faculty
of the School of Computer Science of

Carnegie Mellon University

in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

CMU-CS-04-189
April 2003

Committee:

Andrew W. Moore, CS Dept. and Robotics Institute (chair)
Sebastian Thrun, CS Dept. and Robotics Institute

Larry Wasserman, Statistics Dept. and CALD

Robert Nichol, Physics Dept.

Dennis DeCoste, NASA Jet Propulsion Lab

copetas
Typewritten Text

copetas
Typewritten Text
CMU-CS-04-189

(© Alexander G. Gray 2003
ALL RIGHTS RESERVED

Generalized N-body problems.

N-body problems in computational
geometry.

N-body problems in computational
statistics.

Abstract

Taking a bird's-eye view across the fields of computational geometry, statistics and
machine learning, computational physics, and a collection of areas which we sum-
marize as computational morphology, we define a class of important problems, gen-
eralized N-body problems, which share a common structure. Informally these are
problems which can be solved by considering in turn each pair (or n-tuple) of points
in a metric space. We survey the literature across all of these fields, pointing out
the recurring classes of solution attempts and their well-known limitations. We then
show that the entire class of problems can be efficiently solved by a common design
principle which we propose, which we refer to as higher-order divide-and-conquer
(HODC) — the extension of the powerful divide-and-conquer principle of algorithm
design from the division of single set to the division of multiple sets. This simple idea,
stated for the first time here to our knowledge, while quite general, is considered
here only in its form for geometric problems, which we call geometric shattering.

To instantiate and demonstrate the most basic geometric shattering algorithm de-
sign, we consider the all-nearest-neighbors problem. We first introduce adaptive
space-partitioning trees (ASPT), of which kd-trees and metric- or ball-trees are ex-
amples, and review previous observations that they are sensitive to the intrinsic
dimension of the data rather than the explicit dimension. We prove that, given the
prior construction of an ASPT, the ‘dual-tree’ algerithm resulting from the shat-
tering principle improves upon the complexity of a standard single-tree approach
from O(N log N) to O(N). This extends related but more limited observations by
Vaidya (1989) and Callahan and Kosaraju (1993) in computational geometry and
Hjaltason and Samet (1998) in the database literature. This demonstrates in a
canonical and well-studied context that the higher-order divide-and-conquer princi-
ple is both theoretically insightful and useful (leading to the optimal complexity for
this problem).

To extend shattering to the case of a continuous potential or kernel function between
points, we consider the practical problem of kernel density estimation (KDE), the
principal method of nonparametric estimation in statistics, for which satisfactory
computational approaches have been unavailable since formulation of the founda-
tional idea in 1956. Grid-based methods, including FFT elaborations, exhibit poor
accuracy and are exponential in the explicit dimension. We develop a function ap-
proximation scheme based on a simple recursive finite-difference interpolation idea,
which is further accelerated by additional techniques involving asynchronous dy-
namic programming and an extra order of divide-and-conquer. This results in the
first practical algorithm for kernel density estimation which is capable of comput-
ing densities in seconds for datasets ranging up to millions of points and ranging
up to several hundreds of dimensions, with three-significant-digit accuracy or bet-

N -body problems in computational
physics.

N-body problems in computational
morphology.

Summary.

ter (typically six-digit accuracy), for both kernels with compact support and those
with infinite tails. A number of other important problems in statistics and machine
learning can be similarly treated.

A central technique of computational fluid dynamics, smoothed particle hydrody-
namics (SPH), first proposed in 1977 as the Lagrangian (more accurate particle-
based) alternative to Eulerian (simple grid-based) approaches to fluid dynamics,
represents one of many fundamental N-body problems in physics which are not
treatable by the existing well-known linear-time method of Greengard and Rokhlin
(1987) based on analytic multipole expansions. We show a number of extensions
that can be made to our algorithm for KDE to obtain the first linear-time method for
SPH, improving upon the best previous complexity O(N log N) using the Barnes-
Hut method (1986). Our method is importantly derivative-free, eliminating the
high barrier to implementation and understanding surrounding the complex multi-
pole methods, and making them practical alternatives even for the original problems
where the multipole methods are applicable.

Finally we treat generalized N-body problems which are defined by n-tuples for
n > 2 rather than merely pairs. The n-point correlation functions form the the-
oretical foundation for spatial point processes, which are used heavily in statistical
physics and particle physics, and are today on the critical path to answering the
central questions of cosmology. Despite pursuits for computational tractability in
astrophysics beginning in the 1960's, only the simplistic grid- and FFT-based meth-
ods had previously existed for this problem in the approximate case, and for the exact
case only the naive O(N™) approach existed; thus even for n = 3, the largest true
scientific application which had been attempted was for N ~ 20,000 points. We
demonstrate the natural extension of shattering to obtain an algorithm for arbitrary
n, yielding exact solutions in minutes or hours, depending on the ranges chosen, for
75 million points with n = 3. For the large ranges which are most difficult for our
exact algorithm, we also develop an approximate method which uses shattering to
create strata for a stratified Monte Carlo integration method. We develop a new
method for adaptive Neyman allocation, which approaches optimal sample allocation
and is applicable in any Monte Carlo integration problem. Using the resulting algo-
rithm we demonstrate the computation of the 3-point correlation with 1% maximum
error at the 99% confidence level in seconds, regardless of N. Our algorithms are
currently in use by astrophysicists in the largest experimental calculations to date,
toward answering fundamental questions concerning dark matter and validation of
the standard model of cosmology.

We have presented substantial advances for two major open computational problems
(KDE and n-point), proposed an algorithm for SPH which is superior in complexity
though to be tested in future work, and given theoretical perspective on the basic al-
gorithmic insight using the context of the well-studied all-nearest-neighbors problem.
Through the examination of these four canonical problems, we effectively introduce
a set of simple but powerful techniques for realizing the higher-order divide-and-
conquer strategy, comprising a practical toolbox of algorithm designs for the different
situations arising in a larger list of thirty or so important problems. We anticipate
that the general algorithmic machinery underlying these results will also be useful in
statistical and scientific problems beyond these examples.

To my father, Gordon T. Gray {1939-2000).

He showed me, by his brilliant example, how to perceive and think beyond the
bounds of others, to pursue value in clear terms, and to yield to no obstacle. He
lives in every step of my work.

Acknowledgments

Warm thanks beyond what | can truly express here are due to the following people:
Andrew Moore, my advisor, who has been a true inspiration both in his peerless
ingenuity and in his uncompromising dedication to value in his work. Nicoleta
Serban, my sweetheart, whose belief in me during my darkest hours was stronger
than my own, and who has become part of my purpose itself. Rune Jensen, my
friend and officemate, without whom the PhD experience would not have been half
as enjoyable. All my old friends, who forgave me for disappearing into a cave during
all those years of grad school. And Kimberly Gray, my mother, for the lifelong love
and support that makes every success possible.

Thanks are also due to all my old colleagues at NASA — my 6 years at JPL gave
me the experience and confidence to attack such a wide range of scientific problems
simultaneously, which has been a joy, as well as the excellent preparation which
allowed this work to be done in 3.6 years.

My graduate study and research was supported in part by the NASA GSRP Fel-
lowship.

Contents

Abstract i

Acknowledgments v

1 Generalized N-Body Problems 1
Isolating a ubiquitous obstacle across fields.

T BirstgUESHIORS oo moovms s i s mi e sl s B B A 9 8 B 4 2

1.2 Basic geomeétric queries: .o.iwiaienieis et Sl es o 0 BB 8 8 b 4

1.3 Basic statistical inferences. 5

1.4 Simulation of basic systems. 11

1.5 Basic morphological questions. L 15

1.6 The generalized perspective. 20

1. Related iobSerVations., mummmmmmmmunsmmms o s o 5 e © 5 8 8 8 0 8 0 % 3 25

18 Simimary of thisGhipter: srvmmrmwm s v s s s v w s o s v w5 0 = 4 26

2 N-Body Problems in Computational Geometry 29

Geometric Shattering I: Divide-and-Conquer Tools.

2.1 Proximity problems. 29
2.2 Divide-and-conquer. 32
2.3 Adaptive space-partitioning trees. 33
2.4 Higher-order divide-and-conquer. 37
DB Complesdty: ¢ vvvnsesnunssasnnnnc e E e B w e e 39
26Performance. v oo s i i v i v n B s e s s E e o 42
2.7 Related problems and approaches. 42
2.8 Summary of this chapter. 48
3 N-Body Problems in Computational Statistics 49

Function Approximation I: Finite-Difference Methods.

3.1 Nonparametric function estimation. 49
3.2 Monopole approximation. L 53
3.3 Finite-difference approximation. 54
3.4 Optimization of upper and lower bounds. 58
3.5 Multiple density models. B9
3.6 Find-bandwidth procedure., 61
FAPEHOrfiantce: s ev s n s e 8 s 9 B M A2 I & S S S H B H @ HE S HFE 62
3.8 Related problems and approaches. 68

vii

3.9 Chapter summary. 69

4 N-Body Problems in Computational Physics 71
Function Approximation II: Multipole Methods.
4.1 Computational fluid dynamics. 71
4.2 Extensions. 7%
4.3 Multipole Methods 78
4.4 Variations and new possiblities. 84
4.5 Related problems and approaches. 88
4.6 Chapter summary 89
5 N-Body Problems in Computational Morphology 91
Geometric Shattering 1I: n-Tuples and Monte Carlo.
5.1 Point processes. 91
5.2 n-Tree shattering. 95
5.3 Combinatorics. 97
5.4 Geometric Monte Carlo 97
5.5 Optimal sample allocation. 101
BibPerformances =« s w8 v @ v ¥ ¥ 4 8 F S E T B AT B 0 N m v omw e omoma 104
5.7 Related problems and approaches. 117
5.8 Chapter summary 117
6 Summary and QOutlook 119
A retrospective and prospective.
6.1 New understanding of important problems. 119
6.2 New tractability for important problems. 119
6.3 New algorithmic techniques. 120
6.4 Where togo next? 122

References 123

What is this thesis about?

Agenda of this chapter.

Generalized N-Body Problems

Isolating a Ubiquitous Obstacle Across Fields.

Each problem that | solved became a rule which served afterwards to
solve other problems. — Rene Descartes (1596 - 1650).

HOW CAN COMPUTER SCIENCE, or more specifically the study of algorithms,
change the world? Quite simply, a great number of things people would like to
accomplish are limited by the computation required to achieve them. It is these
obstacles — pressing computational problems which really exist in the world, as
opposed to problems which are chosen according to some other measure of interest-
ingness — which drive the viewpoints and approaches taken in this thesis.

This thesis is about three things:

1. First, it identifies a large and real class of problems, called generalized N-body
problems which appear prominently across a number of important disciplines,
including statistics, physics, and computer science.

2. The main reason to link these various problems is that they can be efficiently
solved by the same kinds of solutions. The second thing this thesis is about
is a new class of solutions for this new class of problems, called geometric
shattering.

3. The third concern of this thesis is the design of better practical algorithms
for specific tasks, as opposed to theoretical algorithm sketches which serve
as mathematical existence proofs rather than tools which change the world.
Thus, we will be absolutely and happily subject to all of the specific unique
constraints for each problem area that its practitioners face, rather than view
these constraints as unfortunate limitations which would be removed or relaxed
in a perfect paradise. We will choose four specific tasks to build algorithms for,
one from each of four different fields, which will represent different forms of
our solution strategy corresponding to key aspects which can appear in different
problems. These are the all-nearest-neighbors, kernel density estimation,
smoothed particle hydrodynamics, and n-point correlation problems.

In this chapter I'll point out several important problems in various fields whose
similarity to the well-known physical N-body problem will be apparent. It should
also become apparent that these kinds of problems are prevalent and naturally-
occurring across several diverse fields, and quite often at the core of those fields in
terms of fundamental importance. Along the way I'll sketch the backbone of the
organizational structure of this thesis, in previews of each chapter.

§1.1 First questions.

So what are generalized N -body
problems, roughly?

CHAPTER 1 2

First let's briefly answer some high-level questions about the class of problems we're
considering.

Very informally, a generalized N-body problem is one in which n sets of points
in some multi-dimensional space must be compared with each other to obtain the
solution. These problems arise when it is generally not possible or clear how to
determine the relationships between individual pairs (when n = 2 sets, as is usually
the case) of points analytically or otherwise a priori, without considering each pair
individually.

If there are N points in each set, the straightforward solution of explicitly con-
sidering each possible pair using a simple double loop costs O(N?2), or O(N™) in
general - and this is in fact most often the best available practical solution for these
kinds of problems.

EDSGC data sample
=37 T T T
O Relerence points
#* Query points
o a * *
- * o . .
-38 % O * [« I *
c’.ecn o *2
8 a * o % * a 9 * *
* o o] 0 q fo) % O
* e [«
_agk O & 02 9 s % o s * &
g £« © o N
* w o *gq Co
o * " S B =
* * o * * 5
E—“-U— o D Yo«]
[a] -
o & g 9" o O o T *
* * * o
o o O
o 0., % O o* * *
-4k ” @ 5 * o o i
o= * [=] -
% * [s] o
o
g *
a2} by @ i > 1
* * o * =
o * s =
O« o 0 g qQ* %
Q o
o *o * ¥
_43 L 1 I L
1.08 1.1 1.15 12 1.25 1.3
AA

Figure 1.1: POINTS IN SPACE. Shown is a tiny subsample from the EDSGC sky survey. The
dimensions RA and Dec represent positional coordinates of sky objects. Shown are two sets of
points, in this example, a ‘query set’ and a ‘reference set’.

Typically, we'll have a set of data points, which we'll call the reference dataset,
Xx having size Ngr. We'll also have a query dataset X, containing Ng points.
Assume all of our points live in some metric space of dimension I, say the Euclidean
space RP for now. We can think of most of our problems as asking questions about
the reference points with respect to one or more of the query points: “For each
query point, somehow consider each reference point”. A common form of problem,
for example, is to ask, given some kernel function ¢() defined on the Euclidean
distance dgr = ||z, — z,.|| between a pair of points 2 and z,, for the sum of the
kernel evaluations at each query point:

z,

Vg, Compute 3, (1|2, — z.I) (L1)

But the best way to understand the class is first by the canonical examples we
actually have in mind, which we will cover in each of four major fields (next four

Why the name?

Why wasn't this class pointed out
before?

What's the importance of this class?

Can't we just apply the previous
physics solutions?

GENERALIZED N-BODY PROBLEMS 3

Sections). After that, a formal definition can be made (Section 1.6) without being
unnecessarily confusing. Note that from now on we'll sometimes just say 'N-body
problems’ in place of 'generalized N-body problems’, and when doing so we'll be
sure to say ‘the physical N-body problem' when that's what we mean.

| coined the term generalized N-body problems in allusion to the physical N-body
problem, partly because it is a useful mental prototype for this class due to its
concrete physical nature, but mainly because it is the most famous of the problems.
Is it more famous than the other problems we'll consider in this chapter because
it is the most pressing of the problems in some sense, or because the number of
people concerned with it is greatest? Not necessarily. Keep in mind that it was
made famous by the fact that a set of beautiful and powerful solutions popped up
for it in the mid-80's [BH86, GR87]. Had this not happened, and if physicists still
had no idea that there was something better than writing code implementing the
simplistic and sluggish O(N2} solution to this computational problem, it would just

be another ugly day-to-day necessity - probably too banal to be given any name at
all.

The point here: the existence of non-trivial or interesting solutions, or the realization
of the possibility of such solutions, is often what makes a problem, or problem
class, worth naming and formalizing. Though certain analogies between pairs of the
problems I'll mention have been pointed out by a few authors in the past, either no
one has observed the larger set of relationships, or no one has decided to delineate the
class containing them all. The reason is the fact that no unified solution applying
to the entire class had previously existed. This thesis demonstrates that a single
unified solution methodology for generalized N-body problems indeed exists.

As it turns out, most of the main problems we'll consider in this thesis were in the
same state as the physical N-body problem before the aforementioned solutions
came along - namely, though a handful of fairly primitive solutions existed, the best
all-around solution was generally the straightforward O(/N?) one. Thus the situation
was dramatically improved when the solutions in this thesis were introduced, rather
like it was in the mid-80's for the physical N-body problem. As will become apparent,
these problems are arguably no less fundamental to their respective fields than the
original N-body problem is to physics.

As will also be apparent, the answer is unfortunately no. Though our other prob-
lems have important similarities to the physics problems, there are also important
differences which will require a completely different approach. The less ‘physical’
our problems become, the less the solutions for the physics problems are relevant.
Though we will also do our best to transfer as much as possible from the compu-
tational physics techniques (analyzed in Chapter 4) the requirements of many of
our problems of interest will lead us down a different path which will culminate
with a parallel branch of algorithmic solutions. This branch will yield an alternative
solution to the original physical N-body problem itself, with the same complexity
but different in several other respects. The next natural question, of how the two
approaches might be profitably combined, is also treated in Chapter 4.

So who studies ‘points in space’ 7 Let's now follow this common interest, on a tour
through various different fields which might seem otherwise unrelated, and in fact
by-and-large have little communication with one another, to all of their misfortunes.

CHAPTER 1 4

§1.2 Basic geometric Computational geometry is the branch of algorithms (i.e. both complexity theory
queries. and algorithm design) which treats problems involving the relationships between
geometric objects, e.g. points, lines, planes, polygons, and onward to include more
complex constructions such as Voronoi diagrams [PS85, dBvK0S99]
Among the first and most canonical problems studied in computational geometry
are the proximity problems - those involving the relative positions of points in space.
This class is the home for our most elementary N-body problems, which occur in
many guises, and is thus our natural starting point.

1.2.1 Proximity problems. As we'll later see, one of the most ubiquitous N-body problems is as follows: for
each of our query points 2, we want to know its nearest neighbor, i.e. the reference
point z, whose distance to z, is minimal:

All-nearest-neighbors:
Vq, Compute NN(z,) = arg min, ||z, — z,|| (1.2)
Technically this is the bichromatic version of the problem, meaning that X5 #
X — usually what is meant is the case where the query and reference datasets
are the same. Comparing this to our abstract model problem (Equation 1.1), we see
that here the kernel function is the identity function, and that summation has been
replaced by minimization.

A common variant is to ask for the x nearest neighbors, called all-k-nearest-
neighbors. Another variant is to ask for the single pair having the smallest distance:

Closest-pair:
Compute arg ming arg mingzy ||z, — .|| (1.3)

The related diameter of a dataset is the distance of the farthest pair of points.
The distance between two sets is often defined as:

Set distance:
Compute ming min, ||z, — || (1.4)
which is just a bichromatic version of the closest-pair problem.
A different kind of problem involves range queries, in which the kernel function

often becomes an indicator or delta function. For example, for each query point, we
may wish to find all the reference points within a fixed radius h of it:

All-range-search: (1.5)
Vg, Compute h—set(z,) = {z, |||z, — z.|| < h} = |, arg, I(llz, — 2|l < h)

rl

where arg,. I(dq., h) means 'return r if the indicator function is satisfied, otherwise
{}'. We sometimes simply want to count them:

All-range-count: (1.6)
Vg, Compute h—count(z,) = |{£r ||z, — 2] < h}r =2 Iz — 2|l < h)

The total-range-count problem finds the sum of the counts over the queries.

Database queries.

1.2.2 Related problems.

1.2.3 Current state-of-the-art
and our focus.

Preview of Chapter 2.

§1.3 Basic statistical
inferences.

GENERALIZED N-BODY PROBLEMS 5

These operations are in fact heavily studied in another large area of computer science:
database systems, sometimes under the heading of spatial indexing or information
retrieval [Sam90, SCO03]. Even this seemingly most abstract set of N-body prob-
lems, then, is of direct real-world interest, in fact spawning mountains of papers on
practical algorithmic approaches to these problems, probably more than in computa-
tional geometry itself. Note that the same problems are often studied under different
names. For example, in the database community, the all-range-search/count prob-
lems come under the heading of the spatial join. It is important to note, however,
that the real-world versions of these computational-geometric problems occurring
in databases have an additional twist - the solutions considered useful must also
account for other computational issues such as the latencies in the memory/storage
hierarchy of modern computers and the impact of the physical layout of data on
storage media.

Despite the obvious commonality in problems, these two fields are markedly iso-
lated from one another, the fact that they are both sub-areas of computer science
notwithstanding.

At this might we should mention another kind of proximity problem, Euclidean
minimum spanning tree, or MST construction in a Euclidean space. While having a
similar sort of ‘closest-point’ nature, it cannot be simply characterized as some kind
of double-looping procedure. It is slightly more complicated, and falls 'just out’ of
the class of N-body problems we are considering.

Another whole class of proximity problems are called dynamic problems. In these
problems the set of points is not static, but changes, and the goal is to compute the
solution to the changed problem without redoing unnecessary work. These kinds of
problems are also not our concern in this work.

It is worth reemphasizing: not all proximity problems are N-body problems, though
many of the core problems are.

Clearly the most straightforward way to solve these problems is to loop over each
reference point, for each query point, updating the index, set, or count of interest
for each pair. This is what we mean by the naive O(N?) algorithm (or O(Ng Nz)
when Ng = Ng = N). In computational geometry and database systems, however,
O(N log N) approaches have been developed for these problems, and these will in
fact be the conceptual starting point for our own algorithmic development. We'll
look broadly across both of these fields at the best available solutions.

In Chapter 2 we will take an in-depth look at the central all-nearest-neighbors
problem in particular. We will show how to extend the standard solutions devel-
oped in computational geometry to arrive, perhaps somewhat surprisingly, at an
O(N) expected-time algorithm. In doing so we will introduce the main concepts
upon which all the algorithms of this thesis rest: certain hierarchical geometric data
structures and divide-and-conquer algorithms using them. Chapter 2 will thus be
atypical of the other chapters in that we won't be directly concerned with prac-
tice (i.e. database issues in this case), but rather more abstract notions which will
transfer to all our N-body problems.

In the general endeavor of multivariate statistics [Joh98], when all of the measure-
ments in our data are continuous numbers, we can view the situation in at least two
different ways. From a data analysis viewpoint, it is useful to think of our data as

1.3.1 Classification.

Bayes classifier variants.

CHAPTER 1 6

consisting of IV objects of interest, each having D continuous measurements, also
called features, or attributes - this can be viewed as a table with N rows and D
columns. However, it is equivalent to think of these as N points in a D-dimensional
space. So once again we are reasoning about points in space.

This "points-in-space’ view is deep in the core of multivariate statistics, particularly
in its historical sibling, pattern recognition [DH73], the predecessor (as well as a
separate contemporary to some degree) of the modern field of machine learning
[Bis95]. Though in a conceptual sense these latter research areas effectively also
study problems of statistical inference, they differ from the older field of statistics
[CB90] (proper) in focus and approach. One major cultural departure, for example,
is their tendency to focus on high-dimensional datasets. Another is almost part of
the definition of an offshoot of machine learning, data mining [HMS01], which is
concerned with the exploratory data analysis of datasets which are typically large,
i.e. having large N. While sociologically distinct, these various fields form a bit of
a tangle, with a certain level of mutual awareness but much much less than might
be expected. To keep the technical issues clear | prefer to refer to the logical topics
in question rather than focus on historical or cultural categories.

In a very brief tour of multivariate statistics, or perhaps more suitably, ‘statis-
tics/pattern recognition/machine learning’, we'll see that many of its most basic
methods are in fact generalized N-body problems.

Classification, the prediction of a discrete variable, is one of the basic tasks of
multivariate statistics. The discrete variable is usually thought of as an index over
K classes. Perhaps the most basic (yet surprisingly effective) method is an example
we've already seen: the nearest-neighbor (or k-nearest-neighbor) classifier is a core
tool of statistics and learning. Here the query dataset corresponds to the test set,
and the reference dataset is the training set. The nearest-neighbor rule assigns
the class of a test point to be the class of the nearest reference point to it. The
k-nearest-neighbor rule is similarly

k-nearest-neighbor classifier:

Vq, Compute Class(z,) = Class(arg min{*) |z, — =) (1.7)

where min®) denotes the set of the x smallest, and the Class() of a set is the
majority class within it.

This can be seen as a special case of a fundamental tool of statistics and learning, the
iz, |Ck)P(Ck)

Bayes classifier. For class C}, ﬁ{C;c lz,) = Poal e 8 by Bayes' rule, yielding:
plz,)
Bayes classifier:
Vg, Vk, Compute Class(z,) = arg max, p(z,|C) P (Ck) (1.8)
In the canonical naive-Bayes classifier for real-valued inputs, each class is modeled
by a single multivariate Gaussian N’(&k, %) where the covariances have the spherical

form X, = &Ef, in which case

i 1 = ||-‘==.I;g.llg

GENERALIZED N-BODY PROBLEMS 7

Classification amounts to selecting the highest-density Gaussian, weighted by the
prior. This has the straightforward cost O(Ng K). The appearance of a weighting
factor is a new element which will also appear in many other of our N-body problems.

The kernel function in this problem is the Gaussian, which monotonically de-
creases with distance. For the case of general covariance matrices p(z |Cx) =

1
(2m)D/2|Z, |1/ 2
general problem form in Equation 1.1, though inconsequentially.

Now in the special case when the covariance matrices are spherical and all 65 and

priors are equal, the classification rule becomes Class(z,) = arg maxy p(z,|Cx) P(Cy) =

1., _ s 3 Te-1 s A % 2 A
e” 3 (@80 2 (2 -8 \which slightly obscures the relationship to the

arg maxk{—ﬁﬂgq—gkﬂg} = arg min ||z, — g, ||, reducing exactly to the nearest-

neighbor rule where the reference points are now the class centers:

Equi-spherical naive-Bayes classifier:

Vg, Vk, Compute Class(z,) = arg ming ||z, — p, || (1.10)

It should also be obvious that replacing the Gaussian with a different probability
density function still leaves us with an N-body problem.

1.3.2 Latent-variable models. A latent-variable (or ‘hidden-variable') model contains variables which are not di-
rectly observable in the data but are responsible for important underlying structure
such as multiple modes in the data.

EM for mixtures. One of the most widely-used and studied methods in statistics and learning, particu-
larly in the last half-decade, is the the canonical example of a latent-variable model,
the mixture model (more specifically a mixture-of-Gaussians model, typically) for
clustering, whose parameters are popularly fitted using the EM algorithm.

In fact, the Bayes classifier model we just saw already implied the mixture-of-
Gaussians model, though we didn't need to write out its likelihood. Assignment
of test points to clusters is exactly the Bayes classification rule already shown.
Furthermore the E-step of EM is exactly inference (in this case, soft assignment
of training points to clusters), and this must be performed multiple times with

4 . % ~t ot
changing parameters (for Cf, or class Cj at iteration t, o' = {P(c;;),ﬁi,gk})
until convergence is reached:

Mixture model E-step:

Blz,ICE)P(CY)
Yq, ¥k, Compute W

(1.11)
Note that though we often show them for clarity, computationally the constant
factors are unimportant, in the sense that they can be accounted for before or after
the central N-body computation.
The widespread k-means algorithm happens to correspond exactly to the special
case of this method with identical priors and identical spherical covariances as 2;« —
0, making its E-step exactly the now-familiar nearest-neighbor rule:

k-means E-step:

Vg, Yk, Compute Class(z,) = arg miny ||z, — pi || (1.12)

1.3.3 Density estimation.

1.3.4 Regression.

1.3.5 Flexible models.

CHAPTER 1 8

The mixture-of-Gaussians model can be seen as a method for density estimation,
or modeling the probability density of the data. Computation of the likelihood of a
data point p(z,), or p(z,|©), was needed in the E-step for mixtures. The likelihood
of the entire dataset X5, normally computed in log form, is one common way of
scoring the fit of the model as a density: log ;’:(XQ) =3 logp(z,):

Mixture model log-likelihood:
Vk, Compute log L(X o) = 32, log 2, (2, |Ci) P(Ch) (1.13)

For many machine learning practitioners, latent-variable models are probably their
main encounter with density estimation.

In fact, all the basic operations of multivariate statistics, including classification
and regression (next Section) can be represented in terms of the density of the
data. Furthermore, an explicit representation of the density is clearly useful in its
own right for visualization, outlier detection, and so on. Though recognized as an
abstract unifier of inference tasks in machine learning, the fundamental importance
of density estimation is given much more explicit attention in the older (and perhaps
wiser) field of statistics as both a theoretical and experimental tool.

Regression, the prediction of a continuous variable, is a close sibling of density
estimation, because both have the task of estimating a continuous curve of some
sort.

The similarity is easily seen. Consider a basic (though highly successful empir-
ically) regression model analogous to the Bayes classifier, which might have been
more clearly called the ‘Bayes regressor’, but which has instead historically been
called the radial basis function network, which weights the target values each of K
interpolation points according to the closeness of the query to them under Gaussian
densities. Once these values y(u,) have been found in the training or ‘design’ phase,
at prediction time we have

Radial basis function network regression:

Tx y(p,)bz, |Cx)P(Cx)
Vg, Compute y(z,) = "(Ei;’-(ﬁquc:e);{ck,)k : (1.14)

Locally-weighted regression is a related technique using only the x-nearest-neighbors
for each query point, this requiring an additional computational step which we've
already seen.

Notice that in going from the Bayes classifier to the Bayes regressor, the number
of ‘classes’ K is no longer simply specified by the data - in the regression case it
becomes a parameter which can be varied. The more complex or nonlinear the target
function is, the more basis functions (radial or otherwise - a great host of different
types of basis functions have been explored) are required to adequately model the
function, the general philosophy being that the basis functions are themselves simple
and are composed to obtain more complex functions. In classification, the natural
extension of the Bayes classifier along these lines is to replace the single-Gaussian
model of each class with a mixture-of-Gaussians, thereby obtaining the ability to
model more complex decision boundaries. Supposing for simplicity that the number
of mixture components in each class L, = L, the straightforward computational
cost rises to O(No LK):

1.3.6 Nonparametric methods.

Kernel estimators.

GENERALIZED N-BODY PROBLEMS 9

Mixture Bayes classifer: (1.15)
Vg, Compute Class(z,) = arg maxi {31, p(z,|C1) P(Cl,)} P(Ck)

As classification and regression in arbitrarily complex and nonlinear data have
been and inevitably continue to be attempted, such flexible methods have become
increasingly sophisticated and ever-larger representations have appeared in difficult
applications.

Now let's follow this ascent in representational power to its logical conclusion. Sup-
pose that we use, in some sense, the maximum possible number of basis functions
by deciding to place a Gaussian on each of the training points z,.. In this way we
might expect that no part of the observed data space is overlooked or under- or over-
weighted due to poor or inequitable placement of basis functions. That replaces, for
example, the complex nonlinear optimization problem that EM attempts to solve.
Perhaps the most difficult and central issue surrounding the function approximation
problems we have considered so far is that of model selection - or the problem of
how to select the right number of basis functions to use for a given dataset. Again,

~our new strategy replaces whatever complex procedures we might have used for this

problem with a simple choice. We are now left free to focus all of our energies on the
remaining problem - the scale parameter ¢} of the basis functions. In fact, making
this choice properly becomes even more critical, as it ‘contains' the other problems
in the sense that all of their consequences have just been tranferred to this problem.

The perspective we have arrived at is that of nonparametric estimation, in which
the model size (number of parameters) is allowed to be infinite - in this case the
number of data, which has no finite upper bound.

The method that we have arrived at is known as kernel density estimation, and it is
simply a particular mixture model with all class priors (or mixture weights) equal:

Kernel density estimation:

Vg, Compute p(z,) = 3=, 5P (2z,,67) (1.16)

Usually the probability density function p (gq |z, 5}) is written more generally as a

llz,—z.l

kernel function K (, though in fact it must be a pdf, i.e. ffom K(z)dz = 1.

Also &, called the bandwidth h is standardly taken to be the same for all reference
points, though variable-kernel density estimation allows them to be different.

In the special case of the basic spherical kernel K (”r_"‘;g”) =1 (l|£“;£"I| < 1),

or I (||lz, — z.|| < k), we have exactly the all-range-count problem.

The importance of this nonparametric end of the spectrum is that the kernel
density estimator now has the property of consistency as an estimator of the true
underlying density p() of any arbitrary dataset - a property which no particular
parametric choice of model can have. Its fatal drawback is that its straightforward
cost is O(NgNr).

The theory of nonparametric estimation is filled with a class of quantities called
U-statistics, which are based on pairwise interactions, and thus exactly N-body
problems.

1.3.7 Related problems.

1.3.8 Current state-of-the-art
and our focus.

Preview of Chapter 3.

CHAPTER 1 10

The classification version of this method is immediate - simply model each class in
the Bayes classifier with the kernel density estimator for the data having that class:

Kernel density Bayes classifier: (1.17)
Vg, Compute Class(z,) = argmax {3, 7-p(2,lz,,,6r,)}P(Ck)

The regression version, called the Nadaraya-Watson estimator, or simply 'kernel
regression’ is also readily apparent by extension of what we've already seen:

Nadaraya-Watson regression:

Vq, Compute y(z,) = Z’g%’ (1.18)

The Euclidean minimum spanning tree appears in statistics in the form of single-
linkage clustering.

Dynamic problems appear widely in the statistical setting in the form of incre-
mental or ‘online’ learning. Another example of a dynamic proximity problem occurs
in the construction of dendrograms, or ‘hierarchical clustering’ methods [Epp98].

While we obviously haven't covered the entire space of methods of multivariate
statistics, it is also clear that a surprisingly large fraction of them are computa-
tionally characterizable in a similar way. In fact, arguably the methods forming the
primary backbone of the statistical pattern recognition style of approaches all fall
into category of N-body problems, once we expand our notion of N-body problems
to include those requiring evaluations of continuous functions of distance, such as
radial basis functions and other probability density functions.

A look at the main prior work on these computational problems is instructive.
Having entered the world of continuous functions, we will see the beginning of a
pattern - attempts to use explicit grid-based methods, the most sophisticated version
of which uses the Fast Fourier Transform (though in a rather awkward way).

Only a very few researchers seem to have noticed the geometric structure of such
statistical problems and sought to exploit it, with the notable exception of a few who
discussed the connection in a very broad sense [Sha75, Omo87, ML98] as well as
some notable uses of computational geometry for specific problems [Pri94, ZRL96].
Straightforward instances of the nearest-neighbor problem are the ones to have been
treated geometrically, and in those cases the approach has followed the basic known
approach described in Chapter 2. The less obviously geometric problems involving
continuous kernel functions have been largely untouched except for a few problem
instances, in which powerful O(N log N') approaches using space-partioning trees
have been introduced with great success. Overall however, the general disconnection
of these statistical problems from the areas which study algorithmic techniques is
painfully clear.

It is hopefully clear, from the progressive development of this Section, that there is
a certain correspondence between statistical representational power and computa-
tional expense. We should not be surprised that the most powerful and empirically
successful methods have the highest cost. In Chapter 3 we will focus on kernel den-
sity estimation, which represents a certain computational extreme. lts particularly
acute computational expense has historically been a major impediment to many po-
tential applications. We'll expend particular effort to treat all of its pragmatic issues

1.4 Simulation of basic
systems.

Simulation problems.

GENERALIZED N-BODY PROBLEMS 11

with vigor. The resulting method dramatically changes the tractability status of this
problem.

Because it can be seen as an extreme case of many of the other computational
problems in this Section, its solution can be used as a prototype for them. Moreover
it represents our general approach to continuous kernel functions. This will transfer
readily to the next Section.

It is not enough to say that the correspondence between geometry and physics is
natural. As stated by Galileo, “The book of nature is written in the characters of
geometry.” And in Einstein's words, “Geometry is the earliest form of physics.”
Of course many types of physical objects, across all known scales, are conveniently
modeled as points in space. The approximation of real objects with non-zero extent
as zero-dimensional point masses tends to be most sensible on the tiniest and largest
of scales, where inter-body distances can be assumed to be vastly large relative to
the effective diameter of the individual bodies. It is also necessary that the masses
are sufficiently large that classical mechanics are sufficient to describe the system of
interest. (We will briefly touch upon the type of system where quantum mechanical
effects are non-negligible later.) Even after these caveats have been accounted for, a
gigantic range of systems fall naturally under this sort of consideration: for example
those involving (most) atoms, molecules, planets, stars, or galaxies.

Computational physics refers generally to any kind of study in physics for which in-
tensive computation is necessary or integral - it thus includes all manner of numerical
methods (which generally treat problems which cannot be approached analytically)
which might arise in physical calculations [Ves94, Gio97]. Forward simulation of
physical equations often serves this purpose, i.e. providing an alternative where
analytical calculation is infeasible. For example, consider Kepler's problem of com-
puting the trajectories of celestial bodies. Applying calculus to the equations of
motion of two bodies under gravitation yielded an analytical expressions for their
trajectories. However, for three or more bodies no expression is known [Ves94].
Hence the transformation of the ‘N-body problem' from the mathematical realm to
the computational.

However, the role of computation in physical studies is elevated to a new level
when it effectively becomes the experimental ground itself. The ability to simulate a
physical system has changed the face of physics by adding a distinct new investigative
strategy to the toolbox of the scientific method: observation and measurement
of phenomena in artificial representations of systems rather than actual physical
systems. The broad activity of physical simulation is the classical source of N-body
problems.

There are two major types of simulation problems: dynamical and and equilibrium
simulations. The first is concerned with the time evolution of a system, for which we
compute the potentials and thus forces acting on each particle at each time point.
The second is concerned with the equilibrium configuration of a set of particles,
generally averages or minima of quantities over all possible configurations. For
example the thermodynamic average of a quantity f(Xg) of a 'configuration’ or
dataset Xy is (f) = fg f(Xo)p(Xg)dX 4. In the second case the Monte Carlo
method is generally used to generate configurations.

In principle either (or both) can be the goal, given a kind of object and the
interaction kernel ¢() between the objects (in this Section, the kernel function is
often directly interpretable as a potential energy, though not always). The basic
template for the calculation in each of the systems we'll survey is the same: for each

1.4.1 Coulombic interactions.

1.4.2 Non-Coulombic
interactions and quantities.

Model systems.

CHAPTER 1 12

point z, compute } . ¢(z,, 2,). In a dynamical simulation we also compute the
force vector Zq,?éq{—?’(ii(gq,gg,)}, whi.ch we-'|.| henc_eforth imply without stating.
Generally we are in 3 dimensions or less in physical N-body problems.

w(zy)wlz,)

Many kinds of physical interactions have the basic form o(zg,z,) = Tz
=g 2qf
where w(z,) is the mass or charge of the q'" particle. We'll call these generalized

Coulombic interactions. Typically the interest in this situation is in dynamical sim-
ulation. Notice that now a weighting factor attached to the query point enters the
kernel function, though that turns out to be inconsequential.

When a = 1 we have the Coulomb interaction of electrostatics, occurring in
molecular and atomic simulations:

Coulomb interaction:

Vq, Compute 37, %‘:—” (1.19)

=aT =g

For a = 6 we have the London dispersion. The ¢ = 2 case corresponds notably
to the gravitational interaction (or the shielded Coulombic interaction), occuring
perhaps most prototypically in celestial mechanics simulations:

Gravitational interaction:
thﬂt r
Vg, Compute 3 ., m (1.20)

This particular kernel function, the generalized Coulombic interaction, is particular
well-studied, and the corresponding algorithms for this case are quite good, though
they also have certain disadvantages. We'll in fact visit those methods in detail.

In statistical mechanics simulations a number of non-Coulombic interactions ap-
pear. Non-Coulombic kernel functions also appear heavily in contexts outside of just
potential energies and forces.

Perhaps the simplest model system of the so-called molecular dynamics method is
the standard hard-spheres, or 'hard-disks’ model. Rather than a potential energy,
the goal is to compute, for each particle, the smallest collision time (and the corre-
sponding partner, which is implied):

Hard-spheres collision time:

Vi (llz, 217~ h7)

e

: —b—y/B7=
¥gq, Compute ming «4 v (1.21)

where h is the sphere diameter, b= (z, — z,) - (v, —), and v = |n, — 1.
A move up in fidelity brings us to the standard model for simple liquids, which is
characterized by the Lennard-Jones interaction:

Lennard-Jones interaction:

6
Yq, Compute Zq*;eq {(ﬂ‘g}%ﬂ)lz — gquq,) } (1.22)

where ¢ is a substance-specific parameter. In polar fluids a Coulombic term is
also added to the kernel.

