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Abstract
Recent advances in AI have brought various natural language processing tasks

to an extremely high level, for example in text classification, translation, semantics
analysis, etc. However, these techniques do not achieve any real natural language
understanding, by which we mean the creation of a language-independent, concept-
level representation of the meaning of the utterance. This thesis describes a prototype
implementation of an NLU system, comprising a Construction Grammar (CxG) en-
gine that processes incoming text statements and represents their meaning as new
knowledge structures in the Scone knowledge base system (KBS).

Scone is an expressive, efficient, and extensible knowledge base system for stor-
ing symbolic representations of knowledge. Scone acts as a “smart memory” that
supports simple inference, flexible search, and reasoning over knowledge in multiple
contexts – distinct but overlapping world-models in the knowledge base. Construc-
tion grammar studies the pairing of linguistic forms and underlying meanings. This
combination offers many advantages for NLU, which are illustrated by this proof-of-
concept implementation. The current implementation only covers a limited subset of
English forms, but it is able to understand simple sentences and, consequently, pro-
vides a practical way for users to put new knowledge into Scone. It also is designed
to provide a foundation for future development in this area.
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Chapter 1

Introduction

1.1 Motivation

Natural Language Processing (NLP) is an important and challenging area of Artificial Intelli-
gence, not only because language is one of the most complicated and ambiguous components
of human intelligence, but also because the development of NLP narrows the communication
gap between human and computer. In recent years, with the development of deep neural net-
works, NLP has shown impressive improvement in various application areas: text classification,
translation, semantics analysis, etc. However, the ultimate goal of all NLP tasks is to perform a
human-like understanding of some pieces of text and reason over the new knowledge extracted
from the text.

We hold the belief that human language is, fundamentally, a tool for identifying a piece of mean-
ing in my mind and building a good, effective approximation of that knowledge in your mind.
And consequently, a real Natural Language Understanding (NLU) system should be able to go
from incoming text, in context, all the way to a language-independent, concept-level representa-
tion of the meaning of the utterance, in other words, the new knowledge it conveys. However,
building such a system is a complex task, where the system must include background knowledge,
not contained in the utterance, to help with the understanding: resolving ambiguities, filling in
missing-but-assumed details, and so on [8].

The goal of this project is to build a prototype NLU system that demonstrates the core features of
this approach and to provide a foundation upon which future work in this area can build. There
are two fundamental questions in building such a system: How to store knowledge and how to
extract knowledge. In this project, I choose to use Scone for storing knowledge and Construction
Grammar for getting the text semantics. The following two sections will briefly introduce Scone
and Construction Grammar and the reason this combination is suitable for the NLU engine.
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Figure 1.1: Scone Elements

1.2 Scone Knowledge Base
Knowledge representation, which deals with representing real world knowledge in a format that
could be used by computers, is another much-discussed problem in the field of Artificial Intel-
ligence. For the purpose of this project, we want to make use of a symbolic, knowledge-based
system that more or less explicitly represents its knowledge in a way that can be interpreted
directly and easily by humans – that is, not a data-based deep-learning system that hides its con-
tents in a cloud of weights and numbers.

Scone [4] [5] [6] is a high-performance, open-source Knowledge-Base System (KBS) that has
been under development by the research group lead by Professor Scott E. Fahlman at Carnegie
Mellon University since 2003. Scone, by itself, is a software component and active memory
system and does not have a built-in decision-making component. It is designed to store the large
network of knowledge and by using inheritance, it could store implicit knowledge that is not ex-
plicitly defined. Like other knowledge-based systems, Scone provides support for representing
symbolic knowledge about the world: general common-sense knowledge, detailed knowledge
about some specific application domain, or perhaps some of each. Scone also provides efficient
support for simple inference: inheritance of properties in a type hierarchy, following chains of
transitive relations, detection of type mismatches (e.g. trying to assert that a male person is
someone’s biological mother), and so on. Scone supports flexible search within the knowledge
base. For example, we can ask Scone to return all individuals or types in the KB that exhibit
some specified set of properties, or we can ask for a best-match if no exact match is available[5].

There are three features of Scone that are repeatedly used in this project:

• Clean separation of conceptual vs. lexical or linguistic information
Scone may be viewed as a semantic network of nodes and links. The nodes in Scone repre-
sent concepts, not words or phrases. These nodes are generally written with curly braces,
such as {elephant}, which represents the concept of an elephant, regardless of what that
entity may be called in any given human language. This concept derives its meaning from
a network of relational links that tie it to other concepts in the knowledge-base. There
are a fixed number of built-in relations in Scone (such as “is a” and “is a part of”), and a
mechanism for defining additional relations as needed.

1
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We refer to Scone’s nodes and links collectively as Scone elements. The mapping of
names to nodes in any given human language is many-to-many. The names within the
curly braces are arbitrary unique labels, but the concept {elephant} is tied to zero or more
lexical items in English, and to additional lexical items in other languages. The concepts
themselves are mostly universal and language-independent – the concept elephant is more
or less the same in every culture that knows about elephants – but Scone’s multiple-context
mechanism can be used to represent concepts that exist in one culture but not in another,
or that are significantly different in some cultures.

• Frame-like representation with virtual-copy semantics
In Scone and other frame-like KB systems, there are arbitrarily complex structured de-
scriptions (prototypes) for each type represented: elephant, family, contest, and so on.
These concept descriptions typically have many interrelated parts, attributes, and relations
to other individuals and types. Upon creating a subtype or instance, all of the structure
of the prototype description is efficiently inherited. In effect, the new subtype or instance
becomes a virtual copy of the parent description; it can then be specialized by adding new
information or by subtracting (explicitly cancelling) information that would otherwise be
inherited.

• Multiple contexts in Scone
Perhaps the most unusual aspect of Scone is its multiple-context mechanism. A context
is simply a node in Scone’s knowledge base that represents a distinct world model within
the larger Scone KB. There can be any number of these contexts within the Scone system.
Every node N in Scone has a connection to some context-node C in which the entity rep-
resented by N exists. Every link L in Scone has a connection to a context node C within
which the statement represented by L is valid.

In Scone, contexts are hierarchical: a context C2 starts out as the clone of some exist-
ing parent context C1, inheriting all of C1’s knowledge; then we can customize C2 by
adding some additional knowledge or by explicitly subtracting some knowledge that would
otherwise be inherited. This inheritance is handled efficiently by Scone’s markerpassing
algorithms. More details can be found in [5].

Scone is not a complete AI system or application, but rather a ”smart memory” component for
symbolic knowledge used in AI or software applications. The open-source of Scone, imple-
mented in Common Lisp, can be found on Github. Related information about Scone could be
found in Professor Scott E. Fahlman’s Knowledge Nuggets blog [6].

Next I would like to emphasize some Scone features that we think are essential to support human-
like performance, especially in natural-language understanding [7]. This is how Scone stands out
compared with other existing knowledge graphs/bases.

• The basic components of the Scone knowledge base are nodes and links, which together

2
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Figure 1.2: Scone nodes inheritance example (chain, multiple, and exception)

are referred to as elements. Nodes represent entities and links represent the relation be-
tween the connected nodes. Any element in Scone is the representation of a concept rather
than a word or a phrase since intuitively, this is how human learns a piece of informa-
tion: We learn the information about a certain conceptual entity (type or individual). Such
knowledge is independent of the word or the language describing it.

• In human languages, words are richly polysemous. Even in a single language or dialect
(e.g. American English), a node could match with multiple words (e.g. ”subway” and
”metro” might refer to the exact same concept in transportation domain). And a word
could match with multiple nodes (e.g. the word mouse could refer to animal {mouse}
or {computer mouse}). There are some existing knowledge bases that do not distinguish
words from conceptual elements. This often leads to problems and confusion: a {mouse}
node that has both a fur color and a battery size.

• Essentially, Scone is a ”semantic network” [15] or a ”knowledge graph”. The backbone of
such network is the IS-A hierarchy of the nodes. This hierarchy determines the inheritance
of properties. Intuitively, this is very common in natural world, for example, the taxonomy
in biology is a typical IS-A hierarchy. A typical dog falls into Canis genus and therefore it
will inherit the features of a wolf-like animal: four legs, a tail, a carnivore, etc. Addition-
ally, we believe supporting multiple inheritances is also essential to make a KBS closer
to human-like memory. Scone elements could have multiple parents, for example, node
{Clyde} could be a {male}, {elephant}, {circus performer}, etc. at the same time. Finally,
Scone also supports exceptions in inheritance reasoning and it is consistent with common
sense. When I say Clyde is an elephant, although Clyde is assumed to have four legs, it
is possible to specifically over-ride this inherited trait and say that Clyde is a three-legged
elephant.

• Although we still do not have a clear understanding of how the human brain stores its
knowledge, it is generally accepted that our memory is capable of scaling up to a relatively
large size: millions of explicit entity-concepts and statements, and many times that amount
of implicit knowledge, accessible via query-time inference or inheritance.

3
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• The human memory system itself can perform these inference jobs very fast. For example,
when we say ”Clyde is an elephant”, it would immediately come to our mind that Clyde
has four legs and most probably Clyde is gray. We would like to have a KBS that is capable
of doing such search and inferences at a relatively high speed even when the knowledge
base grows to a large size. Scone differs from other KBS by using parallelizable maker-
passing algorithms that can handle most kinds of search and inference in common-sense
reasoning with a very high speed [4].

• Finally, we want to emphasize the importance of context in a KBS [9]. Consider the follow-
ing example: People are able to do magic in Harry Potter. In a general context, human be-
ings in common sense cannot do magic. However, in the context of {Harry Potter universe},
human beings are capable of doing magic. The KBS must be able to store such different
states in distinct world-models. The multiple-context mechanism in Scone helps to sup-
port many different but overlapping world models at once. One use of this is to represent
the state if the world before an event E, and the slightly different state after E takes place.
This context mechanism can be used to represent different periods of time, different mental
states (goals and beliefs), and so on. See [5] for more details on this.

In our NLU system, the Scone knowledge-base is not just a passive repository for extracted
meanings (new knowledge). With the features mentioned above, Scone serves as an active part-
ner in extracting the meaning. Scone is able to very quickly answer ”Is X a Y?” questions, so that
the Matcher of the system can do its job. And background knowledge stored within Scone plays
an essential role in helping to choose the ”most likely” meaning, in context, of an ambiguous
word or sentence. Detailed algorithms will be discussed later in Chapter 3.

1.3 Construction Grammar
Construction Grammar (CxG) is a field of cognitive linguistics that studies the pairing of lin-
guistic patterns and the underlying meaning. Construction, including morpheme, word, idiom,
etc, is a very broad linguistic concept, with any pair of forms and meanings. Constructions addi-
tionally gives a continuum from idioms to completely normal meanings without making a hard
line between the two (for example, kick the bucket and kick an elephant). While some linguis-
tic theories treat lexicon and syntax separately, CxG considers all constructions to be part of a
lexicon-syntax continuum [14] and also a continuum from compositional to idiomatic.

There are a couple of reasons why we think CxG would be an ideal approach to a solid natural
language understanding engine. CxG emphasizes that any kind of information expressed through
language could be conventionally associated with a particular linguistic form and therefore could
be concluded from a certain construction. Thus, CxG could achieve a high level of full coverage
and generalization across languages [12]. Another key reason that we favor CxG is that it starts
from constructing the meanings of small parts that eventually meets the construction of a larger
piece of text. Considering an NLU engine, the construction of smaller pieces could introduce
background knowledge early into the game and such way also gives more freedom to the input
text, which helps the system to deal with incomplete or unstructured text.

