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Abstract
Reviewers in peer review are often miscalibrated: they may be strict, lenient,

extreme, moderate, etc. Various attempts have been made to calibrate reviews in
conference peer review, but they are hampered by the critical bottleneck of a small
number of samples (reviews) per reviewer. To increase the sample sizes, we consider
using exogenously obtained information about reviewers’ calibration, such as data
from past conferences. The problem with this approach is that it may compromise
the privacy of which reviewer reviewed which paper. We formulate this problem
as that of calibrating reviews while ensuring privacy. We undertake a theoretical
study of this problem under a simplified yet challenging model involving two re-
viewers, two papers, and a MAP-computing adversary. Our main results establish
the Pareto frontier of the tradeoff between privacy and utility (accepting the bet-
ter papers), and design computationally-efficient algorithms that are Pareto optimal.
Our work provides a foundation for future research to address the important problem
of miscalibration on a larger scale.

This thesis contains joint work with Nihar B. Shah, Weina Wang, and Gautam Kamath.
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Chapter 1

Introduction

It is well known that ratings provided by people are frequently miscalibrated. In the applica-
tion of peer review, reviewers may be strict, lenient, extreme, moderate, or have other forms of
miscalibration. This leads to unfairness in peer review, for instance, disadvantaging papers that
happen to go to strict reviewers [28]: “the existence of disparate categories of reviewers creates
the potential for unfair treatment of authors. Those whose papers are sent by chance to as-
sassins/demoters are at an unfair disadvantage, while zealots/pushovers give authors an unfair
advantage.”

A number of algorithms are proposed in the literature to address the problem of miscalibra-
tion (detailed in Section 2). Program chairs of conferences have tried to use some algorithms to
calibrate reviewers’ scores, but have found the outcomes to be unsatisfactory. For instance, John
Langford, the program chair of ICML 2012 says that “We experimented with reviewer normal-
ization and generally found it significantly harmful” [17].

A critical challenge in addressing miscalibration is the tiny sample size. Many conferences
have each reviewer reviewing just a handful papers (typically 1 to 6 papers). As a consequence,
it is often hard to decipher the miscalibration of any reviewer, particularly since human miscal-
ibration can be quite complex [4]. Our approach to address this challenge is to use exogenous
information about the miscalibration of reviewers, e.g., reviewers’ calibration information from
other conferences where they have reviewed.

In peer review, the identity of which reviewer reviews which paper is confidential. A naı̈ve
attempt at calibration can compromise this confidentiality. As an example, consider an adversary
trying to guess the reviewer of a paper between two possibilities – reviewer X or reviewer Y. The
review for the paper is lukewarm, and for simplicity suppose this is the only review. We assume
the “OpenReview” model where all submitted papers, reviews, and final decisions are public (but
reviewer identities are not). Also suppose it is known that reviewer X is quite strict but reviewer
Y is not. Then the paper will not be accepted unless the conference performs a calibration using
this information and the reviewer is X. The acceptance of the paper will provide the adversary
the necessary information to infer the reviewer as X.

The compromise in confidentiality due to calibration can occur in the conference at hand (as
in the example above), or in previous conferences if data from them used. In the conference
at hand, such compromise could occur when calibrating using exogenous information (as in the
example above) or using information only from within the conference (as done in past literature).
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This problem of privacy in calibration that we identify is quite challenging in full generality, and
in this paper, we analyze a specific setting of privacy in the conference at hand when calibrating
using exogenous information. We consider a simplistic–yet challenging–model with two review-
ers and two papers and where an adversary attempts to guess the reviewer assignment based on
maximum a posteriori (MAP) computation. Our contributions are summarized as follows:

• We identify the problem of privacy in calibration, and we initiate a theoretical study with
the formulation of a specific problem that incorporates various key challenges of the more
general setting.

• We provide an algorithm for calibration with privacy that optimally trades off the error of
the conference (in terms of accepting the better paper) and the error of the adversary (in
terms of guessing the reviewer).

• We establish the structure of the Pareto optimal curve between the two aforementioned
desiderata. We observe that there is a linear tradeoff between the two errors up to a certain
point, after which the error of the adversary does not decrease even if the conference adds
more randomness in its protocols.

Our work aims to found a building block for more research on this important problem of mis-
calibration (possibly using exogenous information about calibration) while ensuring privacy of
reviewers.
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Chapter 2

Related Work

Peer review is extensively used for evaluating scientific papers and grant proposals, although it
is known to suffer from various challenges such as miscalibration, biases, subjectivity, dishonest
behavior and others [27].

The problem of miscalibration is well recognized in the literature. A common approach
to design calibration algorithms is to assume a certain model of miscalibration, and under the
assumed model, estimate the calibrated data (or the model parameters) from the data. The pa-
pers [2, 9, 12, 19, 24, 25, 26] in this line of literature assume affine models: it assumes that each
paper has some “true” real-valued quality and that the score provided by any reviewer is some
affine transform (plus noise) of this true quality. The affine transform captures the reviewer’s
miscalibration. In our formulation (detailed subsequently in Section 3) we also assume papers
have true qualities, and a part of our work also assumes affine miscalibrations.

A second line of literature [1, 10, 23] recognizes the problem of miscalibration, and takes
the approach of using only the ranking of papers induced by the ratings given by any individual
reviewer, or alternatively, asking each reviewer to only provide a ranking of the papers they are
reviewing. Using rankings alone thus gets rid of any miscalibrations, but on the downside, can
lose some information contained in ratings. Moreover, a recent work [35] showed that under
certain settings, ratings can yield more information than rankings even if the miscalibration is
adversarial.

Notably, these works consider addressing miscalibration using data from within the confer-
ence at hand, and moreover do not consider the issue of compromise of privacy.

We assume an “open review” model where all submitted papers and all reviews are available
publicly (see openreview.net). This model is followed in the ICLR conference as well
as other venues. In a survey [29] at the ICLR 2013 conference, researchers felt that this open
review model leads to benefits of more accountability of authors (in terms of not submitting
below-par papers) as well as reviewers (in terms of giving high-quality reviews). The publicly
available data has resulted in another benefit: it has yielded a rich dataset for research on peer
review [3, 15, 20, 34, 36, 37]. A downside of the open review approach is that if a rejected paper
is resubmitted elsewhere, the (publicly available) knowledge of previous rejection may bias the
reviewer [31].

Our work considers explicitly randomized assignments and decisions. In practice, the as-
signments and decision protocols are typically deterministic (although some variations naturally

3
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arise due to human involvement in various parts of the peer review process). The assignment
of reviewers to papers is done by solving a certain optimization problem [5, 11, 13, 16, 30, 32]
involving similarities computed between each pair of reviewer and paper [5, 8, 21, 22]. Deci-
sions are arrived at after discussions between the reviewers. That said, there are notable instances
where randomization has been explicitly used in practice in peer review: randomization can help
mitigate dishonest behavior [14] and can help make more fair decisions for borderline papers or
grants [6, 18]. Finally, the algorithms in the theoretical work [35] also employ randomization.

Issues of privacy in peer review also arise when releasing data to researchers. The program
chairs of the WSDM 2017 conference performed a remarkable controlled experiment to test for
biases in peer review, and in their paper [33] they point out privacy-related concerns in releas-
ing data: “We would prefer to make available the raw data used in our study, but after some
effort we have not been able to devise an anonymization scheme that will simultaneously protect
the identities of the parties involved and allow accurate aggregate statistical analysis. We are
familiar with the literature around privacy preserving dissemination of data for statistical anal-
ysis and feel that releasing our data is not possible using current state-of-the-art techniques.”
We are aware of two past works which deal with privacy in peer review [7, 14]. In particular,
both papers consider privacy-preserving release of peer-review data. The paper [7] provides an
algorithm to optimize utility when releasing histograms pertaining to the reviews, miscalibration
or subjectivity in a privacy-preserving manner. The paper [14] uses randomized assignments to
guarantee privacy of the reviewer-paper assignment when data pertaining to similarities between
reviewer-paper pairs is released.
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Chapter 3

Problem Formulation and Preliminaries

In this section, we present the formal problem specification.

