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Abstract

In this paper we explore a simple and general approach for developing parallel algorithms that lead to good
cache complexity on a variety of parallel cache architectures. The approach is to design nested parallel
algorithms that have low depth (span, critical path length) and for which the natural sequential evaluation
order has low cache complexity in the cache-oblivious model. We describe several cache-oblivious algo-
rithms with optimal work, polylogarithmic depth, and sequential cache complexities that match the best
sequential algorithms, including the first such algorithms for sorting and for sparse-matrix vector multiply
on matrices with good vertex separators. Our sorting algorithm yields the first cache-oblivious algorithms
with polylogarithmic depth and low sequential cache complexities for list ranking, Euler tour tree labeling,
tree contraction, least common ancestors, graph connectivity, and minimum spanning forest.

Using known mappings, our results lead to low cache complexities on multi-core processors (and shared-
memory multiprocessors) with a single level of private caches or a single shared cache. We generalize these
mappings to a multi-level parallel tree-of-caches model that reflects current and future trends in multi-core
cache hierarchies—these new mappings imply that our algorithms also have low cache complexities on
such hierarchies. The key factor in obtaining these low parallel cache complexities is the low depth of the
algorithms we propose.





1 Introduction

The cache-oblivious model (ideal-cache model) [29] is a two-level model of computation comprised of
an unbounded memory and a cache of size Z. Data are transferred between the two levels using cache
lines of size L; all computation occurs on data in the cache. Both Z and L are unknown to the algorithm,
and the goal is to minimize an algorithm’s work (number of operations) and cache complexity (number of
cache lines transferred (cache misses)). Sequential algorithms designed for this model have the advantage
of achieving good sequential cache complexity across all levels of a (single processor) multi-level cache
hierarchy, regardless of the values of Zi and Li at each level i [29]. Researchers have developed cache-
oblivious algorithms for a variety of problems [6, 18, 26].

The cache complexity Q1(n;Z,L) for a natural sequential execution of a parallel program (on input of
size n) can also be used to bound the cache complexity QP (n;Z,L) for the same program on P -processor
parallel machines with a shared memory and a single level of cache(s) [1, 14]. In particular, for a parallel ma-
chine with private caches (each processor has its own cache of size Z) using a work-stealing scheduler [17],

QP (n;Z,L) < Q1(n;Z,L) + O(ZPD/L) with probability 1− δ [1], 1 (1)

and for a parallel machine with a shared cache using a parallel depth-first (PDF) scheduler [15],

QP (n;Z + PLD, L) ≤ Q1(n;Z,L) [14], (2)

where D is the depth of the computation. These results apply to nested-parallel computations—computations
starting with a single thread and using nested fork-join parallelism—that use binary forking (spawning) of
threads. (When viewed as a computation dag where the nodes are constant-work tasks and the edges are
dependences between tasks, the dags for such computations are series-parallel.) The “natural” sequential
execution is simply one that runs each call in a fork to completion before starting the next. The depth of a
computation (also known as the span or the critical path length) is defined recursively by taking the maxi-
mum of the depths of the forked threads at each fork-join construct. It is the length of the longest path in the
computation dag. We assume concurrent threads can read the same location.

These results for a single level of cache(s) suggest a simple approach for developing cache-efficient
parallel algorithms: Develop a nested-parallel algorithm with (1) low cache-oblivious complexity for the
sequential ordering, and (2) low depth; then use the results to bound the cache complexity on a parallel
machine. Low depth is important because D shows up in the term for additional misses for private caches,
and additional cache size for a shared cache. Moreover, we show that algorithms designed with this approach
can also achieve good parallel cache complexity on parallel machines with common configurations of multi-
level cache hierarchies (namely, a parallel tree-of-caches). In particular, we show that a work-stealing
scheduler achieves

QP (n;Zi, Li) < Q1(n;Zi, Li) + O(ZiPD/Li) with probability 1− δ for each level i,

and that this bound is tight.
As an example of the approach consider Strassen’s matrix multiply. It is nested-parallel because the

seven recursive calls can be made in parallel and the matrix addition can be implemented by forking off a
tree of parallel calls. For n × n matrices the total depth is O(log2 n)—O(log n) levels of recursion, each
with O(log n) depth for the additions. As shown in [29], Q1(n;Z,L) = O(nlg 7/(L

√
Z)). Thus, we have

that QP (n;Z,L) < Q1(n;Z,L) + O(ZP log2(n)/L) for a single level of private caches (Equation 1)

1In this paper, δ is an arbitrarily small positive constant.
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and QP (n;Z + PL log2 n, L) ≤ Q1(n;Z,L) = O(nlg 7/(L
√

Z)) for a shared cache (Equation 2). For
practical parameters these bounds indicate either only marginally more total misses than the sequential
version (private caches) or only marginally larger cache size (shared cache). Similarly good bounds are
obtained for multi-level caches, using our results for such hierarchies.

Although some cache-oblivious algorithms are naturally parallel and have low depth (e.g., matrix mul-
tiply, matrix transpose [29] and FFT [29]), many are not. For example, prior cache-oblivious sorting algo-
rithms with optimal sequential cache complexity [19, 20, 21, 27, 29] are not parallel. This paper presents
the first low (i.e., polylogarithmic) depth cache-oblivious sorting algorithm with optimal cache complex-
ity. Under the standard “tall cache” assumption Z = Ω(L2) [29], our (deterministic) sorting algorithm
has cache complexity Q1(n;Z,L) = O(n

L logZ n) and work W = O(n log n), which are optimal, and
depth D = O(log2 n). The depth can be improved using randomization. In contrast, parallelizing the prior
algorithms using known techniques would result in depth at least Ω(

√
n). We illustrate how our sorting al-

gorithm can be used to construct the first polylogarithmic depth, cache-oblivious, optimal cache complexity
algorithms for other important problems such as list ranking and tree contraction. Finally, we present the
first cache-oblivious, low cache complexity algorithm for sparse-matrix vector (SpMV) multiply on matri-
ces with good vertex separators; the algorithm is optimal work, O(log2 n) depth, and its sequential cache
complexity improves upon the previous best sequential algorithm for general sparse matrices and is optimal
for planar graphs.

Other work on parallel cache-oblivious algorithms has concentrated on bounding cache misses for par-
ticular classes of algorithms. This includes results by Frigo et al. [30] for a class of algorithms with a
regularity condition, by Blelloch et al. [13] for a class of binary divide-and-conquer algorithms, and by
Chowdhury and Ramachandran [23, 24] for a class of dynamic programming and Gaussian elimination-
style problems. Our design motive is to have a generic approach that works for a wide range of algorithms
and a variety of parallel machine configurations; we study SpMV-multiply, sorting, and related algorithms
as specific instances of our general approach. Our work may also be contrasted with that of [7, 8, 12], which
demonstrate cache-efficient algorithms for private caches, the major difference being that their algorithms
are not cache-oblivious and are tuned specifically for one level of private caches. Also their algorithms
are described for a fixed number of processors P while in our approach the algorithms are described at a
higher-level that is oblivious of P (the scheduler is responsible for mapping tasks onto processors). In fact,
it is this flexibility that enables the approach to be applied to a variety of cache hierarchies.

