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Abstract

Deep learning has increasingly begun to be used across a wide range of computing applications. Dyna-
mism—the property where the execution of a computation differs in some way across different inputs—
has been shown to be an important tool in enabling deep learning models to effectively adapt to and
model the varying structure of input data in various domains, thereby achieving high accuracy. On
the other hand, dynamism often makes batching, an important performance optimization for deep
learning computations, difficult to apply. This thesis presents techniques to enable efficient auto-
batching—automatically enabling batched execution for a computation—for dynamic deep learning
computations. Specifically, we consider two kinds of dynamism commonly exhibited by deep learning
computations—control flow dynamism, where the model computation involves control flow structures
such as conditional statements, loops and recursion, and shape dynamism, where the model computa-
tion involves computation with tensors of different shapes across different input data.

Past work has proposed a variety of approaches towards tackling the auto-batching problem in the
presence of dynamism. However, we note that past work is characterized by significant fragmentation
from a compilation and execution point of view. Techniques often target individual components of
the compilation and runtime stack without taking a holistic view of the entire stack, and hence the
entire computation into account. For instance, tensor kernels are often optimized in isolation, without
knowledge of the larger surrounding computation, while auto-batching techniques often primarily rely
either on compile-time program transformations, or on runtime analyses, rather than an end-to-end
approach.

Taking these limitations of past work into account, the techniques in this thesis explicitly attempt
to remove the fragmentation present in today’s deep learning stacks to enable efficient auto-batching.
Specifically, we rely on two insights (1) hybrid static+dynamic analysis to exploit all the available par-
allelism while keeping the runtime overheads to a minimum and (2) allowing the flow of information
across the compilation and execution of tensor operators and the surrounding computation. These
insights enable us to obtain significant gains over past work. For instance, Cortex, which is a com-
piler specialized for recursive deep learning computations achieves up to 14× faster inference over past
work, while ACRoBat, an auto-batching framework that can handle unrestricted control flow is up to
8.5× faster. On the other hand, CoRa, a tensor compiler we designed for efficient batch execution in
the presence of shape dynamism performs on-par with highly hand-optimized implementations of the
transformer model.
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1 Introduction

Since AlexNet [67]’s extraordinary success in the ImageNet Large Scale Visual Recognition Challenge
in 2012, the field of deep learning has grown exponentially, expanding beyond the traditional domains
of image and natural language processing and being incorporated in some way or the other in most
domains of computing. Deep learning models, which are the central abstractions used in deep learning,
therefore have been designed to operate on a wide variety of data such as spatial images, temporal
signals, relational data, molecular graphs, and so on. Beyond the ability to support these disparate kinds
of data, deep learning also needs to be amenable to highly efficient execution due to its importance to
the modern computating landscape today.

In deep learning, data are often modeled using tensors, which are multi-dimensional arrays, most
often containing real numbers. As a consequence, deep learning computations usually involve com-
putations on tensors, expressed in terms of common tensor operators such as linear transformations,
non-linear activations and so on. Most tensor operators can be expressed as nested loop computations
over the multi-dimensional input tensors to produce an output tensor. Figure 1.1 shows the structure of
some common deep learning models and the tensor operators they employ as part of their computation.

1.1 Dynamism in Deep Learning Computations

In order to effectively model and perform learning on data, deep learning models and computations
in general1 are often designed to mirror the structure of the input data. For instance, image processing
models often rely on the 2-dimensional convolution operator, while sequence models such as recurrent
neural networks (RNNs) [108] iterate over the tokens of an input sequence in order. Such a design
allows better modeling of the underlying data distribution and therefore leads to better deep learning
outcomes.

Execution Dynamism, or dynamism for short, is an important technique that deep learning reseachers
often rely on in order to design such expressive models. Informally, we say that a deep learning compu-
tation exhibits dynamism if the execution of the computation may differ in some way across multiple
inputs. For example, the RNN model executes as many iterations as there are tokens in the input se-
quence. Therefore, its execution (specifically the number of iterations it executes) differs across multiple
input sequences of varying lengths and it is therefore referred to as a dynamicmodel. On the other hand,

1In this thesis, we use the term deep learning computations to include specific deep learning models, as well as other
supplementary computations used in deep learning such as beam search decoding [131], or larger deep learning applications
composed of multiple deep learning models.
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Figure 1.1: Two example deep learning models: An encoder layer of a transformer [137] and a Long Short
Term Memory (LSTM) [49] cell.
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(b) Shape dynamism in transformers.

Figure 1.2: Illustration of control flow and shape dynamism in deep learning computations.
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1.2 Batching as a Performance Optimization in Deep Learning
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Figure 1.3: Auto-batching for static deep learning computations.

AlexNet executes the same set of operations in the same order for all input images, and therefore does
not exhibit dynamism. Such models are referred to as staticmodels. We will further explore dynamism
in different deep learning computations in Chapter 2.

In this thesis, we focus our attention on deep learning computations that exhibit either control flow dy-
namism or shape dynamism. A computation is said to exhibit control flow dynamism when different inputs
may follow different control flow paths during the execution. RNNs exhibit control flow dynamism.
Specifically they exploit iterative control flow in order to process temporal sequences. On the other
hand, a computation is said to exhibit shape dynamism when the execution of the computations in-
volves tensors of varying shapes across different inputs. A common example is the transformer model,
where depending on the length of the input sequence, the intermediate tensors have different shapes.
We illustrate these different kinds of dynamism in Figures 1.2a and 1.2b.

1.2 Batching as a Performance Optimization in Deep Learning

In general, batching the execution of multiple computational tasks instead of executing them separately
often leads to significant performance improvements by, for instance, amortizing execution overheads
over the entire batch of tasks. Similarly, in deep learning computations, batching the execution for
various data inputs is often found to improve throughput and underlying hardware utilization. As we
saw above, deep learning computations are usually composed of various tensor operators. Executing a
computation in a batched fashion therefore boils down to executing each tensor operator involved in
the computation over an entire batch of inputs, to produce a batch of outputs. This is illustrated for a
static model in Figure 1.3.

Due to the fact that batching is primarily a performance optimization, deep learning practitioners of-
ten prefer designing and implementing unbatched implementations of deep learning models. An unbatched
implementation of a computation is an implementation which performs execution over one data input
at a time. Therefore, it is preferable for a deep learning framework to automatically enable batched
execution of an unbatched implementation of a computation. In this thesis, we refer to this process,
illustrated in Figure 1.4, as auto-batching.
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Figure 1.4: The auto-batching problem.

A deep learning framework can perform auto-batching either during compilation, or during execu-
tion. When performed during compilation, the framework statically transforms the input unbatched
computation to emit a batched implementation of the same computation, which is then executed. On
the other hand, when performed during execution, the deep learning framework lazily executes the
unbatched computation for all the data inputs in the batch and then, at runtime, identifies opportuni-
ties to execute different tensor operators in a batched fashion. We will look at this process, referred to
as dynamic batching, in more detail in Chapter 2.

1.3 The Problem: Auto-batching in the Presence of Dynamism

As we saw above, static computations execute the same sequence of tensor operators for all inputs over
tensors of known shapes. It is therefore straightforward to perform static auto-batching for such compu-
tations by essentially replacing every tensor operator involved in the computation by the corresponding
batched operator. Note how the batched linear operator in Figure 1.3 has an additional loop corre-
sponding to the additional batch dimension2. Modern deep learning frameworks such TensorFlow
and PyTorch can in fact perform auto-batching for such computations during compilation. On the
other hand, the compiler lacks perfect execution knowledge about the unbatched input computation
in the presence of dynamism. This makes efficient compile-time auto-batching difficult, as past work
has shown.

Let us take the example of the RNN model to illustrate this further. The execution of this model
over a batch of input sequences of varying lengths is shown in Figure 1.5. Due to the variation in the
number of iterations executed for each input sequence, the simple auto-batching scheme we saw above
would not work. At best, we would have to pad the input sequences so that they are all of the same
length as shown in the bottom part of the figure. This would, however, lead to wasted computation on
the added padding data, thereby leading to sub-optimal performance.

On the other hand, when attempting to execute the transformer model, which exhibits shape dy-
namism, in a batched fashion on a batch of input sequences of varying lengths, one has to perform
operations on ragged tensors [129] as shown in Figure 1.6. Ragged tensors are tensors the slices of one
or more inner dimensions of which have variable sizes. Executing tensor operators on such ragged ten-

2Note also how the model parameter W is shared across multiple iterations of this batch loop. This data reuse is one
reason for the performance benefits obtained due to batching.
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1.4 Fragmentation in Past Solutions
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state = initial_state
for word in sentence:
  state = RNNCell(state, word)
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Iteration over words

RNNCell Padding

Figure 1.5: Simple auto-batching when applied to RNNs leads to wasted computation.

input_batch = [
[I, am, fine],
[My, first, name, is, John],
[The, song, rocks, !],
[Hello]

]

I am fine

Hello
The song rocks !
My first name is John

Input batch of variable-
length sentences

Input batch as a ragged tensor
(Each box is a word embedding vector)

Transformer

Figure 1.6: Batching in the presence of shape dynamism leads to computations on ragged tensors.

sors is not straightforward. As with the RNN example above, one can pad the tensor so it is essentially
transformed into a dense tensor. As we shall see in Chapter 5, here too, such padding can lead to high
performance penalties.

1.4 Fragmentation in Past Solutions

There has been significant work that addresses the problem of auto-batching for dynamic deep learning
computations. Below, we give a high-level overview and discuss some downsides of this body of work.
We further explore this in Chapter 2.

1.4.1 Fragmentation Between the Compiler and the Runtime

We saw above how our simple static auto-batching technique does not lead to efficient batched exe-
cution for models that exhibit control flow dynamism. Past work has explored other program trans-
formations, often akin to those used to solve the related auto-vectorization problem, for this purpose.
Due to the compile-time nature of these techniques, they are often very conservative in the kinds of
transformations they can perform, or too restrictive in the kinds of control flow patterns they support.
For example, Jax’s vmap and pmap primitives, which implement static auto-batching, do not support
control flow structures such as recursion. On the other hand, past work has also explored runtime
techniques and analyses to perform auto-batching, on the lines of the dynamic batching approach out-
lined above. This includes frameworks such as DyNet and TensorFlow Fold. The heavy reliance on
dynamic analysis in such approaches, however, can lead to high execution overheads and therefore low
end-to-end performance.
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In general, we note that past work for auto-batching in the presence of control flow dynamism has
tended to either rely primarily on static or on dynamic analyses. As we show in the later chapters, this
fragmentation between the compilation and the runtime stages of the deep learning workflow can lead
to inefficiencies in the execution of the computations.

1.4.2 Fragmentation Between Tensor Kernels and the Surrounding Computations

Traditionally, deep learning workflows have optimized and compiled the individual tensor operators
involved in a computation separately from the surrounding computation which dictates how the tensor
operators are invoked. This has often manifested in the use of tensor kernels implemented in libraries
provided by hardware vendors (or vendor libraries, for short) such as cuDNN for Nvidia GPUs, Intel
oneDNN for Intel CPUs and AOCL for AMD CPUs. More recently, the use of tensor compilers
for automatically generating and optimizing tensor operators has also increased. Even in these cases,
the kernels are often optimized in isolation from the surrounding computation. In general, this frag-
mentation between the handling of tensor kernels and the surrouding computation can also lead to
sub-optimal end-to-end performance.

In the case of shape dynamism, specifically, this can lead to an impedance mismatch between the
dynamism exhibited by the computation and the operations provided by vendor libraries or tensor
compilers. The latter two most commonly implement operations on dense or sparse tensors, either
of which, when used for executing operations on ragged tensors, can cause significant performance
degradation.

1.5 Thesis Statement and Contributions

As we saw above, past work for auto-batching in the presence of shape and control flow dynamism
suffers from fragmentation along two axes—across the compiler and the runtime, and across the com-
pilation and execution of tensor kernels and the larger surrounding computation. Accordingly, in this
thesis, we propose and provide evidence for the following hypothesis:

Efficient and performant auto-batching for deep learning computations exhibiting control flow and/or shape
dynamism can be achieved via (1) the use of hybrid static and dynamic program analyses, rather than either
of them individually, and (2) allowing the flow of information across the compilation and execution of tensor
operators and the surrounding computation.

Concretely, we design and evaluate the following three compiler-based frameworks to support this
hypothesis (the structure of the thesis is also illustrated in Figure 1.7.):

Cortex

Cortex (Chapter 3) is a compiler we design to accelerate inference for recursive deep learning com-
putations. By specializing for the control flow structure of execution of such recursive computations,
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1.5 Thesis Statement and Contributions
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Figure 1.7: Structure of this thesis.

Cortex intelligently splits the input recursive computation into a lightweight recursive data structure
traversal which can be executed on the host CPU and iterative tensor computations which can be ex-
ecuted on the deep learning accelerator. This reliance on a lightweight dynamic analysis in the form
of the data structure traversal, the code for which can be generated automatically by the compiler, can
be seen as an example of the aforementioned hybrid static and dynamic analysis. Further, Cortex per-
forms an end-to-end compilation of both the surrounding control flow and the tensor operators as part
of the same pipeline. This design allows Cortex to enable highly efficient execution of recursive com-
putations, performing up to 14× faster than DyNet [84, 85] which implements a completely runtime
auto-batching technique. Chapter 3 describes Cortex in further detail, while Appendix A provides
other supplementary material on the same.

ACRoBat

Cortex provides encouraging evidence for our aforementioned twin insights of hybrid analysis and
end-to-end compilation. Next, we describe ACRoBat, a compiler and runtime framework to enable
auto-batching in the presence of unrestricted control flow dynamism. In the absence of intimate knowl-
edge about the execution of the input computation, ACRoBat relies on dynamic analysis much more
heavily as compared to Cortex. However, ACRoBat also employs aggressive compile-time analysis and
program transformations to reduce the execution overheads of its dynamic analysis. Further, as com-
pared to Cortex, ACRoBat automates the optimization of tensor kernels, while taking the context of
the larger surrounding context into account. ACRoBat’s design of a holistic compilation and runtime
stack enables it to be up to 8.5× faster than DyNet, and only at most two times as slow as Cortex, while
supporting a much wider range of computations in a more user-friendly manner. Chapter 4 describes
ACRoBat in further detail.

CoRa

Moving on to efficient batched execution in the presence of shape dynamism, Chapter 5 (in conjunction
with Appendix B) describes our design of CoRa, a compiler that enables one to generate efficient
implementations of ragged tensor operators on CPUs and GPUs. CoRa is built on the insight that after
some cheap runtime pre-computations (another example of hybrid static and dynamic analysis), one
can generate highly efficient ragged operator implementations, in a manner similar to current dense
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tensor compilers. Further, CoRa’s use of partial padding enable it to enjoy most of the benefits of full
paddding, without the accompanying performance penalties. Overall, such a design enables a CoRa-
generated implementation of the transformer model to perform on-par with FasterTransformer [88],
a highly hand-optimized implementation of the same.

In addition to the chapters and appendices mentioned above, Chapter 2 explores in more detail the
kinds of control flow and shape dynamism exhibited by deep learning computations and also surveys
and describes more deeply the past work undertaken in order to enable auto-batching in the presence
of dynamism.
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2 Background

This chapter provides the necessary background upon which the techniques of this thesis are built. First,
in §2.1, we explore in more detail the dynamism found in various deep learning computations. §2.2
then gives a high-level overview of what a common deep learning compilation workflow looks like, in
the context of the auto-batching problem, while §2.3 explores some of the past work that has been done
towards enabling efficient auto-batching in the presence of dynamism.

2.1 Dynamism in Deep Learning

In Chapter 1, we saw how in recent years, highly expressive deep learning models have often involved
dynamism. Below, we will look at how different deep learning computations exhibit control flow and
shape dynamism as part of their execution.

2.1.1 Dynamic Control Flow in Deep Learning Computations

As discussed before, a computation is said to exhibit control flow dynamism when different inputs to
the computation may follow different control flow paths during execution. This behaviour is most often
achieved via the use of control flow constructs such as iteration, recursion, conditional statements, and
so on1. Such computations also often rely on irregular data structures and perform manipulations
on them. For example, as discussed below, a lot of recursive computations work on data structures
such as trees and graphs, while the StackLSTM [33] model includes, as part of its execution, an entire
shift-reduce parser and its corresponding stacks. Thus, there is a wide variety of dynamic control
flow patterns found in deep learning computations. Below, we explore some control flow structures or
patterns commonly encountered in deep learning computations2. This discussion is also summarized
in Table 2.1.

Control Flow Surrounding Static Blocks

We observe that for most ML computations exhibiting control flow dynamism, the dynamic control
flow surrounds tensor computations. Consider the simple sequential RNN model implemented by the

1Recall the RNN model computation we saw in Chapter 1, which relied on iterative control flow.
2Given such a computation involving control flow, there are often multiple ways to implement it. We consider the most

natural way to implement a given computation. For example, a top-down tree traversal can be implemented as a breadth-first
traversal (BFS) or a depth-first traversal (DFS). While a BFS traversal maybe more efficient, the DFS-based traversal is more
natural to implement.
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2 Background

@rnn function shown in Listing 2.1. Here, we see that the sequential control flow surrounds an RNN
cell on lines 5 and 6, which is a sub-graph of tensor computations with no intervening control flow. We
refer to such a block of tensor computations as a static block.

1 def @rnn(inputs, state, bias, iweight, hweight) {
2 match(inputs) {
3 Nil => Nil,
4 Cons(input, tail) => {
5 let input_linear = bias + nn.dense(input, iweight);
6 let new_state = sigmoid(input_linear + nn.dense(state, hweight));
7 Cons(new_state, @rnn(tail, new_state, bias, iweight, hweight))
8 }
9 }

10 }
11
12 def @main(rnn_bias: Tensor[(1, 256)], rnn_iweight: Tensor[(256, 256)],
13 rnn_hweight: Tensor[(256, 256)], rnn_init: Tensor[(1, 256)],
14 cweight: Tensor[(16, 512)], cbias: Tensor[(1, 16)],
15 inputs: List[Tensor[(1, 256)]]) {
16 let _ = db.set_phase(0);
17 let rnn_res =
18 @rnn(inputs, rnn_init, rnn_bias, rnn_iweight, rnn_hweight);
19 let _ = db.set_phase(1);
20 @map(fn(p: Tensor[(1, 256)]) {
21 nn.relu(cbias + nn.dense(p, cweight))
22 }, rnn_res)
23 }

Listing 2.1: A simple RNN model expressed in Relay [106] as an input to ACRoBat (discussed further in Chap-
ter 4).

Tensor-Dependent Control Flow

Control flow decisions often depend on the values of intermediate tensors in ML computations. Exam-
ples of models and computations exhibiting such tensor-dependent control flow include beam search
in machine translation, StackLSTMs, Tree-to-Tree neural networks (T2TNN) [17], models with early
exits [34, 62, 127, 144], Mixture-of-Experts [35, 77, 112] and other ML computations such as the No
U-Turn Sampler (NUTS) [50]. Meanwhile, in models such as TreeLSTM [125], DAG-RNN [115],
sequential RNNs and their variants, control flow only depends on the inputs and not on intermediate
tensors. Such models are said to exhibit tensor-independent control flow.

Repetitive Control Flow

We say that a model exhibits repetitive control flow if it can be expressed as an iterative or recursive
computation. This includes iterative models such as RNNs and their variants (LSTM and GRU [18]
for example) and StackLSTMs, and recursive models such as TreeLSTM, Tree-to-Tree neural net-
works and DAG-RNNs. On the other hand, Mixture-of-Experts and early exit models do not exhibit
repetitive control flow. Such models contain conditional execution in an otherwise static feed-forward
network. Repetitive control flow can often also be nested. The GraphRNN [149] model, for example,

10



2.1 Dynamism in Deep Learning

executes two RNNs, one nested inside the other. Similarly, the DRNN [6] model, which is used for
top-down recursive tree generation, involves iterative generation of children for a given tree node.

The presence of recursive, as opposed to iterative control flow, can often complicate static analysis
as parallelism is more easily exploited with the latter. We see in §4.2.3 how, in ACRoBat, exploiting
parallelism across recursive calls at runtime, for example, can require multiple concurrent execution
contexts, similar to the fork-join parallelism paradigm [78].

Control-Flow in Training and Inference

We see, in Table 2.1, that the computation for a lot of the models involve dynamic control flow during
both training as well as inference. This is however, not the case for models with early exists, where dur-
ing training, we often wish to train all the exit branches rather than evaluating one, as is the case during
inference. Further, search procedures such as beam search are often used only during inference and
hence the underlying model may not exhibit dynamism during training (unless the model computation
itself involves dynamism, as in the case of RNN models, for example).

Irregular Data Structures

Dynamic control flow often involves the use of irregular data structures. Models such as the TreeLSTM
and MV-RNN, for example, involve traversals over parse trees of textual data. Similarly, DAG-RNN
models an image as a directed acyclic graph (DAG) in order to perform image segmentation. Fast
WaveNet [91], an efficient way to perform sequence generation using the WaveNet [133] model, in-
volves the use of queues. Similarly, as mentioned above, StackLSTM and its variants involve parsing
the input text via a shift-reduce parser, thereby necessitating the use of stacks and buffers during the
model execution.

Control Flow Parallelism

Dynamic control flow can lead to parallelism in deep learning computations. The amount of such
parallelism differs widely across computations. Recursive models, often (though not always) have sig-
nificant parallelism across different recursive calls. Correspondingly, iterative computations may con-
tain loops that can be executed concurrently. An example is the call to the @map function call in the
implementation of the RNN model in Listing 2.1.

In the context of this work, we identify the following three sources of parallelism in a dynamic deep
learning computation.

1. Batch Parallelism: This is parallelism that exists across the different input instances in the mini-batch.
2. Instance Parallelism: This refers to the aforementioned control flow parallelism which exists within

the execution of a single input instance.
3. Static Parallelism: This is parallelism that may exist across tensor operators within one static block.

For example, in a Long Short Term Memory (LSTM) cell [49], one can compute the four gates
concurrently.
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Table 2.1: Control flow properties found in deep learning computations. Legend: ITE: iterative, REC: recursive,
TDC: tensor dependent control flow, IFP: instance parallelism, ICF: inference exhibits control flow,
TCF: training exhibits control flow, IDS: irregular data structures.

Deep Learning Computations ITE REC TDC IFP ICF TCF IDS

Sequential RNN [108], LSTM [49], GRU [18], GraphRNN [149]
DIORA [32], Chinese Segmentation [16]
DAG-RNN [115], LatticeRNN [68], TreeLSTM [125], MV-RNN [120]
StackLSTM [33]
Beam search [131] with LSTM
Mixture-of-experts [35, 77, 112]
Early exit models [34, 62, 127, 144]
No U-Turn Sampler [50]
Tree-to-tree NN [17], Doubly Recurrent NN [6]
R-CNN [45], Fast R-CNN [44]
Fast WaveNet [44]

We note that this list of characteristics is not exhaustive. Moreover, the examples above demonstrate
that the properties listed are often independent of each other and hence the same computation can
exhibit multiple properties simultaneously. For example, the StackLSTM model is an iterative model
which exhibits tensor-dependent control flow and low control flow parallelism.

2.1.2 Shape Dynamism in Deep Learning Computations

As we briefly mentioned in Chapter 1, a model is said to exhibit shape dynamism when the execution
of the model involves tensors with shapes that differ across multiple data inputs. We also saw that the
transformer-based models such as BERT [27], GPT [11, 100, 101] and so on, which form the base
of the largest NLP models today, exhibit such shape dynamism. Graph neural networks [110], when
designed to process multiple graphs, potentially with a varying number of nodes or edges, can also
exhibit shape dynamism [38]. Similarly, image processing models [48] which are agnostic to the size
of the input image can process multiple images of the different sizes together, leading to varying shapes
of intermediate tensors.

We also saw that performing batched execution of models that exhibit shape dynamism requires that
we rely on the abstraction of a ragged tensor, which is tensor the slices of one or more dimensions of
which are of variable lengths. Ragged tensors are similar to sparse tensors. Unlike sparse tensors, how-
ever, data in a slice of a ragged tensor are tightly packed. Further, when a sparse tensor is stored using
a compressed format, the tensor elements which are not explicitly stored are valid and are assumed to
be equal to some value, most commonly zeros. On the other hand, the data absent in a ragged tensor
are truly invalid and therefore do not correspond to any implicit value.
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2.2 Deep Learning Compilation Workflow

Compiled  model

Tensor compiler/
vendor libraries

ML compiler
XLA/Glow/...

ML runtime
Compiled tensor

operators

Tensor
computations

Surrounding
control flow

CPU Accelerator

Figure 2.1: Illustration of a typical deep learning compilation workflow.

2.2 Deep Learning Compilation Workflow

In this section, we give a brief overview of how a deep learning compilation and execution workflow
is usually designed, specifically in the context of dynamism. We saw that a deep learning computation
can be thought of as a set of tensor operators, the execution of which is orchestrated by surrounding
control flow. Most deep learning workflows are structured around these two aspects of the computation,
though the line between them can often be blurry. Below, we describe each of these aspects in more
detail. A simple workflow is also illustrated in Figure 2.1.

2.2.1 High-level Orchestration

This part of the deep learning workflow performs optimizations at the level of multiple tensor operators,
and how they are invoked. It is here that optimizations such as kernel fusion [157] or tensor layout
selection are performed. Auto-batching is also performed at this granularity of tensor operators.

Traditionally, at this stage deep learning computations are often represented as task graphs consist-
ing of multiple tensor operators. We refer to such graphs as dataflow graphs (DFGs). Such a repre-
sentation allows compiler developers to conveniently express optimizations as sub-graph rewrites [60].
Deep learning compilers such as XLA [126] and Glow [107] as well as inference engines such as
TensorRT [89] and OpenVINO [55] which optimize model execution for inference, for instance, are
primarily designed around the DFG abstraction. On the other hand, such a representation is not very
amenable to expressing dynamic control flow. As a result, as dynamic control flow started being in-
corporated in an increasingly large number of models, the community has worked towards extending
the DFG representations or towards developing other representations that are more amenable to the
expression and optimization of control flow dynamism. For example, the DFG representation used
by TensorFlow supports common control flow operators such as while loops and simple conditional
statements [150]. TensorFlow also supports distributed execution for computations with such control
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2 Background

flow operators. Jeong et al. further propose extensions to the DFG representation to support recur-
sive control flow in [58]. More recently, compiler representations such as Relay [106] (along with the
improvements to the Relay stack proposed by Nimble [113]), TorchScript [97] which is used in Py-
Torch [92] and the MLIR [70] framework forego the restrictive DFG representation to instead rely
on rich traditional representations allowing one to express, compile and optimize computations with
arbitrary control flow.

Supporting dynamic control flow also leads to other optimization challenges. The use of dynami-
cally typed languages such as Python further excacerbates this problem. Due to the use of DFGs as a
traditional compiler representation, a lot of deep learning optimizations have been developed for this
representation. This has lead to a large body of work that tries to extract, either statically or dynami-
cally, DFGs given a computation expressed in a more expressive language/intermediate representation.
For example, Janus [59], Terra [63] and TorchDynamo [23] solve the problem of enabling static graph
optimizations in computations expressed using high-level languages such as Python. They speculatively
extract and optimize traces of tensor operators in a manner similar to traditional just-in-time compi-
lation. PyTorch’s LazyTensor [124] also creates DFGs at runtime that can be optimized to accelerate
dynamic computations.

2.2.2 Tensor Operators

This stage concerns with generating/developing efficient implementations of individual tensor oper-
ators. These implementations can be hand-written and provided as part of vendor libraries such as
Nvidia’s cuDNN for Nvidia GPUs and Intel’s oneDNN for Intel CPUs and GPUs. Or they may be au-
tomatically generated by tensor compilers. A tensor compiler refers to a domain specific language and its
accompanying compilation stack which allows users to express computations on tensors and generate
efficient implementations for these computations for a variety of hardware targets. Common examples
includes Halide [103], TVM [13], Tensor Comprehensions [135] and Tiramisu [7] for dense tensor
computations and Taco [65] and Comet [81, 130] for sparse tensor computations. Tensor compilers
separate the definition of the computation from its implementation, allowing a user to explore multiple
implementations quickly to optimize the computation. The user optimizes the computation usually by
specifying transformations over loop nests such as loop fusion, loop tiling, vectorization and so on. This
is ilustrated for a simple tensor computation in Figure 2.2.