Papers and reviewers. We consider a setting with two reviewers and two papers. Each paper
i ∈ {1, 2} has some true quality θi ∈ R. We assume that the qualities θ1 and θ2 are drawn i.i.d.
according to the standard Normal distribution.

Reviewer assignment. Each reviewer reviews one paper and each paper is reviewed by one
reviewer. There are thus two possible assignments: we let A1 denote the assignment of reviewer
1 to paper 1 and reviewer 2 to paper 2, and A2 denote the assignment of reviewer 1 to paper 2
and reviewer 2 to paper 1. We assume that the assignment is chosen uniformly at from these two
possibilities. We use A to denote the random variable for the assignment.

Miscalibration and reviewer scores. Following [35], we assume that each reviewer j ∈
{1, 2} has a function βj : R → R which captures their miscalibration. If reviewer j ∈ {1, 2}
reviews paper i ∈ {1, 2}, we assume that the reviewer provides a score

βj(θi) + εj,

where εj is a Gaussian random variable with mean zero independent of everything else. We
call βj the miscalibration function of reviewer j. We assume that the functions β1 and β2 are
increasing and invertible. In one part of our work, we further make an assumption that the
miscalibration functions are affine, and we detail this subsequently in the associated section.

We let s1 denote the score received by paper 1 and s2 denote the score received by paper 2.
The realizations of these scores are S = [s1, s2] where .
We use s to denote the final score given by a reviewer. Such final score s also has a dis-

tribution and we denote the probability density function of final score given by reviewer j as
fj .

Conference. The goal of the conference is to accept high-quality papers. In the scenario
with two papers, the conference wants to choose the paper with higher quality between the two.
The conference has full information on identities and scores of papers, identities, miscalibration
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functions, noise distributions of reviewers, and the true assignment. Conference does calibration
by using some strategy to improve its probability of accepting higher-quality papers.

Adversary. To measure the privacy leakage of calibration, we assume an adversary in the
process. The goal of the adversary is to guess the true assignment. The adversary has information
on identities and scores of papers, identities, miscalibration functions, and noise distributions of
reviewers, the mechanism used by the conference to do calibration and the decision made (i.e.,
the paper being accepted) by the conference. However, since the adversary does not know the
true assignment, it does not know the output of h in the realization. The adversary predicts the
assignment that maximizes the posterior probability given all its observations and knowledge.

Settings and errors. We study two settings, noiseless and noisy. If both reviewers’ noises are
constant 0, then the reviewer is noiseless and it is the noiseless setting. Otherwise, the reviewer
is noisy and it is the noisy setting. There are two types of error in the analysis, per-instance
error and average-case error. Per-instance error refers to the error with respect to some specific
scores. In this case, the conference observes the scores and does calibration, we then look at the
error probability for both the conference and adversary under the calibration strategy used by the
conference. On the other hand, average-case error is computed across the distributions of scores.
The conference has a strategy before seeing the sores and we study the error of the strategy under
the distribution of scores for both the conference and the adversary.
Definition 3.0.1. Per-instance error of the conference given S = [s1, s2], denoted as EC([s1, s2]),
is computed as Pr(conference accepts lower-quality paper |S = [s1, s2]).
Definition 3.0.2. The average-case error of the conference is the average per-instance error,
where the averaging is done over the distribution of the scores s1 and s2. Specifically,

∫
s1

∫
s2

Pr(conference
accepts lower-quality paper |S = [s1, s2])fS([s1, s2]) where fS is the p.d.f of the joint distribution
of [s1, s2].
Definition 3.0.3. Per-instance error of the adversary given S = [s1, s2], denoted as EA([s1, s2]),
is computed as Pr(adversary guesses wrong assignment |S = [s1, s2]).
Definition 3.0.4. The average-case error of the adversary is the average per-instance error, where
the averaging is done over the distribution of the scores s1 and s2. Specifically

∫
s1

∫
s2

Pr(adversary
guesses wrong assignment |S = [s1, s2])fS([s1, s2]) where fS is the p.d.f of the joint distribution
of [s1, s2].

Pareto frontier. A calibration strategy is Pareto efficient if for any given maximum error of
the conference, it maximized the error of the adversary with the smallest error of the conference
under the threshold. Therefore, we define the Pareto frontier as follows:
Definition 3.0.5. A Pareto frontier of the error of the adversary against the error of the conference
contains all points such that the error of the adversary cannot be increased without increasing the
error of the conference.

Our goal. Our goal is to design a strategy for the conference to calibrate the scores of the
papers while protect the privacy of the assignments. For given desired error of the conference,
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we would like to maximize the error of the adversary. In the analysis of the two-paper two-
reviewer scenario, we find the Pareto frontier of the errors and conclude an optimal strategy for
the conference to calibrate.

Calibration. Calibration is a function that takes the information known by the conference and
outputs the paper to be accepted. The most general strategy for conference calibration is to accept
each paper with a certain probability. The conference observes the scores S = [s1, s2] and the
assignment A and the most general strategy the conference can use is to have g : S×A→ [0, 1].
The function g decides the probability that the conference accepts paper 1 and we call function
g a probability function. The conference accepts paper 1 with probability g(S,A) and accepts
paper 2 with probability 1− g(S,A). The conference then decides the paper to accepts using the
probabilities.

If the conference uses the probability function g to do calibration, the error of the con-
ference is computed as ((1 − g(S,A1)) Pr(A = A1|θ1 > θ2, S) + (1 − g(S,A2)) Pr(A =
A2|θ1 > θ2, S)) Pr(θ1 > θ2|S) + (g(S,A1) Pr(A = A1|θ1 < θ2, S) + g(S,A2) Pr(A = A2|θ1 <
θ2, S)) Pr(θ1 < θ2|S).

Another way of doing calibration to minimize error of the conference is to compute the
MAP of the quality of the paper. When the conference calibrates in the two paper scenario, it
accepts the paper with higher probability to be higher in quality between the two using the known
information. That is to say, the conference computes Pr(θ1 > θ2|S,A) and if the value is greater
than 1

2
then it accepts paper 1. If the value is less than 1

2
, the conference accepts paper 2. In

the case of the value equal to 1
2
, we assume the conference accepts a paper uniformly at random.

The error of the conference EC is the probability that the conference accepts the paper with lower
quality.

To simplify our analysis, we consider a mechanism for the conference to do calibration with
MAP. Observing the scores S = [s1, s2] and the assignment A, the conference uses a function h :
S × A→ [0, 1] to decide the probability of calibrating the scores under the true assignment. We
call function h a calibration function. After seeing the result of h, the conference first decides the
assignment it calibrates under. It calibrates under the true assignment with probability h(S,A)
and under the wrong assignment with probability 1 − h(S,A). Then the conference calibrates
under the chosen assignment and makes decision.

The following lemma states that switching from the most general mechanism of probability
function g to the mechanism using calibration function h does not reduce optimality of the con-
ference. So the conference can use calibration function to make decisions of paper acceptance
and our analysis is done under this mechanism.
Lemma 3.0.6. Without loss of optimality, the conference can calibrate use the mechanism of
calibration function h instead of the mechanism of probability function g.

7
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Chapter 4

Main Results

We study a peer review process with two papers and two reviewers. We analyze the tradeoff
between utility and privacy of the process using the Pareto frontier of error of the conference
against error of the adversary. We study the Pareto frontier and find optimal strategy for the
conference to do calibration.

4.1 Noiseless Setting
We first study the noiseless setting where both reviewers’ noises are constant 0. In the noiseless
case, the conference always accepts the higher-quality paper when it calibrates under the correct
assignment by finding the quality of papers using inverse functions of miscalibration functions
and the scores. Lemma 3.0.6 indicates that if calibrating under both assignments makes the
conference accept the same paper, then there is no need to have non-zero probability to accept
the other paper. Otherwise, the error of the conference is increased but the error of the adversary
remains the same.