2 Low-Depth Cache-Oblivious Sorting

In this section, we present the first cache-oblivious sorting algorithm that achieves optimal work, polyloga-
rithmic depth, and good sequential cache complexity. Prior cache-oblivious algorithms with optimal cache
complexity [19, 20, 21, 27, 29] have Ω(

√
n) depth.

Our sorting algorithm uses known algorithms for prefix sums and merging as subroutines. A simple
variant of the standard parallel prefix-sums algorithm has logarithmic depth and cache complexity O(n/L).
The only adaptation is that the input has to be laid out in memory such that any subtree of the balanced
binary tree over the input (representing the divide-and-conquer recursion) is contiguous. For completeness,
the precise algorithm and analysis are in Section A.1 of the appendix. Likewise, a simple variant of a
standard parallel merge algorithm also has logarithmic depth and cache complexity O(n/L), as described
next.
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Algorithm MERGE((A, sA, lA), (B, sB , lB), (C, sC))
if lB = 0 then

Copy A[sA : sA + lA) to C[sC : sC + lA)
else if lA = 0 then

Copy B[sB : sB + lB) to C[sC : sC + lB)
else
∀k ∈ [1 : bn1/3c], find pivots (ak, bk) such that ak + bk = kdn2/3e

and A[sA + ak] ≤ B[sB + bk + 1] and B[sB + bk] ≤ A[sA + ak + 1].
∀k ∈ [1 : bn1/3c], MERGE((A, sA + ak, ak+1 − ak), (B, sB + bk, bk+1 − bk), (C, sC + ak + bk))

end if

Figure 1: Merge A[sA : sA + lA) and B[sB : sB + lB) into array C[sC : sC + lA + lB)

2.1 Merge

To make the usual merging algorithm cache oblivious, we use divide-and-conquer with a branching factor
of n1/3. (We need a o(

√
n) branching factor in order to achieve optimal cache complexity.) To merge two

arrays A and B of sizes lA and lB (lA + lB = n), conduct a dual binary search of the arrays to find the
elements ranked {n2/3, 2n2/3, 3n2/3, . . . } among the set of keys from both arrays, and recurse on each pair
of subarrays. This takes n1/3 · log n work, log n depth and at most O(n1/3 log (n/L)) cache misses. Once
the locations of pivots have been identified, the subarrays, which are of size n2/3 each, can be recursively
merged and appended. See Algorithm MERGE in Figure 1.

The cache complexity of Algorithm MERGE can be expressed using the recurrence

Q(n;Z,L) ≤ n1/3(log (n/L) + Q(n2/3;Z,L)), (3)

where the base case is Q(n;Z,L) = O(dn/Le) when n ≤ cZ for some positive constant c. When n > cZ,
Equation 3 solves to

Q(n;Z,L) = O(n/L + n1/3 log (n/L)). (4)

Because Z = Ω(L2) and n > cZ, the O(n/L) term in Equation 4 is asymptotically larger than the
n1/3 log (n/L) term, making the second term redundant. Therefore, in all cases, Q(n;Z,L) = O(dn/Le).
The recurrence relation for the depth is:

D(n) ≤ log n + D(n2/3),

which solves to D(n) = O(log n). It is easy to see that the work involved is linear.
The costs of Algorithm MERGE are summarized in Figure 2.

Mergesort. Using this merge algorithm in a mergesort in which the two recursive calls are parallel gives an
algorithm with depth O(log2 n) and cache complexity O((n/L) log2 (n/Z)), which is not optimal. Blelloch
et al. [13] analyze similar merge and mergesort algorithms with the same (suboptimal) cache complexities
but with larger depth. Next, we present a sorting algorithm with optimal cache complexity (and low depth).

2.2 Deterministic Sorting

Our parallel sorting algorithm is based on a version of sample sort [28, 36]. Sample sorts first use a sample to
select a set of pivots that partition the keys into buckets, then route all the keys to their appropriate buckets,
and finally sort within the buckets. Compared to prior cache-friendly sample sort algorithms [2, 33], which
incur Ω(

√
n) depth, our cache-oblivious algorithm uses (and analyzes) a new parallel bucket-transpose

algorithm for the key distribution phase, in order to achieve O(log2 n) depth.
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Problem Depth Cache Complexity Section

Prefix Sums O(log n) O(dn/Le) A.1
Merge O(log n) O(dn/Le) 2.1
Sort (deterministic)∗ O(log2 n) O(dn/LedlogZ ne) 2.2
Sort (randomized; bounds are w.h.p.)∗ O(log1.5 n) O(dn/LedlogZ ne) 2.3
Sparse-Matrix Vector Multiply (m non-zeros, nε separators)∗ O(log2 n) O(dm/L + n/Z1−εe) 4
Matrix Transpose (n×m matrix) O(log (n + m)) O(dnm/Le) [29]

Figure 2: Low-depth cache-oblivious algorithms. New algorithms are marked (∗). All algorithms are work
optimal and their cache complexities match the best sequential algorithms. The bounds assume Z = Ω(L2).

Algorithm COSORT(A, n)
if n ≤ 10 then

return Sort A sequentially
end if
h← d

√
ne

∀i ∈ [1 : h], Let Ai ← A[h(i− 1) + 1 : hi]
∀i ∈ [1 : h], Si ← COSORT(Ai, h)
repeat

Pick an appropriate sorted pivot set P of size h
∀i ∈ [1 : h], Mi ← SPLIT(Si,P)
{Each array Mi contains for each bucket j a start location in
Si for bucket j and a length of how many entries are in that
bucket, possibly 0.}
L← h× h matrix formed by rows Mi with just the lengths
LT ← TRANSPOSE(L)
∀i ∈ [1 : h], Oi ← PREFIX-SUM(LT

i )
OT ← TRANSPOSE(O) {Oi is the ith row of O}
∀i, j ∈ [1 : h], Ti,j ← 〈Mi,j〈1〉, OT

i,j , Mi,j〈2〉〉
{Each triple corresponds to an offset in row i for bucket j, an
offset in bucket j for row i and the length to copy.}

until No bucket is too big
Let B1, B2, . . . , Bh be arrays (buckets) of sizes dictated by T
B-TRANSPOSE(S, B, T , 1, 1, h)
∀i ∈ [1 : h], B′

i ← COSORT(Bi, length(Bi))
return B′

1||B′
2|| . . . ||B′

h

Algorithm B-TRANSPOSE(S, B, T , is, ib, n)
if n = 1 then

Copy Sis [Tis,ib〈1〉 : Tis,ib〈1〉+ Tis,ib〈3〉)
to Bbs [Tis,ib〈2〉 : Tis,ib〈2〉+ Tis,ib〈3〉)

else
B-TRANSPOSE(S, B, T , is, ib, n/2)
B-TRANSPOSE(S, B, T , is, ib + n/2, n/2)
B-TRANSPOSE(S, B, T , is + n/2, ib, n/2)
B-TRANSPOSE(S, B, T , is+n/2, ib+n/2, n/2)

end if

S B

T

j

i

j

i

Bucket transpose diagram: The 4x4 entries shown for T
dictate the mapping from the 16 depicted segments of S
to the 16 depicted segments of B. Arrows highlight the
mapping for two of the segments.

