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Abstract

Creative AI has seen much progress in recent years. Works like DALL-E 2 can generate inspiring

art pieces from text descriptions. Instead of synthesizing realistic art works from language, we

approach creativity from a different angle and investigate composition of semantic parts and visual

concepts in sketches. For example, people can draw a circle to represent the moon, a scoop of ice-

cream, or the face of a cat. Similarly, language descriptors can be composed to create new concepts.

People can draw a large round cat face or a narrow oval cat face.

In order to study this reuse of abstract concepts, we construct a dataset of language annotated

sketches. We examined current sketch datasets and found that they either lack language annotations

or semantic part annotations. Therefore, we collect a dataset of 11,150 (sketch part, text) pairs for

572 face sketches and 787 angel sketches.

To understand the limits of current vision-language models, we fine-tuned CLIP, a model pre-

trained with a contrastive objective on 400 million (image, text) pairs and can map (image, text) pairs

into a joint vision-language embedding space. We observed that (1) CLIP cannot easily generalize

to an unseen category on the task of pairing sketches with their descriptions even though similar

shapes and descriptions have occurred in training; (2) through fine-tuning, average cosine distance

has increased between a pair of descriptors used by annotators to differentiate two sketches. With

insights gained about how language and sketches interact in the CLIP embedding space, our aim

is to facilitate research into models that can generate sketches in a part-based manner satisfying

descriptions given by users of the pictures they have on their minds.
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Chapter 1

Introduction

Creative AI, such as using deep learning models to generate paintings and music, has been a

popular research domain. Since creative activities are hallmarks of human intelligence, numerous

works have attempted to replicate the creative process on machines. For example, Pharmako-AI

(Allado-McDowell & Okojie, 2020) is a book co-written by K Allado-McDowell and GPT-3 (Brown

et al., 2020) through exchanges between the person and the language model. Works like DALL-E,

GLIDE, and DALL-E 2 tackle the problem of synthesizing images from short language descriptions,

and these generative models have produced many imaginative and inspiring art pieces (Ramesh et

al., 2021; Nichol et al., 2021; Ramesh et al., 2022). These work are often motivated by the vision to

create machines that can interact with people and augment human creativity. Our work is driven

by a similar vision: how can we build systems that can be creative like humans so that AI agents

and people can participate in creative activities together and inspire each other.

Instead of generating realistic art works from a wide variety of language like DALL-E, we ap-

proach creativity from a different angle and investigate composing basic visual concepts in object

sketches. An example is illustrated in Figure 1.1: a triangle can be the sail of a boat, the cone of

an ice-cream, the left/right ear of a cat, the roof of a house, the canopy of a tree, or the body of a

mountain. The same triangle is adapted to become different parts in sketches of different objects.

While sketches contain much fewer details compared to their natural images counterparts, people are

not any less creative when sketching. One could say that the abstractness allows for more creativity.

Similarly, language descriptors can be composed to form new concepts applicable to different

objects. For example, combining large and round or narrow and oval to describe different kinds

of cat faces. Many other objects can be large round or narrow oval : angel halo, glasses, mirror,

plate, necklace charm, table, etc. Moreover, there are multiple ways to describe the same sketch,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Triangle is adapted and composed with other shapes to create sketches of different
objects. The objects are, from the top and in clockwise order: ice-cream, cat, house, pine tree,
mountain, and boat.

depending on the person’s viewpoint. What features does this cat sketch have? (Figure 1.2) Some

people might pick up on its long pointy ears; others might notice its slightly edged chin, and there

are still others that focus on the long whiskers curving upwards. People are likely to provide a

variety of responses.

Figure 1.2: People are likely to provide a variety of descriptions when asked, “What features does
this cat sketch have?”.

We want to build systems that can compose basic shapes in a creative manner and understand

how words are combined and adapted to describe different objects. In this thesis, we are interested

in semantic parts in sketches and how people describe them. For example, a face sketch may contain

four semantic parts: eyes, nose, mouth, and face contour, that can be drawn using various geometric

shapes with different features. After examining existing sketch datasets, we found that they do not

contain either language annotations or semantic part annotations. We explain the details of related

sketch datasets in Chapter 2. To fill the gap and study this reuse of abstract concepts, we construct

a dataset of language-annotated face and angel sketches. We elaborate on the data collection process

in Chapter 3.

Moreover, we hope to understand the limits of current vision-language models, such as Con-

trastive Language-Image Pre-Training, or CLIP, which is trained on millions of image-text pairs.

CLIP has been used extensively to provide a loss function for optimizing text-to-image synthesis

models (Frans et al., 2021; Ramesh et al., 2022; Gal et al., 2021; Patashnik et al., 2021). Despite

the abundance of knowledge captured by CLIP’s embedding space, we observed that CLIP, trained
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to associate natural images with their captions, has difficulty matching sketches from unseen cate-

gories with their part descriptions, suggesting that they might not understand that sketches from

different categories are composed of parts different in semantics but share similar shapes and de-

scriptions. We explain the details of CLIP and the fine-tuning process in Chapter 4. We analyze

CLIP’s performance and changes in its text embeddings after fine-tuning on our dataset in Chapter

5.



Chapter 2

Related Work

In this chapter, we survey two areas of related work: sketch datasets and sketch generation.

There has been a proliferation of work on sketch representation learning (Ha & Eck, 2017; Eitz

et al., 2012; Li et al., 2018; Yu et al., 2016; Ge et al., 2020; Kim et al., 2019; Aksan et al., 2020;

Ribeiro et al., 2020; Chen et al., 2017; Lin et al., 2020). To study how humans compose descriptors

and shapes in sketches, we look into what annotations current sketch datasets contain and found

that they lack either semantic part labels or language descriptions of the parts (Section 2.1). These

datasets were created to solve classical computer vision tasks, such as recognition, segmentation,

retrieval, whole-sketch generation, etc. We will then look into generative models of sketches in

Section 2.2. Although there have been many works on generating natural images, sketch generation

has its own unique challenges: sketches contain sparse information and might bear little resemblance

to their natural image counterparts; moreover, they illustrate features of the objects in an abstract

way, such as a triangle as the house roof or a letter V as the ice-cream cone.

2.1 Sketch Dataset

TU-Berlin Eitz et al. (2012) is one of the first works to investigate the characteristics of free-hand

sketches and attempt to extract local features based on orientation, which are later used in the task

of sketch recognition. It also provides the TU-Berlin sketch dataset that contains 20, 000 sketches

spanning 250 object categories with 80 samples in each. The TU-Berlin dataset is then extended

for sketch-based 3D object retrieval to contain 1814 new sketches for 130 common household object

categories. This additional set also contains hierarchical category labels; for example, in the label

hierarchy, the descendant categories of the animal category are: arthropod, biped, human, flying

4



2.1. SKETCH DATASET 5

creature, quadruped, and underwater creature. The TU-Berlin dataset contains some of the highest

quality sketches for a wide range of categories, but they lack both text descriptions and semantic

part annotations, and our dataset contains both types of annotations, although only for simpler

sketches in the face and angel category.

Datasets with Text Descriptions The QMUL dataset contains sketches of shoes and chairs:

419 shoe sketches of various types of shoes, such as high heels, boots, and ballerina flats, and 297

chair sketches of different kinds (Yu et al., 2016). Although QMUL annotates for attributes of the

sketches, they come from a fixed set of descriptions and are obtained from product tags, so these

descriptions do not reflect how humans would creatively describe the drawings on their mind, which

is a feature of our collected dataset. The Sketchy dataset contains 75, 000 sketches of 125 categories,

and each sketch is paired with an image. Sketchy is additionally annotated with sketch validity

metrics and short descriptions from annotators (Sangkloy et al., 2016). However, these descriptions

are more like comments given by the participants, and the collecting process is not carefully designed,

unlike our data collection process, where obtaining the text description is the main focus. Moreover,

the short texts in Sketchy do not describe individual semantic object in the sketches.