4.1.1 Pareto Frontier

We first find the Pareto frontier of the error of the adversary against the error of the conference
in the noiseless setting. For the given scores, if the same paper has higher quality under both
assignments, then the output of the calibration function h does not make a difference to the
conference decision. Therefore, for scores in such range, the Pareto efficient situation is where
the conference has zero error. For the rest of the scores, the conference shall accept different
papers by calibrating under different assignments. Then the calibration function needs to be
carefully designed.

Given scores S = [s1, s2] and knowing the miscalibration functions, the conference can cal-
culate the true qualities of papers under each assignment. Under A1 we have θ1 = β−1

1 (s1) and
θ2 = β−1

2 (s2). UnderA2 we have θ1 = β−1
2 (s1) and θ2 = β−1

1 (s2). If s1 > max{β2(β−1
1 (s2)), β1(β−1

2 (s2))},
then θ1 > θ2 under both assignments and paper 1 should be accepted. Similarly, if s1 <
min{β2(β−1

1 (s2)), β1(β−1
2 (s2))}, paper 2 should be accepted. We will study the Pareto fron-

tier for scores where min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} ≤ s1 ≤ max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}.
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Figure 4.1: Pareto frontier in the noiseless setting with u = f1(s1)f2(s2), v = f2(s1)f1(s2).

In this range of scores, the error of the adversary does not surpass the error of the conference.
The Pareto frontier is a line with slope 1 as stated in the following theorem:
Theorem 4.1.1. In the noiseless setting where the scores satisfy min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} <

s1 < max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}, the Pareto frontier of error of the adversary against error
of the conference is a line of slope 1 starting from the origin as shown in Figure 4.1.

4.1.2 Per-instance Error
We analyze the per-instance error with a realization of the scores S = [s1, s2]. From Lemma 3.0.6,
we know that if paper 1 has higher quality under both assignments, the conference should accept
paper 1 and the same argument holds for paper 2. For the rest range of scores, the conference
adopts the calibration mechanism with function h.

Since S is a fixed realization in the analysis, we simplify the mechanism for the conference
as

q1 = h(S,A1)

q2 = h(S,A2).

With the simplification, q1 is the probability for the conference to calibrate under the true assign-
ment when the true assignment is A1 and q2 is such probability when the true assignment is A2.
Therefore, given a value for the maximum error of the conference EC , our goal is to find values
of q1 and q2 that is Pareto efficient.

For a Pareto efficient calibration mechanism, the error of the conference and the adversary
should stay on the Pareto frontier as in Figure 4.1. If the error of the conference is less than
min(u,v)
u+v

then the mechanism has error of the adversary being the same. Otherwise, error of the
conference and the adversary are both min(u,v)

u+v
.

Theorem 4.1.2. Algorithm 1 describes the optimal strategy for conference calibration in the
noiseless setting with per-instance error EC([s1, s2]).

4.1.3 Average-case Error
We analyze the average-case error with respect to the distributions of scores S = [s1, s2].

10



Algorithm 1: Conference calibration with per-instance error in the noiseless setting
Input: scores S = [s1, s2], maximum per-instance error of the conference EC([s1, s2])
if s1 > max{β1(β−1

2 (s2)), β2(β−1
1 (s2))} then

accept paper 1
else if s1 < min{β1(β−1

2 (s2)), β2(β−1
1 (s2))} then

accept paper 2
else if EC([s1, s2]) ≥ min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2)
then

choose q1, q2 ∈ [0, 1] such that
min {f1(s1)f2(s2), f2(s1)f1(s2)} q2 = max {f1(s1)f2(s2), f2(s1)f1(s2)} (1− q1)

else
choose q1, q2 ∈ [0, 1] such that EC([s1, s2]) = 1− f1(s1)f2(s2)q1+f2(s1)f1(s2)q2

f1(s1)f2(s2)+f2(s1)f1(s2)

end if

Algorithm 2: A strategy that always operates at the first change point
Input: scores S = [s1, s2]
if s1 > β2(β−1

1 (s2)) then
accept paper 1

else if s1 < β1(β−1
2 (s2)) then

accept paper 2
else if f1(s1)f2(s2) > f2(s1)f1(s2) then

choose q1, q2 ∈ [0, 1] such that f1(s1)f2(s2)q1 = f1(s1)f2(s2)− f2(s1)f1(s2)q2

else if f1(s1)f2(s2) ≤ f2(s1)f1(s2) then
choose q1, q2 ∈ [0, 1] such that f2(s1)f1(s2)q1 = f2(s1)f1(s2)− f1(s1)f2(s2)q2

end if

Knowing the miscalibration functions and the distribution of quality of papers, the conference
can find distributions of the scores. We first consider the strategy of always operating at the first
change point within the interesting intervals. Algorithm 2 describes the strategy. We use ζ to
denote the average error of the conference by using Algorithm 2.

Then we have an optimal strategy for the conference to guarantee an average-case error of
EC .
Theorem 4.1.3. Algorithm 3 describes the optimal strategy for conference calibration in the
noiseless setting with average-case error EC .

This strategy yields no error outside the interesting intervals for the conference and error of
the conference equals error of the adversary within the interesting intervals. Thus, it is Pareto
efficient in all intervals and is optimal for the conference.

4.2 Noisy Setting
We now study the noisy setting. We consider both miscalibration functions β1 and β2 to be affine
and both reviewers’ noises ε1 and ε2 to be Gaussian. Furthermore, the distributions of the noise

11



Algorithm 3: Conference calibration with average-case error
Input: maximum average-case error of the conference EC
Let ζ = error of the conference for always adopting Algorithm 2
if EC > ζ then

the desired conference error is Pareto inefficient and operate at EC = ζ
else if EC = ζ then

always adopt Algorithm 2
else if EC < ζ then

toss a coin that has probability of appearing head EC
ζ

if coin appears head then
always adopt Algorithm 2

else
always calibrate under correct assignment

end if
end if

are the same for both reviewers with mean zero and some known variance σ2.

β1(θ) = a1 · θ + b1

β2(θ) = a2 · θ + b2

ε1 ∼ N(0, σ2)

ε2 ∼ N(0, σ2)

In the noisy case, the conference does calibration by accepting the paper that is more likely
to be higher-quality given the scores, miscalibration functions and an assignment. Lemma 3.0.6
still indicates that if calibrating under both assignments makes the conference accept the same
paper, then there is no need to have non-zero probability to accept the other paper.

4.2.1 Pareto Frontier

We first find the Pareto frontier of the error of the adversary against the error of the conference
in the noisy setting. For the given scores, if the same paper has higher quality under both assign-
ments, then the output of the calibration function h does not make a difference to the conference
decision. Therefore, for scores in such range, the Pareto efficient situation is where the confer-
ence always accepts the paper that is more likely to be higher-quality. For the rest of the scores,
the conference shall accept different papers by calibrating under different assignments. Then the
calibration function needs to be carefully designed.

Given scores S = [s1, s2] and knowing the miscalibration functions, the conference can
calculate the probability that paper 1 has higher quality under each assignment. Under A1 we

have Pr(θ1 > θ2|A = A1, S = [s1, s2]) = 1 − Φ

(
a2(a21+σ2)(s2−b2)−a1(a22+σ2)(s1−b1)√

σ2(a21+a22+2σ2)(a21+σ2)(a22+σ2)

)
. Under A2
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Figure 4.2: A Pareto frontier in the noisy setting with assumptions: u < v, Φ1 = 1
2
− ϕ1 and

Φ2 = 1
2

+ ϕ2 with 0 < ϕ2 < ϕ1 where u = f1(s1)f2(s2) and v = f2(s1)f1(s2). Definitions of
Φ1 and Φ2 are in 4.2.1 and 4.2.2.

we have Pr(θ1 > θ2|A = A2, S = [s1, s2]) = 1− Φ

(
a1(a22+σ2)(s2−b1)−a2(a21+σ2)(s1−b2)√

σ2(a21+a22+2σ2)(a21+σ2)(a22+σ2)

)
where Φ

is the cumulative distribution function of the standard normal distribution. For simplicity, we let

Φ1 = Φ

(
a2(a2

1 + σ2)(s2 − b2)− a1(a2
2 + σ2)(s1 − b1)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
(4.2.1)

Φ2 = Φ

(
a1(a2

2 + σ2)(s2 − b1)− a2(a2
1 + σ2)(s1 − b2)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
. (4.2.2)

Therefore, if Φ1 and Φ2 are both less than 1
2
, the conference should accept paper 1. Similarly,

if Φ1 and Φ2 are both greater than 1
2
, the conference should accept paper 2. We will study

the Pareto frontier for scores where Φ1 − 1
2

and Φ2 − 1
2

have opposite signs. It corresponds

to the region where the scores satisfy min
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
≤ s1 ≤

max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
. In this range of scores, the Pareto frontier is

an increasing line:

Theorem 4.2.1. In the noisy setting where min
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
≤

s1 ≤ max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
, the Pareto frontier of error of the adver-

sary against error of the conference is an increasing line.