Figure 3: Cache-Oblivious Sorting and Bucket-Transpose Algorithms
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Our sorting algorithm (Algorithm COSORT in Figure 3) first splits the set of elements into
√

n subarrays
of size

√
n and recursively sorts each of the subarrays. Then, samples are chosen to determine pivots. This

step can be done either deterministically or randomly. We first describe a deterministic version of the
algorithm for which the repeat and until statements are not needed; Section 2.3 will describe a randomized
version that uses these statements. For the deterministic version, we choose every (log n)-th element from
each of the subarrays as a sample. The sample set, which is smaller than the given data set by a factor of
log n, is then sorted using the mergesort algorithm outlined above. Because mergesort is reasonably cache-
efficient, using it on a set slightly smaller than the input set is not too costly in terms of cache complexity.
More precisely, this mergesort incurs O(dn/Le) cache misses. We can then pick

√
n evenly spaced keys

from the sample set P as pivots to determine bucket boundaries. To determine the bucket boundaries, the
pivots are used to split each subarray using the cache-oblivious merge procedure. This procedure also takes
no more than O(dn/Le) cache misses.

Once the subarrays have been split, prefix sums and matrix transpose operations can be used to determine
the precise location in the buckets where each segment of the subarray is to be sent. We can use the standard
divide-and-conquer matrix-transpose algorithm [29], which is work optimal, has logarithmic depth and has
optimal cache complexity when Z = Ω(L2) (details in Figure 2). The mapping of segments to bucket
locations is stored in a matrix T of size

√
n ×
√

n. Note that none of the buckets will be loaded with more
than 2

√
n log n keys because of the way we select pivots.

Once the bucket boundaries have been determined, the keys need to be transferred to the buckets. Al-
though a naive algorithm to do this is not cache-efficient, we show that the bucket transpose algorithm (Al-
gorithm B-TRANSPOSE in Figure 3) is. The bucket transpose is a four way divide-and-conquer procedure
on the (almost) square matrix T which indicates a set of segments of subarrays (segments are contiguous in
each subarray) and their target locations in the bucket. The matrix T is cut in half vertically and horizontally
and separate recursive calls are assigned the responsibility of transferring the keys specified in each of the
four parts. Note that ordinary matrix transpose is the special case of Ti,j = 〈j, i, 1〉 for all i and j.

Lemma 1 Algorithm B-TRANSPOSE transfers a matrix of
√

n×
√

n keys into bucket matrix B of
√

n buck-
ets according to offset matrix T in O(n) work, O(log n) depth, and O(dn/Le) sequential cache complexity.

Proof. It is easy to see that the work is O(n) because there is only constant work for each of the O(log n)
levels of recursion and each key is copied exactly once. Similarly, the depth is O(log n) because we can use
prefix sums to do the copying whenever a segment is larger than O(log n).

To analyze the cache complexity, we use the following definitions. For each node v in the recursion
tree of bucket transpose, we define the node’s size s(v) to be n2, the size of its submatrix T , and the node’s
weight w(v) to be the number of keys that T is responsible for transferring. We identify three classes of
nodes in the recursion tree:
1. Light-1 nodes: A node v is light-1 if s(v) < Z/100, w(v) < Z/10, and its parent node is of size
≥ Z/100.
2. Light-2 nodes: A node v is light-2 if s(v) < Z/100, w(v) < Z/10, and its parent node is of weight
≥ Z/10.
3. Heavy leaves: A leaf v is heavy if w(v) ≥ Z/10.
The union of these three sets covers the responsibility for transferring all the keys, i.e., all leaves are ac-
counted for in the subtrees of these nodes.

From the definition of a light-1 node, it can be argued that all the keys that a light-1 node is responsible
for fit inside a cache, implying that the subtree rooted at a light-1 node cannot incur more than Z/L cache
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misses. It can also be seen that light-1 nodes can not be greater than 4n/(Z/100) in number leading to the
fact that the sum of cache complexities of all the light-1 nodes is no more than O(dn/Le).

Light-2 nodes are similar to light-1 nodes in that their target data fits into a cache of size Z. If we assume
that they have a combined weight of n−W , then there are no more than 4(n−W )/(Z/10) of them, putting
the aggregate cache complexity for their subtrees at 40(n−W )/L.

A heavy leaf of size w incurs dw/Le cache misses. There are no more than W/(Z/10) of them, implying
that their aggregate cache complexity is W/L + 10W/Z < 11W/L. Therefore, the cache complexities of
light-2 nodes and heavy leaves add up to another O(dn/Le).

Note that the validity of this proof does not depend on the size of the individual buckets. The statement
of the lemma holds even for the case where each of the buckets is as large as O(

√
n log n). ut

Theorem 1 On an input of size n, the deterministic COSORT has Q(n;Z,L) = O(dn/LedlogZ ne) se-
quential cache complexity, O(n log n) work, and O(log2 n) depth.

Proof. All the subroutines other than recursive calls to COSORT have linear work and cache complexity
O(dn/Le). Also, the subroutine with the maximum depth is the mergesort used to find pivots; its depth is
O(log2 n). Therefore, the recurrence relations for the work, depth, and cache complexity are as follows:

W (n) = O(n) +
√

nW (
√

n) +
∑√

n
i=1 W (ni)

D(n) = O(log2 n) + max
√

n
i=1{D(ni)}

Q(n;Z,L) = O
(⌈

n
L

⌉)
+
√

nQ(
√

n;Z,L) +
∑√

n
i=1 Q(ni;Z,L),

where the nis are such that their sum is n and none individually exceed 2
√

n log n. The base case for the
recursion for cache complexity is Q(n;Z,L) = O(dn/Le) for n ≤ cZ for some constant c. Solving these
recurrences proves the theorem. ut

2.3 Randomized Sorting

A simple randomized version of the sorting algorithm is to randomly pick
√

n elements for pivots, sort them
using brute force (compare every pair) and using the sorted set as the pivot set P . This step takes O(n)
work, O(log n) depth and has cache complexity O(n/L) and the probability that the largest of the resultant
buckets are larger than c

√
n log n is not more 1 − 1/n for a certain constant c. When one of the buckets

is too large (> c
√

n log n), the process of selecting pivots and recomputing bucket boundaries is repeated.
Because the probability of this happening repeatedly is low, the overall depth of the algorithm is small.

Theorem 2 On an input of size n, the randomized version of COSORT has, with probability greater than
1− 1/n, Q(n;Z,L) = O(dn/LedlogZ ne) sequential cache complexity, O(n log n) work, and O(log1.5 n)
depth.