Ensemble averages.

Quantum mechanics.

GENERALIZED N-BODY PROBLEMS 13

We have already seen some examples of a fundamental type of all-pairs computation
which is not simply the pairwise potential or force between bodies that the term ‘IV-
body problems’ connotes in physics.

Many common thermodynamic averages are N-body problems, such as the two
most elementary observables, the internal energy of a piece of matter:

Internal energy:
Compute U =" NkT + 3(3°, > sp ¢(llzg — 24 (1.23)

and the pressure:

Pressure:
C tep=NET _ LS S e 25) 1.24)
ompuie Pi= So—— gy (Zq a#q' %99’ s Iaw, (1.
where 8y = ||z, — 2|

A simulation's quality must be evaluated, via diagostics. These include the mean
density, which will appear in various forms later. A fundamental statistic to measure
is the 2-point correlation function or 'pair correlation function’ or 'radial distribution
function’:

2-point correlation function:
Vh, Compute Zq ZQJ#Q C(h) = mf(”gq - %J”t < h«) (125)

This will reappear in a much more general form in the next Section. One interesting
twist introduced by this problem is the fact that we must compute this for a range
of different h's. We'll see why this is significant later.

Despite our caveats about being sure we can model systems as point objects, these
sorts of simulation methods can be applied usefully to a large extent in the quantum
mechanical realm.

In the diffusion Monte Carlo method, we consider No ensembles made up of Ng
particles each, and wish to compute the average density at time ¢:

Average density:
Compute () = 52, T g wL(llzg — 2.l < h) (1.26)

This has also appeared already in the guise of the 2-point correlation, in a single-
dataset form.

In the path integral Monte Carlo approach, we must compute the P-element ring
chain average, yet another kind of mean potential:

Ring chain average: (1.27)
Compute (®) = % Zp R,lg TVT;.%I g 2o 9L ||EE— QS;H)
For the wave packet dynamics method, we must compute averages where particles

are smeared out by a Gaussian or other convolution, approximating quantum wave
packets. The wave function is then represented as

Wave function: (1.28)
¥q, Compute W(z,) =[], 6(llzg — 24 |1) (1.29)

Fluid dynamics.

1.4.3 Current state-of-the-art
and our focus.

CHAPTER 1 14

In fluid dynamics methods which use aggregation approximations, various contrived
kernel functions appear, for example in Chorin’s vortex blob method for viscous flow.

A more modern example is the widely-used smoothed particle hydrodynamics
method for which contains two N-body problems; one is to compute the density at
each point:

Smoothed particle hydrodynamics (density):

Vg, Compute p(z,.) = >, -!\,I—Rm,-r;: (”—iﬁg—grﬂ) (1.30)

where w(z,) = m, is the mass of the r'* particle and h is the chosen bandwidth.
Note that this is no different from kernel density estimation, with the small exception
of a weighting factor. SPH also seems to be missing the important notion that h
should be estimated according to rigorous statistical criteria. The second problem
problem is no different from kernel regression:

Smoothed particle hydrodynamics (function):

Iz, —

Vg, Compute f(z,) =3, ‘;\J'R m, %fﬁ (—ﬁ—ﬁ“ﬂ) (1.31)

where the function is some quantity of interest such as the pressure.

For various physical reasons, though certain customized smoothing kernels ¢/()
are preferred in SPH, such as spline kernels. Another thing to note is that the
preferred SPH method selects bandwidths h, dependent on the reference point, as
in variable-kernel estimation.

It should be clear at this point that a large number of all-pairs problems arise in
computational physics quite naturally, far beyond the prototypical ‘ N-body problem'’
of Coulombic/gravitational interactions. In particular, statistical mechanics is rife
with these problems. It is possible that physical N-body problems, of various sorts,
are the single largest consumer of supercomputer time and expense.

The history of work in physics on these computational problems is actually excep-
tional in its sophistication, though of somewhat narrow scope. Grid-based methods
and the fast Fourier transform appear quite prominently, just as we saw in statis-
tics. However, two methods emerged which demonstrated dramatic advancement
over these traditional approaches. The Barnes-Hut method is a direct analog of the
successful tree-based methods for statistical problems mentioned in 1.3.8, as we will
see, having O(N log V) complexity. The Greengard-Rokhlin fast multipole method
(FMM) improves that complexity to Q(N), in cases where the kernel function is
appropriately mathematically amenable. The generalized Coulombic interactions
represent the class for which this has been worked out (with the exception of the
Gaussian kernel in very low dimensions via the variant which was named the fast
Gauss transform).

While inferior in complexity, Barnes-Hut coexists with the FMM today for three
main reasons. Implementation of the FMM is far more difficult to understand and
perform, and becomes a specialty in itself, limiting its widespread use. Furthermore,
it applies to only a few cases of kernel function - though they are important ones,
the FMM is not relevant to a great many important N-body problems. Finally, even
in terms of performance, the FMM does not clearly dominate Barnes-Hut in many
practical regimes, despite its asymptotic advantage - the reason being the massive
constants in its runtime caused by the multipole expansions at its heart.

Preview of Chapter 4.

§1.5 Basic morphological

questions.
What is computational morphology?

Astrophysics.

GENERALIZED N-BODY PROBLEMS 15

We will fill the gap left by this situation. In Chapter 4 we will focus on one of the
more recent N-body simulation methods to be developed, the smoothed particle
hydrodynamics method, which is of great current interest and actually responsible
for much of the work being done on supercomputers today. It is also a prominent
example of a non-Coulombic problem in physics, thus out of the reach of the linear-
time FMM. Fortuitously we'll see that almost all of what we develop for the kernel
estimators in our statistics focus will transfer here seamlessly. The result is in some
sense the best of both of the Barnes-Hut and FMM worlds - an O(N) method which
is extremely simple to implement and understand, and is applicable to virtually any
kernel function.

The multipole expansion is not to be forgotten however, as it is a powerful tool in
our arsenal when it can be applied. Despite the level of mathematical sophistication
in the computational physics approaches to N-body problems, the lack of contact
with fundamental computer science ideas is evident. We will suggest ways to improve
the existing FMM algorithm, using our new computational-geometric perspectives.

There are a number of areas in which the goal is to somehow formalize and opera-
tionalize notions of shapes or complex and distinct structures in data. I'll call this
type of activity computational morphology, to use a term that has been previously
coined to capture the variety of technical approaches that have been developed for
this pursuit. This includes, at a minimum, large parts of spatial statistics [Rip81],
statistical physics [Kad00, MS00], stochastic geometry [MSK96], fractal geometry
[Man82], dynamical systems, the part of machine learning concerned with nonlinear
dimensionality reduction, certain self-contained theories of shape arising in different
fields such as statistics and astrophysics, and the very new field of computational
topology.

Note that computational geometry, pattern recognition, and indeed a few of the
problems we have already encountered can arguably be considered exercises in char-
acterizing 'morphology’ or spatial patterns - one perhaps notable example being
clustering. Nonetheless the distinction appears to be increasingly necessary, as very
recent communication between various diverse fields (see for example [MS00]) has
begun to crystallize previously disparate approaches into a distinct body of method-
ologies and aims. The sudden emergence of computational topology as an self-
standing area of study as well as the very new embedding methods from machine
learning add to this mass of new approaches and goals. Regardless, the kind of
N-body problems we'll need to consider in this Section are different from previous
ones we've covered in a key way.

To make things concrete as soon as possible, a chief thing we have in mind is a
problem faced by astrophysicists when looking at the points in the sky after long ef-
forts by instrument builders, expert observers, data cleaners, and database builders:
what is the large-scale structure of the universe? Astrophysics, a natural and pro-
lific source for many of the N-body problems we've already described. Aside from
obvious fits like the gravitation simulations and magnetohydrodynamic simulations,
it should also come as no surprise that kernel density estimation, kernel regression,
and spatial database queries are all of central interest in astrophysics. Because com-
putational morphology is on the critical path to the questions it is trying to answer
in a very direct way, astrophysics, in particular cosmology [?], is the natural home
for us in this Section.

1.5.1 Embedding and
dimensionality.

1.5.2 Spatial statistics.

CHAPTER 1 16

Again, the jump to modeling the objects of interests as points in a certain space
should not be done blindly - in astrophysics we only do so subject to caveats about
the fair sample hypothesis, the assumption that we are only effectively observing
objects which are not too distant in time, and non-negligible differences between
sky objects of different types [Pee80]. Those caveats aside, we can proceed to
make inferences regarding more global properties of sets of points than the simple
geometric relationships we have seen so far. To do so with rigor, the theoretical
foundation of spatial statistics will permeate everything that we do, and indeed it
permeates (and to an extent unites) many of the fields we have mentioned which
are concerned with computational morphology.

Note that in astrophysics the outcomes of these morphological analyses can and
do have dramatic consequences - consider Arp’s quasar alignments claim [?], which
if properly supported by spatial statistics threatens to upset the entire big bang
model [BF96]. The importance of rigorous and efficient spatial statistics tools is in
fact unquestionably at the heart of cosmology, to the point of defining the edge of
its reach, as we'll see in the corresponding chapter of this thesis.

The new methods of embedding which have appeared in machine learning have the
ambitious goal of constructing the presumed lower-dimensional nonlinear manifold
upon which the data lie. In the locally linear embedding method, the first and most
costly operation is an all-k-nearest-neighbors computation.

Estimation of the intrinsic dimension (or ‘fractal dimension’, 'Hausdorff dimen-
sion’, ‘correlation dimension’, or 'Procaccia-Grassberger dimension') turns out to
be identical to the 2-point correlation that we have already seen, modulo a log
transformation:

Intrinsic dimension:

Vh, Compute 3, Zq’;éq mf(ﬂgq —zylle <h) (1.32)

A metric called the Hausdorff distance comes up in the study of fractals and
interated function systems.
The Hausdorff distance from Q to R is asymmetrically defined as:

Haussdorf distance:
Compute H(Q, R) = max, min, ||z, — z,|| (1.33)

and the Hausdorff distance between Q and R is max(H(Q,R), H(R, Q)).

=

Spatial statistics is the area of computational morphology draws upon whenever
we must make inferences regarding shapes or patterns formed by data points. It
traditionally has arisen in studies of the distribution of sky objects, trees in forests,
and atoms in gases.

The most basic model of spatial statistics is the Poisson point process. The
natural starting point for elementary statistics of Poisson processes is the distribution
of nearest-neighbor distances. The cdf can be investigated directly, or test statistics
can be constructed as in the Skellam-Moore test:

Skellam-Moore statistic:

The n-point correlation.

GENERALIZED N-BODY PROBLEMS 17

N nin, -z ||I?
Vg, Compute (B{E";(B[Hi" =D (1.34)

where B(§) means the ball of radius § and N(B(d)) means the number of points
falling within B(d). This can be computed with an all-nearest-neighbor(-distance)
operation followed by an all-range-count with query-dependent radius. A large num-
ber of variants on this kind of statistic have been proposed and used.

The most widely-used and foundational theory of spatial point processes surrounds
the study of N(B), for all bounded Borel sets B. This can in fact be linked to the
nearest-neighbor statistics above via the 2-point correlation, which we have already
seen in 1.4.2 (though we won't detail this connection.).

The 2-point correlation is just the beginning, as it turns out, of an entire hi-
erarchy called the n-point correlation functions, or 'spatial correlation functions’,
corresponding to moments of N(B).

In 1.25 we denoted the 2-point correlation by ((k), where h represented the upper
threshold on the distance d,- between points. In the more general context of n-point
correlations, however, we’'ll need to add indices, denoting the n-point correlation for
n = 2 by Calhgr).

The 3-point correlation function requires the computation of a quantity called the
reduced 3-point correlation function, a function of 3 lengths, corresponding to the
sides of a triangle:

Reduced 3-point correlation function:
Yhy, ha, hs, Compute((hy, ha, ha) =
1
Y2 Y ST
T S sas g Ve = 1)(Ng - 2)
I(llzg — zgll < b, llzg — gl < ha,|lzgn — 4]l < hs) (1.35)

where the indicator function is 1 when all three conditions are met. We may also
write the indicator function as a product of indicators I(||z, — x|t < A1, ||z, —
2lle < b, lzgr—zlle < h) = I(lzg—2lle < Pa)I(leg—zg0lle < h2)(lzgu—
.. . N,

z,||l¢ < hs). For general n the normalizing factor is nQ

More generally we can also specify lower thresholds on the lengths, for example
for the 3-point we would add [, /5, and l3:

Reduced 3-point correlation function (fully parametrized):
Vi, 12,13, hi, ka2, hs, Compute ((l1, I3, 13, h1, h2, h3) = (1.36)

1
22,) Ng(Ng — 1)(Ng —2)

9 q'>qq'">q'>q

Il < lzg —zgll < hayla < |2 — gnll < h2,l3 < |lzgg — 24]| < ha).

Also more generally, the multi-chromatic version of the n-point correlation, some-
times called the n-point cross-correlation, in the 3-point example it would be:

Reduced 3-point cross-correlation function (fully parametrized):
Vigrolrs lsg, Rgr, Brs, Bag, Compute C(lgr, brs, lsq, hgr, Brsy hsg) = (1.37)

Gibbs processes.

Combinatorial proximity problems.

CHAPTER 1 18

1
; Z Z No Nz Ns
I(lgr < l2g — 2,]| < harilrs < l2g = 2,]] < hrs,lsq < |2y — 2,]] < hag).

In general the parameters can be specified by two lower (or upper) triangular
matrices L, and uH, containing n(n — 1)/2 elements each. The general n-point
cross-correlation is then:

Reduced n-point cross-correlation function (fully parametrized):

VL,,H,, Compute E,,(L,, H

=n?t == ‘-—ﬂ):

1
;QZ%—;\‘;_HI(EVEJ S ||£‘?Iu_§quu“<h“”) (138)

mopw

Ancther kind of simple generalization leads to the marked n-point correlation, in
which a function f(z,), called a ‘mark’, is associated with each point z,, which is
often an indicator corresponding to different discrete types of points but can also
take other forms. A special case of the marked n-point correlation is the weighted
n-point correlation, in which the marks are continuous weights w, associated with
each point z,. The projected n-point correlation accounts for the viewing plane
using a coordinate transformation of the n points before matching.

We have already seen an instance of the Gibbs process, in the hard-sphere model of
statistical mechanics. It represents a basic departure from the Poisson process, in
which the points interact. This branch point leads to its own large set of N-body
problems, as one might easily imagine. For example we only mention here the entire
class of pair-potential processes, a special case of a more general class of Gibbs
processes having the form:

Notably, the need to process n-tuples is evident in this setting as well.

We now return full-circle to the basic proximity problems of computational geometry.
It is apparent that the basic n-point correlation can be thought of as a certain
generalization of the total-range-count problem from pairs to n-tuples, which we
might could call the total-n-tuples-range-count problem:

Total-n-tuples-range-count:
Compute h—count =3 ...5° TI,, I(|lzg,, — 24,1l < }) (1.39)

The entire set of generalizations of the proximity problems does not need enumer-
ation, but one variation that might provoke ideas for applications is one we might
call largest-span set:

L argest-span set:

Compute argmaxg, ... maxg, 3, |z, - z, |l (1.40)

or 'find the n-tuple of points whose span, or sum of pairwise distances, is maximal
over all n-tuples’.

Constellation pattern-matching.

1.5.3 Related problems.

1.5.4 Current state-of-the-art
and our focus.

Preview of Chapter 5.

GENERALIZED N-BODY PROBLEMS 19

The use of shape templates occurs in computer vision when patterns of interest
are naturally defined as n-tuples of points having a relationship f(z, ...z,) which
can be defined in terms of their pairwise distances. For example, face-like patterns
naturally correspond to a kind of variation of the marked n-point correlation where
mouth-like objects, nose-like objects, and eye-like objects (corresonding to differ-
ent marks) match constraints based on relative distances. More generally, such
constellation-like patterns can be found by:

Constellation search: (1.41)
Vg1 ...YgnCompute {(z,, ...z,) | I(zg, ---2,,) =1} = Uarg lo(An)

where I() encapsulates the matching criteria, based on the n.xn matrix of pairwise
distances A,, and parameters © incorporating quantities like relative length or angle
factors.

Other intriguing theories of shape and morphology exist, some of which are just
beginning to emerge as possibly viable practical tools. These include the theory
of random sets, Kendalls's stochastic-geometric theory of shape, the Minkowski
functionals, and computational topology. N-body problems are of course present in
many of these approaches, but because their utility has not been fully established
yet, we will not be discussing these N-body problems in this thesis.

As already mentioned, minimum spanning trees are useful tools in computational
morphology, and have been applied to problems such as filament-finding.

Dendrograms have also found use in morphological investigations in astrophysics.

Poisson point processes and the theory of n-point correlations constitute the best
theoretical tools available for the statisical analyses of morphology required in astro-
physics and many other natural sciences. As a very practical matter, the larger the
value of n we can compute, the better. The 2-point correlation, sitting at O(N?2) in
straightforward cost, already poses a significant obstacle, particularly in the new age
of massive sky surveys (i.e. large V). Consider also that, as is the case with many
N-body problems, for a given dataset, it must be computed with many different
parameter settings and often under many randomly generated datasets. The grid-
based makes its customary appearance, with the same disappointing results. The
FFT solution, with all its inadequacies, has been the main crutch in astrophysics for
making progress under these conditions. The daunting O(N™) curve provides little
reason for optimism concerning higher moments.

Despite the apparent hopelessness of the gap between the best available theory and
its computational realizability, astrophysicists have long realized that the mere ability
to compute the 3-point correlation for datasets beyond a toy-ish scale would provide
a dramatic advance in insight concerning the cosmic structure [Pee80, SDS, TJ03].
Unfortunately the lack of an algorithmic approach has placed a cap even on the
3-point correlation, limiting this line of thinking mostly to unfulfilled rumblings.

In Chapter 5 we will develop algorithms for the n-point correlation, in its full
generality, in particular for general n. Recognizing that the n-point correlation
represents the generalization of the more common pairwise N-body problem from
2-tuples to n-tuples leads to a very natural extension of our shattering approach to
n trees. The result is an elegant exact algorithm easily yielding billion-fold speedups
over the standard computation for 3-point and 4-point cases.

§1.6 The generalized
perspective.

CHAPTER 1 20

Nonetheless, with the large number of experimental calculations that must be
performed for the study of a single dataset as described earlier, and the fact that
higher values of n are still out of reach, we explore a second new attack on the hard-
est n-point correlation computations. This extends the idea of geometric shattering
with the Monte Carlo method, providing a unique blend of exact determistic com-
putation and statistical averaging. We demonstrate a form of geometric stratified
sampling providing confidence bounds on the error tight enough to satisfy scientific
requirements, while yielding orders of magnitude in additional speedup. Together,
these algorithms have changed the practical status of the n-point correlation as a
computational obstacle.

A generalized N-body problem T' is a 6-tuple {n,x,Q, ¢, w, ©}, expressing an in-
stantiation of the following variables:

1. Order. n is the tuple order, e.g. n = 2 for pairs.

2. Chromatic number. X is the chromatic number or ‘chromaticity’ if preferred,
meaning the maximum number of datasets in the problem which can differ. For
example the all-nearest-neighbors problem where the query and reference sets
can be different is called the bichromatic version. Clearly 1 < y < n.

3. Operator set. {2 indicates the set {Q...9,}, indicating the operators acting
on each of the n datasets. Each operator indexes over the data in its correspond-
ing dataset. Each operator is assumed to have the property of decomposability
over subsets, e.g. if Ay C A, Ay C A Y A=5 A+ As. We could have
also adopted the commutative semigroup formalism originally used by Fredman
to unify nearest-neighbor and range-searching/counting [Fre81, AE97], but the
notion is simple enough that this seems unnecessarily heavy-handed.

4. Kernel function. ¢() is the kernel function defining the interaction between the
n-tuples, usually a function of the distance(s) between them.

5. Weight function. w indicates a weight function which acts on single variable;
in some conceivable cases there may be a different weight function for each
dataset, making w a set, but we'll stick to the simpler case.

6. Parameters. © is a set containing arbitrary parameters for the kernel function
and possibly also the operators.

The inputs of a generalized problem are D-dimensional datasets X, ...X , where
up to x of them differ. The output Y is a set of real values, ranging in possibility
from a single count to a set of D-dimensional points. The size and form of ¥
depends on the operators 2.

Definition 1 (Generalized N-body problem) A generalized N-body problem is
the 6-tuple {n, x,€2, ¢, w, O} (order, chromatic number, operator set, kernel func-
tion, weight function, parameters) whose solution is

Y=, .. Q2,00 Zin) (1.42)

where ﬁil E.}_(]!‘ A].;x_-};n E_X.n

GENERALIZED N-BODY PROBLEMS

21

Problem n,x Cardinalities Operators Kernel function Dim. Other
parameters
BASIC GEOMETRIC QUERIES
All-nearest-neighbors 2,1 N V,arg min Oaq! D
Bichromatic all-s-nearest-neighbors 2, 2 Na,Ngr ¥, arg min” Gqr D 5
Closest-pair 2,1 N arg min, arg min [D
Diameter 2,1 N Aarg max, arg max [D
Set distance 2,2 Ng,Nr arg min, arg min dgr D
All-range-search 2,2 Ng,Nr v, arg In(6gr) D h
All-range-count 2,2 No, Ngr . In(64r) D h
BASIC STATISTICAL INFERENCES
r-nearest-neighbor classifier 2,2 No, Nr ¥V, arg, arg min™ dqr D 5, Q7]
K41, K+1 Na, ¥, arg; ‘5qu D Ky Q[T}
Ngygoy Nrpe argmin®, .., arg min”®
- _ 152 o2
Naive-Bayes classifier 2,2 Ng, K V,arg max e 37ak Tk P(C)) D {7k, P(Ck)}, Q1
Equi-spherical naive-Bayes classifier 2, 2 No, K V,arg min dgk D Q)
W 2
Mixture model E-step 2,2 No, K v, v e~ 2%k 7k P(C%) D {o%, P(Ck)}, Qir1 Rin
K-means E-step 2,2 Ng, K ¥, arg min dak i D Qrrys Rin
—1s2
Mixture model log-likelihood 500 No, K T log T e~ 2%k "Z P(Cy) D {ok, P(Ck)}, Q1 Ring
—1s2
Radial basis function network 2,2 No, K v, e~ 3%k Tk p(Cy) D {ox, P(CK)}, Qrr)
Y, e R
Mixture Bayes classifier 2,2 Ng,LK ¥,argmaxk 33, e Al Tk P(Cy) D {ox, P(Ck)}. Q1)
- _1g2 2
K+1, K+1 Ng,L,.., L Voargmaxe 33, ., 5 e 2k Tk p(ey) D {ok, P(Ci)}, Qi
52
Kernel density estimation 22 Ng,Nxr Y. () D his) Qrr)
52,
Nadaraya-Watson regression 2,2 Ng, Nr LD y,.q&(—h‘i'?—) D higy Qr
52
Kernel density Bayes classifier 2,2 Ng,Nr ¥, arg max; E"‘k &(:;’f YP(C) D {hkps), P(Cx)}
k
4 Qrr)
5
K+1K+1 Ng, Vargmaxk 32, 2 (=2)P(Ck) D {hxis], P(Ci)}.
: k
Nryy o Nrye Qi
SIMULATION OF BASIC SYSTEMS
Generalized Coulombic interaction 2,1 N ¥ gty 311__!: 13 21 9
Hard-spheres collision time 2,1 N ¥, min b2 — u‘*é; , — h? 1-3 Qs
Lennard-Jones interaction 2,1 N L (;——q’q__ 12— (= - ¥* 13 Qa1 Qi3
19
Thermodynamic average 2,1 N Yo H(dgr) 1-3 Qrs1: Q1
Average density 2,2 N BT In(dgr) 1-3 ksl Qrsyr Qi
Wave function 2.1 N v, 11 B(6gq1) 13 Qs1. Q)
Smoothed particle hydrodynamics ,
8 1
(density) 2,1 N LD ¢(7_9‘}qr‘) 1-3 his1, Qrrps QI
1
52
(function) 2,1 N Vi ¥ rﬁr(f;—’-) 1-3 hisy. Qrrys QI
ql
BASIC MORPHOLOGICAL QUESTIONS
Intrinsic (fractal) dimension 27 N Yo Th{dgq) D hie)
Hausdorff distance 2.2 No,Nn max, min dyr D
Skellam-Moore statistic
(neighbor distances) 2,1 N ¥, min 6qq, D
(neighbor counts) 2,1 N 257 In ,(8441) D g
(reference counts) 9.4 N v, Th(8gqt) D h
2-point (cross-)correlation 2.2 Ng, Nr Y In(dgr) D hisy Risy
n-point (cross-)correlation n,2 No,Ngr PRI DD IL.. Dinus (Ggpay) D Ligy Hipys Ris)
Largest-span set n, 1 N max, .., INax wo Dt D
Constellation search n, 1 N ¥,., ¥ Jarg To(An) D]

Table 1.1: GENERALIZED N-BODY PROBLEMS. x is the chromatic number. Quantities in
brackets [-] indicate the multiplicity of the associated variables. * indicates that there is a second
kernel function corresponding to a force.

CHAPTER 1 22

In other words its solution can be found by straightforward application of its
operators to its argument datasets. Since each operator indexes over each element
of its corresponding dataset, the cost of computing a generalized N-body problem
by following its definition is O(N™) if each dataset is of size V.

Left implicit in this problem description is the underlying space, assumed to be a
metric space for the purposes of this thesis, though we'll shortly mention other pos-
sibilities. We'll assume the Euclidean metric throughout, though the generalization
of everything we'll do to any Minkowski norm seems unopposed.

A problem is also usefully annotated with some 'typical’ properties. In Table 1.1
we list the associations of the cardinalities or sizes of the datasets, e.g. the fact
that in a mixture model one of the datasets corresponds to the K states, and the
typical dimensionality, listed simply as I2 when it can be arbitrary. It also sometimes
the case that a problem typically needs to be solved for multiple settings of certain
variables or parameters, in which the multiplicity, or number of such settings, is
shown in square brackets with the parameter. For example Q) indicates that the
query dataset often differs over 1" different tasks, Q) that the data changes over
I iterations, Ryg) that the reference set is replaced according to S different Monte
Carlo samples, and h(p) that the bandwidth ranges over a set of B scales.

Table 1.1 reveals certain themes which characterize different sub-classes of gen-
eralized N-body problems:

o Composite problems and simultaneous solutions. Some problems seem to be
characterizable in terms of multiple steps, which are each N-body problems —
for example the Skellam-Moore statistic and smoothed particle hydrodynamics.
While such ‘composite’ problems could be solved by separate algorithms for
each of the steps, a more efficient single-pass or simultaneous solution might
be possible.

o Properties of kernel function. There is intuitively some kind of qualitative dif-
ference between kernel functions which have more of a discrete character such
as indicator functions, and general continuous kernel functions such as polyno-
mials and Gaussians. We will see that certain other mathematical properties of
the kernel function will make a difference in the choice of solution, such as the
analyticity or differentiability properties of the function.

e Dynamic problems. In general, we'll see that multiplicity in a problem can be
a source of opportunity. When the different parameter settings correspond to
problems with similar structure, some of the computational effort can be shared.
The dynamic case, in which the N-body problem changes from one iteration
to the next — but not very much — is one in which we need not redo all our
computational steps.

o Enumeration problems. It is important to note that the ¥ operator expands
the size of the output. For example, finding the nearest-neighbor for every
query point means returning a vector of Ng indices, while finding the closest
pair means returning a single pair of indices. These distinct types of problems
typically do not actually differ in worst-case complexity, unfortunately — though
it is intuitive that less careful work needs to be done in the latter case, and
so it typically can be performed in less time. Another important aspect of an
enumeration is that the space needed to store the answer may begin to be a
problem in some cases, particularly when there are multiple ¥ operators.

1.6.1 Computer science
perspective.

GENERALIZED N-BODY PROBLEMS 23

e Optimization and decision problems. The min and max operators imply a min-
imization/maximization, or optimization problem. Optimization over discrete
choices can also be called a decision problem. A typical form in our case is
finding the class for which a certain sum is highest. While an optimization
problem can be reduced to an enumration problem, it is intuitive that this is
not necessarily going to be the most efficient approach. An observation along
these lines is to be found in Table 1.1 in the alternative formulations of the
k-nearest-neighbor classifier, mixture Bayes classifier, and kernel density clas-
sifier. Here we have noted that it might be profitable to view each class as
forming its own dataset, and the resulting computation as a joint optimization
problem over all of these K datasets in concert with the query dataset. The
possibility that this might yield speedup over the usual train-test two-dataset
perspective will not be explored in this thesis but we regard it as an avenue to
be investigated. This example illustrates the general fact that the appearance
of an optimization operator in a problem opens to the door to a larger set of
algorithmic possibilities.

The computer science toolbox, ideally, applies to all problems computational, and
could and should form a powerful central resource from which any field facing a
computational obstacle can draw. Statisticians and natural scientists must solve their
most pressing computational problems in one manner or another, and if necessary will
resort to home-brewing tools so that they can make progress. However, technically
trained people in almost any field know that if they come across a sorting problem,
there are non-obvious solutions lying in computer science, which are likely to be
better than what one might cook up oneself as a side occupation.

In our tour of problems and fields we saw this has not been the case for the
generalized N-body problems, for which computer science has had little to say, and
home-brewed computational solutions have filled the void. The root of this is an
artifact of cultural divides in research; in order for computer science to be relevant
to problems of human interest, someone must define them as computer science
problems. Normally, however, it is up to the computer scientist to do this rather
than the statistician or the biologist, because the business of framing things usefully
as computer science problems requires computer science expertise. Sorting and other
classical discrete problems were defined by computer scientists, but computer science
must step out of itself to be relevant in the wider world of computational problems.

We have taken this step, showing that many problems are generalizations or
siblings of some problems which have already been defined as computer science
problems, the proximity problems. It required entering other fields to a certain depth,
but reaped rewards even without any further work - the best existing solutions can
now be matched to problems in fields that had been unaware of them, based on an
abstract categorization. Now we're in a position to take the next step and develop a
new class of computer science tool for this new class of computer science problem.

1.6.2 Overall state of affairs.

CHAPTER 1 24

Qur tour through the various problems and their home fields revealed some distinct
recurring patterns. A small number of different types of solutions appear in different
guises for different problems, but are usually easily recognizable.

Here we summarize the main properties generally required by practical applica-
tions, as well as a qualitative evaluation of how well existing solution classes meet
these desiderata. In general, what characterizes a 'good’ solution in statistical and
scientific computation?

e Large N. For many reasons, ever-larger numbers of points are demanded in
applications. Generally the ability to use a much larger N makes a signifi-
cant qualitative difference in what can be achieved. Of course an approximate
method must perform its computation with accuracy to be valuable.

o Arbitrary D. In many problems, the need to incorporate ever-larger numbers of
different kinds of measurements means that arbitrary dimensionalities I must
be handled with efficiency. This is not necessarily the case, as in many physical
problems which are invariably in 3 or fewer dimensions.

 Controllable error. The ability to arbitrarily control the error, i.e. specify the
accuracy-performance tradeoff of an approximate algorithm, is often possible
only through tweak parameters whose effect on the final error of the approx-
imation is not known directly, thus requiring time-consuming experimentation
by the user.

¢ Known actual error. Although most approximate algorithms admit some form
of at least indirect error control, bounds on the actual error resulting from any
particular run of the algorithm are generally unknown. This reduces use of the
algorithm to an act of faith, which is not particularly desirable in supposedly-
careful statistical or scientific analyses.

¢ Not obtuse. Experience shows that the primary factor in selecting which
algorithms are most often used in real-world applications is their simplicity.
An algorithm intended to make an impact in practical problems cannot be
frustrating to understand, diagnose, or implement from scratch. Scientists, in
particular, do not trust their analyses to opaque algorithms.

¢ General. Algorithms which are highly specialized to only certain kinds of prob-
lems, i.e. not robust to moderate changes in the problem context or definition,
tend to be much useful in practice because few statisticians and scientists have
the time or patience to become familiar with a large number of special-case
methods.

Another important constraint, which might be assumed to hold for any given algo-
rithm but is in fact often violated, is that the algorithm should not solve a different
problem than the one actually posed. Of course each problem also has its own
problem-specific constraints and desiderata.

§1.7 Related observations.

From computational geometry.

GENERALIZED N-BODY PROBLEMS 25

|7 | Grids FFT Barnes-Hut FMM npew? |
Large N7 — + RN ++4+ 7
Arbitrary D? | - - = - ?
Control error? | + + + ot ?
Known error? | — - - dedops P
Not obtuse? ++4+ - 144 = 2
General? +++ - 44+ = 2

Table 1.2: EXISTING SOLUTION CLASSES FOR GENERALIZED N-BODY PROBLEMS. The
number of ‘4’ symbols indicates the extent to which the property in question is satisfied. "~
indicates failure to satisfy the property.

We will consider these solutions in greater problem-specific detail in the appropri-
ate individual chapters, but it is possible here to get a feeling for the overall state
of affairs for generalized N-body problems, summarized in Table 1.2. Each of the
existing solution classes has its strengths, but none of them is widely satisfactory,
posing the challenge of proposing a new class of solutions which has a more desirable
blend of practical properties.

The main contribution of this chapter was a set of high-level bird's-eye-view ob-
servations concerning some global connections. Subsets of these observations have
been made in by at least a few authors we are aware of, in each of the different
areas.

Computational geometry might be expected to naturally find opportunities in other
disciplines in which to formalize geometric problems and develop solutions for them.
This has certainly not been the case by-and-large, however. As might be expected,
the generality of a geometric perspective implies that there a vast number of ge-
ometric problems, occurring in virtually every scientific and engineering endeavor.
Computational geometry per se has focused on a fairly narrow subset of these prob-
lems, while hordes of them find study in their respective applied fields — computer
graphics, computer vision, manufacturing, computer-aided design, robotics, and ge-
ographic information systems, to name a few. Not unrightfully so, computational
geometry represented the necessary development of the study of geometric problems
from a fundamental computer science perspective, and thus might have been more
correctly called 'geometric complexity theory'.

This precise issue, with a focus on the disparity between the field and its general
disconnection from real-world applicability, was the topic of a recent task force
report written by 20 leading researchers in computational geometry [Cha99]. Their
candid critique of their own field was laudable and full of insights regarding potential
connections between computational geometry and problems in other disciplines. One
of these which is relevant here is the potential lying in astrophysics — though
they only noted the obvious problems of spatial database querying and N-body
simulations for celestial mechanics. One major connection along the latter vein was
made by the work on the well-separated pair decomposition [Cal95], which we'll visit
in more detail in Chapter 4. The authors of that work also noted the connection
between the N-body problem and the all-nearest-neighbors problem.

Certain statistics problems were considered quite early in the development of
computational geometry by Bentley and Shamos in [Sha75, BS76], though this
worthy-seeming line did not seem to be pursued to the point of affecting practice.

From computational statistics.

From computational physics.

From computational morphology.

§1.8 Summary of this
chapter.

CHAPTER 1 26

Eppstein has collected a good online bibliography listing instances where computa-
tional geometry has touched statistical problems [Epp99]. Most of these problems
concern very basic quantities such as centroids, medians, and contours, rather than
the statistical inferences we have considered here,with the exception of a number
of papers which have considered clustering, of both the K -means and hierarchical
variety. The nearest-neighbor problem is quite widely understood to be a pattern
recognition problem, and is fact universally cited as a motivation for studying the
problem. It is difficult to find mention of the all-nearest-neighbors problem in this
context, however.

The statistical relevance of the Euclidean minimum spanning tree, Voronoi tesse-
lation, convex hull, and Delaunay triangulation problems, all fundamental in com-
putational geometry has been noted by many authors, but these are not N-body
problems. Computational geometry has made significant connections with compu-
tational physics in the area of mesh generation for finite-element methods — while
sharing some abstract similarities to our approaches, these are also not N-body
problems.

Some computational-geometric approaches have originated from within statistics
and machine learning. Two of the broadest research programs, in terms of pointing
out the entirety of the possible scope of the applicability of computational geometry
to the kinds of statistical inference problems considered here are those of Omohundro
[Omo87, Omo90, Omo91] and Moore [DM95, PM99, ML98, Moo99]. It is in fact
these approaches which we now generalize and extend to the current context of
N-body problems. Uses of tree structures have appeared in the pattern recognition
literature for specific individual problems, though generally the focus has been on
variations of the nearest-neighbor problem.

The discovery of geometric methods in computational physics [BH86, GR87], though
regarded as a breakthrough for physical N-body problems, still has essentially not
progressed beyond the most simplistic approach to geometric divide-and-conquer.
The few exceptions to this are treated in Chapter 4.

A handful of attempts have been made to connect the well-known fast multipole
method (though not Barnes-Hut) to the problem of nonparametric density estima-
tion. Greengard himself [GS91] noted the connection, in the Gaussian kernel context.
Two recent papers have also rediscovered this [LHBT99, AED01]. However, they
also discovered the reasons that these methods have limited applicability to this
problem. This will be discussed in Chapters 3 and 4.

There seems to have been no major computational-geometric approaches of note
arising from this set of disparate areas, several of which are relatively new.

We can now summarize the main points of this chapter:

o Inter-field and intra-field connections. By unifying various disparate prob-
lems in a common definitional framework, we implicitly made a network of
connections, as noted earlier. This opens the door to transfer of separately-
developed insights and solutions across fields and problems within the same

field.

¢ These problems are hard and important. We saw that generalized N-body
problems of various sorts lie at the cores of several fields, and quite often their

Publications.

What's next?

GENERALIZED N-BODY PROBLEMS 27

inherent difficulty stands as a barrier to progress in major branches of statistical
and scientific investigation. Why do these problems tend to be central? One
explanation is that their common nature in the sense of direct comparison
or interaction between arbitrary points in space is intuitively somehow basic
and raw. In some sense a generalized N-body is what one is left with once the
artifice of assumptions or approximations such as periodic structure, uniformity,
Gaussianity, or mean-field validity are stripped away.

¢ Types of N-body problems. The class of problems we have called generalized
N-body problems can be clustered according to some key properties. We shall
see how this grouping naturally corresponds to the sub-problems we will solve
in the subsequent chapters.

The publications related to the specific problems (and their solutions) of each chapter
will be covered in the relevant chapter.

The description and unification of our statistical problems as N-body problems
was for the most part given in:

e Gray, A. and Moore, A. N-Body Problems in Statistical Learning, NIPS 2001
(selected for oral presentation).

It seems that at least three other publications could do much to fill the holes of
awareness of the global picture we have painted:

e An article for the general computer science community (e.g. JACM) describing
these connections from the point of view of opportunities for computer science
contributions.

e An article for the statistical physics community describing the many N-body
problems there, which do not seem to have been treated by even the quite-
effective and existing Barnes-Hut method. This would of course also introduce
for the problems the dual-tree methods we'll develop in this thesis.

e An article for the spatial statistics community, or perhaps a somehow audi-
ence which somehow also at least encompasses fractal geometry, detailing the
geometric treatment of these problems as developed in this thesis.

The rest of this thesis fleshes out the trace we've made through the four differ-
ent fields. This field-by-field organization happily coincides with a logical problem-
type-by-problem-type organization treating major branches of the N-body problem
taxonomy. We'll start with solutions for the elementary proximity problems in com-
putational geometry. Then we'll show how to extend the same solution method in
the more general case of kernel function; the main vehicle for this will be statistics.
We'll then traverse a natural bridge to physics problems and show that the same
solution can be used there; we'll also at that point take a deep look at the state-
of-the-art methods from physics, contrasting and combining them with our new
approach. Finally we'll use the problems in computational morphology to demon-
state the significant case where pairs are generalized to n-tuples, and show that
there is a natural generalization of our solution approach for that case; we'll also at
that point augment our geometric approach with a probabilistic method.