QuickDraw Dataset The QuickDraw dataset is one of the largest sketch datasets, containing 50

million sketches distributed across 345 object categories. Each category has about 100,000 sketches

(Ha & Eck, 2017). Annotators for the TU-Berlin dataset have 30 minutes to draw one sketch, and

annotators for the QMUL dataset have reference photos for the sketches they are asked to draw; on

the other hand, participants of Quick,Draw! have 20 seconds to create the sketches for a randomly

assigned category without time to look for reference, so sketches in the QuickDraw dataset are

the simplest. However, since sketches that failed to be recognized by a classification model are

filtered, they are in general of good quality and are representative of the general population drawing

skills. Moreover, many works on sketch representation learning use the QuickDraw dataset, so

utilizing these sketches would allow us to adapt other pre-trained generative models to model our

dataset. However, the QuickDraw dataset contains neither semantic part annotation nor language

descriptions, and our collected dataset contains both.

Datasets with Semantic Part Annotations The sketches in our dataset come from the

QuickDraw dataset, but the original QuickDraw dataset does not provide labels for semantic objects

in the sketches. The Sketch Perceptual Grouping (SPG) dataset (Li et al., 2018) and the SketchSeg

dataset (Qi & Tan, 2019) contain annotations for semantic segmentation, meaning that each stroke

in a sketch is paired with a semantic label. For example, strokes in a face sketch are assigned one

of the following labels: eyes, nose, mouth, ear, hair, moustache, outline of face. The SPG dataset

annotates for 25, 000 QuickDraw sketches, belonging to 25 (out of 345) categories, and it selects
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800 out of the original 100, 000 sketches in each category for annotation. The SketchSeg dataset

builds upon the SPG dataset by using a recurrent neural work to generate additional sketches from

one sketch in SPG; since each stroke in the generated sketch corresponds to a stroke in the original

sketch, it automatically has part annotations. However, since the quality of the generated sketch is

dependent upon the generative model, we choose the original SPG dataset, which is also publicly

available. The SPG dataset does not contain text descriptions like our dataset, so we cannot study

how people describe their sketches using SPG alone.

SketchCUB Yuan et al. (2021) collects a dataset, SketchCUB, of sketches and captions by trans-

forming realistic images in the CUB dataset (Wah et al., 2011) into sketches with holistically-nested

network (HED) (Xie & Tu, 2015). These sketches in the SketchCUB dataset are not done by hu-

mans and might not be representative of how the general population sketch, compared to those in

QuickDraw. The SketchCUB dataset contains 10K sketches over 200 different categories of birds.

Moreover, the original CUB dataset collects the captions by presenting to the annotators a fixed set

of attributes and asking them to determine whether the bird has the attribute or not. There are a

total of 312 binary attributes, and they are traditionally used to determine species of birds in nature.

Therefore, the captions might not represent how people describe sketch parts. The SketchCUB text

descriptions are also for the whole sketch and not for individual semantic part in sketches. In com-

parison, our dataset annotates for semantic parts in QuickDraw sketches, and we do not limit the

annotators with a predefined list of words, so the descriptions tend to be more diverse and creative.

There are a total of 1450 different words in our dataset.

2.2 Sketch Generation

Sketch-RNN Along with the QuickDraw dataset, Ha & Eck (2017) introduces Sketch-RNN and

provides a web demo of collaborative drawing, where users can select a category and draw the first

few strokes of a sketch, and the model will complete the rest of the sketch1. Sketch-RNN uses a

variational autoencoder (VAE) with bidirectional RNN encoder and RNN decoder.

Ha & Eck (2017) uses a vector format to represent the sketches: each sketch is a set of strokes, and

each stroke is a sequence of points, so the smooth curve is approximated with piecewise linear splines

created by connecting adjacent points in the sequence. Works in sketch representation learning can

be grouped into those that represent the input in this stroke-point vector format and those that

treat the entire sketch as a raster image. Each point is a 5-component vector, (δx, δy, p1, p2, p3):

the first two components represent changes in the (x, y) coordinate of the current point compared

to the last one; the last three make up a one-hot vector representing current state of the sketch.

1You can access the demo from this website https://magenta.tensorflow.org/sketch-rnn-demo

https://magenta.tensorflow.org/sketch-rnn-demo
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Let s =
[
p1 p2 p3

]
, if the current point will be connected with the next point, s =

[
1 0 0

]
;

if the current point is the last point in the current stroke, so the pen is expected to be lifted next,

then s =
[
0 1 0

]
; if the current point is the last point in the sketch, then s =

[
0 0 1

]
.

The RNN encoder takes this sequence as input and uses the final hidden state h of the RNN to

parameterize Gaussian distributions of size Nz, from which a latent random variable z ∈ RNz is

sampled. The latent z will be used to (1) initialize the hidden state h0 of the RNN decoder and

(2) be concatenated with the vector at each time step and fed as input into the decoder. The RNN

decoder predicts parameters for distributions (Gaussian mixture model for sampling δx, δy and

categorical distribution for sampling p1, p2, p2) at each time step from the hidden states of the RNN.

Since the decoder works in an autoregressive manner, it can encode the first few strokes provided

by the users into a hidden vector, which is conditioned on for later steps to produce distributions of

points that make up the rest of the sketch.

Although our work uses the QuickDraw sketches, we render the vectors into raster images in order

to use CLIP and its vision-language joint embeddings, since compared to Sketch-RNN, we need to

incorporate text descriptions of the sketch parts. It is challenging to align semantic information in

text with distributions of the x, y coordinates. While language gives high-level guidance on how

strokes are organized on canvas to illustrate a particular concept, the coordinate information is too

low level if directly used without an intermediate level of abstraction to aggregate these low-level

sequence.

DoodlerGAN DoodlerGAN (Ge et al., 2020) is a recent work on creative sketching and represents

sketches as raster images. It uses Generative Adversarial Network (GAN) to model the sketches2.

Compared to Sketch-RNN, which can only complete the missing parts of sketches once users are

done with their parts, DoodlerGAN generates sketches using a part-based approach. In this way,

users and the system can take multiple turns to create sketches.

The part-based GAN has two networks: a part selector and a part generator. Given an incom-

plete sketch with some parts drawn (for example, a bird with its eyes and beak), the part selector

determines what kind of part to draw next (for example, the bird wings). Then given the partial

sketch and the category of the next part, the part generator produces a raster image of the part and

its location on canvas. The part generator is a conditional GAN derived from StyleGAN2 (Karras

et al., 2019), and it takes as input an image with number-of-parts+1 channels: one channel for each

part and an additional channel for the whole partial sketch. The part selector uses the encoder of

the part generator with an extra linear layer at the end as the classification head.

While the part-based generation aspect of DoodlerGAN aligns with our goal to study composition

of shapes in sketches, there is no language associated with each part, and the generation process is

2Try the DoodlerGAN demo here: http://doodlergan.cloudcv.org/

http://doodlergan.cloudcv.org/
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not guided by language supervision. As indicated by Ge et al. (2020), compared to vector inputs,

raster images can take better advantage of spatial structure of sketch parts. We believe that there is a

shared abstractness in sketches and language, and we want to explore this aspect by first collecting a

(semantic part, language description) dataset and then learning a part-based generative model from

language.

SketchBird Along with SketchCUB, Yuan et al. (2021) introduces a GAN-based model that

generates sketches of birds from captions. The model architecture is based on AttnGAN (Xu et

al., 2017). A bidirectional long short-term memory (Bi-LSTM) network is used as the text encoder,

which is trained with image-text pairs while minimizing the Deep Attentional Multimodal Similarity

Model (DAMSM) loss, proposed in AttnGAN. This loss is calculated based on attention-driven text-

image matching score, which is the dot-product similarity between words in the caption and image

subregions.

Although SketchBird is one of the few works that look at sketch generation from language, it

is limited by the dataset that it is trained and evaluated on: as explained earlier, the SketchCUB

dataset does not contain human-drawn sketches, and the captions come from a list of predefined

attributes. On the other hand, our work is motivated by how people can express high-level concepts,

such as circular, through a variety of language, round, moon-shaped, ringlike, disk-shaped, and how

these type of free-form language can be composed and used to generate abstract sketches, similar to

those in the QuickDraw dataset.