Proof. In a call to randomized COSORT with input size n, the loop terminates with probability 1 − 1/n
in each round and takes less than 2 iterations on average to terminate. Each iteration of the while loop,
including the brute force sort requires O(n) work and incurs at most O(dn/Le) cache misses with high
probability. Therefore, E[W (n)] = O(n)+

√
n E[W (

√
n)]+

∑√
n

i=1 E[W (ni)], where each ni < 2
√

n log n
and the nis add up to n. This implies that E[W (n)] = O(n log n). Similarly for cache complexity we have

E[Q(n;Z,L)] = O(n/L) +
√

n E[Q(
√

n;Z,L)] +
∑√

n
i=1 E[Q(ni;Z,L)], which solves to E[Q(n;Z,L)] =

O((n/L) log√Z n) = O((n/L) logZ n). To show the high probability bounds for work and cache complex-
ity, we can use Chernoff bounds because the fan-out at each level of recursion is high.

6



Problem Depth Cache Complexity
List Ranking DLR(n) = O(Dsort(n) log n) O(Qsort(n))
Euler Tour on Trees O(DLR(n)) O(Qsort(n))
Tree Contraction O(DLR(n) log n) O(Qsort(n))
Least Common Ancestors (k queries) O(DLR(n)) O(dk/neQsort(n))
Connected Components O(DLR(n) log n) O(Qsort(|E|) log(|V |/

√
Z))

Minimum Spanning Forest O(DLR(n) log n) O(Qsort(|E|) log(|V |/
√

Z))

Figure 4: Low-depth cache-oblivious graph algorithms. All algorithms are deterministic. The bounds
assume Z = Ω(L2). Dsort and Qsort are the depth and cache complexity of cache-oblivious sorting.

Proving probability bounds on the depth is more involved. We prove that the sum of depths of all nodes
at level d in a recursion tree is O(log1.5 n/ log log n) with probability at least 1 − 1/nlog2 log n. We also
show that the recursion tree has at most O(log log n) levels and the number of instances of recursion tree is
nO(1.1 log log n). This implies that the depth of the critical path computation is at most O(log1.5 n) with
high probability. The details of this depth analysis are in Section A.2 of the appendix. ut

3 Applications of Sorting: Graph Algorithms

In this section, we make use of the fact that the PRAM algorithms for many problems can be decomposed
into primitive operations such as scans and sorts. Our approach is similar to that of [7, 8] except that we
use the cache-oblivious model instead of the parallel external memory model. Arge et al. [5] demonstrate
a cache-oblivious algorithm for list ranking using priority queues and use it to construct other graph algo-
rithms. But their algorithms have Ω(n) depth because their list ranking uses a serially-dependent sequence
of priority queue operations to compute independent sets. Our parallel algorithms derived from sorting are
the same as in [22] except that we use different algorithms for the primitive operations scan and sort, which
suit our cache-oblivious framework. Moreover, a careful analysis (using standard techniques) is required to
prove our sequential cache complexity and depth bounds under this framework.

List Ranking. A basic strategy for list ranking [32] is the following: (i) shrink the list to size O(n/ log n),
and (ii) apply pointer jumping on this shorter list. Stage (i) is achieved through finding independent sets in
the list of size Θ(n) and removing them to yield a smaller problem. This can be done randomly using the
random mate technique in which case, O(log log n) rounds of such reduction would suffice. Alternately,
we could use the deterministic technique described in Section 3.1 of [32]: use two rounds of Cole and
Vishkin’s deterministic coin tossing [25] to find a O(log log n)-ruling set and then convert the ruling set to
an independent set of size at least n/3 in O(log log n) rounds. Arge et al. [8] show how this conversion
can be made cache-efficient, and it is straightforward to change this algorithm to a cache-oblivious one.
Stage (ii) uses O(log n) rounds of pointer jumping, each round essentially involving a sort operation on
O(n/ log n) elements in order to figure out the next level of pointer jumping. Thus, the cache complexity
of this stage is asymptotically the same as sorting and its depth is O(log n) times the depth of sorting:

Theorem 3 The deterministic list ranking outlined above has Q(n;Z,L) = O(dn/LedlogZ ne) sequential
cache complexity, O(n log n) work, and O(Dsort(n) log n) depth.

Graph Algorithms. We tabulate the complexity measures of basic graph algorithms on bounded degree
graphs (Figure 4). The algorithms that lead to these complexities are straightforward adaptations of known
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PRAM algorithms (as described for the external memory model in [22]). For instance, finding an Euler Tour
involves scanning the input to compute the successor function for each edge and running a list ranking. Tree
contraction involves constructing an Euler tour of the tree, finding an independent set on it and contracting
the tour to recursively solve a smaller problem. Finding Least Common Ancestors of a set of vertex pairs in
a tree involves computing the Euler tour and reducing the problem to a range minima query problem (which
is solved with search trees). Deterministic algorithms for Connected Components and Minimum Spanning
Forest are similar and use tree contraction as their basic idea; the cache bounds are slightly worse than
those in [22]: log(|V |/

√
Z) versus log(|V |/Z). While [22] uses knowledge of Z to transition to a different

approach once the vertices in the contracted graph fit within the cache, cache-obliviously we need for the
edges to fit before we stop incurring misses.

4 Sparse-Matrix Vector Multiply

In this section, we consider the problem of multiplying a sparse n× n matrix with m non-zeros by a dense
vector (SpMV-multiply). For general sparse matrices Bender et al. [10] show a lower bound on cache
complexity, which for m = O(n) matches the sorting lower bound. However, for certain matrices com-
mon in practice the cache complexity can be improved. For example, for matrices with non-zero structure
corresponding to a well-shaped d-dimensional mesh, a multiply can be performed with cache complexity
O(m/L + n/Z1/d) [11]. This requires pre-processing to lay out the matrix in the right form. However, for
applications that run many multiplies over the same matrix, as with many iterative solvers, the cost of the
pre-processing can be amortized. Note that for Z ≥ Ld (e.g., the tall-cache assumption in 2 dimension), the
cache complexity reduces to O(m/L) which is as fast as scanning memory.

The cache-efficient layout and bounds for well-shaped meshes can be extended to graphs with good
edge separators [13]. The layout and algorithm, however, is not efficient for graphs such as planar graphs or
graphs with constant genus that have good vertex separators but not necessarily any good edge separators.
In this paper we generalize the results to graphs with good vertex separators and present the first cache-
oblivious, low cache complexity algorithm for the sparse-matrix multiplication problem on such graphs. We
do not analyze the cost of finding the layout, which involves the recursive application of finding vertex sep-
arators, as it can be amortized across many solver iterations. Our algorithm for matrices with nε separators
is linear work, O(log2 n) depth, and O(m/L + n/Z1−ε) sequential cache complexity.

