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Abstract
Martingale concentration is at the heart of sequential statistical inference. Due

to their time-uniform concentration of measure properties, martingales allow re-
searchers to perform inference on highly correlated data as it is adaptively collected
over time. Many state-of-the-art results in areas such as differential privacy, multi-
armed bandit optimization, causal inference, and online learning boil down to (a)
finding an appropriate, problem-dependent martingale and (b) carefully bounding
its growth. Despite the important roles martingales and time-uniform concentration
of measure play in modern statistical tasks, applications of martingale concentration
is typically ad-hoc. Often, poorly chosen martingale concentration inequalities are
applied, which results in suboptimal, even vacuous rates in sequential estimation
problems.

The focus of this thesis is twofold. In the first part of this thesis, we provide sim-
ple yet powerful frameworks for constructing time-uniform martingale concentration
inequalities in univariate, multivariate, and even sometimes infinite-dimensional set-
tings. The inequalities contained herein can be applied to processes with both light-
tailed and heavy-tailed increments, and follow from simple geometric arguments.
The second part of this thesis is focused on applying martingale methods and time-
uniform martingale concentration to practically relevant data science tasks. In par-
ticular, we show that, by appropriately applying martingale concentration, one can
obtain salient improvements over the state-of-the-art in both differentially private
machine learning and kernel bandit optimization tasks. In sum, the hope is to give
a reader a start to finish view of how to derive and apply time-uniform martingale
concentration in modern statistical research.
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Chapter 1

Introduction

Classical methodology for statistical inference fails to live up to the sequential nature of modern
data science. The rigidity of assumptions such as fixed sample sizes, i.i.d. data, and Gaus-
sian noise is fundamentally misaligned with how data is structured in real-world settings. For
instance, in contextual bandit learning tasks, a learner may want to sequentially estimate an
unknown reward function as data is adaptively collected over time. Likewise, in A/B testing
applications, a learner may stop experimentation early if there is sufficiently strong evidence of
the efficacy of a treatment. Naively using traditional concentration of measure machinery such
as finite sample or asymptotic confidence intervals may fail to yield valid coverage of the target
estimand.

For a concrete example, suppose an e-commerce platform wants to measure how the deploy-
ment of a new design of a webpage (version 1) impacts user engagement relative to an existing
control format (version 0). One way to measure this effect would be to conduct a randomized
control trial: fix a sample size of, say, 1,000 individuals and randomly assign participants to each
website version. If after measuring the level of interaction across all participants there is signif-
icant evidence to indicate that version 1 performs at least as well as version as version 0, it may
be preferable to roll out the new design. However, if the new design makes it significantly more
difficult for users to purchase goods, the company running the trial may experience significantly
decreased revenue from running the experiment. Thus, it is clearly desirable from the perspec-
tive of the company to develop testing approaches that allow for early stopping in the case of
sufficiently strong evidence against the new version.

How have researchers addressed the problem of calibrating confidence in the presence of
highly correlated data and data-dependent stopping conditions? The answer is that they have
largely turned to martingale methods. A stochastic process is a martingale if, given the history
of the process up to time n− 1, our best guess for the value of the process is at time n is simply
its value at time n − 1. In short, a martingale is just the generalization of an unbiased random
walk. Examples of martingales include sums of independent, mean zero random variables, com-
pensated Poisson processes, and geometric Brownian motion. Due to their central importance
throughout this entire thesis, we formally define martingales below.
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Definition 1.0.1. Let (Sn)n≥0 be a real-valued, discrete time process adapted to some filtration
(Fn)n≥0.1 We say (Sn)n≥0 is a martingale with respect to (Fn)n≥0 if

1. E(Sn | Fn−1) = Sn−1 for all n ≥ 1, and

2. E|Sn| <∞.

We say (Sn)n≥0 is a super-martingale if “=” in item 1 is replaced by “≤”.

The definitions of martingales and super-martingales extend naturally to continuous time
processes (St)t≥0 through the first condition being replaced by E(St | Fs) = Ss (resp. ≤ Ss) for
all s < t. Likewise, a processes (Sn)n≥0 taking values in a normed space (B, ∥ · ∥) is said to be a
martingale if the second condition is replaced by E∥Sn∥ ≤ ∞ for all n ≥ 0.