The ability of a tensor compiler to separate the definition and the implementation of the computation
also allows the use of automated techniques [1, 14, 80, 117, 156] to search over various loop nest
transformations in order to reduce or even eliminate the optimization effort on the part of the user.
This technique is broadly referred to as auto-scheduling.

Work on tensor compilation as well as auto-scheduling initially considered only tensor operators
operating on tensors with statically known shapes. This work has also now been started to be extended
to support dynamic tensor shapes [136, 155, 158].
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# Computation
size = (256, 1024)
m1, m2 = tensor(size), tensor(size)
r = compute(size,
      lambda i,j: m1[i,j] + m2[i,j])

# Scheduling
x, y = r.loops
yo, yi = split_loop(y, 256)
bind_loop(yi, thread_x())
bind_loop(x, block_x())

Input program

Scheduling

for i = 0:256:
  for j = 0:1024:
    r[i][j] = m1[i][j] + m2[i][j]

Unscheduled IR

// blockIdx.x [0, 256]
// threadIdx.x [0, 256]
i = blockIdx.x
for jo = 0:4:
  ji = threadIdx.x
  j = jo * 256 + ji
  r[i][j] = m1[i][j] + m2[i][j]

Scheduled IR

Figure 2.2: Using a tensor compiler to express and optimize elementwise matrix addition.

2.3 Past Work

In this section, we will look at the previous efforts towards enabling auto-batching first for control flow
dynamism and then for shape dynamism.

2.3.1 Auto-Batching for Control Flow Dynamism

As we discussed before, there has been significant work towards enabling efficient auto-batching in the
presence of control flow dynamism. We can divide this past work into two categories—approaches
tailored to specific control flow patterns or models, and approaches that have been designed to handle
a large class of computations with dynamic control flow. We look at both of these in turn below.

Specialized Approaches

RNNs are an important class of NLP models. As a result, multiple efforts have targeted efficient auto-
batching for RNNs and their variants. These include approaches such as BatchMaker [42] and E-
Batch [116]. Both of these are designed to enable fast RNN inference in production. They batch
and schedule the RNN model at the granularity of one RNN cell and can refill the batch with queued
requests when the execution of one request is finished, thereby enabling low inference latencies. Similar
techniques have also been explored for batching beam search as described in [147].

StackLSTM-based models are often used in order to perform text parsing as a input step to enable
other downstream tasks which operate on the parsed representations (often in the form of a tree, referred
to as a parse tree). Approaches such as SPINN [9], Batched Recurrent Neural Network Grammars
(RNNGs) [87] and Parallelizable StackLSTM [29] have explored how this class of model computations
can be batched to increase efficiency. Given the narrow focus of these approaches, they are often
able to develop techniques tailored to the computation under consideration. For example, the SPINN
approach proposes a singlemodel (which is amenable to efficient batched execution) in order to perform
both text parsing as well as the downstream task of text encoding.

Beyond specific models, approaches such as Cavs [146] have attempted to enable efficient auto-
batching computations that can be expressed as a graph traversal with a fixed per-node computation.
Computations that can be expressed this way include RNNs and their variants, TreeRNNs and their
variants as well as other models outside natural language processing such as DAG-RNN, which has
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3. Execute batched kernels in
     dependency order of DFG

Figure 2.3: Dynamic batching: a fully dynamic auto-batching technique for control flow dynamism.

been proposed for image segmentation. This approach therefore separates out the dynamic parts of
the computation (as embodied in the structure of the input graph) from the static parts (as embodied in
the fixed per-node function). The static parts can therefore be compiled and optimized statically while
batching can be performed at the granularity of the graph nodes during runtime.

Approaches with a Broader Scope

Past work on auto-batching that aims to handle a broad class of computations with control flow can
range from fully static approaches to fully dynamic ones.

Static approaches include MatchBox [10], Jax’s vmap and pmap program transformations [40],
TensorFlow’spfor primitive [2, 3] as well as the local static auto-batching technique described in [102].
These propose program transformations to generate a batched implementation of a computation given
an unbatched implementation of the same. Transformations such as these are generally inspired by the
single-program multiple-data (SPMD) programming model used by Intel ISPC [93] and (under the
name SIMT) NVIDIA CUDA [86]. Due to the static nature of these approaches, they incur little to
no runtime overheads. On the other hand, they are often unable to exploit all the parallelism present
in the computation, as Radul et al. describe [102]. Further, such approaches can also be limited by the
kinds of control flow they can support. For example, TensorFlow’s pfor primitive only supports the
control flow operators allowed in TensorFlow’s dataflow graph format, thereby disallowing recursion,
for instance. Similar restrictions are also present in Jax [72] and MatchBox.

On the other end of the spectrum, dynamic batching [75, 85] has been proposed as an entirely
dynamic approach to auto-batching. It involves lazily executing the model computation while building
a DFG of tensor operations in the background. Given a mini-batch of input instances, such DFGs
can be generated for each of the input instance in the mini-batch. The execution of these graphs is
triggered when the value of a particular tensor is requested (at the end of one training loop iteration, for
example, or when the model contains tensor-dependent control flow). When the execution is triggered
this way, the runtime can identify batching opportunities within the DFGs (one corresponding to each
input instance in the mini-batch) and then launch kernels appropriately. This process is illustrated in
Figure 2.3. Due to the time spent in generatingmultiple dataflow graphs and scheduling them, dynamic
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batching often incurs high execution overheads. On the other hand, due to the availabilty of perfect
execution knowledge, it allows one to exploit all the available parallelism in the computation.

Further improvements and variations on this basic approach have been proposed. As described
above, dynamic batching creates and schedules the DFGs at the granularity of individual tensor op-
erators. Just in time batching [151] explores the trade-offs involved in coarsening the granularity of
the DFGs to static blocks of various sizes, and proposes an approach to choose the correct granularity
given an input computation. In [99], Qiao and Taura propose that scheduling and batching be car-
ried out independently for the backward pass of a computation during training, as opposed to using
the schedules generated during the forward pass. They notice that in a lot of the computations with
control flow dynamism, the backward pass exhibits more parallelism as compared to the forward pass,
which remains unexploited unless scheduling is performed again during the backward pass to discover
it. In [102], Radul et al. propose program counter auto-batching, which can be thought of as an eager
variation of dynamic batching. This allows one to skip the graph construction and scheduling steps,
thereby reducing execution overheads. However, due to the inability of the algorithm to have visibility
into all the tensor operators executed by the computation due to its eager nature, it is unable to exploit
control flow parallelism within the execution of a single data input.

Use of Vendor Libraries

A lot of the approaches described above, both specialized or otherwise, heavily rely on vendor libraries
in order to effectively target the wide range of deep learning hardware. Vendor libraries, however,
have disadvantages in terms of model coverage and development effort. As these libraries are highly
optimized, implementing them is a very intensive process. They, therefore, contain implementations
only for the most commonly used models and kernels. For example, cuDNN contains implementations
for the LSTM andGRUmodels, but not for the less commonly used TreeLSTM andMV-RNNmodels.
Further, as we alluded to in Chapter 1, the use of vendor libraries precludes the optimization of tensor
kernels in the context of the larger surrounding computation.

2.3.2 Batching for Shape Dynamism

Enabling batched execution for models exhibiting shape dynamism requires the ability to efficiently
perform operations on ragged tensors, as discussed in §2.1.2. Below we discuss some of the ways one
can use past work for this purpose.

Reusing Dense or Sparse Infrastructure

Kernels for both dense as well as sparse tensor computations can be used to execute ragged tensor
operators. Ragged tensors can be appropriately padded to make them dense, as is shown in Figure 2.4.
Then, one can use kernels for dense tensor computations, either those provided by vendor libraries
or those generated by tensor compilers, for executing ragged operators. Further, one can also model
ragged tensors as sparse tensors and use the corresponding sparse tensor infrastructure. As we will see

17



2 Background

L1: for o in 0:M:
L2:   for i in 0:s(o):
        B[o,i] = 2*A[o,i]

Useful data Padding

cuDNN/TVM/...
(Dense tensor
infrastructure)

Input ragged tensorSimple ragged computation Padding the input tensor
makes it dense

Figure 2.4: Padding ragged tensors to enable use of dense tensor infrastructure.

in Chapter 5, however, both of these approaches can have non-trivially large performance penalties.
Computation on padded data in the former approach is wasted and can be significant. On the other
hand, while ragged tensors can be modeled as sparse tensors, they are much denser and have densely
packed data, unlike sparse tensors. This impedance mismatch can also preclude the most optimal
execution for ragged tensor computations.

Hand-optimized Implementations of Ragged Operators

Due to the sub-optimal performance obtained when using dense or sparse tensor infrastructure for
ragged tensor operations, there have also been some efforts in developing hand-optimized implemen-
tations of commonly used operators and models for ragged tensors. For example, both Intel’s MKL
and Nvidia’s CUTLASS libraries provide implementations of batched GEMM operators where each
GEMM has variable dimensions (we refer to this batched GEMM operation as the vgemm operation).
Similarly, Li et al. propose techniques [74] to more efficiently perform batching and tiling for such
batched GEMM operations. Efficient implementations of the vgemm operator also are part of the
MAGMA [83] and the MKL [54] libraries. Beyond individual operators, ByteDance’s EffectiveTrans-
former [12] provides an implementation of the transformer model without padding. These optimiza-
tions have also been incorporated into Nvidia’s FasterTransformer [88].

We therefore see that past work often fails to exploit optimization opportunities across multiple parts
of the compilation pipeline as well as between the compiler and the runtime. In the next three chapters,
we describe how one can overcome such fragmentation, to enable performant batched execution of
dynamic deep learning computations.
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3 Cortex: Compiler-Based Auto-Batching for
Recursive Deep Learning Models

We saw in Chapter 2 that dynamic and irregular control flow is an important source of dynamism in
deep learning computations. Before tackling the problem of efficient auto-batching for unrestricted
control flow patterns, examples of which we saw in Chapter 2, we first only consider recursive tensor-
independent control flow in this chapter. This chapter presents the design and evaluation of Cor-
tex (Compiler forRecursive Tensor Execution), a compiler we designed to solve auto-batching for this
specialized case1. While this is restrictive, RNNs and their variants, which are an important sequence
model, can be easily represented as recursive computations with no tensor-dependent control flow and
hence can be handled using the techniques presented in this chapter along with other models we will
look at. Later, in chapter Chapter 4, we will build upon the insights obtained by designing Cortex, to
build ACRoBat, a compiler-based framework for the broader case of general control flow.

As we discussed in Chapter 2, past approaches to auto-batching suffer from (one or more of) the
following disadvantages:
1. Extensive use of vendor libraries leading to tensor kernels being optimized in isolation. This

further leads to the inability to perform optimizations such as kernel fusion and model persistence.
The latter can lead to significantly degraded performance as we see later in this chapter. Further,
the high development cost associated with vendor libraries leads to low model coverage.

2. Purely static techniques leading to conservative program transformations and low exploited par-
allelism.

3. Fully dynamic analyses leading to high execution overheads.

It is a dog

.

# lh, rh, Emb are tensors
treeRNN(n):
  if isleaf(n):
    return Emb[words[n]]
  else:
    lh = treeRNN(n.left)
    rh = treeRNN(n.right)
    return tanh(lh+rh)

for i = 0:256:
  ret[i] = 
    tanh(lh[i]+rh[i]) 

Figure 3.1: A simple recursive model. The text ‘It is a dog.’ is parsed into the parse tree which is then fed to the
model.

1A paper [36] describing Cortex was published at MLSys 2022.
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3 Cortex: Compiler-Based Auto-Batching for Recursive Deep Learning Models

Table 3.1: Comparison between Cortex and related work on recursive models (Cavs, DyNet, Nimble and Py-
Torch).

Framework Kernel Fusion Vendor Libraries Auto-Batching Model Persistence

Cavs Partial Y Y N
DyNet N Y Y N
Nimble Partial N N N
PyTorch N Y N N

Cortex Y N Y Y

In order to overcome these disadvantages, Cortex takes a fully compiler-based approach, which
enables us to perform compile-time optimizations such kernel fusion and model persistence by taking
the surrouding computation into account. While there is past work that compiles common feed forward
models, applying this approach to recursive models has the following challenges:

C.1 Effective representation of recursive control flow: Figure 3.1 illustrates that recursive mod-
els contain dynamic control flow, along with regular numerical (tensor) code. Such models require
an intermediate representation (IR) that is amenable to compiler optimizations and code genera-
tion over tensor computations with recursive control flow.

C.2 Optimizing recursive control flow: Low latency inference for recursive models necessitates
effective ways to execute the control flow without hindering optimizations such as kernel fusion.

C.3 Static optimizations: Dynamic models are generally optimized at runtime by constructing a
dataflow graph which unrolls all recursion andmakes optimizations such as auto-batching easier [75,
84]. Such optimizations have to be performed statically in a compiler-based approach.

To overcomeC.1, we observe that the control flow in recursive models often depends solely on the in-
put data structure. This insight, along with a few others discussed in §3.1, enables us to lower the recur-
sive computation into an efficient loop-based one (illustrated in Figure 3.2). To overcome C.2 and C.3,
we employ scheduling primitives to perform optimizations such as specialization and auto-batching [75, 85],
along with compile-time optimizations such as computation hoisting.

Cortex’s compiler-based approach enables it to optimize model computations in an end-to-end man-
ner, without having to treat operators as black box function calls, as is the case when using vendor
libraries. This enables extensive kernel fusion (§3.6.3) while avoiding some overheads associated with
auto-batching (§3.6.2). As part of Cortex’s design, we extend the TVM tensor compiler [13], but the
techniques can be used with other tensor compilers [7, 13, 103]. This enables us to reuse past work on
tensor compilers in the context of recursive models. It also opens the door to the use of the extensive
work on auto-scheduling [1, 14, 80, 156] for optimizing these models. Table 3.1 provides a qualitative
comparison of Cortex with related work on recursive models.
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Figure 3.2: Overview of the Cortex compilation and runtime pipeline.

3.1 Overview

Efficiently executing computations with dynamic control flow is challenging because the control flow
often precludes common optimizations such as kernel fusion. We note that the computations Cortex is
designed for, however, have the following properties which enable efficient batched execution:

P.1 These computations often traverse an input recursive data structure, and all control flow depends
on the connectivity of this data structure. The latter essentially means the computation does not
involve tensor-dependent control flow.

P.2 All recursive calls can be made before performing any tensor computation.

P.3 Recursive calls to the children of a data structure node are independent of each other: the argu-
ments to one call do not depend on the results of a previous call.

Property P.1 implies that all control flow in the model is encapsulated in the input data structure.
Property P.2 entails that computation starts at the leaves of the data structure, moving up towards the
roots. Property P.3 allows us to process sibling nodes in parallel. Taken together, these properties make
it possible to generate efficient loop-based code for these recursive model computations.

We now look at Cortex’s compilation and runtime workflows (illustrated in Figure 3.2) that make
use of these insights. Compilation starts with the recursive model computation 1 expressed in the
Recursive API (RA). The user can also specify some scheduling primitives 2 at this stage to control
how the recursive computation is lowered. The compiler then generates Irregular Loop IR (ILIR) 3

corresponding to the input computation, according to the scheduling primitives provided by the user.
The ILIR is an extension of the IR used by tensor compilers, designed to support additional features
such as indirect memory accesses and variable loop bounds. It is purely loop-based and data structure
agnostic. The RA lowering phase thus lowers all recursive control flow into loops and all data structure
accesses to potentially indirect memory accesses at this stage. Loop optimizations such unrolling, tiling,
etc., as performed in tensor compilers, can be performed here, after which target-specific code 4 is
generated as part of ILIR lowering.
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The runtime workflow mirrors the lowering during compilation. We start with pointer linked re-
cursive data structures 5 such as sequences, trees or directed acyclic graphs (DAGs), which are then
lowered to arrays 6 , or in other words linearized, by the data structure linearizer. Such linearization
makes it possible for the generated iterative code to traverse the data structures. The linearizer must
ensure that the data dependences between the nodes of the data structure are satisfied as it performs
this lowering. Note that the linearization stage does not involve any tensor computations. This is be-
cause property P.1 allows us to separate out the recursive control flow from the tensor computation.
We therefore perform linearization on the host CPU.

We now discuss each of the aforementioned compilation and execution stages below.

3.2 Recursive API (RA)

1 ################## Model computation ##################
2 # H: Hidden and embedding size
3 # V: Vocabulary size
4 # N: Total number of nodes in the input data structure(s)
5 Tensor Emb = input_tensor((V, H))
6 Tensor words = input_tensor((N,))
7
8 # A placeholder that represents results of recursive calls
9 Tensor rnn_ph = placeholder((N, H))

10 # Base case definition
11 Tensor leaf_case =
12 compute((N, H), lambda n, i: Emb[words[n], i])
13 # Recursive body definition
14 Tensor lh = compute((N, H), lambda n, i: rnn_ph[n.left, i])
15 Tensor rh = compute((N, H), lambda n, i: rnn_ph[n.right, i])
16 Tensor recursive_case =
17 compute((N, H), lambda n, i: tanh(lh[n, i] + rh[n, i]))
18 # Conditional check for the base case
19 Tensor body = if_then_else((N, H), lambda n, i: isleaf(n),
20 leaf_case, recursive_case)
21 # Finally, create the recursion
22 Tensor rnn = recursion_op(rnn_ph, body)
23
24 ############### RA scheduling primitives ###############
25 auto_batch(rnn)
26 specialize_if_else(body)

Listing 3.1: Model in Figure 3.1 as expressed in the RA.

Cortex needs to have an end-to-end view of themodel computation in order to perform optimizations
such as kernel fusion. Accordingly, the input program needs to contain enough information about
the tensor operations performed in the model to enable scheduling when it is lowered to the ILIR.
Therefore, the RAmodels an input computation as a DAG of operators where each operator is specified
as a loop nest. This is seen in Listing 3.1 which shows the simplified model from Figure 3.1 expressed
in the RA. Along with the RA computation, the user also needs to provide basic information about
the input data structure such as the maximum number of children per node, and the kind of the data
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3.2 Recursive API (RA)

Before unrolling After unrolling

Reuse along
this edge

Figure 3.3: Change in execution schedule due to unrolling.

structure (sequence, tree or DAG). This information is used during compilation, and can be easily
verified at runtime.

3.2.1 Recursion Scheduling Primitives

When lowering the recursive computation to loops, we need to ensure that the data dependences be-
tween the data structure nodes are satisfied. As these dependences generally specify only a partial order-
ing on the nodes, we have significant freedom when scheduling the computations. Different schedules
may afford different degrees of parallelism, or allow for data reuse. Lines 25 and 26 specify scheduling
primitives in Listing 3.1. We propose the following scheduling primitives to exploit these opportunities:

Auto-Batching

Since control flow in the models we look at depends only on the input data structure (property P.1), we
perform auto-batching during linearization. The execution order of nodes of a tree with auto-batching
is illustrated top-to-bottom in 6 .

Specialization

Recursive computations tend to have frequent conditional checks to check for the base condition. Such
checks can hinder optimizations such as computation hoisting and constant propagation (§3.3.3), while
having execution overheads of their own. We, therefore, allow the user to generate specialized versions
of the program for the two branches of a conditional check. Listing 3.2 shows the generated ILIR for
our simple recursive model. Note how it has separate loop nests for the computation of leaves and
internal nodes as the user specified that the leaf check be specialized (line 26 in Listing 3.1).

Unrolling

Unrolling recursion changes the order in which nodes are processed (as illustrated in Figure 3.3), moving
a node’s computation closer in time to its children’s computation. This allows reuse of the children’s
hidden state via fast on-chip caches, as opposed to the slower off-chip memory. In Figure 3.3 (right),
for example, reuse can be exploited along every edge within a recursive call (yellow box in the figure).
Unrolling also creates opportunities for kernel fusion as we can then fuse operators across the children’s
computations.
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RNN(n):
  if isleaf(n): B(n)
  else:

A1(n)
    A2(n)
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Recursive call
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After
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RNN(n):
  if isleaf(n.left): B(n.left)
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Figure 3.4: Recursive refactoring can be used to change the position of the recursion backedge with respect to
the computation.

Recursive Refactoring

Kernel fusion is harder to perform across recursive call boundaries. In such cases, recursive refactoring
can be used to change the recursive backedge. Consider the computation on the left in Figure 3.4.
A1, A2 and B represent tensor operators such that there is a dependence from A1 to A2. In this
case, the recursive backedge goes from B/A2 to A1. Fusing kernels in A1(n) and A2(n.left)
or A2(n.right) would be hard as the kernels lie across a recursive call boundary. Refactoring
changes this boundary (the backedge now goes from A1 to A2). Thus A1(n), A2(n.left) and
A2(n.right) now lie in the same call and can easily be fused.

Note that unrolling and recursive refactoring can lead to repeated and redundant computations for
DAGs as nodes can have multiple parents. Thus, we currently support these optimizations only for
trees and sequences.

3.3 Lowering Recursion to Loops

3.3.1 RA Lowering

The lowering from RA to ILIR is, in essence, a lowering from recursion to iteration. Just as we need
to make the stack explicit in such a lowering in general purpose programs, we need to make explicit
all the temporary tensors when lowering to ILIR. Note how, in the ILIR for our running example in
Listing 3.2, the tensors lh and rh are explicitly created. We also materialize the tensor rnn, which
stores the result of the computation. Each of the tensors lh, rh and rnn store data for each recursive
call, which in this case amounts to each tree node.

The scheduling primitives of recursive refactoring and unrolling are handled by appropriately trans-
forming the input RA computation before the lowering. Specialized branches are handled by generat-
ing two versions of the computation, each specialized for one target of the branch. The data structure
linearizer partitions nodes for such specialized branches and the ILIR employs the correct version of
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3.3 Lowering Recursion to Loops

1 for n_idx = 0:leaf_batch_size:
2 node = leaf_batch[n_idx]
3 for i = 0:256:
4 rnn[node, i] = Emb[words[node], i]
5
6 for b_idx = 0:num_internal_batches:
7 for n_idx = 0:batch_sizes[b_idx]:
8 node = internal_batches[b_idx, n_idx]
9 for i = 0:256:

10 lh[node, i] = rnn[left[node], i]
11 for i = 0:256:
12 rh[node, i] = rnn[right[node], i]
13 for i = 0:256:
14 rnn[node, i] = tanh(lh[node, i] + rh[node, i])

Listing 3.2: ILIR generated for the model in Figure 3.1.

the computation for the respective node partition. The lowering phase generates the appropriate loop
nest that iterates over the output of the data structure linearizer. By default, the ILIR iterates over the
nodes, but if the user requires auto-batching to be performed, the ILIR iterates over batches of nodes
(as in Listing 3.2).

3.3.2 Data Structure Linearization

At runtime, the data structure linearizer traverses the input linked structure and lays it out as arrays
for the lowered loop-based computation to iterate upon. The pseudocode for the linearizer for our
running example is shown below.

1 leaf_batch = []
2 internal_batches = [[]]
3 left, right = [], []
4

5 def linearizer(n):
6 if isleaf(n):
7 leaf_batch.add(node)
8 else:
9 linearizer(n.left)

10 linearizer(n.right)
11 left[n], right[n] = n.left, n.right
12 internal_batches[node.height].add(node)
13

14 leaf_batch_size = len(leaf_batch)
15 batch_sizes = [len(b) for b in internal_batches]
16 num_internal_batches = len(internal_batches)

The data structure linearizer is generated during RA lowering. In the absence of specialization and
auto-batching, the linearizer essentially has to traverse the data structure as the input program does,
while keeping track of the order of nodes encountered. This ordering over the nodes would satisfy
data dependences and can be used during the tensor computations. Thus, in this simple case, the data
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3 Cortex: Compiler-Based Auto-Batching for Recursive Deep Learning Models

structure linearizer is essentially the input program, stripped of all tensor computation. For conditional
checks marked for specialization, the linearizer will separately collect nodes that follow each of the two
branches of the check. For auto-batching, we emit code to traverse the data structure and identify
batches of nodes that can be processed in parallel.

This linearization step, the code for which is generated by the compiler, therefore, is key in enabling
Cortex to lower the input recursive control flow into efficient iterative code. Thus, it can be seen as an
instantiation of the hybrid static and dynamic analysis we discussed in Chapter 1.

3.3.3 Computation Hoisting and Constant Propagation

Recursive and iterative models often use an initial value for the base case. If this initial value is same for
all leaves, the same computation is redundantly performed for all leaves. When lowering to the ILIR,
such computation is hoisted out of the recursion. We also specially optimize the case when the initial
value is the zero tensor.

3.4 Irregular Loops IR (ILIR)

We have briefly mentioned that the ILIR is an extension of the program representation used by tensor
compilers. Accordingly, computation and optimizations are specified separately in the ILIR. The com-
putation is expressed as a DAG of operators, each of which produce a tensor by consuming input or
previously-produced tensors. Optimizations such as loop tiling, loop unrolling, vectorization, etc. can
be performed with the help of scheduling primitives.

The ILIR is generated when the recursive RA computation is lowered. As the ILIR is loop-based
and data structure agnostic, this lowering gives rise to indirect memory accesses and loops with variable
loop bounds. Note how, in Listing 3.2, the variable node used to index the tensor rnn in the loop
on line 1 is a non-affine function of the loop variable n_idx. Furthermore, the loop on line 7, which
iterates over a batch of nodes has a variable bound, as batches can be of different lengths. In order
to support these features, we extend a tensor compiler to support (1) non-affine index expressions, (2)
loops with variable bounds, and (3) conditional operators. We describe these modifications in further
detail below.

3.4.1 Indirect Memory Accesses

We represent non-affine index expressions arising as part of indirect memory accesses as uninterpreted
functions of loop variables [123]2. Indirect memory accesses necessitate further changes, which are
described next.

2An uninterpreted function symbolically represents a function from its parameters to an output. The opaque nature
of the abstraction and the lack of any implicit assumptions makes it convenient to explicitly specify relevant properties for
different uninterpreted functions during compilation. We also use this abstraction later in Chapter 5 to represent ragged loop
nests and transformations on the same.
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3.4 Irregular Loops IR (ILIR)

Bounds Inference

As a pass during code generation, a tensor compiler infers loop bounds for all operators in the input
program usually proceeding from the outputs of the operator graph towards the inputs. For each op-
erator op producing a tensor t, the pass first computes what regions of t are required for its consumers.
This quantity is then translated to the loop bounds for op. In a traditional tensor compiler, this trans-
lation is straightforward as there is a one-to-one correspondence between the loops of an operator and
the corresponding tensor dimensions. This does not, however, hold in our case, as is apparent in the
ILIR in Listing 3.2. Tensors lh, rh and rnn have two dimensions each, but the generated ILIR has
three loops for each of their corresponding operators. As a result, we require that the ILIR explicitly
specify the relationship between tensor dimensions and the loops in the corresponding operator’s loop
nest. This is achieved by the way of named dimensions. Named dimensions are identifiers associated
with tensor dimensions and loops, which allow us to explicitly specify and keep track of relationships
between loops and tensor dimensions. Consider the ILIR in Listing 3.3 which shows the same ILIR as
in Listing 3.2 but with the named dimensions annotated as comments3. The dimensions of the tensor
rnn are labeled with the named dimensions d_node and d_hidden. The tensor index dimension
d_node corresponds to the two loop dimensions d_all_batches and d_batch.

Named dimensions also make the semantic meaning of loops and index expressions explicit. For
example, the first dimension of the tensor rnn is labeled d_node and corresponds to the space of
all nodes. It, therefore, does not make sense to index rnn by b_idx, the loop variable for the loop
associated with d_all_batches.

1 # rnn[node_dim, hidden_dim]
2 L1: for n_idx = 0:leaf_batch_size: # d_batch
3 node = leaf_batch[n_idx]
4 L2: for i = 0:256:
5 rnn[node, i] = Emb[words[node], i]
6
7 L3: for b_idx = 0:num_internal_batches: # d_all_batches
8 L4: for n_idx = 0:batch_sizes[b_idx]: # d_batch
9 node = internal_batches[b_idx, n_idx]

10 L5: for i = 0:256: # d_hidden
11 lh[node, i] = rnn[left[node], i]
12 L6: for i = 0:256: # d_hidden
13 rh[node, i] = rnn[right[node], i]
14 L7: for i = 0:256: # d_hidden
15 rnn[node, i] = tanh(lh[node,i] + rh[node, i])

Listing 3.3: ILIR generated for the model in Figure 3.1.