Let S be a class of graphs that is closed under the subgraph relation. We say that S satisfies a f(n)-vertex
separator theorem if there are constants α < 1 and β > 0 such that every graph G = (V,E) in S with n
vertices can be partitioned into three sets of vertices Va, Vs, Vb such that |Vs| ≤ βf(n), |Va|, |Vb| ≤ αn, and
{(u, v) ∈ E|(u ∈ Va ∧ v ∈ Vb) ∨ (u ∈ Vb ∧ v ∈ Va)} = ∅. In our presentation we assume the matrix has
symmetric non-zero structure (but not necessarily symmetric values (weights)); if it is asymmetric we can
always add zero weight reverse edges while at most doubling the number of edges.

We now describe how to build a separator tree assuming we have a good algorithm FindSeparator for
finding separators. For planar graphs this can be done in linear time [35]. The algorithm for building the tree
is defined by Algorithm BuildTree in Figure 5. At each recursive call it partitions the edges into two subsets
that are passed to the left and right children. All the vertices in the separator are passed to both children.
Each leaf corresponds to a single edge. We assume that FindSeparator only puts a vertex in the separator if
has an edge to each side and always returns a separator with at least one vertex on each side unless the graph
is a clique. If the graph is a clique, we assume the separator contains all but one of the vertices, and that the
remaining vertex is on the left side of the partition.

Every vertex in our original graph of degree ∆ corresponds to a binary tree embedded in the separator
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Algorithm BuildTree(V,E)
if |E| = 1 then

return V
end if
(Va, Vsep, Vb)← FindSeparator(V,E)
Ea ← {(u, v) ∈ E|u ∈ Va ∨ v ∈ Va}
Eb ← E − Ea

Va,sep ← Va ∪ Vsep

Vb,sep ← Vb ∪ Vsep

Ta ← BuildTree(Va,sep, Ea)
Tb ← BuildTree(Vb,sep, Eb)
return SeparatorTree(Ta, Vsep, Tb)

Algorithm SparseMxV(x,T )
if isLeaf(T ) then

T .u.value← x[T .v.index] ⊗ T .v.weight
T .v.value← x[T .u.index] ⊗ T .u.weight
{Two statements for the two edge directions}

else
SparseMxV(T .left) and SparseMxV(T .right)
for all v ∈ T .vertices do

v.value← (v.left→value ⊕ v.right→value)
end for

end if

Figure 5: Cache-Oblivious Algorithms for Building a Separator Tree and for Sparse-Matrix Vector Multiply

tree with ∆ leaves, one for each of its incident edges. To see this consider a single vertex. Every time it
appears in a separator, its edges are partitioned into two sets, and the vertex is copied to both recursive calls.
Because the vertex will appear in ∆ leaves, it must appear in ∆ − 1 separators, so it will appear in ∆ − 1
internal nodes of the separator tree. We refer to the tree for a vertex as the vertex tree, each appearance of
a vertex in the tree as a vertex copy, and the root of each tree as the vertex root. The tree is used to sum the
values for the SpMV-multiply.

We reorder the rows/columns of the matrix based on a preorder traversal of their root locations in the
separator tree (i.e., all vertices in the top separator will appear first). This is the order we will use for the
input vector x and output vector y when calculating y = Ax. We keep a vector R in this order that points to
each of the corresponding roots of the tree. The separator tree is maintained as a tree T in which each node
keeps its copies of the vertices in its separator. Each of these vertex copies will point to its two children in
the vertex tree. Each leaf of T is an edge and includes the indices of its two endpoints and its weight. In
all internal vertex copies we keep an extra value field to store a temporary variable, and in the leaves we
keep two value fields, one for each direction. Finally we note that all data for each node of the separator
tree is stored adjacently (i.e., all its vertex copies are stored one after the other), and the nodes are stored in
preorder. This is important for cache efficiency.

Our algorithm for SpMV-multiply is described in Algorithm SparseMxV in Figure 5. This algorithm
will take the input vector x and leave the results of the matrix multiplication in the root of every vertex. To
gather the results up into a result vector y we simply use the root pointers R to fetch each root. The algorithm
does not do any work on the way down the recursion, but when it gets to a leaf the edge multiplies its two
endpoints by its weight putting the result in its temporary value. Then on the way back up the recursion the
algorithms sums these values. In particular whenever it gets to an internal node of a vertex tree it adds the
two children. Since the algorithm works bottom up the values of the children are always ready when the
parent reads them.

Theorem 4 Let M be a class of matrices for which the adjacency graphs satisfy an nε-vertex separator
theorem. Algorithm SparseMxV on an n × n matrix A ∈ M with m ≥ n non-zeros has O(m) work,
O(log2 n) depth and O(dm/L + n/Z1−εe) sequential cache complexity.

Proof. For a constant k we say a vertex copy is heavy if appears in a separator node with size (memory
usage) larger than Z/k. We say a vertex is heavy if it has any heavy vertex copies. We first show that the
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number of heavy vertex copies for any constant k is bounded by O(n/Z1−ε) and then bound the number of
cache misses based on the number of heavy copies.

For a node of n vertices, the size X(n) of the tree rooted at the node is given by the recurrence relation:

X(n) = max
1/2≥α′≥α

{X(α′n) + X((1− α′)n) + βnε}

This recurrence solves to X(n) = k(n− nε), k = β/(αε + (1−α)ε− 1). Therefore, there exists a positive
constant c such that for n ≤ cZ, the subtree rooted at a node of n vertices fits into the cache. We use this to
count the number of heavy vertex copies H(n). The recurrence relation for H(n) is:

H(n) =

{
maxα≤α′≤ 1

2
{H(α′n) + H((1− α′)n) + βnε} if n > cZ

0 otherwise

This recurrence relation solves to H(n) = k(n/(cZ)1−ε − βnε) = O(n/Z1−ε).
Now we note that if a vertex is not heavy (i.e., light) it is used only by a single subtree that fits in

cache. Furthermore because of the ordering of the vertices based on where the roots appear, all light vertices
that appear in the same subtree are adjacent. Therefore the total cost of cache misses for light vertices is
O(n/L). We note that the edges are traversed in order so they only incur O(m/L) misses. Now each of the
heavy vertex copies can be responsible for at most O(1) cache misses. In particular reading each child can
cause a miss. Furthermore, reading the value from a heavy vertex (at the leaf of the recursion) could cause
a miss since it is not stored in the subtree that fits into cache. But the number of subtrees that just fit into
cache (i.e., their parents do not fit) and read a vertex u is bounded by one more than the number of heavy
copies of u. Therefore we can count each of those misses against a heavy copy. We therefore have a total of
O(m/L + n/Z1−ε) misses.