CHAPTER 1

28

Agenda of this chapter.

§2.1 Proximity problems.

N-Body Problems in
Computational Geometry

Geometric Shattering |: Divide-and-Conquer Tools.

Reduce big troubles to small ones, and small ones to nothing. —
Chinese proverb.

THE TOOLBOX OF COMPUTER SCIENCE, while immense, is at the same
time understandable in terms of a smaller number of templates, or algorithm design
principles. There are hammers, motors, and lenses, which are really templates for
many ingenious variations tuned for specific tasks like contact lenses and space
telescopes. In this chapter we will look at new forms of divide-and-conquer, one of
the most fundamental algorithmic design principles in computer science.

In this chapter we'll review divide-and-conquer in various forms of interest to us,
specifically one form employing geometric tree data structures — our main tool from
computational geometry. We'll see how to extend this tool (and in fact divide-and-
conquer more generally) with the method of geometric shattering. Our main vehicle
for demonstrating and explaining this will be the all-nearest-neighbors problem,
though we'll also show that this easily extends to the other major N-body problems
in computational geometry.

The proximity problems, or closest-point problems, were usefully collected under a
single heading early in the history of computational geometry by Shamos and Hoey
[SH75]. The main justification for this was in fact that a common solution method
exists for the problems in this class (and in fact the only real definition of the class
is in these terms).

Interestingly though, that common solution was not divide-and-conquer — in fact
classical divide-and-conquer approaches that were natural for some problems could
not be generalized to other problems in the class [PS85]. It was discovered that they
could all be solved by reduction to the same problem - that of constructing a Voronoi
diagram, leading to a clean and tight algorithmic theory for proximity problems...
But only in the plane — for D > 2 the Voronoi diagram approach breaks down, as
its size is exponential in the dimension.

Some recent treatments, e.g. [AE97], encapsulate this class of problems under the
class of ‘range searching’, which generalizes to the class of ‘intersection searching’,
but otherwise use a similar semigroup framework for unifying the operations of
range-searching and range-counting, nearest-neighbor-searching, along with many
other kinds of problems which will not be our focus.

29

2.1.1 Practical considerations
and constraints.

Arbitrary dimension D.

Reusable structure S.

Ease of implementation.

CHAPTER 2 30

Unfortunately the type of complexity exhibited by the Voronoi approach is typical
of almost all of the work in computational geometry on proximity problems aside
from a certain class of approach. And this brings us directly to what we’ll consider
the practical constraints on solutions to this problem.

In order to make our solutions to these basic proximity problems useful and transfer-
able to the problems existing in the statistical and scientific settings we are interested
in solving, we need to delineate a number of considerations which will constrain our
approach.

Algorithms which scale exponentially in D are said to suffer from the curse of dimen-
sionality. This behavior tends to quickly render problems beyond even one or two
dimensions intractable, and indeed this has been the weakness of all virtually all the
standard solutions to N-body problems. This is the fundamental point of departure
which leads to more sophisticated perspectives from computational geometry.

One very significant constraint we will place on our algorithmic approach to all-
nearest-neighbors and its close relatives is that it work as well as possible in arbitrary
dimension, i.e. not just 2, but possibly 10, or 1,000 or more in some cases. Thus the
Voronoi approach is ruled out. A return to divide-and-conquer, though in a different
form, will turn out to provide an approach that succeeds in uniting the proximity
problems, and also provides efficiency in much higher dimensionalities.

A second important constraint on an algorithmic approach to proximity problems
is whether reusable data structures are allowed. For example in the basic nearest
neighbor problem (coming up), the standard setup for the problem allows the con-
struction of an indexing structure S, a one-time preprocessing cost, which can be
utilized at query time.

In all of the practical problems of interest in this thesis, this is not an issue provided
the cost of building the data structure is still reasonable for very large datasets in
arbitrary dimension. The reason our complexity requirement on this construction
phase is somewhat lax is that it need be performed only once for the entire lifetime
of the dataset, while in practice N-body computations of interest in statistics and
science are repeated multiple times on the same data under different variations.

Note that this is not always sensible in the abstract; for example in the all-nearest-
neighbors problem the queries do not change, and thus there is no reuse possible in
the normal sense. However even for a problem like all-nearest-neighbors, the ability
to essentially pre-factor part of the computation out has benefit for us when there
are other N-body problems present in the same context, which can all share the
precomputation. Our unified approach algorithmic actually makes this the case. It
also provides efficiency when different query sets are expected to be reused with
different reference sets, as is generally the case in most of N-body problems in this
thesis in practice.

All that having been said, the whole issue is moot if the preprocessing cost is
actually negligible. For the kd-trees and ball-trees that we use, this is arguably the
case for all but the largest problem sizes. Nonetheless, we do not want to rule out
the possibility of reusable data structures which might be slightly more costly to
build but provide a higher payoff in efficiency.

Very generally, any algorithm sees more use when it is relatively easy to implement.
Part of the cost of any project, in many terms, is the implementation of the tech-

Tweak parameters.

Storage media and systems.

2.1.2 Nearest-neighbor search.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 31

niques themselves. This fact of life has been proven in practice time and again, and
needs no further explanation.

It is also well-known that algorithms containing many tweak parameters, or values
whose settings significantly affect the performance or behavior of the algorithm, are
frustrating and time-consuming to use. Such parameters become an issue when
there is no clear theoretical guidance or rigorous methodology for determining their
optimal value. These arise heavily in virtually all of the standard solutions to N-body
problems.

In the database community, the assumption is made that the datasets are much too
large to fit in main memory. This leads to a very different set of constraints on
problems such as nearest-neighbor. A significant one is that the indexing structure
must be built in an on-line fashion or dynamic fashion rather than in batch. Another
significant constraint is that the index itself is stored in secondary memory. This
implies that very little information be stored in the nodes so that many accesses of
disk blocks can obtain as many nodes as possible.

The database-centric issues regarding the physical storage and manipulation of
data in secondary memory are beyond the scope of this thesis. We'll be focused on
what can or cannot be done at the rawer algorithmic level, assuming our data can
be stored in the most favorable way (all in RAM) and touching only briefly on the
secondary-storage case. We will mainly be focused on trying to extract whatever
tools and perspectives we can leverage from computational geometry and database
systems to help us attack the broad panoply of N-body problems we're considering.

The basic problem of nearest neighbor searching is the prototype for all the proximity
problems we'll consider. It has received the most attention by far, lying at the center
of a vast sea of literature in several fields (which we’ll navigate later). Arguably it is
the canonical problem in computational geometry, if not for any other reason than
the It is simply the one-query version of all-nearest-neighbors:

Nearest neighbor:
Compute NN (z,) = argmin, ||z, — z,| (2.1)

It is of course only an N-body problem in a degenerate sense, but it is worth our
investigation because our solution to all-nearest-neighbors will end up being a very
natural generalization of the standard solution to nearest neighbor.

It is also much easier to think about. In fact, the seeming simplicity of the problem
is probably a big part of the reason so many attempts at it have been made, aside
from its well-observed appearance in so many contexts. Another reason is the fact
that it still has no entirely satisfactory solution. Our approach will be based on the
standard solution used in practice, which though old and simple, still has not been
convincingly bested by any comers. We'll discuss the reasons for this later.

The problems of range searching and range counting are the analogous one-query
versions of all-range-search and all-range-count. After we go into depth on the
nearest neighbor problems we will return to these problems, and we'll see that we
can treat them with essentially the same approach.

§2.2 Divide-and-conquer.

2.2.1 Search techniques.

Pre-factoring strategy.

Prioritized search.

CHAPTER 2 32

Divide-and-conquer is a very general algorithmic strategy, rather than a particular
set of algorithm instances. Though informal use (or misuse) of the term is common
and quite variable outside of computer science, here we mean something that is
actually somewhat specific. The usual form of a divide-and-conquer algorithm is
something like this:

DivCongq(R)

DivCongWork(R).

if base-case(R), DivConqBase(RR), return.

else,
{ R right,R.left} = DivConqSplit(R).
DivConq(R.right).
DivConq(R.left).
DivConqMerge(R . left, R.right).

Figure 2.1: ABSTRACT DIVIDE-AND-CONQUER ALGORITHM. Note that ‘left’ and 'right’
don't necessarily have any ordered meaning.

This represents the 'divide-conquer-merge’ type of algorithm. We can define such
an algorithm by the 4-tuple A = { Split(), Merge(), Work(), Base() }, whose
components are the sub-algorithms fleshing out the divide-and-conquer template.
Other variants exist, but we shall not discuss them here.

This strategy is successful whenever there is significant decoupling between the
parts of the problem, such that the cost of solving the two halves of a problem plus
the cost of the division itself (i.e. the splitting required to obtain the two halves
plus the merging required to obtain the overall solution using the two solutions for
the halves) is less than the cost of solving the entire problem in a direct fashion.

A special class of divide-and-conquer intersects with the notion of search, which has
some roots in the field of Al as well as the central study of algorithms and data
structures in computer science.

The perspective of search usually assumes that the ‘split' part of the method is
implicit, presuming the existing of a search tree which is either given naturally
by the problem or is a data structure which can be constructed offline, i.e. as
a preprocessing step. This will be our approach in this thesis. Using a pre-built
tree as a substrate for divide-and-conquer is tantamount to pre-factoring part of
the computational cost out, so that it can be reused for any further computations
with the same dataset. It will in fact turn out for many of our problems that this
pre-factored part of the overall cost dominates the rest. The flexibility we lose
is the ability to make splitting decisions on-the-fly, for the specific case of query
set and reference set, or possibly other parameters of the problem, that we are
dealing with. While potentially important, this strategy of performing part of the
divide-and-conquer computation a priori, i.e. before observing the problem instance,
nonetheless proves to be highly robust and successful in practice.

Note that we can generalize the basic divide-and-conquer schema slightly by using
a priority function to choose between the two branches, rather than always taking
the left or the right first, i.e. depth-first traversal, which was implicit in our ab-
stract divide-and-conquer template. All the simple tree-traversal policies, including
breadth-first traversal and in-order traversal, can be generalized using the idea of a

§2.3 Adaptive
space-partitioning trees.

2.3.1 kd-trees.

Adaptivity.

Cached sufficient statistics.

Distance bounds.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 33

priority queue, a data structure which allows efficient selection of the currently-best
search branch according to an arbitrary priority function.

We will make the distinction between global priority search, in which a priority
queue is necessary (along with its associated costs) and local priority search, in which
the better of the two search branches is determined by a priority function at every
branch point only locally.

All of our algorithms can be written either in a priority queue form or a 'pure
recursive' form. The basic tradeoff here is one of slightly increased efficiency (the
global priority queue effectively allows more knowledge to be considered when choos-
ing the next node(s) to expand) versus space efficiency (the priority queue can grow
quite large depending on the specific recursion strategy).

Space-partitioning trees form a large class of geometric tree data structure. It is
large mainly because many variants (mostly insignificant) of the following main
types of structures have been proposed. Our approach actually works with any of
the forms of space-partitioning trees that have been proposed for nearest neighbor
problems. We emphasize that we mean adaptive space-partitioning trees (ASPT's),
since there also exist fixed varieties, often referred to by the same names, which are
not as powerful.

kd-trees [Ben75, FBF77] are simple yet effective space-partitioning trees, where
each node in the tree defines a distinct region in the data space using a bounding
hyperrectangle (which is maximally tight in each coordinate) and each split is made
along a single coordinate, the one having largest variance [FBF77]. The tree is often
built all the way down to some small predefined number of points p at the leaves.

Such a hierarchy of nested hyperrectangles can be seen as a generalization of the
simple Cartesian grid. But besides generalizing the flat grid to higher levels of
resolution, the variance-minimizing property of kd-trees effectively places hyperrect-
angles in a manner which is sensitive to the shape of the density, in contrast to
the data-blind nature of simple grids, which simply divide up space into fixed-size
hypercubes.

This adaptation to the shape of the data is the key property which separates these
kinds of structures from many others which have been and continue to be proposed,
in two ways. The first is that they can be effective beyond low dimensions, and the
second is that theoretical analyses of algorithms based on such structures are derailed
by the fact that the statistics of the input becomes critical, requiring analytical tools
beyond that of the usual discrete arguments.

We use an extension called multi-resolution kd-trees, or mrkd-trees [DM95] which
also contain local sufficient statistics of the data such as the mean and covariance
within each node.

The choice of which statistics or quantities to store is determined by the problem.

Importantly, bounds on the distance of a point z, to any point z,. in region I can
be computed in O(D) time:

D
min ||z, — z|? > Z (max{({?; — 23)%,0} + max{(zd - EE)Q,O})(Q,Q)

=1

Complexity.

2.3.2 Ball-trees.

CHAPTER 2 34

Figure 2.2: LEVELS OF AN MRKD-TREE. The second and fourth levels are shown, respectively.
The dots are the individual data points. The sizes and positions of the black disks show the node
counts and centroids. The ellipses and rectangles show the covariances and bounding boxes.

D
mrangq —z|? < Z max{(gdﬂ - L‘;)z, (&3 = ﬁa)g}
d=1

where [and up are the lower and upper D-dimensional corner points defining R.
This effectively yields a hierarchy of cheap bounds, which increase in tightness as
we descend to the leaves.

The analogous bounds can be written for the closest and farthest distances be-
tween any two points of a query node and a reference node.

node node

i Min Possible
Distunce

Figure 2.3: DISTANCE BOUNDS. The lower and upper bound on pairwise distances between the
points contained in each of two kd-tree nodes.

The space cost of a kd-tree is O(DN) (there are 2N nodes in a full balanced
tree). The time to build to a kd-tree is O(DN log N) (at each node we must pay
a cost proportional to the size of the node's data subset). We'll visit the run-time
complexity of typical algorithms which use kd-trees shortly.

We can in fact improve the data-adaptivity of kd-trees by removing their axis-parallel
restriction. If we instead partition by selecting centroid points to define the left and
right sets of the partitioning (according to the Voronoi diagram induced by the
two points), we can escape this representation problem as well, effectively replacing

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 35

axis-parallel hyperplane separators with arbitrarily-aligned hyperplanes. The result
is called a ball-tree [Omo91] or ‘metric tree’ [UhI91, CNBYMO1]. As with kd-trees
we augment the structure with problem-dependent cached sufficient statistics.

Distance bounds.

Complexity.

2.3.3 Basic divide-and-conquer
algorithms.

Nearest neighbor algorithm.

Figure 2.4: LEVELS OF A BALL-TREE. The bold circles indicate the root (left figure) and the
‘middle’ layer of nodes occurring in the anchors construction algorithm (right figure).

We again have O(D) bounds due to the triangle inequality:

minlz, = z,lI* > max{(le, - cll - 5r)*, 0} (23)

max|lz, —z,[° < (lzg — crll +sr)’

where ¢y, is the centroid of R and sg is its radius, the distance of the farthest point
in R to cp.

Again, analogous bounds can be written for the closest and farthest distances
between two nodes.

Ball-trees can be built efficiently and with high quality using the anchors hierarchy
algorithm [Moo00]. Ball-trees built using that method have been demonstrated to
be effective in up to thousands of dimensions in some cases. The build cost was
constrained to be O(DNS”). The space cost is also the same as a kd-tree, O(DN).

The form that the divide-and-conquer principle takes for the nearest-neighbor prob-
lem is quite simple. First, the fact that we have already built a tree before runtime
means that the 'split’ part of the algorithm has already been taken care of in pre-
processing. The 'merge’ part of the algorithm is trivial is O(1) since it amounts to
updating a single scalar quantity. In fact this specific form of divide-and-conquer
(where merging is really just updating a bound) is sometimes called ‘branch-and-
bound’ in older literatures and in the operations research community.

The basic idea is to compare the query point to nodes in the tree, starting at the
root. At all times we maintain the distance)" of the query to its nearest neighbor
found so far. At the start of the search this is set to co. If the lower bound on the
distance from the query z, to any point in the node R, d;r = ||z, — R||'?, is greater

than Jé\’r‘v, we know that no point in R could be & 's nearest neighbor, so need not

z,

Range search/count algorithm.

Single-tree algorithms.

CHAPTER 2 36

recurse on the children of R. Otherwise we recurse, taking the more promising of its
children first according to a local priority function — in this case we use the lower
bound on the distance to the node. Since leaves can contain up to p points, there
is a special base case for the leaves, in which we exhaustively compute the distance
of each to the query point, updating the nearest neighbor guess and its distance as
needed. (Note that no special base case is needed if p = 1.)

NN(q.R) RS(¢.R) _ _
ok = llzg — RII™. dgr = llzg — RII', 82% = |lz, — RI|™.
if Eéon > d{}MN, return. if 6;3{ > h, return.
if leaf(R), NNBase(q,R). if 64 <h,
else, _ add-to-set(h—Set,, R), return.

NN(g closer-of(q,{ R.left, R.right}). if leaf(R), RSBase(q, R).
NN(q,farther—of(q,{R,ieft,R.right}), else,
RS(qg.closer-of(q,{ R.left, R.right}).
NNBase(q,R) RS(q. farther-of(q.{ R.left, R.right}).
foreach z, € R,
dgr = ||lzg — z.||- RSBase(q.R)
11 6y 2800, foreach z, € R,
5?” = (5{21‘, f\"i\rq =P 5q-r = ||§g _£r||‘
if g < A,

add-to-set(h—Set,, 7).

Figure 2.5: BASIC NEAREST-NEIGHBOR AND RANGE SEARCH ALGORITHMS. In the
pseudocode a += b means a = a + b, and a = b denotes assignment while a == b denotes
equality checking. Note that these algorithms can be written in a slightly different way such that
distance computations are never repeated, but this presentation is more conceptually transparent
for our purposes. closer-of(A,B) returns the closer of its two node arguments A and B;
farther-of() is similar. add-to-set(A,B) implements A = A U B and could also have been written
AU = B.

The algorithm for range search is completely analogous. The one interesting notable
difference is that the inverse of the node pruning operation that was used in the
nearest-neighbor algorithm is also used — if the upper bound 5;% < h, we know
that all the points in R belong to h—Set,. With the appropriate data structures we
can simply note that all of R should be added to the set, or alternatively we can
explicitly add each point at the current moment in the search.

The algorithm for range count simply updates an integer count ¢, instead of
maintaining the set of indices h—JSet,.

What about all-nearest-neighbor and all-range-search/count? These can clearly be
solved using the previous solutions, as shown. The reason we refer to these as
single-tree algorithms will become clear shortly.

AIINN(Q,R) AIIRS(Q, R)
foreach ¢ € @, NN, = NN(q,R). foreach g € Q, h—Set, = RS(q,R).

Figure 2.6: SINGLE-TREE ALGORITHMS FOR ALL-NEAREST-NEIGHBOR AND
ALL-RANGE-SEARCH.

§2.4 Higher-order
divide-and-conquer.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 37

We can generalize the standard notion of divide-and-conquer on a set to divide-and-
conquer on multiple sets, which we call higher-order divide-and-conquer (HODC).
For example, in Figure 2.7 a basic template for the n = 2 case is shown.

HODC(Q,R)

HODCWork(Q.R).

if base-case(,RR), HODCBase(Q,R), return.

else,
{Q.right,Q.left} = HODCSplit(Q).
{Ruright, R.left} = HODCSplit(R).
HODC((Q).left, R.left).
HODC(Q.left, R.right).
HODC(Q right, R.left).
HODC(Q right, R.right).
HODCMerge(Q left,).right).
HODCMerge(R.left, R.right).

Figure 2.7: ABSTRACT HIGHER-ORDER DIVIDE-AND-CONQUER ALGORITHM.

Note that () and R can be the same set. The analogous schemas hold for any
number of additional sets S, T, U, ... We could define a divide-and-conquer al-
gorithm of this basic form by the tuple { Vv Split, (), Merge, (), Work, (), Base,()
}.

Note the unusual four-way recursive step. This ensures that each child of the first
node is compared with each child of the second node. Only a simple depth-first
search is shown rather than, say, local priority search.

This implicitly assumes that the trees are full and have the same topology. More
generally the complete set of recursion cases must account for the cases in which
one node is a leaf while the other is not. This is shown in Figure 2.8, which is also
specialized to the pre-built-tree case that will be the situation in all of this thesis.
No merge step is shown because it will be implicit in bounds updates as we have
seen earlier.

HODC(Q,R)
HODCWork(Q,R).
if leaf(@) and leaf(R), HODCBase(Q,R), return.
if leaf(Q) and !leaf(R),
HODC(Q, R.left).
HODC(Q,R.right). return.
if lleaf(Q) and leaf(R),
HODC(Q left, R).
HODC(Q.right,R). return.
if lleaf(Q) and !leaf(R),
HODC(Q.left, R.left).
HODC(Q.left, R.right).
HODC(Q right, R.left).
HODC(Q.right, R.right). return.

Figure 2.8: ABSTRACT HODC ALGORITHM, GENERAL CASES. !4, where A is a boolean
expression, means 'not A’, or A evaluates to false.

Shattering.

2.4.1 Search techniques.

Recursion pattern.

CHAPTER 2 38

Because this is slightly cumbersome to write, we will use a slightly compressed
notation which assumes that for a leaf node A, A.left = A and A.right = A, and
the exact same recursive call is not made twice. This allows us to write the same
algorithm equivalently as shown in Figure 2.9.

HODC(Q, R)
HODCWork(Q.R).
if leaf(Q)) and leaf(R), HODCBase((Q),R), return.
else,
HODC(Q.left, R.left).
HODC(Q.left, R.right).
HODC(Q.right, R left).
HODC(Q right, R.right).

Figure 2.9: ABSTRACT HODC ALGORITHM, COMPRESSED NOTATION.

Shattering is really just a shorter synonym for ‘higher-order divide-and-conquer’.
Geometric shattering is really just a shorter synonym for ‘higher-order divide-and-
conquer on space-partitioning trees’. The intuition is that if we are really dealing
with multiple sets, it is wasteful not to consider breaking up all of the sets. It works
whenever additional dividing will reveal more pieces that are easily conquered. The
idea of breaking everything into little pieces (of various sizes) then putting them
back together with minimum effort is the intuition behind the name 'shattering’.

The move to higher-order divide-and-conquer opens up a new type of choice, the
recursion pattern. By this we mean that the basic four-way recursion shown in 2.7
can also be replaced by a pattern in which, say, only one of @ and R is split, to
form two recursive calls rather than four. If say, the larger (greater number of data)
of them is always chosen, the selection of) versus R will roughly alternate.

All of our algorithms can be equivalently written with alternative recursion patterns
(in fact we'll use the alternative just described in Chapter 5. This choice does
not seem to affect performance, though we did not fully pursue this possibility
experimentally.

All-nearest-neighbors algorithm.

AlINN(Q, R)
Sor = 1Q — RII"
if dgr > NN return.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 39

Understanding the shattering solution to the all-nearest-neighbors problem should
be trivial now. The idea is to now build a second tree for the query set (it is the
same tree if the query set is equal to the reference set), and generalize the algorithm
from one which performs point-node comparisons to one which performs node-node
comparisons.

The last few lines of the base case for the all-nearest-neighbors algorithm maintain
the bound 5:3” for node @, ensuring that it is the largest of all the nearest-neighbor
bounds Sé\w for the data in). The bound is updated for non-leaves in the line
following the recursive calls. The looser of the childrens’ bounds replaces the node's
current bound if it improves it.

AIIRS(Q,R) | |
58p =11Q — R||, 6&r = IQ — RI|™.
if Jégﬁ > h, return.

if leaf(Q) and leaf(R), AlINNBase(Q, R). if Jgs'R <h,

else, _ add-to-set(h—Set g, R), return.
AIINN(Q.left closer-of(Q.left, { R.left, R.right}). if leaf(QQ) and leaf(R), AIRSBase(Q.R).
AllNN(Q.|eft,farther—0f(Q,|eft,{R.]eft_.R,right}). el nn:
AIINN(Q.right,closer-of(Q.right. { R.left, R.right}). AIIRS(Q.left,closer-of(Q. left,{ R left, R.right}).
AIINN(Q.right farther-of(Q.right { R.left, R.right}). ANRS(Q.left, farther-of(Q.left, { R.left, R.right}).
35" = min(d5" , max(dy) jeftr g right))- ANRS(Q.right closer-of(Q.right,{ R.left, R.right}).

AlIRS(Q.right,farther-of(Q.right,{ R.left, R.right}).
AlINNBase(Q,R)

foreach z, € @,
foreach z, € R,
S0 O,
(SévN — 6(;:"‘ NNC} =T
if Ogr < SN, QN = bqr.

All-range-search/count algorithm.

§2.5 Complexity.

AlIRSBase(Q R)
foreachz, € @,
foreach z, € R,
JQ" = ||£q . ;_c-r”'
if 6gr < R,
add-to-set(h—Sety,).

Figure 2.10: ALL-NEAREST-NEIGHBORS AND ALL-RANGE-SEARCH/COUNT
ALGORITHMS. A leaf's left or right child is defined to be itself. In the actual code repeated
recursion cases are prevented.

The analogous algorithm for the range-searching/counting problem is trivially seen.
The corresponding algorithm for the closest-pair problem is also a trivial modification
of the all-nearest-neighbors algorithm.

The expected time complexity of the basic space-partitioning tree approach for find-
ing the nearest neighbor in I dimensions was shown by [FBF77] to be asymptotically
O(log N) for the case of kd-trees, though the argument is easily extended to ball
trees. Note that this holds for any input distribution, assuming only that the query
and reference data come from the same distribution.

We now show how the analysis of [FBF77] can be extended to the single-tree and
dual-tree algorithms for the all-nearest-neighbors problem.

Theorem 1 (All-nearest-neighbors runtime) The asymptotic expected runtime
is O(N log N) for the single-tree algorithm and O(N) for the dual-tree algorithm.

CHAPTER 2

Proof: We'll start with the single-tree case, which is easier to understand.
Because of the minimum-distance priority function used in the search,
the first descent down the tree simply locates the leaf node containing
the query point z_ itself (or the closest reference point in its vicinity) in
expected O(log V) time, following from the recurrence of binary search:

T(N) = T(N/2) + 0(1); T(1) = O(1) (2.4)

To see where this comes from, consider the more explicit recurrence

T(N) = T(N/2) + anT(N/2) + O(1); T(1) = 0(1) (2.5)

which represents the fact that after descending down the correct branch,
i.e. the one containing the true nearest neighbor, there remains a proba-
bility which may depend on IV, call it apy, that the heuristic used to select
the descent branch (the lower bound on the distance, obtained from the
boundary of each node) selected the wrong branch. It is after all only a
lower bound, with some unknown slack with respect to the true minimum
distance. In expectation, a is zero, until we reach the depth in the tree
at which we must perform a minimal amount of backtracking to ensure
that we have the true nearest neighbor. This is why the analysis only holds
in the expected sense,

The amount of backtracking we must do corresponds to the expected
number of nodes whose boundaries will intersect the nearest-neighbor ball
NNball(z,) = {z | ||z —z,|| < 6;}. Let f(D) denote the factor relating
the volume of NNball(z,) to the volume of the smallest region containing
NNball(z,) which is representable by the tree's node shape. Thisis 1 in
the case of ball-trees, larger than 1 for kd-trees. If the number of points
in leaves is allowed to be p, from [FBF77], the expected number of points
C examined is bounded by (1 + f(D)/?)Pp, which is independent of N
and the probability distribution of the data.

This is equivalent to writing T(C') = O(1) for the second part of the
recurrence. The solution is thus O(N log N), for N repeated calls costing
Oflog N) each.

The same argument holds for the dual-tree case, replacing the previous

recurrence with the one appropriate for dual-tree search. For each query
child, there are two possible branching choices, leading to the recurrence

T(N) = T(N/4)+ anT(N/4)+ T(N/4) + anT(N/4) + O(1);
T(1) = O(1) (2.6)

but by the same expectation argument this is equivalent to

T(N) = 2T(N/4) + O(1); T(1) = O(1) (2.7)

whose solution is O(N). =

40

2.5.1 Dependence on
dimensionality.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 41

Note that this implies O(1) complexity per query point in the dual-tree case. Both
the single-tree and dual-tree algorithms have O(N) memory cost, due to the trees
themselves as well as the cost of storing all N answers during execution.

Work on the difficult problem of characterizing the runtime of these data-adaptive
structures has very recently re-awakened [Boh00, CPZ98]. One thrust of these
efforts, though it has not been formalized satisfactorily, is the growing agreement
that these structures are not truly exponential in the explicit dimension D, but
rather in some ‘intrinsic dimension’ D’. This is in fact borne out by experiment and
the discrepancy with the worst-case has long been observed [Spr91]. Faloutsos and
co-workers [FK94] characterized the expected number of page accesses for range
queries in R-trees in terms of the box-counting fractal dimension and the correlation
dimension of Procaccia and Grassberger [GP83], and nearest-neighbor queries have
been similarly characterized [PM97]. Recently in computational geometry similar
lines of reasoning have been hinted at in some works, e.g. [EPY00], and notably
made explicit in [MMO1].

Even so, the ability of adaptive space-partitioning trees to adapt to a lower-
dimensional manifold within the data is not perfect. The tradeoff between such
a structure's statistical modeling power and its cost of construction (‘learning') is
a significant factor affecting this. The entire perspective of ASPT's as statistical
models of the data in themselves has not been pursued and is something we regard
as a fruitful area for future research. The upshot is that while they remain the best
available option for exact computation in high-dimensional spaces, their performance
is often still suboptimally sensitive to the dimensionality in practice.

§2.6 Performance.

CHAPTER 2 42

For any space-partitioning scheme, the dual-tree algorithm for the all-nearest-neighbor
problem will be more efficient than the standard single-tree algorithm. We know
this is true asymptotically. Though we are not particularly interested in all-nearest-
neighbor as a practical application, here we show a quick empirical demonstration
of the complexity superiority of dual-tree versus single-tree.

The dataset is a 2-dimensional set of point-spread function values for stars and
galaxies. The experiment was performed on a 500 MHz Pentium workstation. All
runtimes reported in this thesis are given in seconds.

Single-tree versus dual-tree performance

200 — T T T : T :
—#— Single-tree
—&— Dual-tree L

180

CPU tima {seconds)

N

Tree Single Dual
Build Tree Tree
Time Time Time

100k
200k
500k

1M

§2.7 Related problems and
approaches.

2.7.1 Nearest-neighbor
problems.

Other space-partitioning trees.

4 11 1

8 26 3

24 78 T

50 182 15
MNumber of data <10°

Figure 2.11: SINGLE-TREE VERSUS DUAL-TREE PERFORMANCE.

It is of interest to compare these new algorithms at a theoretical level to other
existing schemes, mainly to see if there is something else we can leverage for our
range of N-body problems.

Although a stunning multitude of approaches to the nearest-neighbor problem have
been proposed, it is safe to say that none of these has particularly distinguished it-
self from the crowd by convincingly demonstrating empirical superiority over the ap-
proach based on space-partitioning trees which we have covered. Wide-spanning sur-
veys describing a large number of these attempts can be found in [GG98, CNBYMO1].

Despite the impressive diversity of approaches to nearest-neighbor which have been
explored, the practical state of the art can be safely said to still revolve around forms
of kd-trees and ball-trees. Consider for example the most recent paper of Clarkson,
one of the most well-known nearest-neighbor researchers from the theory community,
whose goal is to finally identify a method which works robustly in arbitrary dimensions
for realistic data in practice [Cla02] — the proposed method is a standard variant of
ball-tree.

Most of the proposals are based on variants of kd-trees, including R-trees, their
secondary-storage analogs, to one extent or another. We scoured the literature
in the hopes of finding interesting variants which could provide efficiency benefits,

Grid-based methods and hashing.

Graph separation.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 43

but found very few which convincingly offered more than the two basic types of
space-partitioning trees we've discussed.

It should be noted that many of the proposed approaches originated in the
database community, and thus assume some different constraints on the nearest-
neighbor problem, as noted earlier. This entire class of approaches is outside the
scope of our concern.

One of the best hopes in our opinion lies in methods for capturing the distributional
or statistical structure of the data as well as possible while still maintaining efficiency
in searching and building, as well as space efficiency. The method we have used
[Moo0Q0Q] represents the best we are aware of, however further research in this vein
may provide payoff. Examples of other methods for ball-tree construction occur in
[Omo89].

A proposal by Sproull [Spr91] has received surprisingly little attention (perhaps
due to the unassuming title of the paper). It introduces the notion of using the
principal axis (or first principal component) of the data to create non-axis-parallel
splits. This approach seems not to have been explored further. The relationship
of this statistical approach to selecting arbitrary decision hyperplanes versus the
statistical approach implicit in ball-tree construction represents an interesting open
question.

A simplistic attempt at a hashing scheme is represented by the VA-file [WB9T7)].
However since no locality-preserving property or mechanism was shown, the method
boils down to O(N') linear scan for each nearest-neighbor query, placing emphasis
on reducing the constant term via low-level programming techniques.

A different grid-based approach [?] which constructs a grid structure then hashes
new points to the appropriate hypercube in the grid purports expected constant-time
complexity in arbitrary dimension for the nearest-neighbor problem (which of course
implies O(N') complexity for several N-body proximity problems, including closest-
pair). However, this complexity assumes a class of 'bounded’ distributions which
may or may not include realistic data distributions (even the normal distribution is
not included in this class, for example). It also assumes the constant-time floor
function, an issue of some debate [FH91] (see also 2.7.1 below), though we do
not take any particular stance on this issue. The most impractical aspect of this
approach is the O(NP) size of the grid structure.

At the end of the paper the authors discuss the possiblities of extending this
approach to more realistic uneven distributions by using adaptive grids. Note that
this unrealized idea would lead in the direction of space-partitioning trees. In fact
the distinction between tree search for finding leaf nodes and hashing for finding
grid buckets lies only in whether the finding operation is constant-time or not.
The fuzziness of the floor function's status in this regard thus blurs the distinction
between ‘hashing' and a simple non-adaptive space-partitioning tree. Indeed, similar
discussions in [WB97] consider ways to prioritize the order in which grid cells are
searched, leading dangerously close to the idea of hierarchy.

The I-grid index [AY00] is a grid-based method purporting to reverse the curse of
dimensionality, but in order to achieve this a new distance measure is proposed in
place of the Euclidean metric. Therefore it does not treat the same problem.

Hashing methods taking a randomized approach are discussed below.

An interesting approach based on the graph-theoretic perspective of distances as
edge weights [DL76, LT77] represents perhaps the most serious assault on the prob-
lem by the computer science theory community in this classical direction. The ‘planar

Reductions from other problems.

Randomized algorithms.

2.7.2 Approximate nearest
neighbors.

CHAPTER 2 44

separator’ achieves worst-case O(log N') run time and O(N) space, but only in 2
dimensions as implied. Unfortunately the preprocessing and storage requirements
have been noted by several authors to be prohibitive for practical use, including the
creators of the method themselves.

Some N-body problems in computational geometry are reducible from the another
problem which is sometimes more general, so that a fast solution to that problem
yields a fast solution to the proximity problem of interest.

The approach of unifying many proximity problems as reductions from the Voronoi
diagram [SH75] we discussed earlier has O([D/2]!NTP/21) complexity.

The diameter problem is an example of an N-body problem which is quickly
solvable given the convex hull. [BS78] gives a linear-expected-time deterministic
divide-and-conquer approach to finding convex hulls in 3 dimensions or less. [PH77]
is another example of the convex hull approach.

Formulating nearest-neighbor as a special case of the ‘ray-shooting' problem
[AE97] yields a solution which, if allowed O(M) space, requires O(N/M/TP/21)
time, again exponential in D.

Randomized algorithms represent an algorithmic strategy using randomness in a way
which is distinct from the Monte Carlo method for integration, which we will use in
Chapter 5. This type of algorithm is arguably the chief focus of the computer science
theory community, and is a typical approach to achieving so-called ‘approximation
algorithms’. The question of whether randomness in algorithms represents a kind of
algorithmic power which cannot be achieved by deterministic algorithms is an open
one, though at the moment there are few instances of problems having randomized
solutions without known deterministic analogs.

Unfortunately, the typical theoretical scenario considered is one in which not only
is the answer approximated, but the error bound is not strict — instead it is a con-
fidence bound, i.e. the bound holds with a certain probability. While this can be
tolerated in real applications, some constructions of randomized algorithms hide un-
desirable properties. An example is the the inability to retry a computation because
the randomness does not occur not at runtime. This occurs in algorithms which use
randomness at preprocessing time rather than runtime. In these types of algorithms
the user cannot simple run the algorithm several times for the same input to mitigate
the effect of random error.

A very influential paper by Rabin [Rab76] which helped to introduce the random-
ized algorithm strategy using two examples, one of which presents a randomized
solution to the closest-pair problem with linear-expected-time complexity in arbitrary
dimension. However, this complexity advance was shown by [FH91] to be partially
due to the assumption of a more powerful model of computation than previously
assumed, by assuming the floor function as a constant-time operation. Regardless,
it is not obvious how to generalize the method to other proximity problems. [Wei78]
gave a different randomized algorithm for the closest-pair problem.

Clarkson gives a randomized algorithm in [Cla88] which answers a nearest neighbor
query in time O(2” log N), improved to O(D?log N) by [Mei93], unfortunately
using a structure of size O(N[P/21+¢),

Other papers by Clarkson discuss randomized approaches in computational geom-
etry [Cla87, CS89] in a general context.

The idea of replacing the nearest-neighbor problem with that of the (1+¢)-approximate
nearest-neighbor problem deserves special attention because so much implication has

Randomized and deterministic
algorithms.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 45

surrounded it as a long-awaited solution to the curse of dimensionality.

One of the only widely-known facts about high-dimensional distances is that as
the dimension grows, the variance of distances shrinks [Ham50]. In other words, the
size of the distances approach the same value. This fact is commonly misinterpreted
to mean that distances are meaningless in high dimensions. This is fallacious since
the problem is that of finding the nearest neighbor, i.e. the information is in the
relative ranks of the distances, not their numerical values.

This fact has also been exploited to grandly imply that the curse of dimensionality
can be solved by allowing approximation in the nearest-neighbor problem — surely
there is no harm in accepting neighbors whose distance is a factor of 1 + ¢ times
that of the true nearest neighbor. In fact, this is also fallacious. In a high enough
dimensionality, all the distances might be within 1+ ¢ of each other. This does not
change the fact that their ranks contain information. Thus, while it is true that the
hardness of the nearest-neighbor problem, which is in the ranks, can be removed by
allowing an 'approximation’ which is insensitive to ranks, this approach simply skirts
the actual problem.

A meaningful formulation of an approximation notion for the nearest-neighbor
problem must be in terms of their ranks. So far this has not appeared in the
literature. Thus, we do not consider the notion problem to have yet been formulated
properly.

The most recent approximate nearest-neighbor approach is 'locality-sensitive hash-
ing’ [GIM99], a hashing scheme based on the hope of operationalizing the oft-quoted
and re-proved Johnson-Lindenstrauss Lemma, which says roughly that points which
are nearby in a high-dimensional space are nearby in a projection of the points onto
a random subset of the dimensions, with high probability. A query point is hashed to
a bucket in each of a large number M of hash tables, each corresponding to a differ-
ent random subset of the dimensions. The hope is that points hashing to the same
buckets are proximal with high probability. Thus at runtime the algorithm consists of
computing the distance of the query to all of the points in each of the M hash buck-
ets, and returning the closest one among them. This querying time is O(DN/(1+€)),
while the time to build the preprocessing structure is O(N1/(1+e)+1 4 DN For real-
istic values of € having some hope of preserving distance ranks in arbitrary dimension,
these complexities are not encouraging. Unfortunately the empirical evaluation of
the method performed by the authors, though laudable as a rare undertaking by
theorists, is unconvincing. The method was empirically compared to the SR-tree, an
R-tree variant from the database community which performs online tree structuring
— which has been shown to degrade performance considerably in comparison to
batch construction of trees. The SR-tree also performs exact querying, and was
not modified to perform 1 + € approximate querying. The method requires a large
number of tweak parameters (a,l,and k) which must be chosen without theoreti-
cal guidance — the influence of ¢ is through these parameters rather than being
specifiable directly by the user. This also means that ¢ is not a parameter which
can be selected at query time. Because all the randomness occurs at preprocessing
time rather than at query time, a query for which the approximation bound has
failed cannot be retried — that query simply can never be answered correctly by
the algorithm. Finally, because the approach is inextricably based on comparison of
bit-strings, the metric must be the L; norm, and the Euclidean distance cannot be
used.