Tensor Data Layouts

Data layouts of intermediate tensors often need to be changed to allow for an efficient use of the mem-
ory subsystem. This can involve ensuring non-conflicting accesses to the GPU shared memory, or

3We do not cover the case of optimizations such as loop splitting which give rise to additional loops here for brevity.
Similarly, operators involving reduction are not covered here.
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for n_idx_o = 0:batch_sizes[b_idx]/4:
  shared float A1[max_batch_size]
  for n_idx_i = 0:4:
    n_idx = n_idx_o * 4 + n_idx_i
    node = batches[b_idx, n_idx]
    A1[node] = ...

  for n_idx_i = 0:4:
    n_idx = n_idx_o * 4 + n_idx_i
    node = batches[b_idx, n_idx]
    A2[node] = tanh(A1[node])

for n_idx_o = 0:batch_sizes[b_idx]/4:
  shared float A1[4]
  for n_idx_i = 0:4:
    A1[n_idx_i] = ...

  for n_idx_i = 0:4:
    n_idx = n_idx_o * 4 + n_idx_i
    node = batches[b_idx, n_idx]
    A2[node] = tanh(A1[n_idx_i])
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A1 indexed with loop iteration spaceA1 indexed with default non-affine expressions

Figure 3.5: Dense indexing for intermediate tensors.

sequential accesses to memory on a CPU and so on. To facilitate such optimizations, the ILIR exposes
data layout primitives, which allow tensor dimensions to be split, reordered and fused, similar to the
corresponding loop transformations.

When an intermediate tensor is stored in a scratchpad memory, as A1 is Figure 3.5, indexing it with
non-affine expressions leads to a sparsely filled tensor. Such a sparsely filled tensor occupies excess
memory, which is problematic as scratchpad memory space is often at a premium. This is seen on the
left size of Figure 3.5 where half of A1 is unused. In such a case, we can index the tensor by the loop
iteration space instead as seen on the right side of Figure 3.5. Note how we now need to allocate a
much smaller tensor in the scratchpad memory. This transformation also reduces indexing costs by
turning indirect memory accesses into affine accesses. It is exposed as a scheduling primitive as well.

3.4.2 Conditional Operator

To lower conditional checks such as the isleaf check in our model, we add a conditional operator
to the ILIR. It takes two sub-graphs and a conditional check as an input and lowers down to an if
statement. A conditional operator would have been generated in the ILIR for our running example if
the user had not specialized the leaf check.

More details regarding ILIR lowering as well as a few minor optimizations we do therein can be
found in Appendix A.

3.5 Implementation

For the purposes of evaluation, we prototype the Cortex pipeline for the common case. In this section,
we talk about a few implementation details regarding the same.

RA Lowering

As part of RA lowering, we have implemented support for auto-batching and specialization, for the
common case of leaf checks.
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ILIR Lowering

We extend TVM [13] v0.6, a deep learning framework and a tensor compiler. Our current proto-
type implementation does not perform auto-scheduling on the generated ILIR. Therefore, the model
implementations used for evaluation were based on manually defined schedules. We then performed
auto-tuning via grid search to search the space of certain schedule parameters. Prior work on auto-
scheduling is complementary to our techniques, and could readily be applied to the prototype.

Data Structure Linearizers

We implemented data structure linearizers (one each for trees and DAGs) for our evaluation. When
lowering the data structures to arrays, we number the nodes such that nodes in a batch (for auto-
batching) are numbered consecutively and higher than their parents. We also ensure that all leaf nodes
are numbered higher than all internal nodes. This scheme generally reduces the costs of leaf checks
and iterating over batches.

3.6 Evaluation

We now evaluate Cortex against Cavs, DyNet and PyTorch. Cavs is an open source, state-of-the-art
framework for recursive neural networks, while DyNet implements the dynamic batching technique we
discussed in Chapter 2. Both have been shown to be faster than generic frameworks like PyTorch and
TensorFlow [85, 146]. Evaluation with PyTorch is included for reference as it is more popular than
Cavs and DyNet. We evaluate these systems on Intel and ARM CPUs and on Nvidia GPUs.

3.6.1 Experimental Setup

Models and Schedules

We primarily use the models and datasets listed in Table 3.2. The TreeGRU model is similar to the
TreeLSTM model, except that it uses the GRU RNN cell. The TreeLSTM and TreeGRU models
were scheduled similar to the sequential LSTM and GRU schedules proposed in GRNN [51]. In the
Cortex and PyTorch implementations for TreeLSTM, TreeGRU and DAGRNN, the matrix-vector
multiplications involving the inputs were performed at the beginning of the execution by a call to a
matrix multiplication kernel as in GRNN. DyNet’s dynamic batching algorithm generally performs
this optimization automatically and we found that doing so manually lead to higher inference latencies,
so we report the automatic numbers. Unless otherwise noted, inference latencies do not include data
transfer times.

For eachmodel, we performmeasurements for two batch sizes (1 and 10) and twomodel sizes—small
(which entails a hidden size of 256 for TreeFC, DAGRNN, TreeGRU and TreeLSTM and a hidden
size of 64 for MVRNN) and large (which entails a hidden size of 512 for TreeFC, DAGRNN, TreeGRU
and TreeLSTM and a hidden size of 128 for MVRNN).
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3 Cortex: Compiler-Based Auto-Batching for Recursive Deep Learning Models

Table 3.2: Models and datasets used for evaluating Cortex.
Model Short name Dataset used

Benchmarking model used in [75] TreeFC Perfect binary trees (height 7)
Recursive portion of DAG-RNN [115] DAGRNN Synthetic DAGs (size 10x10)
Child-sum TreeGRU TreeGRU Stanford sentiment treebank [121]
Child-sum TreeLSTM [125] TreeLSTM Stanford sentiment treebank
MV-RNN [120] MVRNN Stanford sentiment treebank

Table 3.3: Experimental environments used for evaluating Cortex.
Hardware Software1 Short name

Nvidia Tesla V100 GPU (Google Cloud
n1-standard-4 instance)

CUDA 10.2, cuDNN 8.0, Eigen
3.3.7 GPU

8 core, 16 thread Intel CascadeLake CPU
(Google Cloud n2-standard-16 instance)

Intel MKL (v2020.0.1), Eigen
(commit 527210) Intel

8 core ARM Graviton2 CPU (AWS
c6g.2xlarge instance)

Eigen (commit 527210),
OpenBLAS (commit 5c6c2cd4) ARM

1 All cloud instances ran Ubuntu 18.04.

Experimental Environment

We use the three environments listed in Table 3.3 for our evaluation. We use cuBLAS, Intel MKL
and OpenBLAS for the BLAS needs of Cortex as well as related work on the GPU, Intel and ARM
backends respectively. DyNet also relies on the Eigen library. We compare against PyTorch 1.6.0,
DyNet’s commit 32c71acd (Aug. 2020) and Cavs’ commit 35bcc031 (Sept. 2020).

3.6.2 Overall Performance

We compare Cortex’s performance with that of PyTorch and DyNet for the five models in Table 3.2
across the three backends. The open-source implementation of Cavs that we evaluate against has a few
limitations—it does not fully support CPU backends, or DAG-based models. It does not implement the
lazy batching optimization as described in the Cavs paper. It does not perform specialization nor does it
provide the user flexibility to perform the optimization manually. In order to present a fair comparison
with Cavs, we therefore use the TreeFC, TreeGRU and TreeLSTMmodels on the GPU backend, with
specialization disabled in Cortex and do not include the input matrix-vector multiplications in both
Cavs and Cortex. We were also unable to get the streaming and fusion optimizations in Cavs working
for the TreeGRU and TreeFC models.

We first look at PyTorch. As PyTorch does not perform auto-batching, its performance is quite
poor. Speedups over PyTorch implementations for the GPU and Intel backends and for the small size
are shown in Figure 3.6. Due to PyTorch’s inability to perform batching, it cannot exploit parallelism
across data structures nodes. As a result, it performs worse for larger batch sizes. It also performs worse
for the TreeFC and DAGRNN models for the same reason. Their input data structures have a higher
degree of available parallelism as compared to the remaining three models. Cortex performs better on
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Figure 3.6: Cortex’s Speedup over PyTorch for the small model sizes.

Table 3.4: DyNet vs. Cortex: Inference latencies (DyNet/Cortex) inms and speedups across different backends.

Backend Model

Small model size Large model size

Batch size 1 Batch size 10 Batch size 1 Batch size 10

Time Speedup Time Speedup Time Speedup Time Speedup

GPU

TreeFC 0.41/0.08 5.13 1.54/0.17 9.26 0.4/0.12 3.31 1.48/0.37 3.97
DAGRNN 1.79/0.22 8.15 3.83/0.39 9.81 1.78/0.26 6.85 3.77/0.54 6.92
TreeGRU 1.41/0.18 7.69 4.72/0.35 13.51 1.41/0.25 5.66 4.63/0.75 6.17
TreeLSTM 1.84/0.24 7.73 5.28/0.39 13.59 1.78/0.29 6.12 5.1/0.7 7.32
MVRNN 0.8/0.34 2.38 3.46/0.78 4.42 0.87/0.39 2.24 3.47/1.11 3.14

Intel

TreeFC 0.42/0.12 3.46 3.41/0.64 5.29 0.93/0.42 2.22 8.03/2.3 3.49
DAGRNN 1.12/0.19 5.81 6.07/0.89 6.79 2.21/0.6 3.66 11.57/2.27 5.09
TreeGRU 0.98/0.18 5.42 4.09/0.89 4.58 2.45/0.58 4.19 8.63/2.97 2.91
TreeLSTM 1.15/0.23 5.06 5.59/1.02 5.5 2.95/0.54 5.42 12.36/3.02 4.09
MVRNN 0.43/0.29 1.51 4.68/1.22 3.83 1.68/1.08 1.55 21.2/7.3 2.9

ARM

TreeFC 1.35/0.21 6.57 5.27/1.58 3.32 3.24/0.79 4.11 10.58/6.54 1.62
DAGRNN 3.48/0.38 9.23 11.08/2.52 4.4 14.39/1.55 9.31 26.84/8.67 3.1
TreeGRU 2.57/0.3 8.49 9.59/1.81 5.3 8.74/0.99 8.8 21.42/6.08 3.52
TreeLSTM 2.15/0.39 5.46 10.59/2.58 4.1 6.11/1.35 4.54 20.11/8.86 2.27
MVRNN 0.52/0.4 1.32 5.36/2.61 2.05 1.96/1.95 1.01 15.35/16.8 0.91

the GPU backend because it can effectively utilize the higher available parallelism on the GPU due to
auto-batching and the scratchpad memories due to aggressive kernel fusion.

We now compare the inference latencies of Cortex with Cavs and DyNet, shown in Tables 3.5
and 3.4, respectively. Cortex latencies are much lower (up to 14X improvement) due to a number
of reasons. As compared to Cortex, Cavs and DyNet incur significant overheads unrelated to tensor
computations. This can be seen in Figure 3.7, which plots inference latency as a function of hidden
size for the TreeLSTM model4 for batch size 10 for Cavs and DyNet on the GPU and Intel backends.
At low hidden sizes, the inference latencies are quite high and are mainly comprised of overheads. As
the overheads are relatively higher for the GPU backend, we explore those below. Apart from kernel
call overheads, the discussion of the other overheads applies to the CPU backends too.

Table 3.6 lists some runtime components of DyNet, Cavs, and Cortex, and the time they spend in
each, for the same model configuration as above on the GPU backend. Both DyNet and Cavs imple-
ment generalized batching algorithms, which cause overheads in auto-batching and graph construction.
At runtime, DyNet constructs a dataflow graph of tensor operators and performs dynamic batching on

4We use only the recursive part of the TreeLSTM model, without the input matrix-vector multiplications.
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Table 3.5: Cavs vs. Cortex: Inference latencies (Cavs/Cortex) inms and speedups on GPU
Model
Size

Batch
Size

TreeFC TreeGRU TreeLSTM

Time Speedup Time Speedup Time Speedup

small 1 0.97/0.09 10.24 1.95/0.15 12.94 2.54/0.22 11.38
10 3.74/0.27 14.06 3.28/0.27 12.18 4.01/0.44 9.05

large 1 1.22/0.16 7.41 2.01/0.2 10.22 2.56/0.28 9.04
10 5.8/0.69 8.46 3.66/0.61 5.96 4.43/0.91 4.88

Table 3.6: Time spent (ms) in various activities1 for DyNet, Cavs, and Cortex for TreeLSTM on the GPU
backend for batch size 10 and hidden size 256.

Framework Dyn. batch/
Graph const.

Mem. mgmt.
time (CPU/GPU)

GPU
computation time

#Kernel
calls2

CPU CUDA
API time3 Exe. time4

DyNet 1.21/1.82 1.46/1.03 1.71 389 12.28 17.381
Cavs 0.4/- 0.85/1.16 0.71 122 9.56 11.57
Cortex 0.01/- -/- 0.32 1 0.35 0.35

1 The timings reported correspond to multiple runs, and were obtained using a combination of manual instrumentation and profiling
using nvprof.
2 Does not include memory copy kernels.
3 Includes all kernel calls as well as calls to cudaMemcpy and cudaMemcpyAsync.
4 DyNet and Cavs normally execute CUDA kernels asynchronously. For the purposes of profiling (i.e., this table only), these calls were
made synchronous, which leads to slower execution. Shown are execution times under nvprof profiling, provided as a reference.

the same. As compared to Cavs and Cortex, which deal with graphs corresponding to the input data
structures, DyNet therefore must handle a much larger graph. Cavs adopts the ‘think-like-a-vertex’
approach which also has non-trivial overheads as compared to Cortex, which is specialized for recur-
sive data structures. Cortex’s auto-batching overheads are limited to linearization, before any tensor
computations are executed.

As Cavs and DyNet rely on vendor libraries, they need to ensure that inputs to batched kernel
calls are contiguous in memory. The resulting checks and memory copy operations have significant
overheads [146], both on theCPU and theGPU (‘Mem. mgmt. time’ in Table 3.6). As Cortexmanages
the entire compilation process, it is free from such contiguity restrictions.

Cortex performs aggressive kernel fusion (illustrated in Figure 3.8), which has the dual effect of
generating faster GPU code (seen in the ‘GPU computation time’ column in Table 3.6) as well as
lowering CUDA kernel call overheads. As seen in Table 3.6, both DyNet and Cavs execute a high
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Figure 3.7: Inference latency vs. hidden size for the recursive portion of TreeLSTM for batch size 10.
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Figure 3.9: Cortex vs. hand-optimized GRNN code for sequence length 100 and hidden and input sizes 256.

number of kernel calls, which, when taken together cause non-trivial overheads as CUDA kernels calls
are expensive [76, 152]. The high number of kernel and memory copy calls also contributes to a high
amount of CPU time spent in the CUDA API as seen in the column ‘CPU CUDA API time’.

To our knowledge, there are no hand-optimized recursive model implementations available. There-
fore, we compareCortex withGRNN’s hand-optimizedGPU implementations of the sequential LSTM
and GRUmodels. These implementations use a lock-free CUDA global barrier implementation [143],
which is faster than the lock-based one [143] used by Cortex. For a fair comparison, we also compare
against a version of the GRNN implementations which use the lock-based implementation. We find
that Cortex-generated code performs competitively as compared to these hand-optimized implemen-
tations (Figure 3.9). Notably, Cortex can generalize these optimizations for recursive models.

3.6.3 Benefits of Optimizations

In this section, we look at different optimizations and their relative benefits in Cortex. Figure 3.10a
shows the inference latency for different models (on the GPU for hidden size 256) as we progressively
perform optimizations. Kernel fusion provides significant benefits for all models. The benefits are
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pronounced on GPUs as GPUs have manually managed caches, which kernels optimized in isolation
cannot exploit. Complex models such as TreeLSTM that provide more fusion opportunities benefit
more. Specialization enables computation hoisting and constant propagation (3.3.3), which can dra-
matically reduce the amount of computation in tree-based models as trees have a larger proportion of
leaves. For DAGRNN, which performs computations on DAGs, specialization does not lead to any
speedup as expected. Finally, model persistence leads to non-negligible improvements in the inference
latencies by reducing accesses to the GPU global memory. We discuss some optimization trade-offs
involving register pressure in §A.5 in the appendix.
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Figure 3.10: Benefits of different optimizations on the GPU backend for hidden size 256.

3.6.4 Other Scheduling Primitives

We now turn to the scheduling primitives of unrolling and recursive refactoring.

Unrolling

We evaluate unrolling on the TreeLSTMmodel for the GPU backend and a hidden size of 256. In this
case, after unrolling, the cost of a barrier cannot be amortized across all nodes in a batch, as illustrated
in Figure 3.11. This leads to higher inference latencies (Figure3.10b) despite the increased data reuse
and kernel fusion (§3.2.1). We then evaluate unrolling on the simpler TreeRNN model, which is an
extension of sequential RNNs for trees. When scheduling this model implementation, we perform the
computation for one node in one GPU thread block, thus avoiding additional global barriers when
unrolled. Therefore, unrolling leads to a drop in the inference latency for this model.

Before unrolling After unrolling

Global
barrier

Figure 3.11: Unrolling TreeLSTM leads to additional barriers.
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3.6 Evaluation

Table 3.7: Linearization overheads (in µs) in Cortex.
Batch Size TreeLSTM/TreeGRU/MV-RNN DAG-RNN TreeFC

1 1.31 8.2 3.04
10 9.64 95.14 30.36
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Figure 3.12: Peak GPU memory consumption in kilobytes, for batch size 10 and small model size.

Recursive Refactoring

We evaluate recursive refactoring on the TreeGRU model. In this case, refactoring allows us to reduce
the number of global barriers as in the GRNN GRU implementation [51]. However, we find that in
the case of TreeGRU, this does not give us significant speedups (Figure 3.10c). To explore further, we
simplify the TreeGRUmodel (referred to as SimpleTreeGRU5) and apply the same optimization again.
For the case of this simplified TreeGRUmodel, refactoring reduces the inference latency by about 25%.
We also use recursive refactoring in the sequential GRU model implementation discussed above.

3.6.5 Data Structure Linearization Overheads

The data structure linearizer (§3.3.2) lowers input data structures to arrays and performs auto-batching
if necessary, on the host CPU. Table 3.7 lists linearization times for different models (TreeLSTM, Tree-
GRU, and MVRNN are lumped together because they use the same input dataset). We find that on
the GPU backend for batch size 10 and the small model size, linearization overheads, as a percentage
of total runtime, range from 1.2% (for MVRNN) to 24.4% (for DAGRNN). Note that the lineariza-
tion time is independent of the hidden size as no tensor computations are performed at this stage. As
Cortex specializes for the case of recursive data structures, the linearization overheads are quite low.

3.6.6 Memory Usage

We now compare the memory consumption of Cortex with PyTorch, DyNet and Cavs. The peak
GPU memory consumption for different models for batch size 10 and the small model size is shown in
Figure 3.12. PyTorch uses the least amount of memory as it does not perform auto-batching. DyNet

5Instead of h = z ∗ ht−1 + (1 − z) ∗ h′, where h′ is the result of a linear transform, the h-gate in SimpleTreeGRU is
computed as h = (1− z) ∗ h′.
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3 Cortex: Compiler-Based Auto-Batching for Recursive Deep Learning Models

and Cavs are designed for both deep learning training and inference. As gradient computations during
training require the values of intermediate operations computed during the forward pass, DyNet and
Cavs do not free the memory used by these intermediate tensors. Therefore, their memory consump-
tion is quite high as compared to Cortex, which is designed for inference. We also compare against a
version of DyNet (shown as ‘DyNet (inference)’ in Figure 3.12) modified to simulate the deallocation of
a tensor when it is no longer needed in the forward inference pass. Despite this deallocation, however,
DyNet’s memory consumption is higher than Cortex’s. Cortex materializes fewer intermediate tensors
to the GPU’s global memory due to kernel fusion (Figure 3.8). This reduces its memory consump-
tion. Further, DyNet requires extra scratch space to ensure contiguous inputs to vendor library calls as
discussed previously.

3.7 Related Work

Compilers for Machine Learning

Tensor compilers (which we discussed in Chapter 2) such as TVM, Halide and Taco have been well
studied. There are similarities between sparse tensor computations, as supported in Taco, and the
ILIR, which lead to similar implementation techniques. For example, the idea of dense layouts for
intermediate tensors (§3.4.1) is similar to the concept of workspaces for Taco introduced in [66]. On
the other hand, as Cortex’s aim is representing and compiling recursive deep learning models, while
Taco mainly focuses on generating sparse kernels, there are significant differences as well. For example,
we propose techniques, optimizations and scheduling primitives such as linearization, specialization and
computation hoisting beneficial for recursive models. More generally, Cortex extends the abstractions
provided by tensor compilers to support recursive computations and develops specialized optimizations
for the same.

We saw in Chapter 2 that deep learning compilers such as XLA [126] andGlow [107] optimize static
feed forward models and can perform partial kernel fusion and code generation. Further, in [102], the
authors develop techniques to efficiently lower recursion into iterative control flow while performing
auto-batching for the XLA toolchain. Inference engines such as TensorRT [89] and OpenVINO [55]
optimize model execution for inference. The techniques we develop in this chapter could be used as a
low-level backend for these deep learning compilers and optimizers. MLIR [70] provides infrastructure
to build deep learning compilers and Cortex could potentially be built using MLIR.

Optimizing Dynamic Neural Networks

Cortex is inspired by runtime approaches to auto-batching such as DyNet, TensorFlow Fold and more
specialized approaches such as Cavs. Unlike these, Cortex performs auto-batching before any tensor
computations. Beyond auto-batching, there is a large body of work aimed at optimizing recursive and
more generally, dynamic neural networks. This includes, for instance, the approaches we outlined in
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3.8 Chapter Summary

§2.2.1 of Chapter 2. The lazy or speculative approaches we discussed to handle control flow dynamism,
can incur high execution overheads, similar to dynamic batching.

Model persistence was first proposed by Persistent RNNs [28], subsequently used in GRNN [51]
and adapted for CPUs in DeepCPU [153]. In all of these works, it has been applied to the specific case
of sequential RNNs (or their variants such as sequential LSTMs or GRUs), often with the use of hand-
optimized or vendor library kernels. On the other hand, Cortex extends the optimizations proposed
in these works to recursive models6 and formalize them as transformation primitives in an end-to-end
compilation workflow.

In general, Cortex provides a lower level of programming abstraction as compared to the deep
learning frameworks we have discussed previously. Given this, we believe that Cortex could be poten-
tially used as a backend for these frameworks, which would alleviate the disadvantages of using vendor
libraries discussed in Chapter 1 and Chapter 2. For instance, deep learning on general graphs, as per-
formed by graph neural networks, involves computations similar to the ones Cortex handles. Therefore,
the ILIR infrastructure could also be used to express and optimize graph deep learning, potentially as
a part of existing frameworks such as DGL [138].

Sparse Polyhedral Framework

The Sparse Polyhedral Framework (SPF) [79, 82, 123] extends the polyhedral model for the case of
sparse tensor computations. Cortex borrows techniques such as the use of uninterpreted functions to
represent indirect memory acceses from this body of work. The data structure linearizer in Cortex is
an instance of the more general inspector-executor technique [4]. Using this technique to lower data
structures has also been proposed in the past [134].

3.8 Chapter Summary

This chapter presented Cortex, a compiler for optimizing recursive deep learning computations with
tensor-independent control flow for fast inference. For this specialized, but important class of compu-
tations, Cortex’s approach eschews vendor libraries, thus allowing aggressive kernel fusion and end-
to-end optimizations from the recursive control flow down to the tensor algebra computations, thus
enabling highly efficient auto-batching. This allows Cortex to achieve up to 14× lower inference laten-
cies. Cortex demonstrates that we can broaden the scope of deep learning computations that can be
expressed and optimized using tensor compiler techniques. In the next chapter, we will look at how we
can employ insights learnt from Cortex in designing an auto-batching framework for a much broader
class of computations with dynamic control flow.

6As mentioned in §3.6, we implement the TreeLSTM and TreeGRU models in Cortex similar to the GRNN implemen-
tations.
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4 ACRoBat: Auto-Batching in the Presence of
General Control Flow Dynamism

In Chapter 3, we saw how Cortex enables efficient auto-batching for recursive deep learning computa-
tions. However, as Chapter 2 described, there exists a wide variety in control flow patterns exhibited by
deep learning computations beyond recursion. This chapter describes how we generalize the lessons
learned from designing and evaluating Cortex to perform auto-batching for general unrestricted con-
trol flow.

When evaluating Cortex’s performance, we discussed how Cortex’s performance improvements can
be attributed to the following:

1. Reduced execution overheads associated with dynamic approaches to auto-batching.

2. End-to-end compilation of the tensor operators with the surrounding control flow.

In this chapter, we discuss howwe achieve these in the general case and describe ACRoBat (Automated
Compiler andRuntime-enabled Batching), a compiler and runtime-based framework which performs
auto-batching for computations exhibiting general control flow.

As compared to the compilation of recursive computations in Cortex, the presence of general control
flow often leads to a lack of execution knowledge during compilation. Our main insight in designing
ACRoBat is that despite this, the compiler can often perform analysis and optimizations with the goal
of aiding dynamic analysis and thereby reducing the execution overheads while effectively exploiting
the parallelism in the input computation. Accordingly, ACRoBat employs novel static+dynamic program
analysis to enable auto-batching with very low overheads. Further, ACRoBat’s end-to-end tensor kernel
generation enables it to automatically generate kernels optimized and specialized for the larger compu-
tation. Users of ACRoBat express their computations using an expressive high-level language. This
generality allows one to express a wide variety of control flow patterns, ranging from simple condi-
tional statements to complex recursive computations. Table 4.1 provides a qualitative comparison of
ACRoBat with related work on auto-batching.

As part of its hybrid static+dynamic optimizations, ACRoBat relies heavily on static analysis tech-
niques. In order to gain as much insight about the input computation as possible during compilation,
ACRoBat employs traditional compiler techniques such as context-sensitivity and profile-guided opti-
mizations, while also relying on minimal user annotations. ACRoBat also uses static analysis to identify
and exploit data reuse opportunities when automatically generating and optimizing batched tensor ker-
nels as we see in §4.3.
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4 ACRoBat: Auto-Batching in the Presence of General Control Flow Dynamism

Table 4.1: Comparison between ACRoBat and other solutions for auto-batching dynamic deep learning com-
putations. Purely static or dynamic approaches can be overly conservative, or have high overheads
respectively, unlike ACRoBat’s hybrid analysis.

Framework PyTorch DyNet Cortex TFFold ACRoBat

Auto-batch support No Yes Yes Yes Yes
Auto-batch analysis - Dynamic only Static only Dynamic only Hybrid
Vendor libray use High High None High None

Generality High High Low Mid High
User implementation effort Low Low High Low Low

Performance Low Low High Low High

4.1 Overview and API

The presence of control flow dynamism necessitates reliance on potentially expensive runtime analysis
to perform auto-batching. In ACRoBat, we observe that while perfect knowledge is not possible, ag-
gressive static analysis often provides sufficient information to help reduce the dynamic overheads of
batching. Not only is this helpful for more efficiently handling the dynamic control flow, we find that
we can also generate specialized and more efficient tensor kernels in an end-to-end manner.

We will now look at ACRoBat’s compilation and execution workflows (illustrated in Figure 4.1) that
make use of the above insights. ACRoBat takes as input an unbatched deep learning computation
expressed in Relay [106] which is a simple but Turing-complete functional language developed for
expressing deep learning computations. This enables ACRoBat users to express models with dynamic
control flow, such as the ones discussed in Chapter 2, with relative ease. For example, Listing 2.1
illustrates a simple RNN model which ACRoBat can take as an input. ACRoBat also allows users to
provide annotations which are used during compilation. We discuss these in the later sections of the
chapter.