The work is simply proportional to the number of vertex copies, which is less than twice m and hence is
bounded by O(m). For the depth we note that the two recursive calls can be made in parallel and furthermore
the for all statement can be made in parallel. Furthermore the tree is depth O(log n) because of the balance
condition on separators (both |Va,sep| and |Vb,sep| are at most αn + βnε). Since the branching of the for all
takes O(log n) depth, the total depth is bounded by O(log2 n). ut

5 Parallel Multi-level Hierarchies

In this section, we show how algorithms designed for the cache-oblivious model can be scheduled on a class
of parallel multi-level cache hierarchy models, such that we can upper bound the parallel cache complexity
and the parallel time. We define the class of hierarchies we consider (Section 5.1), then present our bounds
(Section 5.2).

5.1 Tree-of-Caches Hierarchy

We consider the family of parallel cache hierarchies depicted in Figure 6(left), which we call the Parallel
Tree-of-Caches (PToC). Each of the p processors is connected to a private level-one cache. Disjoint (not
necessarily equal-sized) groups of processors each share a larger level-two cache, and so on, forming a tree
of caches of k levels. All computation by a processor P occurs on data in P ’s level-one cache. One or
more cache lines of a given cache at level i < k fit precisely in a cache line of its “parent” cache at level
i + 1. Tree of caches models [3, 4, 12, 34, 37, 39] reflect current and future trends in many-core cache
hierarchies [31, 34, 37], with increasing numbers of cores and new memory technologies (Flash, PCM, etc.)
increasing the numbers of leaves and levels in the hierarchy.
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Figure 6: Left: Parallel Tree-of-Caches Hierarchy (PToC). Cache sizes and fan-out need not be regular.
Center: Parallel Multi-level Distributed Hierarchy (PMDH). Right: Parallel Multi-level Shared Hierarchy
(PMSH).

As in the cache-oblivious model, each cache is assumed to be fully associative and use an optimal
replacement policy (an alternative LRU replacement policy is discussed in Section A.3 of the appendix).
We further assume the cache hierarchy is inclusive: each cached word at level i < k is also cached in its
parent cache at level i+1. A processor requesting a memory word fetches the cache line containing the word
from the lowest-level ancestor cache containing the line (and populates all intervening caches). However,
depending on the consistency model (discussed next), parent caches may have stale data, in order to avoid
updating k ancestor caches on each write to a level-one cache.

As in the two-level private cache model studied by Frigo et al. [30], the multi-level PToC assumes
a variant of the dag consistency cache consistency model [16] that uses an optimal replacement policy
instead of LRU replacement. Caches are non-interfering in that the cache misses of one processor can
be analyzed independently of other processors. To maintain this property, Frigo et al. use the BACKER
protocol [16]. This protocol manages caches so that if an instruction j is a descendant of instruction i in
the computation DAG, then values written to memory objects by i are reflected in j’s memory accesses.
However, concurrent writes to objects by instructions that do not have a path between them in the dag will
not be communicated between processors executing these instructions. Such writes are reconciled to shared
memory and reflected in other cache copies only when a descendant of the instruction that performed these
writes tries to access them. Reconciliation of a memory block involves updating all written words within the
block; the protocol must track all such writes. In case of multiple writes to the same word, an arbitrary write
succeeds. Concurrent reads are permitted. We likewise assume the same non-interfering property, with the
same reconciliation process.

A PToC has intra-level regularity if all the caches in any given level i

• have the same line size Li,

• take the same time (latency cost) Ci to fetch a line from the cache (and populate all intervening
caches), where C1 < · · · < Ck, and

• are of size pi,j · Zi, where pi,j is the number of processors sharing the jth cache at level i.

This third condition allows for irregular fan-out in the PToC, while assuming proportionate caches, i.e., the
sizes of the caches at a given level are proportional to the number of processors sharing the cache. Intra-level
regularity is a natural restriction in practice and it simplifies the presentation of our bounds; the results can
be readily extended to more general families of PToCs.

A specific instance of the PToC with intra-level regularity is the Parallel Multi-level Distributed Hier-
archy (PMDH) shown in Figure 6(center). In the PMDH with p processors, pi,j = 1 for i ∈ [1..k] and
j ∈ [1..p]. We prove our bounds first for the simpler PMDH, and then discuss implications for the PToC.
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We focus on nested-parallel computations that are scheduled using a standard (randomized) work-
stealing scheduler [17], in which idle processors steal work from random other processors. We will also
consider a centralized work-stealing scheduler, as well as a parallel depth-first (PDF) scheduler [15].

5.2 Complexity Bounds

We now derive bounds for the PToC such that the only algorithm-specific metrics are W , D and Q. Given
a particular execution X of a computation on some parallel machine M , let W lat

M (X) be W +
∑

i(Ci ·
FM,i(X)), where FM,i(X) is the number of fetches from a cache at level i. The latency-added work, W lat

M ,
of a computation is the maximum of W lat

M (X) over all executions X . The latency added depth Dlat
M can be

defined similarly. We note that W · Ck and D · Ck are pessimistic upper bounds on the latency-added work
and depth for any machine.

5.2.1 Bounds for the PMDH

Theorem 5 (Upper Bounds) For any δ > 0, when a cache-oblivious nested-parallel computation with
binary forking, sequential cache complexity Q(Z,L), work W , and depth D is scheduled on a PMDH P of
p processors using work stealing:

• The number of steals is O(p(Dlat
P + log 1/δ)) with probability at least 1− δ.

• All the caches at level i incur a total of less than Q(Zi, Li)+O(p(Dlat
P +log 1/δ)Zi/Li) cache misses

with probability at least 1− δ.

• The computation completes in time not more than W lat
P /p+Dlat

P < W/p+O((DCk+log 1/δ)CkZk/Lk)+
O(

∑
i Ci(Q(Zi−1, Li−1)−Q(Zi, Li)))/p with probability at least 1− δ.

Proof. Results from [9] imply the statement about the number of steals. Because the schedule involves not
more than O(p(Dlat

P +log 1/δ)) steals with probability at least 1− δ, all the caches at level i incur a total of
at most Q(Zi, Li) + O(p(Dlat

P + log 1/δ)Zi/Li) cache misses with probability at least 1 − δ. To compute
the running time of the algorithm, we count the time spent by a processor waiting upon a cache miss towards
the work and use the same proof as in [9]. In other words, we use the notion of latency-added work (W lat

P )
defined above. Because this is not more than W +O(p(Dlat

P +log 1/δ)CkZk/Lk +
∑

i Ci(Q(Zi−1, Li−1)−
Q(Zi, Li))) with probability at least 1− δ, the claim about the running time follows. ut

Thus, for constant δ, the parallel cache complexity at level i exceeds the sequential cache complexity by
O(pDlat

P Zi/Li) with probability 1− δ. This matches the bound in Equation 1 (Section 1) for a single level
of private caches.

We can also consider a centralized work stealing scheduler. In centralized work stealing, processors
deterministically steal a node of least depth in the DAG; this has been shown to be a good choice for
reducing the number of steals [9]. The bounds in Theorem 5 carry over to centralized work stealing without
the δ terms, e.g., the parallel cache complexity exceeds the sequential cache complexity by O(pDlat

P Zi/Li).