We will show the Pareto frontier with some additional assumptions in Figure 4.2. Note that
removing the assumptions does not affect the shape of the Pareto frontier but the coordinates of
the plot. The relationship between u and v combining with the values of Φ1 and Φ2 and their
distance to 1

2
, we have eight different combinations of these values. In all eight cases, the Pareto

frontier is an increasing line and maximum error of the adversary is min(u,v)
u+v

.
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Algorithm 4: Conference calibration with per-instance error in the noisy setting
Input:scores S = [s1, s2], maximum per-instance error of the conference EC([s1, s2])

if s1 > max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
then

accept paper 1
else if s1 < min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
then

accept paper 2
else if EC([s1, s2]) < uΦ1+v(1−Φ2)

u+v
then

error conference of cannot be achieved
else if EC([s1, s2]) ≥ u(Φ1+2Φ2−1)+v(1−Φ2)

u+v
then

choose q1 = 1, q2 = (v−u)(1−2Φ2)
u+v

else
choose q1 = 1, q2 = T (EC([s1,s2]))−(2Φ1−1)u

(1−2Φ2)v

end if

4.2.2 Per-instance Error
We analyze the per-instance error with respect to a realization of the scores S = [s1, s2]. Since
S is fixed in the analysis, we simplify the mechanism for the conference as

q1 = h(S,A1)

q2 = h(S,A2).

Therefore, given a value for the maximum error of the conference EC , our goal is to find values of
q1 and q2 that maximize the error of the adversary EA. We carry the notations from Section 4.2.1
and Figure 4.2. In addition, we let T (EC) = EC(u + v)− u · (1− Φ1)− v · Φ2 to be a function
that takes the error of the conference EC as input.

Along with Figure 4.2, we present the algorithm with the assumptions that u < v, Φ1 = 1
2
−ϕ1

and Φ2 = 1
2

+ ϕ2 with 0 < ϕ2 < ϕ1. For a Pareto efficient calibration mechanism, the error of
the conference and the adversary should stay on the Pareto frontier as in Figure 4.2. If the desired
error of the conference is less than uΦ1+v(1−Φ2)

u+v
, there is no feasible calibration mechanism that

satisfies this error due to the noise in the scores given by the reviewers.
Theorem 4.2.2. Algorithm 4 describes the optimal strategy for conference calibration in the
noisy setting with per-instance error EC([s1, s2]).
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Chapter 5

Discussion

Our work is only a starting point towards addressing the important problem of calibration with
privacy in its full generality. A number of challenges must be addressed in future work in order
to design practical algorithms with guarantees for calibration using exogenous information in
peer review.

One, relax certain assumptions made in this paper such as affine calibration in the noisy case,
heterogeneity and knowledge of the noise variance, and the privacy criterion.

Two, consider a general number of reviewers and papers. This will require carefully defining
the metric for the conference’s utility as well as the adversary’s goals.

Three, instead of assuming precise exogenous knowledge of the reviewers’ miscalibration
functions, consider having access to data from other conferences. One may assume that the
entire data can be pooled, which may allow for using algorithms from past literature [2, 9, 12,
19, 24, 25, 26], but will still require ensuring privacy on top of it.

Four, our work considered ensuring privacy in the conference at hand. If using data from
previous conferences, one would need to also ensure the privacy of data from those conferences.
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Chapter 6

Appendix

In the appendix, we present complete proofs of the results claimed in the main text.

6.1 Proof of Lemma 3.0.6
Calibrating using the mechanism of calibration function h differs from Calibrating using the
mechanism of probability function g only when the same paper has higher quality under both
assignments by the MAP. Since other wise, by adjusting the output of h(S,A1) and h(S,A2),
either paper can have arbitrary non-zero probability of being accepted (their probabilities sum to
1), and it is the same mechanism as using the probability function g.

Note that the adversary makes its guess using the MAP argmaxA∈{A1,A2} Pr(A = A|D =
P, S = [s1, s2]) where D is the random variable for the decision made by the conference (accep-
tance of paper) and P is the paper being accepted. By expanding the probability expression, we
have that

argmax
A∈{A1,A2}

Pr(A = A|D = P, S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A, S = [s1, s2]) Pr(A = A|S = [s1, s2])

Pr(D = P |S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A, S = [s1, s2]) Pr(A = A|S = [s1, s2]).

If the same paper has higher-quality under both assignments, and the conference accepts the
believed higher-quality paper, then the adversary guesses the assignment based on the scores
only. Because the adversary knows the mechanism used by the conference, if P is the paper that
has higher-quality under both assignments, then Pr(D = P |A = A, S = [s1, s2]) = 1 for both
A = A1 and A = A2. Therefore, the conference does not have extra privacy leak by accepting
P since the adversary is making its guess based on the information that is already public (the
scores). In addition, if the conference has non-zero probability of accepting the other paper, its
utility decreases because it would have higher probability of accepting the lower-quality paper.
However, the error of the adversary remains unchanged as it can use the scores to guess the
assignment without being affected by the conference decision. Thus, there is no need for the
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conference to have non-zero probability for accepting the paper that has lower-quality under
both assignments.

In conclusion, calibrating using the mechanism of calibration function h instead of the mech-
anism of probability function g does not reduce the optimally of the conference. Therefore, we
consider the calibration mechanism with calibration function h in our analysis.

6.2 Proof of Theorem 4.1.1

To find the Pareto frontier of per-instance error of the adversary against per-instance error of the
conference, in the noiseless setting where the scores satisfy min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} <

s1 < max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}, we first find the maximum per-instance error of the ad-
versary given per-instance error of the conference in this range. We will show the proof with
the assumptions that β2(β−1

1 (s2)) > β1(β−1
2 (s2)) and f1(s1)f2(s2) > f2(s1)f1(s2). The analy-

sis is of the same procedure for different assumptions on the values β2(β−1
1 (s2)), β1(β−1

2 (s2)),
f1(s1)f2(s2), and f2(s1)f1(s2).

In the noiseless setting, the conference uses the reverse functions of miscalibration functions
and the scores to exactly compute the quality of the papers. In the interesting region, the confer-
ence always accepts higher-quality paper if it calibrates under the correct assignment. And the
conference always accepts lower-quality paper if it calibrates assuming the wrong assignment.
We use A to denote the random variable for the assignment, D to denote the random variable
for the conference decision and S is the scores. In addition, we use C to denote the calibra-
tion status. If the conference calibrates under the correct assignment then C = T . Otherwise,
C = F .