Given an input Relay computation 1 , compilation in ACRoBat begins with batched kernel genera-
tion 2 . Here, ACRoBat performs static analysis to identify data reuse opportunities and accordingly
generates batched versions 3 of kernels implementing the tensor operators used in the input program.
These unoptimized kernels are then optimized by the auto-scheduler module 4 . This module per-
forms profile-guided optimization as described in §4.3.3 to determine how to prioritize resources when
auto-scheduling the kernels. Once optimized, target code 10 such as CUDA C++ can be generated
for the batched kernels. Concurrently, the input Relay program is further optimized and compiled 5

in an ahead-of-time (AOT) fashion to generate C++ code 7 .
During execution, ACRoBat lazily executes the AOT compiled input program 7 on a mini-batch

of inputs 6 , and constructs DFGs 8 by interfacing with the ACRoBat runtime library. Once these
DFGs are constructed, the ACRoBat runtime library will schedule them 9 , while looking for batching
opportunities1. Then, it will invoke the generated and optimized batched kernels 10 for each batch

1In this work, we only consider parallelism across multiple calls to the same tensor operator. While multiple tensor
operators can be executed in parallel as well, we leave that for future work.
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4.2 Hybrid Static+Dynamic Optimizations

def @rnn(
  inputs: List[Tensor[256]]
  bias: Tensor[256],
  state: Tensor[256]):
 match(inputs):
  Nil => state,
  Cons(input, tail) =>
    @rnn(tail, bias, 
         bias+input+state)

Input unbatched Relay
program

Generated batched
unoptimized kernel

C++ AOT  compiled unbatched program

Optimized batched
kernels

Compilation

Input data
(if any)

1

Batched kernel
generation (§4.3.1)

Parameter
reuse analyses2 Tensor kernel

optimization (§5.3)
Profile-guided
optimization

auto-
scheduling

Gather op
fusion (§4.3.2)

4// BS: Batch size
add3_batched(BS, bias, input, state, O):
  for b in 0:BS:
    for i in 0:256:
      O[b,i] = bias[i] + input[b,i] +
               state[b,i]

3

def @rnn(inputs: List[Tensor[256]]
         bias: Tensor[256], state: Tensor[256]):
  match(inputs):
    Nil => state,
    Cons(input, tail) => @rnn(tail, bias, 
      invoke_kernel("add3", [bias, input, state]))

Unbatched program
compilation (§4.2, §4.4)

AOT
compilation

Grain size
coarsening

5

inputs_vec

6

Tensor rnn(List<Tensor> inputs,
  Tensor bias, Tensor state, int& depth) {
 if (isNil(inputs)) return state;
 return rnn(inputs.tail, bias,
  acrobat_rt.invoke_kernel("add3", {bias,
   inputs.head, state}, depth++), depth); 
}

void main(vector<List<Tensor>> inputs_vec,
  Tensor bias, Tensor init) {
 for (inputs: inputs_vec) {
  int depth = 0;
  rnn(inputs, bias, init, depth);
 }
}

7

Scheduling
(§4.2.1)

ACRoBat Runtime

Generated
DFG

Scheduled
DFG

8

9

Pipeline dataflow
Code generation

Compilation stage
Batch of DFG nodes

Runtime

// BS: Batch size
add3_batched(BS, bias, input_ptr,
     state_ptr, O_ptr):
 b = blockIdx.x  // [0,BS]
 i = threadIdx.x // [0,256]
 O_ptr[b][i] = bias[i] +
   input_ptr[b][i] + state_ptr[b][i]

10

Control flow decisions depend on tensor values for the case of tensor dependent control flow.

Figure 4.1: Overview of the ACRoBat compilation and runtime pipeline.

of DFG nodes that it identifies. Depending on whether the input program exhibits tensor dependent
control flow, the execution can cycle back to the AOT compiled program which will execute further
and create more DFGs.

Now, we will take a look at the different components of ACRoBat in more detail, starting with the
hybrid static+ dynamic optimizations in §4.2, kernel generation and optimization in §4.3 and some
implementation details in §4.4.

4.2 Hybrid Static+Dynamic Optimizations

Dynamic control flow often precludes static program transformations. Therefore, as we discussed
above, ACRoBat takes a hybrid approach whereby it exploits static program knowledge by either (1)
providing hints to the dynamic analysis (as in the case of the inline depth computation in §4.2.1), or
(2) generating code that affords the dynamic analysis greater freedom in exploiting parallelism (for ex-
ample, when it uses concurrent execution in presence of tensor dependent control flow as described
in §4.2.3). Further, static analysis also allows us to perform optimizations such as kernel fusion, which is
important for high performance (§4.5.4). Below, we provide more details regarding our hybrid analysis.

4.2.1 Inline Depth Computation

We saw that at runtime, ACRoBat schedules the execution of the tensor operators that form the nodes
of the generated DFG. As part of this scheduling, ACRoBat identifies batching opportunities to exploit
parallelism. Given one or more DFGs, each node is assigned a depth such that the depth of a node
is larger than the depth of any of its producer nodes. This way, the dependency order of the nodes is
obeyed when nodes are executed in the increasing order of their depths. Nodes at the same depth can
be executed concurrently as they do not depend on each other. This allows the scheduler to exploit the
aforementioned parallelism. A fully dynamic approach to assign the node depths, as used in TensorFlow
Fold [75] and Dynet [85], performs a simple traversal of the generated DFGs. We now look at how
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4 ACRoBat: Auto-Batching in the Presence of General Control Flow Dynamism

ACRoBat can effectively use information available during compilation in order to reduce the overheads
of DFG scheduling.

A DFG scheduling algorithm has two goals:
G.1 Correctness: Scheduling tasks such that dependences between the tasks are respected.
G.2 Performance: Identifying and exploiting parallelism.
The depth assignment discussed above satisfies both of the above conditions. However, we note that a

separate graph traversal after the DFGs have been constructed, as described above, is often unnecessary
in order to perform this depth assignment. We make the following two observations:

O.1 The order in which the unbatched program invokes the tensor operators, i.e. the order in which
nodes are added to the DFGs, is a valid dependency order.

O.2 Information about instance parallelism is often available during compilation.

1 List<Tensor> rnn(List<Tensor> inputs, Tensor state, Tensor bias,
2 Tensor iweight, Tensor hweight, int& depth) {
3 if (inputs == ListNil())
4 return ListNil();
5 auto input_linear = AcrobatRT.InvokeKernel("bias_dense",
6 0, {bias, iweight, inputs.head});
7 auto new_state = AcrobatRT.InvokeKernel("sigmoid_add_dense",
8 depth++ , {input_linear, hweight, state});
9 return ListCons(new_state, rnn(inputs.tail, state, bias, iweight,

10 hweight, depth ));
11 }
12
13 vector<Tensor> main(Tensor rnn_bias, Tensor rnn_iweight,
14 Tensor rnn_hweight, Tensor rnn_init, Tensor cweight,
15 Tensor cbias, vector<List<Tensor>> inputs_vec) {
16 vector<Tensor> res;
17 for (auto inputs: inputs_vec) {
18 int depth = 0;
19 AcrobatRT.SetPhase(0);
20 auto rnn_res = rnn(inputs, rnn_init, rnn_bias,
21 rnn_iweight, rnn_hweight, depth );
22 AcrobatRT.SetPhase(1);
23 depth++;
24 res.push_back(
25 map([&](Tensor p) {
26 AcrobatRT.InvokeKernel(
27 "relu_bias_dense", depth , {cbias, cweight, p}); },
28 rnn_res)
29 );
30 }
31 return res;
32 }

Listing 4.1: AOT compiled output for the RNN model in Listing 2.1, with aspects pertaining to inline depth
computation highlighted.

Based on these observations, we devise a scheme whereby we can assign correct depth values that
respect the dependencies between tensor operators as well as exploit the available instance and batch
parallelism as we execute the unbatched program for each input instance and construct the DFG. In
this scheme, the depth of an operator is equal its position in the dependency ordering induced by
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4.2 Hybrid Static+Dynamic Optimizations

the execution of the unbatched program. This ensures that objective G.1 is satisfied. Computing
graph depths in this manner allows us to skip an explicit graph traversal for scheduling. Therefore, we
exclusively rely on observationO.2 above in order to discover and exploit opportunities for parallelism.
Specifically, we use the following three techniques:

Instance Parallelism

We note that, instance parallelism often stems from recursion or the use of the functional@map function
on a list of independent data items. Employing observationO.2 above, we ensure, in our generated code,
that such concurrent operations are assigned the same depths during the execution of the unbatched
program for each input instance. We rely on user annotations to obtain information about recursive
parallelism2. Listing 4.1 shows the AOT compiled code generated for the RNN model in Listing 2.1.
We see, on line 27, how all the invocations of therelu_bias_dense kernel inside the@map function
are assigned the same depth.

Hoisting Independent Operations

Given a recursive computation, such as the @rnn function in Listing 2.1, often certain tensor operators
are not part of the sequential dependency induced by the recursion. For example, the linear transfor-
mation of the input on line 5 in Listing 2.1 can be hoisted out of the recursion. In order to discover such
operations that can be hoisted, we rely on a 1-context sensitive taint analysis3. As part of this analysis,
we statically compute the depths of such operations. We see, in Listing 4.1, how the invocation of the
kernel bias_dense on line 6 is assigned a statically computed depth of 0. During runtime, such
operations are therefore effectively hoisted out of the recursion. For the RNN example, this allows us
to batch the linear transformations for all input word embeddings together rather than execute them
as part of the sequential dependency one at a time.

Combating Eagerness of Depth Scheduling

A depth-based scheduling scheme, like the one ACRoBat uses, can often be too eager in executing
tensor operators, which can leading to a sub-optimal amount of exploited parallelism. This has been
well-documented in past work [85]. Depending on whether repetitive or merely conditional control
flow is involved, we rely on the following techniques to allow for better performance.
Program Phases: For our RNN example in Listing 2.1, in order to exploit the most parallelism for the
output operation on line 21, one should wait until all the RNN operations (i.e. the ones invoked in
the @rnn function) for all the input instances have been executed. This way, all output operations
corresponding to all words in all input instances can be batched and executed as one kernel invocation.

2ACRoBat allows users to mark any set of function calls as concurrent in the input Relay code.
3Context sensitivity [5] is a static analysis technique that allows the compiler to reason about a function in the different

contexts it may be called under leading to increased static analysis precision. For the deep learning computations we worked
with, we found that a 1-context sensitive analysis was sufficient. Deeper contexts might be useful, however, for more complex
computations.
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Tensor operator
Ghost operator
Batch

let t1 = if (...) opA(...)
         else t1
let t2 = opB(t1)
let t1 = if (...) opA(...)
         else ghostOp(); t1
let t2 = opB(t1)
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Figure 4.2: Ghost operations can enable better batching.

This would require that all these output operations across all input instances be assigned the same depth.
However, this may not be the case as the length of each input sentence may, in general, vary. Therefore,
in order to restrict the scope of the depth assignment, the user can provide program phase annotations
(lines 16 and 19 in Listing 2.1). In essence, ACRoBat interprets such phase boundaries as boundaries
for scheduling. ACRoBat, therefore, schedules and executes operations in one phase before moving on
to the next. For our example, this way, we ensure that all the RNN functions are executed for all input
instances before ACRoBat moves on to the output operations.
Ghost Operations: A similar situation can occur in the presence of a conditional if statement. This is
illustrated in upper pane of Figure 4.2. We see that eager batching leads to a sub-optimal batching
schedule as the instances of operation B for inputs Inp1 and Inp2 are batched eagerly and more impor-
tantly separately from the instances of operation B for inputs I3 and I4. In the lower pane, we insert
a call to a ghost operation leading to an optimal schedule. ACRoBat can statically identify such cases
and appropriately insert ghost operations as needed. Note that ACRoBat employs ghost operations
merely to affect scheduling behavior and they are ignored during tensor kernel execution.

4.2.2 Grain Size Coarsening

Generally, scheduling is performed at the granularity of individual tensor operators i.e. each node in
the DFG corresponds to one, potentially fused, tensor kernel call. As we discussed in Chapter 2, deep
learning computations frequently contain larger static blocks embedded in the dynamic control flow
(the LSTM cell in the case of TreeLSTM, for instance). Therefore, performing scheduling at the finer
granularity of individual tensor operators is often unnecessary and leads to high scheduling overheads.
ACRoBat, therefore, performs scheduling at the static block coarser granularity. As these blocks do
not contain any control flow, coarsening the granularity this way does not lead to a loss of exploited
parallelism but only reduces the size of the generated DFGs and hence the scheduling overheads. This
optimization has been explored in past work [36, 42, 116, 146, 151] to some extent as well. The
coarsening optimization is illustrated in Figure 4.3.

4.2.3 Tensor Dependent Control Flow

We saw that during execution, ACRoBat executes the unbatched program lazily to create DFGs for
each input instance in the batch. In the absence of tensor dependent control flow, we can first execute
the unbatched program for each input instance sequentially and trigger the batching and execution of
all the DFGs at once. In the presence of tensor dependent control flow, however, we would be required
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Without grain size coarsening

With grain size coarsening

Batch of nodes
Unit of scheduling

Tensor kernel

def @rnn(inputs, state, iweight, hweight, bias) {
  match(inputs) {
    Nil => Nil,
    Cons(input, tail) => {
      let input_transformed = b + nn.dense(input, iw)
      let new_state = sigmoid(input_transformed + nn.dense(state, hweight))
      Cons(new_state, @rnn(tail, new_state, iweight, hweight, bias))
    }
  }
}

Figure 4.3: Grain size coarsening illustrated for the @rnn function shown in Listing 2.1.

model_fn(...) {
 t2 = acrobat_rt.invoke_kernel("k1", t1);
 fiber_rt.yield();
 if (t2[0] >= 0)
   t3 = acrobat_rt.invoke_kernel("k2", t1);
 else 
   t4 = acrobat_rt.invoke_kernel("k3", t1);
}

void main() {
  for (input : inputs_vec)
    fiber_rt.new([](){
      model_fn(...);
    });
  
  while() {
    fiber_rt.wait_for_fibers_to_yield();
    acrobat_rt.trigger_execution();
    fiber_rt.resume_all_fibers();
  }
}

Concurrent execution
model_fn(...) {
 t2 = acrobat_rt.invoke_kernel("k1", t1);
 acrobat_rt.trigger_execution();
 if (t2[0] >= 0)
   t3 = acrobat_rt.invoke_kernel("k2", t1);
 else 
   t4 = acrobat_rt.invoke_kernel("k3", t1);
}

void main() {
  for (input : inputs_vec)
    model_fn(...);
}

Sequential execution

Triggered execution

Sequential execution Concurrent execution

Inp1

Inp2

Time

k1 k2

k1 k3

Time

k1 k3

k1 k2

Figure 4.4: Concurrent execution of the unbatched program in the presence of tensor-dependent control flow.

to trigger the execution any time we encounter a control flow decision that depends on the value of an in-
termediate tensor. Therefore, when the unbatched programs are executed sequentially in the presence
of tensor dependent control flow, we are not able to exploit any batch parallelism. Thus, in the presence
of tensor dependent control flow, ACRoBat generates code to execute the unbatched program for each
input instance concurrently by using fibers or userland threads [21]. This way, the unbatched program
can be executed for each instance to a point where none can progress without triggering the evalua-
tion of the DFG. At this point, the evaluation can be performed, and the concurrent executions for
each instance resumed after as illustrated in Figure 4.4. Correspondingly, in order to exploit instance
parallelism in the presence of tensor dependent control flow, ACRoBat launches concurrent strands of
execution in newly spawned fibers, similar to the popular fork-join model of parallelism [78]. We there-
fore see that ACRoBat combines the static knowledge of batch and instance parallelism with dynamic
concurrent execution as part of its hybrid analysis to effectively exploit parallelism in the presence of
tensor dependent control flow.
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4.3 End-to-end Tensor Kernel Generation

We saw above that as part of its compilation workflow, ACRoBat generates and optimizes batched
kernels. This end-to-end code generation without reliance on external vendor libraries enables ACRo-
Bat to uniformly handle all tensor operators used in the input program without additional compiler
development effort. This enables ACRoBat to achieve a larger coverage of operators with batching
supported. In contrast, using a vendor library would preclude an automated, uniform and general
mapping from unbatched to batched tensor operators.

More details about ACRoBat’s use of static analysis to extract information about the surrounding
computation to generate efficient tensor kernels are provided below.

4.3.1 Exploiting Parameter Reuse

Given the input unbatched computation, ACRoBat needs to generate batched versions of the kernels
implementing the tensor operators used in the computation. Generating a batched version of such a
tensor operator is not as straightforward as adding a batch dimension to each input and output tensor
as well as the computation loop nest. This is because some input tensors might be shared across calls to
the operator. This is frequently the case for model parameters. For example, consider tensor operator
add3, which implements the element-wise addition of three tensors used in the input computation
1 in Figure 4.1. Across multiple calls to add3, the bias argument will be shared (as it is a model
parameter) and hence should be reused across all values of the arguments input and state. This
can be seen in the batched version of this operator ( 3 and 10 ) in Figure 4.1.

ACRoBat uses a 1-context sensitive taint analysis to identify such shared arguments to tensor oper-
ators. The use of static analysis for this purpose allows ACRoBat to obtain accurate knowledge about
the parameter reuse patterns. On the other hand, without any knowledge about the usage patterns,
inferring such tensor reuse dynamically with low overheads would involve the use of heuristics, which
as we see in §4.5.3, can be brittle, leading to sub-optimal performance.

Code Duplication for Better Data Reuse

Code reuse in the input program can often prohibit the parameter reuse mentioned above. Consider
the following code listing, where, in a manner similar to the RNN model implemented in Listing 2.1,
we implement a bidirectional RNN (BiRNN) [111] computation. Here, we invoke the same @rnn
function with different model parameters to implement the forward and backward RNNs. In this
case, the tensor operators invoked by the @rnn function will not be statically determined to have any
arguments constant across multiple calls, thereby precluding data reuse for the model parameters. In
order to remedy this, before generating the batched kernels, ACRoBat recognizes such cases of data
reuse (again using a context-sensitive taint analysis) and transitively duplicates the necessary functions
to enable data reuse later when generating the batched kernels4. In the case of the BiRNN example,

4Simply inlining the @rnn function will not work in this case it is recursive.
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// Unbatched kernel
bias_add(input, bias, O):
  for i in 0:256:
    O[i] = input[i] + bias[i]

// Relay Program 
let out1 = invoke_kernel(
   "bias_add", [input, bias1]);
let out2 = invoke_kernel(
   "bias_add", [input, bias2]);

// Statically batched kernel
bias_add(input, bias1, bias2, O1, O2):
  for bs in 0:2:
    for i in 0:256:
      (bs == 0 ? O1[i] : O2[i]) =
         input[i] +
         (bs == 0 ? bias1[i] : bias2[i])

// Relay Program 
let out1, out2 = invoke_kernel(
   "bias_add", [input, bias1, bias2]);

Figure 4.5: Horizontal fusion promotes parameter reuse.

for instance, ACRoBat will transitively duplicate the @rnn function (including the tensor operators it
invokes) and use a different copy of the @rnn function for each of the two forward and backward calls
in the listing below.

1 (* Type annotations are omitted in the listing for simplicity. *)
2 def @main(f_rnn_bias, f_rnn_iweight, f_rnn_hweight, f_rnn_init,
3 b_rnn_bias, b_rnn_iweight, b_rnn_hweight, b_rnn_init,
4 inputs_list) {
5 let rinputs_list = @reverse_list(inputs_list);
6 let forward_res = @rnn(inputs_list, f_rnn_init,
7 f_rnn_bias, f_rnn_iweight, f_rnn_hweight);
8 let backward_res = @rnn(rinputs_list, b_rnn_init,
9 b_rnn_bias, b_rnn_iweight, b_rnn_hweight);

10 }

Reuse Within Static Blocks

Given a tensor operator, the analysis discussed above takes into account parameters shared across calls
made by different input instances in the mini-batch. This usually applies to model parameters as they
are shared across multiple input instances. It is often the case, however, that multiple calls to the same
tensor operatorwithin the same static block share a parameter. For example, this is the case in the
commonly used LSTM cell, where the computation of the four gates all involve concurrent linear
transformations of the same input vector. In such cases, ACRoBat horizontally fuses such calls in order
to exploit the parameter data reuse. This is illustrated in Figure 4.5.

4.3.2 Fusing Memory Gather Operations

During execution, ACRoBat identifies batching opportunities across the lazily generated DFGs and
launches the appropriate batched kernel. Due to the dynamic nature of this process, the input tensors
to all DFG nodes in a batch may not be laid out contiguously in the accelerator’s memory. As a result,
we need to perform a memory gather operation before being able to operate on the tensors. Performed
naively, this can lead to a significant explosion in the data movement. Therefore, ACRoBat generates
specialized batched kernels to directly operate on the input tensors scattered in memory, in effect fusing
the expensive memory gather operation with the batched kernel. The generated batched kernel 10 in
Figure 4.1 illustrates this. As we show in §4.5, ACRoBat’s end-to-end generation of tensor kernels in
this manner leads to a significant performance improvement.
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4.3.3 Tensor Kernel Optimization

We saw above how ACRoBat generates unoptimized kernels for implementing batched versions of
(potentially fused) tensor operators used in the input program. Then, we need to optimize the kernels
and generate target code. Below, we provide some details on how we rely on the auto-scheduler [156]
implemented as part of TVM in order to automatically optimize these kernels.

Auto-scheduler Operator Priorities

Given a deep learning computation consisting of a number of tensor operators, TVM’s auto-scheduler
prioritizes the optimization of tensor operators based on their relative execution cost. This priority
is estimated as the product of the execution cost of the unoptimized kernel and the number of times
the kernel is invoked during the execution of the input program. In the absence of dynamic control
flow, the latter quantity is equal to the number of static calls to the kernel in the input program. In the
presence of control flow (such as repetitive or conditional control flow), however, this can lead to incor-
rect priorities for the kernels, thereby resulting in suboptimal kernel performance. ACRoBat therefore
relies on profile-guided optimization (PGO) to accurately estimate the relative importance of tensor
operators. When PGO is not possible, ACRoBat also provides a simple static analysis to heuristically
perform this estimation based on how deeply nested the call to an operator is in the recursion.

Dynamic Batch Size

Due to the dynamic nature of ACRoBat’s scheduling, the loop corresponding to the batch dimension
in the unoptimized batched kernels generated by ACRoBat has a variable loop extent (the outermost
batch loop in kernel 3 in Figure 4.1, for example, has a variable extent BS). In order to optimize
these kernels, ACRoBat auto-schedules a corresponding kernel with a static loop extent for the batch
dimension and automatically applies the generated schedule to the original kernel with the variable
loop extent.

When generating code for loops with variable loop extents, we often have to insert conditional check
statements in order to avoid out of bounds accesses. Such conditional checks can be severely detrimental
to performance. Therefore, we rely on the local padding and local partitioning techniques proposed in
DietCode [155] to eliminate these conditional check statements when appropriate.

4.4 Other Optimization and Implementation Details

Ahead-of-time Compilation

We saw in §4.1 that ACRoBat takes a Relay program as input. As described in [113], the default
Relay execution stack consists of a virtual machine (VM) which interprets a simple bytecode that Relay
is compiled down to. While the overheads of the VM are insignificant for static straightline deep
learning computations as the authors find in [113], we find that the overheads can be significant in the
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presence of dynamic control flow and irregular data structures (§4.5.2). Therefore, ACRoBat instead
compiles the input Relay computation to C++ in an ahead-of-time fashion. As part of this compilation,
ACRoBat lowers all dynamic control flow as well as irregular data structures to native C++ control flow
and classes. Relay handles scalars by modeling them as zero dimensional tensors. ACRoBat’s AOT
compiler lowers such zero-dimensional tensors and common arithmetic operations on them to native
C++ scalars as well. We see, in §4.5.2, that this AOT compilation significantly reduces the execution
overheads of dynamic control flow.

ACRoBat Runtime

We have optimized ACRoBat’s runtime system to reduce overheads. We use arena allocation (both on
the CPU as well as on the GPU) and asynchronous execution on the GPU. We also batch memory
transfer operations between the CPU and GPU when possible to reduce the CUDA API overheads.

Implementation Details

We prototype ACRoBat by extending TVM v0.9.dev0. TVM currently lacks support for training deep
learning models. As a result, our prototype currently only supports the forward pass of an input model.
However, ACRoBat’s techniques as described above apply to both the forward as well as the back-
ward passes. For the same reason, due to lack of access to trained model parameters, we use pseudo-
randomness to emulate tensor dependent control flow in deep learning computations as part of our
evaluation. Further, we find that TVM’s operator fusion pass is limited and is often unable to fuse
memory copy operations such as tensor reshape, concatenation and transpositions. Therefore, in our
implementations of the deep learning computations, we manually provide fusion hints to the compiler
to force the fusion of such operators with their consumers. Further, our current prototype only supports
the functional subset of Relay5.

4.5 Evaluation

We now evaluate ACRoBat against Cortex, DyNet and PyTorch on an Nvidia GPU.

4.5.1 Experimental Setup

Models

We use the models listed in Table 4.2 for the evaluation. For each model, we look at two model sizes—
small and large. For the TreeLSTM, BiRNN, NestedRNN, DRNN, and StackRNN models, the small
models size uses a hidden size of 256 and the large one uses a hidden size of 512. For the MV-RNN
model, we use hidden sizes 64 and 128 for the small and large model sizes, while for the Berxit model,
the small model uses the same hyper-parameters as the BERTBASE model [27], while the large model

5Side-effects via mutable references are currently not supported.
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Table 4.2: Models and datasets used for evaluating ACRoBat.
Model Description Dataset

TreeLSTM TreeLSTM [125] model Stanford sentiment treebank [121]
MVRNN MV-RNN [120] model Stanford sentiment treebank
BiRNN Bidirectional RNNs [120] XNLI [25] dataset

NestedRNN An RNN loop nested inside a GRU loop GRU/RNN loops iterate for a random
number of iterations in [20, 40].

DRNN Doubly recurrent neural networks [6] for
top-down tree generation Randomly generated tensors.

Berxit Early exit for BERT inference [145]. All
layers share weights. Sequence length 128.

StackRNN StackLSTM [33] parser with LSTM cells
replaced by RNN cells. XNLI

Table 4.3: Relay VM vs. ACRoBat’s AOT compilation: Forward pass latencies in ms.
Hidden
Size

Batch
Size

TreeLSTM MVRNN BiRNN

Relay VM ACRoBat AOT Relay VM ACRoBat AOT Relay VM ACRoBat AOT

small 8 30.68 2.66 4.0 0.55 29.88 2.23
small 64 28.94 9.47 3.91 1.63 28.88 5.47
large 8 31.64 3.85 4.34 1.06 32.04 4.82
large 64 29.49 15.9 4.36 4.6 30.43 13.72

uses the same hyper-parameters as the BERTLARGE model [27], except that we use 18 layers instead
of 24 in this case.

Experimental Environment

We run our experiments on a Linux workstation with an AMD Ryzen Threadripper 3970X proces-
sor (64-logical cores with 2-way hyperthreading) and an Nvidia RTX 3070 GPU. The machine runs
Ubuntu 20.04, CUDA 11.1 and cuDNN 8.0.5. DyNet also uses the Eigen library (v3.3.90). We com-
pare against DyNet’s commit 3e1b48c75 (March 2022) and PyTorch v1.9.0a0+gitf096245.

4.5.2 Benefits of AOT Compilation

We first look at the performance gains due to the AOT compilation described in §4.4. The performance
of the TreeLSTM,MVRNN and BiRNNmodels6 when executed using the Relay VM and ACRoBat’s
AOT compiler is shown in Table 4.3. All runs have the grain size coarsening, gather operator fusion
and program phase optimizations turned on. As the table shows, VMoverheads significantly slow down
(up to 13.45× times) the execution as compared to the AOT compiled native code for these models.
Therefore, for the rest of this section, we evaluate ACRoBat’s performance with AOT compilation
enabled.

6Our prototype implementation of ACRoBat does not currently support the execution of the remaining models in Ta-
ble 4.2 using the Relay VM.
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Figure 4.6: Speedups obtained over PyTorch for the TreeLSTM, MVRNN and BiRNN models.

4.5.3 Overall Performance

In this section, we compare ACRoBat’s performance with that of PyTorch, DyNet and Cortex.

Performance Comparison with PyTorch

We first look at ACRoBat’s performance as compared to that of PyTorch for the TreeLSTM,MVRNN
and BiRNN models7. This data is shown in Figure 4.6. PyTorch does not perform auto-batching and
is therefore unable to exploit any available instance or batch parallelism in the evaluated computations.
Further, ACRoBat’s kernel fusion and other static optimizations also increase its performance relative to
PyTorch. We see that the speedups are higher for the small model size as compared to the larger model
sizes. This is because the relative importance of exploiting instance and batch parallelism is lower for the
large model size due to the increased parallelism in individual tensor operators. ACRoBat’s relatively
worse performance on the BiRNNmodel as compared to the other two can be attributed to the absence
of instance parallelism in BiRNN leading to a lower amount of parallelism that ACRoBat can exploit.
Similarly, due to TreeLSTM exhibiting a higher amount of static and tensor parallelism as compared
to MVRNN, the relative importance of exploiting instance and batch parallelism is lower, leading to
performance lower than that of MVRNN.