4
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Pattern Typical Meaning Example

apple apple apple
X-ed X :past kicked

a/an X a new individual X an apple
X take Y for grated X does not value Y Clara takes me for granted

X’s roommate a person who is X’s roommate Clyde’s roommate

Figure 1.3: Construction examples

Figure 1.4: Example of construction grammar

Additionally, Construction Grammar is great to combine with Scone in the following aspects:
• Construction rules try to find ”meaningful fragments” of language in an incoming stream

of text. In construction patterns, these fragments are generally restricted to the type of en-
tity that can fit into that part of the pattern – for example, the pattern can restrict one certain
fragment to be a person. Scone has powerful, built-in machinery to answer questions like
”Is X a Y?” or ”Can X be a Y?”. In this case, person type is directly mapped to {person}
element in Scone, and by asking Scone ”Is X a {person}?”, the system could tell if the
text could fit that part in the pattern. This gets Scone-resident background knowledge into
the game early and often and simplifies the process to match text with construction pattern.

• If a construction pattern is matched (tentatively), is it associated with a rule that gives
instructions for building a piece of knowledge structure in the Scone knowledge base.
Scone can quickly determine whether this new knowledge is consistent with what it al-
ready knows – if not, it should look for a different interpretation. The way construction
grammar works also speeds up the whole process by checking small pieces of text first. If

5
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the smaller pieces are not consistent with the knowledge stored, the system can save the
time of checking larger ones.

• If there are several possible matches for some incoming piece of language, the multiple
context feature of Scone can build a knowledge structure corresponding to each of these
possible interpretations, each in a different Scone context. If one interpretation is later
ruled out, we can simply discard that context and all its contents, and treat the other one as
likely being the intended meaning. For example, ”The mouse was on my desk, next to the
computer keyboard...” will create two interpretation contexts in Scone, one with computer
mouse and one with animal mouse. The later text ”... eating some cheese and stroking its
fur.” will eliminate the context with computer mouse and move on with animal mouse.

• The context mechanism, which creates distinct world models within that larger Scone KB,
can also be used to represent information that changes from one time-context to another,
perhaps as a result of some action or event. It can also represent modal constructions, such
as ”I want to stay at home tonight, but I should go to the meeting.” The two possible worlds
are represented in two distinct world models that share most of their information. Scone
can reason about what is true in one or the other – maybe needing transportation if going
to the meeting.

CxG itself is a family of theories and there are a couple of existing formalized Construction
grammar frameworks that are mature and have a solid implementation: Embodied Construction
Grammar[1], Fluid Construction Grammar[13], Sign-Based Construction Grammar [10] etc. At
this point, we are agnostic as to the exact type of CxG we want to use. In our work, at this
time, we are looking only at whole words and phrases. We are not using CxG techniques to
look for patterns within words or common phrases. Details of how constructions are defined and
generalized in this project will be discussed in the next Chapter2. The focus of this research is
not to build a solid construction grammar framework, but to build an NLU-front-end to Scone
and provide an interface for linguistics to experiment with self-defined construction rules at the
same time.

1.4 Thesis Structure
The remainder of the thesis is structured as follows. In Chapter 2, we will discuss how the
constructions are saved the in the system and how users could define new constructions. In
Chapter 3, we will show the main algorithms of the core NLU engine. In Chapter 4, we will
implement an example CxG for the purpose of parsing simple texts and demonstrate the output
of the system. And finally, we will give the conclusion of the research in Chapter 5 together with
some possible future directions.

6
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Chapter 2

Constructions

2.1 Overview

Under the setting of CxG, grammatical construction refers to the paring of linguistic form and
content. Therefore, to represent a construction, there are three things we need to figure out: how
to represent the form of a piece of text, how to represent the semantics, and how to set up the
connection between forms and semantics. To make things easier, I decide to represent text as a
sequence of variables and strings, where the variables serve as the bridge to connect form and
semantics. Specifically, the constraints on the variables help to define the form of the text and
the semantics is a function that takes in the variables and outputs a Scone element representing
the meaning.

Figure 2.1, 2.2, 2.3 demonstrates how the three constructions in Figure 1.4 could be defined
using variables to connect the pattern and semantics. The New Individual Construction can
match with noun phrases like ”a dog”, where the the ?x variable matches with the Scone type
node {dog}. The semantics of this construction will return a new individual node {dog 0-2702},
which matches with the ?y variable in Transitive Action Kick Construction since {dog 0-2702}
is a {physical object}. Then ”Clyde kicked a dog” will match with the Transitive Action Kick
Construction and generates a new action {kick 0-2722}, whose {action agent} is {Clyde} and
{action object} is {dog 0-2702}. Finally, the new individual kick action {kick 0-2722} matches
the ?x variable in Action with Time Preposition Construction, and change the context of {kick
0-2722} to {Monday}.

Noun Phrase New Individual Construction
Pattern (a, an) ?x

Variable Constraints (?x :noun :type)
Return Tag :noun
Semantics Scone creates new individual of type ?x

Figure 2.1: Example new individual construction

7



January 10, 2022

Transitive Action Kick Construction
Pattern ?x (kick, kicks) ?y

(?x {animal} :noun)
Variable Constraints (?y {physical object} :noun)

Return Tag :verb
Create new individual of {kick} : ?v’

Semantics Set ?x as the {action agent} of ?v’
Set ?y as the {action object} of ?v’

Figure 2.2: Example transitive action kick construction

Action with Time Preposition Construction
Pattern ?x (in at on) ?y

Variable Constraints (?x {action})
(?y {time reference})

Return Tag :verb
Semantics set the context element of ?x to be a ?y

Figure 2.3: Example transitive action kick construction

In order to formalize the construction and make it easier to compact with the Scone knowledge
system, we need to specify the following things while defining a new construction:

• Variables and Corresponding Constraints
First, we need to specify the variables to use in patterns and semantics and for each vari-
able, there could be a list of constraints. As demonstrated in the example, a constraint
could be a Scone element, a string, or a tag. Details of how the constraints are used will be
discussed in 2.2.2.

• Pattern
The Pattern of a construction is used to match with the form of some raw text. The pattern
is formed by a sequence of entities, where each entity could be either a list of strings or a
variable. A piece of text is matched with a string list entity if and only if the text is exactly
the same as one of the strings in the list. A piece of text is matched with a variable if and
only the Scone element (meaning) of the text meets the constraints of the variable. Details
of the matcher algorithm will be discussed in 3.3.

• Return Tag
We also give a return tag to each construction in order to make the whole CxG engine
compatible with the Scone knowledge base. In Scone, the mapping of a string to an ele-
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ment always comes with an associated syntax tag. Since when we try to map a variable
to an element, it could be a direct mapping or a construction match, therefore, giving the
construction a return tag makes the form consistent. Possible tags could be: :noun, :adj,
:verb , :relation, etc.

• Modifier
Modifier is used when we want to affect a certain variable before matching the text with a
Scone element. Details will be discussed in 2.3.

• Action
The action of the construction represents the semantics of the construction. The action part
should be a Lisp program that could put new knowledge into Scone. Previously specified
variables can be used in the program and the output of the program should be a Scone
element or a list of Scone elements that correspond with the return tag. In the CxG system,
the action will be treated as a lambda function that takes in the specified variables. Details
of how the system applies the action will be discussed in 3.4.

• Parent
The parent of a construction is either another construction or nil. Specifying the parent
helps to build the construction hierarchy, which will be further discussed in 2.5.

2.2 Variables
As mentioned, variables serve as the bridge to connect the form and the semantics of text. The
constraints of the variable help to define the form of text and the value it takes helps to define the
semantics. Therefore, we need to carefully manage both sections.

2.2.1 Value

Since we are matching raw text with variables, the variable value should try to contain as much
information about the text as possible and we choose to store the morphological information
and semantics of the text. Morphology studies the form of words while semantics include the
underlying meaning of the text. Both fields give distinct but essential information to use in the
construction.

In general, semantics are represented as Scone elements and morphological information are re-
flected as a list of keywords. For example, when we try to match the variable with ”kicks”, the
corresponding variable value should be ({kick} :3rd-person-singular). When we try to match
the variable with ”was”, the corresponding variable value should be ({be} :past :3rd-person-
singular). When we try to match the variable with ”his”, the corresponding variable value should
be (X :possessive), where X is whatever ”he” is referring to. Details of how the system gets the
semantics and morphological information will be discussed in the matcher section 3.3.
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2.2.2 Constraints

One variable can have multiple constraints while each constraint can be a string, a Scone element
or a keyword. String constraints aim to constrain directly on the text, while Scone elements aim
to constrain the meaning of the text. Keyword is the most flexible constraint as long as it is well
defined in the system. I will elaborate more on how to use each type of constraint.

• String Constraints

In a lot of cases, we want the text to have an exact match with a word or a phrase. For
example in the above kick construction, we want the verb to be exactly ”kick”. Then we
can just use the ”kick” string to constrain the variable. Moreover, different tenses of ”kick”
should also match the construction. Consequently, we again choose to use the morphology
parser and if we want to match the text with the constraint, the root text needs to exactly
match the string constraint. If we have multiple string constraints, it is following an ”or”
logic that the text needs to match one of the string constraints.

For example, we have a variable with constraints: ”kick”, ”hit”, ”eat”. Then ”kicks”,
”kicked”, ”hit”, ”ate” should all match with the variable constraints.

• Scone element Constraints

One of the major advantages of combining CxG with Scone is that the implied knowl-
edge of the text could be represented. For example, when we say ”A kicks B”, we are
actually assuming A has legs and in most cases A is an animal. Therefore, in the kick con-
struction rules, we would use the Scone element {animal} to constraint the action agent.
To check if a text meets the constraints, the system will first get the Scone element value
of the text (as discussed in the 2.2.1), then call the Scone built-in simple-is-x-a-y? function.

For example, we have a variable with constraint {animal}, ”elephant” should match with
the variable since ”elephant” will be parsed to {elephant} and apparently {elephant} is a
{animal} (In Scone, the two nodes will have an is-a link).

• Keyword Constraints

Additionally, one might want to constrain the variable on other aspects, for example syn-
tax tag, whether the text represents a list of elements, etc. I’ve implemented a couple of
keywords that I find the most useful:

Syntax tag (:noun, :verb, :adj, :relation, etc.)
Note when we try to get the variable value of a piece of text, it goes through either
Direct Scone mapping or the CxG engine, where both ways come with a syntax tag.

For example, if we have a variable with :noun tag and try to match with ”elephant”,

10



January 10, 2022

”elephant” will be mapped to ({elephant}, :noun) and the syntax tag matches.

Individual or Type (:indv, :type)
In Scone, there are two different type of nodes: individual nodes and type nodes.
Such two types of nodes tries to catch whether the natural language is referring to a
general type or an individual. For example, when we say ”Elephants are smart”, we
are actually talking about the entire elephant species, which is the type node. How-
ever, when we say ”I saw an elephant”, we are referring to a specific elephant, which
is the individual node. Distinguishing these two kinds of nodes is essential in con-
structions.

For example, in the above-mentioned new individual construction, the ?x variable has
to be a type node. Say we have a new elephant individual {Clyde} and it wouldn’t
make any sense if we say ”a Clyde”.

One last thing that needs to be settled is the logic between multiple constraints. Currently, only
string constraints follow ”or” logic, and all other remaining constraints will follow ”and” logic.
That is to say, the system will first check if the text meets one of the string constraints and then
check if it meets all of the rest constraints. Ideally, we would want the logic to be as flexible as
possible so that the user could constrain the variable with more flexibility. This could be one of
the future works of the project.

2.3 Modifier

Since construction grammar start constructing from smaller pieces, it is possible that larger con-
struction wants to modify the smaller constructions. However, the smaller constructions were
already settled down and the action cannot be directly modified. Therefore, we need to use a
modifier to trigger an action before acquiring the variable value.