Chapter 3

Data Collection

To study the composition of visual concepts, we need to collect a sketch dataset that contain both

semantic part and language annotations. We tested two ways of collecting such dataset. Initially, in

order to create a dataset with creative composition of shapes, such as the use of triangle in different

sketches illustrated in Figure 1.1, we designed text prompts like happy angel and asked annotators

to draw sketches in response to the prompts while annotating each step in their drawings. After

deployment of pilot, although we collected many creative sketches, we saw major problems related

to misalignment between the drawn parts and the text descriptions. We explain this prompt-guided

design and its associated problems in Section 3.1.

After re-design, we leverage existing sketch datasets, QuickDraw and SPG (both explained in

details in Section 2.1), to solve the problems of low-quality part and text annotations unusable

for model learning. In the new version, we present two sketches at a time to annotators, where

the sketches contain semantic parts that are visually contrasting to aid annotators in coming up

with creative descriptions. We walk through the process of designing this contrasting interface in

Section 3.2. After receiving satisfactory pilot results, we deployed this version full scale on Amazon

Mechanical Turk (AMT); we present statistics of the dataset and explain how it allows us to study

creative composition of abstract concepts in Section 3.3.

9



10 CHAPTER 3. DATA COLLECTION

3.1 Prompt-Guided Sketch Text Dataset

3.1.1 Overview

When we first started designing our data collection interface, we wanted to collect sketches for

prompts similar to the ones used in DALL-E (Ramesh et al., 2021): creative composition of attributes

and objects that are not commonly associated. For example, an evil cup of bubble tea and happy

moon. In addition to sketching, we require annotators to decompose their drawings into steps and

provide descriptions for each step. We hope to discover combination of simple shapes like examples

in Figure 1.1. Moreover, we expect that the imaginative prompts would result in creative sketches

and diverse part descriptions.

We deployed the data collection interface on Amazon Mechanical Turk (AMT), which is a crowd-

sourcing website that hosts different machine learning annotation tasks. In the remaining text, we

use the word turker to refer to annotators we recruit on AMT; we will also use the word HIT,

Human Intelligence Task, to refer to a task hosted on AMT. Please refer to AMT FAQs for more

information on AMT.

For each HIT, we need to design: (1) the main interface for data collection; (2) instruction and

requirements explaining the dos and don’ts; (3) qualification task to train turkers to provide high-

quality annotations. After deploying the pilot, we realized a few major problems with this design.

Firstly, due to the subjective nature of sketching, although the sketches are very creative, it is hard

to understand how some annotators are illustrating the given prompts. Moreover, turkers are taking

more than 30 minutes for each task, and, most importantly, many descriptions do not align with

the drawn objects, making the data difficult to use for model learning. For example, in one step, an

annotator drew the entire cat face, but they only annotated big eyes.

3.1.2 Interface Design

Main Task Interface

We illustrate a typical annotation process in Figure 3.1. The annotator draws a step on the

canvas, enters text description for this step in the Annotation column, and hits Add to display it as

a new row in the annotation table. For the annotator’s convenience, we include an Undo button and

a Clear button for erasing strokes and clearing the entire canvas. If the annotator wants to remove

an entire step, including the drawing and the text description, they can use the Delete button. An

example is shown in Figure 3.2. Repeat the drawing-and-adding process until the drawing is done.

https://www.mturk.com/worker/help#:~:text=A%20Human%20Intelligence%20Task%2C%20or,be%20completed%20by%20Worker%20customers.
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Figure 3.1: A typical annotation process. Top: interface at the start of annotation. Middle: before
adding text descriptions for the drawing; red arrow and box show where to click to add text. Bottom:
after adding text descriptions for the flower sketch.

This design encourages turkers to decompose their drawings into semantically meaningful parts.

We encountered some difficulties when implementing the Delete button. At the beginning, we

treated erasing strokes as drawing the same strokes but in white; however, when strokes overlap each

other, overwriting with white strokes breaks other strokes into segments. Therefore, we change the
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Figure 3.2: Top: the completed annotation for the prompt Happy Flower. Red arrows and boxes
point to Delete buttons that can delete the text annotations along with their drawings. Bottom:
after deleting the steps first round petal and smiley mouth.

drawing canvas to use layers like Photoshop, so that deleting strokes would be the same as deleting

an entire layer, leaving other strokes intact.

Instruction and Requirement

To ensure that turkers understand the purpose of collecting the dataset, the instruction begins

with the motivation behind this project (Figure 3.3). What we struggled the most when drafting

the requirements was deciding what a single step in sketching was; how do we clearly explain this

definition to the turkers? We considered providing a list of geometric shapes, such as rectangle,

triangle, circle, etc., or asking annotations for each stroke, but these options could not reflect how

people naturally sketch.
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Figure 3.3: The instruction section used in the prompt-guided sketch text dataset.

There is a wide spectrum of allowed annotations depending on how people sketch. For example,

when drawing for the prompt Happy Face, one person might annotate 3 steps: large u-shaped face,

round eyes, big smiley mouth. But for someone who likes to draw detailed eyes, they might describe

the shape of the eye contour and the length of the eyelashes. The great variation in personal styles

makes creative sketches fascinating to study but also challenging to collect a high-quality dataset.

We resorted to repeatedly testing the interface with lab mates to refine the requirements. The

refinement process is explained in Appendix A. The requirements deployed in the final pilot is shown

in Figure 3.4. Bad Example 2 is shown in Figure 3.5 and 3.6 as an instance of the examples used

in the final requirements. To view all the examples, refer to: https://erinzhang1998.github.io/

portfolio/amazon anno.

Qualification

We set up a qualification test on AMT to (1) train turkers to have better understanding of the task

and (2) to select turkers who can provide annotations that satisfy all the requirements. Similar to the

process of writing the requirements, we went through several rounds of testing with students in the

lab to come up with a set of questions that correspond well with the requirements. The qualification

test starts with the same instruction and requirements in the final HIT, thus allowing turkers to

familiarize themselves with the requirements and ask clarification questions before completing the

actual annotation task. The test leads with a navigation bar (Figure 3.7) to make it convenient for

turkers to switch between questions; originally, we displayed all questions on one page, but some

found it time-consuming to scroll from the later questions back up to the instructions, so we decided

to display one question at a time.

We show one question from the final qualification in Figure 3.8. Each question is a mock-

up of the main task interface, and turkers need to determine whether every step satisfies all the

requirements. We also include hints on which requirement the question is testing to encourage

https://erinzhang1998.github.io/portfolio/amazon_anno
https://erinzhang1998.github.io/portfolio/amazon_anno
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Figure 3.4: Final version of the requirements. The Bad Example links to counter-examples of the
requirements, and Good Example links to good examples. When turkers click on the links, they
are directed to the examples illustrating the corresponding requirement. This design helps them to
understand the requirements better and provides high-quality annotations

turkers to revisit the requirements and form better understanding of the task. To see the full test,

refer to: https://erinzhang1998.github.io/portfolio/amazon qual.

3.1.3 Results

In our first pilot, we used prompts in the forms of adjective×noun. The list of adjectives includes:

happy, sad, surprised, sleepy, love-struck, evil ; the list of nouns includes: person, kid, cat, bear, dog,

sheep, jellyfish, cup of boba, apple, burger, sun, moon, star. We wanted to see what sketches and

text descriptions annotators would provide for prompts that ask for imaginative beings not in this

world and include novel compositions of unrelated concepts, such as evil apple or love-struck moon.

With these creative prompts, we hope to collect data that contain interesting compositions of the

same geometric shapes and descriptions across different objects. We can then learn models that

can, for example, generate circles to be different parts in different objects: eyes, moon, cherries, and

angel halo.