Why are martingales so useful in sequential statistical tasks? The answer is that they of-
fer strong, time-uniform concentration of measure properties. Whereas fixed-time concentration
results for independent random variables are derived from Markov’s inequality, time-uniform
concentration results for observations with martingale dependence are derived from Ville’s in-
equality, stated below.

Theorem 1.0.2 (Ville’s Inequality). Let (St)t∈T be a non-negative supermartingale with respect
to some filtration (Ft)t∈T with E[S0] = 1 and T = N or T = [0,∞). Then, for any confidence
parameter δ ∈ (0, 1),

P(∃t ∈ T : St ≥ 1/δ) ≤ δ.

This inequality ensures that the probability that a non-negative supermartingale ever crosses
the horizontal line with intercept 1/δ is bounded above by δ. While simple in statement, by care-
fully constructing a non-negative super-martingales, researchers have derived a variety of non-
trivial time-uniform concentration of measure results. In particular, natural analogues of classical
concentration results exist in the world of martingales. For instance Hoeffding’s inequality for
independent, bounded observations is replaced by Azuma’s inequality[10, 70]. Likewise, Bern-
stein’s/Bennet’s inequality is replaced my Freedman’s inequality [13, 64]. We present a detailed
discussion of existing martingale concentration inequalities in Chapter 2. In general, researchers
can mold Theorem 1.0.2 into an inequality that is useful for whatever scientific task is at hand.

There is thus a somewhat general recipe for performing time-uniform statistical inference.
The first step is to find an emergent martingale in the task at hand. For example, to study the
composition of differential private algorithms, it is natural to control the growth of privacy loss
martingales, processes that measure the log-likelihood of the observed sequence of outcomes
under two similar datasets. Likewise, in linear/contextual bandit problems, one can study the
convergence of ridge regression estimates of the unknown reward function by bounding a “resid-
ual process” defined in terms of the noise in observations and the multivariate actions chosen by
the learner. We talk about these processes respectively in Chapters 4 and 6. Often, finding the
specific martingale to study is a bit of an art form requiring domain expertise, and so we try to
provide insight in the chapters below.

We focus most our efforts on the second step of the process: appropriately controlling the
growth of emergent martingales via time-uniform martingale concentration. This step is often

1A filtration (Fn)n≥0 of a probability space (Ω,F ,P) is simply an increasing sequence of σ-algebras satisfying
F∞ :=

⋃∞
n=0 Fn ⊂ F .

2



poorly conducted, with statisticians either applying bounds that are not a good fit for the problem
at hand or bounds that are derived in ad-hoc manner. Sometimes, the constructed bounds result in
vacuous convergence rates, such as in the example of Chowdhury and Gopalan [30], who fail to
show that Gaussian process upper confidence bound (GP-UCB) attains sub-linear regret for the
practically relevant Matérn class of kernels. Other times, even in settings where researchers ob-
tain optimal rates of concentration, the constants present in inappropriately-optimized bounds are
typically prohibitively large. This is the case in Rogers et al. [133], who study the composition of
differentially-private algorithms with adaptively-chosen privacy parameters, and obtain a bound
with prohibitively large constants. From these few examples, it is clear that there needs to be a
unified, simple to apply treatment of time-uniform martingale concentration in both univariate
and multivariate settings. That is the goal of this thesis.

1.1 Contributions and Outline
This thesis is concerned with the development of a unified framework for time-uniform mar-
tingale concentration. In particular, we develop generic concentration inequalities for univari-
ate, multivariate, and even infinite-dimensional processes. These results all follows from first
principles and can applied to observations that are light-tailed (e.g. sub-Gaussian, sub-Gamma,
sub-Poisson), heavy-tailed (infinite variance, bounded pth moment for p < 2), or somewhere in
between (e.g. symmetric observations, observations lacking a moment generating function). A
complementary focus of this thesis is the application of time-uniform martingale concentration
to practically relevant tasks in statistics and machine learning. In particular, we find applications
of time-uniform martingale concentration in differential privacy, private machine learning, and
kernel bandit optimization. These applications aim to illustrate how to carefully and appropri-
ately apply generic martingale concentration inequalities (such as those derived in the first part
of the thesis) to machine learning tasks. A section-by-section enumeration of contributions is
provided below.