Let’s take a look at the sentence ”Yang believes that Clyde is an elephant”. Assume the CxG
engine is already well built and the text ”Clyde is an elephant” will be matched to a new is-a link
{Is-A 0-2780}. In order to represent the actual semantics of the original sentence, we need to
change the context of the is-a link to {Yang belief state} since it is Yang’s belief. Consequently,
we need to use modifier to define the Person Belief Construction 2.4. Note that using the modi-
fier, the system could create the Is-A link under a new belief state context and the action of the
construction will create a Has-link between {Yang} and this new belief state so as to correctly
represent the original semantics.

Modifiers are also commonly used for prepositional phrases, where we will discuss its usage
in Section 4.6.

Another modifier that the system currently support is :list keyword. Consider the following two
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Person Belief Construction
Pattern ?x (”believes that” ”believe that”) ?y

Variable Constraints (?x {person} :noun)
(?y :relation)

Modifier (?y (new-indv nil {belief state}))
Return Tag :relation
Semantics Assign ?x as the holder of the context wire of ?y

return ?y

Figure 2.4: Example person belief construction

sentences: ”Wesley and Yang are tall”, ”Wesley and Yang are friends”. Although both sentences
have a similar structure and exactly the same subject ”Wesley and Yang”, we should treat them
differently when considering the semantics. ”Wesley and Yang are tall” means exactly the same
as ”Wesley is tall” and ”Yang is tall”, so ”Wesley” and ”Yang” are just sharing the structure of
the sentence but does not affect each other in the semantics. However, to understand ”Wesley
and Yang are friends”, the system needs to create a new relation between {Yang} and {Wesley}.
Therefore, when dealing with the first sentence, the subject variable does not need both {Yang}
and {Wesley}, but rather apply the action on both of them separately, while dealing with the
second sentence, the subject variable should include both {Yang} and {Wesley}. Therefore, we
need to use :list as a keyword modifier to tell the system whether we need a list or a single ele-
ment.

Continuing on the above example, if we have a variable with :list modifier and tries to match
”Wesley and Yang”, the action of the construction will be applied once with ’({Yang} {Wesley})
as the variable value. If we have a variable without :list modifier and try to match ”Wesley and
Yang”, the action of the construction will be applied twice with {Yang} and {Wesley} as the
variable value separately. Usage of :list modifier will be demonstrated in Section 4.5.

Currently, the system only supports the above two types of modifiers where we see the most
useful when defining constructions. But any type of modifiers could be added if necessary, like
tense or uncertainty keywords etc.

2.4 How Constructions Are Stored

Since in the next chapter, we will dive deeper into the algorithm of the NLU system, we would
like to go over how we store the construction from a code level. We create a new class in Lisp
with five slots: ret-tag, pattern, variable-constraint, modifier, and action. And I will use the con-
struction in Figure 2.4 for the purpose of demonstration.

ret-tag: Simply store the return tag of the construction, :relation in this case.
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pattern: Pattern is saved as a list but the trouble is how to store the variables. We choose to
use numbers, which in this case it would be (0, (”believes that”, ”believe that”), 1).

variable-constraint: The constraints are also saved as a list where the index of the list is the
corresponding variable, and each element of the list is a list of single constraints. In this case, it
would be (({person}, :noun), (:relation)).

modifier: Modifier is dealt similarly as variable-constraints where in this case (nil, (new-indv
nil {belief state})).

semantics: Semantics are saved as a lambda function, where in this case, (lambda (?x ?y) (...)).
Therefore, when we get the value of the variable, we could directly apply the lambda function to
build knowledge structures in Scone.

2.5 Hierarchy
If we consider the form of text as a set of texts, it is common to find that a subset of texts usually
inherits semantics from the superset. For example, ”Wesley kissed the dog” and ”Wesley killed
the dog” definitely have different semantics but both of them match with a general transitive
action construction so we know Wesley is the agent of the action and the dog is the object of
the action. Therefore, it is natural to build a hierarchy structure for the constructions. To make
things easier, we assume each construction could only inherit from one parent. And a natural
way to represent such structure is a tree. If a construction does not have a parent, it will become
the root of a new tree. And all constructions forms a forest 2.7.

A very intuitive usage of this hierarchical structure is tense. The General Transitive Action
Construction 2.5 only deals with the morphology tags of ?v and determines the context. The
Transitive Action Kick Construction 2.6 can inherit General Transitive Action Construction since
the text form represented by kick construction is a subset of the form represented by general ac-
tion construction. Such inheritance will save from repeated tense actions as the system will first
execute the action from parent constructions. Detailed algorithms of how the CxG utilize such
hierarchy will be discussed in 3.4.

Lots of existing construction grammar framework adopt multiple-inheritance, while ...
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General Transitive Action Construction
Pattern ?x ?v ?y

(?x {thing} :noun)
Variable Constraints (?v :verb)

(?y {thing} :noun)
Semantics If ?v has :past keyword, in-context {past}

If ?v has :future keyword, in-context {future}

Figure 2.5: Example transitive action (tense) construction

Transitive Action Kick Construction
Pattern ?x ?v ?y

(?x {animal} :noun)
Variable Constraints (?v kick :verb)

(?y {physical object} :noun)
Parent General Transitive Action Construction

Create new individual of ?v : ?v’
Semantics Set ?x as the {action agent} of ?v’

Set ?y as the {action object} of ?v’

Figure 2.6: Example transitive action kick construction

Figure 2.7: Constructions hierarchy (forest)
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Chapter 3

NLU Engine

3.1 Overview

Chapter 2 talked about how we formalize constructions and at the same time, provide a user-
friendly Lisp interface to define new construction rules. The main purpose of this project is
to build a real natural language understanding system based on the constructions defined. This
chapter will be showing the details and algorithms of how we construct such an engine.

Figure 3.1 demonstrates the general workflow of the NLU engine. The system is able to take
in a sequence of text and for each input, it will go through the steps shown in the workflow and
build the corresponding knowledge structure in Scone. The engine consists of five major compo-
nents: Constructions, Context, Matcher, Constructor, and a core engine that consists of the Text
and Context Memory and the Text Reader.

• Constructions is the construction forest we talked about in 2.5. For each input text, the
system will check every construction, according to its hierarchy.

• Context is one of the most important things in doing natural language tasks. Texts could
have different meanings in different contexts. Therefore, we need to carefully represent
the context. Our Context consists of two parts: general language context, using the Scone
built-in mechanism, and a referral context, which is used to save previously referred ob-
jects. Details will be discussed in 3.2.

• Matcher, as the name suggests, is used to match text with constructions. The Matcher
takes in raw text and a construction, and returns the variable values if it matches. Detailed
algorithm will be shown in 3.3.

• Constructor serves as a central unit in processing the most recently input text. It collects
the output of the Matcher and parses the final construction results to the Core Engine.
Details will be described in 3.4.

• Core Engine consists of a Text Reader and a Memory. The text reader is the final layer
of the system that manages the result and returns it to the user. It is also responsible for
updating the memory which consists of previously unused results (text and context). The
memory helps the whole system to do backtracking and will be discussed in 3.5.
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Figure 3.1: NLU engine workflow

The five components work together to form the NLU engine. The user can input a sequence of
texts into the engine, where for each text, the matcher will try to match the text with the construc-
tions saved in the system. Then, the constructor will take all the results from the matcher and
construct the semantics of the specific text. If there’s no valid semantics in the current context,
the constructor will backtrack to the previous unused result and reconstruct the current text. If
there is at least one valid semantics, the text reader will take and return one of the possible results
and store the unused results.

The most important feature of the entire engine is guess and go on. Since words, phrases, sen-
tences all could have multiple meanings, and we want to be as inclusive as possible, so what the
system does is choose one meaning and move on but still keep the possibilities of others. Details
of the algorithm will be discussed in Section 3.5.

3.2 Context

To make an AI system able to understand natural language, the first thing we need to figure out
is how to represent the context. Natural language might have different meanings under different
contexts and context also represents some underlying assumptions in the text. Therefore, in our
NLU engine, we decide to use two components to represent context: Scone context node and
referral context.
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Figure 3.2: Scone context for semantic path management

3.2.1 Scone Context

Scone has a built-in Context mechanism where every Scone element has a context-wire. Context
is simply a Scone node and it can be used to tie a node to the context in which it exists, and used
to tie a link to the context in which it is true. Consequently, this gives us two types of usage.

A very natural way is to use Scone context is to represent the context of the sentence. For
example, considering the three sentences ”Clyde is an elephant”, ”Clyde was an elephant”, and
”Yang says ’Clyde is an elephant’”, they all represent the same is-a link between Clyde and a
new individual elephant. However, every sentence has a different context. ”Clyde is an elephant”
represents the is-a link under a {general} context; ”Clyde was an elephant” represents the is-a
link under a {past} context; and ”Yang says ’Clyde is an elephant’” represents the is-a link under
the context {Yang}.

Additionally, Scone Context can be used in the system to manage different possible interpre-
tations (multiple outputs of the constructor). As we know that every Scone node has a context
wire, we could create dummy children of the current context to manipulate different paths so that
the actions in different paths do not affect each other. For example, in {general} context, an input
”Clyde is a mouse” has an ambiguous meaning that Clyde can be an animal mouse or a com-
puter mouse. If we are not using multiple context, when we put different semantics into Scone,
{Clyde} would become an animal mouse and a computer mouse at the same time. Therefore,
what the system should do is to first, create two dummy context {general 0-4164} and {general
0-4165}, then proceed Clyde is an animal mouse in {general 0-4164} and proceed Clyde is a
computer mouse in {general 0-4165}. Basically, whenever the text has multiple meanings, the
system will create children of the current *context* and proceed each path under one of the child
contexts as demonstrated in Figure 3.2.
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3.2.2 Referral Context

Another important factor of context is that it saves previously mentioned information which gives
some assumptions in the current text. For example when we say ”the elephant”, that means there
was at least one individual elephant mentioned in the previous text and ”the elephant” is referring
to that specific elephant. To save these previously mentioned individuals, the system uses referral
context.

The referral context is saved as a stack in the system. Additionally, when a new node is pushed
into the referral, the system will first check if the node is already existed in the referral and re-
move it, and then push it to the top of the stack. The intuition of using a stack is that when people
refer to an individual in a previous context, they often refer to the most recently mentioned ones.

For example, starting from a NIL referral context, if the system first creates an {elephant} in-
dividual name {Clyde}, the referral context will be ‘({Clyde}). Then if the system creates a
new {elephant} individual {elephant 0-3141}, the referral context will be ‘({elephant 0-3141}
{Clyde}). Finally, if the system gets {Clyde} again, the referral context will put {Clyde} to the
front and become ‘({Clyde} {elephant 0-3141}). Now, if the system gets an input ”the elephant”,
it knows it’s referring to {Clyde}.

3.3 Matcher

Before we apply the construction actions, we need to know if a piece of raw text could match
with the specified form of the construction and that’s the role of the Matcher in the system. We
will first discuss morphology, and then go over the main algorithm of the Matcher. Additionally,
details of how the system deals with some special cases like names and pronouns will be shown.
Finally, we will give some ideas in partial matching.

3.3.1 Morphology

A critical part of the Matcher is to determine if a piece of text can be fit into a variable in the
pattern. As we discussed in section 2.2.1, the value of a variable consists of a Scone element and
a list of morphology keywords. From the figure 3.3, we can see before checking the constraints
and getting the value of the variable, the variable will first be parsed into a morphology engine
and get the morphology tags.