Since we only collected 55 sketches, we were able to manually examine every sketch, and we

found many creative sketches, such as a subset of the sketches that were collected for prompts with

https://erinzhang1998.github.io/portfolio/amazon_qual


3.1. PROMPT-GUIDED SKETCH TEXT DATASET 15

Figure 3.5: Step 1 and 2 of an example used to explain the requirements to turkers.

the word sleepy, shown in Figure 3.9. From the pilot, we have learned that sketching was a good

domain to study machine creativity. Examining the sketches in Figure 3.9, we saw that everybody

had their own ways of illustrating sleepy : some people drew the letter z to symbolize sleeping; some

drew a speech bubble with the word yawn; some drew sheep, cat, and dog lying down.

However, one issue was that turkers took a long time, on average 30 minutes, to complete one

sketch and provide descriptions, and we did not have the resources to spend such long time on a single

sketch. The second problem was that it was difficult to understand how some annotators interpreted

the prompts through their sketches. We give 4 examples in Figure 3.10. Indeed, sketching is by its

nature very subjective, a common challenge in creative AI. The third problem, the most concerning

one, was that the part descriptions did not align well with the sketches: some annotators failed to

describe every part they drew in a step, or they described parts not in the annotated step. An

example is shown in Figure 3.11.
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Figure 3.6: Step 3 and 4 of an example used to explain the requirements to turkers.

3.2 Contrasting Sketch Text Dataset

3.2.1 Overview

In response to the pilot results, we reconsider the data collection pipeline. We examined existing

sketch datasets to see how their annotations could facilitate our data collection (dataset details are

explained in Section 2). To shorten the time spent on sketching, we no longer asked annotators

to sketch and instead only asked them to describe sketches in the QuickDraw dataset. Although

Figure 3.7: Navigation bar in the qualification test.
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Figure 3.8: An example of the questions in the qualification test.
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Figure 3.9: Sketches collected for prompts with the descriptor sleepy in the prompt-guided sketch
text dataset. People were very creative and came up with various ways to illustrate the concept
sleepy in their sketches.

Figure 3.10: A challenge of studying creativity in humans: sketching is very subjective, and it is
difficult to determine how some sketches illustrate the prompt and judge their annotation quality.
This figure shows 4 examples from the prompt-guided sketch text dataset that are hard to interpret.

we could no longer design text prompts ourselves and collect creative sketches like the ones in the

previous pilot, we solved the problem that it was difficult to understand how some sketches illustrated

the given prompts.

The most important objective that this dataset should fulfill is allowing us to study how sketches

share similar semantic parts and descriptions that are adapted to be used for different objects.

We must resolve the issue that some text descriptions in the pilot do not match the drawing.
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Figure 3.11: A major issue with the prompt-guided sketch text dataset: many text descriptions do
not align with the drawings in each step. In this example, annotations for step 1 and 2 are correct,
but in step 3, although the description says the sketch contains legs of the cat, the person have
drawn the cat face, ears, whiskers, and legs. Moreover, in step 4, the annotator has annotated for
parts drawn in the last step. Resolving this problem is very important because we need semantic
part annotations and their corresponding text descriptions to study abstract concept composition.

Therefore, we use semantic part annotations from the Sketch Perceptual Grouping (SPG) dataset,

which provides semantic part labels for each stroke in 20, 000 sketches from the QuickDraw dataset.

In this way, annotators did not need to spend time thinking about how to segment sketches into parts

themselves. Moreover, to help annotators coming up with creative ways to describe the semantic

parts, in each task, we present a pair of sketches with contrasting features, implicitly priming them

to describe the visual differences. (Note that all sketches in figures from this section on come from

the QuickDraw dataset (Ha & Eck, 2017).)
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3.2.2 Interface Design

Main Task Interface

When collecting the previous prompt-guided dataset, we relied on testing the interface with

students in the lab to determine our design, but we observed performance differences between the

students and turkers, such as amount of variety in the sketches, amount of time spent on the task,

and common confusions related to understanding the requirements. Therefore, when collecting the

contrasting sketch text dataset, we deployed several pilots on AMT to design the new interface. In

Figure 3.12, we show how the main task interface progressed from the first pilot to the final version

used to collect the entire dataset.

To better study how similar words are used differently across sketches, we changed to collect ad-

jective phrases (Figure 3.12b, 3.12c) from collecting whole sentences (Figure 3.12a). We juxtaposed

two sketches and highlighted the parts to be annotated in different colors to help annotators notice

the contrasting features. Moreover, this design expedited the annotation process, since it was easier

for people to perform contrasting tasks than to generate descriptions from a single sketch.

We chose the contrasting pairs by rendering each part in the sketches and encode the parts into

image features using CLIP. For every part type, we iterate through the features and pair features

that are the most distinct in terms of cosine distance. For example, to select a pair of sketches with

contrasting body, we render the strokes that depict the body in all angel sketches; all these angel

body sketches are encoded by CLIP, and pairs of bodies that are the most distinct are presented to

the annotators in the format shown in Figure 3.12c.

Instruction and Requirement

At the beginning, the instruction limited the annotators to provide three types of descriptions:

shape, size, and position. However, in order to collect creative descriptions, we lifted restrictions

on the type of words and only required annotators to fill in the blank with adjective phrases. We

also provided some examples of adjective phrases in common sentences, unrelated to our task, for

annotators to better understand their usage (Figure 3.13).

Since we simplified the HIT from 3 sub-tasks, sketching for the prompt, segmenting the sketches,

and describing each step, to only asking for part descriptions, the requirements are much easier to

write. We received less feedback from the annotators on being confused about the kind of sketches

we wanted and the definition of semantic parts, which are now automatically highlighted in the

sketches.
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(a) In the first pilot, we ask annotators to describe differences between the two sketches in full sentence.

(b) Compared to the previous pilot (3.12a), we still ask explicitly the differences between the sketches but
limit annotations to adjective phrases.

We relied on the examples in the instruction to give annotators an idea of what descriptions

we wanted. Some examples that we used in the tasks are shown in Figure 3.15. However, the

downside was that, primed by the examples, annotators described the parts using words in the

examples instead of coming up with a variety of descriptors, and we observed this behavior in the

pilots. Therefore, we emphasized an additional requirement that asked the annotators to not limit

themselves to words in the examples, and they should use any words that could illustrate the parts

well.

Since in the future we want to use our dataset to learn models that can generate sketch parts
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(c) Similar to the last pilot (3.12b), the final version asks for adjective phrases, but we do not state explicitly
that annotators should describe the visual differences to allow for more creativity.

Figure 3.12: Different versions of the main task interface in chronological order. Final version used
to collect the entire dataset is 3.12c.

from text descriptions, the text should pertain to visual properties of the parts, so we required that

Do not use adjectives that fail to describe specific visual properties of the objects in the sketches.

A caveat was that some annotators might consider descriptions about emotions expressed in the

sketches unrelated to visual properties, since they are abstract compared to words like rectangular

and large. We wanted to collect annotations for face sketches, and parts like eyes and mouth can be

smiley or sad, so we added that adjectives describing emotions were allowed.

The requirements used in the final version is shown in Figure 3.14.

Qualification

We prepared 10 qualification questions; all are yes/no questions. We used the qualification test

to train turkers to understand the requirements better. Each question had a hint that stated which

requirement and examples were helpful for solving the question. The purpose of the qualification

test was not to trick annotators but to ensure speed and quality of the annotation. We show one

question from the qualification in Figure 3.16. To see the full test, refer to: https://erinzhang1998

.github.io/portfolio/v2qual. At the end, we recruited 88 annotators to work on our task.

https://erinzhang1998.github.io/portfolio/v2qual
https://erinzhang1998.github.io/portfolio/v2qual
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Figure 3.13: A pop-up window containing examples of adjective phrases, used in collecting con-
trasting sketch text dataset in Section 3.2. It can be opened from the side panel by clicking on
some examples. Note that we used examples that are unrelated to our task on purpose, because
annotators tended to repeat words in examples, so we tried to not bias them.

Figure 3.14: Requirements used in collecting the contrasting sketch text dataset (Section 3.2).

3.3 Dataset Summary

Our dataset contains sketches, their semantic part annotations, and descriptions for every part

in a sketch. The sketches comes from the QuickDraw dataset (Ha & Eck, 2017), and the semantic

part annotations come from the SPG dataset (Li et al., 2018); both datasets are explained in details

in Section 2.