Performance Comparison with DyNet

Next, we compare ACRoBat’s performance with that of DyNet. As mentioned in §4.4, we simulate
tensor dependent control flow in the NestedRNN, DRNN, Berxit and StackRNNmodels using pseudo-
randomness. We ensure that the pseudo-randomness is uniform across the ACRoBat and DyNet imple-
mentations by using pre-determined random seeds for a fair comparison. An exception is the DRNN
model when inline depth computation is performed. In this case, ACRoBat exploits DRNN’s recursive
instance parallelism using fibers (§4.2.3) leading to a change in the random control flow decisions taken.
We account for this by presenting the mean execution time across 50 different random seeds.

7We were able to use TorchScript only for the BiRNN model as it does not currently support recursive data types [24],
such as the parse trees used as inputs to the TreeLSTM and the MVRNN models.
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Table 4.4: DyNet vs. ACRoBat: Inference latencies (DyNet/ACRoBat) inms and speedups. The DyNet imple-
mentation of the Berxit model was killed due to out-of-memory errors for a batch size of 64.

Model

Small model size Large model size

Batch size 8 Batch size 64 Batch size 8 Batch size 64

Time Speedup Time Speedup Time Speedup Time Speedup

TreeLSTM 4.31/1.48 2.93 26.18/5.81 4.51 4.58/2.4 1.92 26.53/11.44 2.33
MV-RNN 2.11/0.54 3.96 12.45/1.48 8.47 2.27/1.04 2.19 13.89/4.46 3.13
BiRNN 3.13/2.16 1.45 12.04/4.86 2.49 3.95/4.43 0.9 12.11/13.11 0.93
NestedRNN 29.38/31.01 0.95 84.55/65.73 1.29 46.03/35.61 1.3 94.97/100.17 0.95
DRNN 6.7/1.74 3.87 25.3/5.24 4.84 8.44/2.45 3.45 26.5/9.99 2.66
Berxit 63.54/38.49 1.66 -/204.54 - 113.18/64.49 1.76 -/335.3 -
StackLSTM 47.78/22.69 2.11 213.98/39.06 5.48 64.67/43.75 1.48 230.74/86.82 2.66

Table 4.5: Time spent (ms) in various activities1 for DyNet and AC-
RoBat for batch size 64.

Activity
TreeLSTM, small BiRNN, large

DyNet ACRoBat DyNet ACRoBat

DFG construction 8.8 1.5 4.5 1.0
Scheduling 9.7 0.4 3.3 0.4

Memory copy time 3.1 0.1 2.3 0.2
GPU kernel time2 6.1 4.0 6.6 11.2

Number of kernel calls 1653 183 580 380
CUDA API time3 16.5 3.9 12.0 11.1

1 The timings reported correspond to multiple runs, and were obtained using manual
instrumentation and profiling using Nvidia Nsight Systems. Due to profiling over-
heads, the execution times may not match the ones in Tables 4.4 and 4.6.
2 Includes memory copy kernels.
3 Includes all kernel calls as well as calls to cudaMemcpy and cudaMemcpyAsync.

The forward pass latencies for DyNet and ACRoBat are shown in Table 4.48. ACRoBat performs
better thanDyNet inmost cases due to a number of reasons. Table 4.5 lists the time spent by DyNet and
ACRoBat in different runtime components for the TreeLSTM model. We see that ACRoBat spends a
significantly lower amount of time in constructing and scheduling the DFG. ACRoBat’s optimizations
such as static kernel fusion and grain size coarsening reduce the size of the DFG by reducing the num-
ber of tensor kernels invoked, thereby reducing the construction and scheduling overheads. Further,
ACRoBat’s inline depth computation allows it to exploit the same amount of parallelism as DyNet’s
agenda based scheduling scheme [85] with much less execution overheads. Optimizations such as static
kernel fusion and gather operator fusion enable ACRoBat to launch fewer GPU kernels, further reduc-
ing the time spent in the CUDA API. We take a closer look at the benefits of each of the optimizations
that ACRoBat employs in more detail in §4.5.4.

On the other hand, we note that DyNet performs slightly better than ACRoBat for some configura-
tions of the BiRNN and the NestedRNN models. Table 4.5 provides a breakdown of various runtime
components for the BiRNN model. We see that while ACRoBat incurs much less runtime overheads
for DFG construction, scheduling and memory transfer as compared to DyNet, it spends a significantly

8DyNet implements two scheduling schemes [85]—an agenda-based one, and a depth-based one. We consider the best
of the two for each model configuration in our evaluation.
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higher amount of time in kernel execution which outweighs the ACRoBat’s savings in runtime over-
heads. We believe that better tensor kernel optimizations can help reduce the performance gap between
ACRoBat and DyNet for these cases.

Beyond these reasons, ACRoBat performs better on specific benchmarks due to the following reasons:
Unbatched execution of certain operators:We find that DyNet is unable to batch the execution of some
operators certain model computations invoke. This is because of the following two reasons:

1. Brittle heuristics: Wementioned in §4.3.1 that ACRoBat’s use of static analysis for inferring param-
eter reuse allows it to have accurate knowledge to exploit reuse during with static optimizations.
On the other hand, DyNet employs a fully dynamic analysis for this purpose. For instance, DyNet
heuristically batches multiple instances of the matrix multiplication operator only when the first
argument of all the instances is the same tensor. This usually works as the first argument is often
a model parameter, usually as part of a linear transformation. Our DyNet implementation of
the MVRNNmodel, however, multiplies two intermediate tensor activations together, as a result
of which DyNet is unable to batch instances of this operator, forcing sequential unbatched exe-
cution. When we modify DyNet’s heuristic for matrix multiplication, its performance improves
significantly as shown in Table 4.6.

2. High framework development effort: As described in §4.3, ACRoBat’s end-to-end kernel generation
leads to a broader coverage over tensor operators for which batching is supported as compared
to approaches such as DyNet which rely on vendor libraries. For example, DyNet does not sup-
port batched execution for the argmax operator, which the StackRNN model uses in order to
determine the next parser action in every iteration based on the result of the embedded RNN
cell. Similarly, the element-wise multiplication operator, used in the DRNN model, is executed
in an unbatched manner when broadcasting needs to be performed. On the other hand, ACRo-
Bat automatically generates optimized batched implementations of these tensor operators.

We also find that DyNet is unable to batch calls to the operator that constructs constant valued
tensors. We use this operator to initialize the hidden states of tree leaves in the TreeLSTMmodel.
ACRoBat, on the other hand, statically recognizes that a constant valued tensor can be reused
and thereby only creates the tensor once. The performance of the TreeLSTM model improves
when we exploit this reuse manually in DyNet, as Table 4.6 shows.

Inability to exploit instance parallelism in DRNN: The DRNN model constructs a tree from an input
vector representation in a top-down recursive manner. It exhibits both tensor-dependent control flow
as well as instance parallelism (multiple sub-trees can be generated concurrently). We saw how AC-
RoBat can automatically exploit instance parallelism in the presence of tensor-dependent control flow
with the use of fibers in §4.2.3. On the other hand, DyNet is unable to exploit this parallelism and
therefore ACRoBat’s performance on this model is significantly better than that of DyNet. DyNet’s
performance when this optimization is performed manually is shown in Table 4.6.
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Table 4.6: Model execution times in ms after the improvements described in §4.5.3 were made for the TreeL-
STM, MVRNN and DRNN models. DN++ stands for DyNet with improvements.

Model
Size

Batch
Size

TreeLSTM MVRNN DRNN

DyNet DyNet++ ACRoBat DyNet DyNet++ ACRoBat DyNet DyNet++ ACRoBat

small 8 4.31 3.8 1.48 2.11 1.05 0.54 6.7 3.29 1.74
small 64 26.18 22.69 5.81 12.45 3.15 1.48 25.3 18.51 5.24
large 8 4.58 4.14 2.4 2.27 1.83 1.04 8.44 3.82 2.45
large 64 26.53 24.09 11.44 13.89 10.47 4.46 26.5 18.86 9.99

Table 4.7: Cortex vs. ACRoBat: Forward pass latencies in ms.
Hidden
Size

Batch
Size

TreeLSTM MVRNN BiRNN

Cortex ACRoBat Cortex ACRoBat Cortex ACRoBat

small 8 0.79 1.48 1.14 0.54 1.28 2.16
small 64 3.62 5.81 6.92 1.48 3.48 4.86
large 8 1.84 2.4 5.3 1.04 2.47 4.43
large 64 10.23 11.44 41.15 4.46 10.74 13.11

Performance Comparison with Cortex

Table 4.7 compares the performance of ACRoBat with that of Cortex for the TreeLSTM, MVRNN
and the BiRNN models. Cortex’s restrictive API prohibits the implementation of the other models in
Table 4.2. The input linear transformations that can be hoisted out of the recursive computation in the
TreeLSTM and BiRNNmodels (as described in §4.2.1) are manually hoisted and offloaded to cuBLAS
in the case of Cortex, while ACRoBat performs this hoisting automatically and relies on auto-scheduled
kernels for the same.

We see that for the TreeLSTM and BiRNN models, Cortex performs up to 1.87× better than AC-
RoBat. This is because Cortex is specialized for recursive deep learning computations, allowing it to
generate a single kernel implementing the entire computation and to take advantage of aggressive ker-
nel fusion and model persistence, while reducing kernel call overheads. On the other hand, Cortex
requires its users to manually optimize the generated kernel significantly increasing the developer ef-
fort9 while ACRoBat relies on an auto-scheduler (§4.3.3). Note also that Cortex performs much worse
than ACRoBat on the MVRNNmodel. This is because Cortex’s restrictive API necessitates additional
copies of the embedding vectors for the leaves of the input parse trees, which ACRoBat can avoid due
to its more flexible interface. Overall, we see that ACRoBat delivers performance comparable to that
of Cortex, while supporting a much wider range of deep learning computations with significantly lesser
developer effort.
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Figure 4.7: Benefits of different optimizations. The unfused executions of Berxit were killed due to out-of-
memory errors.

Table 4.8: NestedRNN (small, batch size 8) execution times in ms, illustrating the benefits of using PGO invo-
cation frequencies during auto-scheduling.

Auto-scheduler iterations Exe. time without PGO Exe. time with PGO

100 41.08 42.49
250 34.58 30.88
500 31.61 24.4
750 27.33 23.72
1000 25.63 24.34

4.5.4 Benefits of Optimizations

We now evaluate the relative benefits of the different optimizations ACRoBat performs. Figure 4.7
shows forward pass execution times for themodels in Table 4.2 (for the large model size at a batch size of
64) as we progressively perform optimizations. Standard kernel fusion (i.e. kernel fusion not including
gather operator fusion as discussed in §4.3.2) provides significant benefits for all models10. Grain size
coarsening is beneficial in all models, but is most prominent in models with a relatively high amount of
control flow such as TreeLSTM andMVRNN. Inline depth computation enables ACRoBat to skip the
separate scheduling step, thus reducing overheads. This optimization also is most beneficial for models
such as TreeLSTMandMVRNN. Further, turning this optimization on in the case of theDRNNmodel
also enables ACRoBat to exploit the instance parallelism inherent in the computation as discussed
in §4.2.3 leading to a drop in the execution time. The BiRNN model involves per-token output linear
transformations as would be the case when performing token classification. Program phase annotations
for this allow ACRoBat to avoid greedy scheduling as described in §4.2.1 and batch all these output
linear transformations together. The StackRNN model executes different tensor operators, depending
on the current parser action. This involves a conditional if-statement. Insertion of ghost operators here
therefore again enables more optimal exploitation of parallelism leading to better performance.

Gather operator fusion leads to a reduction in the execution time for some benchmarks and an
increase in others. Such fusion leads to indirect memory accesses which can cause a slowdown in the
kernel execution. While ACRoBat does hoist such loads out of loops when appropriate, this is not

9For example, implementing the MVRNN model in Cortex requires 325 LoC in Python, while the same model in
ACRoBat can be implemented in 79 LoC of Relay and 108 LoC of Python (187 LoC in total).

10The tensor operators used in the implementations of the models with and without standard kernel fusion were auto-
scheduled for the same number of auto-scheduler iterations.
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always possible depending on the schedule generated by the auto-scheduler. Further, gather operator
fusion leads to a slowdown mostly in models with iterative execution and little instance parallelism. As
in DyNet, when gather operator fusion is turned off in ACRoBat, we perform the explicit memory
gather when the input tensors are not already contiguous in memory. Tensors are more likely to be
contiguous in such iterative models as compared to recursive ones, thus blunting the advantages of
gather operator fusion. Also, in models such as Berxit, the relatively high tensor computation cost of a
coarsened static block further reduces any benefits gather operator fusion might provide.

Overall, we find that models with a relatively lower amount of control flow or a higher amount of ten-
sor computations such as Berxit or NestedRNN benefit less from optimizations that reduce scheduling
overheads. For the same reason, the larger models benefit less from such optimizations as compared to
the smaller ones for all the benchmarks evaluated.

Benefit of PGO in Tensor Kernel Auto-Scheduling

We mentioned in §4.3.3 that ACRoBat uses invocation frequencies (obtained via PGO) to prioritize
tensor operator optimization during auto-scheduling. In order to evaluate the benefit of this optimiza-
tion, we look at the performance of NestedRNN with and without the optimization. As Table 4.2 lists,
NestedRNN executes 30 iterations of the inner RNN loop per iteration of the outer GRU loop on an
average. Therefore, the operators invoked in the RNN loop affect the performance of the benchmark
muchmore than those invoked in the GRU loop. Table 4.8 shows the execution times of the benchmark
with and without PGO for different iterations of the auto-scheduler11 which shows how ACRoBat can
better prioritize auto-scheduling for the RNN operators with PGO turned on.

4.6 Related Work

ACRoBat improves upon past work on auto-batching (which we discussed in Chapter 2) by effectively
exploiting all parallelism in a given computation, while incurring significantly lower runtime overheads.
As part of its design, ACRoBat builds upon and borrows from a wide body of past work including the
aforementioned work on auto-batching. For instance,

1. Grain size coarsening: Grain size coarsening has been explored in past work [36, 42, 116, 146, 151].
ACRoBat, however, performs coarsening statically in the context of general purpose auto-batching
framework.

2. Gather Operator Fusion: The gather operator fusion optimization is similar to the gather and scatter
fusion [22] performed for sparse GEMM operations in the CUTLASS library though ACRoBat is
able to perform this optimization automatically as part of its compilation workflow.

3. Local Padding and Local Partitioning: As mentioned in §4.3.3, ACRoBat borrows some techniques from
DietCode to auto-schedule tensor operators with variable loop extents. DietCode’s techniques are

11Due to the inherent randomness in the auto-scheduling process, the given execution times are averaged over 10 runs of
the auto-scheduler each.
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thus complementary to ours and it can be fully integrated into ACRoBat potentially for better kernel
performance.

4. Traditional Compiler Techniques: ACRoBat borrows techniques from the large body of work on compila-
tion for programs written in general-purpose languages. These techniques have been developed and
used for a wide variety of applications in this field. Context-sensitivity [5] is a common technique
used to increase the precision of of static compiler analyses. ACRoBat’s inline depth computation
and DFG scheduling more generally are similar to work on static [39, 43] and dynamic [94, 118]
instruction scheduling in the past for pipelined and superscalar processors. ACRoBat however
applies these techniques in the context of a deep learning framework. Taint analysis has been ex-
tensively used for security purposes [53, 71, 132]. Knowledge about program phases [114] allows
system designers to adaptively optimize systems for different parts of a program for optimal perfor-
mance [8, 52, 154]. Similarly, profile information can effectively guide a variety of optimization
decisions [15, 47, 61].

Recent compiler framework and IR (intermediate representation) design for deep learning appli-
cations has often focused on expressivity. These include Relay, TorchScript [97] which is used in
PyTorch [92] and MLIR [70]. While ACRoBat builds on the Relay compilation stack, we believe that
our techniques can be transfered to the other commonly used IRs in a straightforward manner.

4.7 Chapter Summary

This chapter presents ACRoBat, a compiler and runtime framework that performs auto-batching
of deep learning computations in the presence of dynamic control flow. ACRoBat employs hybird
static+dynamic analysis to enable effective batching with low runtime overheads. Further, end-to-end
code generation allows ACRoBat to generate hghly optimized tensor kernels for efficient execution.
The design and proliferation of highly expressive compiler representations for deep learning computa-
tions such as Relay, MLIR and TorchScript signifies the importance of a compiler’s ability to effectively
represent dynamism. In this context, we believe that ACRoBat takes an important step forward in open-
ing the door to more collaborative relationships between the various components of a deep learning
framework such as the tensor compiler, the high-level language compiler as well as the runtime.
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5 The CoRa Ragged Tensor Compiler: Efficient
Batching for Shape Dynamism

In the last two chapters, we described techniques to perform auto-batching in the presence of control
flow dynamism. We saw in Chapter 2 that shape dynamism is another kind of dynamism often ex-
hibited by deep learning computations such as transformer-based models. In this chapter, we develop
techniques to enable performant batched execution for such computations.

Recall that a computation is said to exhibit shape dynamism when its execution involves tensors of
varying shapes across different inputs. Ragged tensors are a common abstraction used to represent
data when executing such computations in a batched fashion. A simple ragged tensor operator is
illustrated in Figure 5.1. Due to the impendance mismatch between current vendor libraries and tensor
compilation infrastructures, which mostly support computations on sparse and dense tensors, ragged
tensor operations, when executed using either of them are quite inefficient. Sparse tensor libraries
and tensor compilers do not sufficiently exploit the properties of ragged tensors, and are optimized for
tensors much sparser than the ragged tensors encountered in practice. On the other hand, using dense
tensor infrastructure for performing ragged computations necessitates the use of padding or masking,
which can be quite wasteful. Figure 5.2 plots the relative amount of computation (in FLOPs) involved
in the forward pass of an encoder layer of the transformer model1 with and without padding. We see
that padding leads to a significant increase in the computational requirements of the layer, especially
at larger batch sizes, increasing computation in an already computationally expensive model.

This chapter proposes CoRa (Compiler for Ragged Tensors), a compiler-based solution enabling
easy and more portable generation of performant code for ragged operators2. While sparse [65, 81]
and dense [7, 13, 103, 135] tensor compilers have been well-studied, it is not straightforward to apply
these techniques to ragged tensors, due to the following challenges:

L1: for o in 0:M:
L2:   for i in 0:s(o):
        B[o,i] = 2*A[o,i]

Useful data Padding
cuDNN/TVM/...

(Current approach
with full padding)

CoRa
(Proposed compiler

with minimal padding)

Figure 5.1: A simple elementwise operation on ragged tensors.

1The hyperparameters used are the same as those in §5.6.2.
2A paper [37] describing CoRa was published at MLSys 2022.
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Figure 5.2: Wasted computation due to padding in a transformer encoder layer.

Table 5.1: Comparison between CoRa and current solutions for ragged operations.

Framework Portability Operator implementation effort Padding Performance

Dense tensor compilers High Low Full Low
Sparse tensor compilers High Low Minimal Low
Dense vendor libraries Low High Full Low

Hand-optimized implementations Low High Minimal High

CoRa High Low Minimal High

C1 Irregularity in generated code: While the data in ragged tensors are densely packed, the vari-
able loop bounds can lead to irregular code, often causing a loss of performance on hardware
substrates such as GPUs.

C2 Insufficient compilermechanisms: Representing transformations on loops with variable bounds
and on tensor dimensions with variable-sized slices is not straightforward due to the dependences
that exist among loops and tensor dimensions respectively in ragged operators. Further, optimiza-
tion decisions made by sparse tensor compilers may not always work for ragged tensors because
sparse tensors are much sparser than ragged tensors.

C3 Ill-fitting computation abstractions: There is a mismatch between the interfaces and abstrac-
tions provided by current compilers and ragged operators. Such operators cannot be expressed
in dense compilers, while sparse compilers do not adequately provide ways to express information
relevant to efficient code generation.

CoRa is a tensor compiler that allows one to express and optimize ragged operations to easily target
a variety of substrates such as CPUs and GPUs. To overcome challenge C1, CoRa enables minimal
padding of ragged tensor dimensions (§5.3.1) in order to generate efficient code for targets such as
GPUs as well as to specify thread remapping strategies to lower load imbalance (§5.3.1). CoRa uses
uninterpreted functions (introduced in Chapter 3) to symbolically represent variable loop bounds and
scheduling operations on the same (§5.4.1). CoRa’s mechanisms (such as its storage lowering scheme
discussed in §5.4.3) and optimizations are specialized for ragged tensors thereby tackling C2. Further,
CoRa provides simple abstractions to convey to the compiler information essential to efficient code
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Figure 5.3: FasterTransformer (FT-Eff) and CoRa implementations of a transformer’s encoder layer. Note how
CoRa’s fully compiler-based implementation uses only partial padding for SDPA as opposed to Faster-
Transformer’s fully padded implementation. CoRa also enables more operator fusion (including fus-
ing all the padding change operations) as opposed to FasterTransformer, which cannot do so in all
cases as it relies on vendor libraries.

generation, such as padding or thread remapping specifications and raggedness patterns of tensors
(§5.3). This overcomes challenge C3.

CoRa enables efficient code generation for ragged operators by significantly reducing padding (§5.6).
As part of CoRa’s implementation, we reuse past work by extending a tensor compiler [7, 13, 65, 103]
and thus, provide familiar interfaces to CoRa’s users. This also makes it easy in the future to use
auto-scheduling [1, 14, 80, 117, 156] for optimizing ragged tensor operations. Table 5.1 compares
CoRa with alternatives that are or could be used for ragged operators. Only CoRa achieves high
performance and portability, with low operator implementation effort (and minimal padding).

5.1 CoRa Overview

CoRa’s compiler-based approach enables the generation of performant code in a portable manner.
This is reflected in Figure 5.3, which compares CoRa’s implementation of a transformer encoder
layer with FasterTransformer. The highly-optimized FasterTransformer relies heavily on kernels im-
plemented in cuBLAS (Nvidia’s BLAS library), which are shown as blue outlines in the figure, and on
manually implemented kernels, shown as red outlines. On the other hand, CoRa’s implementation
exclusively employs compiler generated kernels (shown as green outlines), making it more portable.
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Further, CoRa’s compiler approach allows it to exploit more kernel fusion opportunities, evident from
the fact that CoRa’s implementation launches nine kernels as opposed to FasterTransformer’s twelve.
Both the implementations in the figure use minimal padding for all operators except for those in the
scaled dot-product attention (SDPA) sub-module, where CoRa’s specialized approach enables it to get
away with lower padding as compared to FasterTransformer. We further discuss these implementations
in §5.6.

CoRa’s ability to generate performant code that employs minimal padding in a portable manner
relies on the following two insights:

I1 In ragged operations, the pattern of raggedness is usually known before the tensor is actually com-
puted, and is the same across multiple tensors involved in the operation.

I2 Ragged tensors, like dense tensors, allow O(1) accesses (§5.4.3). This is unlike sparse formats such
as compressed sparse row (CSR), where accesses require a search over an array. The HASH [20]
sparse format, while allowing O(1) accesses, is unsuitable for accelerators such as GPUs due to its
highly irregular storage.

Insight I1 allows CoRa to precompute the auxiliary data structures needed to access ragged tensors
without knowledge of the computation (or values of its input tensors) that produces the ragged tensor.
This and insight I2 enable CoRa to generate efficient code for ragged operations.

Let us now look at CoRa’s overall compilation and execution pipeline, as illustrated in Figure 5.4.
The user first expresses 1 and schedules 2 their computation using an API similar to that of past
tensor compilers (§5.3). This specification of the computation and the scheduling primitives are then
lowered 3 to an SSA-based IR 4 . As part of this lowering step, CoRa generates code 7 to initialize
some auxiliary data structures it needs to be able to lower accesses to ragged tensors (§5.4.3) and to
enable loop fusion in ragged loop nests (§5.4.1). We refer to this code as the prelude code. Compilation
then continues with CoRa lowering tensor accesses to raw memory offsets by making use of the data
structures generated by the prelude. Finally, CoRa generates 5 target-dependent code 9 such as C
or CUDA C++. During execution, the formats of the input ragged tensors 6 are first processed by
the generated prelude code 7 which creates the auxiliary data structures 8 . This prelude code is
not computationally expensive (§5.6.4) and hence is executed on the host CPU. These data structures
and the ragged tensors are then passed to the generated target dependent code 9 which executes on
devices such as CPUs or GPUs.

We will now look these stages in more detail below.

5.2 Terminology

Ragged operators have one or more loops with bounds that are functions of iteration variables of outer
loops. We refer to such loops as variable loops or vloops while loops with constant bounds are referred to
as constant loops, or cloops. A loop nest with at least one vloop is referred to as a vloop nest. Further,
tensors can be stored in memory with or without padding. When stored without full padding, the size
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Figure 5.4: Overview of CoRa’s compilation and runtime pipeline.

of some tensor dimensions depends on outer tensor dimensions. Such dimensions are referred to as
variable dimensions, or vdims and those with constant sizes are constant dimensions or cdims. A tensor stored
such that it has no vdim (i.e., a fully padded tensor) is referred to as a dense tensor, while a tensor with
at least one vdim is a ragged tensor. Note that ragged tensors may still be padded to some extent.

5.3 CoRa’s Ragged API

CoRa provides a simple API similar to that of past tensor compilers, as seen in Listing 5.1, which
expresses the example computation from Figure 5.1 in CoRa. Apart from describing the computation
as in a dense tensor compiler, CoRa also requires the user to specify the raggedness dependences of
the computation (highlighted in Listing 5.1). This involves specifying vloop bounds as functions of
outer loop variables and vdim extents as functions of indices of outer tensor dimensions. Given this
information, CoRa automatically computes any derived data structures required (§5.4), making it easy
for users to express their computations. CoRa uses named dimensions3 (discussed further in §5.4.2)
to name loops and corresponding tensor dimensions and to specify relationships between them. For
example, the loop extent defined on linestates the dependence on the outer loop, referred to by the
named dimension batch_dim.

5.3.1 Scheduling Primitives

In order to optimize the expressed computation, CoRa provides all the scheduling primitives commonly
found in tensor compilers. Below, we describe some salient features and points of departure from past
tensor compilers.

Loop Scheduling

Both cloops and vloops can be scheduled in CoRa. We saw how a vloop, say Lv, has a loop bound
that is a function of the iteration variables of one or more outer loops, say L1 to Lk. CoRa currently

3Recall that we also used named dimensions in Cortex.
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1 ################ Operator Description ################
2 batch_size = var('M')
3 # Declare named dimensions
4 batch_dim, len_dim = Dim(), Dim()
5 # Loop: Specify vloop extents
6 lens = input_tensor((batch_size,))
7 l_ext = Extent([batch_dim], lambda b: lens[b])
8 loop_exts = [batch_size, l_ext]
9 # Storage: Specify vdim extents

10 s_ext = Extent([batch_dim], lambda b: lens[b])
11 storage_format = [batch_size, s_ext]
12 # Define input ragged tensor
13 dims = [batch_dim, len_dim]
14 A = input_tensor(dims, storage_format)
15 # Express computation
16 B = compute(dims, loop_exts, lambda i, j: 2 * A[i, j])
17
18 ############### Scheduling primitives ###############
19 pad_loop(B.loops[1], 2)
20 pad_dimension(B.dimensions[1], 4)
21 fuse_loops(B.loops[0], B.loops[1])

Listing 5.1: Operator in Figure 5.1 expressed in a simplified version of CoRa’s API.

does not allow reordering such a loop Lv beyond any of the loops L1 to Lk. Such a reordering would
introduce invalid iterations in the iteration space that would need to be skipped over with the used of
conditional expressions. Although possible with the introduction of conditional statements, we have
not found a use case for such reordering.

Operation Splitting

It can sometimes be beneficial to differently schedule different iterations of a loop in a vloop nest in
order to more optimally handle the variation in loop bounds. CoRa allows one to split an operation
into two or more operations by specifying split points for one or more of its loops, as Figure 5.5 shows.
In our evaluation (§5.6.3), we use this transformation in conjunction with horizontal fusion (described
below) to better handle the last few iterations of a tiled loop without the need for additional padding in
the QKT and AttnV operators in the transformer layer (Figure 5.3).