Morphology is a very broadly researched area in linguistics and NLP. A naive idea of a morpheme-
based morphology parser is to transform any word into its root word and a list of keywords that
the morpheme implies. For example, taking in ”kicks” should return ”kick” and :singular. Addi-
tionally, I want to extend the idea of morphology to not only words but also phrases. English uses
a combination of morphology and other kinds of lexical and phrasal construction for tenses and
other morphosyntactic functions. Whithin the scope of this project, we are not concerning these
phrasal constructions, while instead, the morphology parser will help the system to preprocess
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Figure 3.3: Flow graph for variable match

the phrases. For example, taking in ”will kick” should return ”kick” and :future. Since this is not
the focus of my research, the current implementation of the morphology engine simply checks
the suffix to determine the tense of a verb or whether a noun is possessive. Users can replace the
morphology parser with more mature systems as long as the format match.

3.3.2 Single Entity Matcher

The idea of the Matcher is to repeatedly check if a piece of the original text matches with a part
of the pattern. Therefore, we need to first figure out how to determine if a text matches a single
entity in the pattern, where the algorithm is shown in 1. Based on the type of the pattern compo-
nent, we can split into the following two cases:

• If the pattern component is a variable (represented as integers in the system), it will follow
the flow shown in 3.3: first get the morphology tags and root text, and then use variable
match to get the corresponding Scone context and check if it meets the variable constraints
along the way.

For example, say the text T is ”kicks”, pattern P is 0 and constraint list Cl is ((”kick”
”hit” :verb) ...). The system will first use the morphology engine and get (”kick” :singu-
lar). The root text ”kick” and the constraints (”kick” ”hit” :verb) will be parsed to variable
match. The root text matches one of the string constraints (”kick” and ”hit”). Then, the
system will call LOOKUP-DEFINITIONS(”kick” :verb), which is a built-in function in
Scone, and gets {kick}. Finally, {kick} and the morphology tag :singular will be concate-
nated and saved as the variable value for variable 0.
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Say the text T is ”an elephant”, pattern P is 0 and constraint list Cl is ((animal :noun)
...). No morphology keywords will be obtained and the root text ”an elephant” and the
constraints (animal :noun) will be parsed to variable match. Then, the system will call
CONSTRUCTOR(”an elephant” :noun), which will be discussed later in the next section,
and gets a new individual in Scone say {elephant 0-2702}. Since {elephant 0-2702} is
a {animal} in Scone, the result meets the constraints and the final variable value will be
({elephant 0-2702}).

• If the pattern is a list of strings, the function simply needs to check if the input text has an
exact match with one of the strings in the list. For example, say the input text T is ”in”,
pattern P is (”in” ”on” ”at”), then apparently, the text matches the pattern, and ”in” will be
returned. If T is ”in it”, then there’s not an exact match and the function will return nil.

Algorithm 1 Single entity match
T is the root text
C is the constraints for this specific variable
procedure VARIABLE MATCH(T C)

Check if T match with the string constraints in C
Extract st from C . st refers to the syntax tag constraints
for e in LOOKUP-DEFINITIONS(T st) + CONSTRUCTOR(T st) + special cases do

if e meets type constraints in C then
collect (e, context)

end if
end for

end procedure

P is a single component of the construction pattern
Cl is the entire variable constraints of the construction
procedure ONE ELEMENT MATCH(T P Cl)

if type of P is integer then
RT,Morph← calling morphology engine on T . RT is the root text
return (VARIABLE MATCH(RT Cl[P ]), Morph)

else if find T in P then
return T

else
return NIL

end if
end procedure

3.3.3 Main Algorithm
The responsibility of Matcher is to determine if the text matches the construction pattern. Note
that as we discussed in Chapter 2, pattern is actually a list of entities (strings or a variable).
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Therefore, we need to split the text into several pieces so that each one could match the pattern
component correspondingly. What we choose to do is to use a tokenizer to split the raw text
into tokens. It would be very rare that a single word is split into two components in the pattern,
therefore, it is safe to assume that every component of the pattern should match a sublist of the
token list. In the current implementation, the system is just using a naive tokenizer to split the
text into a list of words and punctuation (comma, etc), and users can replace it with other more
mature tokenizers.

Consequently, the objective of the main algorithm is to take in a token list and a construction
and return all possible variable value combinations.

Algorithm 2 Matcher
T l is the token list get from the tokenizer
Pl is the construction pattern
Cl is the construction variable constraints
procedure MATCHER(T l P l Cl)

if only one of T l and Pl is null then . text does not match with construction
return NIL

else if both T l and Pl are null then . base case
return (nil, nil, ..., nil, current context) . number of nil is the number of variables

else
for i from 1 to len(T l) - len(Pl) +1 do

T ← join-tokens T l[:i]
r ← ONE ELEMENT MATCH(T P [0] Cl)
if type of r is String then

collect MATCHER(T l[i :] Pl[1 :] Cl)
else

for e, ctx in r do
set context to ctx
for rr in MATCHER(T l[i :] Pl[1 :] Cl) do rr[Pl[0]] = e collect rr
end for

end for
end if

end for
end if

end procedure

Based on the single entity match function defined above, we can construct the Matcher algorithm
as shown in Algorithm 2. Note when we try to match a pattern with a token list, the first compo-
nent of the pattern should always be matched with a “prefix list”(sublist starting from index 0)
of the token list. Consequently, the function will first loop through all possible ”prefix list” and
apply one element match with the first component of the pattern. For every match we get, the
function will update the context and recursively call the Matcher on the rest of the token list and
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pattern list. Finally, the Matcher will return all possible matched results where each result is a
list of variable values and the context that the values exist.

Note in the Matcher algorithm, the components are matched sequentially from left to right and
the context is also updated accordingly. The reason we choose to do matching in this way is
that we want an AI system that could imitate human behaviors especially in the task of natural
language understanding. Human normally read the text from left to right despite of its syntactic
structure. After a part of the text (prefix list of the token list) is read, humans will naturally
process the text (match the semantics and update context) and keep on reading (recursively call
the Matcher).

Now I’ll give some examples to show the behavior of the Matcher algorithm.

For example, we have an input text ”Clyde’s friend” and construction ((?x :noun) (?y :noun
:type)). The tokenizer will first break the text into (”Clyde’s” ”friend”). Then the system will try
to do one-entity-match with ”Clyde’s” and (?x :noun), which will return ({Clyde} :possessive).
Now, according to the Matcher algorithm, the system will recursively call Matcher on ”friend”
and (?y :noun :type), which will return ({friend}). Finally, the Matcher on ”Clyde’s friend” and
((?x :noun) (?y :noun :type)) will return ((({Clyde} :possessive) ({friend}) some-context)).

Since the Matcher is recursively calling the constructors, it could deal with phrases like ”Clyde’s
friend’s tail”. The whole phrase will be matched with the construction construction ((?x :noun)
(?y :noun :type)). When the Matcher call the Constructor on Clyde’s friend, the Matcher will be
recursively called and behave as we showed above. Now say the Constructor returns a new in-
dividual {animal 0-1}, representing Clyde’s friend. Then the Matcher on ”Clyde’s friend’s tail”
and ((?x :noun) (?y :noun :type)) will return ((({animal 0-1} :possessive) ({tail}) some-context)).

If we are calling Matcher on the text ”Clyde is a mouse” and construction ((?x :noun) (”is a”
”is an”) (?y :noun :type)), similarly, the tokenizer will first break the text into (”Clyde” ”is” ”a”
”mouse”). Then the system will try to do one-entity-match with ”Clyde” and (?x :noun), which
will return ({Clyde}). It will also try one-entity-match on ”Clyde is” and (?x :noun) but these
two do not match. Now, the system will recursively call Matcher on ”is a mouse” and ((”is a”
”is an”) (?y :noun :type)). It will first try one-entity-match with ”is” and (”is a” ”is an”) but
does not match. Then ”is a” will match with (”is a” ”is an”) and go with calling Matcher on
”mouse” and ((?y :noun :type)). Note, since mouse has two interpretations, one-element-match
will return both ({mouse} context1) and ({computer mouse} context2). Finally, combined, the
output of Matcher on ”Clyde is a mouse” and ((?x :noun) (”is a” ”is an”) (?y :noun :type)) would
be ((({Clyde}) ({mouse}) context1) (({Clyde}) ({computer mouse}) context2)).

3.3.4 Special Cases: Names and Pronouns
In the variable match function (Algorithm 1), the system checks the text through Scone direct
mapping and Constructions. However, there are some cases that the text itself has ambiguous or
various meanings and it’s hard to formalize in the way we define constructions. To demonstrate
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how I deal with the special cases, I will elaborate on two very commonly used cases: names and
pronouns.

Names are complicated not only because people could give a name to almost everything but
also sometimes they don’t even mention what the name is referring to. For example, when we
say ”Tony and Wesley are friends.”, we do not need to specify Tony is a male in advance. How-
ever, in another context, Tony can be an elephant, which means the system cannot just simply
assume Tony is a male person. Therefore, we need a more complicated mechanism to process
Names.

First, we need to guess if the text might be a name. During the variable match, we say the
text might be a name if we see the text and constraints meet the following conditions:

1. Every first letter of the words are capitalized

2. Only :noun can be the syntax tag in the constraints

3. The constraints can only constrain the variable to be an individual node

4. The Scone element constraints (the parents of the variable) cannot be an {intangible} in-
stance

Then the system creates a new Scone element with the text as the English name. For every Scone
element constraint, the system also uses a new is-a link to connect the new node with the con-
straint node. For example, if the Matcher takes in ”Clyde hates mouses” and the construction (?x
{animal} :noun)(?v ”hate”)(?z {thing} :noun), Clyde, as a name, should match with ?x. So the
system first create a new {Clyde} node, then assert {Clyde} is an {animal}.

Together with Names, pronouns are also not trivial. Consider the following text: ”Tony and
Ellis went to the park yesterday. He bought an ice-cream in the park.”. Who bought the ice-
cream? To commonsense, Tony is a male’s name, so we would guess Tony bought the ice-cream.
What if the following text says ”Tony is a little girl.” Now, who bought the ice-cream? Probably
it was Ellis. From the example, we can see that what’s clear about pronouns is that it’s referring
to a previously mentioned agent, but what’s unclear is who/what exactly it’s referring to. Fortu-
nately, Scone provides powerful, efficient support for determining whether a known entity X is or
can be a member of known type Y, which could help the system to screen out the most probable
results. Then, similar to what the engine has been doing, the system keeps all the possibilities
and tries all possible meanings. To be more specific, here’s how it deals with the most commonly
used pronouns:

• he, him
Since “he” normally refers to a previously referred male, the system looks into the referral
context and gets the elements that are male person. However, in English, people normally
don’t specify the gender of a person and it is also hard to refer to the gender directly from
the name. Therefore, the system will use the Scone method is-x-a-y?. When the element
acquired from the referral context can be (:Maybe or :Yes) a male person, the system will
take the element, create a new is-a link under a new context, assign the element to “he”
and move on.
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• she, her
This is like “he” and “him” except that the pronoun refers to a female person.

• it
This is also like “he” and “him” except we need the element to be not a person, so the
system only select elements that get :Maybe or :No from the is-x-a-y? method and create
a new is-not-a link under a new context.

• they, them
“they” normally refers to a list of or a set of objects. Therefore, the system will just look
into the referral context and acquire any list object or type nodes in the referral context.
Sometimes, “they” and “them” can also refer to a single individual of unknown gender, for
example, “If someone hits me, I will hit them back.” We haven’t implemented this case yet
but it should be something to take into consideration in future work.

3.3.5 Partial Match

Partial matching is exciting since, in the real world, texts are often not well formalized, especially
in dialogues. In the process of matching text with patterns, if the system has a well-built partial
matching mechanism, the text could be much less restricted. However, this is a pretty broad topic
and could go really deep (a probability-based algorithm, etc.). Now, the system only supports a
pretty naive partial matching just to show the potential of a CxG based NLU engine.