We annotated for 2 categories of sketches: face and angel. For angel sketches, we annotate for
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Figure 3.15: 2 examples used in the instructions to collect the contrasting sketch text dataset (Section
3.2).

the parts halo, eyes, nose, mouth, body, outline of face, and wings. For face sketches, we annotate

for the parts eyes, nose, mouth, hair, outline of face.
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Figure 3.16: Question 3 from the qualification test used to collect the contrasting sketch text dataset
(Section 3.2). We show a hint at the beginning of each question telling the annotators which
requirement this question is testing. In this way, we encourage them to review the requirements to
have a good understanding of the task and can then provide high-quality annotations in the real
HIT. The question interface is the same as the main task interface that annotators will see when
they annotate. The 1-to-1 mock-up helps them to be familiar with the workflow.

Face Angel

Number of contrasting pairs 2515 3060
Number of distinct words 833 1107
Number of sketches 572 787

Table 3.1: Dataset statistics by category.

Face Angel
eyes nose mouth hair face halo eyes nose mouth face body wings

Number of sketches 334 572 572 104 572 558 114 8 80 732 781 779
Number of distinct
words

228 360 325 152 314 365 112 21 88 379 425 534

Number of contrast-
ing pairs

689 401 687 126 612 559 114 8 80 733 785 781

Table 3.2: Dataset statistics by sketch parts. The phrase contrasting pair refers to a pair of sketches
with contrasting features that are presented to the annotators.

In Table 3.2, we present dataset statistics broken down by semantic parts, and, in Table 3.1, we

show the same statistics by sketch category. In Figure 3.17, we show 100 most frequently used words

in our dataset.
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Figure 3.17: Top 100 most frequent words in the dataset corpus. X-axis: number of descriptions
containing the word.

The Creative Birds and Creative Creatures datasets collected by DoodlerGAN (Ge et al., 2020)

contain 2 categories, like ours, but there are 9k sketches in each category, and ours contains one

tenth as many. Although we fall short on the number of sketches and the variety of sketching styles,

we approach creativity from a completely different angle: we focus on how people compose similar

basic shapes to create sketches of different categories and adapt similar language to describe different

sketch parts, as explained in Section 1 and Figure 1.1.

Our face sketches contain 5 different parts, and angel sketches have 7 parts; there are 7 parts in

Creative Birds and 16 parts in Creative Creatures. Again, we do not annotate for as many parts as

DoodlerGAN. However, in our dataset, every part in every sketch has at least 2 different language
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Figure 3.18: Different ways of describing circles (top) and ovals (bottom) in the dataset.

annotations describing the visual features, while DoodlerGAN has no language annotation. With

text descriptions, in addition to part-based generative model, we can study how to generate similar

shapes from different text descriptions. In Figure 3.18, we show how people describe circles using

various descriptors (the figure only contains a subset of ways describing circles). In Figure 3.19a, we

show the variety of language in describing a simple smiley face. Similarly, an example of creative

description of different parts in angel sketches is shown in Figure 3.19b.

Face Angel
eyes nose mouth hair face halo eyes nose mouth face body wings

small 192 143 65 2 9 150 53 8 25 202 64 47
oval 123 7 11 207 258 1 145 42 23
circular 164 12 11 2 192 80 14 1 2 276 10 11
round 175 18 2 1 130 91 8 268 22 45
wide 94 16 193 74 84 2 12 50 120 111
open 118 7 106 37 54 6 1 79 137 26
large 98 41 58 22 66 6 131 54 85
curve 23 52 221 3 17 18 9 1 27 10 58 101
triangular 9 20 9 2 11 10 14 294 42
line 92 27 56 19 1 15 22 3 14 3 93 9

Table 3.3: This table shows how many times each of the top-10 most frequently used word in the
dataset is used to describe different parts in face and angel sketches. For example, small is used in
192 descriptions for eyes in face sketches, and it is used 150 times to describe angel halos. People
use the same words differently depending on the sketching context.

Moreover, using this dataset, we can study how people compose concepts (e.g. large+round)
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(a) Each part in this simple face sketch receives at least 2 descriptions from different annotators.

(b) An example of diverse descriptions for each part in the angel sketch.

Figure 3.19: Two examples from the face and angel categories that illustrate our dataset containing
creative descriptions of sketches despite their simplicity. The caption at the bottom of each image
is provided by annotators to describe the highlighted part in the sketch. For example, the wings are
described as either small, triangular or half-moon.

and apply the same concepts to different semantic parts (e.g. large round eyes and large round

halo). We observe that face and angel sketches share 486 words in total, and for the 200 words that

occur most frequently in the dataset (all used in at least 13 part descriptions), 182 are shared across

the two categories. Therefore, we believe that the datasets would allow us to study how people
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use similar words when sketching different objects. Although we cannot conclude in this project,

we have already found some examples of the meaning of descriptors varied across sketches, after

examining a few words. Figure 3.20 shows an example. In this example, spiky is used to mean

either short hair in face sketches or pointy, edgy wings in angel sketches. Moreover, there is an

implicit orientation change between the two categories of sketches: while spiky hair implies “spike”

in the vertical direction, the phrase, spiky wings, implies jigsaws pointing out from the angel body,

horizontally.

Figure 3.20: Left: face sketches whose hair descriptions contain the word spiky. In faces, the word
refers to short and coarse texture of hair. Right: angel sketches whose wing description contains the
word spiky, which is used to represent the pointy edges on wings.

Compare to the prompt-guided sketch text dataset, we no longer collect sketches that respond

to prompts describing imaginary beings not in this world, such as evil moon; instead, the sketches

belong to some category, face and angel. Therefore, the sketches are not as creative as the ones

we received in the previous version, such as the ones in Figure 3.9. Since we are interested in how

language can guide part-based sketch generation, we chose the contrasting sketch text dataset to

ensure alignment between sketches and their descriptions.
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Modeling

In this chapter, we evaluate CLIP and test its performance on recognizing concepts expressed

through natural language in sketches. We will first introduce the classification task used for evalu-

ation in Section 4.1. We will elaborate on CLIP, its contrastive objective, image and text encoder,

in Section 4.2.

4.1 Task Definition

Given two sketches (s1, s2) and their part annotations (t1, t2), such as the two pairs shown in

Figure 4.1, the task is to match tj with either s1 or s2. We use this task to evaluate the joint

(a) t1: wide triangular body (b) t2: small rectangular body

Figure 4.1: Two angel sketches, s1 on the left and s2 on the right, and their part annotations, t1
and t2. The task is to determine which sketch matches a given tj .

vision-language embedding space of CLIP, which is often used as part of the objective function for

30
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models that generate image from text; the objective function often involves maximizing the cosine

similarity between the generated image and the provided text (or some variants engineered to work

for the particular latent space of the generator used) (Frans et al., 2021; Patashnik et al., 2021; Gal

et al., 2021; Ramesh et al., 2022). Through this task, we can study how well CLIP can recognize

different visual concepts in sketches, and the experiments can help us determine if CLIP can be used

in similar ways to guide part-based sketch generation from language. Moreover, since we give CLIP

the same pairs that were given to the annotators, we can learn if CLIP can understand how people

are using language to describe the visual features of the sketches.

4.2 Method

CLIP stands for Contrastive Language-Image Pre-training, and it seeks to learn image represen-

tations that transfer to a wide range of downstream tasks such as image classification on datasets

with a wide variety of source domains. To do so, it uses the task of pairing images with their corre-

sponding captions for pre-training. CLIP has two main parts: a text encoder and an image encoder,

and both can be transformers. To model our dataset, we fine-tune the pre-trained ViT-B/32 CLIP

model using the clip package (Radford et al., 2021).

In this section, we will first introduce the details of the CLIP contrastive objective (Section 4.2.1).

We will then introduce the pre-trained transformer-based text and image encoders in Section 4.2.2

and 4.2.3, respectively. Lastly, in Section 4.2.4, we explain how we preprocess sketches and texts for

fine-tuning and how we use CLIP to perform the task in Section 4.1.