Horizontal Fusion

Past work [73] has proposed horizontal fusion, or hfusion for short, as an optimization to better utilize
massively parallel hardware devices such as GPUs by executing multiple operators concurrently as part
of a single kernel. With CoRa, we implement this optimization in a tensor compiler for the outermost
loop of two or more operators. HFusion enables the concurrent execution of the multiple operators
that result from using the operation splitting transform described above.
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L1: for i in 0:32:
L2:   for j in 0:s(i):
        ...

L11o12: // blockIdx.x [0, 40]
        if (blockIdx.x < 8):
L11i:      for ii in 0:4:
            i = blockIdx.x*4 + ii
L21:        for j in 0:s1(i):
              ...
        else:
          i = blockIdx.x - 8
L22:      for j in s1(i):s(i):
            ...

L11: for i in 0:32:
L21:   for j in 0:s1(i):
         ...
L12: for i in 0:32:
L22:   for j in s1(i):s(i):
         ...

2. More scheduling

1. Opsplit
(L2, s1())

3. hfuse
(L11o, L12)

L11o: // blockIdx.x [0, 8]
L11i: for ii in 0:4:
        i = blockIdx.x*4 + ii
L21:    for j in 0:s1(i):
          ...
L12:  // blockIdx.x [0, 32]
      i = blockIdx.x
L22:  for j in s1(i):s(i):
        ...

Kernel boundary

Figure 5.5: Operation splitting and horizontal fusion. Loop L2 is first split in step 1 using operation splitting
thus creating two loop nests, which are then horizontally fused together (step 3) so they execute
concurrently as part of single kernel.

Loop and Storage Padding

Despite the overheads of padding, a small amount of it is often useful in order to generate efficient
vectorized and tiled code by eliding conditional checks. Accordingly, CoRa allows the user to specify
padding for vloops and vdims as multiples of a constant. For example, on lineListing 5.1, the vloop as-
sociated with the dimension len_dim is asked to be padded to a multiple of 2 while the corresponding
dimension of the output tensor is specified to be padded to a multiple of 4 on line 20. Such independent
padding specification for loops and the underlying storage is allowed as long as the storage padding is
at least as much as the loop padding (this ensures that the padded loop nest never accesses non-existent
storage). This ability allows CoRa to fuse padding change operators as is illustrated in Figure 5.3. We
show in §5.6.4 that this partial padding does not lead to much wasted computation.

Tensor Dimension Scheduling

CoRa allows users to split, fuse and reorder dimensions of dense and ragged tensors. This can enable
more optimal memory accesses. Fusing tensor dimensions in a way that mirrors the surrounding loop
nest can allow for simpler memory accesses (§5.4.1).

Load Balancing

The variable loop bounds in a vloop nest can lead to unbalanced load across execution units. As pro-
posed by past work [41] on sparse tensor algebra, CoRa allows the user to redistribute work across
different parallel processing elements by specifying a thread remapping policy. Given a parallel loop, this
allows the user to specify a mapping between the loop iterations and the thread id (illustrated in Fig-
ure B.1 in the appendix). Depending on the hardware scheduling policy, this can influence the order in
which the loop iterations are scheduled and lead to non-trivial performance gains as shown in §5.6.1.

In conclusion, CoRa provides familiar and simple interfaces to users, extended with a few abstrac-
tions and scheduling primitives specific to ragged tensors, enabling their application to support (efficient)
ragged operations.
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    // Prelude Code
    ffo,ffi,foif = [],[],[]
    fctr = 0
    for o in 0:M:
      for i in 0:s(o):
        ffo[fctr] = o
        ffi[fctr] = i
        foif[o,i] = fctr++

    // Computation
    F = foif[M-1,s(M-1)]
Lf: for f in 0:F:
      o,i = ffo[f],ffi[f]
      T[o,i] = ...

Lo: for o in 0:M:
Li:   for i in 0:s(o):
        T[o,i] = ...

fuse(Lo,Li) fuse_dims(T,0,1)

    // Prelude Code
    ffo,ffi,foif = [],[],[]
    fctr = 0
    for o in 0:M:
      for i in 0:s(o):
        ffo[fctr] = o
        ffi[fctr] = i
        foif[o,i] = fctr++

    // Computation
    F = foif[M-1,s(M-1)]
Lf: for f in 0:F:
      T[f] = ...

Figure 5.6: Fusing vloops and tensor dimensions.

5.4 CoRa’s Ragged API Lowering

We now discuss some aspects of CoRa’s Ragged API lowering that generates the SSA-based IR as
shown in Figure 5.4.

5.4.1 Loop and Tensor Dimension Fusion

Consider the ragged loop nest shown on the top left corner of Figure 5.6. The loop bound of the inner
loop Li is a function s() of o, the iteration variable of the outer loop Lo. The loop Lf obtained by
fusing Lo and Li is shown on the right of the figure. The loop bound F of the fused loop would be
equal to

∑M−1
o=0 s(o). Further note that while we have fused the loops Lo and Li, the tensor access

T[o,i] in the body of the loop nest still uses variables o and i. Therefore, we need to compute
the values of these two variables corresponding to the current value of f, the iteration variable of Lf.
Because of the ragged nature of the loop nest, computing the loop bound F as well as the mapping
between the iteration variables of the original and the fused loop nests is not straightforward. In CoRa,
we generate code to compute these quantities and variable relationships (shown in the right pane of
Figure 5.6) as part of the prelude which executes before the main kernel computation. We use vloop
fusion as described above to implement the linear transformation operators (Proj1, Proj, FF1 and FF2)
in the transformer encoder (Figure 5.3) with minimal padding.

Suppose now that the tensor T in Figure 5.6 has a storage format that mirrors the loop nest consisting
of Lo and Li. This means that the 2-dimensional tensor has an outer cdim and an inner vdim the size
of the ith slice of which is s(i). Fusing these dimensions then enables CoRa to simplify the tensor access
as shown in the bottom left pane of the figure.

5.4.2 Bounds Inference

We saw in Chapter 3, how a tensor compiler needs to perform a bounds inference pass in order to loop
extents for all operators. Below, we describe some modifications CoRa makes to this pass.
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Figure 5.7: Iteration variable ranges during vloop fusion.

Variable Loop Fusion

As we saw in §5.4.1, the application of scheduling transformations such as fusion can lead to a situation
where the variables used in the tensor accesses in an operator’s body are not the same as the loop
iteration variables present after the transformations have been applied. This means that during bounds
inference, one has to repeatedly translate iteration variable ranges between the transformed and the
original variables. This is straightforward in the case of cloops, but gets slightly harder in the case of
vloop fusion. For the loop nest in Figure 5.6, we provide the rules to translate between the ranges of
iteration variables o, i and f below, and they are further visualized in Figure 5.7.

o ∈ [ol, ou] ∧ i ∈ [il, iu]→ f ∈ [foif (ol, il), foif (ou, iu)]

f ∈ [fl, fu]→ o ∈ [ffo(fl), ffo(fu)]

f ∈ [fl, fu] ∧ ffo(fl) ̸= ffo(fu)→ i ∈ [0, s(o)]

f ∈ [fl, fu] ∧ ffo(fl) = ffo(fu)→ i ∈ [ffi(fl), ffi(fu)]

Here, s() represents the variable loop bound of the inner loop, while foif , ffo and ffi represent the
relationships between the variables o, i and f such that ffo(f0) and ffi(f0) evaluate to values of o
and i, respectively, corresponding to f= f0. Similarly, foif (o0, i0) evaluates to f04.

Named Dimensions

In §5.3, we described how the user uses named dimensions to specify relationships between loops as
well as tensor dimensions. These dimensions play an important part in bounds inference as well. Along
with the translation between fused and unfused loop iteration variables described above, one also needs
to translate ranges of variables across producers and consumers during bounds inference. In CoRa, we
use named dimensions to easily identify corresponding iteration variables across such producers and
consumers to allow this translation.

4In the generated code, as seen in the right pane of Figure 5.6, these functions take the form of arrays initialized by the
prelude. Further, the computation of the foif array can, in most cases, be optimized away to only compute the loop bound
F of the fused loop.
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Dimensions Extents
1 (Batch Size) s1   :     2
2 (SeqLen1)    s24(): [1,2]
3 (#AttnHeads) s3   :     2
4 (SeqLen2)    s24(): [1,2]
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Figure 5.8: CoRa precisely models dimension dependences as compared to past schemes for sparse tensors.

5.4.3 Storage Access Lowering

In this section, we briefly describe how CoRa lowers accesses to ragged tensors. Consider the 4-
dimensional attention matrixX involved in a batched implementation of MHA shown in the left pane
of Figure 5.8. Here, the first and the third dimensions are cdims and correspond to the batch size and
the number of attention heads, respectively. The other two dimensions, corresponding to sequence
lengths, are vdims.5 For X , the size of a slice for both these vdims is the same function (s24()) of the
outermost batch dimension.

Due to the irregular nature of ragged tensor storage, we need some auxiliary data structures to be able
to lower memory accesses to X . The lowering scheme used by past work on sparse tensors [20, 119]
assumes that the number of non-zeros in a slice of a sparse dimension is, in general, a function of all outer
dimensions. However, recall that for our example tensor X , the size of a slice of either vdim depends
only on the outermost batch dimension. Being agnostic to such precise dependences between tensor
dimensions (as illustrated via the dimension graphs, or dgraphs in Figure 5.8), past work would compute
and store more auxiliary data as compared to CoRa.

CoRa’s lowering scheme allows for cheap O(1) accesses to ragged tensors. To enable this, we need
to compute a memory offset within a constant number of operations. The reason sparse tensor formats
such as the CSR format do not allow constant time tensor accesses is because they explicitly store indices
of one or more dimensions along with every non-zero value. Thus, given a tensor index, one needs to
perform a search over these stored indices to obtain the correct non-zero element. In the case of ragged
tensors, however, we note that within a vdim slice, the data in densely packed with no intervening zero
elements. Therefore, we can get away without storing explicit indices for any dimension. Accessing
the precomputed memory offsets is also a constant time operation as CoRa’s auxiliary data structures
store these offsets using simple arrays.

We describe these lowering schemes further in the appendix in §B.2.1. In short, our storage access
lowering scheme reduces the amount of auxiliary data that needs to be computed thus reducing the
memory and computation overheads of the prelude code (§5.6.4), while allowing cheap tensor accesses.

5We use the same layout in CoRa’s implementation in §5.6.2.
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Table 5.2: Experimental environments used for evaluating CoRa.
Hardware Software (All instances ran Ubuntu 20.04.)

Nvidia Tesla V100 GPU (Google cloud
n1-standard-8 instance)

CUDA 11.1, cuDNN 8.2.1, PyTorch 1.9.0,
FasterTransformer v4.0 (commit dd4c071)

8 core, 16 thread Intel CascadeLake CPU
(Google cloud n2-standard-16 instance) Intel MKL (v2021.3)

8 core ARM Graviton2 CPU (AWS
c6g.2xlarge instance) PyTorch 1.10.0a0+git36449ea (with oneDNN 2.4

and Arm compute library 21.11), TensorFlow 2.6.0
(with oneDNN 2.3 and Arm compute library 21.05),
OpenBLAS 0.3.10

64 core ARM Graviton2 CPU (AWS
c6g.16xlarge instance)

5.5 Implementation

Weprototype CoRa by extending TVMv0.6. Some details regarding this implementation are discussed
below.

Ragged API

Our prototype allows vdims to depend on at most one outer tensor dimension. This is not a funda-
mental limitation and can easily be overcome, though we have not needed to for our evaluation. We
implement the operator splitting and hfusion transforms for non-reduction loops.

Lowering

Our current prototype does not auto-schedule the expressed computation. The evaluation therefore
uses implementations optimized using a combination of manual scheduling and grid search. For some
operators, we auto-scheduled the corresponding dense tensor operator using past work [156] and man-
ually applied the schedule to the ragged case. We find that this works well in most cases and therefore
believe that the prototype could readily be extended with prior work on auto-scheduling (we discuss
this further in Chapter 6). Our implementation currently expects users to correctly allocate memory
(taking into account padding requirements as specified in the schedule) for tensors. Checks to report
problems with this memory allocation could be easily implemented.

5.6 Evaluation

We evaluate CoRa against state-of-the-art baselines, first, on two ragged variants of the gemm (general
matrix multiplication) operation in §5.6.1 and then on an encoder layer of the transformer model
(Figure 5.3) in §5.6.2. Our experimental environment is described in Table 5.2. Below, we refer to
the four platforms listed in the table as Nvidia GPU, Intel CPU, 8-core ARM CPU and 64-core ARM
CPU. Our evaluation is performed with single-precision floating point numbers.
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Figure 5.9: Performance comparison of CoRa’s vgemm and hand-optimized implementations of vgemm and
fully padded gemm.

5.6.1 Matrix Multiplication

We start by evaluating CoRa’s performance on the variable-sized batched gemm (or vgemm) and the
triangular matrix multiplication (or trmm) operators. As with all the implementations we compare
against, the CoRa implementations of these operators use fully padded storage for all tensors.

Variable-Sized Batched Gemm

The vgemm operator consists of a batch of gemm operations, each with different dimensions. For this
operator, we evaluate CoRa on the Nvidia GPU and Intel CPU backends and compare against hand-
optimized implementations of vgemm and fully padded batched gemm in both cases. On the CPU, we
compare against Intel MKL’s implementations while on the GPU, we compare against past work [74]
on vgemm and cuBLAS’s implementation of fully padded batched gemm. We use synthetically gen-
erated data where matrix dimensions are uniformly randomly chosen multiples of 128 in [512, 1408].
CoRa’s CPU implementation offloads the computation of inner gemm tiles to MKL, allowing us to
obtain computational savings due to raggedness while also exploiting MKL’s highly tuned microker-
nels. As Figure 5.9 shows, CoRa is effectively able to exploit raggedness on both CPUs and GPUs,
performing as well as or better than the hand-optimized implementation on the GPU and obtaining
better than 73% of the performance of MKL’s vgemm for all batch sizes and performing better on a
couple on the CPU. In all cases, CoRa is significantly better than the fully padded gemm operations,
which perform worse at higher batch sizes as there is more wasted computation as batch size goes up
for the batch sizes evaluated.

Triangular Matrix Multiplication

A triangular matrix, i.e. a matrix where all the elements above (or below) the diagonal are zero, can
be thought of as a ragged tensor because all non-zero elements in a row are densely packed and their
number per row is a function of the row index. Operations on triangular matrices can, thus, be effec-
tively expressed and optimized using CoRa. In this section, we evaluate CoRa on the trmm operator
wherein we multiply a square lower triangular matrix with a square dense matrix, on the Nvidia GPU.
We compare against cuBLAS’s trmm and fully padded gemm implementations. In trmm, the reduc-
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Figure 5.10: CoRa’s trmm performance compared against cuBLAS’s hand-optimized trmm and fully-padded
gemm implementations.

Table 5.3: Datasets used for evaluating CoRa.

Dataset (Short name, if any)
Sequence length statistics

Minimum Mean Maximum

RACE [69] 80 364 512
English Wikipedia with SeqLen 512 (Wiki512) 12 371 512
SQuAD v2.0 [104] (SQuAD) 39 192 384
English Wikipedia with SeqLen 128 (Wiki128) 14 117 128
MNLI [142] 9 43 128
XNLI [25] 9 70 128
MRPC [31] 21 59 102
CoLA [140] 6 13 37

tion loop is a vloop. In order to efficiently handle the last few iterations of this loop after tiling, we
use operation splitting6 (§5.3). Further, the raggedness in this loop leads to imbalanced load across the
GPU thread blocks. We use thread remapping (§5.3.1) to schedule thread blocks with the most amount
of work first, leading to more balanced load.

Figure 5.10 shows the performance of the aforementioned cuBLAS implementations and three imple-
mentations in CoRa—CoRa-unsplit-unbalanced, CoRa-split-unbalanced and CoRa-split-balanced—
which progressively employ operation splitting and thread remapping, starting with neither. We see
the trmm implementations—both cuBLAS’s and CoRa’s—are beneficial as compared to cuBLAS’s
dense sgemm operator only for larger matrices. In all cases, however, the CoRa-split-balanced im-
plementation performs within 81.3% of cuBLAS’s hand-optimized trmm implementation. Operation
splitting leads to a significant increase in performance by allowing CoRa to elide conditional checks
in the main body of the computation. Further, a better load distribution with thread remapping also
helps CoRa achieve performance close to cuBLAS.

5.6.2 The Transformer Model

We now move on to look at how CoRa performs on various modules of the transformer model. We
mainly focus on the GPU backend as it is more commonly used for these models. We use a 6 layer
model with a hidden dimension of 512 and 8 attention heads each of size 64. The encoder layer

6HFusion is not applicable here as the split loop is a reduction loop and executing the split operators concurrently would
require atomic instructions, which our prototype does not yet support.
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Table 5.4: Transformer encoder layer execution latencies (in ms) for CoRa, PyTorch and the two manually-
optimized variants of FasterTransformer on the Nvidia GPU. CoRa’s execution latencies include
prelude overheads assuming a 6 layer transformer encoder.

Dataset Batch Size PyTorch FT CoRa FT-Eff

RACE
32 12.22 11.0 8.22 8.61
64 24.46 21.88 15.91 16.75
128 48.73 42.26 31.45 33.61

Wiki512
32 12.26 11.0 9.1 9.32
64 24.52 22.12 17.4 17.85
128 48.72 42.43 32.17 33.66

SQuAD
32 8.17 7.56 4.15 4.69
64 16.9 15.63 7.78 9.2
128 34.18 30.62 15.36 17.91

Wiki128
32 2.79 2.45 2.59 2.28
64 5.12 4.61 4.72 4.35
128 10.1 9.29 8.86 8.54

MNLI
32 2.22 2.04 1.11 1.03
64 4.44 4.06 1.89 1.93
128 9.53 8.86 3.53 3.78

XNLI
32 2.76 2.45 1.56 1.5
64 5.13 4.62 2.94 2.86
128 10.03 9.3 5.62 5.49

MRPC
32 1.85 1.73 1.32 1.27
64 3.76 3.48 2.6 2.36
128 7.42 6.89 4.55 4.55

CoLA
32 0.67 0.57 0.59 0.44
64 1.02 0.93 0.77 0.63
128 2.37 2.18 1.26 1.17

contains two feed-forward layers, the inner one of which has a dimension of 2048. These are the same
hyperparameters used in the base model evaluated in [137].

We use sequence lengths from some commonly used NLP datasets listed in Table 5.3 for the evalu-
ation on the transformer model. For each dataset, we use the sequence lengths corresponding to the
text obtained after preprocessing as performed in the implementations corresponding to past work on
various transformer models [27, 137, 148]. The Wiki512 and Wiki128 datasets, usually used for pre-
training [27], are generated from a dump of the English Wikipedia website [141]. Each sequence in
these two datasets was created by accumulating consecutive sentences from the dump until a sentence
could no longer be added without exceeding the maximum sequence length used for training (which is
a hyperparameter). This was done, in the transformer implementation, to reduce wasted computation
due to padding as much as possible. As a result, these datasets do not provide as much opportunity for
CoRa to exploit as do some of the other datasets. We see this reflected in Figure 5.2 for example. We
focus on larger batch sizes (32, 64 and 128) because, as we saw in Figure 5.2, there is lesser opportunity
to exploit raggedness for smaller batch sizes and hence other factors such as the quality of the schedules
used in CoRa’s implementations play a big role. In this section, CoRa’s implementations use ragged
tensor storage.
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Transformer Encoder Layer

We first evaluate the forward pass latency of an encoder layer of the transformer model (Figure 5.3).
We compare CoRa’s performance with that of FasterTransformer and an implementation in PyTorch,
a popular deep learning framework, with TorchScript [97] enabled. All the operators in the encoder
layer except the ones in the SDPA sub-module process the hidden vectors associated with each word
independently. Therefore, with manual effort, they can be implemented without any padding. The
linear transformation operators Proj1, Proj2, FF1 and FF2 reduce to gemm operators in this case.
FasterTransformer provides an option to perform this optimization, first introduced in EffectiveTrans-
formers [12]. We compare against FasterTransformer both with and without this optimization. We
refer to these two implementations as FT-Eff and FT, respectively. In the CoRa implementation, this
optimization is applied simply by loop fusion, analogous to the illustration in Figure 5.6. In CoRa’s
implementation however, we pad this fused loop so that its bound is a multiple of 64. In other words,
we add a padding sequence to the batch to ensure that the sum of the sequence lengths is a multiple of
64. We refer to this kind of padding as bulk padding (Figure 5.3). The relative amount of bulk padding
added is usually quite low as the sum of sequence lengths in a batch is much higher.

Table 5.4 shows the forward execution latencies for the encoder layer for the aforementioned frame-
works and datasets. The auxiliary data structures computed by CoRa’s prelude are shared across mul-
tiple layers of the model as the raggedness pattern stays the same across layers, depending only on the
sequence lengths in the mini-batch. The execution times shown for CoRa include per-layer prelude
overheads assuming a 6 layer model. We further look at these overheads in §5.6.4. As we can see,
the CoRa implementation is competitive with the manually-optimized FT-Eff implementation for all
datasets, even performing better in a few cases, and performs significantly better as compared to the
fully-padded PyTorch and FT implementations. Figure 5.11, which plots the overall performance of
all these implementations for the batch sizes evaluated, makes this clear.

We now take a closer look at the FasterTransformer and CoRa implementations which are sketched
in Figure 5.3.7 The FT implementation is similar to the FT-Eff implementation except it uses full
padding for all operations. The CoRa and FasterTransformer implementations differ in their operator
fusion strategies. Therefore, the figure breaks the implementations down to the smallest sub-graphs
that correspond to each other. Figure 5.13 shows a breakdown of the execution times for these imple-
mentations for the RACE dataset and batch size 128 at the level of these sub-graphs.8 As Figure 5.3
shows, the FT-Eff and CoRa implementations differ significantly with respect to padding only in the
SDPA sub-module where the FT-Eff implementation employs full padding while the CoRa employs
partial padding. We see, in Figure 5.13, that the CoRa implementation performs better than Faster-
Transformer for all the SDPA operators (QKT, Softmax and AttnV) despite the fact that the latter is

7FasterTransformer uses specialized implementations for different GPUs. For the purposes of evaluating CoRa, we limit
our discussion to its implementation for the Nvidia V100 GPU we use for evaluation.

8The raw data for this plot is listed in Table B.5 in the appendix.
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without layout change operator fusion.

heavily hand optimized.9 This is because CoRa’s ability to handle raggedness enables it to perform less
wasted computation. For the remaining operators where both the CoRa and FT-Eff implementations
employ little to no padding, we see that the CoRa implementation is usually slower, but often close
in performance to the FT-Eff implementation and significantly faster than the fully padded FT im-
plementation. This is expected as FT-Eff calls into cuBLAS’s extensively optimized gemm kernels for
the linear transformation operators and into hand-optimized kernels for the rest. CoRa’s performance
drops slightly for datasets with smaller sequence lengths as well as for smaller batch sizes. As we discuss
in §B.4.7, this performance difference can be reduced by further optimizing the schedules used for the
projection and feed forward operators in CoRa’s implementation for smaller batch sizes and sequence
lengths. Further, we also note that the overheads associated with the prelude code and partial padding
(§5.6.4) play a larger role in these cases, further contributing to increased execution latencies.

FasterTransformer’s reliance on vendor libraries prevents it from fusing any of the gemm operations
with surrounding elementwise operators, which CoRa can due to its compiler-based approach. Specif-
ically CoRa can completely fuse all operators which add or remove padding in its implementation (as
shown in Figure 5.3). This is as opposed to the FT-Eff implementation, which cannot. Fusing these
padding change operators leads to a significant drop in CoRa’s execution latency as seen in Figure 5.12,
which shows the execution latencies of the MHAmodule for the RACE dataset in CoRa with and with-
out this fusion enabled.

Masked Scaled Dot-Product Attention

The decoder layer of a transformer uses a variant of MHA called masked MHA wherein the upper half
of the attention matrix is masked for all attention heads during training. This masking only affects the
SDPA module, the operators in which can now be seen as computing on a batch of lower triangular
matrices. We saw in §5.6.1 that CoRa can effectively generate code for operations on triangular ma-
trices. For batch size 128, an implementation of masked SDPA in CoRa which exploits this masking
performs 1.56× faster than an implementation which does not for the RACE dataset and 1.29× for

9The execution times of the three SDPA operators is quadratically proportional to the sequence length, unlike the re-
maining operators which are linearly proportional. We discuss the performance of SDPA further in §B.4.7 of the appendix.
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Figure 5.13: Breakdown of the encoder layer execution times for the RACE dataset at batch size 128. This data
is obtained with profiling turned on and might deviate from Table 5.4.

Table 5.5: MHA execution latencies (in ms) on the 64-core ARM CPU for TensorFlow and CoRa.

Dataset Batch Size 32 Batch Size 64 Batch Size 128

TF TF-UB CoRa TF TF-UB CoRa TF TF-UB CoRa

RACE 55 46 44 111 88 85 209 156 168
Wiki512 53 53 47 106 96 91 205 172 176
SQuAD 35 27 20 68 49 39 137 79 76
Wiki128 11 11 9 19 18 17 34 33 33
MNLI 9 9 4 16 14 7 30 23 14
XNLI 11 11 6 18 18 11 34 28 22
MRPC 9 8 5 14 14 10 26 23 18
CoLA 5 4 2 6 6 3 9 8 5

theMNLI dataset. The benefits are less pronounced for theMNLI dataset, which has smaller sequence
lengths, as we pad vloops to be multiples of a constant regardless of the dataset. We provide more data
and discussion on the implementation of masked SDPA in §B.4.2 in the appendix.

Memory Consumption

We find that the use of ragged tensors leads to an overall 1.78× drop in the size of the forward acti-
vations (computed analytically) of the encoder layer across all datasets at batch size 64 (more details
in §B.4.4). The reduction, however, is not uniform across the datasets and those with higher mean
sequence lengths, such as Wiki512 and Wiki128, see only small benefits. Forward activations often
consume significant memory during training. The use of ragged tensors can help alleviate the resulting
memory bottlenecks along with other memory management techniques for training [57, 64].

MHA Evaluation on ARM CPU

Table 5.5 shows the execution latencies of MHA implementations in TensorFlow and CoRa on the
64-core ARM CPU. We evaluate against two execution configurations of TensorFlow—TF, where the
entire mini-batch is executed at once and TF-UB, where the mini-batch is executed as a series of smaller
micro-batches, which enables execution with lower padding. Across the datasets and batch sizes evaluated,
we see that CoRa’s implementation is overall 1.57× faster than TF and 1.37× faster than TF-UB.
In this case, too, CoRa’s ability to save on wasted computation due to padding leads to significant
performance gains over a popular deep learning framework. §B.4.7 of the appendix more extensively
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Figure 5.14: Benefits of operator splitting and hfusion for the AttnV operator. Note that the y-axis does not start
at 0.

compares the performance of TensorFlow and PyTorch against CoRa on both the 8- and 64-core ARM
CPUs.

5.6.3 Operation Splitting and Horizontal Fusion

We now evaluate operator splitting and hfusion on the AttnV operator, which is an instance of the
vgemm problem. AttnV has two vloops, one of which is a reduction loop. We apply the optimizations
to the non-reduction vloop allowing us to use a larger tile size (we use 64) without padding the vloop
bound to be a multiple of this tile size. This especially benefits datasets with sequence lengths compa-
rable to the tile size, such as MNLI. For this dataset, Figure 5.14 shows the relative execution times of
three CoRa implementations of AttnV—NoSplit, Split and Split-HFused—in which we progressively
perform the two optimizations, on the Nvidia GPU and 64-core ARM CPU backends. On the GPU,
operation splitting causes a slowdown despite lower wasted computation as it reduces parallelism, which
is restored by hfusion. This is more apparent at lower batch sizes when the amount of parallelism is
lower. The effects of reduced parallelism due to operation splitting are less apparent on the CPU as
it exposes lower levels of hardware parallelism. The lower CPU parallelism also mean that hfusion
has no benefit in this case. We also evaluate these optimizations on the QKT operator in §B.4.5 in the
appendix.

5.6.4 Overheads in CoRa

Let us now look at the sources of overheads in CoRa—the prelude code, the wasted computation due
to partial padding and auxiliary data structure accesses in the generated code.