The intuition is really straightforward: we have two types of components in a pattern: string
list and variables. While variables play a role in the semantics, string patterns are more of a
structural usage and do not affect the meaning. Therefore, for our native partial matching, the
text is allowed to miss one string component in the pattern (the pattern length needs to be at least
3 so that not a large portion is missing).

For example, in the figure 2.3, we showed an Action with Time Preposition Construction with
pattern (?x {action}) (in at on) (?y {time reference}). The component (in at on) is just the prepo-
sitions to support the whole structure but does not have any direct meaning in the construction
semantics. As demonstrated, ”Clyde kicked a dog on Monday” is a perfect match with the con-
struction as ”Clyde kicked a dog” constructs a new action, and {Monday} is a time reference.
Consequently, in our current system, ”Clyde kicked a dog Monday” can partially match with the
construction since it still has the essential variable components.

Another example that such partial matching could help is the parallel structure which will be
discussed in Section 4.5. A grammatically correct way to represent ({Clyde} {Yang} {Wesley})
is ”Clyde, Yang and Wesley” or ”Clyde, Yang, and Wesley”. However, people could also un-
derstand ”Clyde Yang and Wesley are friends” or ”Clyde, Yang, Wesley are friends”. Partial
matching could help the system match ”Clyde Yang and Wesley” with the parallel structure con-
struction and gets ({Clyde} {Yang} {Wesley}).

We can see partial matching can be very powerful and useful. Unfortunately, we do not have
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enough time to dig deeper in this field. The rest of the thesis will still mainly discuss perfect
match and leave the next step of partial match to future work.

3.4 Constructor

Constructor acts as the main function for a single input text. The Constructor takes in a raw
text, a context, and a syntax tag list, and outputs all possible Scone elements, representing the
semantics, along with their existing contexts. The input context is used for modifiers as discussed
in Section 2.3. The logic is pretty straightforward: Constructor is recursively called in variable
match function as showed in Algorithm 1. Therefore, if we have a modifier to that variable, the
Constructor can take in the modified context and update it. This part is pretty separate from the
main logic in Constructor, details can be found in the original Lisp implementation of the NLU
engine. As for now, the remaining discussion of the Constructor will focus on how it manages
the text and constructions and coordinates with the Matcher.
The objective of the Constructor is to check and apply all the constructions with the specified
syntax tag. As discussed earlier in Section 2.5, constructions are saved in a forest structure to
preserve their hierarchy. The Constructor needs to loop through every tree and collect all the
results it could get from the trees. The Tree Constructor function takes in the given tree and does
a depth-first search for matched constructions. Due to the way of building the construction tree,
the text could match the children constructions only if it could match with the root construction.
Additionally, after it applies the root construction, the context is changed for the children con-
structions so that parent semantics could affect the semantics of children. Finally, it will collect
the result if it cannot go deeper so that the returned semantics are constructed from the least
general patterns.

Now, I’ll show a full example of how Constructor and Matcher interact as shown in Figure 3.4.
The Constructor takes in ”Clyde kicked a mouse” and tries to match with the Transitive Action
constructions (the example in the hierarchy section 2.5). The Constructor will first try to match
with the General Transitive Action Construction and apply the semantic action to update the
context to {past}. Then the constructor will check the children of General Action Construction
and find Kick Action Construction match. The Matcher will recursively call the Constructor
on ”a mouse” to get two semantics an individual animal mouse {mouse 0-1} and an individual
computer mouse {PC mouse 0-1}. After getting the two possible values of the variables, the
constructor will apply the semantics on both of them and get two new kick elements {kick 0-1}
and {kick 0-2}, where the action object of {kick 0-1} is {mouse 0-1} and action object of {kick
0-2} is {PC mouse 0-1}. Finally, the Constructor cannot go deeper in the construction tree and
there are no matches in other trees, so it will return {kick 0-1} and {kick 0-2} with their corre-
sponding context.

The way how constructor work can also deal with ambiguity in the structure of phrase, for ex-
ample, ”a friend of Clyde’s brother”. The phrase could match with the construction ”a friend of
{person}”, where the person is Clyde’s brother. Additionally, the phrase could also match with
the construction ”{person}’s brother”, where the person is a friend of Clyde. Then the Construc-
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Algorithm 3 Constructor
T is the input text
Tgl is the syntax tag list, nil if not specified
procedure CONSTRUCTOR(T Tgl)

for CT in construction forest do . CT is a construction tree
reset context
collect TREE CONSTRUCTOR(CT T Tgl)

end for
reset context

end procedure

procedure TREE CONSTRUCTOR(CT T Tgl)
RC ← the root of the CT
Pl, Cl, Tg, A← pattern, variable constraints, syntax tag and action of RC
if (Tgl is null) or (Tg in Tgl) then

MRl← MATCHER(T l P l Cl)
for v, ctx in MRl do . the Matcher result is a list of variable value and context

update context to either ctx or a dummy children of ctx
root← apply A on v
ctx′ ← current context
child←Nil
for ST in children of CT do

reset context to ctx′

child append TREE CONSTRUCTOR(ST T Tgl)
end for
if child is not null then

collect child
else

collect root, ctx
end if

end for
end if

end procedure
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Figure 3.4: Constructor and Matcher example
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Figure 3.5: Tree structure of context in NLU

tor will create two context elements for each interpretations and construct the Scone elements of
each interpretation in a separate context.

3.5 Core Engine

The purpose of the core NLU engine is to make the system able to understand a sequence of in-
put texts based on the previously built Constructor. Note the Constructor actually collects every
possible result of applying construction rules, however when we have a large number of texts, it
would be very costly in terms of time and space efficiency. Since different understanding of one
piece of text might lead to a different context, and a different context would give a different un-
derstanding of future texts, the understanding of a sequence of texts forms a tree structure shown
in Figure 3.5.

We can see that the tree could grow extremely big if we have lots of input text with ambiguous
meanings. Therefore, I decide to adopt a Guess and Go on strategy. Guess and Go on strategy
was initially inspired from the BUILD system [3]. Essentially, the strategy is Guess, remember
the choice point, Go on, but be ready to backtrack and reconsider previous choices if we later
discover that this choice may not have been the right one. For example, reading ”The mouse was
on my desk, next to the computer keyboard...” and ”It was eating some cheese, and ran away
when it saw me.”, one would initially treat ”mouse” as computer mouse, which turns out to be
wrong. Therefore, we should backtrack to the previous point of considering the interpretation of
”mouse” and reread the second sentence. Figure 3.6 demonstrates such strategy in our system.
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Figure 3.6: Guess and go on

Essentially, the system saves a checkpoint every time the Text Reader takes a new input. Every
time the Text Reader reads a new input text, it will call the Constructor to see if the text has a
valid meaning in the current context. If in the current context, the Constructor gives some re-
sults, it means the input text makes sense in the current context. Then the system will take the
first result, update the context accordingly and save the unused results.

However, if the Constructor gives a null result, that means the text does not make sense in the
current context, so we need to do backtracking. The system will go to the previous text and
choose a new unused result and context to see if this path could make the future text make sense.
The backtracking process will check the unused semantics of the texts in order until it finds a
track where the following texts make sense as shown in Algorithm 4.

For example, the Text Reader first takes in ”Yang has a mouse”, the constructor will generate
two semantics: either Yang has an animal mouse or a computer mouse. The Text Reader will
take the result of animal mouse, store the result of computer mouse and go on. Then the Text
Reader takes a new input ”the mouse is a tool”. It will first try to construct under current context
while creating an is-a link between animal mouse and tool will cause an error in Scone, so the
system will realize current context does not make sense. Therefore, it will backtrack to the pre-
vious unused result which is the computer mouse. Now under the computer mouse context, ”the
mouse is a tool” makes sense and the Text Reader will save this new path and discard the animal
mouse result.

Such Guess and Go on mechanism intuitively meets how human read long paragraphs. We
definitely cannot process and understand the entire passage at once. What we do is we read,
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most likely sentence by sentence, understand each part and move on. If we run into a sentence
that does not make sense, we go back to previously read part and try to understand the sentences
again, which is exactly how Guess and Go on work in the NLU engine.
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Algorithm 4 Core NLU
TR is used for tracking current using path
RR is a list of unused semantics list
procedure BACKTRACK(T l) . T l is referring to future texts

if all texts in T l make sense in current context then
return T l

end if
if last entry of RR is null then . there’s no unused result from the last text

if TR is null then
return nil

end if
append the last saved text in TR to T l
remove the last entry of RR and TR
return BACKTRACK(T l) . the algorithm backtracks one more step

end if
extract the first (semantic, ctx) from the last entry of RR
remove the extracted entry from RR
if T l make sense under ctx then

set context to ctx
store (semantic, ctx) into TR
return TL

else
return BACKTRACK(T l)

end if
end procedure

procedure TEXT READER(T )
c← CONSTRUCTOR(T )
if c not null then . there are valid meaning for the input text

store c[0] in TR
store c[1 :] in RR
update context according to c[0]
return c[0]

else
unR← BACKTRACK([T ])

. backtrack function will backtrack to a state where all future texts will make sense and
returns the unread texts

if unR is null then
return nil

else
call TEXT READER sequentially on every element of unR

end if
end if

end procedure
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Chapter 4

CxG Implementation

4.1 Overview
In this chapter, I will go over the example construction implementation in the system. The pur-
pose is to make the system able to understand simple sentences and give Scone a new way to
input knowledge. These implementations mostly focus on dealing with ”meaningful fragments”
of sentences, eg. noun phrases, complex verbs, etc, so that the system prototype could get work-
ing and at the meantime, set a good foundation for understanding complex sentences in the future.
I will first elaborate on some details in the implementation to demonstrate how to use the whole
system. Then, I will provide examples to show the result of the algorithms described in Chapter
3. Additionally, these examples can demonstrate how Scone is used to save the semantics of
the natural language. We definitely recognize the complexity of natural language, therefore, the
implementation of constructions will be mainly focusing the prototypical examples.

4.2 Noun Phrase
Noun phrases are the fundamental constructions in a grammatically correct sentence. Hav-
ing well-defined noun phrase constructions is essential for further implementations. I consider
the following four types: singular noun phrases (like ”an elephant”), plural noun phrases (like
”some elephants”), referral noun phrases (like ”the elephant”), and possessive noun phrases (like
”Clyde’s elephant”). While singular and plural noun phrases aim to create new Scone elements
to represent what the phrase is referring to, referential noun phrases are considering the phrases
that refer to previously mentioned elements. Finally, possessive noun phrases are referring to
noun with possessive determiners, which is a relatively complex case.

4.2.1 Singular Noun Phrases
The most common singular noun representation is in the form ((“a” “an”) ?x) where ?x is a sin-
gular form noun. This noun phrase typically refers to an individual noun element that is of ?x
type. Therefore, the semantics of the phrase is intuitively (new-indv NIL ?x). Additionally, we
need to add the newly created element to the referral context so that the element could be referred
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New Singular Noun Phrase
Pattern (”a” ”an”) ?x

Variable Constraints (?x :noun :type)
Return Tag :noun

?y← (new-indv NIL ?x)
Semantics referral context add ?y

return ?y

Figure 4.1: Singular noun phrase construction

to later.

For example, when the user calls (read-text ”an elephant”), the Constructor will apply the
Matcher on ”an elephant” and the singular noun phrase construction. ?x variable will be matched
with the type element {elephant}, which will be plugged into the construction action. A new in-
dividual elephant {elephant 0-2702} will be created and added to the referral context.
If the user calls (read-text ”a mouse”), note the system will match ?x with both {mouse} (animal
mouse) and {computer mouse}. As the way Text Reader works, it will output a new individual
animal mouse {mouse 0-2711} with the context changed to {general 0-2710}, a children of the
previous {general} context. While in the result record, the system stores a new computer mouse
individual {computer mouse 0-2714} with its existing context {general 0-2713}.