It should also be noted that other hashing approaches exist which are in the same
vein as locality-sensitive hashing, i.e. attempt to use locality-preserving embeddings

2.7.3 Range-searching/counting
problems.

Approximate range searching.

2.7.4 Divide-and-conquer.

Other divide-and-conquer strategies.

Higher-order divide-and-conquer.

2.7.5 Dual-tree algorithms.

CHAPTER 2 46

(or subspaces), often many together. However they are deterministic and potentially
more practical, e.g. [SZM99].

Other randomized approaches to finding approximate nearest neighbors include
[ClaB8, Kle97].

Note that approximate nearest-neighbor finding represents a trivial change to
the space-partitioning tree approach, though this was apparently not realized until
[AM93, AMNT98]. The authors of the randomized approaches do not compare to
this visible-enough approach for some reason, which has the advantage of yielding
deterministic hard bounds, 100% of the time. Its preprocessing structure is also
independent of the approximaton setting ¢.

The vast majority of the work on range-searching is on other variants of the problem
we are concerned with, which is spherical range-searching. Virtually all of the large
body of work on range-searching treats orthogonal range queries, triangular range
queries, simplex range queries, and half-space range queries. We must also be wary
of certain other distractions such as 'fixed-radius range queries’ which are spherical
but assume that the radius of the query is known at the time the preprocessing
structure is built, e.g. [CE85]. The main reason focus has shifted to these other
problems is that are easier than the spherical range search problem [Ya082).

The idea of 1 4 ¢ approximation in range searching is more sensible than in the
nearest-neighbor setting, since the specification of a numerical range implies that its
meaning is known to the user — its sensibility can be decoupled from the distribution
of distances, unlike in the nearest-neighbor case.

The randomized approximation methods do not seem to carry over to range-
searching problems. The fairly obvious approximation trick that can be used to im-
plement an approximate nearest-neighbor algorithm using standard space-partitioning
trees [AM93] can also be used in the range-searching context [AM95].

A notable part of the literature is [Ben80], in which Bentley gives a general strategy
for divide-and-conquer and shows examples of how to apply this algorithmic design
principle for several different proximity problems in arbitrary dimension D, rather
similarly to our aim in this thesis. The paper even considers some fundamental
statistical problems which have geometric formulations. Unfortunately the approach
applies divide-and-conquer in the dimensions, and unavoidably results in algorithms
which are exponential in the explicit dimension D.

The generalization of the space-partitioning tree approach to finding nearest neigh-
bors as priority search was apparently not published until [AMN*94].

The higher-order divide-and-conquer principle of algorithm design does not appear
to have been previously formulated in a general form. However, in its geometric
form it has appeared for some special cases of N-body problems (mainly all-nearest-
neighbor) as we discuss next.

In the history of the all-nearest-neighbors problem, we see a handful of approaches
by authors who have also observed the ‘'node-node’ idea, which in our general bichro-
matic perspective is a ‘dual-tree’ notion. Outside of all-nearest-neighbor, algorithms

Vaidya's algorithm.

Well-separated pair decomposition.

Spatial join methods.

N-BODY PROBLEMS IN COMPUTATIONAL GEOMETRY 47

of the dual-tree style do not appear to have been proposed, with the arguable excep-
tion of the interesting paper by Appel [App81, App85] describing an approach that
was even earlier than the much better-known [BH86] and [GR87], to be discussed
in Chapter 4.

The fact that notions similar to the dual-tree idea have been independently noted
by different authors in different fields testifies to its naturalness. These authors
unfortunately did not realize the scope of the underlying algorithmic concept as
we present it here (higher-order divide-and-conquer). They also each have certain
drawbacks over the fairly elegant approach we showed.

The first is the algorithm of Vaidya [Vai89], which upon dissection can be interpreted
as the version of the dual-tree algorithm we showed which performs splitting on
the fly rather than as a preprocessing phase. The structure implicitly created is
essentially a form of kd-tree, except that every dimension is split to form 22 recursive
calls. This unfortunate fact makes gives the algorithm's runtime a factor of O(D¥),
despite the fact that it is otherwise worst-case O(N log N) due to the implicit tree
construction. Predecessors also containing node-node notions include [Cla83] and

[GBT84].

The second is the well-separated pair decomposition (WSPD) [Cal95], which we’ll
also discuss in Chapter 4. The algorithm for computing the WSPD data structure can
be regarded as a form of dual-tree algorithm. The viewpoint is different though, in
that the WSPD-based algorithm for solving all-nearest-neighbors then operates upon
the intermediate WSPD data structure, a list of all the pairs of points satisfying the
‘well-separated’ condition. The runtime analysis is also different — they showed that
computing the WSPD is worst-case O(N log N) and that the size of the structure
is O(N). Obtaining the nearest-neighbor pairs is done by examining every node-pair
in the WSPD so that the runtime is O(N) given construction of the WSPD. In our
case the dual-tree algorithm is in the final stage, not the preprocessing stage.

It is unfortunate that even for the problems for which the idea was considered
(all-nearest-neighbors and the physical N-body problem), the approach of creating
algorithms through the WSPD ‘data structure’ is rather awkward, particularly in all-
nearest-neighbors, where the idea of well-separatedness is superfluous. The need to
build a structure cluttered by a large number of irrelevant node-pairs is unclear when
the dual-tree procedure can simply be used to find the nearest neighbors directly.

Though we agree with the idea that an O(N log V) preprocessing can be usefully
extracted from the computation for re-use, leaving an O(N') computation at runtime,
the WSPD does not appear to be natural for any problems other than the physical
N-body problem. Even in that case, it can be eliminated by just performing the
relevant computations directly as we'll see in Chapter 4. Thus the WSPD approach
will suffer an additional constant factor of inefficiency versus our direct method.

The third is the method of [H598], which was proposed for a problem they cocined
the ‘distance join', which returns all pairs of points in order of interpair distance, and
for a problem they coined the ‘distance semi-join’, which appears to be exactly the
all-nearest-neighbor problem. It has its roots in several earlier works in the spatial
join literature employing node-node ideas including [BKS93, HIJR97] — one special
case of the spatial join is the all-range-search problem [Rot91] though the focus
is often on intersection of polygons. The distance semi-join algorithm of [HS98]
can actually be regarded as the priority-queue version of the dual-tree algorithm we
showed, if the database-centric aspects of the work are ignored. The paper focuses

62.8 Summary of this
chapter.

Publications.

What's next?

CHAPTER 2 48

on the problems which arise with priority queues. Our pure-recursive alternative
can be regarded as a fix eliminating the need for priority queues when they are
problematic to use. They also did not provide a complexity analysis. Otherwise we
regard the basic insight as the same.

Let's review the main points of this chapter:

¢ Basic perspective of proximity problems. We introduced the viewpoint of
computational geometry and its proximity problems. These provide a concep-
tual foundation for the way we'll discuss our problems (in terms of terminology
such as 'bichromatic’ and ‘all-') and approach them (in terms of reusable data
structures, in particular adaptive space-partitioning trees, which lead naturally
to thinking about divide-and-conquer).

¢ Higher-order divide-and-conquer. We introduced a natural extension to the
standard computer science toolbox and showed how this general algorithm de-
sign technique can be applied using four simple proximity problems as examples.

¢ All-nearest-neighbor algorithm. These examples in fact all represent novel
algorithms with some advantages over existing algorithms in the literature. In
particular we focused on the canonical all-nearest-neighbor problem. Mainly
this was an example to show the utility of the higher-order divide-and-conquer
principle.

¢ Review of alternative approaches. We also surveyed as much of the related
literature as we could find in order to scour it for potential tools we could
leverage.

The following should be put forth to any community in which space-partitioning
trees are used heavily in practice:

o An article demonstrating how and why the shattering principle yields efficiency
over the standard use of space-partitioning trees, when going to the ‘all-' version
of a proximity problem such as nearest-neighbor.

So far our kernel function has been as simple as possible - either the identity function
of the distance, or a delta function implementing a simple threshold. This has allowed
us to focus on just the geometric issues. In the next Chapter we approach the whole
issue of arbitrary (or nearly so) kernel functions.

3 N-Body Problems
in Computational Statistics

Function Approximation |: Finite-Difference Methods.

We live in succession, in division, in parts, in particles. — Ralph Waldo
Emerson.

TWO WORLDS COLLIDE in many of the N-body problems we saw in Chapter
1; that is to say, these problems have both continuous and discrete properties. (This
two-sidedness is in fact a theme apparent in the historical approaches to this problem
as well as the organization of this thesis.) Computational statistics serves well as
our first reason to consider non-trivial continuous kernel functions, since it abounds
with a large variety of different kinds of kernels. This will take us beyond the purely
discrete computations of computational geometry into that of continuous function
approximation.

Agenda of this chapter. We'll invoke perhaps the simplest principle for approximating a continuous function,
that of finite-differencing. This general strategy abounds in the continous world of
applied mathematics and numerical methods, and amounts to another instance of
dividing a problem into many smaller pieces. Our goal will be a simple approxima-
tion theory which allows the rigorous guarantee of a user-specified error tolerance,
with seamless operation in our hierarchical geometric context. All the while in this
chapter, we will be sensitive to the nitty-gritty practicalities of our example task,
kernel density estimation. The upshot of this is that we will actually provide in
the end a real solution to this problem that people can use.

§3.1 Nonparametric

function estimation.

Function estimation. We refer to the estimation of continuous statistical functionals, of which density
estimation and regression are the main examples we have in mind, as function
estimation, sometimes also called ‘curve estimation’.

The task of estimating a probability density from data is a fundamental one, upon
which subsequent inference, or ‘learning’, or ‘decision-making' procedures are often
explicitly based. Statistically speaking, all inferences can be defined as estimating
functions of the density, though in practice many inference methods for different
tasks bypass direct density estimation.

Regression is such a close cousin to density estimation in terms of both the the-
oretical issues and practical methods that it will suffice for us to focus on density
estimation mainly, while obtaining solutions for both problems in the end.

49

3.1.1 Nonparametric estimation.

Versus parametric.

Estimation with minimal
assumptions.

CHAPTER 3 50

Parametric methods are useful when the underlying distribution is known in advance
or is simple enough to well-modeled by a standard distribution. Models which are
sometimes called semi-parametric (such as mixtures of a fixed number of simpler
distributions) are more flexible and more forgiving of the user’s lack of the true model,
but usually require significant computation in order to fit the resulting nonlinear
models (such as the EM iterative re-estimation method). Nonparametric methods
assume the least structure of the three, and take the strongest stance of letting the
data speak for themselves [Sil86]. They are useful in the setting of arbitrary-shape
distributions coming from complex real-world data sources.

Neither parametric nor nonparametric estimators are to be preferred in all situations.
For example, when the sample size is small, there are sometimes statistical reasons
to prefer parametric methods - though in the increasingly common data mining
setting we are generally dealing with large if not massive datasets. If compression is
desired, nonparametric methods are entirely inappropriate. On the other hand, often
strong parametric assumptions are inappropriate, perhaps nowhere more so than in
exploratory data analysis. In practical terms, incorrect assumptions generally lead
to incorrect inferences.

When do we know the underlying distribution? Almost never, except in the most
artificial situations. The higher accuracy of nonparametric methods in general, and
the resulting improvement in inferences, has been widely observed both theoretically
and in practice. However, they apparently often come at the heaviest computational
cost of the three types of models. This has, to date, been the fundamental limi-
tation of nonparametric methods for function estimation. It prevents practitioners
from applying them to the increasingly large datasets that appear in modern real-
world problems, and even for small problems, their use as a repeatedly-called basic
subroutine is limited.

Nonparametric methods make minimal or no distribution assumptions and can be
shown to achieve asymptotic estimation optimality for any input distribution under
them. For example using KDE (detailed below), with no assumptions at all on the
true underlying distribution, given only that the scale hy — 0 and Nhy — oo,
and that the kernel K () is a non-negative Borel function whose integral is 1 (easily
satisified by all commonly-used kernels), then with probability 1,

f|ﬁ(g) —pleflde—10 58 ¥ (3.1)

i.e. as more data are observed, the estimate converges to the true density [DG85].
This consistency property is clearly one that no particular fixed parametric (or
‘semi’-parametric) form can achieve. !

1. Though semi-parametric approaches provide a certain middle-ground between parametric and
nonparametric approaches, utilizing a number of components/hidden units /basis functions which is
smaller than the training set, but are generally characterized by nonlinear optimization procedures
which either find only locally-optimal solutions dependent on starting conditions (e.g. EM, gra-
dient descent) or are acutely expensive (e.g. quadratic programming). Semi-parametric methods
such as mixtures of Gaussians or sigmoidal neural networks can be shown to to approximate any
density, but only if the number of components/hidden units is allowed to grow to infinity with
the data: at this point they are by definition nonparametric methods. \When viewed this way, as
universal approximators with a very large number of components, such models suffer from a similar
computational problem to the one we address here, and as we saw in Chapter 1 they are often also
N-body problems.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 51

For this reason nonparametric estimators are the focus of a considerable body of
advanced statistical theory [Rao83, DLO1].

3.1.2 Kernel density estimation. The task is to estimate the density p(z,) for each point z, in a query (test) dataset
X (having size Ng), from which we can also compute the overall log-likelihood
of the dataset Lo = Z?:_QI log p(z,). Kernel density estimation (KDE) is the most
widely analyzed and used nonparametric density estimation method. (There exist
many elaborations upon the basic model presented here, but most of them do not
pose any particular problems for our computational approach.) The 'model' is the
reference dataset X (having size N) itself, in addition to a local kernel function
K () centered upon each training datum, and its scale parameter h (the 'bandwidth’).
The density estimate at the ¢!* test point z, s

Ng

pleg) = = > i (=) (32)

=1 Dh

where D is the dimensionality of the data and Vpj = f_mm K (z)dz, a normalizing
constant depending on D and h. We'll write K, (||z, — z,||) when it is clearer to

do so.
3.1.3 Practical considerations We’'ll now consider the main practicalities, or real-usage constraints, that must be
and constraints. used to judge the effectiveness of any solution to the KDE problem.

The discussion regarding the need for handling arbitrary D and the ability to reuse
structures S from 2.1.1apply with equal force here, in addition to the following added
sources of difficulty.

Optimal bandwidth h™. As mentioned, the central issue of estimating a density optimally with KDE is se-
lecting the optimal bandwidth h*. Across statistical learning, model selection in
current practice often amounts to evaluating a set of learned models (representing
a finite set of parameter settings chosen from the set of all possible parameters)
under a score function and a dataset (where the score may correspond to, for exam-
ple, a Bayesian posterior, structural risk minimization, maximum entropy, maximum
likelihood, least-squares, and so on).

Cross-validation. In common practice, the primary data-driven alternative to
asymptotic analytical choices for bandwidth selection is cross-validation [Bow85,
JMS96], a particular method of scoring. The two most widely-used methods both
end up being a form of leave-one-out cross-validation. Likelihood cross-validation
[HHv74] is derived by minimization of the Kullback-Liebler information [p(z) log %%dgc_,
yielding the score B

1 R
CV(H) = Ve Zlogﬁ_r(gr_r) (3.3)
: r=1

where the —r subscript denotes an estimate using all Nz points except the r’”.
Least-squares cross-validation [Rud82] minimizes the integrated squared error crite-
rion [[p(z) — p(z)]?dz, yielding the computationally similar score

Zsﬁ—f (i‘r) (34)

Multiple bandwidths h.

Kernel function choice K ().

CHAPTER 3 52

where the density estimate uses the derived kernel K*() = K() « K() — 2K(), *
denoting convolution.

Either scoring procedure requires N density estimates, each based on N—1 points;
thus cross-validation scoring is itself an N-body problem.

Bandwidth search. Further, this is done for each of the 5 bandwidths under con-
sideration, making the cost of estimation even more acutely felt. Usually this set
of bandwidths to evaluate is simply chosen to be equally-spaced bandwidths within
some predetermined range, though one might imagine a more adaptive procedure for
determining which bandwidths to evaluate. Thus in addition to scoring, there is ei-
ther an implicit or explicit bandwidth search procedure which selects the bandwidths
to be evaluated.

So scoring models for selection is one big reason we'll need to compute multiple
densities, each for a different value of k. In addition, other common tasks demand
the computation of models for the same data but B different bandwidths.

Scoring models for combination. An alternative to strict model selection is mode/
combination, in which the estimates of multiple learned models (again correspond-
ing to some finite set of chosen parameter settings) are combined to form a final
estimate, weighted by their score. Examples include Bayesian model combination
and stacking. This methodology has been the focus of considerable attention in the
learning literature in recent years, mainly for the task of classification — however, the
same principle applies to density estimation, as noted by [SW99].

Exploratory visualization. It is often useful in exploratory data analysis to visualize
the curve representing the score as a function of the bandwidth. Figure 3.1 shows
an example of the kind of curve we would like to be able to generate quickly. Shown
are the cross-validated likelihood scores for 1000 bandwidths ranging from 0.0001
to 0.1, along with the optimal bandwidth h* (about .00774), for the astrophysics
dataset described later in the empirical results.

w10° Log-fikelhood as function of bandwidsh

Likalihood croas—valdation score

107 107 10 1w’
Bandwidih (log scake)

Figure 3.1: EXAMPLE OF VISUAL BANDWIDTH ANALYSIS.

The choice of A'() has also been the subject of much investigation, and thus varies
widely.

Common multivariate choices for K () include the spherical, Gaussian, and Epanech-
nikov kernels. The spherical kernel (K (||z, —z,||) = 1 if ||z, —z,|| < h, otherwise

§3.2 Monopole
approximation.

3.2.1 Exclusion and inclusion.

3.2.2 Monopole approximation
rules.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 53

0, with normalizing constant V5, , the volume of the sphere of radius h in D dimen-
sions) is simplest but can introduce sharp discontinuities for small datasets. The
Epanechnikov kernel (Ky([|z,—z.||) = 1-[[;_r;q—§r||:’ if |z, —z.|| < h, otherwise 0,

with normalizing constant 2t2) has the property of asymptotically minimal MISE
g V5, prop

among all possible kernels [HL56], and so is the default used in our studies.

Note that this is in constrast to common belief among naive users of KDE, par-
ticularly non-statisticians, that the Gaussian kernel is sufficient for all purpeses — in
fact, many do not even realize that there exists a world of kernel functions beyond
the Gaussian. However, aside from theoretical understanding that other kernels pro-
vide faster convergence, many data analysis tasks require alternative properties such
as finite tails.

For this reason our method is specifically designed to work well under very weak
assumptions on the kernel function - namely, that K () is monotonic. (In this pre-
sentation we'll also assume that it is also positive and decreasing away from zero,
though these can actually be dropped in principle since our core approach does not
rely on these to hold.) This admits practically any kernel function considered rea-
sonable. The effect of the bandwidth size and shape of the kernel function on the
efficiency of our method are examined later in the paper.

We'll first develop a simple single-tree algorithm for KDE, i.e. where a tree partitions
the reference dataset X and we compute the density at a single point z.

We'll begin with some intuition for how such space-partitioning data structures
can be used for efficient summation of continuous kernel values. At each node R
encountered during the traversal, using the boundary of the data X (having size
Ng) in the node, we obtain bounds on the distance of z, to any point £, € X, as
we did in the nearest-neighbor case.

The evaluation of K, () on these values yields bounds on the mass contribution
of X g to p(z,). Suppose the kernel has finite extent, such as the Epanechnikov
kernel. If the maximum density contribution of R is zero, i.e. the lower bound on
the distance was greater than h, R can be pruned from the search (i.e. we do not
need to recurse on its children). We call this exclusion;

Exclusion rule:
If 650 > h, ®(z,)+=0;return (3.5)
The opposite, inclusion, is also possible, for example in the case of the spherical

kernel, in which any distance less than h yields a constant kernel value:

Inclusion rule:
|f5;ni“ < h, ®(z,)+=Ng;return (3.6)

Note that in the case of a finite-extent kernel, exclusion/inclusion results in no
error, yet can eliminate large chunks of data from consideration in a single sweep.

In order to generalize beyond finite-extent kernels, we'll generalize our notion of
(exact) pruning to one of approximation.

CHAPTER 3 54

If the difference between these bounds is smaller than some predetermined small
7, we can ‘prune’ the node by approximating its mass contribution by its centroid

=

R:

Monopole approximation with simple rule:
If K(6") — K(6°) < , ®(z,)+=NrK () (3.7)

Exclusion and inclusion are actually both special cases of this more general pruning
rule. For this reason we will sometimes use the terms ‘pruning’ interchangeably with
‘approximation’.

This is exactly the Barnes-Hut algorithm, which we'll consider in more depth in
the next chapter.

A variant which has good properties in practice uses a different rule for deciding
when to apply the monopole approximation:

Monopole approximation with ratio rule:

If SR <y B(z,)+=NRK (1) (3.8)

So far this is the algorithm of [DM95], adapted slightly for kernel density estima-
tion instead of locally weighted kernel regression.

§3.3 Finite-difference
approximation.

3.3.1 Quadrature, interpolation, We can regard our problem as a kind of quadrature, or numerical integration problem,
. - i . 5min R

and finite differences. where the problem is to find fag?éi K (8)dd, though we actually want the value at

a finite number of evaluation points given by our data, qu Kp(04rddy). Within

quadrature is an interpolation problem, namely that of approximation function values
lying between the quadrature points.

Taking the simplest form of Newton-Cotes formula, the two-point form, gives the

familiar trapezoidal rule, as shown in Figure 3.2,
fix)
hi

>

X; X,

-——p
Figure 3.2: TRAPEZOIDAL RULE FOR NUMERICAL INTEGRATION.

Here the function values lying between the endpoints, the quadrature points in this

case, are approximated by a linear function of the abscissa (polynomial in general).
Recalling Taylor's theorem,

3.3.2 Adaptive quadrature rule.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 55

x—a]ﬁ

) = 3
p=0
fla

-)+f(a)(x—a)+ (3.9)
we see that this particular choice of interpolation corresponds to the Newton-Stirling
formula (using central differences) or Gregory-Newton formula (using forward differ-
ences, shown), finite analogs of Taylor's theorem:

f@) = fla) 5 LT @)

5 B o (z — @) + ... (3.10)

This is called the finite-difference approximation and is used in many forms
throughout applied mathematics. The basic idea of approximating continuous func-
tions with a finite set of pieces lies at the heart of all methods for numerical inte-
gration and the important special case of solving differential equations.

Let (5”“" and 63" be our bounds on the distance between respective points in @
and R yielding lower and upper bounds on R's mass contribution to @ of K4 (6g%°)

and K (mm), respectively. An obvious special case of the Gregory-Newton formula
is

{Kn(93%) — Kn(65R)}
gmax d‘min

QR QR
+0((Sgr — 555)°) (3.11)

Kil(dgr) = I{h(ég}z] (JQR—é"““)

Since we are using 5”“" and m“ as our two quadrature points, and the placement

of node boundaries is determmed by the distribution of the data, we are in the realm
of adaptive quadrature rather than the familiar fixed-width quadrature.

Intuitively, the closer K;(6g%°) and fﬁh(ﬁmm] are to each other, the better we
can approximate R's contribution by Ng Ky where Kj = %{Kh (65‘;"]+I&h(”‘"‘)}_

Recall that our ultimate aim in this is not really to estimate the integral's value via
some mean and standard deviation, say. (Though we will discuss this option later.)
Instead, we are interested in hard error guarantees in the current context, and thus
we need bounds on the integral (actually, sum). In principle we could integrate the
interpolation polynomial over the interval, but we don’t know the placement of the
evaluation points. However with the assumption K} () is monotonic, we can obtain
simple bounds. The error of this linear approximation with respect to any point

Z,EQis

r mi

Ng -
cQr = §:|Rh(i[ﬂ“ —z|) - K _W/m“ | Kn(8) — Kn| dd
N
- ;{Ih(a By — Ka (023} (3.12)

To ensure that every ®(z,)’s error e; meets the user-specified ¢ tolerance, or
€q cQR Nr ' :
CTEm) < ¢, we can enforce that (z,) < e by using the running lower bound

Py" for ®(z,), yielding

Error tolerance specification.

3.3.3 Guaranteed anytime
bounds.

Bound tightening.

CHAPTER 3 56

5 {Kn(03E) — Kn(O8F)} _ Nr

(I)Si” — ‘TE (313)
or more simply,
-~ min ¥ max 2¢ min
Ki(65R) — Kn(63%) < AL (3.14)

as a local pruning criterion which ensures the global error tolerance €. It can be
seen that exclusion and inclusion are also special cases of this generalized rule.

This design now allows the user to simply specify an error tolerance directly rather
than fiddle with indirect parameters (such as 7 or a number of grid points M) with
no known relationship to the error.

Ideally the algorithm would meet the prescribed error exactly, j.e. it would do no
more work than necessary to achieve that error. If the size of the difference between
the real error and the prescribed error is unpredictable, then effectively the parameter
€ is once again an indirect parameter with no known relationship to the error, other
than being an upper bound. The situation is much improved by knowledge of the
latter fact, but still not optimal. In actuality our algorithm falls short of this ideal,
since the algorithm will overshoot the minimal amount of work. On the other hand,
the actual error is typically less than one order of magnitude (or one significant digit)
smaller than the error requested. This behavior is much better than that of, say, the
FMM. This issue will be discussed further in Chapter 4.

Now we seek to design an algorithm which provides hard (as opposed to say, confi-
dence bounds holding with some probability less than 1) bounds on the error at all
times during its execution.

We maintain at all times bounds *I);“i“ and @7'** on the unnormalized sum
Nrp(z,). We work with unnormalized quantities to avoid pointless (though admit-
tedly minor) divisions as well as to keep floating point numbers within a favorable
ranges. We'll sometimes refer to mass when talking about unnormalized density.

We begin with maximally pessimistic bounds and tighten them as we recurse and
observe training points at increasingly finer granularity. We start by agnostically
setting the lower bound to assume that no training points contribute any mass, and
the upper bound to assume that all training points contribute maximum mass. At
the end of the computation, the estimate ®(z,) is based on the midpoint between
@2’1“ and @R,

Such an algorithm has the property of anytime operation, i.e. in principle if it is
stopped at any time during its execution, it will output a valid answer, whose quality
increases with running time.

Assuming the kernel function has maximum value 1 (without loss of generality as
other values can be accounted for), the maximally pessimistic upper bound <I>g‘i“
for every @(_ﬂ__q) is set to Nz - 1 = Nr. Assuming the kernel function has minimum
value 0 (again without loss of generality), the maximally pessimistic lower bound
Q1% is set to Ng - 0 = 0 for every query point.

Each time a pruning operation is performed, in which a reference node R's con-
tribution to the query node @ is (implicitly) approximated by Ng K}, we gain the

3.3.4 Dual-tree finite-difference
algorithm.

Delayed summation.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 57

max

knowledge that N K (dgF) is the minimum possible contribution of node R to @
and Ny (55}%) is the maximum possible contribution. The proper update to the

bounds is then:

Vg €Q,®P"™ += NrKn(635%
Vg € Q@1 += Ng[Ki(05F) - 1] (3.15)

The last update accounts for the a priori mass contribution of 1 assumed for each
of the Ng reference points, which can now be undone given the observation of their
true maximum contribution. This is the explanation for the resulting subtractions
of Ngr which appear through the algorithm pseudocode, which may be confusing
without knowing this.

We now apply the shattering principle to obtain a dual-tree algorithm for KDE, in
which a second tree is also built to partition the query set X 5. This should seem
very natural after the last chapter. Again, if Xg = X there is only one tree.

The density bounds 7" and ®7'** become @7 and ®{**, holding for all the

query points in @.

One technique which can only be applied in the dual-tree case is that of defayed
summation. Suppose that a query node meets a reference node which can be pruned,
i.e. the mass contained in the reference node should be added to all elements of the
query node. Rather than explicitly iterating over every ¢ € () as implied earlier, we
can now simply add the mass contributions to @3“’ and @5, which is O(1) rather
than O(Ng).

These mass contributions all wind up in the final answers via a single post-
processing pass over the query tree, which simply adds any mass stored in these
variables to the query points in the relevant nodes. This can be arranged to be done
in O(Ng) time.

83.4 Optimization of upper
and lower bounds.

3.4.1 Up-down mass
propagation.
Cross-scale information
maximization.

CHAPTER 3 58

KDE(Q.R.h)

dl = NpKn(05%), du = NgKy(688) — Np.

if Kn(63R) — Kn(635) < 305,
foreach z, € Q, @;m” += dl, 7% 4= du.
return.

alse,
if leaf(Q) and leaf(R), KDEBase(),R,h), return.
KDE(Q left closer-of((Q).left, { R left, R.right},).
KDE(Q left farther-of(Q.left, { R left, R right}.h)).
KDE(Q.right.closer-of(Q.right, { R left, R.right}).
KDE(Q right farther-of(Q).right { R.left, R.right},h)).

KDEBase(Q,R.h)
foreach z, € Q,
foreach z, € R,
¢ = Kn(lzy - 2,]). @7 += ¢, &7 4= .
omex = N
(ng = mingeg fb{'}"’“, PH™ = maxgeq 7™ — Ng.

Figure 3.3: DUAL-TREE ALGORITHM, BASIC FORM. In the pseudocodea += b means a = a
+ b. A leaf’s left or right child is defined to be itself. In the actual code repeated recursion cases
are prevented.

We can enhance performance by maximizing the tightness of the bounds, which
allows approximation pruning as early in the search as possible. These techniques
(not shown in the algorithm for simplicity of presentation) are not strictly necessary
in order to realize the primary gain in efficiency yielded by the dual-tree structure of
the algorithm, but offer more opportunities for acceleration, which are not available
to a single-tree algorithm.

Our delayed summation technique actually causes a certain problem. Each local
bounds update due to a prune can be regarded as a new piece of information which
is known only locally. For example, when we store a reference node R's contribution
in the bounds for @), none of @'s children know about it, though logically all the
bounds in the entire sub-tree of @ should reflect this information, as they merely
represent the same data elements at different scales. Information in the tree as a
whole can be maximized by upward and downward propagation.

Downward propagation recursively passes dl and du to the entire subtree below
(). This can be done by a simple pre-order traversal. It is performed whenever new
mass is obtained by the node.

Upward propagation can be done simply by taking the min/max of the children’s
bounds. This technique can be seen as an instance of tree-based dynamic program-
ming. In the pure recursive form of the algorithm it is performed after returning
from the recursive calls on a node’s children. In the priority queue version of the
algorithm it is performed upon entry of a node.

3.4.2 Deferred asynchronous
propagation.

§3.5 Multiple density
models.

3.5.1 Sharing and nesting.

Sharing distance computations.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 59

Q Q
i \ /
max

Q.left Q.right Q.left Q.right

Figure 3.4: UP-PROPAGATION AND DOWN-PROPAGATION.

To avoid the cost of full downward propagation down to the leaves upon every prune,
we can employ a frugal asynchronous dynamic programming method: dl and du are
passed only to @'s immediate children, in temporary holding slots for 'owed’ mass.
Whenever any node is considered during the search, it first checks these slots for
any mass owed to it, integrates that mass into its bounds, and passes the mass to
its immediate children's 'owed' slots.

Propagation with this technique now has cost O(1) rather than scaling with the
number of nodes in the tree. '

We now generalize the algorithm to include a range of bandwidths indexed by b'°
and b™ during consideration of each node-pair, which is recursively narrowed as
search progresses toward the leaves. This corresponds to a second application of the
principle of higher-order divide-and-conquer.

All the bounds, such as (I)g“j” and ®7'**, generalize from the scalar quantities

of the single-bandwidth algorithm to vector quantities, containing bounds for each
bandwidth.

In the base case, we reuse each distance computation dgr for each of the bhi _plo
bandwidths that remain upon reaching the base case, just as the naive exhaustive
algorithm can do if modified for the multi-bandwidth problem.

MultiKDEBase(Q, R.b'°,b™)
foreach z, € @,
foreach z, € R,
foreach b € [b'?, b*7],

¢ = K, (llzg — zl), DG" += ¢, PG +=c.
foreach b € [b'?,b"],
max = Np,

foreach b € [b'?, 6],

min __ x min max — max
(I)Qb = mingeg <I>qb , (I)Qb = maXgeg <I>qb — Ng.

Figure 3.5: MULTI-BANDWIDTH DUAL-TREE BASE CASE.

Bandwidth indexing.

Nested exclusion /inclusion.

Propagation in ranges.

3.5.2 Recursive
range-narrowing.

CHAPTER 3 60

In order to be able to efficiently locate the bucket (i.e. inter-bandwidth range) that
a given distance falls into (we'll see why we want this in a moment), the buckets
can be indexed efficiently using a binary search tree if B is large. We denote the
operation of finding the index of the smallest bin b* in the set B containing the
distance d by [d]s.

For moderate B a reasonable alternative is to compute the kernel evaluations for
each bandwidth from highest to lowest when checking for exclusion.

Nested exclusion and inclusion. In the finite-extent kernel case, we can quickly
perform an exclusion once we locate the smallest bandwidth still containing (55’3_.
This is due to the nesting property that if a bandwidth h is excludable, so are all
bandwidths A’ < h. This nesting property also applies to inclusion in the spherical
kernel case, in reverse.

Sgr = 1Q — RII", 34 = |Q — R||™.
bixoew = [dégﬁJB‘ _
foreach b € [bl2,,,, b"1],

new?
max ___
chb -= J’\"H,

b?:fcw = [agiﬁ]s .
foreach b € [b'7, b2],
ST 4= Np.

Figure 3.6: NESTED EXCLUSION AND INCLUSION.

Infinite-extent case. If neither of these cases holds, the normal approximation
criterion can simply be tested for each bandwidth.

Updating of bounds, including the necessary upward and downward propagation
procedures, is also now generalized to ranges. For example an exclusion can now
result in bounds updates for a sequence of multiple bandwidths as we saw.

After bounds updating and propagation for the appropriate sub-ranges, we narrow
the range of bandwidths which still need to be considered and recurse. Note that
with this procedure there is no loss of information nor pruning opportunity, with
respect to the single-bandwidth algorithm.

This can be seen as another application of the higher-order divide-and-conquer
principle.

3.6 Find-bandwidth
procedure.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 61

MultiK DE(Q, R b" b"") _
05k = 1Q = RII”. 6§ = [1Q — R|I™.
biew = 0GR]5-
foreach b € [b

new?

35" = N,
by = [fals.
foreach b € [b“’, phi]

ew

o += Np.

bh{]!

= hi lo i ow
if b3t — b2, == 0, return.
else,

if leaf(Q) and leaf(R), MultiK DEBase(Q, R,b%,,,,b%), return.

ne

MultiKDE(Q left closer-of(().left { R.left, R.right } b;"ew,bﬁiqllj))_

MultiKDE(Q left,farther-of(Q.left { R.left, R right} b)%, . ,b%%).

MultiK DE(Q right,closer-of(Q.right, { R.left, R.right} bl b2).
(.

MultiK DE(Q right farther-of(Q right, { R.left, R.right} bl2., b%

new new))'

Figure 3.7: DUAL-TREE ALGORITHM, MULTI-BANDWIDTH. For illustration the spherical

kernel case is shown.

We can utilize the multi-bandwidth algorithm for several purposes, as previously
noted. We now show an effective method for searching for the optimum bandwidth
h* which utilizes the multi-bandwidth procedure and well as single-bandwidth probes
of the cross-validation score.

We assume that the cross-validation score curve has a single optimum. While
not necessarily valid in general, this appears to hold fairly robustly in practice. For
simplicity let us consider only the least-squares score, a quantity to be minimized.
The strategy is to start from the high end, with a theoretical ‘over-smoothing’
bandwidth [Sco92], and move down in orders of magnitude until the descent in
score stops. We refer to the first bandwidth at which the score increases as the
‘critical bandwidth® h<"it. s, refers to the score for bandwidth h and s* refers to
the best score. Because discretization and other effects can in practice cause the
procedure to sometimes prefer zero bandwidth, a minimum bandwidth is chosen a
priori as five orders of magnitude below the oversmoothing bandwidth.

§3.7 Performance.

Empirical study.

Datasets.

CHAPTER 3 62

FindBW(Q root, R.root)
hcm’t = 00, pmar L’-OS; h?m'n. — pmar ., 10_5.
while h < h™",
s, = KDE(Q.root, R.root,h).
if sp > 5%,
if lslow, h
else break.
else s* = s, h* = h.
if Islow,
Ho= 7" x 1.1, A% 5 90].
sy = MultiKDE(Q.root, R.root, 7).
h* = argmin(sy).
else h = h/10.
if AT = 0o, return co.
Figure 3.8: FIND-BANDWIDTH FUNCTION. Note that KDE() is actually implemented as a
special case of MultiKDE().

it — hoslow = 1, s* = oo,

If co is returned, then no critical bandwidth was found. In this case the user is
informed and can exercise the fallback option of using a theoretical plug-in estimate

for the bandwidth.

We measure seconds of actual runtime on a modern Pentium-Pro Linux desktop
workstation with 2Gb of RAM. Asterisks denote times estimated from smaller prob-
lem sizes using the known algorithm complexity. All density estimates were per-
formed at the optimal bandwidth h* as found by likelihood cross-validation [HHv74],
chosen over the set {0.25,0.5,0.75,1} x 10" for —5 < i < 1. The greatest compu-
tation requirement almost always occurred at the optimal bandwidth, as evidenced
by the third table (in fact we conjecture that this may be a provable property of the
algorithm), and so represents a worst case in terms of bandwidth. In all experiments
a leave-one-out computation is measured, so the training set and test set have the
same size V. The approximation parameter is set in all cases so that the maximum
possible error in the overall log-likelihood was no more than 10~%, j.e. one tenth of
one percent away from the true value, and in most cases was no more than 10—,
The kernel function used is the Epanechnikov kernel, which has optimal efficiency
among all kernel functions. In all of the experiments only ball-trees are used.

Most experiments are on a segment of the Sloan Digital Sky Survey—a data collec-
tion of current scientific interest, and the active subject of ongoing nonparametric
density estimation studies. It contains spatial coordinates in the first two dimen-
sions - the dataset containing these attributes is called RA-Dec. The Sloan data
includes an additional 20 color attributes from various instruments, which we test in
a separate dataset called Colors. We also test a 5-dimensional biological screening
dataset called BIOb.

3.7.1 Scaling with dataset size.

N-BODY PROBLEMS IN COMPUTATI

and the dual-tree algorithm scales as O
our empirical observations.

ONAL STATISTICS 63

From our theoretical analysis we showed that single-tree algorithm scales as O(N log V)

These conclusions are supported by

(V).

Scaling behavior with number of data

3.7.2 Scaling with
approximation.

140 T T T T T T
—~ Single-tree algorithm '
-z~ Dual-tree algorithm
A
1200 o
L7
i
100F y - 4
) # ’
=3 -
§ 80 . 4
$ ’/
Data = SDSS, D = 2 ‘é e
N h* Tree Naive Single Dual < il .
i 7] -
Build Time Tree Tree 5 L
Time Time Time &
12.5K 0025 3 7 .45 12
25K .0025 6 31 1.4 .31 o 5 :
50K 001 1 123 21 46 -
100K .00075 3 194 5 1.0 Py i
200K 0005 6 1976* 10 2 20 7 P
400K .0005 15 7904% 27 5 4 ___d_,_—f"f'_
800K .00025 33 31616* 49 10 &~ A __?________—————’9"
1.6M 00025 70 126465* 127 23 e g . | L L N
Q 2 4 [} 8 10 12 14 16
Number of data (test and train) X 10

Figure 3.9: SCALING WITH DATASET SIZE.