Pr(conference accepts lower-quality paper|S = [s1, s2])

= Pr(C = F,A = A1|S = [s1, s2]) + Pr(C = F,A = A2|S = [s1, s2])

= Pr(C = F |A = A1, S = [s1, s2]) Pr(A = A1|S = [s1, s2])

+ Pr(C = F |A = A2, S = [s1, s2])P (A = A2|S = [s1, s2])

=(1− q1) · f1(s1)f2(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)
+ (1− q2) · f2(s1)f1(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

=1− f1(s1)f2(s2)q1 + f2(s1)f1(s2)q2

f1(s1)f2(s2) + f2(s1)f1(s2)

The adversary uses MAP to guess the assignment. If the two assignments have the same a
posteriori probability, then the adversary makes a random guess between the assignments where
either assignment has probability 1

2
of being guessed. When making a guess, the adversary ob-

serves the scores and the conference decision. So the adversary finds argmaxA∈{A1,A2} Pr(A =
A|D = P, S = [s1, s2]) where P is the paper being accepted.
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argmax
A∈{A1,A2}

Pr(A = A|D = P, S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A, S = [s1, s2]) Pr(A = A|S = [s1, s2])

Pr(D = P |S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A, S = [s1, s2]) Pr(A = A|S = [s1, s2])

= argmax
A∈{A1,A2}

(Pr(D = P |A = A, S = [s1, s2],C = T ) Pr(C = T |A = A, S = [s1, s2])

+ Pr(D = P |A = A, S,C = F ) Pr(C = F |A = A, S = [s1, s2])) · Pr(A = A|S = [s1, s2])

= argmax
A∈{A1,A2}

(Pr(D = P |A = A, S = [s1, s2],C = T ) Pr(h(A = A, S = [s1, s2]) = 1)

+ Pr(D = P |A = A, S,C = F ) Pr(h(A = A, S = [s1, s2]) = 0)) · Pr(A = A|S = [s1, s2])

Since both the conference and the adversary know the miscalibration functions and there is
no noise, the quality of papers can be computed exactly using the inverse functions of reviewer
functions. Therefore, Pr(D = P |A = A, S = [s1, s2]) is either 0 or 1. Note that if paper 1
has higher quality under both assignments A1 and A2, then the adversary guesses the assign-
ment based on the scores only because in this case argmaxA∈{A1,A2} Pr(D = P |A = A, S =
[s1, s2]) Pr(A = A|S = [s1, s2]) = argmaxA∈{A1,A2} Pr(A = A|S = [s1, s2]). So there is no
need for the conference to accept paper 2 in this case. Same argument applies when paper 2 has
higher quality under both assignments A1 and A2, then the conference should accept paper 2.

We then look into the region of the scores where min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} < s1 <
max{β2(β−1

1 (s2)), β1(β−1
2 (s2))}. If paper 1 is accepted, then if f1(s1)f2(s2)q1 > f2(s1)f1(s2)(1−

q2), the adversary guesses A = A1. If f1(s1)f2(s2)q1 < f2(s1)f1(s2)(1 − q2), the adversary
guessesA = A2. If f1(s1)f2(s2)q1 = f2(s1)f1(s2)(1− q2), the adversary guesses makes a guess
of the assignment with probability 1

2
for either assignment. Similarly, if paper 2 is accepted, the

adversary compares f1(s1)f2(s2)(1− q1) and f2(s1)f1(s2)q2. There are 2 papers and 2 possible
assignments, so we have 4 scenarios combining decisions and assignments.

1. IfA = A1 and D = P1, then the adversary guesses wrong if f1(s1)f2(s2)q1 < f2(s1)f1(s2)(1−
q2). This scenario happens with probability Pr(A = A1,D = P1|S = [s1, s2]) =

f1(s1)f2(s2)q1
f1(s1)f2(s2)+f2(s1)f1(s2)

.

2. If A = A1 and D = P2, then the adversary guesses wrong if f1(s1)f2(s2)(1 − q1) <
f2(s1)f1(s2)q2. This scenario happens with probability Pr(A = A1,D = P2|S = [s1, s2]) =

f1(s1)f2(s2)(1−q1)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

3. IfA = A2 and D = P1, then the adversary guesses wrong if f1(s1)f2(s2)q1 > f2(s1)f1(s2)(1−
q2). This scenario happens with probability Pr(A = A1,D = P1|S = [s1, s2]) =

f2(s1)f1(s2)(1−q2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

4. If A = A2 and D = P2, then the adversary guesses wrong if f1(s1)f2(s2)(1 − q1) >
f2(s1)f1(s2)q2. This scenario happens with probability Pr(A = A1,D = P2|S = [s1, s2]) =

f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2)

.
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To compute the error of the adversary, we need to compare f1(s1)f2(s2) and f2(s1)f1(s2). So
we suppose f1(s1)f2(s2) > f2(s1)f1(s2). Then we consider 5 cases of the value f1(s1)f2(s2)q1

that result in different error of the adversary. We refer to the 4 scenarios of (A,D) above.
• If f1(s1)f2(s2)q1 < f2(s1)f1(s2)− f2(s1)f1(s2)q2, the adversary guesses wrong in scenar-

ios 1 and 4.
Error of the adversary EA([s1, s2]) is f1(s1)f2(s2)q1+f2(s1)f1(s2)q2

f1(s1)f2(s2)+f2(s1)f1(s2)
, which is the opposite of the

error of the conference EC([s1, s2]). Error of the adversary ranges from 0 to f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.
The relation between error of the adversary and error of the conference is EA([s1, s2]) =

1− EC([s1, s2]) for EC([s1, s2]) ∈ ( f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

, 1].

• If f1(s1)f2(s2)q1 = f2(s1)f1(s2) − f2(s1)f1(s2)q2, the adversary makes random guess in
scenarios 1 and 3 and guesses wrong in scenario 4.
Error of the adversary EA([s1, s2]) is f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
and error of the conference

EC([s1, s2]) is f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

• If f2(s1)f1(s2) − f2(s1)f1(s2)q2 < f1(s1)f2(s2)q1 < f1(s1)f2(s2) − f2(s1)f1(s2)q2, the
adversary guesses wrong in scenarios 3 and 4.
Error of the the adversary EA([s1, s2]) is f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
, which is constant. The

relation between error of the adversary and error of the conference is EA([s1, s2]) =
f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
. Error of the adversary stays constant for error of the conference

EC([s1, s2]) ∈ ( f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

, f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

).

• If f1(s1)f2(s2)q1 = f1(s1)f2(s2) − f2(s1)f1(s2)q2, the adversary makes random guess in
scenarios 2 and 4 and guesses wrong in scenario 3.
Error of the adversary EA([s1, s2]) is f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
and error of the conference

EC([s1, s2]) is also f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

• If f1(s1)f2(s2)q1 > f1(s1)f2(s2)− f2(s1)f1(s2)q2, the adversary guesses wrong in scenar-
ios 2 and 3.
Error of the adversary EA([s1, s2]) is 1 − f1(s1)f2(s2)q1+f2(s1)f1(s2)q2

f1(s1)f2(s2)+f2(s1)f1(s2)
, which is the same as

the error of the conference EC([s1, s2]). Error of the adversary EA([s1, s2]) ranges from
0 to f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
. The relation between error of the adversary and error of the

conference is EA([s1, s2]) = EC([s1, s2]) for EC([s1, s2]) ∈ [0, f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

).
Therefore, the relation between error of the adversary and error of the conference when

f1(s1)f2(s2) > f2(s1)f1(s2) is of the shape of a trapezoid in [0, 1] with the three line segments
of the slope +1, 0, and -1 as in Figure 6.1a. Note that the relation between the per-instance
errors does not change with the relation between values of f1(s1)f2(s2) and f2(s1)f1(s2). So
Figure 6.1a is the relation between the errors when u > v. Similarly, Figure 6.1b is the relation
between the errors when u ≤ v.

From Figure 6.1 we see that the conference should keep its per-instance error less than
min(u,v)
u+v

to stay optimal. Because if error of the conference is greater than min(u,v)
u+v

, increasing
its error does not increase error the adversary and thus is not optimal. Thus, the Pareto frontier
of per-instance error of the adversary against error of the conference is the first line segment
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(a) Maximum per-instance error of the adversary given per-
instance error of the conference when u > v.
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(b) Maximum per-instance error of the adversary given per-
instance error of the conference when u ≤ v

Figure 6.1: Relation between error of the adversary and error of the conference with u =
f1(s1)f2(s2) and v = f2(s1)f1(s2).

with slope 1 in both Figure 6.1a and Figure 6.1b when min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} < s1 <
max{β2(β−1

1 (s2)), β1(β−1
2 (s2))}.