4.2.2 Plural Noun Phrase

While singular forms can be easily represented as an individual node in Scone, plural forms re-
quire a bit of extra work. A set of objects are represented as type nodes in Scone but in natural
language people usually also quantify the number of the objects. The number could be precise
like ”two elephants”, ”a dozen of eggs” or it also could be inaccurate like ”some elephants” or
”many elephants”. Therefore, we need a way to represent these types of determiners.

First, I assume countable nouns are tangible objects and define a new type role {count} for
{tangible} :(new-type-role {count} {tangible} {number}). In Scone, defining a type-role node
is basically creating a has link where in this case we specifies a {tangible} element has a {count}
which needs to be a {number} type node. Therefore, we could use {count} to specify the size of
the set of objects.

Then, I need to define new {number} nodes.
Distinguishing precise and imprecise numbers is also not a trivial task in natural language un-
derstanding. For example, when we say ”There are a hundred seats in the club”, a hundred may
be imprecise, while if we say ”There are one hundred and two seats in the club”, one hundred
and two is most likely to be an exact number. However, in the scope of this project, I am dealing
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New Plural Noun Phrase
Pattern ?x ?y

(?x {number})
Variable Constraints (?y {tangible} :noun :type)

Return Tag :noun
?z← (new-type NIL ?y)
(x-is-the-y-of-z ?x {count} ?y)

Semantics referral context add ?z
return ?z

Figure 4.2: Plural noun phrase construction

with the simple case that numbers are assumed to be accurate.

For precise numbers, I create a new individual node and link this node with the number node by
an eq-link. For example, to represent ”a dozen”, I first create a new node (new-indv “a dozen”
{exact number}), and then using equal link to link the node with {12}: (new-eq {a dozen of}
{12}).

To represent imprecise expressions like “many” or “some”, I assume these expressions are equiv-
alent with an integer range. For example, ”some” means at least two, so it’s a range whose lower
bound is two. Consequently, I created a new type {integer range} and it has a {lower bound}
and a {upper bound}:

(new-type {integer range} {inexact number})
(new-type-role {lower bound} {integer range} {integer})
(new-type-role {upper bound} {integer range} {integer})

For example, to express “some” in Scone, we first create a new {integer range} type node
(new-indv “some” {integer range}). Then, we can specify the lower bound: (x-is-the-y-of-z
2 {lower bound} {some})

Finally, after we settled the representation of plural nouns, we could define the construction
as Figure 4.2. The pattern is a {number} type node ?x followed by a {tangible} type node ?y.
As discussed above, the semantics of the construction is to first create a new type node as ?y’s
children. Then the system will specify the {count} of the new type node to be ?x and add the
new node to the referral context.

For example, when the user calls (read-text ”some elephants”), the Constructor will apply the
Matcher on ”some elephant” and the plural noun phrase construction. ?x variable will be matched
with the element {some} that we just created and ?y variable will be matched with {elephant}.
The construction action will return a new type node {elephant 0-2706} to represent the seman-
tics of ”some elephants”. Now if we look into Scone and ask (the-x-of-y {count} {elephant
0-2706}), it will return {some}; if we ask the lower bound of the count (the-x-of-y {lower
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Referral Noun Phrase
Pattern (”the”) ?x

Variable Constraints (?x :noun :type)
Return Tag :noun

loop for ?y in referral context
Semantics when (simple-is-x-a-y? ?y ?x)

add ?y to referral context
return ?y

Figure 4.3: Referral noun phrase construction

bound} (the-x-of-y {count} {elephant 0-2706})), Scone will output {2}, which is exactly what
we desired.

Similarly, if the user calls (read-text ”two elephants”), the system will output a new elephant
type node {elephant 0-2697}, where in Scone (the-x-of-y {count} {elephant 0-2697}) is {two}
and (is-x-eq-y? {two} {2}) returns :YES.

4.2.3 Referential Noun Phrase
While the singular and plural noun phrases constructions create new nodes, referral noun phrases
are referring to previously created nodes that are saved in referral context. The most common
referral noun representation is in the form ((“the”) ?x) where ?x is a type node. The prototypical
usage of ”the” is referring to a previously referred individual noun element that is of ?x type.
Therefore, the semantics of the phrase is intuitively to loop through the referral context and re-
turn the element that is of ?x type. Finally, we need to re-add this element to the referral context
so that this element is back on the top of the stack.

For example, say the user initially calls (read-text ”Clyde is an elephant”) and a new element
{Clyde} is already added into the referral context. Then, when the user calls (read-text ”the ele-
phant”), the Constructor will apply the Matcher on ”the elephant” and the referral noun phrase
construction. ?x variable will be matched with the type element {elephant}, and then the con-
struction action loops through the referral context, gets {Clyde} and since (simple-is-x-a-y?
{Clyde} {elephant}) returns true in Scone, the Constructor will return {Clyde} as the semantics
of ”the elephant”.

4.2.4 Possessive Noun Phrase
Possessive noun phrase, as the name suggests, refers to the pattern of a possessive determiner
followed by a noun. In general, there could be two different possessive noun phrases: possessive
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Possessive Type-role Noun Phrase
Pattern ?x ?y

(?x :noun)
Variable Constraints (?y :noun :type-role)

Return Tag :noun
if (:possessive not in (modifier ?x)) return NIL
(new-is-a ?x (context-ele ?y)
loop for ?z in referral context

when (simple-is-x-a-y? ?z (parent ?y))
and (?z in (list-all-x-of-y ?y ?x))

add ?z to referral context
Semantics return ?z

——-if nothing returned——-
?z← (new-indv nil (parent ?y))
(x-is-a-y-of-z ?z ?y ?x))
add ?z to referral context
return ?z

Figure 4.4: Possessive type-role noun phrase construction

determiner and a type node like ”his cat” or possessive determiner and a type-role node like ”his
friend”. For the purpose of demonstration, I will mainly focus on the possessive type-role node
here since it is more different from the other types of noun phrases, while possessive type node
construction could be defined similarly.

The pattern of possessive type-role is pretty obvious” ?x ?y, where ?x is a noun and ?y is a
type-role node. The first thing to do in construction action is to check the modifier tags of ?x
needs to include :possessive. However, what makes possessive type-role complicated is that in
some cases it refers to a previously referred element, for example, ”Wesley and Yang are friends.
Wesley gave his friend a gift.”, ”Wesley’s friend” is most likely referring to Yang; while in some
other cases, for example, “Mark Zuckerberg and his roommate are the founders of Facebook”,
here “his roommate” is a new individual that is the roommate of Mark Zuckerberg. To make
things easier, I make the semantics follow the logic that if there is a previously referred element
in referral context that is the ?y of ?x, then we return it, otherwise, it will create a new individual.
Note in the semantics part in Figure 4.4, it also checks the parent-element and context-element

of the type-role node ?y. To demonstrate their usage in Scone, say we have a type-role node
{pet}, which is defined by (new-type-role {pet} {person} {animal}). The definition implies
that a {person} element can have {pet} and {pet} needs to be an {animal} element. In Scone,
the parent-element of {pet} would be {animal} and the context-element would be {person}.
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For example, the user calls (read-text ”Yang’s pet”) and tries to match the text with the pos-
sessive type-role construction. ?x will be matched with {Yang} with a modifier tag :possessive
and ?y will be matched with the type-role node {pet}. The semantics action will first create a
new is-a link between {Yang} and {person}, which is the context element of {pet}. This action
guarantees that only a person could have a pet, which is a hidden information in the text. If there
are no referral context, the system will create a new individual {animal 0-2946}, since {animal}
is the parent element of {pet}. Finally, it claims {animal 0-2946} is a {pet} of {Yang} in Scone,
adds {animal 0-2946} to referral context and return it. If in the previous context, we know
”Yang’s pet is a dog” and {dog 0-2951} added to referral context, then the construction action
will check {dog 0-2951}, previous referred, is an {animal} and is a {pet} of Yang. Therefore, it
returns {dog 0-2951} without creating a new animal element.

Note there are some special cases where people use a type node to represent the meaning of
a type-role node. For example, when people say ”my man” it actually means ”my friend” or ”my
pal”, and it does not mean that I am in possession of a man. We could take use of construction
hierarchy to specify these slang with their specific meanings.

4.3 Adjectives

In natural language, using adjectives is the most common way to further describe and decorate
noun phrases. Scone has its own way to store information about adjectives and we need to deal
with it carefully since there are various ways of using adjectives in noun phrase constructions
and static description constructions. I am going to use color as an example to demonstrate three
common constructions that use adjectives.

First, we need to figure out how to represent adjectives in Scone. In Scone, adjectives repre-
sentation normally combines with the object. For example, “red” is represented as {red thing}.
The tricky thing here is ”the color of A is red” should have the same meaning as ”A is red”.
When we say something is red, it means the predominant color of this thing is red. Therefore,
we need to set up a connection between the noun color {red} and the adjective {red thing}.

The following lines helps to strictly define color in Scone:
(new-type {color} {tangible})
(new-type {colored thing} {tangible} :english ’(:no-iname :adj ”colored”))
(new-type-role {predominant color} {colored thing} {color} :english ’(”color”))

Then we could set up the connection between color red and adjective red:
(new-type {red thing} {colored thing} :english ’(:no-iname :adj ”red”))
(new-indv {red} {color})
(x-is-the-y-of-z {red} {predominant color} {red thing})
Now, when we say something is a {red thing} in Scone, it also tells the {predominant color} of
it is {red}. Once these are set up, we can define adjectives related constructions.
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New Singular Noun Phrase with Adjective
Pattern (”a” ”an”) ?x ?y

(?x :adj)
Variable Constraints (?y :noun :type)

Return Tag :noun
?z← (new-indv NIL ?y)
(new-is-a ?z ?x)

Semantics referral context add ?z
return ?z

Figure 4.5: Singular noun phrase construction with adjective

The first typical construction is using adjectives directly describing the noun, for example, sin-
gular noun phrase with adjective construction shown in Figure 4.5. The pattern is ((“a” “an”)
?x ?y) where ?x is an adjective and ?y is a type noun. Basically what the construction action
would do is first apply the action of singular noun structure, creating a new individual node of
?y type, and then say the new individual is a ?x. For example, the system takes in “a red apple”,
the matcher will match ?x with {red thing} and match ?y with {apple}. Then the construction
action will call (new-indv NIL {apple}) to generate {apple 0-2333}. To represent the semantics
of adjective red, the system will add a new is-a link in Scone: (new-is-a {apple 0-2333} {red
thing}).

The second typical construction is described using linking verb and the most common way is
to use being verb as shown in Figure 4.6. The semantics is more intuitive: creating an is-a link
in Scone. For example, the system takes in ”apples are red”, and the Matcher matches ?x with
{apple} and ?y with {red thing}. Then the action will create the is-a link between {apple} and
{red thing} in Scone.

The third typical construction is using type-role directly, for example, “the predominant color
of apple is red”. The intuitive semantics would be to specify the {predominant color} of {apple}
to be {red} and as we discussed above, such action is equivalent with stating {apple} is a {red
thing} in Scone. The detailed construction of type-role related static description will be elabo-
rated in the next section.

4.4 Static Description
Static description is very suitable for graph-based knowledge representation since it describes a
static relationship between elements. One of the primary goals of this project is to build well-
covered constructions for static description so that Scone could have a way to input knowledge.
I consider the following four cases and their prototypical meanings in static description: state
of being verb-based description, static type-role description, has relation description and stative

39



January 10, 2022

Being verb with Adjective
Pattern ?x (”is” ”are”) ?y

(?x :noun)
Variable Constraints (?y :adj)

Return Tag :relation
Semantics return (new-is-a ?x ?y)

Figure 4.6: Static adjective description

Being verb with individual node
Pattern ?x (”is” ”are”) ?y

(?x :noun)
Variable Constraints (?y :noun :indv)

Return Tag :relation
Semantics return (new-eq ?x ?y)

Create new is-a
Pattern ?x (”is a”) ?y

(?x :noun)
Variable Constraints (?y :noun :type)

Return Tag :relation
Parent Being verb with individual node

Semantics return (new-is-a ?x ?y)

Figure 4.7: State of being verb based description

verb-based description.