Studying the effect of approximation for the Gaussian kernel (the finite-extent kernels
yield near-exact estimates almost irrespective of the approximation level), we see a

dramatic drop in runtime as the ¢ tolerance is increased. Note that the maximum

possible error bounds provided by the a
magnitude more conservative than the a

lgorithm are typically about two orders of
ctual error in log-likelihood.

55

Scaling bahavior with approximation level

S0F -
a5t]
ol |
i
Data = SDSS, N = 1.6M £
£ Sasp
Kernel = Gaussian B
€ Max. Dual
Poss. Tree a0t
Error Time
i 0.00084595 k1
1 0.0149803 41 ol 1
10 0.0753523 32
100 0.155863 21 . . .
107* 107 107 107" 10

Maxirmurn possible log-likeliheod approximetion errer

Figure 3.10: SCALING WITH APPROXIMATION.

3.7.3 Scaling with
dimensionality.

3.7.4 Effect of bandwidth.

CHAPTER 3

64

As we add more of the dimensions of the SDSS dataset, the space becomes more
complex and datasets are harder for the trees to localize. Note, however, that the
growth is polynomial rather than exponential in D.

60 T T T
s0f- T 1
B
ol f"_—_—]
g /
Data = SDSS, N = 100,000 8,0
D R* Naive Dual 5 /
Time Tree é /
Time /
=l /
2 .00075 494 1 ¢
3 0075 543 6
4 .025 579 18 o
8 .05 945 41 f
16 025 1424 43 ¥
32 1 3326 57 4 . . .
cG 5 10 15 20 ?% 35 s

Sealfing bahavior with number of dmenaions
T T

Murmber of dimensions

Figure 3.11: SCALING WITH DIMENSIONALITY.

As noted earlier, estimation at bandwidths larger or smaller than the optimal band-
width is typically much less expensive. The reason that small bandwidths are cheap
is that more of the space can be pruned by exclusion, or its generalized notion for
continuous functions. Likewise, the reason that large bandwidhths are cheap is that
more of the space can be pruned by inclusion or its continuous form.

Sealing bahavior with bandwicds
T T

20F
Fas| |
SDs5s, D=2 u§
N =16M 2
h~ Dual £
Tree & o E
.001R" 9
.01h* 9
1h* 10
h* 23 =
10h* 18
1004 * 2
10004* 1 . . .)
107 10" 10’ 1 i 10 0™ 1’

Banchwidth

Figure 3.12: SCALING WITH BANDWIDTH.

3.7.5 Effect of kernel function.

3.7.6 Other kinds of data.

3.7.7 Scaling with number of
bandwidths, near optimum.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 65

The infinite-extent Gaussian kernel yields approximately double the cost of the other
two, finite-extent kernels.

Data = SDSS, D = 2
N Tree Dual Dual Dual
Build Tree Tree Tree
Time Spher. Epan. Gauss.
Time Time Time
12.5K :3] 12 32
25K 6 31 31 .70
50K 1 .45 46 1.1
100K 3 1.0 1.0 2
200K 6 2 2 5
400K 15 5 5 11
800K 32 10 10 22
1600K 70 23 23 51

Figure 3.13: EFFECT OF KERNEL FUNCTION.

To exhibit the algorithm's behavior under varying settings, we explore a sampling of
datasets generated by various different kinds of processes.

Other Datasets
Dataset N D T Dual
Tree
Time
BIOS 103,016 5 10-2 10
CovType 136,081 33 10=% 8
MNIST 10,000 784 107% 24
PSFad 3,056,092 2 10-3 9

Figure 3.14: OTHER KINDS OF DATA.

We first examine the case in which the bandwidths fall on a scale ranging over one
order of magnitude roughly centered around the optimum bandwidth h*.

For all of the multi-bandwidth results, we measured the runtimes on a different
Alpha-processor-based desktop workstation, which is not as fast as the most recent
Pentium-Pro-based workstations but has 14Gb of RAM.

CHAPTER 3

Scaling behavior with number of bandwidhs

66

2500 T I I T T T T T
—#=Multi-bandwidth algorithm
- Single-bandwidths run independently
’:
.
20001 % -
-
Py
-
B 1500 s .
=3
o
8 #
-
PS 2
£ A
= e
& 1000 i &
-
i
5
./.
-
el 3
500 il 4
L L L s

200 300 400

I L
500 600

I
700

BOO

L
00

1000

Mumber of bandwidths

Figure 3.15: SCALING WITH NUMBER OF BANDWIDTHS: SIMULTANEOUS VS, SEPARATE
COMPUTATIONS.

Scaling behavior with number of bandwidihs

" Naive sigorthm ' BREE
—%— Multi-bandwidth algorithm -
w0k A]
-
Tl e
i Lo
g el
| T S
RA-Dec, N = 100K, h € [0.001,0.01] £
B Multi Indep Naive Speedup E
Time Single Time Over
Time Maive
1 1.4 1.4 1204 &89
10 7 25 3631 518
100 39 201 26859 671
1000 465 2170 374093 805 1o

10'

107

Murmber of bandwidihs (log scale)

Figure 3.16: SCALING WITH NUMBER OF BANDWIDTHS: COMPARISON TO NAIVE
METHOD NEAR OPTIMUM.

Though the theoretical complexity of the scaling of the multi-bandwidth algorithm
is O(B), the log-log plot of the growth in actual CPU time shows a superlinearity.
Though relatively mild in the range of B we are typically interested in (100 models
is probably a reasonable number for most purposes), it is curious that the naive
exhaustive method displays the same superlinearity.

This appears to be a side-effect of a limitation of the multi-bandwidth algorithm
~ it has a large memory footprint necessitated by the fact that it must store B
entire densities (actually bounds on them), each of size O(N). For the largest
number of bandwidths, the large RAM of our test workstation was taxed near its
limit, limiting the size of dataset that can be processed. Further, far below the
point of swapping, the surprising effect of hardware cache-locality issues becomes
significantly evident. Note that the naive multi-bandwidth method also shares this

3.7.8 Scaling with number of
bandwidths, far from optimum.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 67

limitation. One advantage of independent single-bandwidth computations is that
this memory consumption can be avoided if necessary.

We next create difficulty for the algorithm by making it evaluate densities over a
much broader range, covering 3 orders of magnitude. In this case we expect less
sharing to be possible between the simultaneous computations.

Scabng behavior with numbar of bandwidths

3.7.9 Other kinds of data.

—+— Multi—banewich algorithm ¥
10k e =
=0k
§1n
g .
] o i ST
510
g
RA-Dec, N = 100K, h € [0.0001,0.1] 2
B Tree Multi Naive Speedup §m*-
Build Time Time Over
Time Naive
1 5 1.4 1204 889 wl |
10 5 110 3631 33
100 7 545 26859 49
1000 10 6240 374098 60 e . B N
10° 0’ w0 1’

Number of bandwidihs (log scale)

Figure 3.17: SCALING WITH NUMBER OF BANDWIDTHS: COMPARISON TO NAIVE
METHOD FAR FROM OPTIMUM.

We indeed observe a large degradation in the performance of the multi-bandwidth
algorithm in this case. Over an order of magnitude of computational advantage is
lost (note that the first data point in the plot of ?? is misleading).

To exhibit the algorithm's behavior under varying settings, we explore a sampling of
datasets generated by various different kinds of processes.

Scaling hahavior with numbar of bandwidths
10 T T

g Colars datasel

~=— RA-Dec datasel /'i

@+ BIOS datasel

E

-~

i

i

£

[N = 100K, near h¥ 2

B RA-Dec BIO5 Colors Naive =
(2-d) (5d) (20-d) Time
1 1.4 14 20 1204
10 T 90 105 3631
100 39 449 413 26859

1000 465 5341 6675 374098 o

L
10’ 10*
Mumbar of bandwidihs (log scale)

Figure 3.18: SCALING WITH NUMBER OF BANDWIDTHS: OTHER DATASETS.

$3.8 Related problems and

approaches.
3.8.1 Kernel density estimation.

Grid-based approaches.

FFT approach.

Data reduction approaches.

CHAPTER 3 68

Though previous computational solutions have been proposed, their many inadequa-
cies have still left the exhaustive method as a necessity for this task in general.

The idea of gridding (or 'binning') is to approximate the data by chopping each
dimension into a fixed number of intervals M, then assigning the original data
to neighboring grid points to obtain grid counts, representing the amount of data
in its neighborhood. The kernel function is evaluated at grid points rather than
actual points. The main problem with gridding is that the number of grid points
required is M, exponential in the number of dimensions. The cost of estimating a
density given NV reference and query points is O((MP)?), where presumably M is
somehow set proportionally to N if accuracy is to be maintained (e.g. consider the
fact that h* o N1/ (P+4) [Epa69, Sil86], i.e. the optimal bandwidth is dependent
on the number of data), though principled guidance for choosing M is generally
absent. (One would expect much of this computation to be essentially wasted,
since in higher dimensions most of the grid cells are likely to be empty, unless only
non-empty cells were kept in a linked list, say — something that was not originally
proposed). Query points falling in the regions in-between are linearly interpolated,
yielding another source of error. Tight bounds on the overall error are not provided
by such a method, and indeed the error of such methods has been a point of concern
in the literature.

The current workaround in general use is Scott's binning procedure [Sco85], which
is the default used in the widespread S system.

An elaboration uses the fast Fourier transform [Sil82, Sil86] on gridded data, per-
forming discrete convolutions to combine the grid counts and kernel weights. It
has been noted that the need for zero-packing causes significant loss of computa-
tional advantage for the FFT (which was designed for a regularly-spaced univariate
time-varying signal, explaining its awkwardness in this context). Because a grid
still underlies the method, it still suffers from similarly explosive scaling and error
limitations. Its cost is O(MP log(MP)).

For these obvious reasons, these grid-based methods originated in the univariate
setting and are hardly considered for D higher than 2 or perhaps 3. In a thorough
study by Wand [Wan94] of multivariate extensions of binning including the FFT
extension, in tests of dimensionality up to 3 and data size up to 10,000 points, it
was concluded empirically that this method can give speedups of at most 5 over the
naive quadratic method, and in many cases incurs about the same computational
cost as the quadratic method.

Forcing a caleulation which is based on arbitrarily-placed points into a periodic
representation has several severe effects, including significant artifacts occurring at
the boundaries of the data and loss of accuracy caused by any unevenness in the
distribution, as the underlying grid cannot be made adaptive.

Despite its numerious difficulties in this context, the FFT is the most-often-quoted
solution to the KDE computational problem. The fact that it recurs as a prominent
solution attempt in every one of our chapters is clearly a testament to its household
familiarity rather than its appropriateness for N-body problems.

Viewing the N-body problem as the problem of ‘having too much data’, several
proposals have been put forth for systematically deleting elements of the dataset.
The approach by Girolami [GHO3], which formulates KDE data elimination as an

Multipole methods.

§3.9 Chapter summary.

Publications.

N-BODY PROBLEMS IN COMPUTATIONAL STATISTICS 69

SVM-like optimization represents a recent approach of this kind. The problem with
these approaches is that a satisfactory criterion for performing such a modification
of the data has not proposed, e.g. one which somehow guarantees preservation of
the accuracy of the original estimator.

At least three attempts have been made to apply the multipole methods of com-
putational physics to kernel density estimation [GS91, AEDO1, LHB*99]. The first
suggestion of this kind was made by Greengard himself, with Strain, in 1989. The
idea of doing this seems compelling, in light of the well-known success of these
methods for physical problems which at least superficially appear similar. Unfor-
tunately the multipole methods do not represent a general solution to the kernel
density estimation problem for three key reasons — among the many choices for
the KDE kernel, they are effectively only possible for the Gaussian kernel; they are
exponential in the explicit dimension; and in their current form, multipole methods
do not handle non-uniform distributions efficiently. The next chapter will discuss
in much greater depth the properties of multipole methods for different kinds of
N-body problems and how they might be usefully extended.

It's now time to review what we've done in this chapter:

¢ Function approximation with a finite-difference approach. We developed
an approach to function approximation which is designed to mesh naturally
with the hierarchical geometric machinery of the last Chapter. This treats a
key branch of N-body problems, namely those with continuous kernel functions.
We in fact we did this without the need for derivatives. A full appreciation of
the significance of this fact won't be possible until the next Chapter. We also
showed that this provides a cleaner solution than the more simplistic monopole
approach — which will again take on a new light in the next Chapter.

¢ Kernel estimation problems and real solutions. We reviewed the key the-
oretical aspects making kernel estimation problems foundational and the key
practical constraints under which a solution attempt must operate efficiently.
We then proceeded to develop a solution meeting these criteria for the first
time, via a number of specialized techniques.

e Multiple scales and optimal scale. We will see that several of these tech-
niques may also find application in other N-body problems, most notably the
mechanisms for treating multiplicity in bandwidths and for locating the opti-
mum bandwidth.

e Up-down propagation. We developed an additional methodology based on
dynamic programming which streamlines the basic shattering approach.

The KDE methodology shown here was developed over this series of papers:

e Gray, A. and Moore, A. N-Body Problems in Statistical Learning, NIPS 2001

(selected for oral presentation).

e Gray, A. and Moore, A. Nonparametric Density Estimation: Toward Computa-
tional Tractability, SIAM Data Mining 2003 (Best Algorithms Paper Award).

o Gray, A. and Moore, A. Very Fast Kernel Density Estimation via Computational
Geometry, Joint Statistical Meeting 2003 (Statistical Computing Student Paper
Prize).

What's next?

CHAPTER 3 70

e Gray, A. and Moore, A. Rapid Evaluation of Multiple Density Models, Al and
Statistics 2003 (selected for oral presentation).

However, several elements still have not been published, and should all appear in:

¢ A journal version summarizing all the methodologies developed for this problem,
for the statistics audience.

The work we've done in this chapter turns out to have a second easy payoff, besides
the trivial application to Nadaraya-Watson regression. By fortune it turns out that
kernel density estimation and regression translate almost exactly to a core problem in
physics, giving us an excuse to visit that world including the interesting approaches
developed there.

Agenda of this chapter.

4.1 Computational fluid

dynamics.

4.1.1

Dynamical simulation.

N-Body Problems in
Computational Physics

Function Approximation |l: Multipole Methods.

When the doors of perception are cleansed, man will see things as they
truly are, infinite. — William Blake (1757 - 1827).

WE SAW THE CONTINUUM reduced to the discrete in a certain sense in the
last chapter. In this chapter we'll look at another major way in which the infinite
is usefully replaced by the finite as a general strategy. One of the pillars of applied
mathematics, and the focus of what is sometimes called ‘approximation theory’, is
the idea of infinite series expansions. The most well-known and widely applicable of
these arises from Taylor's Theorem. We shall explore the nature of its applicability
to N-body problems, in the form of the famous 'multipole methods’. In particular,
we will focus on the large subspace of N-body problems in computational physics
which are not amenable to the multipole methods.

The main problem we’ll concentrate on is a fundamental tool arising in many sci-
ences, the Lagrangian approach to computational fluid dynamics, called smoothed
particle hydrodynamics (SPH). While the iron of the last chapter is hot, we will
explain how extensions of the methods we used to solve the KDE problem can be
used to create an equally powerful solution for SPH with several advantages over
existing approaches. SPH will also serve as a vehicle for getting a feel for the sorts of
constraints which are typical in N-body simulation methods for physics in general.
Then we'll visit the approaches developed for physical N-body problems, discussing
their scope and their relationship to the methodologies presented in this thesis.

The problem we are considering in this chapter, simulation of fluid motion, lies at
the more elaborate end of the spectrum of dynamical simulation. All simulations of
physical dynamics simply operationalize Newton's law for a finite set of objects:

2
&I
Vg, mqa—;; = -V, (4.1)

where the force is obtained from the gradient of the potential function @, given

some masses mg for each of Q particles and their starting configuration of positions
and velocities.

71

4.1.2 Navier-Stokes equations.

4.1.3 The Lagrangian approach.

CHAPTER 4 72

The general physical N-body simulation problem then, is to:
1. Compute the potential ¢ at each point Ly

2. Compute the force V& at each point z,.

3. Compute new positions z/ for each point.

These three steps are done for each of a large number of finite timesteps t. The
number and size of the timesteps depends on the system and phenomena being
studied.

So far we have described the ‘standard’ N-body simulation problem with a simple
force field (just gravity, say). This is the scenario considered by the Barnes-Hut
[BH86] and Greengard-Rokhlin [GR87] papers, forexample. In this chapter we'll
consider one of the most complex scenarios we could find, arising in computational
fluid dynamics (CFD). The idea was to treat a sample task having as many compli-
cating factors as possible — the CFD scenario we consider has all of the elements
of a basic N-body simulation, plus a number of other ones.

The motion of a fluid in B is described by the Navier-Stokes equations [Fefo0],

3. i' agd _ VD a'zkd‘_@-_‘—f »w 42
gt Ly, = ;gd,—aﬁﬁ oz, T 1@) (4.2)
B oz
duy
= = T
Yong = % 43)

with initial conditions v(z, 0) = v°(2), where x denotes position, v denotes velocity,
t denotes time, f() is a given, externally-applied force such as gravity and V is the
constant of viscosity.! The Euler equations correspond to the case where v =0.
The unknown velocity and pressure are to be solved for.

They simply specify the basic constraints on fluid motion — the first equation
is just Newton's law f = ma for a fluid subject to an external force and to forces
due to pressure and friction. The second equation just states that the fluid is
incompressible, in this case. (Note that all of our discussion actually applies to both
compressible and incompressible fluids.)

While essential in a huge number of applied physics and engineering problems
from aircraft flight to combustion engine design, the Navier-Stokes equations are not
well understood analytically. Even basic facts concerning the existence of smooth
solutions are lacking. Understanding of analytical solutions of the Navier-Stokes
equations remains in fact a major open problem of mathematics [Fef00]. However,
we are always free to run the equations, ie. simulate fluid systems according to
the known equations, and observe the values we desire, such as the velocity and
pressure. This is similar in end-result to the situation in the N-body problem we
mentioned in 1.4.

The smoothed particle hydrodynamics method, introduced in 1977 by [Luc77] and
[GM77] is a Lagrangian simulation method, as opposed to an Eulerian method. This
means simply that some representative particles are tracked through space, rather

1. ltis sometimes written more succinctly using the divergence divy = Z?

A Zu a2

d aﬁﬁ'

3d and the Laplacian

az

Versus Eulerian.

4.1.4 Smoothed particle
hydrodynamics.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 73

than a grid being used, where grid cells become the new theoretical focus. This
is the source of its advantages over competing methods and the reasons for its
long-standing and growing popularity for fluid dynamics problems of all sorts.

Besides the computational advantages, which we'll describe as usual in the related
work near the end of the chapter, the Lagrangian approach constitutes several rep-
resentational advantages: it imposes no constraints on the geometry of the system
or in how far it may evolve from its initial conditions, and simulation resolution
naturally self-adapts as needed via the particle density. SPH is particularly suited to
compressible fluids (i.e. gases and plasmas), where non-uniformity of the distribu-
tion is especially debilitating for grid-based methods. This general robustness makes
SPH much more widely applicable than other methods.

Further, much of the complication incurred by grid-based representations is elimi-
nated as a result of the fact that the method operationalizes the mathematical form
of the governing equations in the most direct and intuitive way possible. Closing
the intuition gap between the mathematics and the computational method is much
of the reason SPH has found relatively widespread application.

As we've already seen, part of the SPH method is exactly a kernel density estimate
for the density at each point:

) = 3 pmes(Za 2 (4.0

with the inclusion of a weighting by each particle’'s mass m,..
Finding values of quantities of interest such as the pressure or velocity is tanta-
mount to kernel regression:

f(ﬁq):Zimrf(fr)é(llﬂ;—zrll) (45)

As pointed out by Monaghan [Mon92], the kernel estimates inherit the differen-
tiability properties of the kernel ¢(), so that as long as the kernel is differentiable,
finding quantities such as the pressure gradient is easy and natural:

Vie) = 3 gome Ll vg Bz (4.6)

though in practice a rearranged form of this equation is used.

Recall that these calculations are performed at each time step ¢.

Certain considerations entering the kernel choice arise from the equation of motion
used in SPH, which arises from symmetrizing the pressure gradient term and adding
an artificial viscosity term ():

dv, ;
e (5 o) o o
3 . q I

where it is assumed that K . = K,,. The artificial viscosity term is used to allow
for entropy production by shocks.

4.1.5 Practical considerations
and constraints.

Low dimensionality D.

Modest accuracy requirements.

Optimal bandwidth h*.

Variable bandwidths h,.

Time-varying bandwidths h,.(t).

Kernel function choice K ().

CHAPTER 4 74

The set of practical issues we must now consider differs and goes beyond that of
kernel density estimation in several ways.

One important constraint that we can now relax is that of arbitary dimensionality.
Except for the possibility of higher-dimensional spaces occurring in several proposed
grand unification models of physics, we can assume the dimension is at most 3.

SPH applications typically do not require extremely high accuracy tolerances, gen-
erally focusing more on qualitative characteristics — hence the appropriateness of
Barnes-Hut algorithms.

The meaning and effect of the bandwidth h in SPH is absolutely no different than
it is for kernel estimation. The idea is that quantities which actually are defined on
a much larger true number of particles approaching infinity are estimated using a
smaller finite representative sample of particles, by using an estimate of the local
density based on the finite sample. The extent to which the finite sample represents
the larger number of particles well depends on the local scale h chosen, and some
h* gives the best possible representation.

Despite borrowing its basic concept from kernel estimation, the notion of the op-
timal bandwidth h* has eluded the field of SPH, which seems to have forgotten or
ignored the statistical origin of the ideas, or perhaps the fact that it has a mathe-
matical basis (nonparametric estimation theory). Thus, having at least recognized
the criticality of the issue, investigations by physicists on this question, e.g. [Ras99],
continue without the benefit of decades of work in statistics on it. We have already
incorporated the best existing statistical prescriptions for treating this question in
our methodology in the last chapter.

The idea of allowing a different bandwidth for each reference point corresponds to
variable-kernel or ‘adaptive-kernel' density estimation. Though proposed as early
as [TS92], this has been practically pursued only in a relatively fledgling fashion in
statistics. This is perhaps because the fixed-bandwidth scenario is deemed to pose
significant difficulty alone. Nonetheless, it is intuitively clear that such a estimator
is more powerful than a fixed-bandwidth estimator in general, and particularly when
the data exhibits long tails, outliers, or regions which otherwise differ greatly in
density, and empirically it has given good results in the literature. In the practice of
SPH, it is the norm.

The idea of variable bandwidths is in fact taken slightly further in SPH, as we'll
see in the kernel functions typically used.

Some formulations of SPH even use time-varying bandwidths, accounting for the
fact that the distribution of points changes.

Kernel symmetry. The kernel itself is typically defined to reflect both the bandwidth
of the reference point and that of the query point [HK89]:

- 1 = ||£q_§r||) - ||£q_§r[|
Ir\q-r = 5 {1‘1 (T + K T ; (48)

which guarantees that K. = K., even when the bandwidths of z, and z, differ.

Gravity component.

Dynamic update of 5.

Time-stepping.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 75

Base kernel choice. The most comn-hon choice for the base kernel lfuncticin is a
. oz =z Py T —
form of spline kernel such as ¢(——") = 1 — %q‘ - %qs for 0 < —"Shil <1

and (2 —¢q)3 for 1 < w < 2, otherwise 0. The arguments supporting these
choices include smoothness and statistical efficiency. In addition, kernels which are
not smooth or do not have compact support have been shown to cause a number
of problems in the SPH setting, including ringing, density overestimates, interpen-
etration of particles, and inability to model shocks accurately [MPT93], as well as
computational efficiency. Recent versions of SPH have even proposed anisotropic
kernels.

Artificial viscosity. The artificial viscosity function () is generally also a function
of distance, and can take a multitude of complex forms depending on the problem.
It can be essentially thought of as another kernel function, so that the ‘overall’ kernel
function is actually the product of ¢() and ¢().

The most important thing to note about the kernel functions used in SPH is that
they are not generally standard pdf's such as the Gaussian, and in fact are a matter
of considerable art, as many aspects of the problem at hand are reflected in the
crafting of the kernel function. This holds in particular for the artificial viscosity
function. Another item of note is that the kernels used in SPH almost always have
compact support. These facts eliminate the multipole methods from consideration
for SPH, but represent no issue for the much more flexible finite-difference approach.

Note that the equations of fluid motion contain a component due to gravity. This is
handled in SPH by finding the gravitational component of the force with a separate
algorithm, usually even implemented in a separate piece of software, specialized for
gravity.

In a dynamical simulation the points move at every time step. In other words, in
principle a new N-body problem must be solved at every time step. Fortunately,
they generally move only slightly between time steps, so that the N-body problem
at time ¢ is very close to that at time ¢ — 1.

One clear upshot of this new dynamic aspect is that the tree structure S must be
kept consistent with the points somehow.

In the most basic form of N-body simulation, the increment At between time steps
is constant, and is the same for all points.

Adaptive time-stepping. The issue of selecting an efficient time-stepping strategy
to minimize wasted computational effort while maintaining high accuracy can be
viewed in the general setting of numerically integrating a time-varying equation.
Thus well-known approaches such as Runge-Kutta, the predictor-corrector method,
and so on, enter this potentially significant subproblem of N-body simulation. In
fact, it has been argued that the issue of efficient time-stepping strategies holds the
potential for the last orders-of-magnitude to be gained in the N-body simulation
problem [LQR97]. In SPH a simple second-order explicit leap-frog method is almost
always used [MPT93, FO02].

Interaction with N-body problem. To what extent does the time-stepping aspect
of the simulation problem interact with the strict N-body problem that must be
solved at each time step? In other words, can accounting for the dynamical aspect
of the problem result in only needing to solve the N-body problem for a subset of
the data? The idea of varying the time resolution for different query points, though
intuitively very promising for reducing unnecessary computation, does not seem to

Boundary conditions.

54.2 Extensions.

4.2.1 Function estimation
extensions.

Variable-bandwidth estimation.

Simultaneous computation:
regression.

CHAPTER 4 76

have entered the mainstream mindset concerning N-body problems, though it has
been pursued seriously in the context of some specific physical N-body problems, for
example in simulations of the heat equation [?] and in molecular dynamics [GHWS91,
CHHB85]. Instead, in standard practice the time-stepping problem is decoupled from
the NV-body problem. While we actually feel that substantial gains are to be made
by coupling the problems, this will not be our focus and we will focus only on the
N-body problem as standardly posed.

Our method works with any standard time-stepping scheme and can likely be
modified for any coupled formulation of the N-body problem with no more difficulty
than any other N-body approach for SPH.

The principal weakness of SPH is actually a recurring theme of N-body approaches in
general — near the boundary neighborhood relations are artificially distorted by the
lack of points beyond the boundary. [MPT93] surveys a number of approaches for
dealing with this, none of which affect the computational approach in any significant
way.

Now we show how an algorithm for SPH can be derived from the algorithm we
developed for KDE in the last chapter.

Here we treat the aspects of SPH which are actually also variations of statistical
kernel estimation methods.

Variable or data-dependent bandwidths represent a very minor change in the KDE
algorithm, though at the cost of some efficiency. The minimum mass contribution
of a reference node is computed using the smallest bandwidth in the reference node,
and the maximum mass contribution is computed using the largest bandwidth.

This ensures that the bounds are valid, though large differences in the minimum
and maximum bandwidths within a node will cause its pruning bounds to be loose.
However in practice, there will be fairly strong spatial consistency in the bandwidths,
i.e. nearby points will tend to have similar bandwidths, given a reasonable scheme
for selecting the values for the data-dependent bandwidths.

Standard practice in SPH uses the heuristic of keeping the number of neighbors
constant, i.e. each reference point's bandwidth is chosen to be the distance of its
k" nearest neighbor. This corresponds roughly to schemes proposed in the statistics
literature [TS92], though a cross-validation computation of some sort to choose the
best value of « should be performed before the simulation begins. We have already
shown the dual-tree method for this sub-problem in Chapter 2. The total additional
overhead of performing this during this simulation is considered below in 4.2.1.

Currently SPH practitioners choose global smoothing parameters arbitrarily [MPT93,
FO02].

Ideally, the regression step(s) of SPH could be performed simultaneously with the
density estimation step, i.e. in the same node-node comparison, both quantities
could be computed. Unfortunately, the value f(gq) at time t depends on knowing
the values p(z,) at time ¢ for every point in a reference node. Thus we are forced,
for a given time step ¢, to fully compute the density values for each point, then
subsequently compute the regression values for each point. If the values flz,)
at time ¢ were redefined to be based on the values p(z,) at time { — 1, we could
eliminate this doubling of the computational effort. The corresponding loss of fidelity

Time-varying bandwidths.

4.2.2 Physical extensions.

Simultaneous computation: gravity.

Force vectors.

4.2.3 Dynamical extensions.

Dynamic tree updates.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 77

should be relatively minor. To be clear, this represents a possible way to redefine
the standard SPH updates, which is not necessary but allows a possible factor of 2
savings.

The inclusion of time-varying bandwidths is computationally insignificant per se, ex-
cept for the issue of possibly re-estimating the optimal bandwidths, which again has
more to do with the standard choices made in SPH than inherent computation. If the
nearest-neighbor approach is followed, the bandwidths change as the neighborhood
of each point changes over time. This means computing the all-x-nearest-neighbor
distance at each time step. Unfortunately this cannot be performed simultaneously
with the regression or density estimations, since it is needed to determine the band-
widths upon which they are based. Again, simultaneity is possible if we choose to
allow the bandwidths of time ¢ to be based on the neighbor distances of time ¢ — 1.
Since the neighbor distances should be changing very slightly between time steps,
another option is to compute them only every 7 timesteps.

At each time step ¢, we must compute the force on each point due to gravity (which
has a contribution from each of the other points), in addition to the other SPH
quantities. Because these values are not interdependent within the same time step,
as was the case with the density and regression values, in this case we are able to
compute gravity simultaneously with the other SPH quantities. Thus the need for
a separate 'gravity solver' is removed. Such solvers are particularly wasteful if they
employ expensive methods designed for very high accuracy (i.e. multipole methods).
The fact that the accuracy required of the gravity component of likely to be on
the same order as that required of the other quantities also suggests simultaneous
computation.

For that matter, if the gravitational force is not treated with its own separate
accuracy criterion, but lumped together with the total force, no disjunction need
appear at all.

In the KDE problem, only a scalar potential ® is computed at each point. In a
dynamical simulation the output also includes a force vector V& for each point.
This poses no additional problem beyond the fact that D values must be stored for
each query point instead of one. (In fact 2D values are needed since we maintain
upper and lower bounds.)

In methods which use non-adaptive fixed-spacing structures, such as the original
Barnes-Hut and Greengard-Rokhlin methods, maintainence of the values stored in
the tree was a minor issue since each point can be hashed (whether or not it is called
this) to its appropriate cell. Tree maintenance can thus be done in O(N) time.

For our adaptive tree structures, the situation is more troublesome. Complete
reconstruction of the tree at each timestep would cost us O(NlogN), and as we
saw in the empirical results for KDE, the cost of tree-building actually dominates
that of the N-body computation itself.

One thing that comes to mind is the idea of dynamic data structures in the vein
of AVL trees or splay trees [ST85], for which kd-tree variants exist, for example

Minimal propagation method.

54.3 Multipole Methods

CHAPTER 4 78

[M. 91]. There has been a great deal of study of dynamic data structures and
algorithms in computational geometry in general [CT92]. However, these designs
are appropriate for the situation in which most of the data stays the same, and a
relative few are added or deleted, or ‘moved’ by deletion followed by addition. This
is not our situation, since all of the data move at each time step, in principle.

Fortunately, the movements of points between time steps is expected to be very
slight, if reasonable simulation quality is to be maintained. Thus a very simple
and cheap procedure can be employed to avoid reconstruction of the tree at every
timestep, which we refer to as a minimal propagation method for tree updates.

In our finite-difference approach, only the boundaries of the nodes are important
— no other quantities such as multipole moments, even centroids, are critical to
the algorithm. It must be ensured, however, that points lie within the boundaries
indicated by the nodes containing them, or else our approximation bounds will be
invalid. Assuming a standard mechanism for traversing the leaves of the tree linearly,
as in a threaded search tree (R-trees and B-trees are examples), we can simply
check each point to see if it has moved outside its leaf node's boundary. If so,
the boundary is appropriately updated. For those leaves which have changed, the
boundary change is propagated upward to its parent. If the parent’'s boundary needs
to be updated, the process is continued recursively, until the root is reached. In the
low dimensionalities of this problem, only a small number of data points will trigger
boundary changes, and further propagation becomes less and less likely as the change
ascends to the root. Over a large number of timesteps, this process will tend to
introduce overlap between the boundaries of nodes. Note that this causes no issue
regarding correctness, only causing a decrease in efficiency with increasing amounts
of overlap. Ball-trees in fact contains large amounts of overlap while remaining very
robust in terms of efficiency. If desired, the tree can be reconstructed from scratch
every T time steps to correct for this effect.

We can now contrast the properties of our overall method to the state-of-the-art
methods in SPH. However, to do so with maximum insight, it will be necessary to re-
view in depth the non-trivial computational literature for physical N-body simulation
problems.

The term multipole methods is used in two different ways. The first sense refers
to a very specific kind of function representation based on Taylor's Theorem. The
second sense refers more generally to this function representation coupled with a
certain data structure strategy and a certain approximation strategy (what we mean
by these will be clear in a moment) to form a specific overall method for N-body
problems. Examples are the original Barnes-Hut method and the original Greengard-
Rokhlin method, which imply certain choices other than the use of the multipole
representation per se.

Much confusion surrounds the multipole methods even within its own literature,
despite the fact that they are so well-known. Part of the reason is due to the
presentational choices made by Greengard and Rokhlin in their seminal paper, which
presented the method in terms of spherical harmonics and complex analysis, rather
than real numbers and Cartesian coordinates. They also chose a somewhat obtuse
theorem-proof format for explaining the essential operations. The presentation which
follows is my reconstruction of the multipole methods from scratch, in real numbers
and Cartesian coordinates, and from the more informed computer science perspective
of divide-and-conquer and data structures, where the discrete aspects of the methods
are concerned.

4.3.1 Reference-side expansion.

Multipole expansion.

Multipole moments.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 79

The multipole method, from the point of view we can take after having developed
the chapters so far, is little more than a double application of Taylor's Theorem to
the kernel function, along with some extra thinking about how to use this kind of
approximation within a hierarchical context.

The terminology behind the multipole expansion [PP62, Bot73] is due to one of the
main sources of the N-body problem, classical electromagnetism, in which the points
are charged masses and the kernel function is the Coulomb potential. This classical
setting is in fact the one considered by Greengard and Rokhlin. The multipole
expansion is simply a Taylor expansion of the potential at a point z, due to a point
z, about a third point . This corresponds to the point-node scenario shown in
the figure, where zy can be thought of as the center or some other reasonable
representative of a node R. In terms of the distance 4, = ||z, — z.||, Taylor
expansion of the potential function yields

D
1 1 Z d 1
Ogr [3]5 * Orra I:aﬁrdgjla
qf d qR

(4.9)

The total Coulombic potential at z,
charge w, is then

due to all the points in node R each having

Nr
(b e
®) = 2.5,

Ngr 1 D .
) Zw’{ﬂ““z‘”“ il
o? 1
ZTZJ’RdeSer' [m_] R+“}
= Zur+25md[d ;] Ewr .
Zrd
A g2 1 i\ﬁ
2_2{12[33’ 0,40] th)r(s"ﬁdéera—f—_“

6q-R T

(4.10)

We can rewrite the last equation by replacing the summations by constants depend-
ing only on the points in the node R, i.e. not on the query point:

rid [

D
Z
& b 82 1
o Zd: ; [5%6%, _an Ypag T+

®(z,)

1
_] ERd
SR

(4.11)

1
Ql Zarﬁdzarﬁd’ l:(?a“ 8.'Lj,.d, -.:I s

Derivatives.

Approximation.

4.3.2 Query-side expansion.

CHAPTER 4 80

aR, . and 7, are called the monopole, dipole, and quadrupole moments of the
node R, respectl\.relg.,(2 8 is a vector, o is a matrix, and so on into tensors.

Importantly, the multlpole moments represent one way to generalize the idea of
the centroid approximation we saw in the last chapter, answering a question we
raised in the last chapter. We should keep in mind that there might or might not
also be other ways as well, though no others have been proposed.

An easily-overlooked but important point arises when actually taking the required
derivatives. The ‘direction’ implicit in the distances are not interchangeable, j.e. it
is not the case that d;. = 4, for this purpose. As an example,

o1 0 I
Ozq 8~ Ozeglley, — 2)2+ By —Eop P2
0
— W[(gql xr]) + "(g"_qD_Er-D)Q]HIKE

= = (4.12)

4§
so that [l} = 54,
<'3‘$ d P 6QR

The total potential at z, is then approximated by truncating the series at some
number of terms P, here P = 2:

D D

1 1
zg) = 5oart 5= Z‘fqﬁdﬁm * %5
d d

(4.13)

The moments are functions only of the points in R and thus can be precomputed
and stored in each node of the tree. The rest depends on the query point and
thus must be computed at runtime. The complexity of approximation at runtime is
O(PP). The storage cost due to the moments is also O(P™.

So far we have a point-node approximation scheme. Now let’s draw a more complete
picture, in which z, lives in a node @), having center (or other representative) zg,
to obtain a node-node scheme.

The idea is to now approximate the potential at each z, in terms of the represen-
tative z5. This implies a Taylor approximation of the previous Taylor approximation.
It should now be clear why we have called these approximations the reference side
and query-side approximations, respectively.

2. We have written this in the form used by [Kut95] rather than that used by [DKG92], which
we find clearer.

23 2(35<;Rd5qﬁw — li=a' 5§H)IRddf t

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 81

®(z,) = [2(2)], ‘f'Zéqu[]]

Zg

1) &?
+2—[§0qu ;%Qw {W‘I’(ﬁ)] g

Lgq4YELq o
D
1 1
= lﬂﬂ'ﬁ + 5 ;5-Rd§Rd

D D
1
+ﬁ;;(3aﬁdéﬂdm1a 0>),M,+,.l

Lo

1 & 1 T o2
7 Z‘%de“q@w lmr (E”“ 7y 2O Raln,
255 ZZ daﬂdaRd*—Id d;(ﬁ)7Rdd’)

By rearranging the terms, we can also view this as Taylor-expanding each of the
terms of the reference-side expansion about z:

s - i, i),
gr Z‘Squ quQd' lax 0z,)]

1 &
53 ZﬁRdﬁRd} +ZC$Q‘QdI: (633253‘*’81%{1)]
d Lo
QTZ5qu25quf [333 Bz (51 Z‘stﬁRd)}

Zq4r

+(4.14)

o

Lo

25‘3 ZZ 30.rad.rar — la=ar”)7Ra‘d*“

La

+Z§qu [“—‘— (2615 ZZ (38.R40.Rar — lu=ar 6)']/Rdd)]

Lo

1 2 D
‘|‘§ zd:‘qud ;5<7Qdf

Conceptual importance.

4.3.3 Gaussian case.

CHAPTER 4 82

o i "
BQq dafﬁqdr QJ_ER ; Z(S(E'Rdo"&w — Lu=ar J'R)led’

d' :
Lg

Rather than explain it this way, the Greengard-Rokhlin paper presents the query-
side expansion as one of a number of ‘translation operators’ for ‘converting expan-
sions into other expansions' in the form of three theorems.