Theorem 6 (Lower Bound) For a PMDH P with any given number of processors p ≥ 4, cache sizes
Z1 < · · · < Zk ≤ Z/3 for some a priori upper bound Z, cache line sizes L1 ≤ · · · ≤ Lk, and cache
latencies C1 < · · · < Ck, and for any given depth D′ ≥ 3(log p + log Z) + Ck + O(1), we can construct
a nested-parallel computation DAG with binary forking and depth D′, whose (expected) parallel cache
complexity on P , for all levels i, exceeds the sequential cache complexity Q(Zi, Li) by Ω(pDlat

P Zi/Li)
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Figure 7: DAGs used in the lower bounds for randomized and centralized work stealing.

when scheduled using randomized work stealing. Such a computation DAG can also be constructed for
centralized work stealing.

Proof. Such a construction is shown in Figure 7(a) for randomized work stealing. Based on the earlier
lemma, we know that there exist a constant K such that the number of steals is at most KpDlat with
probability at least 1− (1/Dlat). We construct the DAG such that it consists of a binary fanout to p/3 spines
of length D = D′ − 2(K + log(p/3) + log Z) each. Each of the first D/2 nodes on the spine forks off a
subdag that consists of 3(12K+1) identical parallel scan structures of length Z each. A scan structure is a
binary tree forking out to Z parallel nodes that collectively read a block of Z consecutive locations. The
remaining D/2 nodes on the spine are the joins back to the spine of these forked off subdags. Note that
Dlat

P = D′ + Ck because each path in the DAG contains at most one memory request.
For any Zi and Li, the sequential cache complexity Q(Zi, Li) = (p/3)(Zi + L + i + 3(12K+1)(Z −

Zi + Li))(D/2)/Li because the sequential execution executes the subdags one by one and can reuse a scan
segment of length Zi/Li for all the identical scans to avoid repeated misses on a set of locations. In other
words, sequential execution gets (p/3)(3(12K+1) − 1)(Zi − Li))(D/2)/Li cache hits because it executes
identical scans one after the other.

We argue that in the case of randomized work stealing, there are a large number of subdags such that the
probability that at least two scans from the subdag are repeated are executed by disjoint set of processors is
greater than some positive constant. This implies that the cache complexity is Θ(pDZi/Li) higher that the
sequential cache complexity.

1. Once the p/3 spines have been forked, each spine is occupied by at least one processor till the stage
where work along a spine has been exhausted. This property follows directly from the nature of the
work stealing protocol.

2. In the early stages of computation after spines have been forked, but before the computation enters the
join phase on the spines, exactly p/3 processors have a spine node on the head of their work queue.
Therefore, the probability that a random steal with get a spine node and hence a fresh subdag is 1/3.

13



3. At any moment during the computation, the probability that more than p/2 of the latest steals of the
p processors found fresh spine nodes is exponentially small in terms of p and therefore less than 1/2.
This follows from the last observation.

4. If processor p stole a fresh subdag A and started the scans in it, the probability that work from the
subdag A is not stolen by some other processor before p executes the first 2/3-rd of the scan is at
most a constant ch ∈ (0, 1). This is because, the event that p currently chose a fresh subdag is not
correlated with any event in the history, and therefore, with probability at least 1/2, more than p/2
processors did not steal a fresh subdag in the latest steal. This means that these processors which stole
a stale subdag (a subdag already being worked on by other processors) got less than 2/3-rd fraction of
the subdag to work on before they need to steal again. Therefore, by the time p finishes 2/3-rd of the
work, there would have been at least p/2 steal attempts. Since these steals are randomly distributed
over all processors, there is a probability of at least 1/16 that two of these steals where from p. Two
steals from p would cause p to lose work from it’s fresh subdag.

5. Since there are at most KpD steals with high probability, there no more pD/6 subdags which incur
more than 12K steals. Among nodes with fewer than 12K steals, consider those described in the
previous scenario where the processor p that started the subdag has work stolen from it before p
executes 2/3-rd of the subdag. At least (1/16)(5pD/6) such subdags are expected in a run. Because
there are 312K+1 identical scans in each such subdag, at least one processor apart from p that has
stolen work from this subdag gets to execute one complete scan. This means that the combined cache
complexity at the i-th cache level for each subdag is at least Zi/Li greater than the sequential cache
complexity, proving the lemma.

The construction for centralized work stealing is shown in Figure 7(b). The DAG ensures that the least-
depth node at each steal causes a scan of a completely different set of memory locations. The bound follows
from the fact that unlike the case in sequential computation, cache access overlap in the pairs of parallel
scans are never exploited. ut

5.2.2 Implications for the Parallel Tree-of-Caches

The bounds in Theorem 5 hold for any Parallel Tree-of-Caches with intra-level regularity: Simply view
the tree-of-caches as a PMDH by partitioning each proportionate cache shared by pi,j processors into pi,j

disjoint caches of size Zi.

5.2.3 Extending Shared Cache Results to Multiple Levels

Finally, we note that the bound in Equation 2 (Section 1) for a single level of cache shared by all the
processors can be generalized to the Parallel Multi-level Shared Hierarchy (PMSH), a special case of the
PToC in which at each level i there is a cache of size Zi shared by all the processors; see Figure 6(right):

Theorem 7 When a cache-oblivious nested-parallel computation with sequential cache complexity Q(Z,L),
work W , and depth D is scheduled on a PMSH P of p processors using a PDF scheduler, then the cache at
each level i incurs fewer than Q(Zi − pLiD

lat
P , Li) cache misses. Moreover, the computation completes in

time not more than W lat
P /p + Dlat

P .

Proof. The cache bound follows because (i) inclusion implies that hits/misses/evictions at levels < i do
not alter the number of misses at level i, (ii) caches sized for inclusion imply that all words in a line evicted
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at level > i will have already been evicted at level i, and hence (iii) the key property of PDF schedulers,
QP (Z + pLDlat

P , L) ≤ Q1(Z,L) (Equation 2), holds at each level i of a PMSH. The time bound follows
because the schedule is greedy. ut

Thus, our approach for developing cache-efficient parallel algorithms via (i) low cache-oblivious sequential
cache complexity and (ii) low depth is validated for shared-cache hierarchies (and PDF schedulers) as well.
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Figure 8: Prefix Sums. The first phase involves recursively summing up the elements and storing the inter-
mediate values.

A Appendix

A.1 Prefix Sums

Consider a balanced binary tree laid over the input (see Figure 8). The algorithm works in two phases that
traverse the tree: the first calculates for each node the sum of the left subtree and the second pushes values
down the tree based on these partial sums. The recursive codes for the two phases are shown in Algorithms 1
and 2, respectively. The code uses an input array A of length n, a temporary array T of length n− 1, and an
output array R. The only adaptation to the standard prefix sums algorithm is that we lay out the tree in infix
order in the array T , so as to make the algorithm cache-efficient. The down phase basically takes the input
s, passes it to the left call and passes s⊕ root(T ) to the right call. To compute prefix-sum of A, we call the
function UP(A, T, 0, n) followed by DOWN(R, T, 0, n, 0).