4.2.1 Contrastive Objective

Pre-trained on 400 million pairs of image-caption data with a contrastive objective, CLIP is able

to learn robust vision-language joint embedding that allows it to perform on par with state-of-the-art

(SOTA) models learnt with supervised objectives (Radford et al., 2021). During pre-training, for

a batch of N (text, image) pairs, CLIP obtains N image features, I1, . . . , IN , and N text features,

T1, . . . , TN , from the encoders. It then calculates dot-product between each pair of normalized

vectors, where there are N × N possible pairing in total, as shown in the grid in Figure 4.2. This

grid is a logit matrix X of dimension N × N and Xij = Ii · Tj . If we normalize the i-th row

(i ∈ [N ]) through softmax (
exp{Xi,i}∑N

j=1 exp{Xi,j}
), we obtain a distribution over the captions representing

the likelihood of pairing the j-th caption with the i-th image. Similarly, normalizing the j-th column

through softmax gives a distribution over all the images of how likely an image pairs with the j-th

caption.
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Figure 4.2: CLIP uses contrastive instead of generative objective for pre-training to learn joint
vision-language embeddings. This image is taken from Figure 1 in the original CLIP paper (Radford
et al., 2021). Each grid contains the dot-product of normalized image and text features.

As explained in Radford et al. (2021), we can treat each batch as containing N visual concepts

expressed through language. By normalizing the rows and columns into distributions, we perform

classification over the N captions for the images and classification over the N images for the captions.

Moreover, we know that the ground-truth is pairing the i-th image with the i-th caption. Therefore,

for classification over captions, we have the ground-truth vector YI ; for classification over images, we

have the ground-truth vector YT , and we know YI = YT =
[
1 2 · · · N

]T
. Similar to standard

multi-class classification, we can use cross-entropy loss as our objective function. The loss LI(X,Y )

of selecting the correct caption for each image:

LI(X,Y ) =
1

N

N∑
i=1

− log
exp{Xi,i}∑N
j=1 exp{Xi,j}

(4.1)

The loss LT (X,Y ) of selecting the correct image for each caption:

LT (X,Y ) =
1

N

N∑
j=1

− log
exp{Xj,j}∑N
i=1 exp{Xi,j}

(4.2)

The final loss is defined as:

L =
1

2
(LI(X,Y ) + LT (X,Y )) (4.3)

In order to minimize the cross-entropy loss, the model has to increase the logits on the diagonal
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of X, which means that it has to learn an embedding space where the feature vectors of the i-th

image and the i-th caption are similar and the feature vectors of the other pairs are far apart. The

term contrastive in the title of CLIP comes from this objective to pull together the real pair in the

joint embedding space.

4.2.2 Text Encoder

Overview of Transformer Architecture

The text encoder of CLIP is based on the transformer architecture introduced in Vaswani et

al. (2017). Transformer relies only on self-attention mechanism to compute a representation for

the input sequence. In this way, it alleviates the computation inefficiency and difficulty capturing

long-range dependencies witnessed in recurrent layers.

Figure 4.3a and 4.4 are the same figures used in Vaswani et al. (2017) to illustrate the transformer

architecture. In Figure 4.3a, Vaswani et al. (2017) gives an overview of the encoder architecture.

Firstly, tokenized texts go through an embedding layer; the input embeddings are summed with

learned position embeddings that inject information on order of the sequence. The input is computed

using Byte Pair Encoding (BPE) with a 49, 152 vocabulary. As explained in the GPT-2 paper, BPE,

a sub-word tokenization scheme, strikes a good balance between word-level and character-level word

embeddings, since one works well with common words and the other with rare sequences (Radford

et al., 2019).

Next, the input is passed through stacked layers multi-head self-attention (MSA) mechanism

followed by point-wise feed-forward networks (FFN). In the version of CLIP that we use, the text

encoder is a 12-layer transformer, and the model dimenison is 512, dmodel = 512, meaning that

output of the initial embedding layers, MSA, FFN all have dimension 512.

Compare to the formulation LayerNorm(x+Sublayer(x)) used in Vaswani et al. (2017) (Figure

4.3a), the CLIP text encoder uses x + Sublayer(LayerNorm(x)) (Figure 4.3b), where Sublayer

refers to either MSA or FFN. Each layer still contains residual connection and layer normalization,

but the order is switched between Vaswani et al. (2017) and Radford et al. (2021).

Multi-Head Self-Attention

As illustrated in Figure 4.4, given query, key, value matricies Q,K, V (in our case, all three

matrices equal to the input text embeddings), transformer uses different linear projections to create
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(a) Encoder architecture used in original Transformer
paper; the figure is taken from Figure 1 in Vaswani et
al. (2017).

(b) Encoder architecture of CLIP (Radford et al.,
2021).

Figure 4.3: Text encoder architecture: the text encoder is a transformer with stacked layers of
self-attention and feed-forward network sublayers. The main implementation difference between the
original Transformer (on the left) and the transformer implemented by CLIP is the placement of
layer normalization.

Figure 4.4: An illustration of the scaled dot-product attention on the left; on the right, an illustration
of the multi-head self-attention mechanism (MSA) used in every layer of the transformer. Both
figures are from the original Transformer paper (Vaswani et al., 2017).

multi-head attention, and Vaswani et al. (2017) explains the benefit of multi-head attention as

allowing the model to attend simultaneously to multiple representation subspaces of the input.
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MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

headi = Attention(QWQ
i ,KWK

i , V WV
i )

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

(4.4)

ViT-B/32 uses a version with h = 8 attention heads, so WQ
i ,WK

i ∈ Rdmodel×dk and WV
i ∈

Rdmodel×dv , where dk = dv =
dmodel

h
= 512

8 = 64. At the end of the multi-head attention mechanism,

the weighted combination of values from each head is concatenated together and passed through a

linear layer, represented here as WO ∈ R(dv×h)×dv . CLIP uses the “Scaled Dot-Product Attention”

in Vaswani et al. (2017), illustrated in details in Figure 4.4. The dot products between queries and

keys determine the weights that are used to sum the values; in this way, we have a contextualized

representation; compared to convolutions that use static kernels, attention weights are dynamic.

4.2.3 Image Encoder

The image encoder of CLIP uses Vision Transformer (ViT) introduced in Dosovitskiy et al.

(2020). The architecture of ViT is based on the original transformer introduced in Vaswani et al.

(2017). In order to reuse the transformer model, ViT needs to first turn an image of size H×W ×C,

(H, W , C stands for image height, width, channel size, respectively), into a sequence of “tokens”,

similar to the text input. To do so, Dosovitskiy et al. (2020) reshapes the image to size N × (P 2 ·C),

where N is the number of patches and P the patch size; the reshaped image can be seen as a sequence

of N image tokens, each having a dimension of P 2 · C. Each image token is then passed through a

linear layer to be mapped to dimension D, similar to the model dimension dmodel earlier.

In the version of CLIP that we used, all input images have dimension 224 × 224, the patch

size P = 32, and the output of the initial embedding layers, MSA, FFN all have dimension 768

(D = 768). As explained in Dosovitskiy et al. (2020), before passing into the transformer, we also

need to prepend a [class] token at the front of the sequence, whose embedding at the last layer

of the transformer will be used as the representation for the entire image. In this way, each image

is represented as a sequence of 7 × 7 + 1 = 50 tokens, illustrated as pink boxes in Figure 4.5. The

purple boxes that are right next to the patch embeddings represent position embeddings, with a

similar function to encoder sequence order information as in the text transformer. For the CLIP

image encoder, layer normalization is applied to the input before passing into the transformer and

to the output at the last layer.
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Figure 4.5: Vision Transformer (ViT) architecture (Dosovitskiy et al., 2020).

4.2.4 Fine-Tuning CLIP

We fine-tune CLIP with our dataset containing (sketch, part description) pairs. Our sketches

come from the QuickDraw dataset (Ha & Eck, 2017), and the semantic part annotations come from

the SPG dataset (Li et al., 2018). We collected text descriptions from turkers for every part in face

and angel sketches; details of the data collection process are in Section 3.2, and we summarize the

dataset in Section 3.3.