4.4.1 State of Being Verb Based Description
Using being verbs ”is” and ”are” is the common case static description. The basic pattern is (?x
(”is” ”are”) ?y), where ?x is a noun element and ?y could be an individual noun node, a type
noun node or an adjective (which is already discussed in the previous section). Different types
of ?y node have different constructions and semantics.

When ?y is a type node, for example ”elephants are animals”, then the Matcher will match ?x
with {elephant} and ?y with {animal}. Consequently, the construction action would be to add a
is-a link from ?x to ?y, where in this case (new-is-a {elephant} {animal}).

When ?y is an individual node, for example say there is a previously mentioned elephant {elephant
0-3141} and the engine takes in an input “Clyde is the elephant”, then the Matcher will match

40



January 10, 2022

Implicit type-role description
Pattern ?x (”is the”) ?y

(?x :noun)
Variable Constraints (?y :type-role)

Return Tag :relation
?z← (context-element ?y)

Semantics loop for ?w in referral context
when (simple-is-x-a-y? ?w ?z)
return (x-is-the-y-of-z ?x ?y ?w)

Figure 4.8: Static type-role friend construction

?x with {Clyde} and ?y with {elephant 0-3141}. We can see the semantics of this sentence is
basically telling {Clyde} and {elephant 0-3141} are referring to the same thing. Therefore, the
construction action should be creating an equal link between ?x and ?y in Scone.

In addition, there is a specific pattern of being verb with individual node that the engine could
do differently: (?x (“is a” “is an”)?y), where ?x is a noun and ?y is a type noun node. In this
case, the pattern could fall into the case (?x (”is”) ?y) and ?y is an individual node. Then the
engine will apply singular noun phrase construction, generate a new individual node and connect
?x with an eq-link. However, the output of such construction action is not intuitive enough. A
more direct action is just call (new-is-a ?x ?y). Therefore, as shown in Figure 4.7 we could
make this construction a child of the above case so that if the text match with the Create New
Is-a construction it will replace the output of Being Verb with Individual Node construction. For
example, when we say, “Clyde is an elephant”, the Matcher will first match with Being Verb
with Individual Node construction and apply the corresponding action, then it will match with
the children Create New Is-a construction, apply the action (new-is-a Clyde elephant) and finally
output the is-a link as the result instead of an eq link.

4.4.2 Static Type-role Description
As we mentioned before, in Scone, type role node is used to describe the “A of B” relation. When
defining new type-role element A, the user needs to specify the type of B and the type of “A of
B”, which directly fit into the pattern (?x (”is a”) ?y (”of”) ?z), where ?y is a type-role node.
Similar patterns that fall into this category are (?x (”is the”) ?y (”of”) ?z), ((”the”) ?x (”is” ”are”)
?z), etc. The action of these constructions could be formed by directly calling the x-is-a-y-of-z
and x-is-the-y-of-z methods. For example:
“Yang is a friend of Wesley”⇒ (x-is-a-y-of-z {Yang} {friend} {Wesley})
“The roommate of Wesley is Yang”⇒ (x-is-the-y-of-z {Yang} {roommate} {Wesley})
”The predominant color of apple is red”⇒ (x-is-the-y-of-z {red} {predominant color} {apple})

However, in natural language, sometimes people might use type-role but do not explicitly write
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Friend type-role description
Pattern ?x (”are”) ?y

(?x {person} :noun)
Variable Constraints (?y {friend} :type-role)

Return Tag :relation
Modifier (?x :list)

if len(?x) ≤ 1: return NIL
Semantics loop for i from 0 to (len(?x) - 1)

loop for j from i+1 to (len(?x) - 2)
collect ’((x-is-a-y-of-z ?x[i] ?y ?x[j])

(x-is-a-y-of-z ?x[j] ?y ?x[i]))

Figure 4.9: Static type-role friend construction with list

what “of B” is if it is previously mentioned. For example, if the company {Facebook} is pre-
viously mentioned, people can directly say “Mark Zuckerberg is the founder”, assuming others
could understand it means “the founder of Facebook”. The construction of Implicit type-role con-
struction is shown in Figure 4.8. The matcher will match ?x with {Mark Zuckerberg} and ?y with
{founder}. The construction action will first check the context-element of {founder} in Scone
and gets {organization}. Then the action looks into referral context and finds {Facebook} ,which
is an {organization}, and returns (x-is-the-y-of-z {Mark Zuckerberg} {founder} {Facebook}).

Finally, there’s another way in natural language where type-role are commonly used: (?x (“are”)
?y), where ?x is a list of nouns, which is modified by :list keyword, and ?y is a symmetric type-
role (meaning in “A of B” the type of B is the same as the type of “A of B”). For example,
{friend}, {roommate} are all symmetric since both its context-element and parent-element are
{person}. Then this construction means every pair of nouns in ?x could fit into “A is a ?y of
B”. For example, when we say “Wesley and Yang are friends”, the Matcher will match ?x with
’({Wesley}, {Yang}) and ?y with {friend}. The construction action would be (x-is-a-y-of-z
{Wesley} {friend} {Yang}) and (x-is-a-y-of-z {Yang} {friend} {Wesley}).

4.4.3 Has Relation

The composition relationship is also a major part in static description. The most common pat-
tern is (?x (”has” ”have”) ?y ?z), where ?x ?z are two nouns and ?y is a {number}. The way
Scone represent this has relation is still type role. As we describe before, type role node tends to
represent ”A of B”, while this actually implies B has A. Therefore, when the user defines a new
type-role, say (new-type-role {pet} {person} {animal}), Scone creates the new node {pet} as a
children of {person} and connect a has-link between {person} and {pet}.

For example, when the user calls (read-text ”Clyde has four legs”) and the Matcher tries to
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Has relation description
Pattern ?x (”has” ”have) ?y ?z

(?x :noun)
Variable Constraints (?y number)

(?z :noun :type)
Return Tag :relation

?w←(new-type-role nil ?x ?z :n ?y)
Semantics add ?w to referral context

return ?w

Figure 4.10: Has relation description

match with the has relation construction, ?x will be matched with {Clyde}, ?y matched with
{four} (which is equal to the number node {4}) and ?z with {leg}. The construction action will
create a new type-role {leg 0-2813} representing the legs of Clyde and specifying the quantity
of it is {4}.

There are two benefits of using type-role to represent this relation: 1. The creation of this new
type-role, in Scone a has-link between Clyde and leg is internally constructed. 2. Due to this
type-role is added to the referral context, the system will be able to understand “Clyde’s legs”
and interpret it as {leg 0-2813} in future text. However, since the has-link functionality is chang-
ing and under review right now in Scone, there’s no simple way to resolve the case where such
type-role or a has link has already been constructed and the engine needs to alter or change the
link. This would require some future work when the functionality of the has-link is fully settled.

4.4.4 Stative Verb

Stative verbs are commonly used to describe the state of being. Stative verbs could be divided
based on their semantics: verbs of perception, verbs of cognition, emotion, etc [11]. Typically,
stative verbs, like ”love”, ”hate”, ”believe”, are used to describe opinions, beliefs, and emotions.
These verbs could be represented as relations in Scone.

Scone allows the user to create new relations and then to instantiate these using statement links.
For example, we could define ”hate” as a one-way relationship between {animal} and {thing}.
When the system takes an input ”Jerry hates elephants”, the construction action would be to cre-
ate a new statement link that instantiates the {hate} relation, where in this case, (new-statement
{Jerry} {hate} {elephant}). Now say that the system takes in a new text ”Clyde is an elephant”,
and we go to Scone and ask if Jerry hates Clyde: (statement-true? {Jerry} {hate} {Clyde}),
Scone will return True which meets our expectation.
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Noun phrase parallel with and
Pattern ?x (”, and”, ”and”) ?y

(?x :noun)
Variable Constraints (?y :noun)

Return Tag :noun
Semantics return (list ?x ?y)

Noun phrase parallel with comma
Pattern ?x (”,”) ?y

(?x :noun)
Variable Constraints (?y :noun)

Return Tag :noun
Modifier (?y :list)

Semantics if (len(?y) ≥ 2) return (append (?x) ?y)

Figure 4.11: Noun phrase parallel structure

4.5 Parallel Structure

Parallel structure is very commonly used in natural language. To represent the structure, we can
use a list to combine each component. For example, “apple, banana, and grape” should be rep-
resented as (list {apple} {banana} {grape}).

In most cases, when a variable is a list of objects, we should apply the construction rule on
the objects separately and collect all the results. For example, when we have “Clyde and George
are elephants”, it means “Clyde is an elephant” and “George is an elephant”. So applying con-
struction grammar on it should return two is-a links.

However, there are also cases the variable itself should be a list. For example the Static type-role
friend construction is shown at Figure 4.8. When we say “A, B, C, . . . and D are friends”, we
want to have the (list A B C . . . D) as a single element since we want to add new relation to
every pair of elements in the list.

To distinguish the above two cases, the keyword :list, as we discussed in 2.3, is used as a variable
modifier to specify that the variable should be treated as a list in the construction action. With
:list, we can strictly define the parallel structure A, B, ... and D.

The tricky thing about the parallel structure is that the pattern could go infinitely long with com-
mas but always ends with an ”and”. Phrases like ”Yang, Wesley, Tony” is not grammatically
correct (but it is understandable with partial matching). Therefore, first, we need to recursively
define this pattern and second, we use :list in the parallel with comma construction so that we
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location prepositional phrase for relation
Pattern ?x (”at” ”in” ”on”) ?y

(?x :relation)
Variable Constraints (?y {place} :noun)

Return Tag :relation
Modifier ?x (new-context nil ’(current-context {place}))

(new-eq (context-element ?x) ?y)
Semantics return ?x

Figure 4.12: Location prepositional phrase for relation

can constrain the length of ?y.

For example, if the system takes in ”Yang, Wesley, and Tony”, the tokenizer will break the
sentence into ’(”Yang” ”,” ”Wesley” ”,” ”and” ”Tony”) and the Matcher will try to match it with
the Noun phrase parallel with comma construction, where ?x is matched with {Yang} and ?y
is matched through recursively calling the constructor on ”Wesley, and Tony”. Then ”Wesley,
and Tony” will be matched with Noun phrase parallel with and construction, and get an output
of ’({Wesley} {Tony}). Then the action of Noun phrase parallel with comma construction will
finally output ’({Yang} {Wesley} {Tony}).

On the other hand, if the system takes in only ”Yang, Wesley”, the Matcher will match it with
Noun phrase parallel with comma construction, where ?x is {Yang} and ?y is ’({Wesley}) due
to the :list keyword. Then if we plug in ?x and ?y into the construction action, the length of ?y
is 1 which is smaller than 2. Therefore, it will return null and further tell the system this is not a
valid construction match.

4.6 Prepositional Phrase

A prepositional phrase is often used to modify other nouns, actions or relations and it usually
consists of a preposition and other words to modify the object. For example, in the sentence
”Clyde kicked a ball on Monday”, ”on Monday” is a time prepositional phrase that is used to
modify the time of the action. Note the purpose of the prepositional phrase is exactly the same
as the usage of modifiers in constructions. To demonstrate how modifier is used, I define the
location prepositional phrase for relation construction as shown in Figure 4.12.