Prelude Overheads

The prelude code constructs the required auxiliary data structures (§5.4) and copies them to the acceler-
ator’s memory if needed. The table below lists the execution time (in ms) and memory (in kB) required
for these tasks for a 6-layer transformer encoder on the GPU backend. It also shows the overheads asso-
ciated with the storage lowering scheme used in past work we discussed in §5.4.3 (referred to as Sparse
Storage in the table). As compared to this scheme, we see that CoRa’s specialized lowering scheme sig-
nificantly reduces the resources required to compute the data structures associated with tensor storage.
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Dataset / Batch
Size

Sparse Storage CoRa Storage CoRa Loop Fusion CoRa-Copy TimeTime / Mem. Time / Mem. Time / Mem.

CoLA / 32 0.09 / 267.97 3.80e-03 / 2.93 5.35e-03 / 32.15 0.24
CoLA / 128 0.35 / 1047.22 5.76e-03 / 11.18 0.02 / 104.22 0.27
RACE / 32 0.52 / 1607.97 4.15e-03 / 2.93 0.09 / 666.54 0.42
RACE / 128 2.02 / 6300.02 6.30e-03 / 11.18 0.34 / 2609.58 0.99

The overheads associated with loop fusion are higher than those associated with storage as we need to
compute and store the relationship between all values of the fused and unfused loop iteration variables
(§5.4.1). Copying the generated data structures to the GPU’s memory is, however, the major source of
the overhead. Overall, the overheads range from 0.7% (RACE dataset at batch size 128) to about 7%
(CoLA dataset at batch size 32) of the total execution time of the encoder layer on the GPU. On the
CPU, the overheads are a very small fraction of the execution times, because the execution times are
much higher and because the memory copy costs are absent. We discuss some simple optimizations to
reduce prelude overheads in §B.4.6 of the appendix.

Partial Padding Overheads

We saw that in CoRa, small amounts of padding can be specified for vloops (both unfused vloops
and fused ones with bulk padding) and tensor storage to enable efficient code generation. While this
leads to some wasted computation, we find that it is generally quite low. For the transformer encoder
layer, we see a 3.5% increase in the amount of computation (computed analytically) over the ideal case
without padding for a batch size of 32 and a 2.3% increase for a batch size of 128 across all the datasets
evaluated. The overheads decrease with increasing batch size as bulk padding ensures that the sum of
the sequence lengths in a batch is a multiple of a constant (64, in this case) irrespective of the batch
size leading to a higher relative amount of padding at lower batch sizes. We provide further data and
discussion in §B.4.6 of the appendix.

Ragged Tensor Overheads and Load Hoisting

CoRa’s generated code accesses the auxiliary data structures generated by the prelude leading to fre-
quent indirect memory accesses. We measure the overheads caused by these accesses for the operators
used inMHA.While the data andmore discussion are provided in §B.4.6, we note here that the indirect
memory accesses do not cause any significant slowdown for the Proj1, Softmax, AttnV and the Proj2
operators. The accesses do lead to a higher slowdown in the QKT operator, which is the only operator
where we fuse two vloops leading to complex memory access expressions. For this case, we find that
hoisting data structures accesses outside loops when possible helps recover the lost performance.

5.6.5 Evaluation Against Sparse Tensor Compilers

We saw that ragged tensors are similar to sparse tensors as both involve irregular storage. In order to
evaluate the suitability of using sparse tensor compilers for ragged tensors, we compared CoRa’s perfor-
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mance with Taco, a state-of-the-art sparse tensor compiler. Specifically, we measured the performance
of a few operators on triangular matrices implemented in Taco using the CSR and blocked CSR for-
mats. We provide more detailed discussion in §B.4.3, but note here that these implementations showed
slowdowns ranging from 1.33× to 95.37× compared to the corresponding CoRa implementations. As
we discuss later, this is essentially due to a mismatch between the use case of ragged tensors and the
general sparse tensor computations that Taco is designed for. For example, ragged tensors are usually
much denser as compared to traditionally used sparse tensors and the applications each is used in are
quite different.

5.7 Related Work

Tensor Compilers

Past work on both sparse and dense tensor compilers (Chapter 2) has informed CoRa’s design. We gen-
eralize the abstractions provided by dense tensor compilers to ragged tensors, while enabling efficient
code generation for the latter. We discuss in §5.6.5 and further in §B.4.3, how despite the similarity be-
tween ragged and sparse tensors, sparse tensor compilers are unable to effectively exploit the properties
of ragged tensors to enable efficient execution.

CoRa techniques are complementary to a lot past work on optimizing control flow dynamism, such
as Nimble, Janus, Terra and PyTorch’s LazyTensor. CoRa can therefore potentially be used as part of its
pipeline. CoRa’s use of uninterpreted functions and named dimensions has been inspired by their use
in Cortex which (as discussed in §3.7) is itself based on the Sparse Polyhedral Framework [79, 82, 123].
Named dimensions are also similar to the index labels in Comet. CoRa implements a limited form of
the hfusion optimization, first proposed in [73], as part of a tensor compiler.

Deep Learning Frameworks and Graph Optimizations

Deep learning frameworks have recently begun adding support for ragged tensors with the RaggedTen-
sor [129] class in TensorFlow and the NestedTensor [98] module for PyTorch. Very few operators are,
however, supported for ragged tensors at this point [95, 128].10 CoRa can be used to expand the set
of ragged operators supported in these frameworks. CoRa’s techniques are complementary to graph
optimizations for efficient deep learning execution such as data layout optimizations [56], kernel fu-
sion [157] and operator scheduling [30], and can be used in conjunction with them.

Sparse Tensor Algebra

There have been decades of past work on efficient execution of sparse tensor operators. This work has
been revisited recently in the context of deep learning by work on exploiting block sparsity in model

10Tensor contraction and similar operators such as batched gemm and convolution are generally not supported. PyTorch’s
NestedTensor further supports only a few elementwise and reduction operators [96] at this point.
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weights [46] as well as for tuning sparse kernels for the sparsity patterns and distributions usually en-
countered in deep learning [41]. The thread remapping strategy discussed in §5.3.1 was implemented
first in [41].

CoRa’s compiler-based approach further improves over the hand-optimized ragged tensor operator
implementations we described in Chapter 2.

5.8 Chapter Summary

This chapter presented CoRa, a tensor compiler for expressing and optimizing ragged operators to
portably target CPUs and GPUs using simple and familiar abstractions. CoRa’s approach, specialized
for ragged tensors, reduces overheads associated with techniques such as masking and padding. With
deep learning being applied to an ever-increasing set of fields and the models getting more resource-
intensive, we believe that efficiently handling the shape dynamism that naturally arises in many settings
is important. CoRa extends past work on tensor compilers by supporting efficient operators on ragged
tensors. Our work can also be seen as a step towards unifying past work on sparse and dense tensor
compilation. In the future, we plan to make CoRa easier to use, potentially with the help of auto-
scheduling techniques.
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In this thesis, we have tried to tackle the problem of performing efficient auto-batching for deep learning
computations in the presence of dynamism. While we believe that the work presented here makes
significant progress towards this goal, there a lot of avenues for futher improvements. Below, we describe
a few.

6.1 Improvements to ACRoBat

6.1.1 Auto-batching During Backpropagation

We belive that ACRoBat’s techniques, as described in Chapter 4, can be applied to both training and
inference of deep learning models. However, we have implemented and evaluated the techniques pri-
marily for inference in ACRoBat’s prototype. Extending the techniques to training would involve some
non-trivial challenges.

Fully dynamic frameworks such as DyNet and TensorFlow’s eager mode rely on a gradient tape in
order to support backpropagation. On the other hand, extensions to ACRoBat to support training
would have to employ static auto-differentation techniques in order to allow compiler optimizations
for the backward pass of the computation. Due to the automated generation of the backward pass
of the computation, ACRoBat would no longer have user annotations (which currently enable ACRo-
Bat to exploit control flow parallelism, and exploit program phases, for instance) for this pass. One
would therefore have to develop further static analyses in order to reduce ACRoBat’s reliance on user
annotations. Once again, past work on traditional compilation would be a great point of reference
here. Further, as implemented in TVM, Relay’s auto-differentation transformations rely heavily on
state mutations. ACRoBat’s analysis and transformations have currently only been implemented for
the functional subset of Relay and hence do not support state mutations. Extending these to handle
state mutations would be straightforward1, but might involve a non-trivial amount of implementation
effort.

6.1.2 Other Improvements

As described in Chapter 4, ACRoBat needs to auto-schedule kernels with dynamic shapes. While it
uses some of DietCode’s techniques, a tighter integration between the two will certainly lead to better

1As we have discussed, ACRoBat’s static analyses derive heavily from traditional compilation techniques, most of which
have been developed for imperative programming languages and IRs and therefore support state mutations by design. Ex-
tending ACRoBat’s analysis to also handle mutations, would therefore be straightforward.
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end-to-end performance. ACRoBat’s prototype currently only supports GPU execution. This can also
be extended to enable ACRoBat to target a wider variety of hardwares.

6.2 Improvements and Extensions to CoRa

6.2.1 Autoscheduling for Ragged Tensor Compilation

As described in Chapter 5, CoRa currently does not support auto-scheduling for ragged tensor opera-
tors. With the area of auto-scheduling in the presence of dynamic tensor shapes just being started to
be explored, such approaches can be further extended in order to support ragged tensor computations.
We already saw in Chapter 5, how in order to optimize some ragged kernels for CoRa’s evaluation,
we manually applied schedules generated by TVM’s auto-scheduler for a corresponding dense tensor
kernel. This suggests that auto-scheduling techniques could work well for ragged kernels. Extending
such techniques to ragged tensor kernels would require working with tensor size distributions due to
the large number of unknown tensor shapes (each tensor in the batch, for a batched transformer, for
example).

6.2.2 Graph Optimizations for Ragged Tensors

CoRa develops techniques to enable the optimization and code generation for individual ragged tensor
operators. Deep learning practitioners would however not be able to benefit from CoRa unless further
abstractions and techniques have been designed to support ragged tensor operators in the deep learning
frameworks today. This includes enabling graph-level optimizations such as tensor layout selection,
kernel fusion and memory planning to ragged tensor operators. The use of sparse tensors in deep
learning has also been steadily rising as deep learning models become larger and larger. Due to the
similaties between sparse and ragged tensors, general abstractions for can be developed that support
working with both kinds of tensors simultaneously.

6.3 Auto-batching for Control Flow and Shape Dynamism Simultaneously

In this thesis, we have discussed techniques to enable efficient auto-batching for deep learning models
exhibiting either control flow or shape dynamism. However, deep learning computations such as beam
search decoding with transformers [139] can exhibit both kinds of dynamism simultaneously. We now
briefly discuss how the techniques we have described can enable auto-batching for such computations
as well.

In order to exploit batch and instance parallelism in the presence of dynamic control flow, we would
need to rely on ACRoBat’s techniques. Due to the shape dynamism exhibited by the input computation,
however, the batch kernels ACRoBat’s generates will now need to perform computations on ragged
tensors. Here’s we can rely on CoRa’s infrastructure to generate efficient code for the batched kernels.
We discussed already how it should be possible to extend current work on auto-scheduling techniques to
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handle ragged operators as well. This will then enable us to automatically optimize the ragged batched
kernels ACRoBat generates, thereby enabling efficient auto-batching for computations simultaneously
exhibiting both control flow and shape dynamism.

6.4 Beyond Auto-Batching

Auto-batching is just one of the many problems that arise when supporting dynamism in deep learning
computations. We believe that the techniques developed in this thesis can be applied fruitfully in order
to solve other related problems as well. We discuss briefly two of these problems below.

6.4.1 Memory Planning

Memory planning is an important optimization step, both during training as well as inference. The
presence of memory allocation operations during inference often reduces performance [113]. Further,
on edge devices, memory is a scarce resource and thus memory planning is essential [26]. During train-
ing, one needs to persist the intermediate tensor activations of the forward pass as they are used during
the backward pass. As a result, memory is often also a scarce resource when training large models.
Techniques such as rematerialization and tensor swapping are often used to alleviate these problems
during training, but have been explored mostly for the case of static deep learning computations.

We believe that traditional compiler techniques, as used in ACRoBat, can also be effective here.
Escape analysis [19, 122] can be useful in uncovering opportunities for tensor reuse in the presence of
control flow dynamism. Planning when to swap out tensors during training and when to swap them
back in can benefit from work in prefetching. Graph-level abstractions to support ragged tensors, as
discussed above, can also help extend current memory planning techniques to ragged tensors.

6.4.2 Graph-level Optimizations

Current deep learning frameworks usually perform optimizations such as kernel fusion over one or
more DFGs extracted from the input computation (Chapter 2). While this is an easy way to extend the
scope of existing graph-level optimizations to computations exhibiting control flow dynamism, it also
limits the scope of the optimizations. In order to support efficient execution of control flow dynamism,
we need to develop techniques to perform such optimizations while not being limited by the boundaries
of control flow. This includes, for example, being able to perform kernel fusion across control flow
structures such as conditional statements and function calls. Similarly, other optimizations which are
often expressed as graph rewrites (such as the ones explored in [60]) today would also need to be
extended to work with general control flow dynamism.
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6.5 Conclusion

In this thesis, we first surveyed control flow and shape dynamism in deep learning computations in
Chapter 2. For such dynamic deep learning computations, we have developed compiler and runtime-
based techniques to enable efficient auto-batching. First, we looked at the specialized class of recursive
computations. We identified how such computations can easily be separated into the lightweight but
recursive data structure linearization and the tensor computations. This allowed us to design Cortex,
a compiler for expressing and optimizing such recursive computations. Cortex’s end-to-end compila-
tion of the computations enables it to achieve up to 14× better performance over generalized dynamic
batching implementations. Next, we described ACRoBat in Chapter 4, as we attempted to generalize
Cortex’s insights to handle unrestricted control flow. This broadening of scope meant that we had to
co-design both static and dynamic program analysis as opposed to Cortex’s aggressive focus on static
optimizations. Despite this, we saw how ACRoBat achieves up to 8× faster execution as compared
to past work. Changing our focus to shape dynamism, we looked at how we can go about generating
efficient implementations of ragged tensor operators in Chapter 5. We saw that due to similarities
between ragged and dense tensor computations, CoRa could reuse large parts of dense tensor compila-
tion infrastructure, while generalizing aspects relating to tensor storage and loop transformations. We
also saw that a CoRa-generated implementation of the transformer model performed on-par with a
highly hand-optimized implementation of the same.

Thus, we believe that the work described in this thesis makes significant progress towards enabling
efficient auto-batching of dynamic deep learning computations. We hope that work in this direction
continues, enabling deep learning researchers to propose more expressive models to tackle problems.
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A.1 Caching Tensors Indexed by Non-Affine Expressions

We saw in §3.4.1 how when an intermediate tensor is stored in scratchpad memory, it can be better
to index it by the dense contiguous loop iteration space as opposed to the sparse index space of the
original tensor. A similar situation occurs when a caching a tensor accessed by multiple non-affine
index expressions. Assume, for example, if we wished to cache the tensor rnn in loop L4 in Listing 3.2,
for the purposes for the accessesrnn[left[node],i] andrnn[right[node],i]. We create a
cached tensor with an additional dimension corresponding to the multiple non-affine index expressions,
as shown in the listing below.

1 for b_idx = 0:num_internal_batches:
2 for n_idx = 0:batch_sizes[b_idx]:
3 node = internal_batches[b_idx, n_idx]
4 for i = 0:256:
5 rnn_cache[b_idx, n_idx, i, 0] = rnn[left[node], i]
6 rnn_cache[b_idx, n_idx, i, 1] = rnn[right[node], i]
7

8 for b_idx = 0:num_internal_batches:
9 for n_idx = 0:batch_sizes[b_idx]:

10 node = internal_batches[b_idx, n_idx]
11 for i = 0:256:
12 rnn[node,i] = tanh(rnn_cache[b_idx, n_idx, i, 0] +
13 rnn_cache[b_idx, n_idx, i, 1])

A.2 Barrier Insertion

We need to insert synchronization barriers and memory fences when threads read data written by other
threads. This is true on CPUs as well as on accelerators such as GPUs. The barrier insertion pass in
TVM does well on tensor programs that do not have loop-carried dependencies. Specifically, given a
loop-carried dependence, the pass conservatively places barriers in the innermost loop, as opposed to
placing it in the body of the loop that actually carries the dependence. This can lead to unnecessary
barriers, leading to inflated runtimes.

As we iterate sequentially either over data structure nodes (when dynamic batching is not performed)
or batches of nodes (when dynamic batching is performed), the data dependencies between a node and
its children manifest as loop-carried dependencies in the generated ILIR code. This can be seen in the
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generated ILIR for the running example, in Listing 3.3. In the listing, the data written to tensor rnn
in loops L2 and L7 is read by loops L5 and L6. This dependence only exists across a node and its
children. We are also guaranteed, by the properties described in §3.1 and the way the data structure
linearizer works, that no node in batch may be a child of any other node in the same batch. The,
therefore, dependence is carried by loop L3, and not by loop L4.

Given this dependence, we would need a barrier at the start of every iteration of loop L3. However,
the conservative barrier insertion pass in TVM instead places a barrier in the body of loop L3. We
therefore designed amodification to the pass to insert the barrier in the outer loop which actually carries
the dependence.

A.3 Other Optimizations during ILIR Lowering

Below, we discuss a couple less important optimizations and scheduling knobs we implemented.
Loop Peeling: The generated ILIR in Cortex involves loops with variable loop bounds. Splitting
such loops gives rise to bounds checks in the bodies of the loops. We employ loop peeling to ensure that
such checks are only employed for the last few iterations of the loop.
Rational Approximations of Nonlinear Functions: We use rational approximations for the
tanh and sigmoid functions which makes exploiting SIMD instructions on CPUs easier.

A.4 Data Structure Linearization

In our data structure linearizers, when lowering a pointer linked data structure to arrays, we associate
the nodes with integer identifiers. When doing so for the case of dynamic batching, we ensure that
nodes in a batch are numbered consecutively and higher than their parents. This allows us to lower
the batches into two arrays — batch_begin and batch_length, which store the starting node
and the length, respectively, of every batch. Thus, node n is in batch i if batch_begin[i] <= n
< batch_begin[i] + batch_length[i]. This numbering scheme also ensures that all leaf
nodes are numbered higher than all internal nodes. This reduces the cost of checking if a node is a leaf.
When nodes are numbered this way, a leaf check involves a single comparison as opposed a memory
load (to load the number of children of a node under question, for example) and a comparison in the
case where the numbering is arbitrary. This scheme thus generally reduces the overheads of iterating
over batches and leaf checks.

A.5 Register Pressure in CUDA

Cortex generated CUDA kernels are often large, due to optimizations such as aggressive kernel fusion,
loop peeling, loop unrolling and recursive unrolling. Furthermore, model persistence uses GPU reg-
isters to persist model weights. These factors leads to high register pressure. We find that recursive
unrolling precludes us from using persistence for the TreeLSTM and TreeRNN models discussed in
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§3.6.4. Similarly, we note that we cannot apply the loop peeling and model persistence optimizations
in the case of the TreeLSTMmodel at the same time. In our schedules, we have explored this trade-off
space and evaluated on the best performing schedule. We note that techniques developed in past work
such as [105] and [109] can potentially be applied in our context to alleviate this issue.
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We now look at additional details regarding CoRa’s mechanism in §B.1, §B.2 and §B.3, and discuss
further aspects of the evaluation in §B.4. Notably, we look at how CoRa can exploit masking in masked
MHA to obtain further savings in §B.4.2, discuss how CoRa’s overheads are quite low, allowing it to
effectively exploit raggedness (§B.4.6) and look more closely at CoRa’s performance on the transformer
model and where the benefits come from in §B.4.7.

B.1 Ragged API

B.1.1 Thread Remapping Policy

We discussed, in §5.3, that CoRa allows users to specify a thread remapping policy to influence how
iterations of a parallel loop are scheduled on the execution units in the hardware substrate. This is
illustrated in Figure B.1.

B.2 Ragged API Lowering

B.2.1 Tensor Storage Lowering

In §5.4.3, we briefly discussed the storage lowering schemes used by past work on sparse tensor com-
pilers and by CoRa. Both are illustrated in Figure B.2 and discussed more below.

Sparse Storage Access Lowering Scheme Used in Past Work

Recall the 4-dimensional attention tensor X we discussed in §5.4.3 and which is illustrated again in
Figure B.2. We saw that the first and the third dimensions of X are cdims and correspond to the
batch size (s1) and the number of attention heads (s3) respectively. The other two dimensions, which
correspond to sequence lengths are vdims, the size of a slice for which is the same function (s24())) of
the outermost batch dimension.

The sparse tensor compiler Taco [65], the performance of which look at in §B.4.3, uses a tree-based
modular scheme (first proposed in the work [119] on the Compressed Sparse Fiber tensor format) to
model sparse tensor storage. In this scheme, illustrated in Figure B.2 for tensor X , tensor storage is
modeled as hierarchical tree structure, where each tensor dimension corresponds to a tree level. Note
that this tree abstraction exists only at compile time. As mentioned before, this scheme assumes that
the number of non-zeros in a slice of a sparse tensor dimension can depend on the indices of all outer
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L1: parfor i in 0:M:
L2:   for j in 0:s(i):
        ...

L1: parfor i in 0:M:
      ir = remap_fun(i)
L2:   for j in 0:s(ir):
        ...

Remap
(L1, remap_fun())

Time

Core 1

i = 0

i = 1

i = 2

Core 2 Core 1

ir = 1
ir = 2

ir = 0

Core 2
If M  = 3 and remap_fun(i) = 2 - i

ar

Figure B.1: Thread remapping allows users to influence the scheduling of iterations to allow for better load
balancing.

dimensions in general. We saw that this is not the case with ragged tensors and that this is the source of
sub-optimality in this lowering scheme for the applications we look at. Because every slice may have a
different number of non-zero elements, when used to store a ragged tensor, this storage scheme would
store auxiliary data proportional to the number of slices for a given vdim. For our example tensorX in
Figure B.2, the outer of the two vdims (the second dimension) has s1 slices while the number of slices
in the inner vdim (the fourth dimension) is s3

∑s1
i=0 s24(i). Therefore, the amount of auxiliary data

computed and stored would be equal to s1 + s3
∑s1

i=0 s24(i), which as we saw in §5.6.4 can be much
larger than CoRa’s specialized scheme.

Algorithm 1 Procedure to lower ragged tensor accesses
1: procedure LowerAccess([b1, ..., bn])
2: offset← 0
3: relaxed← [b1, ..., bn]

4: for i← n to 1 do ▷ Compute Di(
−−→
B≤i)

5: D ← 1
6: if OG(i) ̸= ∅ then
7: D ← Ai(relaxed[j])
8: else
9: D ← relaxed[i]

10: end if
11: for j in S(i)− {i} do
12: if OG(j) ̸= ∅ then
13: D ← D ∗Aj(relaxed[j])
14: else
15: D ← D ∗ sj(relaxed[IG(j)])
16: end if
17: end for
18: relaxed[i]← si(relaxed[IG(i)])
19: offset← offset+D
20: end for
21: return offset
22: end procedure

92



B.2 Ragged API Lowering

CoRa's data
structures

(computed in
the prelude)

CoRa's
dgraph

Batch Size

#AttnHeads

SeqLen1

SeqLen2

0 1 5A1
Unnecessary dimension dependence

Ba
tc

h 
Si

ze

SeqLen1

0

0

X(b1,b2,b3,b4)

1

1

1 2

3 4

5 6

7 8

9 10

Dimensions Extents
1 (Batch Size) s1   :     2
2 (SeqLen1)    s24(): [1,2]
3 (#AttnHeads) s3   :     2
4 (SeqLen2)    s24(): [1,2]

b4b3*s24(b1)b2*s3*s24(b1)s3*A1[b1]
dgraph
used by

past work

1 2 3 4 5 6 7 8 9 10

+ ++

OffX(b1,b2,b3,b4)

D1(B1) D2(B2) D3(B3) D4(B4)

Figure B.2: Comparing CoRa’s storage lowering with the tree-based scheme used by past work on sparse tensors.

CoRa’s Storage Access Lowering Scheme

We saw that CoRa’s storage access lowering scheme is specialized for ragged tensors and enables us to
reduce the amount of auxiliary data that needs to be computed as compared to the scheme used by
past work while allowing O(1) accesses to ragged tensor storage. Such O(1) accesses are enabled by
the memory offsets that CoRa precomputes as part of its auxiliary data structures. Below, we describe
exactly how these data structures are computed and how they are used to lower memory accesses.

Let T be an n-dimensional tensor with dimensions numbered 1 to n such that dimension 1 is the
outermost dimension. Given a tensor access T (b1, .., bn), we need to generate a flat memory access
as part of lowering. In other words, we need to generate a memory offset OffT (b1, .., bn) to access the
tensor.

Given a tensor and its corresponding storage layout, we define what we refer to as the dimension graph
or dgraph for short (Figure B.2). The dgraph G of the n-dimensional tensor T is a pair (D,E) where
D is the set of all dimensions {1, ..., n} and E is a set of directed edges. An edge d1 → d2 belongs
to E if the size of a slice of dimension d2 depends on the index bd1 in the tensor access T (b1, .., bn).
Thus, a cdim will not have any incoming edge in the dgraph, while a vdim would. It also follows,
for example, that the outermost dimension of the tensor, which is always a cdim, will not have any
incoming edges. More generally, we note that the dgraph of a given tensor is always acyclic as the size
of a slice of a given vdim depends only on the indices of outer dimensions. Further, given a dimension
d, let OG(d) = {d2|(d, d2) ∈ E} and IG(d) = {d1|(d1, d) ∈ E} be the set of outgoing and incoming
dimensions, respectively, for d in the dimension graph. The size of a slice of a vdim d can now be
written as sd(IG(d)). For cdims, this quantity is constant as IG for a cdim in the empty set. Let O∗

G(d)

denote the transitive closure of OG(d). Also, let Oex
G (d) = OG(d)−

∪
i∈OG(d)O

∗
G(i).

We present the procedure to compute OffT (b1, .., bn) in Algorithm 1. For brevity, we refer to the
index vector [b1, .., bn] as

−→
B . Also, let

−−→
B≥i = [bi, ..., bn]. We can correspondingly defined

−−→
B≤i. We

abuse notation to represent OffT (b1, ..., bi−1, bi, 0, ..., 0) as OffT (
−−→
B≤i). Then, we can expand the offset

OffT (
−−→
B≤n) as follows:
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OffT (
−−→
B≤n) =

n∑
i=1

(OffT (
−−→
B≤i)− OffT (

−−→
B<i))

=
n∑

i=1

Di(
−−→
B≤i)

During compilation, the procedure in Algorithm 1 computes the memory offset expression using two
nested loops. Each iteration of the outer loop (line 4) corresponds to one dimension i and computes
Di(
−−→
B≤i). For a dimension i, Di(

−−→
B≤i), is further computed (in the inner loop on line 11) as a product

of contributions corresponding each of the inner dimensions j such that j ≥ i (Figure B.2 shows the
values of Dis for the 4 dimensions in our example tensor X at the bottom of the tree in green in the
rightmost pane.). In the case of a dense tensor,Di(

−−→
B≤i) = bi

∏n
j=i+1 sj . For a ragged tensor, however,

due to the dependences between dimensions, the contribution of each dimension j to Di cannot be
computed independently. Specifically, we compute the contribution of an inner dimension j along
with all the dimensions dependent on it, directly or indirectly (i.e. O∗

G(j)) as a single quantity as a call
to the function Aj(). This function is similar to the row_index array in the CSR matrix format
which stores the start and ends of variable-sized rows. Given a ragged tensor format (in the form of
the length functions sd for all dimensions d), we need to precompute the values of the function Ad

for all dimensions such that OG(d) is non-empty. We perform this computation as part of the prelude
discussed in §5.1. The function Ad() for the batch dimension (the first dimension) of our example
tensor X in Figure 5.8 is shown as the array A1 where A1[i]=

∑i
j=1 s24(j) ∗ s24(j).

As discussed above, for a dimension d, because, Ad() includes the contributions from all dimensions
in O∗

G(d), we need to exclude those dimensions to avoid double counting them during the inner loop.
Therefore, the inner loop of the procedure iterates over the set S(d) (defined recursively as S(n) = {n}
and S(d) = {d} ∪ (S(d+ 1)− O∗

G(d))) which excludes these dimensions. Given a dimension d, the
function Ad can be computed recursively as follows.