6.3 Proof of Theorem 4.1.2

We prove that Algorithm 1 is optimal for each instance of scores S = [s1, s2] with desired error
of the conference EC([s1, s2]) in the noiseless setting.

From Lemma 3.0.6 we know that if a paper has higher quality under both assignments, the
conference should accept the paper. This is the optimal strategy for the conference.

Otherwise when min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} < s1 < max{β2(β−1
1 (s2)), β1(β−1

2 (s2))},
we use the Pareto frontiers analyze the optimality of our algorithm. Theorem 4.1.1 shows that the
Pareto frontier in the noiseless setting within this region. Suppose f1(s1)f2(s2) ≤ f2(s1)f1(s2),
then the endpoint on the Pareto frontier has both error of the conference and error of the adversary
being f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
. If EC([s1, s2]) < f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
, we maximized the error of

the adversary by operating on the Pareto frontier. If EC([s1, s2]) ≥ f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

, we
operate at the endpoint where error of the adversary is maximum and error of the conference
is no larger than the desired EC([s1, s2]). The endpoint is the point with minimum error of
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the conference such that error of the adversary is maximum. Therefore, it is optimal for the
conference.

Similarly, if f1(s1)f2(s2) > f2(s1)f1(s2), the algorithm is also optimal by maximizing error
of the adversary under desired error of the conference following the Pareto frontier. Algorithm 1
follows the procedure by choosing the corresponding q1 and q2 for each point on the Pareto
frontier and thus is optimal for the conference.

6.4 Proof of Theorem 4.1.3

Algorithm 2 is an algorithm that operates on the endpoint of the Pareto frontier when teh scores
satisfy min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 < max{β2(β−1

1 (s2)), β1(β−1
2 (s2))}. We use ζ to

denote the error of adopting Algorithm 2 across all scores. Then we have Algorithm 3 that has a
desired overall error of the conference EC as input.

If EC ≥ ζ , we operate at EC = ζ by adopting Algorithm 2. error of the adversary is maxi-
mized because when min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 < max{β2(β−1

1 (s2)), β1(β−1
2 (s2))},

error of the adversary is maximized by operating at the first changing point. Any other point on
the Pareto frontier has the error of the adversary less than or equal the error at the first changing
point. Outside the region, error of the adversary is fixed because the adversary’s guess is based
on the scores only. The conference has zero error outside the region so it is optimal.

If EC < ζ , when min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} < s1 < max{β2(β−1
1 (s2)), β1(β−1

2 (s2))},
error of the adversary is the same as error of the conference. Note that the slope of the Pareto
frontier is 1 when min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 < max{β2(β−1

1 (s2)), β1(β−1
2 (s2))},

therefore error of the adversary cannot exceed error of the conference with the maximum being
equal to error of the conference. So the algorithm is optimal within this region. Otherwise, error
of the adversary is fixed and is optimal for the conference.

6.5 Proof of Theorem 4.2.1

To find the Pareto frontier of per-instance error of the adversary against error of the conference
in the noisy setting where the scores satisfy min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
≤

s1 ≤ max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
, we first find the maximum per-instance

error of the adversary given per-instance error of the conference in this range. We will show
the proof with the assumptions that f1(s1)f2(s2) < f2(s1)f1(s2) and Φ1 = 1

2
− ϕ1 and Φ2 =

1
2

+ ϕ2 with 0 < ϕ2 < ϕ1. The analysis is of the same procedure for different assump-
tions on the values of f1(s1)f2(s2), f2(s1)f1(s2), Φ1 and Φ2 with Φ1 − 1

2
and Φ2 − 1

2
having

different signs. The notations are of the same meaning as in Section 6.3. In the noisy set-
ting, even if the conference calibrates under the true assignment, there is still possibility to
accept the lower-quality paper due to the noise in the scores given by the reviewers. Note
that with the assumptions and when min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
≤ s1 ≤

max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
, the conference accepts paper 1 if calibrates
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under A1 and accepts paper 2 if calibrates under A2. So we have

Pr(conference accepts lower-quality paper|S = [s1, s2])

= Pr(conference accepts P1, θ1 < θ2|S = [s1, s2]) + Pr(conference accepts P2, θ1 > θ2|S = [s1, s2])

= Pr(conference accepts P1|θ1 < θ2, S = [s1, s2]) · Pr(θ1 < θ2|S = [s1, s2])

+ Pr(conference accepts P2|θ1 > θ2, S = [s1, s2]) · Pr(θ1 > θ2|S = [s1, s2]).

We then expand each of the two terms.

Pr(conference accepts P1|θ1 < θ2, S = [s1, s2])

= Pr(conference accepts P1,A = A1|θ1 < θ2, S = [s1, s2])

+ Pr(conference accepts P1,A = A2|θ1 < θ2, S = [s1, s2])

= Pr(conference accepts P1|A = A1, θ1 < θ2, S = [s1, s2]) · P (A = A1|θ1 < θ2, S = [s1, s2])

+ Pr(conference accepts P1|A = A2, θ1 < θ2, S = [s1, s2]) · Pr(A = A2|θ1 < θ2, S = [s1, s2])

= Pr(C = T |A = A1, θ1 < θ2, S = [s1, s2]) Pr(A = A1|θ1 < θ2, S = [s1, s2])

+ Pr(C = F |A = A2, θ1 < θ2, S = [s1, s2]) Pr(A = A2|θ1 < θ2, S = [s1, s2])

=q1 Pr(A = A1|θ1 < θ2, S = [s1, s2]) + (1− q2) Pr(A = A2|θ1 < θ2, S = [s1, s2])

=q1
Pr(θ1 < θ2|A = A1, S = [s1, s2]) · Pr(A = A1|S = [s1, s2])

Pr(θ1 < θ2|S = [s1, s2])

+ (1− q2)
Pr(θ1 < θ2|A = A2, S = [s1, s2]) · Pr(A = A2|S = [s1, s2])

Pr(θ1 < θ2|S = [s1, s2])
.

Similarly,

Pr(conference accepts P2|θ1 > θ2, S = [s1, s2])

=(1− q1)
Pr(θ1 > θ2|A = A1, S = [s1, s2]) · Pr(A = A1|S = [s1, s2])

Pr(θ1 > θ2|S = [s1, s2])

+ q2
Pr(θ1 > θ2|A = A2, S = [s1, s2]) · Pr(A = A2|S = [s1, s2])

Pr(θ1 > θ2|S = [s1, s2])

Therefore, we have

Pr(conference accepts lower-quality paper|S = [s1, s2])

=q1 Pr(θ1 < θ2|A = A1, S = [s1, s2]) · Pr(A = A1|S = [s1, s2])

+ (1− q2) Pr(θ1 < θ2|A = A2, S = [s1, s2]) · Pr(A = A2|S = [s1, s2])

+ (1− q1) Pr(θ1 > θ2|A = A1, S = [s1, s2]) · Pr(A = A1|S = [s1, s2])

+ q2 Pr(θ1 > θ2|A = A2, S = [s1, s2]) · Pr(A = A2|S = [s1, s2])

=
f1(s1)f2(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)
· (q1Φ1 + (1− q1)(1− Φ1)

+
f2(s1)f1(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)
· ((1− q2)Φ2 + q2(1− Φ2)
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Under the assumptions that Φ1 = 1
2
− ϕ1 and Φ2 = 1

2
+ ϕ2 where 0 < ϕ2 < ϕ1 and

f1(s1)f2(s2) < f2(s1)f1(s2), we analyze the per-instance error of the adversary similar to the
procedure in Section 6.2. There are 4 scenarios combining the decision and the true assignment.

1. If A = A1 and D = P1, then the adversary guesses wrong if q1f1(s1)f2(s2) < (1 −
q2)f2(s1)f1(s2). This scenario happens with probability Pr(A = A1,D = P1|S =

[s1, s2]) = f1(s1)f2(s2)q1
f1(s1)f2(s2)+f2(s1)f1(s2)

.