Sketch Preprocessing

The QuickDraw sketches are stored in vector format: each sketch is composed of a sequence of

n strokes Si, i ∈ [n], and each stroke Si is a sequence of vectors (δx, δy, p, l). δx and δy are changes

in the x, y coordinates with respect to the previous point; for the first point, its coordinate is with

respect to the point (25, 25). All points are assumed to be drawn on a 256 × 256 canvas. p = 1 if

the point is the last point in the current stroke, and p = 0 otherwise. The SPG dataset provides

annotation for semantic segmentation of the sketches (Li et al., 2018), and l is an integer representing

which semantic part the current point belongs to. For face sketches, the parts can be eyes, nose,

mouth, hair, or outline of face; for angel sketches, the parts can be halo, eyes, nose, mouth, body,

outline of face, or wings.

During training, we render the sketches from the vector format into PNG images using the

python package cairocffi. To augment the data, we did: (1) sample stroke width uniformly from

the range [2.5, 12.5]; (2) rotate the sketches randomly by sampling an angle from the range [−π
4 ,

π
4 ];

(3) scale the sketches with the scale factor sampled from the range [0.75, 1.25]; (4) translate the

strokes vertically or horizontally with 0.15 as the maximum absolute fraction translation.



4.2. METHOD 37

Text Preprocessing

We used the spaCy package to preprocess the text (Honnibal & Montani, 2017). spaCy provides

trained natural language processing pipeline and includes models for, for example, token-to-vector

and part-of-speech tagging. We use the en core web sm pipeline and its lemmatizer to reduce words

to their basic forms. Moreover, we lower-case all words and remove punctuation, a list of which

is provided by Python string package, string.punctuation. We also remove words like shaped,

sized, and, like, since they act like stop words and do not provide additional visual descriptions of

the sketches. Text descriptions are also tokenized by CLIP’s tokenizer before passing into CLIP text

encoder.

Fine-tuning Objective

We used the same loss function and model pipeline as the one used for pre-training CLIP,

explained in details in Section 4.2.1. In a batch of size N , we have N pairs of sketch and description

for one of the semantic parts in the sketch. For example, Figure 4.1a is a pair of an angel sketch

and description for the angel body, wide triangular body. Through fine-tuning, CLIP should adjust

its embedding space so that text feature for wide triangular body and image feature for the sketch

in Figure 4.1a are close in cosine similarity. During fine-tuning, we tried batch size N ∈ {64, 128}
and learning rate α ∈ {1 × 10−5, 5 × 10−6, 2 × 10−6, 1 × 10−6, 7 × 10−7, 5 × 10−7, 1 × 10−7}. We

present the best results in Chapter 5. To see all plots and parameters used in fine-tuning, refer to

our Weights & Biases project page: https://wandb.ai/erinz/clip-finetune/overview.

https://wandb.ai/erinz/clip-finetune/overview


Chapter 5

Results & Analysis

In this chapter, we present experiment results and analysis to understand the language used to

describe sketch parts. We found the following:

1. CLIP, despite its large pre-trained corpus, cannot easily generalize to unseen category on the

task of pairing sketches with their descriptions. This indicates that the relationship between

natural images and language cannot be easily translated to sketches and their descriptions.

(Section 5.1)

2. Average cosine distance has increased between a pair of descriptors that are used by annotators

to differentiate two sketches, suggesting that word embeddings extracted from the fine-tuned

CLIP can better reflect the contrasting nature of these pairs, compared to pre-trained CLIP.

(Section 5.2)

5.1 Classification Experiment

As explained in Section 4.1, annotators provide descriptions (t1, t2) to differentiate the two

sketches (s1, s2) presented to them, and from this process, we have the ground-truth pairing of

(s1, t1) and (s2, t2). We use CLIP to decide which sketch should be paired with description tj , and

the results are reported in Table 5.1.

Compare to the zero-shot performance, fine-tuning on a single category would increase per-

formance significantly on the category: for face, accuracy increased 16.3% on the test set after
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Model Face Angel
Test Dev Test Dev

zero-shot 53.8 54.6 56.4 57.2
finetuned on face 70.1 68.5 58.1 57.5
finetuned on angel 58.1 61.0 67.2 70.5
finetuned on face + angel 74.3 71.7 70.4 71.0

Table 5.1: Accuracy (%) of CLIP on choosing the correct sketch for a given text description from
a pair of sketches. During annotation, the annotator is given the pair of sketches and provided
descriptions of certain parts in the sketches for both sketches.

fine-tuning on face; performance increased 10.8% on the angel test set after fine-tuning on angel.

The increase demonstrates that CLIP has adapted its embedding space and has learned to associate

sketches with their part descriptions. However, CLIP fine-tuned on a single category cannot gen-

eralize easily to unseen category: only 1.7% increase on angel when fine-tuned on face, and 4.3%

increase on face when fine-tuned on angel. The two categories share vocabulary, and similar shapes

appear in the two categories, but CLIP does not generalize as easily as expected. Concepts like

big and small appear in both categories, but it is not guaranteed that CLIP can recognize them in

sketches from unseen category.

Transferring from angel to face results in slightly better performance compared to transferring

from face to angel (+4.3% vs. +1.7%). One likely explanation is that the angel category contains

more sketches (787 vs. 572) and a larger vocabulary (1107 vs. 833), so CLIP performed better

because it has seen more sketches and has familiarized itself with the domain, and it has learned

from a wider variety of ways that sketches can be described. A second explanation is that angels

contain all face parts (eyes, nose, face outline, mouth) except hair, but face sketches do not contain

body, wings, and halo, which are the most definitive features of angels. Therefore, CLIP, after

learning how face parts are described through a few angel sketches that contain them, can recognize

face sketches better. However, when it encounters angel sketches with unseen parts and new usage

of words seen in the face category, it fails to transfer the learned concepts to angels.

Fine-tuning on both categories results in slightly better performance than fine-tuning on a single

category. CLIP has the capacity to learn how different words are used in both categories, but it

cannot transfer the learned concept across categories. Moreover, CLIP uses words in the WordNet

synsets to search for images to construct the datasets used for pre-training, and 88% of all words

in our datasets exist in WordNet, meaning that CLIP has seen them and how the visual concepts

are demonstrated in images, but it cannot adapt the concepts to a different visual domain, sketches,

without fine-tuning from sketches in both categories.
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5.2 Word Similarity Experiment

In order to learn more about how have relationships between word embeddings changed through

fine-tuning, we use cosine similarity as a metric to measure how close two words are. During

annotation, we present two sketches with contrasting parts (for example, a face with big eyes and

another with small eyes, like Figure 5.1) to the annotators and ask them for descriptions of the

parts. We do not explicitly tell them that the eyes are different in sizes, yet it is highly likely that

they would provide descriptors that can indicate this visual differences.

We extract all tuples of words from a pair of contrasting descriptions. In the case of Figure 5.1,

one annotator provide the descriptions large circular eyes for the sketch on the left and tiny solid

eyes for the other; from these two descriptions, we can extract 4 pairs of contrasting descriptors:

(large, tiny), (large, solid), (circular, tiny), and (circular, solid). There are a total of 9, 823 pairs,

and the top 20 most frequent pairs are shown in Table 5.2. For example, the pair small and large

are use 228 times by annotators to contrast certain parts in the two sketches across face and angel

sketches.

Figure 5.1: An example pair of sketches with different eyes that was presented to annotators. We
do not pre-define a list of attributes and ask the annotators to determine whether the sketches are
different in these attributes; instead, we highlight the parts in colors and implicitly prompt them
to pick up on the differences. As expected, most annotations naturally include the size and shape
differences. From the descriptions, we can extract pairs of antonyms used to indicate opposite visual
concepts. In this case, the annotation was large circular eyes for the sketch on the left and tiny solid
eyes for the one on the right.