As we can see, the pattern needs to be (?x :relation) (”at” ”in” ”on”) (?y place :noun), where ?y
is the location used to modify ?x. For example, the system takes in ”elephants are grey in Africa”
and the Matcher tries to match with the Location prepositional phrase for relation construction.
To get the value of ?x, the system will first modify the context to a new dummy context that
inherits current context and {place}, say {general 0-2755}. Then by recursively calling Con-
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structor on ”elephants are grey”, the system will get a relation node {Is-A 0-2758} under the
context {general 0-2755} as the semantics of ”elephants are grey” and the value for ?x. ?y is
matched with {Africa} and then the construction action will create an eq-link between {general
0-2755} and {Africa}. And finally return {Is-A 0-2758} as the semantics of the whole sentence.
Now if we look into Scone, (context-element {Is-A 0-2758}) will return {general 0-2755} and
(is-x-eq-y? {general 0-2755} {Africa}) will give :YES.

Similarly, we can define the prepositional phrase constructions that modifies time, location, etc.
for nouns, relations, actions.
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Chapter 5

Conclusion

5.1 Major Contributions

In this thesis, we proposed an innovative rule-based natural language understanding system that
is built on construction grammar and Scone knowledge base. We first give a well-defined struc-
ture for constructions in Lisp and implement a macro function for the users to easily define new
constructions by themselves. Additionally, we define some most commonly used constructions
so that the system could proceed with simple texts. Then, Matcher and Constructor algorithms
are implemented, which support the system to understand different semantics of a single piece
of text. Finally, the full system use guess and go on algorithm to understand multiple texts and
input the underlying semantics into Scone.

In conclusion, the project makes the following major contributions:

• An innovative way to build an actual natural language understanding system combining
construction grammar and the Scone knowledge-base system. Construction grammar gives
considerable flexibility to the input text. For example, the text does not need to be gram-
matically correct as long as it matches with a construction rule. Partial matching will
further extend the flexibility of the text. Additionally, Scone is also more expressive, more
precise, and its inference machinery is faster than most of the knowledge graphs that have
been used in past NLU systems. The context mechanism in Scone also makes it possible
to explore different potential meanings of the same text.

• Adopt Guess and Go on mechanism to understand a sequence of texts. Intuitively, when
human beings read long paragraphs where some pieces of text could have different seman-
tics, naturally, guess and go on is what we do. If the following texts suggest that the current
hypothesis (represented in a Scone context) does not make sense, we can go back to the
previous decision points and pursue another hypothesis.

• The system provides a platform for construction grammar researchers where new construc-
tions can be easily defined and added into the system. The user can easily test to see how
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well the new construction work with different texts.

• The system provides a new method for adding knowledge to the Scone knowledge base,
in the form of simple English sentences rather than in the current formal, program-like
Scone input format. I have implemented some of the most commonly used constructions
for simple sentences.

5.2 Future Work
Since this is only a one-year-long project, there are many places that are unfinished and could be
further improved. We’d like to provide some future research directions in this project.

Constructions are not equally defined in different construction grammar frameworks. Therefore,
to better support linguistic researches, we would want to provide as much flexibility as possi-
ble in defining new constructions in the system. In the current construction structure, we would
want to support more logic operations in defining variable constraints and consequently, the user
would be able to define the construction variable with more specific constraints. Additionally,
the system only supports context elements as modifiers, future work could extend modifiers to
more forms. For example, :Maybe tag could be another common modifier to modify the level of
ambiguity of a piece of text. Finally, as we previously discussed, the current construction hier-
archy only supports a single-parent structure. However, a better construction hierarchy structure
should be able to support multiple parents and multiple children.

Once constructions are better defined in the system, we could try to re-implement this system
using some existing, relatively mature and comprehensive construction grammar frameworks.
The ultimate goal of an NLU engine is to build a system that is able to learn knowledge from any
text input, which requires the constructions for an entire language. However, manually creating
the constructions is definitely a tedious task. Therefore, automated creating of construction rules
would be an exciting field to explore. For example, there are previous works [2] that provide a
metric to learn constructions in Embodied Construction Grammar.

As we discussed in the Matcher section 3.3, if we want to extend the usage to fields with lots of
unstructured texts like dialogue, partial matching would be essential. The current partial match-
ing algorithm is relatively naive and further research could be done in this area. For example one
could explore scoring metric for partial matching where critical components will have a higher
score and missing components will cause a penalty. Then, every text and construction pair will
have a matching score and if the score is above a certain threshold, we could apply partial match-
ing between the text and construction.

To further improve the accuracy of the core NLU engine, a possible future work direction is
to introduce probability metrics in matching. Intuitively, although words or sentences can have
different semantics, some of them are more commonly used or more probable in the current con-
text. For example, when we say ”there is a mouse beside my laptop”, it is most probable that
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the ”mouse” is referring to {computer mouse}. Therefore, we should give {computer mouse}
a higher probability than {animal mouse} in this context. Building such a probability metric is
a pretty complex task since the probability needs to change with different contexts. However, a
well-built probability metric could significantly improve the performance of Guess and Go on
algorithm since we could always guess and choose the semantics with the highest probability.

Above are just a few directions that could be done in future research. I fully believe in the
potential of Scone and this project aims to give an innovative way of thinking and approaching a
real natural language understanding system.
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Appendix A

Sample output of Current Implementation
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Appendix B

Sample Sentences and Phrases Used for
Testing

Here I’ll demonstrate some sentences and phrases that I used for testing. Every text comes
with its corresponding Scone-structure-creating calls that the system ends up executing and an
English-language comment to explain what that structure means.

Two clarifications for the Scone actions below:

1. ”Parent wires” refer to a supertype of the element, and this has the same effect as creating
an IS-A link from the element to the parent.

2. The first argument of a new-indv or new-type call is the unique name that will be used
for this new node, such as {elephant} or {Clyde}. If the user is creating an anonymous
individual or subtype, it can provide NIL as the first argument. In that case, the system
will create a unique new node-name and use that – perhaps {elephant-27} if the parent is
{elephant}.

• Noun Phrase:

”an elephant”
(new-indv nil {elephant})
Creates a new individual node with a parent wire to the type-node {elephant}
”a smart person”
?x← (new-indv nil {person})
(new-is-a ?x smart animal)

Creates a new individual node with a parent wire to the type-node {person}
Creates an IS-A link from the new created x node to the {smart animal} node, claim-
ing the new created person is smart

”some elephants”
?x← (new-type nil {elephant})
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(x-is-the-y-of-z {some} {count} ?x)

Creates a new type node with a parent wire to the type-node {elephant}, representing
a new set of elephants
Asserts that the cardinality of this set is ”some”, meaning ”more than one”.

”Clyde is an elephant”
(new-indv ”Clyde” {thing})
(new-is-a {Clyde} {elephant})
”the elephant”
Since (simple-is-x-a-y? {Clyde} {elephant})→ T, return {Clyde}
Creates a new individual node {Clyde} since ”Clyde” is a name
Creates an IS-A link from {Clyde} to {elephant}
”the elephant” loops through the referral context and find {Clyde}
”Yang’s friend”
(new-indv ”Yang” {thing})
(new-is-a {Yang} {person})
?x← (new-type nil {person})
(x-is-a-y-of-z ?x {friend} {Yang})
Creates a new individual node {Yang} since ”Yang” is a name
Creates an IS-A link from {Yang} to {person}, since Yang has a friend
Creates a new individual node with a parent wire to the type-node {person}
Assert this person is a friend of Yang

”Yang and Jack are friends”
(x-is-a-y-of-z {Jack} {friend} {Yang})
(x-is-a-y-of-z {Yang} {friend} {Jack})
”Yang’s friend”
Since (find {Jack} (list-all-x-of-y {friend} {Yang}))→ T, return {Jack}
Assert Jack is a friend of Yang and Yang is a friend of Jack
Loops through the referral context and find {Jack} who is Yang’s friend

• Parallel Structure:

”an elephant, a cat and a dog”
?x← (new-type nil {elephant})
?y← (new-type nil {cat})
?z← (new-type nil {dog})
return (list ?x ?y ?z)

Creates a new individual elephant node, a new individual cat node and a new individ-
ual dog node
Concatenates the three animals and returns

”Clyde is an elephant and Tom is a cat”
?x← (new-is-a {Clyde} {elephant})
?y← (new-type {Tom} {cat})

54



January 10, 2022

return (list ?x ?y)

Creates a new IS-A link from {Clyde} to {elephant} and a new IS-A link from {Tom}
to {cat}
Concatenates the two IS-A links and returns

• Static Description:

”Yang hates elephants”
(new-statement {Yang} {hate} {elephant})
Creates a new {hate} relation from {Yang} to {elephant}
”Yang has two dogs”
(new-type-role nil {Yang} {dog} :n {2})
Creates a new type role between {Yang} and {dog} indicating the has relation

”Facebook is an American technology company based in California”
?x← (new-indv nil {company})
(new-is-a ?x {American thing})
(x-is-the-y-of-z {California} {base location} ?x)
(new-eq {Facebook} ?x)
”Mark Zuckerberg and his roommates are the founders”
?y← (new-indv nil {person})
(x-is-a-y-of-z ?y {roommate} {Mark Zuckerburg})
(x-is-a-y-of-z {Mark Zuckerburg} {founder} {Facebook})
(x-is-a-y-of-z ?y {founder} {Facebook})
Creates a new individual node with a parent wire to the type-node {company}
Creates a new IS-A link from this company to {American thing} node, indicating the
company is American.
Asserts {California} is the {base location} of this company
Creates an eq-link between {Facebook} and the company, indicating Facebook in-
herits all the above properties.
Creates a new individual node with a parent wire to the type-node {person}
Asserts this person is a {roommate} of {Mark Zuckerburg}
Asserts {Mark Zuckerburg} is a {founder} of {Facebook}
Asserts this new person is a {founder} of {Facebook}

• Action Verbs:

”Clyde kicks a ball”
?x← (new-indv nil {kick})
(x-is-the-y-of-z {Clyde} {action agent} ?x)
?y← (new-indv nil {ball})
(x-is-the-y-of-z ?y {action object} ?x)

Creates a new individual node with a parent wire to the type-node {kick}
Asserts {Clyde} is the {action agent} of the new action kick
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Creates a new individual node with a parent wire to the type-node {ball}
Asserts this ball is the {action object} of the new action kick

”Yang gives Wesley a gift”
?x← (new-indv nil {give})
(x-is-the-y-of-z {Yang} {action agent} ?x)
(x-is-the-y-of-z {Yang} {action recipient} ?x)
?y← (new-indv nil {gift})
(x-is-the-y-of-z ?y {action object} ?x)

Creates a new individual node with a parent wire to the type-node {give}
Asserts {Yang} is the {action agent} of the new action give
Asserts {Wesley} is the {action recipient} of the new action give
Creates a new individual node with a parent wire to the type-node {gift}
Asserts this gift is the {action object} of the new action give

• Tense, Prepositional Phrase (Use Modifier):

”Clyde ate an apple”
(in-context {past})
?x← (new-indv nil {eat})
(x-is-the-y-of-z {Clyde} {action agent} ?x)
?y← (new-indv nil {apple})
(x-is-the-y-of-z ?y {action object} ?x)

Switches the current context to {past}
Creates a new individual node with a parent wire to the type-node {eat}
Asserts {Clyde} is the {action agent} of the new action eat
Creates a new individual node with a parent wire to the type-node {apple}
Asserts this apple is the {action object} of the new action eat
(the new action eat only exist in {past} context)

”elephants are grey in Africa”
(in-context {Africa})
(new-is-a {elephants} {grey thing})
Switches the current context to {Africa}
Creates a new IS-A link from {elephants} to {grey thing}, indicating the color of
elephants are grey in the context of {Africa}
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