It should be understood that the idea of query-side expansion is the main conceptual
breakthrough of the Greengard-Rokhlin paper [GR87]. It is not the node-node idea
per se, as Appel [App8l, App85] (a computer scientist) had introduced that idea
long before, though in a confusing fashion that effectively left it by the wayside. It
is not the idea of multipole expansion, as earlier grid-based methods had made use
of that idea. It is not the fact that the tree structure used in the Greengard-Rokhlin
method is of a more primitive fixed-spacing type. And it is not the idea of ‘working
with the field rather than the interactions’, one of the more groping attempts by
some authors to somehow place the Greengard-Rokhlin method with respect to the
other more intuitive N-body approaches such as Barnes-Hut.

There are other things to be considered to arrive at a complete method for solving an
N-body problem, but first let's visit the case of the Gaussian kernel. The Gaussian
is of some interest to us because of its wide use, particularly in statistics. While
not always the best choice for an application, it is often at least a good thing to
try and tends to be relatively robust for many uses. For example, an algorithm
for kernel density estimation which only works with the Gaussian kernel would be
annoying and even unworkable for many applications, but for many users with generic
applications for which the density estimation component need not be particularly
refined, restriction to the Gaussian case could be tolerated. This is similarly the
case for many other statistical inference methods.

The Gaussian is essentially the only other major type of function beyond the
generalized Coulombic potential, ai,, for which multipole methods exist (we will
discuss the full scope of multipole methods in more depth soon). Unfortunately, the
Gaussian case of the ‘fast multipole method' was published under the name ‘fast
Gauss transform’ [GS91], and the link between the two only quickly mentioned. The
approach is explained as an application of Hermite polynomials, which in addition to
adding unnecessary obfuscation and little additional insight, steers attention away
from the fact that the fast Gauss transform is in fact simply the fast multipole
method where the kernel function is the Gaussian.

Reference-side Taylor expansion of the Gaussian yields

D
8"6‘”‘!%2 - [E_agfw] + Zéri-ld [g e_ézﬁhz}
6(;5(q 3;,.4 5qﬂ
i & 5
3 —8%/2h?
+2!Z§erZ‘5erf [aﬁr ;aﬁrd:e] Feorar
d d! d dyr

D
op2 d,
_ |:e—6,-"-_fa] " Z(S”R‘f [Q"2d£—52f2h2:|
dan . h i

e

(4.15)

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 83

1 ¢ & Igrdqrar _ la=ar —&/2h®
Z_Z ’RdZ(S’Rf" A pz)¢) (4-16)
d a’ dqr

Note the appearance of the Gaussian function again in every term. Continuing
onward as before, we can obtain an expression for the total potential ®(z,) =

ZNH Wy e~ 0ar/2H? , from which we'll be able to extract pre-computable multipole
moments.

Hermite polynomial perspective. An alternative form of this expression is the one used by Greengard and Strain for
the total potential, expanding about zp:

=Y G~ g, (”1_\;“3?“) (4.17)
p

where H, are the Hermite polynomials [AS72] where the coefficients €, are given
by

5 ;,TZ (nf: —ar) -

and confusingly, p represents a multi-index, a notational compression of the sums
indexed over the dimensions arising from the Taylor expansion. While perhaps use-
ful in approximation theory, its use here is somewhat obfuscating when trying to
understand the mapping to implementation.

The main point of this discussion is to make it clear that when we discuss prop-
erties of the 'fast multipole method’, the 'fast gauss transform’ has those same
properties, because they are the same method.?

4.3.4 Computing the moments. Again using the language of ‘translating expansions’, and referring to the multipole
moments interchangably with expansions, the Greengard-Rokhlin paper describes
how the moments can be ‘shifted’ from leaf centers to the center of their parent, and
so on recursively. From our point of view this is simply another kind of composable
‘cached sufficient statistic’, which is built bottom-up during tree construction.

For example for the monopole moments at the leaves, agr = > w,, and for
non-leaves

w = XY w

k rER

=) din (4.19)
k
For the dipole moments at the leaves, ng =5 wydrgra, and for non-leaves

Z Z w?'(grﬂ;gd +5RR;= d)

k TER,

3. Except that in [GS91], the tree structure was omitted, and only the function approximation
was described. The other slight practical difference is that no 'well-separated’ constraint is needed
for the approximation bounds to hold, for the particular bounds developed for the Gaussian case.

84.4 Variations and new
possiblities.

4.4.1 Practical limitations of

multipole methods: applicability.

Useful differentiability.

New mathematics for each kernel.

Opaqueness of theory and
implementation.

CHAPTER 4 84

{ Z H;‘rér‘.ﬁyd + Z 1L’r'6Rde}
k

refg refy

Z {gﬁ,\. i + a R, ORR, d} (4.20)

k

Now we'll take a look at the main variations that have been proposed for how
to use the basic idea of multipole approximation. This will allow us to propose
improvements to current uses of the multipole idea.

The chief benefit of multipole methods is the gain in accuracy. In particular, the
first handful of additional moments beyond the first yield a high gain in accuracy.
However, they face a number of practical limitations which limit their scope of
applicability and motivate improvements.

We are now in the world of analytic approaches, which in contrast to the finite-
difference approach of the last chapter, attempt to take advantage of analytic infor-
mation of the kernel function (i.e. derivatives). While there are advantages to be
gained (namely higher accuracy in low dimensions as we'll see), this is what makes
analytic approaches fairly narrow in scope — essentially each kernel function has
a different set of properties, so that an analytic approach for a given kernel func-
tion generally does not transfer to a different kernel function. The fast multipole
method was developed for the Coulombic potential, and though the idea of Taylor
approximation would seem general enough, in practice the machinery has not been
developed for any other class of functions except for the Gaussian, for reasons we'll
discuss.

Use of the multipole method with order P requires that the kernel function have
P useful derivatives. A large number of common kernel functions are low-order
polynomial in nature, thus having few non-zero derivatives. Multiple methods cannot
achieve arbitrary accuracy unless P is allowed to be arbitrarily large. Furthermore a
large number of kernels which are desirable or even strictly necessary for certain types
of problems have compact support or are discontinuous. The Coulombic potential
and the Gaussian both happen to be analytic functions which have an infinite number
of non-zero derivatives. In fact they seem to be rather rare in this regard.

There are no tight general bounds on the error of a Taylor approximation. The mean
value theorem can always be used, but generally does not result in a useful bound.
Thus new bounds must be derived for each new kernel function to be used. For
example, the central contribution of the paper introducing the specialization of the
fast multipole method to the Gaussian case [GS91] is the bound on the error. This
necessity for new mathematics severely limits the application of multipole methods
to new problems.

We have done our best in the above explication to demystify and deconvolute the
ideas behind the multipole methods. However, existing published explanations which
offer intuition, clarity, and details at all levels, from theory to implementation, seem
nowhere to be found. Confusions about multipole methods in the literature are
easy to find, as we've already touched upon. The result seems to be that a fairly
small number of groups have specialized in the complex art of multipole methods,
rather than the multipole methods representing a well-understood standard tool that

4.4.2 Practical limitations of
multipole methods: efficiency.

Curse of dimensionality.

Cost of approximation.

Uneven distributions.

Tweak parameters.

4.4.3 Data structure strategies.

Fixed structures.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 85

can be pulled off the shelf easily for new problems, as for example the hundreds of
computational methods each compactly summarized in Numerical Recipes. There is
even a certain thread of research on ‘multipole methods without multipoles' [And92],
at least partially motivated by a desire for greater simplicity and clarity.

The relative opaqueness surrounding the multipole methods, despite the inherent
simplicity of the idea, is our guess as to why this technology has had limited impact
beyond the specific problems it was originally demonstrated for. To date, these
methods do not seem to have been applied above 3 dimensions or outside of physics,
with the exception of [AEDO1, LHB%99], though with limited success.

The simplest of the multipole methods, Barnes-Hut, is much better in this regard
than the Greengard-Rokhlin method. This is because the entire multipole expansion
part of the story need never enter. It was originally described in only the monopole
form, which is just the center of mass. At this level it is quite simple and intuitive,
but not O(N), begging the question of whether a linear-time method might exist
which is also easy to understand and adapt to new problems.

The basic nature of the multipole expansion in arbitrary dimensions unavoidably
enforces an explicit curse of dimensionality. Since P tends to be fairly large, the curse
is further exacerbated, limiting the utility of the multipole idea to low-dimensional
problems. Fortunately physical N-body problems fit the bill nicely, hence their
demonstrated utility in this area.

Even in low dimension, the O(PP) constant is significant. lts size in fact defeats
the complexity advantage of the Greengard-Rokhlin method over Barnes-Hut until
N becomes quite large [BN97]. This fact has been another obstacle to the use of
the Greengard-Rokhlin approach for all but the largest problems, even in the limited
regime for which it is best-suited.

The Greengard-Rokhlin method was analyzed for the uniform distribution of data,
and it was empirically demonstrated on the uniform distribution. For uneven dis-
tributions the performance of the method degrades significantly. The Barnes-Hut
method handles non-uniformity more robustly, but still less so than what is clearly
possible. Two main sources of non-adaptivity accounting for these properties will
be discussed shortly.

Both the Barnes-Hut and Greengard-Rokhlin methods effectively have tweak param-
eters. The net effect of this in practice is that optimal performance might not be
achieved if the optimal setting tweak parameters are not found somehow by the
user. The user may choose to spend a lot of time finding efficient settings, but then
this has to be accounted for a loss of human efficiency, which is ultimately most
important.

The Barnes-Hut and Greengard-Rokhlin approaches, the two primary approaches
used for N-body problems, both used fixed hierarchical grid structures, with fixed-
spacing cells, such as oct-trees and quad-trees. The main inspiration for this seems
to be that it makes the methods easier to analyze and think about; Appel's approach

Adaptive structures, and the WSPD.

4.4.4 Adaptive multipole
extension.

Single-tree adaptive multipole.

CHAPTER 4 86

was actually very much an adaptive-tree approach, but was perhaps too much to
swallow at the time, leading to the counter-reaction of Barnes-Hut, a much more
naive algorithm.

There is also an advantage in the cost of tree building. The fixed structures are
trivial to build, and are thus rebuilt at each time step. Note that by ‘tree-building’,
we include the process of processing the 'cached sufficient statistics' in nodes, such
as the multipole moments.

However, it is clear to the intuition that adaptive trees will perform better when
the distribution is non-uniform. This has also been verified experimentally, as many
researchers have made this observation. Computer scientists, in particular, seem to
suggest this as their first reaction upon exposure to the current methods for the
N-body problem.

The most well-known of these, at least in computer science, is represented by the
well-separated pair decomposition method of Callahan and Kosaraju [Cal95]. This
was a proposal to allow the use of adaptive kd-trees, under the name of ‘fair-split
trees', rather than oct-trees or quad-trees. The idea was to compute a list of all
the pairs meeting the ‘well-separated’ criterion. The list of all such pairs, called the
‘well-separated pair decomposition’ (WSPD), is then passed to an N-body solver
which would use it to decide which nodes to approximate by multipole expansion,
the rest being handled directly. The cost of computing the WSPD was shown to be
worst-case O(N log V), using O(NV) storage. Interestingly, the WSPD algorithm is
exactly an instance of the recursive dual-tree algorithms advocated in this thesis.

Unfortunately, the authors seem to have never implemented the algorithm in an
N-body solver, nor has any other author apparently been compelled to use it in its
intended setting. The critical question is thus left unanswered by the WSPD, which
is how the tree will be efficiently updated or constructed from time step to time
step. This question must be answered by any attempt to apply adaptive trees to
the dynamic simulation setting. Despite this, computer scientists, perhaps either
convinced of or simply wishful for the relevance of computer science to a famous
problem in the physical sciences, continue to publish proclamations that the WSPD
has solved this problem.

Given the perspective we have built up so far, on-the-fly computation of well-
separatedness is trivial. We just need to check the well-separatedness criterion at
the beginning of each node-node comparison. (If it weren't so trivial, we could give
it a fancy appelation like ‘simultaneous computation of well-separatedness’.) Thus
there is no need to compute the full 'well-separated pair decomposition’ as a separate
data structure requiring a whole separate computation.

To date, adaptive trees have not yet entered N-body solvers except possibly for
limited cases, e.g. [NT94]. Part of the reason for this is perhaps that the cost
of updating the tree does not seem to have been seriously treated. For example,
with the introduction of a simple scheme for tree-updates such as the one we gave,
preferably in addition to skipping the construction of an unnecessary separate data
structure, the WSPD authors would have actually given a solution to this problem.

Is it possible to extend our algorithms to use the multipole approximation instead of
the finite-difference approximation (for problems for which it is appropriate)? The
answer is yes, but we must consider some different cases.

For the single-tree case, the extension is straightforward. The bounds on the
reference-side multipole approximation error simply replace the simpler finite-difference

Dual-tree adaptive multipole 1.

Dual-tree adaptive multipole 1.

4.45 Approximation strategies.

Direct accuracy specification.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 87
bounds.

The situation is slightly more difficult in the dual-tree case. To maintain our full
error-control behavior, we need bounds on the minimum and maximum values that
the contribution from the reference node could be for any point in a query node,
computable without running over all the points in the query ndoe. The query-side
multipole approximation error bounds merely give us the width of the bounds, not
the center. We cannot find the absolute maximum potential values without knowing
the centers. A fallback position is to simply use a large value of P which absolutely
bounds the error given by any reference node and knowledge of the maximum number
of reference nodes that any query node could enter to obtain a loose bound on the
overall error. This is exactly what the Greengard-Rokhlin method effectively does,
thus obtaining a weak form of error control.

A possible way out is to optimize over the query region to find the points yield-
ing minimum and maximum contribution from the reference node. This sets up a
nonlinear optimization over the query-side expansion which must be solved at each
node-node comparison. While perhaps sounding expensive, this optimization would
be contrained by the query node region, which in the hyperrectangle, might be pos-
sible relatively efficiently, as in the similar case with [Mo099]. This suggestion must
be considered a mere possibility rather than a prescription as it may not be feasible
or efficient at this speculative stage.

The most desirable state of affairs for any algorithm which makes approximations
is that the user is able to specify an error tolerance (which resumably affects the
algorithm's cost in some inverse proportion) and the algorithm performs as little
work as possible while achieving that minimal accuracy requirement. This simply
says that there should ideally be an explicit way for the user to specify a desired point
along some known performance-error tradeoff curve. Very few algorithms provide
this capability in reality. The connection between error and performance is usually
through some auxiliary parameter, often multiple parameters, of the algorithm which
are related to those quantities in an unknown, often nonlinear manner.

The Barnes-Hut algorithm is an example of this. Whether a node is pruned or
recursed upon is determined by a user-chosen threshold 7 on the 'opening angle’.
This parameter has no direct known connection with either the actual maximum
error or the actual runtime of the algorithm, and thus the user is left with the task
of experimentation, specialized to his/her data and other variables, for values of 7
achieving the performance-error tradeoff point desired.

The Greengard-Rokhlin algorithm does better in this regard, but is still a method
for which direct accuracy specification is not possible. Though a relationship between
the error and the runtime is known, in practice the tradeoff point is chosen by
choosing the multipole expansion order P by experimentation. This is because the
bounds are several orders of magnitude too loose in practice, i.e. the algorithm
performs much more work (and achieves much higher accuracy) than the minimum
needed to achieve the accuracy specifed by the bounds.

By contrast, the finite-difference approach we developed allows direct error con-
trol.

Data-adaptive accuracy.

4.4.6 Other analytic expansions.

4.4.7 Relationships.

CHAPTER 4 88

By ‘data-adaptive accuracy control’ we mean a mechanism for choosing the amount
of work to do (i.e. degree of approximation to make) based on the data being dealt
with at the moment a point-node or node-node comparison is being made.

Barnes-Hut attempts to do this with its opening-angle heuristic. However as we
have said, this heuristic is disconnected (at least in a known fashion) to the error
made at that step. It also has no connection to the actual shape of the kernel
function. The multipole order P is also the same for all nodes. A very recent paper
[?] presents an approach allowing the selection of P adaptively at each point-node
comparison, and shows that this results in speedups up to 50% over the normal
method.

The Greengard-Rokhlin method is semi-blind in this respect. The same value of
P is used no matter what the nodes are. However, this is treated to some extent by
allowing different node sizes to be compared, larger ones at further fixed distances.
This results in a limited amount of adaptivity. To counter-balance this, P is often
set to a fairly high value. Published values are typically 6 or 8, and range up to 20.

Our finite-difference method is fully adaptive in this regard - the pruning decision
is based on bounds on the actual error incurred at each node-node comparison.

There are of course a number of other asymptotic expansions which have found use in
various parts of applied mathematics, and some of these have also been used in place
of Taylor expansion, embedded in the same basic algorithms, to form alternative
types of multipole-like methods. Examples include [And92, BN98]. In the cases
where the same kernel function is treated, a convincing performance advantage has
not been shown so far — though it is conceivable that some series might converge
faster than others for the same function. However, it will certainly be the case that
different types of expansions will be more or less useful or applicable to different
types of kernel functions. Nonetheless, virtually all of the properties of the overall
method will remain the same regardless of the kind of expansion used.

Now that we've identified the primary variables, or axes along which to place the vari-
ations on multipole methods which exist, we can consruct a matrix of relationships
depicting the relationships among them.

[[Multipole Derivative-free

Node-node | Adaptive

Direct error-control Fully error-adaptive

Dual-ASPT finite-diff.
with min. prop.

Dual-ASPT multipole
with min. prop. and
query bounds opt,

and anytime

Weak error-control

Weakly error-adaptive

Dual-ASPT multipole
with min. prop.

No error control

Somewhat error-adaptive

Appel multipole [Appa5]

Appel monapole [App85]

Fixed

Weak error-control

Weakly error-adaptive

Greengard-Rokhlin multipole [GRE7]

Point-node Adaptive

Direct error-control

Fully error-adaptive
and anytime

Single-ASPT multipole
with min. prop.

Single-ASPT finite-diff.
with min. prop.

Fixed

Weak error-control

No error control

Somewhat error-adaptive

Barnes-Hut multipole [BH86]

Barnes-Hut monopole [BHE6]

4.5 Related problems and

approaches.

Figure 4.1: RELATIONSHIPS BETWEEN N-BODY SOLVERS.

The single- and dual-ASPT (adaptive space-partitioning tree) approaches are the
ones now made possible by the techniques we've designed. The ‘multipole’ desig-
nation refers to the version of a method in which multipole expansion is performed
rather than another method of function approximation such as monopole approxi-
mation or finite-differencing.

Let's review the computational alternatives for the SPH problem.

451 Grid methods

4.5.2 Ewald Sums

4.5.3 The Greengard-Rokhlin
Algorithm

45.4 The Barnes-Hut
Algorithm

64.6 Chapter summary

Publications.

N-BODY PROBLEMS IN COMPUTATIONAL PHYSICS 89

Grid methods are the competitor to the Lagrangian method as represented by SPH.
The comparison between the two was discussed in ??. Grid-based methods for SPH
include the particle-mesh and particle-in-cell methods [HEB8], the pressure method,
and the marker-and-cell method [Ves94]. It must be noted the choice of a grid-based
or Eulerian method is more than simply a computational one; the theoretical prop-
erties and overall applicability of the method for different fluid dynamics problems
changes, so that it is also a change of model in some sense.

Ewald sums [Ewa21] represent the FFT approach to the problem, and were pro-
posed in the context of electrostatics problems. It has all the disadvantages of FFT
methods which we have already discussed.

We have already discussed the Greengard-Rokhlin algorithm, aka the 'fast multi-
pole method'. It is not applicable in the case of SPH due to the non-arbitrarily-
differentiable nature of the kernels used in SPH. Furthermore in SPH the kernel
function is subject to much change, particularly the artificial viscosity part of the
kernel, so that even if multipole approximation to a high order were possible, the
sheer mathematical overhead of multipole methods would make them very painful
to use in SPH. The Greengard-Rokhlin algorithm shines best in a low-dimensional,
high-accuracy setting. High accuracy is generally not required in the SPH setting.

The state-of-the-art for SPH is the Barnes-Hut algorithm, as exemplified by the
TreeSPH code [HK89]. Our method significantly improves upon Barnes-Hut by
providing error control and adaptivity. Adaptivity should aid efficiency significantly
in non-uniform distributions. Furthermore the dual-tree nature of our method re-
duces the complexity from O(N log N) to O(N). Like Barnes-Hut it is also easy to
implement.

Let's take a look at what we've done:

¢ Function approximation with analytic methods. We reviewed in-depth the
well-known approach to the function approximation sub-problem based on Tay-
lor expansion that was introduced for Coulombic N-body problems. This yields
two main insights — the main difficulties which prevent the application of this
approach to many problems outside the low-dimensional physics context, and
suggestions for how to augment currently used multipole-based algorithms using
the geometric insights gained from our shattering perspective.

¢ Computational fluid dynamics problems and real solutions. We reviewed
the key theoretical aspects making the smoothed particle hydrodynamics ap-
proach fundamental and the key practical constraints under which a solution
attempt must operate efficiently. We then developed a solution meeting these
criteria for the first time, via a set of modifications of the machinery we devel-
oped in the last chapter for the new aspects of this problem. As a side effect
we have in fact provided the first linear-time method for SPH. As a bonus, the
mechanisms we have designed within our approach for efficient bandwidth selec-
tion can be transferred to SPH, which currently lacks any rigorous methodology
for bandwidth selection.

This work should be made available in the form of at least the following publications:

What's next?

CHAPTER 4 90

e An article presenting the dual-tree finite-difference method using minimal prop-
agation for the SPH problem.

e Perhaps concomitant with the previous article should be one introducing the
much-needed theoretical and practical machinery of optimal nonparametric es-
timation to the SPH world.

This concludes our examination of pair-wise N-body problems, including the classical
ones from physics. Our in-depth discussion of analytic approximation methods could
be seen as asking what we can do in a more limited case than usual (the case where
the dimension is fixed to be very low). In the next chapter we'll consider a much
harder case, and one which has not been previously considered, that of n-tuples
instead of just pairs.

Agenda of this chapter.

§5.1 Point processes.

Poisson processes.

N-Body Problems in
Computational Morphology

Geometric Shattering Il: n-tuples and Monte Carlo.

Each success only buys an admission ticket to a more difficult problem.
— Henry Kissinger.

SOME PERSPECTIVE is always to be gained by reaching higher and beyond.
Though the pair-wise N-body problems we have dealt with thus far are difficult
enough to satisfactorily grind computers to a halt in their own right, reaching higher
in tuple order makes us really appreciate how lucky we've been in the previous
chapters. It is difficult to even conceive of an approach to a problem which seems
to demand consideration of all O(N"™) n-tuples of points.

In this chapter we'll how the shattering concept generalizes naturally to any tuple
order n. We'll also examine Monte Carlo methods, which on pause one might expect
to appear in a story about N-body problems. Monte Carlo approaches represent in
some sense the final resort — when the problem to be solved is important enough
to persist, even enough to make less-than-certain answers acceptable. It also so
happens that the central Markov chain Monte Carlo method, or the Metropolis
method, was originally developed for N-body problems in statistical physics which
we have already seen. Qur example task will be the n-point correlation functions,
whose computational solution turns out to be of pivotal importance in modern
cosmology.

Point processes are stochastic processes whose realizations consist of point events
in space (or the special case of time). Statistical inferences about patterns of points
thus concern this fundamental part of statistics.

The Poisson process is the most basic and important point process model. It is
the model for a completely ‘random’ distribution of points in space, without any
interaction. It can be thought of as the spatial analog to independent observations.
It is used theoretically as a building block for constructing other processes, and prac-
tically as the baseline distribution for testing for or characterizing various properties
of observed datasets.

It is standardly defined by either or both of these properies [Rip81, MS00]:

e The number of points N(A) falling within any set A has a Poisson distribution
with mean AV (A), where A is a constant called the intensity and V(A) is the
volume of A.

91

Moments of counts.

5.1.1 The n-point correlation
function.

A foundational theory for spatial
statistics.

CHAPTER 5 92

e The number of points falling in disjoint sets A; and A5, i.e. N(A;)and N(As),
are independent.

We have actually defined the standard Poisson process which is homogeneous (or
‘stationary’), i.e. A is invariant to translation, and isotropic, i.e. A is invariant to
rotation.

If A, the mean count density, corresponds to the first moment of the counts from
a Poisson distribution, ie. E[N(A)], what about the higher moments? The 2-
point correlation is a statistic related to the second moment of Poisson counts,
E[N(A;)N(Az)]. It can be defined in a number of slightly different ways, but we'll
use the most standard definition used in astrophysics [Pee80], which is in terms of
the joint probability of finding a point in both of the volume elements dVy and dV,
at separation dg;:

dP = X2dV,dV,[1 + £(3,)] (5.1)

where (4,) is the 2-point correlation function of the pairwise separation Ogr.
Further discussion of the derivation of moments of Poisson counts can be found in
[Rip81].

§() then, represents an amount of deviation from the Poisson. Since &() is a
function of the distance d,,, we sometimes refer to the 2-point correlation function.
The n-point correlation corresponds to the n® moment of Poisson counts. For
example the joint probability of finding points in each of the three volume elements
dVy, dV; and dV; is given by

dP = A3dquvrdvs[l + ftagr) a5 5(51"3) + é(dsq} o+ C(dqv‘rdTS: 53(1)] (5'2)

where g, 6, and &, are the sides of the triangle defined by the three points
z, Z., and z,. ¢() is called the reduced 3-point correlation function. In general
we refer to this quantity in place of the full correlation function since it is what we
need to concern ourselves with computationally.

The expressions for the higher correlation functions become increasingly unwieldy,
as does theoretical and practical understanding of how to use them. Discussion up
to the 4-point correlation can be found in [Pee80].

The full distribution of counts is given by an infinite sum of all the higher-order
correlation functions, i.e. n =1 to co. Unfortunately, White [Whi79] shows that on
practically all scales except the tiniest, the distribution depends significantly upon
the higher-order functions and cannot be well-approximated using only the lower-
order terms. Importantly, the higher-order terms are also necessary for characterizing
the variance, or error, of the lower-order terms.

The hierarchy of n-point correlation functions forms the foundation of the theory
of point processes. Various formalizations of spatial statistics can be unified within
this framework [DVJ72, Rip76].

The n-point correlation functions can be used to derive and understand basic
inferences about points in space. Examples include characterizing the distribution
of clusters of points [Whi79], the distribution of nearest-neighbor distances and the
distribution of counts in cells [PeeB0], the probability of a void of a certain size
between points [BF96], the structure of filaments [Fry86], and many others.

Importance in cosmology.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 93

The n-point correlation function take center-stage in astrophysics for several reasons.
One is that the types of spatial statistics inferences for which we gave examples occur
in the daily business of working with astronomical observations.

However, the main reason lies at the core of cosmology itself. The n-point func-
tions are used to compare different cosmological models, by measuring the similarity
between simulated data generated by a given model and observed data. Typically the
parameters which lie inside a model are estimated using such a statistical method-
ology. Further, comparison between different types of models can be done in this
fashion.

600

400

Distance (Mpc)

200

0 200 400 600
Distance (Mpc)

Figure 5.1: VIRGO DARK MATTER SIMULATION DATA.

On large scales, count probabilities reveal important clues about the origin of pri-
mordial density fluctuations. The simple standard models of inflationary cosmology
predict Gaussian probability distributions while topological defect models (e.g. cos-
mic strings, texture) predict non-Gaussian fluctuations [Pee80, Fry84, Ber92]. The
question of which type of model is correct is still very much open and is one of the
fundamental questions of cosmology [SDS].

Figure 5.1 shows an instance of simulation data currently in use for exactly this
purpose, from the Virgo project. We will describe it in more detail in the experimental
section.

The need for higher-order statistics.

Computational status.

5.1.2 Practical considerations
and constraints.

General n.

CHAPTER 5 94

Though lower-order correlations are in agreement with the standard model, a number
of issues cause the answer to remain inconclusive, including edge effects and odd
geometries in existing samples, which are compounded by their small sample sizes,
and the aforementioned fact that the lower-order correlations alone are insufficient
to capture the distribution.

The higher-order n-point functions, along with observational data of high quality
and in massive quantities from the emerging Sloan Digital Sky Survey and others to
come, represent the central inferential path which can decide the question. See for
example [TJO03].

Figure 5.2 shows a clear example of the inadequacy of the lower-order correlations
alone.

Figure 5.2: TWO DISTRIBUTIONS WITH THE SAME CORRELATION FUNCTION. The
left-hand figure is a two-dimensional Voronoi foam, generated by the median surfaces between
Poisson “seeds” at a mean separation of 100 h-1 Mpc . In this simple toy model, galaxies reside
only on the walls of the foam, smoothed to give the walls a finite thickness. The structure has a
well defined second-order statistic, but it also has correlated phases. This picture has been
Fourier transformed, all the phases randomized, then transformed back again. The result is
another two-dimensional density plot, shown on the right hand side, with the same second-order
properties, but with a Gaussian density distribution function. — Figure and caption both from
[SDS], produced by Alex Szalay.

Now that the issue of observational data is beginning to disappear, the obvious
computational problem stands alone as the clear bottleneck. The practical severity
of the problem is also significantly compounded by certain issues which we'll discuss
shortly. As it stands, no significant computational progress has been made on the
n-point correlation functions in three decades. As a benchmark, the largest value of
N in recent memory for which the 3-point correlation was usefully computed was
20,000 or so [Nic03].

There are a number of issues we must consider if we wish to provide a working
solution for the most demanding customer of the n-point correlation functions, the
astrophysics community.

As in the last chapter, the dimensionality D is something which is not an issue
in the astrophysical context we are mainly focused on, as we are working in 2 or 3
dimensions strictly.

In principle astrophysicists and spatial statisticians would like to compute correlation
functions for n as high as possible. However, the inability to realize such functions

Simple and compound matchers.

Multiple matchers.

Edge effects.

Weighted data.

5.2 n-Tree shattering.

5.2.1 Geometric shattering with
n trees.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 95

computationally has significantly impeded motivation for even the theoretical devel-
opment of the correlation functions. The recent appearance of major advances in the
theory of the 3-point correlation [TJ03] follows the recent appearance of large-scale
datasets making higher-order analyses possible. To date, no major text or article
has seen a need to go beyond the 4-point function. Undoubtedly the removal of
computational obstacles will have a similar effect on theoretical development.

We call the set of thresholds which determine whether an n-tuple is to be counted
or not the matcher. A simple matcher has only one parameter, such as a single
pair separation threshold for the 2-point function, or a single edge length for an
equilateral-triangle 3-point function. A compound matcher allows a different pa-
rameter for each of the n(n — 1)/2 possible lengths. This flexibility is important for
studying asymmetric structures in data such as filaments.

More generally correlation functions can be defined with both lower and upper
thresholds on each distance. In the general case then, a matcher is parametrized by
two triangular matrices L,, and uH,, as we wrote in Chapter 1.

Because the ultimate end of the computation is generally the visualization of the
n-point correlation function curve, we generally need to compute counts for multiple
matchers on the same data.

The fact that estimation of quantities such as the 2-point is corrupted near the edges
of the dataset is a central trouble of spatial statistics, for which many corrections
have been proposed both in statistics and in astrophysics. See for example [Rip88].
In astrophysics the currently preferred solution is that of the Landy-Szalay estimator
[LS93]:

DD —2DR+RR
RR

which is generalized to higher orders by [SS98]. Here D and R stand for 'data’,
the dataset in question, and ‘random’, a synthetic dataset consisting of points drawn
from a Poisson distribution within the region of interest, and DD, DR, and RR stand
for the corresponding 2-point (cross-)correlation counts. While overcoming many of
the subtleties and difficulties of more analytical corrections, this approach is most
effective when R is very large. Furthermore the estimate should be averaged over
many instances of R.

B (5.3)

Another solution to the edge-effect problem is to down-weight data near the edges.
This necessitates computing the weighted generalization of the n-point functions.
Weighting is also useful in general to penalize data points which are corrupted in
some way yet not so much as to warrant complete removal - this strategy abounds
when data are expensive to obtain (as is very much the case in astronomy), or when
the sample size is small for other reasons.

The algorithm for the n-point correlation can be derived straightforwardly by associ-
ating a kd-node with each volume element in the definition of the n-point correlation
we gave. Note that the input to the recursive function is now an n-tuple of nodes
Q1,..,Q, rather than simply a pair. The algorithm also holds for n = 2, however.

Bounds.

Pairwise pruning.

CHAPTER 5 96

¢! and ¢"* represent the running global bounds on the final answer count ¢, A

function maxtuples() returns the maximum possible number of n-tuples of points
contained within the set of nodes in question which could match the matcher, stored
as ¢™® This can be determined analytically based on the known numbers of points
in each node and whether the nodes overlap or contain each other.

The bounds ¢'° and ¢"* begin at 0 and the maximum possible number of n-tuples
of points contained within the entire dataset (which corresponds to maxtuples()
called on the n-tuple of root nodes). Because every recursive branching implicitly
represents a disjoint partitioning of the set of possible n-tuples of points, ¢! and ¢!
can be thought of as decomposing additively across all node sets encountered during
the search. Hence the update rules, which correspond to compensating for the initial
pessimistic setting of each contribution of each node set to 0 and maxtuples() for
that node set.

To determine whether the entire n-tuple of nodes can be pruned (either by inclusion
or exclusion), every pair of nodes in the set is tested by a function test_pair(), with
the possible outcomes of ‘exclude’, ‘include’, or ‘inconclusive’. If there is even one
exclusion within the n-tuple of nodes, the contribution of this set of nodes to the
overall count is known to be zero, and the flag is_zero is set to true. We also track
whether every pair of nodes returns ‘include’, in which case the flag all_include is
set to true, indicating inclusion for the entire node set. In this case we know the
contribution of this set of nodes is exactly ¢™%*.

NPE(Q1, .,)
c™ = maxtuples(@1, .., @n).
if ¢™* == 0, return.
all_include = 1, all_leaves = 1, is_zero = 0.
fori=1.n,
if lleaf(Q);) all_leaves = 0.
for j = i+1l..n,
s = test_pair(Q;,Q;).
if s == exclude, is_zero = 1, goto L.
if s != include, all_include = 0, goto L.
L:
if is_zero == 1,
et = ™M return,

if alllinclude == 1,
¢’ += M9 return,

else
if all_leaves == 1,
¢ = NptBase(Q1, .., Q).
cio += e, Ch:’ = (cmax _ C).
else

Q" = choose(Q1, .., @Qn).
NPE(Q1, -, Q" left, -, Qn).
Npt(Q:,.., Q" right, .., Q,).

Figure 5.3: n-TREE ALGORITHM, BASIC FORM. L represents a label to which program
execution can jump.

Base case and recursion.

§5.3 Combinatorics.

5.3.1 Permutational redundancy
elimination.

§5.4 Geometric Monte
Carlo

5.4.1 Monte Carlo integration.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 97

The flag all_leaves records whether every node in the node set is a leaf. If so, the
base case is called, which performs the matcher exhaustively on all n-tuples of points
within the n-tuple of leaf nodes and returns the exact number of matches for that
node set.

At the beginning of the function all the flags are initialized to default values.

The main thing to notice about the recursion strategy is that we have avoided
exploding the recursive step into 2" recursive calls by recursing only in a binary
fashion — we choose a node using a priority heuristic (using the largest node works
as well as any in the vanilla n-point problem) and recurse on its two children. The
testing for pruning opportunities is also formulated in a pairwise fashion. This is
what allowed us to make quick progress on this problem - we formulated everything
pairwise so that we could reuse all the machinery we developed for pairwise [V-body
problems.

So far, we have discussed two operations which cut short the need to traverse the
tree further - exclusion and inclusion. Another form of pruning is to eliminate node-
node comparisons which have been performed already in the reverse order, or more
generally, consideration of an n-tuple of nodes which has already been considered in
a different permutation.

This can be done [Sza00] simply by (virtually) ranking the datapoints according
to their position in a depth-first traversal of the tree, then recording for each node
the minimum and maximum ranks of the points it owns, and pruning whenever a
node Q. whose index in the permutation is higher than that of another node () has
maximum rank less than @'s minimum rank. This is useful for all-pairs problems,
but becomes essential for all-n-tuples problems. It should be noted that this kind of
pruning is not practical for single-tree search.

Despite great efficiencies relative to the exhaustive method, the exact shattering
method at some point becomes overwhelmed by the sheer combinatorics of the
problem. We will see this in the experimental results. We now turn to Monte
Carlo ideas to reach higher efficiencies in many cases. This method serves as a nice
complement to the exact algorithm, because its properties make it useful for cases
which are extremely difficult for the exact method, and vice versa.

The basic approach is, as in Chapter 77, to view the problem as one of numerical
integration, then specialize a general integration technique to our kind of problem.
Here we develop a special form of the Monte Carlo method. Shattering turns out to
be an essential ingredient of this new kind of recipe — the idea is to use it to stratify
the integration domain for sampling. Viewing it the other, we stop the shattering
process before its completion and sample the open nodes the rest of the way to the
answer.

As we have discussed earlier, many N-body problems are integration problems. As
such, it behooves us to consider the idea of Monte Carlo integration for N-body
problems.

The Monte Carlo method is a general approach for integrating functions f() of
virtually any sort. The approach is extremely versatile and widely applicable, and
has found use in a large array of important problems. It uses the simple observation
that

Binomial distribution.

CHAPTER 5 98

&= éthgs) (5.4)

is an unbiased estimator of 67, the true mean of f(), and the z, € X are S
independent uniform samples from the domain of f(). Its variance can be estimated

by

s
-] 2P 1 e
2 =((f = (M) = g5 D_(Flz) - ()™ (5.5)
The central limit theorem yields the standard error bound for the Monte Carlo
method:

—

() =(f) £ 226 (5.6)

where z 5 is the 100(1 — ¢/2)™ percentile of the standard normal distribution.
For example for 99% confidence, z./5 ~ 3.

This is the baseline confidence band which additional techniques are employed to
tighten, though various variance reduction approaches, such as stratified sampling
and importance sampling.

We have already characterized the n-point correlation as a kind of counting problem,
in fact a generalization of the all-n-tuples-range-count problem. It can thus be
thought of exactly as estimating a binomial proportion p, the number of n-tuples
matching the matcher out of the total possible number of n-tuples?, ie. (f) = p.
The standard mean and variance for the binomial distribution version of what we've
discussed so far is

-
p= §fo(£s) (5.7)

and
~2 1 o 2
— S—IZ(If(£S)_p)
= (1-p) (5.8)

where [¢() denotes the indicator for our matching function f.

Our resulting estimate for an n-point count ¢ is ¢ = E[e] = pC where C is the
total number of possibly-matching n-tuples in the data.

The principal upshot of the ability to specialize to the binomial distribution is that
the problem of designing good confidence bounds, a rather difficult affair in general,
has been well-studied for the case of binomial estimation. We will take advantage
of the work that has been done in this area, which will allow us to go beyond the
simple central limit theorem approach to Monte Carlo confidence bounds.

1. Note that this is not the same as the common hit-or-miss Monte Carlo strategy, which also
becomes a binomial estimation problem.

n-tuple sample generation.

Computational cost of Monte Carlo.

5.4.2 Stratified sampling.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 99

In our case there is no issue of a proposal function — samples are drawn from the
finite datasets X;, with replacement. Note that a 'sample’ z, in our case is actually
an n-tuple of data points. Given a set of n tree nodes @);, we generate an n-tuple
by choosing one datum from each node.

One interaction occurs here with our virtual indexing mechanism for permuta-
tion redundancy elimination from 5.3.1. To ensure that all generated n-tuples are
valid with respect to the permutation constraints expected by all other parts of the
algorithm (i.e. the exact shattering algorithm), the n-tuple must meet the virtual
index ordering constraint or else it is rejected and we try again to generate a valid
n-tuple sample. The average number of attempts before success is typically some-
where around 2 for a 3-point problem. It should be emphasized that this is a direct
multiplying factor of our runtime, i.e. a source of ineffiency which further thought
might be able to reduce.

It is important to note a Monte Carlo sampling approach of the kind we're con-
structing is no longer sensitive to the number of data N. lts runtime, given a
user-supplied maximum error criterion, depends only the error bound +/p(1 — p}/S,
which depends only on the size of the true probability p to be estimated and the
number of samples S.