Algorithm 1 UP(A, T, i, n)
if n = 1 then

return A[i]
else

k ← i + n/2
T [k]← UP(A, T, i, n/2)
right ← UP(A, T, k, n/2)
return T [k]⊕ right

end if

Algorithm 2 DOWN(R, T, i, n, s)
if n = 1 then

R[i]← s
else

k ← i + n/2
DOWN(R, T, i, n/2, s)
DOWN(R, T, k, n/2, s⊕ T [k]);

end if

Lemma 2 The prefix sum of an array of length n can be computed in W (n) = O(n), D(n) = O(log n)
and Q(n;Z,L) = O(dn/Le).
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Proof. There exists a positive constant c such that for a call to the function UP with n ≤ cZ, all the
memory locations accessed by the function fit into the cache. Thus, Q(n;Z,L) ≤ Z/L for n ≤ cZ. Also
Q(n;Z,L) = O(1) + 2 · Q(n/2;Z,L) for n > cZ. Therefore, the sequential cache complexity for UP is
O(n/Z + (n/(cZ)) · (Z/L)) = O(dn/Le). A similar analysis for the cache complexity of DOWN shows
that Q(n;Z,L) = O(dn/Le). Both the algorithms have depth O(log n) because the recursive calls can be
made in parallel. ut

We note that the temporary array T can also be stored in preorder or postorder with the same bounds, but
that the index calculations are then a bit more complicated. What matters is that any subtree is contiguous
in the array. The standard heap order (level order) does not give the same result.

A.2 Depth of randomized sorting algorithm

To analyze the depth of the dag, we obtain high probability bounds on the depth of each level of recursion
tree (we assume that the levels are numbered starting with the root at level 0). To get sufficient probability
at each level we need to execute the outer loop more times toward the leaves where the size is small. Each
iteration of the outer loop at node N of input size m at level k in the recursion tree has depth log m and the
termination probability of the loop is 1− 1/m.

To prove the required bounds on depth, we prove that the sum of depths of all nodes at level d in
the recursion tree is at most O(log3/2 n/ log log n) with probability at least 1 − 1/nO(log2 log n) and that
the recursion tree is at most 1.1 log2 log2 n levels deep. This will prove that the depth of the recursion
tree is O(log3/2 n) with probability at least 1 − (1.1 log2 log2 n)/nO(2 log2 log n). Since the actual depth
is a maximum over all “critical” paths which we will argue are not more than nO(1.1 log log n) in number
(critical paths are shaped liked the recursion tree), we can conclude that the depth is O(log3/2 n) with high
probability.

The maximum number of levels in the recursion tree can be bounded using the recurrence relation
X(n) = 1 + X(

√
n log n) and X(10) = 1. Using induction, it is straightforward to show that this solves

to X(n) < 1.1 log2 log2 n. Similarly the number of critical paths C(n) can be bounded using the relation
C(n) < (

√
nX(
√

n))(
√

nX(
√

n log n)). Again, using induction, this relation can be used to show that
C(n) = nO(1.1 log log n).

To compute the sum of the depth of nodes at level d in the recursion tree, we consider two cases: (1)
when d > 10 log log log n and (2) otherwise.

Case 1: The size of a node one level deep in the recursion tree is at most O(
√

n log n) = O(n1/2+r)
for any r > 0. Also, the size of a node which is d levels deep is at most O(n(1/2+r)d

), each costing
O((1/2 + r)d log n) depth per trial. Since there are 2d nodes at level d in the recursion tree, and the failure
probability of a loop in any node is no more than 1/2, we show that the probability of having to execute
more than (2d · log1/2 n)/((1 + 2r)d · log log n) loops is small. Since we are estimating the sum of 2d

independent variables, we use Chernoff bounds of the form:

Pr[X > (1 + δ)µ] ≤ e−δ2µ, (5)

with µ = (2 · 2d), δ = (1/2)(log1/2 n/((1 + 2r)d · log log n)) − 1. The resulting probability bound is
asymptotically lesser than 1/nO(log2 log n) for d > 10 log log log n. Therefore, the contribution of nodes at
level d in the recursion tree to the depth of recursion tree is at most 2d · (1/2 + r)d log n · log1/2 n/((1 +
2r)d · log log n) = log3/2 n/ log log n with probability at least 1− 1/nO(log2 log n).

Case 2: We classify all nodes at level d in to two kinds, the large ones with size greater than log2 n and
the smaller ones with size at most log2 n. The total number of nodes is 2d < (log log n)5. Consider the
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Figure 9: Multi-level LRU, depicting a parent at level i + 1 and one of its children at level i

small nodes. Each small node can contribute a depth of at most 2 log log n to the recursion tree and there
are at most (log log n)10 of them. Therefore, their contribution to depth of the recursion tree at level d is
asymptotically lesser than log n.

We use Chernoff bounds to bound the contribution of large nodes to the depth of the recursion tree.
Suppose that there are j large nodes. We show that with probability not more than 1/nO(log2 log n), it takes
more than 10 · j loop iterations at depth d for j of them to succeed. For this, consider 10 · j random
independent trials with success probability at least 1 − 1/ log2 n each. The expected number of failures
is no more than µ = 10 · j/ log2 n. We want to show that the probability that there are greater than 9 · j
failures in this experiment is tiny. Using Chernoff bounds in the form presented above with the above µ,
and δ = (0.9 · log2 n − 1), we infer that this probability is asymptotically less than 1/nO(log2 log n). Since
j < 2d, the depth contributed by the larger nodes is at most 2d(1/2 + r)d log n, asymptotically smaller than
log3/2 n/ log log n.

The above analysis shows that the combined depth of all nodes at level d is O(log3/2 n/ log log n) with
high probability. Since there are only 1.1 log2 log2 n levels in the recursion tree, this completes the proof.

A.3 LRU replacement

Thus far, we have assumed that each cache in a Parallel Tree-of-Caches uses an optimal replacement policy.
In this section, we consider instead a more practical LRU replacement policy.

Frigo et al. [29] motivate the use of an optimal replacement policy in the cache-oblivious model by ap-
pealing to the fact that LRU and optimal differ by at most a constant factor. Namely, Sleator and Tarjan [38]
have shown that a cache of size 2Z using LRU incurs at most twice as many misses as a cache of size Z
using optimal. This result extends to each cache of the PToC as well.

Alternatively, we can directly consider a PToC in which each cache uses a multi-level inclusive LRU
replacement policy. Assuming that a cache line evicted at level i is sent to its parent at level i + 1 and
that any access to a memory location not at a level i cache is serviced by passing it from higher levels in
the memory hierarchy through its parent cache at level i + 1, the cache at level i + 1 knows exactly what
elements are contained in its children caches at level i. From the order in which cache lines were evicted by
level i, a cache at level i + 1 can fill up the rest of its slots and order them in the LRU order. See Figure 9.
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