Ad(B≤d) =


sd(B≤d), if OG(d) = ∅

i=bd∑
i=0

(
∏

di∈Oex
G (di)

Adi(relaxedd[IG(di)])) otherwise

where relaxedd is the value of the vector relaxed in Algorithm 1 in the iteration of the outer loop
corresponding to the dimension d.

B.2.2 Variable Loop Fusion

In §5.4.1, we discussed how we need to precompute certain quantities as part of the prelude to support
vloop fusion. During lowering, we represent these quantities as opaque or uninterpreted functions. For
example, §5.4.2 describes how the functions ffo, ffi and foif represent the relationships between the
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iteration variables o, i and f in Figure 5.6. In the generated code, as we can see in Figure 5.4, these
functions take the form of arrays that are initialized by the prelude. Similar to Cortex as discussed in
Appendix A, in order to perform simplification over expressions containing calls to these functions as
well as for proving if certain bound checks are redundant, we use the Z3 SMT solver during compi-
lation. In order to enable Z3 process these uninterpreted functions, we provide it with the following
relationships between these functions:

∀f, foif (ffo(f), ffi(f)) = f

∀o, i, ffo(foif (o, i)) = o

∀o, i, ffi(foif (o, i)) = i

B.3 Additional Implementation Details

As we mentioned in §5.5, we have prototyped CoRa for the common cases encountered when express-
ing and optimizing ragged operations. In our evaluation, we implement and compare the performance
of an encoder layer of the transformer model in CoRa. Our prototype currently allows us to generate
code for individual (potentially fused) ragged operators at a time as opposed to entire model graphs.
Therefore, for our implementation of the transformer layer, we individually optimized and generated
code for each operator and then invoked it as part of a separate program that ties the operators to-
gether to form the layer. CoRa’s implementation of the hfusion optimization currently is limited to
the outermost loops of the operators one would like to fuse. On a GPU, this means that our prototype
implementation allows one to execute multiple operators concurrently as part of the same GPU grid,
but not the sameGPU thread block. Implementing the general transform is not fundamentally difficult,
however.

B.4 Supplementary Evaluation and Additional Details

B.4.1 Load Balancing

We briefly discussed the challenge of ensuring a balanced workload across multiple execution units
in §5.3.1. On a CPU, these execution units take the form of CPU cores, while a GPU has a hierarchy
composed of thread blocks, warps and threads. In all the kernels we evaluate on (except the Softmax
kernel in the transformer layer), dense inner cloops or partial padding allow us to prevent imbalance
across GPU warps in the same thread block. Imbalance across multiple thread blocks exists, most
commonly in gemm-like operations where the reduction loop is a vloop such as the AttnV operator in
the SDPA module. We handle this imbalance using either thread remapping (§5.3 and §B.1.1) or, in
the case of kernels that are part of the transformer layer, by sorting the sequences in the mini-batch in
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descending order of sequence lengths so that thread blocks with the most amount of work are scheduled
first.

B.4.2 Masked Scaled Dot-Product Attention

As we briefly mentioned in §5.6.2, the decoder layer of a transformer uses a variant of MHA called
maskedMHAwherein the upper triangular half of the attentionmatrix is masked for all attention heads
during training. This is done to prevent the model from attending to words that would not be known
during inference at a given time step. In this section, we provide further details and data regarding
how CoRa can exploit this masking and further save on wasted computation in the SDPA sub-module,
which is the only portion affected by the masking.

Batch dimension

CoRa-Pad

PyTorch

CoRa-NoPad

x

yy Padding
Useful data

Figure B.3: The attention matrices of the masked MHA module as implemented in the implementations dis-
cussed in §5.6.2 and compared in Figure B.4. In the figure, for simplicity, the number of attention
heads is assumed to be 1, partial padding is not shown and the batch size is assumed to be 3. The x
and y directions denote increasing matrix indices.
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Figure B.4: Execution time of masked SDPA in PyTorch and CoRa, with and without padding for the attention
matrix.

We also mentioned in §5.6.2 that with masking, the SDPA computation is essentially composed of
batched lower triangular matrix operations. Implemented this way, these operations have one vloop
corresponding to the variable sequence lengths and another inner vloop corresponding to the triangular
matrix rows. Figure B.4 shows the performance of three implementations of masked SDPA—CoRa-
NoPad, where both the vloops are only partially padded, CoRa-Pad, where the outer vloop is partially
padded while the inner one is fully padded and a PyTorch implementation, where both the vloops are
fully padded. The padding in the three implementations is illustrated in Figure B.3. As Figure B.4
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shows, CoRa-NoPad can effectively exploit the reduction in computation in the masked case by avoid-
ing full padding. This leads to 1.34× and 2.46× faster execution as compared to CoRa-Pad and
PyTorch respectively across the datasets and batch sizes evaluated in Figure B.4. As we saw, the perfor-
mance of MNLI dataset improves to a smaller degree due to the padding employed in CoRa-NoPad.

B.4.3 Evaluation Against Sparse Tensor Compilers

We saw in §5.7 that there are some similarities between ragged and sparse tensors. In this section,
we explore using sparse tensor compilers in order to express ragged tensor operations. Specifically,
we look at using Taco in order to implement three operations on triangular matrices—the triangular
matrix multiplication (trmm) operation we saw in §5.6.1, elementwise addition of two square triangular
matrices (we refer to this operation as tradd, for short) and a similar elementwise multiplication of two
square triangular matrices (referred to as trmul, for short). Taco does not natively support the storage
of ragged tensors. Therefore for this study, we use the compressed sparse row (CSR) and the blocked
compressed sparse row (BCSR) matrix formats to store the triangular matrices. We use a block size of
32 for the BCSR format. Table B.1 lists the execution times (in ms) for the aforementioned operations
and formats. As the table shows, CoRa performs better than Taco for all the cases evaluated. We
discuss the reasons for this below.

Storage Layouts

A part of the slowdown in Taco stems from the sub-optimal storage format (CSR or BCSR) used for
the triangular matrices. The overheads of traversing the auxiliary data structures to access the sparse
tensor storage therefore decrease when we go from the CSR format to the BCSR format, thereby
leading to increased performance, despite the additional padding in the latter. For the operations
evaluated, the output matrices are stored in a dense manner because using the compressed formats
prevents parallelization in some cases in the Taco implementations.

Degree of Sparsity

The optimizations, scheduling primitives and code generation techniques used in Taco have been de-
signed for tensors with a high degree of sparsity. We have seen, however, that ragged tensors are much
closer to their dense counterparts with respect to the amount of useful data they store. Therefore,
optimization decisions that work well for sparse tensors do not always work for ragged tensors.

Properties of Ragged Tensors

Finally, due to its design as a tensor compiler for general sparse tensors, Taco is unable to exploit certain
properties specific to ragged tensors and the applications they are used for, such as the insight I1 we
discussed in §5.1. Therefore, Taco assumes that the two triangular input matrices in the tradd and
trmul operations have differing sparsity patterns. Taco, therefore, has to generate code to iterate over
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Table B.1: Execution times (in ms) for the trmm, tradd and trmul operations implemented in Taco using the CSR
and the BCSR matrix formats and in CoRa. The table also shows Taco’s slowdowns with respect to
CoRa.

Op Matrix Dim. CoRa Taco-CSR Taco-BCSR

Time Slowdown Time Slowdown

trmm

128 0.043 0.062 1.44 0.467 10.92
512 0.082 1.347 16.43 1.112 13.56
2048 0.893 75.12 84.19 47.497 53.24
8192 50.905 4854.31 95.37 4252.33 83.54

tradd

128 0.004 0.057 15.61 - -
512 0.004 0.223 61.68 - -
2048 0.033 1.538 46.94 - -
8192 0.476 7.883 16.58 - -

trmul

128 0.004 0.057 15.89 0.008 2.08
512 0.004 0.225 57.21 0.016 3.87
2048 0.033 1.544 47.26 0.077 2.34
8192 0.476 7.92 16.67 0.632 1.33

all the coordinates representing the union of the non-zeroes in the input matrices for the tradd operator.
This is unlike an intersection that is performed in trmul. This prevented us from scheduling the tradd
operator using the BCSR format in a way similar to the trmul operator. Further, Taco currently does
not allow users to specify padding for loops and tensor dimensions which would help elide conditional
checks in the generated code.

Therefore, while Taco achieves performance comparable to CoRa’s in some cases (such as the trmul
operator), we conclude that Taco’s programming model and optimizations are designed for highly
sparse tensors which can lead to poor performance in a lot of cases involving ragged tensors.

B.4.4 Memory Consumption

Wementioned in §5.6.2 that the use of ragged tensors leads to a significant drop in thememory required
to store the forward activations of the encoder layer. Figure B.5 shows this for the datasets in Table 5.3
for batch size 64. It plots the relative total memory consumption (computed analytically) of the forward
activations of a transformer encoder layer for CoRa’s implementation with and without the use of
ragged tensors. We take into account any partial padding that the ragged implementation requires.
The relative memory consumption for the other batch sizes is also similar. We also saw how only small
improvements are observed for the Wiki512 and Wiki128 datasets which have higher sequence lengths
and hence low opportunity for CoRa to exploit.

B.4.5 Operation Splitting and Horizontal Fusion

In §5.6.3 of the main text, we looked at the benefits of operation splitting and hfusion on the AttnV
operator. We now look at the QKT operator, which is also an instance of the vgemm problem. Each
gemm instance in this case has two non-reduction vloops. We first look at the case where the optimiza-
tions are applied to the outer one of these two vloops in Figure B.6. The figure shows the normalized
execution times, for the QKT operator, of the three implementations described in §5.6.3. We see that
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Figure B.5: Relative sizes of the forward activations of a transformer encoder layer with and without ragged
tensors.
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Figure B.6: Operation splitting and hfusion for QKT. Note that the y-axis does not start at 0.

on the CPU backend, similar to the AttnV operator, operation splitting has a significant benefit but
hfusion does not, due to low parallelism exposed by the CPU. On the GPU backend, however, we see
that the combination of the optimizations gives slightly better performance for lower batch sizes but
performs worse as the batch size increases. Profiling data shows that applying the optimization in this
case leads to an increase in the number of integer instructions executed as well as an increase in the
number of memory load requests. One possible explanation for this is that the CUDA compiler does
not effectively hoist memory access expressions in order to avoid high register pressure (the compiled
code does not contain any spilled registers). While the optimizations generally lead to more compli-
cated code, the fact that QKT has two vloops that we fuse when scheduling further exacerbates this
problem.

When applied to both the vloops, the optimizations slow the execution down as seen in Figure B.7. In
that figure, we compare the performance of three CoRa implementations—NoSplit, which does not use
either of the optimizations on either vloop, Split1-HFused, which employs both the optimizations for
the outer vloop and Split2-HFused, which employs the optimizations for both vloops—on the Nvidia
GPU and the 64-core ARM CPU backends. We see that on both backends, optimizing both vloops
is no better than optimizing just one vloop and is, in fact, quite slower on the GPU. On the GPU, we
find that despite the decrease in the computation performed and hence the number of floating point
instructions executed, the total number of executed instructions is higher in the case Split2-HFused
case as compared to the NoSplit case. We therefore believe, that in this case too, the overheads of
performing the optimizations are much higher than their benefits (the reduced wasted computation).
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Figure B.7: Efficacy of operation splitting and hfusion when applied to one or both vloops of the QKT operator.
Note that the y-axis does not start at 0.

Table B.2: Prelude execution times (in ms) for a 6-layer transformer encoder with and without redundant com-
putation.

Dataset Batch Size CoRa-Redundant CoRa-Optimized
CoRa Storage CoRa Loop Fusion CoRa-Copy Time CoRa Storage CoRa Loop Fusion CoRa-Copy Time

CoLA 32 0.004 0.006 0.232 0.002 0.002 0.088
CoLA 128 0.006 0.015 0.261 0.003 0.004 0.094
RACE 32 0.005 0.085 0.419 0.002 0.015 0.121
RACE 128 0.007 0.339 0.985 0.003 0.053 0.209

B.4.6 CoRa Overheads

Prelude Overheads

As we discussed in §B.3, CoRa’s prototype allows us to generate code for operator kernels one at a
time. For each kernel, CoRa generates all the prelude code required for its execution. Therefore,
when these generated kernels are invoked to form a larger model graph, as in our implementation of
the transformer encoder layer, there is a lot of redundant computation in the prelude code. This is
because (i) each operator computes the auxiliary data structures needed for all of its input and output
tensors, which leads to these data structures being generated twice for every tensor in the graph, and
(ii) the vloops in the schedules for all operators except the QKT and the AttnV operators in CoRa’s
implementation of the layer are fused similarly and can reuse the same auxiliary data structures, which
are also currently computed separately for every operator. Tables B.2 and B.3 compare, for a 6-layer
transformer encoder, the execution time and memory consumption of the prelude code respectively,
as present in CoRa’s current implementation (referred to as CoRa-Redundant in the table) with an
optimized implementation (referred to as CoRa-Optimized) which has all of this redundant compu-
tation removed. We see that when appropriately reused, the time and memory resources required to
compute the auxiliary data structures in the prelude are quite low as compared to the those required
for the execution of the kernel computation.

Overheads Due to Partial Padding

In Figure B.8, we show the relative amount of computation (computed analytically as in Figure 5.2) for
the transformer encoder layer for all datasets at batch sizes 32 and 128 for three cases—the fully padded
dense case, the actual computation as evaluated in §5.6 with partial padding, and the ideal case with no
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Table B.3: Prelude memory usage (in kB) for a 6-layer transformer encoder with and without redundant compu-
tation.

Dataset Batch Size
CoRa-Redundant CoRa-Optimized

CoRa Storage CoRa Loop Fusion CoRa Storage CoRa Loop Fusion

CoLA 32 2.93 32.15 1.2 5.27
CoLA 128 11.18 104.22 4.58 17.5
RACE 32 2.93 666.54 1.2 106.87
RACE 128 11.18 2609.58 4.58 418.06

padding. We see that partial padding leads to a very small increase in the amount of computation (3.5%
across datasets for batch size 32 and 2.3% for batch size 128). Because we generally pad individual
sequence lengths or their sum (as part of bulk padding) so that the quantity is a constant multiple of
a small quantity (such as 32, or 64), the relative amount of padding added is higher for smaller batch
sizes and datasets with smaller sequence lengths. Even in these cases, however, the added padding is
much lower as compared to the benefits obtained with the use of ragged tensors. Further we note that
the amount of padding added is a scheduling and optimization decision and can be changed if needed.
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Figure B.8: Overheads due to partial padding.

Ragged Tensor Overheads and Load Hoisting

We now take a closer look at the effects of auxiliary data structure accesses on the performance of
CoRa-generated code. These data structure accesses arise in the generated code, as we have seen, due
to the use of vloop fusion and ragged tensor storage. We focus on the five operators that make up
the MHA module here. We measure the execution times of four implementations of each operator.
The Dense implementation does not use ragged tensor storage or ragged computations. The +vloops
implementation uses ragged computations, but the tensors are stored with full padding in a dense
fashion. The +vdims implementation uses both ragged computations as well as ragged tensor storage.
The +LoadHoist implementation is same as +vdims but hoists accesses to the auxiliary data structures
out of loops as much as possible. In order to ensure that we perform the same amount of computation
in all cases, we use a synthetic dataset where all sequences have the same length (512). The relative
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performance of these implementations for the operators on the Nvidia GPU is shown in Figure B.9.
Apart from the overheads due to indirect memory accesses, the use of vloops and/or vdims also lead
to overheads associated with the prelude code. In order to focus on the former overheads, however, we
exclude prelude costs in the figure.
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Figure B.9: Overheads of using ragged computations and ragged tensor storage, and the benefits of load hoisting,
measured for a synthetic dataset where all sequence lengths are 512. The batch size used is 64.

As the figure shows, the use of vloops and vdims leads to a slight slowdown for the Proj1, Softmax,
Attnv and Proj2 operators. The slowdown is significant, however, for the QKT operator, which has
two vloops in its loop nest. As part of scheduling, we fuse both these vloops as well as the loop that the
vloop bounds depend on (i.e. the loop that iterates over the mini-batch), leading to complex auxiliary
data structure accesses. We believe that the CUDA compiler is unable to effectively hoist these accesses
in this case. CoRa however has more knowledge about these accesses and can hoist them to recover
the lost performance.

B.4.7 Discussion on Transformer Layer Evaluation

In this section, we provide further analysis of our evaluation of the transformer encoder layer on the
Nvidia GPU and ARM CPU backends. We break down the execution time of the encoder layer for
a few cases. As in Figure 5.13, these per-operator execution times are obtained under profiling and
might deviate slightly from the data in Tables 5.4 and 5.5.

Nvidia GPU Backend

Table B.5 provides the raw data for the breakdown of the execution times for the RACE dataset at
batch size 128 of the transformer encoder layer shown in Figure 5.13 in the main text. Apart from im-
provements in the QKT and AttnV operators discussed in §5.6.2, we note that CoRa’s implementation
is significantly faster for the Softmax operator as compared to the FasterTransformer implementations.
While we perform less computation on this operator as compared to the fully padded implementation
in FasterTransformer, part of CoRa’s performance benefits also stem from a better schedule. Specifi-
cally, the FasterTransformer implementation performs parallel reductions across GPU thread blocks.
This leads to a significant number of barriers at the thread block-level which have execution overheads.
Further, the FasterTransformer implementation uses conditional checks to ensure that it never accesses
attention scores for the added padding. In CoRa we use warp-wide parallel reductions which are much
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cheaper due to their lower synchronization costs but also provide a lower amount of parallelism. We,
therefore, only partially parallelize the reductions and compensate with the high parallelism available
in the other loops of the operator. Further, this means that we do not have to additionally employ
conditional checks to avoid accessing invalid data (that is part of the partial padding we add).
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Figure B.10: Breakdown of execution times of the encoder layer for the CoLA dataset at batch size 32 on the
GPU.
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Figure B.11: Breakdown of execution times of the MHA module for four cases on the 64-core ARM CPU back-
end.

We now look at the execution time breakdown for the CoLA dataset at batch size 32 on the Nvidia
GPU shown in Figure B.10. We see that CoRa performs slightly worse than FT-Eff for this case. Most
of CoRa’s slowdown stems from worse performance on the linear transformation operators Proj2, FF1
and FF2. CoRa performs slightly better than FT-Eff for the Proj1 operator, which is also a linear trans-
formation operator. From this data, we conclude that CoRa’s schedules for the Proj2, FF1 and FF2
operators can be improved to close this performance gap. We note that, even in this case, CoRa per-
forms much better on the SDPA module (the QKT, Softmax and AttnV operators) as compared to
FasterTransformer.

ARM CPU Backends

In §5.6.2, we saw how CoRa performs better than TensorFlow for the MHA module on the 8- and 64-
core ARM CPUs. In this section, we discuss these implementations in more detail and provide more
extensive evaluation.
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Table B.4: MHA execution latencies (in ms) on 8- and 64-core ARM CPUs. uBS stands for the optimal micro-
batch size.

Dataset Batch
Size

8-core ARM CPU 64-core ARM CPU

PT PT-UB / uBS TF TF-UB / uBS CoRa PT PT-UB / uBS TF TF-UB / uBS CoRa

RACE
32 627 209 / 2 300 228 / 8 263 4373 127 / 2 55 46 / 16 44
64 1267 411 / 2 596 432 / 8 515 8724 253 / 2 111 88 / 32 85
128 2558 810 / 2 1189 835 / 8 1009 17431 511 / 2 209 156 / 32 168

Wiki512
32 620 227 / 2 294 246 / 8 285 4294 123 / 2 53 53 / 32 47
64 1267 443 / 2 597 466 / 8 561 8727 239 / 2 106 96 / 32 91
128 2563 875 / 2 1184 904 / 16 1094 17427 660 / 2 205 172 / 32 176

SQuAD
32 324 101 / 4 189 117 / 8 113 1904 94 / 4 35 27 / 16 20
64 770 192 / 4 383 210 / 8 219 4953 181 / 4 68 49 / 32 39
128 1580 364 / 4 780 390 / 8 424 10236 357 / 4 137 79 / 32 76

Wiki128
32 53 52 / 16 53 52 / 32 54 76 76 / 32 11 11 / 32 9
64 133 101 / 16 101 100 / 64 102 330 141 / 16 19 18 / 64 17
128 353 196 / 16 199 190 / 64 200 1544 273 / 16 34 33 / 128 33

MNLI
32 41 26 / 8 39 29 / 8 20 69 30 / 4 9 9 / 32 4
64 100 47 / 8 82 52 / 16 38 204 51 / 8 16 14 / 32 7
128 260 90 / 16 177 93 / 16 76 399 87 / 16 30 23 / 64 14

XNLI
32 53 36 / 8 52 42 / 16 33 76 58 / 2 11 11 / 32 6
64 133 68 / 8 101 73 / 16 65 324 95 / 8 18 18 / 64 11
128 351 131 / 16 199 134 / 32 128 1549 179 / 16 34 28 / 64 22

MRPC
32 38 31 / 8 37 33 / 16 27 71 46 / 4 9 8 / 32 5
64 86 59 / 8 75 61 / 16 52 172 80 / 8 14 14 / 64 10
128 187 110 / 16 151 111 / 32 103 351 153 / 8 26 23 / 64 18

CoLA
32 10 9 / 16 12 11 / 32 8 7 7 / 16 5 4 / 32 2
64 21 16 / 16 21 18 / 32 14 11 13 / 16 6 6 / 64 3
128 46 29 / 32 37 29 / 32 25 23 18 / 32 9 8 / 128 5

Micro-Batching for PyTorch and TensorFlow: We saw, in Figure 5.2, that the amount of padding and
wasted computation increases with the batch size. On devices that expose low levels of parallelism
such as CPUs, it is therefore possible to trade-off batch parallelism for reduced padding, and therefore
reduced wasted computation, for frameworks such as PyTorch and TensorFlow. In effect, this amounts
to executing a mini-batch sorted by sequence lengths as a series of smaller micro-batches. Overall, this
reduces the amount of padding needed as each micro-batch is only padded to the length of the longest
sequence in that micro-batch, rather than the entire mini-batch as illustrated in Figure B.12. We search
over micro-batch sizes that are powers of 2 starting from the lowest micro-batch size of 2. In Table B.4,
we provide the execution latencies as well as the optimal micro-batch sizes for PyTorch and TensorFlow
(these configurations are referred to as PT-UB and TF-UB respectively) for an 8-core as well as a 64-
core ARM CPU. For reference, we also provide the latencies corresponding to naive executions of
PyTorch and TensorFlow (referred to as PT and TF respectively) where the micro-batch size is equal
to the mini-batch size.

CoRa’s MHA Implementation: As in CoRa’s vgemm implementation on the Intel CPU backend, we
offload the computation of the dense inner tiles of the Proj1 and Proj2 operators in CoRa’s MHA
implementation on the ARM backends to gemm calls in the OpenBLAS [90] library. Due to limita-
tions of our prototype implementation, however, offloading the computation this way means that we
cannot fuse the padding change operators with other computational operators in this case. We see
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Figure B.12: Comparison of vanilla and micro-batched execution for PyTorch and TensorFlow.
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Figure B.13: Execution latencies of PT, TF and CoRa as the number of threads is increased for theMNLI dataset
at a batch size of 64. These measurements were performed on the 64-core CPU by changing the
number of threads launched by OpenMP. Due to this, the measurements may not exactly be equal
to the ones in Table B.4.

in Figure B.11, however, that these pad fusion operators are relatively cheap to perform on the CPU
backend.

Overall Performance Comparison: Table B.4 shows the inference latencies for the PyTorch, Tensor-
Flow and CoRa implementations of theMHAmodule on the 8- and 64-core ARMCPUs. We saw that
TF-UB trades-off parallelism for reduced wasted computation. It, therefore, performs the best when
there is high parallelism in the workload (i.e. for datasets with longer sequence lengths at higher batch
sizes) and it performs the worst when the workload has low parallelism (i.e. for datasets with shorter
sequences at lower batch sizes). This is because in the presence of high parallelism in the workload, TF-
UB can reduce the micro-batch size much more (leading to much lower wasted padding) as compared
to the case of a workload with low parallelism. This is seen reflected in the optimal micro-batch sizes
shown in Table B.4. TF-UB also performs better on the 8-core CPU which exposes lower parallelism
as compared to the 64-core CPUs. This is again reflected in the optimal micro-batch sizes which are
generally higher (leading to higher padding) on the 64-core CPU as compared the 8-core CPU. Overall,
we see that TF-UB and CoRa perform similarly on the 8-core ARM CPU, while CoRa outperforms
TF-UB by about 1.37× as the hardware parallelism increases on the 64-core CPU. In both the cases,
CoRa performs significantly better than the TF configuration of executing TensorFlow.
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On the 8-core CPU, PyTorch in the PT-UB configuration performs better than both TF-UB and
CoRa for datasets with higher sequence lengths. Similar to TF-UB, PT-UB can more effectively trade-
off batch parallelism in these cases due to the high parallelism. Overall, across all the datasets and
batch sizes evaluated, CoRa and PT-UB perform similarly, while TF-UB is about 6% slower than both
on the 8-core CPU. We find that on the 64-core CPU, however, PyTorch’s performance does not scale
well with the number of cores (this is apparent in Figure B.13) as compared to TensorFlow and CoRa.
Therefore, below, we only consider TensorFlow for further analysis.
Per-Operator Execution Time Breakdown: Let us now look more closely at the execution times of the
TensorFlow and CoRa implementations. Figure B.11 provides a breakdown of the execution times
for four cases: (1) the MNLI dataset at a batch size of 128 and the Wiki128 dataset at a batch size of
32, which have the most and the least potential for savings on wasted computation due to padding as
Figure 5.2 shows, and (2) the RACE dataset at a batch size of 128 and the CoLA dataset at a batch size
of 32, which represent the best and worst cases for the TF-UB configuration.

TF-UB and TF perform similarly for the CoLA dataset at batch size 32, as that represents the worst
case for TF-UB, and on the Wiki128 dataset at batch size 128 as there is little potential for computa-
tional savings due to reduction in padding for that case. In the remaining two cases, TF-UB performs
better than TF as expected. For the RACE dataset at batch size 128, which represents the best case for
TF-UB, TF-UB performs slightly better than CoRa. In cases where CoRa performs better than Tensor-
Flow, we find that a lot of the reduction in CoRa’s absolute execution time stems from computational
savings in the Proj1 and Proj2 two operators, which consume a significant portion of the execution
time. The QKT and AttnV operators, however, show a higher relative reduction in execution time as
they are quadratically proportional to the sequence lengths as opposed to Proj1 and Proj2 which are
linearly proportional to sequence lengths. This difference in proportionality is also reflected in the data
for the Wiki128 dataset. TensorFlow generally does well on the Softmax operator, performing better
than CoRa for the RACE and Wiki128 datasets. We believe this is due to better optimized implemen-
tations and that this gap can be reduced with more time spent optimizing CoRa’s implementation of
the operator.
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Table B.5: Breakdown of the encoder layer execution time for FasterTransformer and CoRa on the Nvidia GPU
backend for the RACE dataset at batch size 128. Per-layer prelude code overheads are included
in these latencies for CoRa. Both FasterTransformer and CoRa implementations normally execute
CUDA kernels asynchronously. For the purposes of profiling (i.e., this table only), these calls were
made synchronous, which can lead to slower execution. We also show the end-to-end execution
times under profiling for reference.

Op sub-graphs FT Ops FT FT-Eff CoRa CoRa Ops

Proj1
QKV Proj. MM 7.16 5.4 6.2 QKV Proj.

QKV Bias + AddPad 1.39 1.21

QKT QKT 2.65 2.64 2.12 AddPad + QKT

Softmax Softmax 4.08 4.08 1.93 ChangePad + Softmax +
ChangePad

AttnV AttnV 2.78 2.79 2.44 AttnV

Proj2

Transpose + RemovePad 0.78 0.29

Linear Proj. MM 2.42 1.82 2.31 RemovePad + Linear Proj. MM +
Bias + ResidualAdd

Linear Proj. Bias + ResidualAdd +
LayerNorm 0.52 0.38 0.31 LayerNorm

FF1
FF1 MM 9.52 6.92 8.06 FF1 MM + Bias +

ActivationFF1 Bias + Activation 1.38 0.98

FF2
FF2 MM 9.47 7.1 8.33 FF2 MM + Bias + ResidualAdd

FF2 Bias + ResidualAdd +
LayerNorm 0.53 0.38 0.31 LayerNorm

Total Execution Time 42.82 34.12 31.99 Total Execution Time
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