Unfortunately for wide useful ranges of matchers, p is typically quite small, e.g.
1075 is not uncommon and e.g. 10~'% is possible. In a case like this we are likely
to wait quite a long time, in fact probably longer than it takes to run the exact
algorithm, before we observe any matches at all.

S is under our control. We'll now see how we can effectively bring p under our
control as well — by performing exact shattering for a number of recursion steps,
we will effectively winnow down the number of non-matches from the integration
domain until the proportion of matches is acceptable for sampling.

In stratified sampling the domain of integration is broken into K pieces and standard
Monte Carlo is applied within each piece. Then

K 5
(N=) w {;—k Zf(zsk}} (5.9)
k E

is an unbiased estimator of #*, where wy, is the proportion of the probability mass
represented by the k" piece and

£ w 1 2% —~
o ::;%{SE_IZ{f(gsk)—(f)k)z}- (5.10)

is the variance of the estimate.

The motivation for doing this is the following. If the stratification is such that
the differences between the means (f)i in each piece are greater than the variations
((f — @k)g} in each piece, stratified sampling will be more efficient, i.e. require
fewer samples to achieve the same variance or error, than straightforward sampling
without stratification. In fact the following can be proven:

Theorem 2 (Advantage of stratification) As long as the sample allocations Sy
are proportional to wy, i.e. Sy = wyS, then if 6% and 6%, are the variances for
stratification sampling with K and K' strata, respectively, 6% < 6%, for K < K'.

Geometric stratification.

Prioritized search.

Stopping criterion.

CHAPTER 5 100

The proof of this theorem follows easily from standard arguments given in text-
books on the Monte Carlo method (such as given in [Rub81]) which usually aim to
show the special case of ' = 1 versus K’ > 1, ie. that stratification is at least
as good as no stratification. But more generally, a larger amount of stratification is
better.

We'll call this the proportional allocation scheme. While sufficient for the theorem
to hold, it is clearly not the optimal allocation scheme as it does not incorporate
any information about the parameters py.

At this point there are two open issues — how to break up the domain of inte-
gration and how to allocate the proportions of samples. We address these issues
in a manner customized to our problem, using geometric shattering to obtain the
pieces (described next) and a new adaptive strategy to allocate the samples (next
Section).

We will obtain our stratification by performing geometric shattering, stopping the
process at some point before the exact result is computed. Whichever nodesets are
‘open’, or remaining to be searched at the stopping point will form the strata we
will use for sampling.

Disjointness from recursion tree. A key point, which is perhaps subtle, is that the
nodeset (n-tuple of nodes) at each recursion step in the exact algorithm represents
a certain subset of all the possible n-tuples of points in the data. Furthermore the
two branchings of the recursion tree, or recursive sub-calls, at any point are disjoint
subsets of all the possible n-tuples of points. This is the key which allows us to
obtain strata from the recursion tree of the exact algorithm.

Weights from analytic combinatorics. In our case the wy values are obtained
from our earlier mechanisms for computing the maximum possible number C of
n-tuples (counting permutations or not, depending on the matcher specified) in
the k" nodeset. Note that z:{ Cr = C, the total number of possible n-tuples
in the dataset, so that wy = Cj/C. Our overall estimate of the count is now

é = Elc] = K pCh.

Knowing that we will not carry the shattering procedure through to its exact conclu-
sion creates a new constraint on the shattering search procedure — pruning (which
includes both exclusion and inclusion) should be performed as early as possible. An-
other viewpoint is that we would like to end up with strata where the parameters
Pr are as large as possible using our time spent on exact shattering as efficiently as
possible. The goal then is to focus on eliminating chunks of definitely-non-matching
n-tuples as quickly as possible.

To achieve this we reformulate the search in terms of a priority queue, as we
alluded was possible back in Section 2.2. The priority function now becomes the
maximum inter-node distance, which prefers nodesets which are more likely to be
pruned.

The priority queue also serves naturally as the storage mechanism for maintaining
the set of all the open nodes during the search. This allows the opportunity for
reasoning globally about the current set of strata at any given time if desired, which
is not afforded by a local search mechanism.

A simple heuristic is used as a stopping criterion - a threshold T on the fraction of
the data accounted for so far by exact pruning operations. While intuitive and fairly
robust in practice, it does not in general adapt optimally to the problem at runtime.

5.5 Optimal sample
allocation.

5.5.1 Adaptive Neyman
allocation.

5.5.2 Binomial confidence
bounds.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 101

A better procedure would perhaps somehow taking into account the current estimate
of the proportion p to decide when to stop. Unfortunately, then, the shattered Monte
Carlo algorithm as it stands, contains a tweak parameter 7.

The optimal allocation of sample proportions is theoretically known. It is sometimes
called optimal Neyman allocation, and it accounts for the differences in the binomial
proportions pi between the different strata:

Theorem 3 (Optimality of Neyman allocation) If w(S) indicates the partition-
ing S = UpSk, 7 (S) = min, 0 (7(S)) occurs when
W T

Zk" W1 T

However, because the variances are not known a priori, this is dismissed in text-
books (e.g. [Rub81]) as anything other than a theoretical observation.

Si S. (5.11)

We introduce a simple iterative procedure which uses existing information to best ap-
proximate optimal Neyman allocation, which we'll call adaptive Neyman allocation.
If at iteration 7 we will take S; more samples, we set

W Ok
B Zk*‘ wk:&k;

and S; = AS;_1 for some A > 1. In our experiments we set A = 2 and Sy =
50,000. It should be clear that this yields optimal Neyman allocation asymptotically,
ie.

Sik S (5.12)

Theorem 4 (Asymptotic optimality of adaptive Neyman allocation) /fS*" =
S i Sir is the total number of samples taken at iteration i, and m;(S*°") indicates the

effective partitioning S*°* = Uk{Z:, Siix} at iteration i, then m; — ©* as i — oo,

Proof: This is trivially true because our procedure guarantees that ev-
ery node receives at least one sample in every round of sampling. Thus
asymptotically the estimates converge to the true values. The rate of this
convergence is not necessarily optimal, however.

It will surprise many readers to learn that the issue of practical confidence bounds
for estimation of a binomial proportion, the most basic statistical scenario forming
the context in which the entire issue of confidence bounds is generally introduced
in textbooks, is not a closed problem. We will gain insight from very recent work
on this problem to obtain robustly accurate bounds for our estimation algorithm.
Without careful attention to the confidence bounds a simpler version of our approach
would be more likely to report bounds which do not actually enclose the true value
of p than our error tolerance € would predict.

Note that this issue is critical because in our setting a fair accuracy is required,
unlike many Monte Carlo applications in which quick but rough estimates (i.e. wide
or not-quite-enclosing bounds) are often adequate for making progress. In our case
we typically will need to make comparative distinctions on the order of 10% or 1%
for meaningful n-point correlation curves or comparisons between curves. Thus the
target we will have in mind is accuracy to within 1% error.

Deficiencies of the Wald interval.

Approach of conservatism.

CHAPTER 5 102

The standard confidence interval of 5.4.1, called the Wald interval, though in near-
universal use, do not actually enclose the true value of p as supposed. This has
long been a subject of investigation (see ??), though awareness of the poor behavior
of the 'textbook' interval, even within statistics, is surprisingly limited — in fact
even the full extent of its poor behavior has been realized only very recently, e.g.
[AC98, BCDO1].

The main issue is coverage — the true probability that a sample falls within the
stated confidence interval. In [BCDO1] it is demonstrated that for any 0 < p < 1
and S < 45, the coverage of the nominally-99% Wald interval is significantly less,
in fact on average 91.4% in their experiments. The situation is amplified as p goes
to 0 or 1 — coverage shockingly zooms down to 88% at the edges of their plot,
which stops at p ~ 0.6 and p ~ 0.94.

Note that in our problems quite often p < 1, a virtual needle in a haystack.
Though it might be thought that stratification creates larger values py, splitting
a nodeset into two parts often has the effect of creating one part with a higher
proportion of matches and one part with a smaller proportion. Thus both large and
small py values are introduced. Also, a given stratum receives only a fraction of the
overall number of samples 5, so that S; may be fairly small. We have observed that
the accumulation of coverage-related errors over many strata can be unacceptably
significant.

There are several sources of the problems: most obviously, the normal approxi-
mation to the binomial does not account for the discreteness and skewness of the
distribution.

Unfortunately the various proposals for treating this problem are not directly appli-
cable here. They constitute proposals for a binomial confidence interval for general
use — j.e. the interval should not only provide high coverage, but also not be too
conservative, be simple to express and remember, etc. . For example, the overall
recommendation of [BCDO1] is a slightly-generalized version of the Agresti-Coull
confidence interval:

% (5.13)

which is simply the Wald interval except that p and S are modified by pretending
that two additional successes (matches) and failures (non-matches) were observed.
This cannot be used for our estimates because it implies that no matter how many
samples were taken, a minimum of two matches were observed. While this procedure
is shown to be preferable asymptotically, for a finite set of samples this can mean
massive over-estimation of p; values, which are multiplied by possibly huge values
of C when taking the expectation Elc].

While conservativism means additional computational cost, for adequate scientific
use we ultimately require that the coverage be as close as possible to the purported
confidence, even if it carries some computational expense. The simple approach of
convervatism we use to counter problems of poor coverage is to merely threshold py,
at some forcing probability pr, i.e. for the purposes of computing confidence bounds
and sample allocations, py is treated as pp if pr < ppor 1 —ppifpy > 1 —pp. We
use the value pr = 0.2 in our experiments. This seems to provide a fairly robust
shield against coverage problems, though it comes at a certain computational cost.

In principle one could allow pp to relax slowly over time, i.e. pr — 0 as S — oo,
though we did not experiment with such approaches.

px Zef2

5.5.3 Defragmentation.

5.5.4 Shattered Monte Carlo
algorithm.
Exact shattering phase.

Sampling iterations.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 103

The aggressive nature of the adaptive Neyman allocation strategy can exacerbate
the confidence issues surrounding estimating tiny proportions. For tiny values of
Pk, accurate estimates are not available until a large number of samples have been
taken. But early iterations of adaptive Neyman allocation, observing zero or very few
matches for many nodesets, will assign zero or few samples to them for successive
iterations. Fortunately a non-zero forcing probability prevents forever-zero allocation
to a nodeset, so eventually all probabilities will be estimated correctly by the adaptive
allocation strategy.

We experimented with another mechanism we call defragmentation. Here the idea
is to pool together all the nodesets O, having small p into a single super-nodeset.
This small-fries nodeset Ogp = UgpOy, Vk|pr < pr. The union probability prr is
set to 0.1 in our experiments. (Likewise the big-cheeses nodeset Opc = UkOg,
Vk|pr > 1 — py.) The values of py are based on the first iteration of sampling.

Thus, rather than estimating a large number of small probabilities, each requiring
a large and separate number of samples, we track a single small probability for the
entire union of the small-fry nodesets, effectively sharing the same chunk of samples
across the union of strata.

First Npt/(), a modified version of the Npt() algorithm which is driven by priority
search, is called. The set of K open node sets {11,..,Tx} when that algorithm
ceases shattering is used for sampling. Thus each stratum 7} corresponds to an
n-tuple of nodes,

Before being included in the output set, each node set T} receives a small initial
number of samples, so that an estimate for the k" node set pﬁ exists at iteration 0.

Based on pi the standard deviation &3 can be computed using the standard
variance formulas we have shown, and based on these standard deviations, the
Neyman value for the number of samples Sy to be allocated to the k** node set can
be computed. These three numbers represent the collective set of parameters for
each stratum at iteration ¢, 6. These computations of new values for p; and &4
given a number of samples Si and the old value of the parameters during the last
iteration, Si'], are encapsulated by the function update_estimates().

NptMC(Qlw-sQH)
{Tl,.“,TK} = Npt’(Ql,..,Qn).
B = e S =5

do
fork=1;.,K,
0i = {pr, ok, Sk} = update_estimates(#; 1, Si).
{Si1, ..., Sk} = update_allocation(§'1, .., 6%, S).
Sy = 2,
{e!?, "} = global_estimate(6, .., 0%).

4_CI0|

: le"
while (_Ic;T < €).
Figure 5.4: SHATTERED MONTE CARLO ALGORITHM, BASIC FORM.

The function global_estimate() computes the global p and & based on the esti-
mates for the strata.

$5.6 Performance.

5.6.1 Mock galaxy catalog.

CHAPTER 5

104

The first dataset is a mock galaxy catalog constructed using a simplistic halo (i.e
cluster) model. This involves randomly placing 1,000 halos in a volume of 141 Mpc
cubed (the GIF simulation volume), with each halo having a NFW profile such that
halos correspond to filament intersections. Each halo contains 1,000 galaxies placed
randomly according to a certain dropoff distribution. The dataset thus consisted of
1,000,000 points. The random (R) dataset consisted of 75,000,000 objects. The
‘bins’, or range parameters defining the edge lengths of the triangles in the matcher
(equilateral in this case) are shown below.

Bin 1-h Width
1 0.0271644 - 0.0368129 0.0096485
2 0.0493884 - 0.06760823 0.0177199
3 0.0916221 - 0.124165 0.0325429
4 0.168267 - 0.228024 0.059767
5 0.309030 - 0.418794 0.109764
[0.567545 - 0.769131 0.201586
7 1.04232 - 1.41254 0.37022
a 1.91426 - 2.59418 0.67992

Figure 5.5: BINS FOR MOCK GALAXY CATALOG DATA.

The important aspect of this dataset, besides its large size, is that its 2-point
and 3-point functions could be computed analytically. This dataset thus served as
a test of the code's correctness. The measurements indeed confirmed that the code
computes the n-point functions accurately, as shown in Figure 5.8.

Bin DD DR RR
Count Time Count Time Count Time

1 218246 8 3500 23 133295 517
2 701879 12 20567 26 804617 917
3 4.14357e+406 23 128697 33 4.89675e4-06 1786

4 1.23413e407 36 802011 47 3.00546e4-07 3162

5 3.51576e407 58 4.91733e+06 79 1.84932e+08 4038
6 7.62079e+4+07 94 3.03017e+07 179 1.1389e4-09 7944

T 1.16947e+08 93 1.86085e+08 512 7.00223e+09 20085

8 2.53535e4-07 44 1.13945e4-09 1820 4.28598e+10 62455

Figure 5.6: 2-POINT RESULTS FOR MOCK GALAXY CATALOG DATA.

Results for the 3-point correlation, using equilateral triangles, is shown next.

Bin DDD DDR DRR RRR
Count Time Count Time Count Time Count Tirme
1 37573 60 1.05631e+08 58 9.23194e409 87 1.00721e+413 3596
2 354534 109 1.46384e+08 91 1.50617e+10 123 2.18128e+13 6891
3 6.20726e406 434 2.6161e+08 241 2.36021e+10 187 2.68654e+13 16131
4 4.26785e+407 1478 5.56273e+08 682 3.50885e+10 382 2.74388e+413 ITTTT
5 2.44103e408 5502 1.58497e+09 2833 5.90041le+10 1143 2. 74675e+13 69563
6 7.9345e4-08 14760 5.7850%e+4+09 14541 1.31034e411 8229 2.75566e+13 450325
7 1.62056e409 20417 2.00724e+10 68306 7.33894e+411 97239

Figure 5.7: 3-POINT RESULTS FOR MOCK GALAXY CATALOG DATA.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 105

10°

105 T T R T T T T T TS T _,5_: T T T 17717 T ﬁ

10¢ EJ : R -

1000 E _ F k- i

—~ 100 = g 3

“‘s-:;l f 105 g_ =

w 10'g E .= F 3

3 s 108 =

1 E & g 3

0.1 — o 10* E

,0.01 F—+ 1000 E .

i 19F E B 2F 3

‘-H.\::‘ l _______ - E g 1 ? E

2 05E E S E

hn 0 1 L 1 0 E Ll T
0.01 0.01 0.1 1

5.6.2 Galactic simulation.

r/rv'lr

Figure 5.8: VALIDATION USING ANALYTIC CURVES. The small deviations from the analytic
fall within the expected noise due to the finite sample size.

The second dataset we show represents a scientific experiment of the kind we have
described, in action. Our experiments on this dataset with our code will result in
the first calculations ever performed on this scale.

QOur astrophysicist collaborators created a sophisticated synthetic dataset which
is designed to test the morhological statistics of the ‘standard model’ (i.e. the infla-
tionary Gaussian universe hypothesis with currently agreed-upon parameters) versus
the morphological statistics of observational data obtained from measurements of
the true universe.

They used the VIRGO dark matter simulations, specifically the Lambda CDM
simulation (LCDM at z=0.0, Hubble Volume). Then they took each matter particle
in the simulations and ‘pasted’ a galaxy onto it. The luminosity and color of that
galaxy was randomly drawn from the color-density relatuion as observed in observed
data from the SDSS, and from the luminosity function seen in the real data. This
process is iterated until the lower-order correlations, i.e. the 2-point correlation
function of the synthetic data agrees with that of the observed data. The product
of this is a catalog of galaxies with the right cluster in space and color, with the
addition that we know know where all the mass is due to the dark matter component.
The SDSS selection function is then superimposed, i.e. the synthetic data reflects
the flux limit and redshift limit of the real data. This is a 90-degree wedge with
10-degree thickness, going out to the magnitude limit of the survey. In other words,
this data should look like the real data in all aspects to the best current knowledge
of astrophysics.

CHAPTER 5

106

The bins used in the experiments (all such parameters were selected by the astro-

physicists) are shown below:

Bin la ha 1y hy = he
1 0.63000 0.99900 0.63000 1.99800 0.63000 2.32767
2 0.63000 0.99900 0.63000 1.99800 0.83790 2.65734
3 0.63000 0.99900 0.63000 1.99800 1.04580 2.99700
4 0.63000 0.99900 1.26000 3.99600 1.26000 4.32567
5 0.63000 0.99900 1.26000 3.99600 1.46790 465534
6 0.63000 0.99900 1.26000 3.99600 1.67580 4.99500
7 0.99900 1.58300 0.99900 3.16600 0.99900 3.68839
a 0.99900 1.53300 0.99900 3.16600 1.32867 4.21078
9 0.99900 1.58300 0.99900 3.16600 1.65834 4.74900

10 0.99900 1.58300 1.99800 6.33200 1.99800 6.85439
11 0.99900 1.58300 1.99800 6.33200 2.32767 7.37678
12 0.99900 1.58300 1.99800 6.33200 2.65734 7.91500
13 1.58300 251000 1.58300 5.02000 1.58300 5.84830
14 1.58300 251000 1.58300 5.02000 2.10539 6.67660
15 1.58300 2.51000 1.58300 5.02000 2.62778 7.53000
16 1.58300 2.51000 3.16600 10.04000 3.16600 10.86830
17 1.58300 2.51000 3.16600 10.04000 3.68839 11.69660
18 1.58300 251000 3.16600 10.04000 4.21078 12.55000
19 2.51000 3.97900 2.51000 7.95800 2.51000 9.27107
20 2.51000 3.97900 2.51000 7.95800 3.33830 10.58410
21 2.51000 3.97900 2.51000 7.95800 4.16660 11.93700
22 2.51000 3.97900 5.02000 15.91600 5.02000 17.22910
23 2.51000 3.97900 5.02000 15.91600 5.84830 18.54210
24 2.51000 3.97900 5.02000 15.91600 6.67660 19.89500
25 3.97900 6.30800 3.97900 12.61600 3.97900 14.69760
26 3.97900 6.30800 3.97900 12.61600 5.29207 16.77930
27 3.97900 6.30800 3.97900 12.61600 6.60514 18.92400
28 3.97900 6.30800 7.95800 25.23200 7.95800 27.31360
29 3.97900 6.30800 7.95800 25.23200 9.27107 29.39530
30 3.97900 6.30800 7.95800 25.23200 10.58410 31.54000
31 6.30800 10.00000 6.30800 20.00000 6.30800 23.30000
32 6.30800 10.0000 6.30800 20.0000 B.38964 26.6000
a3 6.30800 10.0000 6.30800 20.0000 10.4713 30.0000
34 6.30800 10.0000 12.6160 40.0000 12.6160 43.3000
35 6.30800 10.0000 12.6160 40.0000 14.6976 46.6000
36 6.30800 10.0000 12.6160 40.0000 16.7793 50.0000

Figure 5.9: BINS FOR GALACTIC SIMULATION EXPERIMENTS. [and h refer to the low and
high thresholds, respectively. a,b,and c refer to the three (unordered) legs of the 3-point
correlation’s triangle.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 107

The size of the data catalog (‘D’) 63,678 and that of the random catalog (‘'R’)
is 191,034 points. The 2-point numbers and runtimes for the DD, DR, and RR
cases are shown in the next two tables. Note that all of these timings were done
on a Beowulf network of workstations (operating in serial), each of which is a Linux
Pentium machine with 2x 1GhZ processor and 1Gb RAM.

The first 15 bins are shown in the first table:

Bin 1-h DD DR RR
Count Time | Count Time ‘ Count Time

1 0.630000 - 0.99900 11795 1 4083 4 6233 2
0.630000 - 1.99800 75195 0 42642 4 63637 3
0.630000 - 2.32767 106991 1 68315 5 101131 5

2 0.630000 - 0.99900 11795 a 4083 4 6233 2
0.630000 - 1.99800 75195 1 42642 4 63637 4
0.837900 - 2.65734 138373 1 100524 5 148119 4

3 0.630000 - 0.99900 11795 1 4083 3 6233 2
0.630000 - 1.99800 75195 1 42642 4 63637 4
1.04580 - 2.99700 174089 0 141716 G 209140 5

4 0.630000 - 0.99900 11795 1 4083 3 6233 2
1.26000 - 3.99600 323098 1 336608 T 496894 6
1.26000 - 4.32567 385345 1 427998 i 632579 5

5 0.630000 - 0.99900 11795 0 4083 3 6233 1
1.26000 - 3.99600 323098 2 336608 7 496894 6

1.46790 - 4.65534 441324 1 527545 T 780397 6

6 0.630000 - 0.999000 11795 1 4083 4 6233 2
1.26000 - 3.99600 323098 1 336608 6 496894 6

1.67580 - 4.99500 501677 1 645125 1 954277 6

T 0.999000 - 1.58300 31436 1 16424 4 24623 3
0.999000 - 3.16600 199716 1 168825 6 249131 5
0.999000 - 3.68839 2809238 1 268884 6 396853 5

8 0.999000 - 1.58300 31436 0 16424 3 24623 3
0.999000 - 3.16600 199716 Ak 168825 6 249131 5
1.32867 - 4.21078 359395 1 392819 i 580165 6

9 0.999000 - 1.58300 31436 1] 16424 4 24623 3
0.999000 - 3.16600 199716 1 168825 5 249131 5
1.65834 - 4.74900 448817 1 552705 8 818133 6

10 0.999000 - 1.58300 31436 1 16424 3 24623 3
1.99800 - 6.33200 818013 2 1.30373e+06 10 1.92887e+06 8
1.99800 - 6.85439 972692 1 1.65669e406 11 2.45091e4-06 8

11 0.999000 - 1.58300 31436 0 16424 [} 24623 3
1.99800 - 6.33200 812013 2 1.30373e406 9 1.92887e406 T

2.32767 - 7.37678 1.10679e+06 1 2.03799%e+4-06 12 3.01662e+-06 8

12 0.999000 - 1.58300 31436 0 16424 4 24623 3
1.99800 - 6.33200 818013 2 1.30373e4-06 10 1.92887e+-06 7

2.65734 - 7.91500 1.2525e+406 2 2.48549e406 13 3.67714e406 9

13 1.58300 - 2.51000 83647 [1] 65546 5 95986 5
1.58300 - 5.02000 513686 2 659009 8 975251 6

1.58300 - 5.84830 717199 1 1.04561e406 9 1.54725e+06 T

14 1.58300 - 2.51000 83647 1 65546 5 95926 4
1.58300 - 5.02000 513686 1 659009 8 975251 6

2.10539 - 6.67660 909050 2 1.52279e+4-06 10 2.25352e+06 a8

15 1.58300 - 2.51000 83647 1 65546 5 95986 5
1.58300 - 5.02000 513686 1 659009 a 975251 6
2.62778 - 7.53000 1.12396e+06 2 2,13797e+06 12 3.1644e+06 8

Figure 5.10: 2-POINT RESULTS FOR GALACTIC SIMULATION DATA, BINS 1-15. I and k are
the low and high thresholds for the matcher, respectively. The results are grouped according to
the corresponding 3-point bins.

CHAPTER 5 108
The remaining bins are shown in the next table:

Bin T-h DD DR RR
Count Time Count Time Count Time
16 1.58300 - 2.51000 83647 0 65546 3 95086 5
3.16600 - 10.0400 2.03585e 406 3 5.00106e+06 18 7.37772e+06 10
3.16600 - 10.8683 2.4211e406 2 6.33633e+06 20 9.34247e406 13
17 1.58300 - 2.51000 83647 1 65546 5 95986 4
3,16600 - 10,0400 2.03585e106 2 5.00106e-+06 18 7.37772e406 11
3.68839 - 11,6966 2.75858e+06 3 7.77651e+06 21 1.14521e407 16
18 1.58300 - 2.51000 83647 1 65546 5 05986 4
3.16600 - 10.0400 2.03585e+06 2 5.00106e+06 17 7.37772e+406 11
4.21078 - 12.5500 3.13323e+06 3 4582406 24 1.3907e407 8
19 2.51000 - 3.97900 217093 1 255940 6 378258 5
251000 - 7.95800 1.28496e+06 2 2.54331e-+06 13 3.76208e+406 9
251000 - 9.27107 1.78854e+06 2 4.01873e+06 16 5.93476e406 10
20 2.51000 - 3.97900 217093 2 255940 7 378258 3
2.51000 - 7.95800 1.28496e+06 1 2.54331e+06 13 3.76208e+406 9
3.33830 - 10.5841 2.25988e+06 3 5.82627e-+06 19 8.5915e+06 11
21 2.51000 - 3.97900 217093 1 255940 3 378258 5
2.51000 - 7.95800 1.28496e+06 2 2.54331e406 13 3.76208e+406 9
4.16660 - 11.9370 2.80006e+06 3 8144840406 22 1.19895e+07 17
22 2.51000 - 2.97900 217003 1 255940 7 378258 5
5.02000 - 15.9160 5.22008e+06 4 1.87613e407 34 2.7467e+07 26
5.02000 - 17.2291 6.27787e+06 5 2.36394e+07 39 3.45753e407 29
23 2.51000 - 3.97900 217093 1 255940 6 378258 6
5.02000 - 15.9160 5.22008e+06 5 1.87613e+407 35 2.7467e+07 25
5.84830 - 18.5421 7.23449¢+06 4 2.88138e407 45 4.2114e+07 32
24 251000 - 3.97900 217093 1 255940 7 378258 6
5.02000 - 15.9160 5.22008e+06 5 1.87613e4-07 34 2.7467e+07 25
6.67660 - 19.8050 8.31268e+06 5 3.47907e407 51 5.08111e+07 35
25 3.97900 - 6.30800 542345 2 989332 10 1.46519¢+06 7
3.97900 - 12,6160 3.21419e406 3 9.67024e+06 24 1.42178e+07 19
3.97900 - 14,6976 4.54174e+06 4 1.51608e+07 30 2.22299e+407 22
26 3.97900 - 6.30800 542345 1 989332 10 1.46519e+06 7
3.97900 - 12,6160 3.21419e406 3 9.67024e+06 24 1.42178e+07 18
5.29207 - 16.7793 5.84016e+06 5 217777e407 37 3.18574e+07 28
27 3.97900 - 6.30800 542345 2 989332 10 1.46519e+06 7
3.97900 - 12,6160 3.21419e406 3 9.67024e+06 24 1.42178e+07 18
6.60514 - 18.9240 7.37907e+06 5 3.01075e+407 46 4.39888e407 33
28 3.97900 - 6.30800 542345 2 989332 10 1.46519e106 7
7.95800 - 25,2320 1.42425e407 8 6.71475e+07 75 9.79219e407 58
7.95800 - 27.3136 1.72618e4-07 9 8.37457e407 86 1.22064e+08 66
29 3.97900 - 6.30800 542345 1 0893332 9 1.46510e106 7
7.95800 - 25,2320 1.42425e407 8 6.71475e407 75 9.79219e+07 58
9.27107 - 29,3953 2.01054e+07 10 1.00942e+08 98 1.47025e+08 72
30 3.97900 - 6.30800 542345 2 989332 10 1.46519e+06 g
7.95800 - 25.2320 1.42425e+07 8 6.71475e+07 75 9.79219e+07 57
10.5841 - 31.5400 2.33149e4-07 11 1.20427e408 110 1.75293e+4+08 83
31 6.30800 - 10,0000 1.34302e+06 2 3.78333e+06 18 5.57542e106 10
6.30800 - 20.0000 8.52661e+406 6 5568e+407 50 51948e+07 36
6.30800 - 23,3000 1.22449e407 7 5.48613e407 65 8.00559e+07 49

Figure 5.11: 2-POINT RESULTS FOR GALACTIC SIMULATION DATA, BINS 16-31.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY

109

The following tables are for the 3-point function, showing the DDD, DDR, DRR,

and RRR cases.

Bin DDD DDR DRR RRR
Count Time Count Time Count Time Count Time
1 97781 10 20894 24 4951 41 4890 55
2 116108 12 25399 27 6154 46 6032 60
3 117707 13 25999 30 6335 51 6209 64
4 415960 29 133437 66 41625 90 41321 110
5 444286 32 145556 75 45855 100 45686 117
6 443171 36 146361 83 46404 110 46189 126
T 681755 23 220187 50 77241 75 76326 100
8 803707 27 265661 60 95733 88 94496 111
9 814283 32 271419 72 98913 102 97537 124
10 2.53756e+06 82 1.37222e-+406 203 644789 275 635029 315
11 2.69453e4-06 93 1.49259e+06 237 710837 330 703454 367
12 2.67603e+06 105 1.49965e4-06 272 718247 389 711042 423
13 4.1752e+4-06 60 2.21048e+06 139 1.20088e4-06 184 1.16949%e+-06 204
14 4.87871e+06 5 2.65971e4-06 180 1.4876e406 250 1.4469e+06 270
15 4.92414e406 90 2.71432e4-06 227 1.53538e4-06 322 1.49333e406 341
16 1.38298e4-07 250 1.37365e407 823 9.8069e4-06 1263 9.50644e+06 1325
17 1.46283e407 292 1.49707e4-07 985 1.0798e+07 1625 1.04646e+07 1743
18 1.44916e4-07 a3z 1.50412e407 1147 1.09092e4-07 1995 1.05698e+407 2159
19 2.18104e+407 185 2.16221e4-07 539 1.8147e+407 752 1.77617e+07 766
20 2.53432e407 242 2.60308e4-07 738 2.24161e407 1090 2.19372e4+07 1085
21 2.54728e4-07 308 2.65704e407 963 2.31137e+4-07 1601 2.26198e+07 1703
22 7.2466Te+07 941 1.36847e+08 3836 1.43839%+08 7693 1.39167e+08 8633
23 T7.72252e4-07 1074 1.4907e+08 4573 1.57963e+408 9339 1.52778e+08 10302
24 7.66309e+07 1207 1.49795e4-08 5376 1.59442e+08 11088 1.54184e+08 11962
25 1.02721e408 713 2.10564e4-08 2695 2.67053e+08 4833 2.59646e408 5198
26 1.20043e4-08 952 2.54094e+08 3780 3.28887e+08 7300 3.19427e4-08 7817
27 1.208e+08 1168 2.59419e+4-08 4963 3.38729e+4-08 9915 3.28895e+08 10329
28 3.88227e408 3737 1.30643e409 19216 1.97906e4-09 42939 1.90915e+4-09 44082
29 4.14812e4-08 4253 1.4196e+-09 22665 2.16325e4-09 50885 2.08632e4-09 51065
30 4.13015e+-08 4770 1.42565e4-09 25842 2.17992e+-09 58901 2.1021e4-09 58694
31 5.3883e+08 2991 2.05484e4-09 15637 3.73461e409 34756 3.60121e4-09 33658
32 6.34098e4-08 3927 2.47426e409 21745 4.5661e-4-09 50217

Figure 5.12: 3-POINT RESULTS FOR GALACTIC SIMULATION DATA, BINS 1-32.

The empty slots correspond to runs which were stopped because they were too
time consuming. Thus the remaining handful of bins were essentially left for uncom-
putable. We applied the shattered Monte Carlo algorithm to these bins and were

able to achieve these computations.

Bin RRR

Count Time
31 3.61275e-409 96
3z 4.40414e4+09 68
33 4.5193e+09 82
34 2.37094e+10 61
35 2.55316e+10 83
36 2.56899e+10 &7

Figure 5.13: 3-POINT RESULTS FOR GALACTIC SIMULATION DATA USING MONTE
CARLO, BINS 32-36.

5.6.3 Scaling with dataset size.

CHAPTER 5 110

To study the scaling of the exact algorithms with dataset size V, we created subsets
of the mock galaxy catalog of increasing size. To test the exact shattering algo-
rithm, one of the smaller bin sizes (bin 3, 0.0271644 - 0.0368129) was used for the
subsequent experiments. We tested the scaling for n = 2, 3, and 4.

Sealing bahavior with data size, 2-paint
T T T T T

gm
&
Data = Mock catalog, DD E
N Time & 1op
15625 0.3
31250 0.5
62500 1
125k 2 i
250k 5
500k 10
M 23 2 e I T A
o 1 2) 4 5 5 7 3 B 10
Mumber of data x10°

Figure 5.14: SCALING WITH DATASET SIZE, 2-POINT. Numerical values and plot.

Scaling behavior with data size, 3-peint

El T T T T T T

g

Data = Mock catalog, DDD £

N Time g
15625 0.5
31250 1
62500 3
125k 13
250k 46
500k 169
M 434

o 1 2 a 4 5 & 7 a8 8 10

Number of data A

Figure 5.15: SCALING WITH DATASET SIZE, 3-POINT.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 111

Sealing behavior with data size, 4-point

5000 T T T
AS00 =
4000 -
00
-IE?MD
§2590‘
Data = Mock catalog, DDDD E
N Time gzmo-
15625 1
31250 3 15001
62500 18
125k 88 1000
250k 359
500k 1024 =
M 4574 y e g g P
o 1 2 3 4 -] 7 8 a 10

3
Number of data

Figure 5.16: SCALING WITH DATASET SIZE, 4-POINT. Numerical values and plot.

The independence of the Monte Carlo method's runtime from the dataset size is
demonstrated in Figure 5.17, where we compare 3-point runs on two datasets: the
random (‘R') galactic simulation dataset and a randomly-chosen 10%-size subset
of it. The bin setting is ‘bin 31, one that was particularly time-consuming for the
exact shattering method.

N i Exact Monte Monte Monte
Shattering Carlo Carlo Carlo

Time Time Time Time

10% err 5% err 1% err

19103 0.003813 164 64 179 2585
191024 0.003877 33658 65 183 2470

Figure 5.17: EFFECT OF DATASET SIZE FOR MONTE CARLO.

Although the data is one-tenth the size, for the same bin setting its proportion
of matching n-tuples is the same — in fact the answer count in both cases is
nearly identical (about 3.6 x 10°). We observe that the runtimes are comparable,
demonstrating that the effect of p dominates for the Monte Carlo method, rather
than N.

CHAPTER 5 112

For the shattered Monte Carlo algorithm, only its exact shattering phase is affected
by the dataset size. Thereafter the runtime, as we explained earlier, is only dependent
on p. The dependence on NN observed in the graph is due to the use of the data-
fraction heuristic used to choose the number of node expansions at which to stop
the exact algorithm. If left as a user parameter and kept constant, the CPU time
will be constant as we've seen.

Scafing behavior with data size, 2-point, Monta Care
24 - - T ¥ T T ' T T

R
g
g,
Data = Mock catalog, DD E
N # Time 51
15625 0.0069567 4
31250 0.0086097 6 1o
62500 0.0109024 7
125k 0.0099195 11
250k 0.0098757 14
500k 0.0099057 20
im 0.0099417 23

o 1 2 3 4 5 6 7 B] 10
MNurnbes of data 10’

Figure 5.18: SCALING WITH DATASET SIZE, 2-POINT, MONTE CARLO. Numerical values
and plot.

5.6.4 Scaling with tuple order. To test the scaling of the shattering algorithm with tuple order n, we used the
smallest bin size (bin 1, 0.63000 - 1.99800) and varied n from 2 to 5.

Scaling behavior with tuple orer

CPU time (swcands)
=
-

n Count Time w'p
2 75195 1
3 126042 8
4 241459 74
5 3.96537e+13 6107)
ik 25 3 25) a5]
Tugpha arder i

Figure 5.19: SCALING WITH TUPLE ORDER.

5.6.5 Scaling with bin size.

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 113

The next figure re-plots the experimental timings of 5.6.3 to display the dataset-
size-scaling curves for n = 2, 3 and 4 on the same axes for comparison of their
growths with N.

Scaling behavior with data size, by tuple order
5000 T T T T T T T T T

4500 H

4000

3500 -

5?

CPU time (seconds)

oles " L L . —_—
0 1 2 3 4 5 6 T 8 9 10
Number of data % 10°

Figure 5.20: SCALING WITH NUMBER OF DATA, BY TUPLE ORDER.

We have seen that the size of the bin, which is also related to the size of the true

count to be computed, has a significant on the computational cost of the algorithm.

For the mock galaxy catalog, we plot the runtime as a function of the bin size.
First the DD and RR cases of the 2-point are shown:

) Sicafing behnior with bin width, 2-paint

Scalng behawior with bin widih, 2-point 7

s n
i

GPU tima (secands}
w

U tima [secands

03 04 [T X3 [k 1] o1 o2 03 04 05 0 a7
Bin width Bin width

Figure 5.21: SCALING WITH BIN WIDTH, 2-POINT, DD CASE AND RR CASE.

G time (secands)

n

CHAPTER 5 114

In general a larger bin size implies larger counts, and thus higher computational

cost for the algorithm. However, we see that at some point the count begins to
drop, due to the edge effects of a limited sample for very large bin sizes.

A similar effect can be seen in the 3-point results:

Soaling bebaior with bin width, 3-poinl _— Scaling betasior wah bin width, 3-peint

450

CPU tine [secanis)
= w
H h e b -

in

=
n

il

0,25 0.3 028 04 o [T o1 [XE] 0.2 [E3

a5 Xl (X0 ¥
Hin widih Hin widh

Figure 5.22: SCALING WITH BIN WIDTH, 3-POINT, DDD CASE AND RRR CASE.

To consider the effect of bin size for the galactic simulation data, recall that each
bin was defined by a fully-parametrized triangle in those experiments. Thus we can
no longer easily consider bin size as a function of one variable, as we could in the
previous one-parameter equilateral triangle case. Thus we use a bar graph in the
next figure, to emphasize that the horizontal axis does not correspond to a usual
ordering. The up-and-down structure in the bars is due to the cyclic way in which
the triangle parameters were chosen.

x10° Scaling behavior with bin parameters
B T T T T T T

CPU time (seconds)
L F

L)

0 5 10 15 20 25 30 35
Bin number

Figure 5.23: SCALING WITH BIN PARAMETERS, 3-POINT, GALACTIC SIMULATION. Shown
as a bar graph to display the pattern more clearly.

5.6.6 Scaling with error

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY

115

For the approximate shattered Monte Carlo algorithm, we test the scaling of runtime
with the user-supplied error tolerance ¢. We again consider a 3-point run using the
random ('R’) galactic simulation catalog, and bin 31. The true answer for this
example is 3.60121 x 10°. The plot shows the maximum error of the algorithm, with
a 99% confidence interval, reported each round of sampling as the algorithm runs.

tolerance.