Part I: Foundations of Time-Uniform Martingale Concentration
The first part of this thesis focuses on the development of time-uniform concentration inequal-
ities for both finite and infinite-dimensional processes. In the finite-dimensional setting, the
general goal is to derive inequalities that link the growth of a process (Sn)n≥0 to some measure
of accumulated variance (Vn)n≥0 through a “sub-ψ” condition. Heuristically, ψ should roughly
be thought of as representing the cumulant generating function (or CGF) of the increments of
(Sn)n≥0, but the presented results can handle some settings of heavy-tailed observations where
a CGF may not exist. In the infinite-dimensional setting, we study the problem of heavy-tailed
mean estimation instead of concentration, providing novel insight on how martingale methods
relate to handling heavy-tailed observations that may lack finite variance. We now provide a
more detailed description.

In the first half of Chapter 2, we study time-uniform, self-normalized concentration for
arbitrary univariate sub-ψ processes. Self-normalized concentration, which aims to control the
growth a processes when appropriately normalized by some empirical measure of variance, gen-

3



eralizes the study of concentration inequalities that depend on the number of observed samples.
We prove a general self-normalized inequality that not only holds for processes admitting well-
defined CGFs (such as those with sub-Gaussian, sub-Exponential, or sub-Gamma increments),
but even holds for some heavy-tailed processes, such as those with finite variance or those with
infinite variance but symmetric increments. The time-uniform bounds we prove are tight in that
they asymptotically match the lower bound prescribed by the law of the iterated logarithm (LIL)
with the correct leading constant. Our results can be viewed as a generalization of the contri-
butions of Howard et al. [75], who prove a similar non-asymptotic LIL in the setting where the
underlying process has sub-Gamma increments.

In the second half of Chapter 2, we extend the above results to multivariate processes. In
particular, through leveraging a novel geometric argument, we are able to derive a time-uniform,
self-normalized bound on general multivariate sub-ψ process. The bounds we prove, which
depends on the condition number of the covariance matrix Vn, depart significantly from the
traditional “method of mixtures” approaches commonly used in online learning tasks [41, 3],
which only apply for sub-Gaussian processes. Using our bounds, we prove a corresponding law
of the iterated logarithm for vector-valued processes, and we also construct a counterexample
showing that this rate is, in general, tight.

Lastly, in Chapter 3, we study the problem of estimating an unknown mean associated with
heavy-tailed observations in infinite-dimensional Banach spaces. In particular, we study a sim-
ple truncation-based estimator influenced by Catoni and Giulini [23]. This estimator first uses a
small amount of data to construct a naive mean estimate, next projects the remaining observations
onto an appropriately-sized ball centered at the naive mean estimate, and finally averages these
truncated observations. The analysis of this estimator involves proving novel, time-uniform con-
centration results for bounded martingales in smooth Banach spaces, building upon foundational
results due to Pinelis [128, 129]. The estimator not only enjoys favorable convergence, matching
the rate attained by geometric median-of-means with small multiplicative constants [121], but
also obtains rapid empirical convergence in simulations.

Part II: Applications of Martingale Concentration
In the second part of this thesis, we pivot away from the theoretical underpinnings of martin-
gale concentration and instead focus on applying martingale methods to practically relevant data
science problems. In this part, we focus on problems related to differentially private machine
learning and online kernelized learning. Our the results covered below each involve (a) the
identification of martingale structure in the underlying problem and (b) the application and opti-
mization of an appropriately-chosen martingale concentration inequality.