2. If A = A1 and D = P2, then the adversary guesses wrong if (1 − q1)f1(s1)f2(s2) <
q2f2(s1)f1(s2). This scenario happens with probability Pr(A = A1,D = P1|S = [s1, s2]) =

f1(s1)f2(s2)(1−q1)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

3. If A = A2 and D = P1, then the adversary guesses wrong if q1f1(s1)f2(s2) > (1 −
q2)f2(s1)f1(s2). This scenario happens with probability Pr(A = A1,D = P1|S =

[s1, s2]) = f2(s1)f1(s2)(1−q2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

4. If A = A2 and D = P2, then the adversary guesses wrong if (1 − q1)f1(s1)f2(s2) >
q2f2(s1)f1(s2). This scenario happens with probability Pr(A = A1,D = P1|S = [s1, s2]) =

f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2)

.

To compute the error of the adversary, we need to compare f1(s1)f2(s2) and f2(s1)f1(s2). So
we suppose f1(s1)f2(s2) < f2(s1)f1(s2). Then we consider 5 cases of the value f1(s1)f2(s2)q1

that result in different error of the adversary. We refer to the 4 scenarios of (A,D) above.

• If q1f1(s1)f2(s2) < f1(s1)f2(s2)− q2f2(s1)f1(s2), the adversary guesses wrong in scenar-
ios 1 and 4. Error of the adversary EA([s1, s2]) is q1f1(s1)f2(s2)+q2f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
.

• If q1f1(s1)f2(s2) = f1(s1)f2(s2) − q2f2(s1)f1(s2), the adversary makes random guess in
scenarios 2 and 4 and guesses wrong in scenario 1. Error of the adversary EA([s1, s2]) is

q1f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

+1
2
( (1−q1)f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

+ q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

) = f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

• If f1(s1)f2(s2) − q2f2(s1)f1(s2) < q1f1(s1)f2(s2) < f2(s1)f1(s2) − q2f2(s1)f1(s2), the
adversary guesses wrong in scenarios 1 and 2. Error of the adversary EA([s1, s2]) is

f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

• If q1f1(s1)f2(s2) = f2(s1)f1(s2) − q2f2(s1)f1(s2), the adversary makes random guess in
scenarios 1 and 3 and guesses wrong in scenario 2. Error of the adversary EA([s1, s2]) is

(1−q1)f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

+1
2
( q1f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

+ (1−q2)f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

) = f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

• If q1f1(s1)f2(s2) > f2(s1)f1(s2)− q2f2(s1)f1(s2), the adversary guesses wrong in scenar-
ios 2 and 3. Error of the adversary EA([s1, s2]) is 1− q1f1(s1)f2(s2)+q2f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
.

To find the maximum error of the adversary given error of the conference, we solve an opti-
mization problem. In order to formulate the optimization problem, we can combine the 5 cases
above into 3 cases for simplicity.

• If q1f1(s1)f2(s2) ≤ f1(s1)f2(s2) − q2f2(s1)f1(s2), error of the adversary EA([s1, s2]) is
q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

• If f1(s1)f2(s2)− q2f2(s1)f1(s2) ≤ q1f1(s1)f2(s2) ≤ f2(s1)f1(s2)− q2f2(s1)f1(s2), error
of the adversary EA([s1, s2]) is f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
.
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• If q1f1(s1)f2(s2) ≥ f2(s1)f1(s2) − q2f2(s1)f1(s2), error of the adversary EA([s1, s2]) is
1− q1f1(s1)f2(s2)+q2f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
.

We let T (EC) = EC(u+ v)− u · (1−Φ1)− v ·Φ2 to be a function that takes the error of the
conference as input.

• Maximize q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

subject to EC([s1, s2])(f1(s1)f2(s2) + f2(s1)f1(s2))−
f1(s1)f2(s2) · (1 − Φ1) − f2(s1)f1(s2) · Φ2 = f1(s1)f2(s2)(2Φ1 − 1)q1 + f2(s1)f1(s2) ·
(1− 2Φ2)q2 and q1f1(s1)f2(s2) ≤ f1(s1)f2(s2)− q2f2(s1)f1(s2).
The maximum occurs at q1f1(s1)f2(s2) = f1(s1)f2(s2) − q2f2(s1)f1(s2). Then the inter-
section of the two lines is q1 = 1− (2Φ1−1)u−T (EC([s1,s2]))

(2Φ1+2Φ2−2)u
and q2 = (2Φ1−1)u−T (EC([s1,s2]))

(2Φ1+2Φ2−2)v
.

If the intersection point can be reached, q1, q2 ∈ [0, 1], (2Φ1−1)u ≤ T (EC([s1, s2])) ≤
(1−2Φ2)u, then error of the conference EC([s1, s2]) ranges from f1(s1)f2(s2)Φ1

f1(s1)f2(s2)+f2(s1)f1(s2)
+

f2(s1)f1(s2)Φ2

f1(s1)f2(s2)+f2(s1)f1(s2)
to f1(s1)f2(s2)(2−Φ1−2Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)
+ f2(s1)f1(s2)Φ2

f1(s1)f2(s2)+f2(s1)f1(s2)
.

Error of the adversary EA([s1, s2]) is f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

If the intersection point can not be reached and T (EC([s1, s2])) < (2Φ1 − 1)u, then
no q1, q2 are qualified for the constraints.

If the intersection point can not be reached and T (EC([s1, s2])) > (1− 2Φ2)u.

− If (1− 2Φ2)u < T (EC([s1, s2])) ≤ 0 then the maximum is reached when q1 = 0

and q2 = T (EC([s1,s2]))
(1−2Φ2)v

.

Error of the conference EC([s1, s2]) ranges from (2−Φ1−2Φ2)u+Φ2v
u+v

(when T (EC([s1, s2])) =

(1− 2Φ2)u) to (1−Φ1)u+Φ2v
u+v

(when T (EC([s1, s2])) = 0).

Error of the adversary EA([s1, s2]) is T (EC([s1,s2]))
(1−2Φ2)(u+v)

, ranges from u
u+v

(when T (EC([s1, s2])) =

(1− 2Φ2)u) to 0 (when T (EC([s1, s2])) = 0).

− If T (EC([s1, s2])) > 0 then no q1, q2 are qualified for the constraints.

• Error of the adversary EA([s1, s2]) is f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

subject to f1(s1)f2(s2)−q2f2(s1)f1(s2) ≤
q1f1(s1)f2(s2) ≤ f2(s1)f1(s2)− q2f2(s1)f1(s2).
From Figure 6.2 we can see that error of the conference EC([s1, s2]) has its extremes at
q1 = 0, q2 = u

v
and q1 = 1, q2 = 1 − u

v
. Therefore, error of the conference ranges from

(2−Φ1−2Φ2)u+Φ2v
u+v

to (Φ1+2Φ2−1)u+(1−Φ2)v
u+v

.

• Maximize 1− q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

subject to EC([s1, s2])(f1(s1)f2(s2)+f2(s1)f1(s2))−
f1(s1)f2(s2) · (1 − Φ1) − f2(s1)f1(s2) · Φ2 = f1(s1)f2(s2)(2Φ1 − 1)q1 + f2(s1)f1(s2) ·
(1− 2Φ2)q2 and q1f1(s1)f2(s2) ≥ f2(s1)f1(s2)− q2f2(s1)f1(s2).
The maximum occurs at q1f1(s1)f2(s2) = f2(s1)f1(s2) − q2f2(s1)f1(s2). Then the inter-
section of the two lines is q1 = (1−2Φ2)v−T (EC([s1,s2]))

(2−2Φ1−2Φ2)u
and q2 = T (EC([s1,s2]))−(2Φ1−1)v

(2−2Φ1−2Φ2)v
.