We consider two words in each pair as “antonyms”, because they represent two opposite visual

concepts in the two sketches. It is in cases like this that our common understanding of synonym

and antonym falls short: (large, tiny) might align with most people’s idea of two words opposite in

meaning, and (large, solid) do not appear as antithesis of each other, but the pair is used for the

purpose of differentiating the sketches. Therefore, from a pragmatic perspective, these words are

antonyms in our dataset.

After fine-tuning CLIP to learn to contrast sketches with these descriptions, we expect that the
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word 1 word 2 #occurrences

small large 228
circular oval 142
wide narrow 124
small round 112
wide small 108
oval small 100

circular small 94
oval round 92
close open 83
big small 71
short long 68
curve wide 68
thin wide 61
open small 60
oval wide 60
large round 55
round uneven 53
oval open 51
open circular 47
curve small 46

Table 5.2: 20 pairs of descriptors most frequently used by annotators to differentiate parts in face
and angel sketches. There are a total of 9823 pairs, and 7194, or 73.2%, pairs are used only once in
the dataset.

similarity between contrasting words to decrease. Indeed, as shown in Table 5.3, we see a trend that

as CLIP learns from more pairs of (sketch, part description) in our dataset, the word embeddings

of contrasting words become dissimilar.

avg cosine sim

zero-shot 0.833
finetuned on face 0.752
finetuned on face + angel 0.691

Table 5.3: Average cosine similarity.

Across the entire dataset, there are
(
1450
2

)
, about 1 million, pairs of words, whether they are

used in contrasting descriptions or not, and 99.9% of the pairs decreased in cosine similarity, from

pre-trained CLIP to CLIP fine-tuned on face and angel sketches. One possible explanation is that

we collected our data by presenting two sketches with contrasting features, but it could also be a

general trend of CLIP fine-tuning on additional datasets, and we need future studies to give an

definitive answer.

We only see increase in cosine similarity in 824 pairs of words. When we look at the top 20 pairs

of words with the most increase in cosine similarity, we see that 18 pairs include the word slash,

which appears only once in our entire dataset. The increase is less than 0.06, compared to a decrease
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of 0.65 for the pair that has the largest decrease in similarity. If we only look at pairs of words that

are among the 250 most frequent words, pairs whose cosine similarity has increased the most are

arrow, smiley, circle, arrow, trilateral, triangular. However, the increase is still too marginal, ≈ 0.02,

for us to conclude anything meaningful about the text embeddings of the fine-tuned CLIP model.

Therefore, we cannot provide reasons for the marginal increase, and it is likely to be a chance event

due to rare occurrences.
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Future Work

Firstly, there are many creative uses of language in our dataset, and in future work, we want

to investigate what categories of creative usage are there and quantify how many cases are in each

category. Most of our current characterization of the dataset are based on looking through a few

examples in the datasets (there are a total of 11K!). As explained in Section 3.3, since we did not

limit what language annotators could use during data collection, the dataset contains a variety of

ways of describing the same concept. For example, for a nose that looks similar to the one in Figure

6.1, annotators describe it as hook-shaped, c-shaped, inverted j, curved, etc. We believe that this

case is not the only one, and we want to quantify the diversity. In this way, we can evaluate how a

multi-modal embedding space, such as the CLIP joint embedding, captures these relationships. Is

the feature vector of the sketch collinear with the word features of every one of these words?

Figure 6.1: For the nose in this face sketch, our dataset contains a variety of descriptions: hook-
shaped, c-shaped, inverted j, etc. We want to investigate how many of these creative usages are there
in our dataset.

Secondly, we have observed that face and angel sketches share many visual concepts. These

could be related to length (long, short), size (big, small), geometry (circular, triangular), direction

(horizontal, vertical), and many more. We want to evaluate more thoroughly which concepts are

shared and which ones are unique to each category. In this way, we can understand better the
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challenges around generalizing CLIP to unseen categories, indicated by results in Section 5.1.

Lastly, we want to learn a generative model that can produce sketches in a part-based manner,

guided by language instructions. For example, people have experimented with DALL-E and have

generated a wide variety of interesting images from captions, including sketches (Ramesh et al., 2021,

2022). However, none of the publicly available versions have the same power and cannot generate

images as high-quality as those in the original DALL-E paper. Therefore, we could try training it

using public repository, such as https://github.com/lucidrains/DALLE-pytorch, on our dataset,

since some people have successfully done so. Another approach is experimenting with some variants

of GAN guided by CLIP objective, similar to the models presented in Yuan et al. (2021); Gal et al.

(2021); Karras et al. (2019).

https://github.com/lucidrains/DALLE-pytorch


Appendix A

Designing the Requirement Section

As explained in Section 3.1.2, when drafting requirements for collecting the prompt-guided sketch

text dataset, we iterated through several versions, and here we show the progression. An excerpt

from an old version of the instructions, in which we tried to explain a single step of the annotation:

In each task, we show 1 prompt from which we would like to get

1. A drawing containing 1 entity that you think illustrates the prompt.

2. Text annotation for every “component” that makes up the entity. The word “com-

ponent” is intentionally vague, and it depends on how you compose your drawing.

For example, in the above example, the prompt is “smiley face”, and during the

process of creating a “smiley face” entity, we used 4 components: a face, a left eye,

a right eye, and a mouth. For each component, you can annotate with “face”, “left

eye”, “right eye”, “mouth”, respectively; you can also annotate with more details

describing the shapes of each component: “face that looks like an arc opening down-

wards”, “a left eye that is an arc”, “a right eye that looks exactly like the left eye”,

“an arc-like mouth”. Try to use creative and descriptive languages. You can draw

a component using multiple strokes.

Requirements and selected examples used in the first version of the requirement:

1. Do not draw entity that does not respond to the prompt. For example, given the prompt

Smiley Face, the drawing should not contain irrelevant objects like a house.

2. Do not draw more than one entity that responds to the prompt. For example, One should not
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draw two Smiley Face entities, although each Smiley Face entity is good. However, you can

draw multiple tree objects to illustrate the prompt Forest.

3. Do not draw entity that is ambiguous in terms of illustrating the prompt. For example, the

drawing (Figure A.1) looks more like a Sad Face than Smiley Face.

Figure A.1: An example included in the first version of the requirements.

4. Do not draw one component that contains more information/content than what the annotation

for that component describes. (A counterexample is illustrated in Figure A.2.)

Figure A.2: An example of unaligned drawing and text description.

5. Do not split the drawing of a component into multiple steps, unless you can annotate each

step separately. (A counterexample is illustrated in Figure A.3.)

6. Do not annotate a component more than once.

Second version of the requirement section in text-guided sketch text dataset:
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Figure A.3: An example of misalignment: text description overflow into multiple steps.

1. Draw one item at a time and provide its corresponding annotation. For example, the text

annotation says “left eye”, but two items are drawn: a left eye and a right eye.

2. The annotation should describe its corresponding item in the drawing entirely.

3. The annotation should name the item.

4. Desired properties of good drawings:

• Contain as many items as possible, but be sure that they all contribute to illustrating the

prompt. For example, draw more than just two eyes for a face.

• Use shapes creatively. For example, draw a triangle for the left eye, and annotate accord-

ingly with “triangular left eye that shows suspicion”.

5. Desired properties of good annotations:

• Use descriptive languages. For example, “a left eye that looks an arc facing downward”.

• Include the intention/purpose of drawing an item. Explain in the annotation reasons for

drawing the item. For example, “thumbs-up next to the face that really shows how happy

the face is”.

Third version of the requirement section in text-guided sketch text dataset:

1. Each drawing should contain at least 2 steps.
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2. Annotation of each step should include at least the name of the drawn object(s).

3. If draw multiple copies of the same object, draw each object in a separate step and give different

annotations by using, for example, cardinal or ordinal numbers. (An example shown in Figure

A.4)

4. Differentiate between plural and singular forms.

5. The name of the whole should not be used for its parts. (An example shown in Figure A.4)

Figure A.4: A counterexample used in third version of the requirements.

6. The word ”right” always refers to this side: =⇒
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