é (&=, & Error Time
4.66e+4+011 [0.00, 9.32e4011 4.65e4+011 33
3.60e+09 3.03e+09, 4.16e409 0.186 34
3.60e+409 3.04e4-09, 4.16e409 0.183 35
3.61e+09 3.06e+09, 4.16e4-09 0.178 36
3.62e+409 3.09¢+4-09, 4.15e+09 0.170 39
3.62e409 3.12e+09, 4.12e409 0.158 43
3.61e409 3.16e4+09, 4.06e+09 0.141 51
3.61e+-09 3.22e+09, 3.99e+09 0.118 66
3.61e409 3.30e+09, 3.92e+409 0.093 95
3.60e+09 3.36e+09, 3.84e409 0.070 153
3.59e+09 3.41e+4-09, 3.76e+09 0.051 266
3.58e+09 3.45e4-09, 3.71e+409 0.036 487
3.58e+09 3.49e+09, 3.67e4+09 0.025 921
3.58e409 3.51e+4+09, 3.64e+409 0.018 1793
3.58e4-09 3.53e+409, 3.62e+09 0.012 3514

CPU time {seconds)

2500

Scaling behavior with error tolerance, Monte Carlo

T T T

1 I
0.02 0.04 0.06

I n 1
0.08 01 012

Error fraction

014 016 018 0z

Figure 5.24: SCALING WITH ERROR TOLERANCE.

Figure 5.25 depicts the progression of the lower and upper bounds versus time,

4.2

w .c»
o]

Confidence bounds and central estimate
w
PN

3.2

x 10

)

Progression of bounds versus time

r

L I i

500

Figure 5.25:

1000 1500 2000
CPU time (seconds)

2500

PROGRESSION OF BOUNDS VERSUS TIME.

CHAPTER 5 116

5.6.7 Effect of stratification. We test the effect of increased stratification (described in 5.4.2) on the runtime
using the same example. Figure 5.26 plots the runtime, at 10% error, versus the
number of strata.

Scaling behavior with number of strata

18007 v — : " e
I,
mmi\-
1200
2 1000+
£
g
£ amb
g
Number Number Exact Total saol-
of of Shattering Time
Expansions Strata Time 10% err -
4263 707 1 1696
157590 5204 2 833 o |
77239 19656 7 218
231636 60787 33 95 5 : : ; ;) :
o 1 2 3 4 5] 7

MNumber of strata

Figure 5.26: EFFECT OF STRATIFICATION.

5.6.8 Effect of defragmentation. In the same example we test the effect of defragmentation (described in 5.5.3). We
observe roughtly a factor of 2 in speedup over the method without defragmentation.

Scaling bahavior with error tolerance, using defragmentation

1400 T T T T T T T T T
—#— Without defragmentation
-2~ With defragmantation
1200 -
1000+ .
é [&°, &t Error Timne &
4.66e411 [0.00, 9.32e411 4.65e+411 22 g 800 - B
3.82e409 3.48e409, 4.16e+09 0.097 23 §
3.83e--09 3.49e+409, 4.17e+09 0.096 24 =
3.84e+409 3.51e4+09, 4.17e+09 0.094 25 g in
3.84e409 3.52e+09, 4.16e409 0.091 26 o 1
3.83e+409 3.53e+09, 4.14e-++09 0.086 29
3.81e+409 3.53e+09, 4.09e+09 0.078 35
3.76e409 3.52e+09, 3.99e-+09 0.067 45 4001 7
3.71e409 3.51e+09, 3.90e+09 0.055 65
3.65e+409 3.50e+09, 3.79e+09 0.042 106
3.62e-+409 3.50e+409, 3.73e+409 0.031 184 200+ 4
3.59e409 3.51e409, 3.07e+09 0.022 329
3.59e4-09 3.53e+4-09, 3.65e+409 0.016 651
3.58e409 3.54e409, 3.62e+09 0.011 1280 0 A L ' " D, ; h ; -
1} 0.02 0.04 0.06 0.08 01 012 014 016 018 @2

Error fraction

Figure 5.27: EFFECT OF DEFRAGMENTATION.

§5.7 Related problems and
approaches.
5.7.1 Grid-based methods.

5.7.2 The power spectrum
method.

5.7.3 Computational Geometry
with n-Tuples

5.7.4 Geometric Monte Carlo

5.7.5 Binomial confidence
bounds

§5.8 Chapter summary

N-BODY PROBLEMS IN COMPUTATIONAL MORPHOLOGY 117

The chief non-FFT computational approaches to the n-point problem e.g. [Sza97]
have been grid-based approaches, suffering all of the problems of grids which we
have already discussed. Statistically these approaches technically are not even the
same as the direct n-point counts — instead, they compute ‘counts-in-cells’, which
are different quantities with different (and less desirable) statistical properties.

With only these grid-based approaches in hand, the prospect of making progress
using the n-point functions has seemed fairly hopeless. For this reason, practical
and theoretical attention in astrophysics turned to the Fourier-space, or power spec-
trum versions of the correlation functions so that the FFT could be applied to the
computational problem. However, the Fourier representation is wracked by severe
problems making its use limited and difficult at best, most notably the debilitat-
ing Gibbs phenomenon (ringing in Fourier space) caused by edge effects, on top of
the accuracy issues we have discussed in previous chapters. The power spectrum
approach only exists because tractability has not seemed to be forthcoming for the
true correlation functions.

There does not appear to be any previous work in computational geometry concern-
ing problems which involve n-tuples, for n > 2.

The idea of using space-partitioning trees to perform stratification has been used
before. The two previous instances of this kind of algorithm [PF90, FW81] were both
proposed in the general setting of Monte Carlo integration. In these approaches the
process of stratification did not contribute directly to the solution, as it does in our
case through the exact tightening of bounds by exact pruning methods.

Many authors have considered the fundamental question of designing confidence
bounds for the binomial distribution e.g. [BS83, AC98, BCDO1].

This has been an instance in which work on confidence bounds has interacted with
work on a Monte Carlo method; in general we conjecture that other such interactions
could prove fruitful.

Let us now summarize the activities of this Chapter:

e n-tuples with exact computation. We developed an approach to n-tuple
problems, the most daunting of all of our N-body problems, using the natural
extension of the shattering principle. The increase in sophistication and effi-
ciency of this approach over previous solution attempts is larger than we saw
in the pairwise case.

¢ Monte Carlo for N-body problems. In the most difficult n-tuple context,
we showed how to use shattering as the basis for a new kind of Monte Carlo
approach which is also applicable to many other N-body problems.

¢ General sampling techniques. Some of the techniques we developed for this
problem extend to the most general Monte Carlo context, most notably adaptive
Neyman allocation and its various associated mechanisms.

CHAPTER 5 118

e n-point correlation problems and real solutions. We reviewed the key the-
oretical aspects making the n-point correlation problems fundamental and the
key practical constraints under which a solution attempt must operate effi-
ciently. We then developed a solution meeting these criteria for the first time,
via a number of specialized techniques.

What's next? Now we are done! So it's time to summarize everything we did, in the next and last
chapter.

§6.1 New understanding of
important problems.

§6.2 New tractability for
important problems.

Summary and Outlook

A Retrospective and Prospective.

Ah Love! could thou and | with Fate conspire

To grasp this sorry Scheme of Things entire,

Would we not shatter it to bits — and then

Re-mould it nearer to the Heart's Desire!

— Edward FitzGerald (1809 - 1883), in Omar Khayym (1859) xcix.

Now let's take a final overarching look at what we've done, how it affects the
landscape of the fields and problems we've treated, and therefore what remains to
be done.

Much of research, particularly engineering research, is about carving out the right
problems for researchers to focus intellectual resources upon. This is what we did
along these lines:

1. Delineating a subspace of computational problems. We defined for first
time a class of problems which covers many disparate fields but can be treated
by similar methods — this problem subspace includes several well-known or
‘high-profile' problems. This unified approaches and knowledge across several
fields regarding these kinds of problems, and points out how progress in one
field might implicitly mean progress in another, or how progress on one problem
might mean progress on a whole set of problems at the same time.

2. Some new combinatorial problems. Generalizing from the n-point corre-
lation problems, we defined a new class of computational geometry problems
which is interesting and natural in its own right, with several potential appli-
cations. The fact that it has not appear to have been discussed previously
is perhaps due to the fact that it was too difficult to have been realistically
considered to date.

Since the beginning of this thesis we kept our eye on developing general mechanisms
for solving the entire range of N-body problems we listed in Chapter 1. We chose
a few key problem aspects to focus on, and associated them with specific open
computational problems - one from each of four different fields.

For two of these problems, our methodology represented a dramatic advance over
the previous state-of-the-art solutions:

1. Efficient practical kernel estimation. The leap over the previous gridding
and FFT methods is directly analogous to the leap made by the Barnes-Hut

119

CHAPTER 6 120

and FMM methods in the N-body problems of computational physics. Our
solution is the first to be able to treat all of the practicalities of the kernel
estimation problem.

2. Efficient practical n-point correlations. For this set of problems the gain
in efficiency afforded by our methods is substantial. Qur solutions allows both
exact and even-faster probabilistic computations on unprecedented scales which
have made new astrophysical investigations possible for the first time.

For the other two focus problems, our methodology yielded new solutions with
certain advantages over previous ones, though useful solutions already existed for
these problems:

1. Derivative-free linear-time smoothed particle hydrodynamics. Tree based
methods based on the O(N log N) Barnes-Hut monopole method as well as
O(N) multipole methods are applicable to this problem, but both have key
disadvantages. Our method is the first approach which is both derivative-free,
thus avoiding the severe implementation and applicability barriers of multipole
methods, and linear-time unlike the monopole methods.

2. Arbitrary-dimension linear-time all-nearest-neighbors. We give a pure-
recursive or priority-queue-based method which runs in expected O(N) time
in arbitrary dimensions. It extends [Cal95, HS98] by avoiding the unneces-
sary restrictions of an intermediate data structure (thus a constant factor more
efficient) and a priority queue formulation, respectively. Since these are rela-
tively minor improvements, the main contribution in this case is insight into
the advantage of the node-node approach over the point-node approach, or
higher-order divide-and-conquer over standard divide-and-conquer.

6.3 New algorithmic Of course, as per our original intention, it is possible to transfer our methods for

techniques. these focus problems to other N-body problems sharing the same key aspects. We
developed a number of new algorithmic techniques which generalize to other prob-
lems to various extents:

1. Higher-order divide-and-conquer. We extended the computer science tool-
box with a major new variant of the divide-and-conquer strategy which does not
seem to have been delineated previously. This new design principle has yielded
some new algorithms which are conceptually unlike any existing algorithms.
We explored and demonstrated its computational-geometric form, geometric
shattering, in particular, but anticipate that its more general application will
find utility in problems far beyond the N-body scope.

2. Finite-difference approximation. We designed a finite-difference approach
which can be used in the context of geometric divide-and-conquer approach for
nearly any continuous kernel function arising in typical N-body problems.

3. Multiple and optimal scales. We showed how to extend our methods so that
N-body problems over multiple scales (‘bandwidths’) can be solved efficiently.
We also gave an approach using this technique for efficiently finding the optimal
scale.

4. Variable and time-varying scales. We developed approaches for these issues,
which appear in other N-body problems, based on an additional application of
the higher-order divide-and-conquer principle.

SUMMARY AND OUTLOOK 121

5. Up-down propagation. We designed an additional methodology based on
asynchronous dynamic programming which accelerates basic shattering.

6. Multipole-geometric hybrids. We suggested new algorithmic possiblities
which can be realized by combining the geometric insights developed here with
the standard multipole methods currently used in Coulombic N-body problems.
These hybrid approaches would have certain advantages which are not possi-
ble with current approaches. Note, however, that these methods remain to be
implemented and experimentally validated.

7. n-tuple shattering. We showed to extend the geometric shattering principle
beyond pairwise N-body problems to the case of general n-tuples, opening up
the possiblility of approaching an entire new class of problems.

8. Shattered Monte Carlo. We showed how shattering can be used in concert
with Monte Carlo integration methods to obtain very fast probabilistic solutions
to even the hardest N-body problems.

9. Adaptive Neyman allocation. We demonstrated a new approach to sample
allocation which asymptotically achieves optimal allocation, and is applicable
in the most general Monte Carlo integration setting.

10. Defragmentation. We developed a mechanism for accelerating stratified sam-
pling in probability ranges where binomial confidence bounds are poor.

As a whole, this collection of algorithmic techniques, along with a collective under-
standing of generalized N-body problems in terms of key computational variations,
might be aptly called an ‘algorithmic N-body theory': a constructive theory giving
the existence, analysis, and implementation of efficient multi-recursive algorithms for
generalized N-body problems. In practical terms it forms the beginning of a ‘design
handbook' for algorithms for such problems, which we hope will find utility even
beyond the moderate sample of N-body problems we have listed in this thesis.

§6.4 Where to go next?

CHAPTER 6 122

| |Gr1ds FFT Barnes-Hut FMM ASPT+HODC|

Large N7 - + +++ -+
Arbitrary D7 - - - - 44

Control error? | + + + 11 444
Known error? | — - = N T L L
Not obtuse? +4++ - B — Lol
General? 44+ - ipapial _ e

Table 6.1: FINAL COMPARISON OF NEW ALGORITHMIC FRAMEWORK TO EXISTING
SOLUTION CLASSES FOR GENERALIZED N-BODY PROBLEMS, The number of ‘+' symbols
indicates the extent to which the property in question is satisfied. '~ indicates failure to satisfy
the property.

Finally, our deliberate focus on key practical properties allows us to now return
to the solution scorecard from Chapter 1, revealing a favorable comparison to the
array of existing major solution classes.

At least the following handful of directions are immediately suggested by the work
in this thesis.

¢ SPH implementation. The SPH algorithm remains to be implemented and
validated in the context of astrophysical fluid dynamics simulations with our
VIRGO Project collaborators.

e Projected n-point. The projected n-point correlation is a variant which works
in the projected plane of observation rather than the three-dimensional sky
coordinates. An extension of our method to this case would provide a significant
benefit to astrophysicists.

o Geometric structures. It may still be possible that some of the many lesser-
known variants of space-partitioning trees or new extensions of, say, ball-trees
might provide some efficiency advantage. Also, structures which have good
properties in low dimensions might be useful in physics problems.

o Hilbert-space kernels. The extension of our methods from metric spaces to
Hilbert space could open up several new applications in the area of machine
learning known as 'kernel methods', which include the well-known support vec-
tor machines.

e Automatic algorithm derivation. In this thesis we constructed a unified and
generalized view of a certain class of problems and algorithmic solutions for
them. The next level of generalization would formalize the problems and the
solutions to the extent that given a problem specification, the appropriate algo-
rithm from the geometric shattering class of solutions could be automatically
derived and implemented. A brief attempt at this was already begun in work
leading to [GFSB03].

o New theoretical ideas. Lastly, with their newfound computational feasbility,
we anticipate that the mathematical tools we have sped up, especially the
fundamental ideas of kernel estimation and n-point correlation, will find new
application as sub-routines within other techniques. The increased utility of the
basic tools will in turn provoke theoretical extensions to the ideas themselves.

[AC98]

[AE97]

[AEDO1]

[AM93]

[AMO5]

[AMN*94]

[AMN+98]

[And92]

[App81]

References

NIPS abbreviates the proceedings volumes titled Advances in Neural Information
Processing Systems.

A. Agresti and B. A. Coull.
Approximate is better than ‘exact’ for interval estimation of binomial proportions.
The American Statistician, 52:119-126, 1998.

P. K. Agarwal and J. Erickson.
Geometric Range Searching and its Relatives.
Technical report, Duke University, 1997.

R. Duraiswami A. Elgammal and L. S. Davis.

Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applica-
tions to Segmentation and Tracking.

In Proceedings of the Second International Workshop on Statistical and Computa-
tional Theories of Vision, 2001.

S. Arya and D. Mount.

Approximate Nearest Neighbor Queries in Fixed Dimensions.

In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 271-280, 1993.

S. Arya and D. Mount.
Approximate Range Searching.

In Proceedings of the Eleventh Annual ACM Symposium on Computational Geom-
etry, pages 172-181, 1995,

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.

An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimen-
sions.

In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 573-582, 1994,

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.
An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimen-
sions.

Journal of the ACM, 45(6):891-923, 1998.

C. R. Anderson.
An implementation of the fast multipole method without multipoles.
SIAM Journal of Scientific and Statistical Computing, 13(4):923-947, 1992,

A. W. Appel.
An Asymptotically Fast Algorithm for N-Body Simulations.
Senior Thesis, Princeton University, Computer Science Department, 1981.

123

[App85]

[AS72]

[AY00]

[BCDO1]

[Ben75]

[Ben80]

[Ber92]

[BF96]

[BHS6]

[Bis95]

[BKS93]

[BN97]

[BN9S]

[Boh00]

REFERENCES 124

AW, Appel.
An Efficient Program for Many-Body Simulations.
SIAM Journal on Scientific and Statistical Computing, 6(1):85-103, 1985.

M. Abramowitz and |.A. Stegun.
Handbook of Mathematical Functions.
Dover Publications, 1972.

C. C. Aggarwal and P. Yu.
The 1Grid Index: Reversing the Dimensionality Curse for Similarity Indexing in High
Dimensional Space.

In Proceedings Sixth International Conference on Knowledge Discovery and Data
Mining. ACM, 2000.

L. D. Brown, T. Cai, and A. DasGupta.

Interval estimation for a binomial proportion.

Statistical Science, 16(2):101-133, 2001.
J. L. Bentley.

Multidimensional Binary Search Trees used for Associative Searching.
Communications of the ACM, 18:509-517, 1975.

J. L. Bentley.
Multidimensional Divide and Conquer.

Communications of the ACM, 23(4):214—229, 1980.

F. Bernardeau.

" The gravity induced quasi-gaussian correlation hierarchy.

Astrophysics Journal, 392, 1992.

G. J. Babu and E. D. Feigelson.
Astrostatistics: Interdisciplinary Statistics.
Chapman and Hall, 1996.

J. Barnes and P. Hut.
A Hierarchical O(NlogN) Force-Calculation Algorithm.
Nature, 324, 1986.

C. Bishop.
Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, 1995.

T. Brinkhoff, H. P. Kriegel, and B. Seeger.

Efficient Processing of Spatial Joins Using R-trees.

In Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data. ACM, 1993.

Guy Blelloch and Girija Narlikar.

A practical comparison of n-body algorithms.

In Parallel Algorithms, Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1997.

R. K. Beatson and G. N. Newsam.
Fast evaluation of radial basis functions: Moment-based methods.
SIAM Journal of Scientific Computing, 19(5):1428-1449, 1998.

Christian Bohm.
A Cost Model for Query Processing in High Dimensional Data Spaces.
ACM Transactions on Database Systems, 25(2):129-178, 2000.

[Bot73]

[Bow85]

[BS76]

[BS78]

[BS83]

[Cal9s]

[CB9O]

[CE85]

[Cha99]

[CHH85]

[Cla83]

[Cla87]

[Cla88]

[Cla02]

REFERENCES 125

C. J. F. Bottcher.
Theory of Electric Polarization, Ze.
Elsevier, 1973.

A.W. Bowman.
A Comparative Study of Some Kernel-Based Nonparametric Density Estimators.
Journal of Statistical Computation and Simulation, 21:313-327, 1985.

Jon Louis Bentley and Michael lan Shamos.

Divide-and-Conquer in Multidimensional Space.

In Proceedings of the Eighth Annual ACM Symposium on Theory of Computing,
pages 220-230, 1976.

Jon Louis Bentley and Michael lan Shamos.
Divide-and-Conquer in Multidimensional Space.
Information Processing Letters, 7:87-91, 1978.

C. R. Blyth and H. A. Still.
Binomial confidence intervals.

Journal of the American Statistical Association, 78(381):108-116, March 1983.

P.B. Callahan.

Dealing with Higher Dimensions: The Well-Separated Pair Decomposition and its
Applications.
PhD thesis, Johns Hopkins University, Baltimore, Maryland, 1995.

G. Casella and R. L. Berger.
Statistical Inference.
Duxbury Press, 1990.

B. M. Chazelle and H. Edelsbrunner.
Optimal Solutions for a Class of Point Retrieval Problems.
Journal of Symbolic Computation, 1:47-56, 1985.

B. Chazelle.
Application Challenges to Computational Geometry.

Advances in Discrete and Computational Geometry, Contemporary Mathematics,
223:407-463, 1999.

R. C. Y. Chin, G. W. Hedstrom, and F. A. Howes.
Considerations on Solving Problems with Multiple Scales.
Academic Press, 1985.

K. Clarkson.
Fast Algorithms for the All Nearest Neighbors Problem.

In Proceedings of the Twenty-fourth Annual IEEE Symposium on the Foundations
of Computer Science, pages 226-232, 1983.

K. L. Clarkson.

New Applications of Random Sampling in Computational Geometry.
Discrete and Computational Geometry, 2:195-222, 1987.

K. L. Clarkson.

A Randomized Algorithm for Closest-point Queries.

SIAM Journal of Computing, 17:830-847, 1988.

K. Clarkson.

Nearest Neighbor Searching in Metric Spaces: Experimental Results for sb(S).
2002.

[CNBYMO1]

[CPZ98]

[CS89]

[CT92]

[dBvKOS99]

[DG85]

[DH73]

[DKG92]

[DL76]

[DLO1]

[DM95]

[DVJ72]

[Epa69]

[Epp98]

REFERENCES 126

E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin.
Proximity Searching in Metric Spaces.
ACM Computing Surveys, 33:273-321, 2001.

P. Ciaccia, M. Patella, and P. Zezula.

A Cost Model for Similarity Queries in Metric Spaces.

In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems : PODS 1998. ACM Press, 1998.

K. L. Clarkson and P. W. Shor.
Applications of Random Sampling in Computational Geometry II.
Discrete and Computational Geometry, 4:387-421, 1989.

Yi-Jen Chiang and Roberto Tamassia.

Dynamic algorithms in computational geometry.

Proceedings of IEEE, Special Issue on Computational Geometry, 80(9):362-381,
1992.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications, Ze.
Springer-Verlag, 1999.

Luc Devroye and Laszlo Gyorfi.
Nonparametric Density Estimation: The L, View.

Wiley, 1985.

R. O. Duda and P. E. Hart.
Pattern Classification and Scene Analysis.
John Wiley & Sons, 1973.

C. Ding, N. Karasawa, and W. A. Goddard.

Atomic level simulations of a million particles: The cell multipole method for
coulomb and london interactions.

Journal of Chemical Physics, 97:4309-4315, 1992.

D. Dobkin and R. J. Lipton.
Multidimensional Searching Problems.
SIAM Journal of Computing, 5:181-186, 1976.

Luc Devroye and Gabor Lugosi.
Combinatorial Methods in Density Estimation.
Springer-Verlag, 2001.

K. Deng and A. W. Moore.

Multiresolution Instance-based Learning.

In Proceedings of the Twelfth International Joint Conference on Artificial Intelli-
gence, pages 1233-1239, San Francisco, 1995. Morgan Kaufmann.

D. J. Daley and D. Vere-Jones.

A Summary of the Theory of Point Processes.

In P. A. W. Lewis, editor, Stochastic Point Processes, pages 299-383. John Wiley
& Sons, 1972.

V. A. Epanechnikov.

Nonparametric Estimation of a Multidimensional Probability Density.
Theory of Probability and its Applications, 14:153-158, 1969.

David Eppstein.

Fast hierarchical clustering and other applications of dynamic closest pairs.

[Epp99]

[EPY00]

[Ewa21]

[FBF77]

[Fef00]

[FHO1]

[FK94]

[FO02]

[Fre81]

[Fry84]

[Fry86]

[FwW81]

[GBT84]

REFERENCES 127

In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theo-
retical and Experimental Analysis of Discrete Algorithms), 1998.

D. Eppstein.

Bibliography for ICS 280.

UClI, 1999.

http://www.ics.uci.edu/ eppstein/280/bib.html.

D. Eppstein, M. S. Paterson, and F. F. Yao.
On Nearest-Neighbor Graphs.
2000.

P. P. Ewald.
Die berechnung optischer und elektrostatischer gitterpotentiale.
Ann. Physik, 64, 1921,

J. H. Friedman, J. L. Bentley, and R. A. Finkel.
An algorithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software, 3(3):200-226, September 1977.

C. L. Fefferman.
Existence and Smoothness of the Navier-Stokes Equation.
2000.

S. Fortune and J. E. Hopcroft.
metric trees.
Information Processing Letters, 40:175-179, 1991.

C. Faloutsos and |. Kamel.

Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of
Fractal Dimension.

In Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems : PODS 1994. ACM Press, 1994.

C. S. Frenk and Others.

The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological
Hydrodynamics Solutions.

The Astrophysical Journal, 525(2):554-582, 2002.

M. L. Fredman.
A Lower Bound on the Complexity of Orthogonal Range Queries.
Journal of the ACM, 28:696-705, 1981.

J. N. Fry.
The galaxy correlation hierarchy in perturbation theory.
Astrophysics Journal, 279, 1984.

J. N. Fry.
On Statistical Searches for Filaments.
The Astrophysical Journal, 306:366-373, 1986.

J. H. Friedman and M. H. Wright.
A nested partitioning procedure for numerical multiple integration.
ACM Transactions on Mathematical Software, 7(1):76-92, 1981.

H. N. Gabow, J. L. Bentley, and R. E. Tarjan.

Scaling and Related Techniques for Geometry Problems.

In Proceedings of the Sixteenth Annual ACM Symposium on the Theory of Com-
puting, pages 135—143, 1984.

[GFSB03]

[GGos]

[GHO3]

[GHWS91]

[GIM99]

[Gio97]

[GMT77]

[GP83]

[GR87]

[GS91]

[Ham50]

[HESS]

[HHv74]

[HJR97]

[HK89]

REFERENCES 128

A. Gray, B. Fischer, J. Schumann, and W. Buntine.

Automatic Derivation of Statistical Algorithms: The EM Family and Beyond.

In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in
Neural Information Processing Systems 15 (December 2002). MIT Press, 2003.

V. Gaede and Oliver Gunther.
Multidimensional Access Methods.
ACM Computing Surveys, 30(2), 1998.

M. Girolami and C. He.
Probability Density Estimation from Optimally Condensed Data Samples.
IEEE Transactions Pattern Analysis and Machine Intelligence, 2003.

H. Grubmller, H. Heller, A. Windemuth, and K. Schulten.

Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with
Long-Range Interactions.

Molecular Simulation, 6:121-142, 1991.

A. Gionis, P. Indyk, and R. Motwani.
Similarity Search in High Dimensions via Hashing.
In Proc 25th VLDB Conference, 1999.

N. Giordano.
Computational Physics.
Prentice-Hall, 1997.

R. A. Gingold and J. J. Monaghan.
Smoothed Particle Hydrodynamics: Theory And Application to Non-Spherical Stars.
Monthly Notices of the Royal Astronomical Society, 181:375-389, 1977.

P. Grassberger and |. Procaccia.
Measuring the Strangeness of Strange Attractors.
Physica D, pages 189-208, 1983.

L. Greengard and V. Rokhlin.
A Fast Algorithm for Particle Simulations.
Journal of Computational Physics, 73, 1987.

L. Greengard and J. Strain.
The Fast Gauss Transform.
SIAM Journal of Scientific and Statistical Computing, 12(1):79-94, 1991.

J. M. Hammersley.

The Distribution of Distances in a Hypersphere.

Annals of Mathematical Statistics, 21:447-452, 1950.

R. W. Hockney and J. W. Eastwood.

Computer Simulation Using Particles.

Institute of Physics/Adam Hilger, 1988.

J. D. F. Habbema, J. Hermans, and K. van der Broek.

A Stepwise Discrimination Program Using Density Estimation.

In G. Bruckman, editor, Computational Statistics, pages 100-110. Physica Verlag,
1974.

Y. W. Huang, N. Jing, and E. A. Rundensteiner.

Spatial Joins Using R-trees: Breadth-first Traversal with Global Optimizations.

In Proc 23rd VLDB Conference, pages 396-405, 1997.

Lars Hernquist and Neal Katz.

Treesph: A Unification of SPH with the Hierarchical Tree Method.

[HL56]

[HMS01]

[HS98]

[JMS96]

[Joh98]

[Kad00]

[Kle97]

[Kut95]

[LHB*Q9]

[LQR97]

[LS93]

[LT77]

[Luc?7]

[M. 91]

REFERENCES 129

Astronomy and Astrophysics Supplemental Series, 70:419-446, June 1989.

J. L. Hodges and E. L. Lehmann.
The Efficiency of Some Nonparametric Competitors of the t-Test.
Annals of Mathematical Statistics, 27:324-335, 1956.

David J. Hand, Heikki Mannila, and Padhraic Smyth.
Principles of Data Mining.
MIT Press, 2001.

G. R. Hjaltason and H. Samet.

Incremental Distance Join Algorithms for Spatial Databases.

In Proceedings of the 1998 ACM SIGMOD International Conference on Management
of Data. ACM, 1998.

M.C. Jones, J.S. Marron, and S.J. Sheather.
A Brief Survey of Bandwidth Selection for Density Estimation.
Journal of the American Statistical Association, 91:401-407, 1996.

D. E. Johnson.
Applied Multivariate Methods for Data Analysis.
Duxbury Press, 1998.

L. P. Kadanoff.
Statistical Physics: Statics, Dynamics, and Renormalization.
World Scientific, 2000.

J. Kleinberg.

Two Algorithms for Nearest Neighbor Search in High Dimension.

In Proceedings of the Twenty-ninth Annual ACM Symposium on the Theory of
Computing, pages 599-608, 1997,

R. Kutteh.

A simpler and more efficient formulation of the cell multipole method.

CCP5 Quarterly, February 1995.

C. G. Lambert, S. E. Harrington, N. D. Bronson, C. R. Harvey, and A. Glodjo.
Efficient Online Non-Parametric Density Estimation.
Algorithmica, 1999,

G. Lake, T. Quinn, and D. C. Richardson.

From Sir Isaac to the Sloan Survey: Calculating the Structure and Chaos Owing to
Gravity in the Universe.

In ACM-SIAM Symposium on Discrete Algorithms, pages 1-10, 1997,

S. D. Landy and A. Szalay.
Bias and Variance of Angular Correlation Functions.
The Astrophysical Journal, 412, 1993.

R. J. Lipton and R. E. Tarjan.

Application of a Planar Separator Theorem.

In Proceedings of the Eighteenth Annual IEEE Symposium on the Foundations of
Computer Science, pages 162-170, 1977.

L. B. Lucy.

A Numerical Approach to the Testing of the Fission Hypothesis.

Astronomical Journal, 82:1013-1024, 1977.

M. van Kreveld and M. H. Overmars.

The divided k-d tree.

Algorithmica, 6:840-858, 1991.

[Man82]

[Mei93]

[ML98]

[MMO1]

[Mon92]

[Moo99]

[Moo00]

[MPT93]

[MS00]

[MSK96]

[Nic03]

[NT94]

[Omo87]

[Omog9]

REFERENCES 130

B. Mandelbrot.
Fractal Geometry of Nature.
W. H. Freeman & Company, 1982.

S. Meiser.
Point Location in Arrangements of Hyperplanes.
Information and Computation, 106:286-303, 1993,

Andrew W. Moore and M. S. Lee,
Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets.
JAIR, 8, March 1998.

S. Maneewongvatana and D. M. Mount.
The Analysis of a Probabilistic Approach to Nearest Neighbor Searching.
In Proceedings of WADS 2001, 2001.

J. J. Monaghan.
Smoothed Particle Hydrodynamics.
Annual Review of Astronomy and Astrophysics, 30:543-74, 1992.

A. W. Moore.

Very fast mixture-model-based clustering using multiresolution kd-trees.

In M. Kearns and D. Cohn, editors, Advances in Neural Information Processing
Systems 10, pages 543-549, San Francisco, April 1999. Morgan Kaufmann.

A. W. Moore.

The Anchors Hierarchy: Using the Triangle Inequality to Survive High-Dimensional
Data.

In Twelfth Conference on Uncertainty in Artificial Intelligence. AAAI Press, 2000.

T. J. Martin, F. R. Pearce, and P. A. Thomas.
An Owner's Guide to Smoothed Particle Hydrodynamics.
1993.

K. R. Mecke and D. Stoyan, editors.

Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial
Structures and Pattern Formation.

Springer, 2000.

J. Mecke, D. Stoyan, and W. Kendall.
Stochastic Geometry and its Applications.
John Wiley & Sons, 1996.

R. Nichol.
Personal Communication.

, 2003.

C. Niedermeier and P. Tavan.
A structure adapted multipole method for electrostatic interactions in protein dy-
namics.

Journal of Chemical Physics, 101:734-748, 1994.

S. M. Omohundro.
Efficient Algorithms with Neural Network Behaviour.
Journal of Complex Systems, 1(2):273-347, 1987.

S. M. Omohundro.
Five Balltree Construction Algorithms.
Technical Report TR-89-063, International Computer Science Institute, 1989.

[Omo90]

[Omo91]

[Pee80]

[PF90]

[PH77]

[PM97]

[PM99]

[PP62]

[Prio4]

[PS85]

[Rab76]

[Rao83]

[Ras99]

[Rip76]

REFERENCES 131

S. M. Omohundro.
Geometric Learning Algorithms.

Physica D, 42:307-321, 1990.

S. M. Omohundro.

Bumptrees for Efficient Function, Constraint, and Classification Learning.

In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural
Information Processing Systems 3. Morgan Kaufmann, 1991.

P. J. E. Peebles.
The Large-Scale Structure of the Universe.
Princeton University Press, 1980.

W. H. Press and G. R. Farrar.
Recursive stratified sampling for multidimensional monte carlo integration.
Computers in Physics, 4:190-195, 1990.

F. P. Preparata and S. J. Hong.
Convex Hull of Finite Sets of Points in Two and Three Dimensions.
Communications of the ACM, 20(2):87-93, 1977.

A. Papadopoulos and Y. Manolopoulos.
Performance of Nearest Neighbor Queries in R-trees, _
In Proceedings of the Zixth International Conference on Database Theory, 1997.

D. Pelleg and A. W. Moore.
Accelerating Exact k-means Algorithms with Geometric Reasoning.

In Proceedings of the Fifth International Conference on Knowledge Discovery and
Data Mining. ACM, 1999.

W. K. H. Panofksy and M. Phillips.
Classical Electricity and Magnetism, 2e.
Addison-Wesley, 1962.

C. Priebe.
Adaptive Mixtures.
Journal of the American Statistical Association, 89:796-806, 1994,

F. P. Preparata and M. Shamos.
Computational Geometry.
Springer-Verlag, 1985.

M. O. Rabin.

Probabilistic Algorithms.

In J. F. Traub, editor, Algorithms and Complexity: New Directions and Recent
Results, pages 21-39. Academic Press, 1976.

B.L.S. Prakasa Rao.
Nonparametric Functional Estimation.
Academic Press, 1983.

Frederic A. Rasio.
Particle Methods in Astrophysical Fluid Dynamics.

In Proceedings of the Fifth International Conference on Computational Physics,
1999.

Brian D. Ripley.

Locally Finite Random Sets: Foundations for Point Process Theory.
Annals of Probability, 4:983-994, 1976.

[Rip81]

[Rip88]

[Rot91]

[Rub81]

[Rud82]

[Sam90]

[SC03]

[Sco85]

[Sco92]

[SDS]

[SHT75]

[ShaT5]

[Sil82]

[Silg6]

REFERENCES 132

Brian D. Ripley.
Spatial Statistics.
John Wiley & Sons, 1981.

Brian D. Ripley.
Statistical Inference for Spatial Processes.
Cambridge University Press, 1988.

D. Rotem.
Spatial Join Indices.

In Proceedings of the Seventh International Conference on Data Engineering, pages
500-509, 1991.

R. Y. Rubinstein.
Simulation and the Monte Carlo Method.
John Wiley & Sons, 1981.

M. Rudemo.
Empirical Choice of Histograms and Kernel Density Estimators.
Scandinavian Journal of Statistics, 9:65—78, 1982.

H. Samet.

The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990,

S. Shekhar and S. Chawla.
Spatial Databases: A Tour.
Prentice-Hall, 2003.

D. W. Scott.

Averaged Shifted Histograms: Effective Nonparametric Density Estimators in Several
Dimensions.

Annals of Statistics, 13:1024-1040, 1985.

D. W. Scott.
Multivariate Density Estimation.
Wiley, 1992.

SDSS.
The Sloan Digital Sky Survey Project Book.
WWW.astro.princeton.edu/PBO0K/welcome.htm.

Michael lan Shamos and D. Hoey.

Closest-point Problems.

In Proceedings of the Sixteenth Annual IEEE Symposium on the Foundations of
Computer Science, pages 151-162, 1975.

Michael I. Shamos.

Geometry and Statistics: Problems at the Interface.

In Proc. Symposium on Algorithms and Complexity. Carnegie-Mellon University,
1975.

B.W. Silverman.
Kernel Density Estimation using the Fast Fourier Transform.
Journal of the Royal Statistical Society Series C: Applied Statistics, 33, 1982.

B. W. Silverman.
Density Estimation for Statistics and Data Analysis.
Chapman and Hall/CRC, 1986.

[Spro1]

[5598]

[ST85)

[SW99]

[Sza97]

[Sza00]

[SZM99]

[TJ03]

[TS92]

[UhI91]

[Vaig9]

[Ves94]

[Wan94]

[WB97]

[Wei78]

REFERENCES 133

R. F. Sproull.
Refinements to Nearest-neighbor Searching.
Algorithmica, 6:579-589, 1991.

|. Szapudi and A. Szalay.
A New Class of Estimators for the n-point Correlations.
The Astrophysical Journal, 494:L41-144, 1998.

D. Sleator and R. Tarjan.
Self-adjusting Binary Search Trees.
Journal of the ACM, 32(3):652-686, 1985.

P. Smyth and D. Wolpert.
Linearly Combining Density Estimators via Stacking.
Machine Learning, 36:59-83, 1999.

|. Szapudi.
A New Method for Calculating Counts in Cells.
The Astrophysical Journal, 1997.

A. Szalay.
Personal Communication.

, 2000.

J. Shepherd, X. Zhu, and N. Megiddo.

A Fast Indexing Method for Multidimensional Nearest Neighbor Search.

In SPIE Conference on Storage and Retrieval for Image and Video Databases VI,
pages 350-355, 1999.

M. Takada and B. Jain.
The three-point correlation function in cosmology.
Monthly Notices of the Royal Astronomical Society, 340, 2003.

G. Terrell and D. W. Scott.
Variable Kernel Density Estimation.
Annals of Statistics, 20(3):1236-1265, 1992.

J. K. Uhlmann.
Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, 40:175-179, 1991.

P. M. Vaidya.
An O(NlogN) Algorithm for the All-Nearest-Neighbors Problem.
Discrete and Computational Geometry, 4:101-115, 1989.

Franz Vesely.
Computational Physics: An Introduction.
Plenum Press, 1994.

M. P. Wand.
Fast Computation of Multivariate Kernel Estimators.
Journal of Computational and Graphical Statistics, 1994.

R. Weber and S. Blott.
A simple vector-approximation file for similarity search in high-dimensional vector
spaces.

Technical Report 19, ESPRIT project HERMES, 1997.

B. W. Weide.
Statistical Methods in Algorithm Design and Analysis.
PhD. Thesis, Carnegie Mellon University, Computer Science Department, 1978.

[Whi79]

[Yao82]

[ZRL96]

REFERENCES 134

Simon D. M. White.

The Hierarchy of Correlation Functions and its Relation to Other Measures of Galaxy
Clustering.

Monthly Notices of the Royal Astronomical Society, 186:145-154, 1979,

A. C. Yao.

Space-time Tradeoff for Answering Range Queries.

In Proceedings of the Fourteenth Annual ACM Symposium on the Theory of Com-
puting, pages 128-136, 1982,

T. Zhang, R. Ramakrishnan, and M. Livny.

BIRCH: An Efficient Data Clustering Method for Very Large Databases.

In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems : PODS 1996. ACM Press, 1996.