If the intersection point can be reached, q1, q2 ∈ [0, 1], (1 − 2Φ2)v − (2 − 2Φ1 −
2Φ2)u ≤ T (EC([s1, s2])) ≤ (1 − 2Φ2)v, then error of the conference EC([s1, s2])

ranges from f1(s1)f2(s2)(1−Φ1)
f1(s1)f2(s2)+f2(s1)f1(s2)

+ f2(s1)f1(s2)(1−Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2)

(when T (EC([s1, s2])) =
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Figure 6.2: A diagram illustrates the optimization problem in this case.

(1−2Φ2)v) to f1(s1)f2(s2)(Φ1+2Φ2−1)
f1(s1)f2(s2)+f2(s1)f1(s2)

+ f2(s1)f1(s2)(1−Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2)

(when T (EC([s1, s2])) =

(1− 2Φ2)v − (2− 2Φ1 − 2Φ2)u).

Error of the adversary EA([s1, s2]) is f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

.

If the intersection point can not be reached and T (EC([s1, s2])) > (1 − 2Φ2)v, then
no q1, q2 are qualified for the constraints.

If the intersection point can not be reached and T (EC([s1, s2])) < (1− 2Φ2)v− (2−
2Φ1 − 2Φ2)u.

− If (2Φ1−1)u+(1−2Φ2)v ≤ T (EC([s1, s2])) < (1−2Φ2)v− (2−2Φ1−2Φ2)u

then the maximum is reached when q1 = 1 and q2 = T (EC([s1,s2]))−(2Φ1−1)u
(1−2Φ2)v

.

Error of the conference EC([s1, s2]) ranges from (Φ1+2Φ2−1)u+(1−Φ2)v
u+v

(when
T (EC([s1, s2])) = (1 − 2Φ2)v − (2 − 2Φ1 − 2Φ2)u) to Φ1u+(1−Φ2)v

u+v
(when

T (EC([s1, s2])) = (2Φ1 − 1)u+ (1− 2Φ2)v).

Error of the adversary EA([s1, s2]) is 1− T (EC([s1,s2]))+(2−2Φ1−2Φ2)u
(1−2Φ2)(u+v)

, ranges from
u
u+v

(when T (EC([s1, s2])) = (1 − 2Φ2)v − (2 − 2Φ1 − 2Φ2)u) to 0 (when
T (EC([s1, s2])) = (2Φ1 − 1)u+ (1− 2Φ2)v).

− If T (EC([s1, s2])) < (2Φ1− 1)u+ (1− 2Φ2)v then no q1, q2 are qualified for the
constraints.

Therefore, the relation between error of the adversary and error of the conference when Φ1 =
1
2
− ϕ1 and Φ2 = 1

2
+ ϕ2 where 0 < ϕ2 < ϕ1 and f1(s1)f2(s2) < f2(s1)f1(s2) is of the shape of

a trapezoid in [0, 1] as in Figure 6.3. Note that the relation between the per-instance errors does
not change with the relation between values of f1(s1)f2(s2) and f2(s1)f1(s2) or with the values
of Φ1 and Φ2.

From Figure 6.3 we see that the conference should keep its per-instance error between uΦ1+v(1−Φ2)
u+v

and u(Φ1+2Φ2−1)+v(1−Φ2)
u+v

to stay optimal. The conference cannot have its error less than uΦ1+v(1−Φ2)
u+v

due to the reviewers’ noise. If error of the conference is greater than u(Φ1+2Φ2−1)+v(1−Φ2)
u+v

, in-
creasing its error does not increase error the adversary and thus is not optimal. Thus, the Pareto
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Figure 6.3: Maximum per-instance error of the adversary given per-instance error of the confer-
ence when u < v, Φ1 = 1

2
− ϕ1 and Φ2 = 1

2
+ ϕ2 with 0 < ϕ2 < ϕ1. The coordinates in the plot

are: 1© = uΦ1+v(1−Φ2)
u+v

, 2© = u(Φ1+2Φ2−1)+v(1−Φ2)
u+v

, 3© = u(2−Φ1−2Φ2)+vΦ2

u+v
, 4© = u(1−Φ1)+vΦ2

u+v
.

frontier of per-instance error of the adversary against error of the conference is the first line seg-
ment with positive slope in Figure 6.3 when min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
≤

s1 ≤ max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
.

6.6 Proof of Theorem 4.2.2
We prove that Algorithm 4 is optimal for each instance of scores S = [s1, s2] with desired error
of the conference EC([s1, s2]) in the noisy setting. We carry the assumptions from Section 6.5
that Φ1 = 1

2
− ϕ1 and Φ2 = 1

2
+ ϕ2 where 0 < ϕ2 < ϕ1 and f1(s1)f2(s2) < f2(s1)f1(s2).

From Lemma 3.0.6 we know that if a paper has higher quality under both assignments, the
conference should accept the paper. This is the optimal strategy for the conference.

Otherwise when the scores are in the region min
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
≤

s1 ≤ max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
, we use the Pareto frontiers analyze the

optimality of our algorithm. Theorem 4.2.1 shows that the Pareto frontier in the noiseless setting
within this region. The analysis is similar to the one in the noiseless setting in Section 6.3.

Suppose f1(s1)f2(s2) < f2(s1)f1(s2), then the endpoint on the Pareto frontier has error of the
adversary being f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2)
and error of the conference being f1(s1)f2(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2+f2(s1)f1(s2)
.

If f1(s1)f2(s2)Φ1+f2(s1)f1(s2)(1−Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2)

≤ EC([s1, s2]) < f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2)

, we max-
imized the error of the adversary by operating on the Pareto frontier. If error of the conference
EC([s1, s2]) ≥ f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)
, we operate at the endpoint where error of

the adversary is maximum and error of the conference is no larger than the desired EC([s1, s2]).
The endpoint is the point with minimum error of the conference such that error of the adversary
is maximum. Therefore, it is optimal for the conference.

Algorithm 4 follows the procedure by choosing the corresponding q1 and q2 for each point
on the Pareto frontier and thus is optimal for the conference.
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[21] Reshef Meir, Jérôme Lang, Julien Lesca, Natan Kaminsky, and Nicholas Mattei. A market-
inspired bidding scheme for peer review paper assignment. In Games, Agents, and Incen-
tives Workshop at AAMAS, 2020. 2

[22] David Mimno and Andrew McCallum. Expertise modeling for matching papers with re-
viewers. In KDD, 2007. 2

[23] Ioannis Mitliagkas, Aditya Gopalan, Constantine Caramanis, and Sriram Vishwanath. User
rankings from comparisons: Learning permutations in high dimensions. In Allerton Con-
ference, 2011. 2

[24] S. R. Paul. Bayesian methods for calibration of examiners. British Journal of Mathematical
and Statistical Psychology, 34(2):213–223, 1981. 2, 5

[25] Magnus Roos, Jörg Rothe, and Björn Scheuermann. How to calibrate the scores of biased
reviewers by quadratic programming. In AAAI Conference on Artificial Intelligence, 2011.
2, 5

[26] Magnus Roos, Jörg Rothe, Joachim Rudolph, Björn Scheuermann, and Dietrich Stoyan. A
statistical approach to calibrating the scores of biased reviewers: The linear vs. the nonlin-
ear model. In Multidisciplinary Workshop on Advances in Preference Handling, 2012. 2,
5

[27] Nihar B Shah. Systemic challenges and solutions on bias and unfairness in

30

http://hunch.net/?p=2517


peer review. Preprint http://www.cs.cmu.edu/˜nihars/preprints/Shah_
Survey_PeerReview.pdf, July 2021. 2

[28] Stanley S Siegelman. Assassins and zealots: variations in peer review. Radiology, 178(3):
637–642, 1991. 1

[29] David Soergel, Adam Saunders, and Andrew McCallum. Open scholarship and peer review:
a time for experimentation. 2013. 2

[30] Ivan Stelmakh, Nihar Shah, and Aarti Singh. PeerReview4All: Fair and accurate reviewer
assignment in peer review. JMLR, 2021. 2

[31] Ivan Stelmakh, Nihar Shah, Aarti Singh, and Hal Daumé III. Prior and prejudice: The
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