In Chapter 4, we study the problem of fully-adaptive composition in differential privacy.
Differential privacy provides an information-theoretic framework for protecting the integrity of
an individual’s data when used in computation. If an algorithm if differentially private, it is
statistically hard for an attacker to use the output of an algorithm to determine if any given in-
dividual’s data was used during computation. Given that private algorithms are often run in
sequence, composition is perhaps the most important primitive in the study of differential pri-
vacy. Classical composition results assume that the privacy parameters (typically governed by
quantities ϵ and δ) are fixed prior to computation. This is a poor fit for modern data science
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tasks, in which a researcher may adaptively interact with a data set in order to answer relevant
statistical questions. The few results that concern fully-adaptive composition, wherein privacy
parameters may be adaptively selected by the statistician, indicate a significant price must be
paid for adaptivity [133]. Using advances in line-crossing inequalities for martingales [74], we
show that fully-adaptive composition can be obtained at no cost over traditional, fixed-parameter
composition.

Next, in Chapter 5, we study the problem of differentially private empirical risk minimiza-
tion under strict accuracy constraints. Traditional approaches to private risk minimization take a
“privacy first” perspective. Namely, algorithms first require the practitioner to fix privacy levels
in advance via parameters (ϵ, δ). The algorithms then inject noise (often Gaussian or Laplace)
of appropriate variance to guarantee the target privacy levels are met. These approaches often
provide pessimistic, high-probability utility guarantees. In safety-critical regimes (e.g. medical
applications of private learning), practitioners may care primarily about accuracy, with privacy
being an important secondary desideratum. In short, for these applications, a learner would like
to know in advance the maximal variance of noise that should be added in order to guarantee
the strict accuracy targets are met, thus minimum individual information leakage. Using tools
from time-uniform martingale concentration alongside the theory of continuous-time stochastic
processes, we develop a simple algorithm called the Brownian mechanism for privately meeting
strict model accuracy requirements. Our algorithm involves first computing the true, risk mini-
mizing parameter associated with a dataset. Then, it adds multivariate Gaussian noise of a large
variance to this unknown parameter, iteratively stripping it away in a correlated manner until the
target accuracy is met. We show that, by running this algorithm, the learner can obtain an ex-post
privacy guarantee that matches the privacy loss had the optimal variance been known in advance
up to multiplicative logarithmic factors in the variance.

Finally, in Chapter 6, we consider the kernelized bandit problem, in which an agent must
sequentially learn the minimum of an unknown function while minimizing regret. This function
is assumed to be of known complexity, lying in a ball in some reproducing kernel Hilbert space
(RKHS). The simplest algorithm for the kernel bandit problem is Gaussian process upper con-
fidence bound (GP-UCB) algorithm, which involves maintaining a kernel ridge estimate for the
unknown function alongside a corresponding confidence ellipsoid. In the case of linear bandits,
this algorithm is optimal in terms of minimax regret [102]. In kernelized setting, existing re-
sults indicate that GP-UCBC obtains super-linear regret for commonly-used kernels, such a the
Matérn kernel family. Using improved self-normalized martingale concentration inequalities in
separable Hilbert spaces alongside a simple regularization argument, we show GP-UCB obtains
sub-linear regret for most commonly-used kernels, thus partially addressing an open question on
the topic due to Vakili et al. [155].

Part III: Conclusions and Future Research Directions
In Chapter 7, we summarize the contributions, presents several interesting open problems, and
then then discusses the research direction the author will be pursuing after graduating. In par-
ticular, the future topics the author will work on lie at the intersection of causal inference and
machine learning, and mark a significant departure from the aforementioned completed work on
martingale methods.
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Foundations of Time-Uniform Martingale
Concentration
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Chapter 2

Time-Uniform Concentration for
Self-Normalized Processes

Self-normalized processes arise naturally in many statistical tasks. While self-normalized
concentration has been extensively studied for scalar-valued processes, there is less work
on multidimensional processes outside of the sub-Gaussian setting. In this work, we con-
struct a general, self-normalized inequality for Rd-valued processes that satisfy a simple
yet broad “sub-ψ” tail condition, which generalizes assumptions based on cumulant gen-
erating functions. From this general inequality, we derive an upper law of the iterated
logarithm for sub-ψ vector-valued processes, which is tight up to small constants. We
demonstrate applications in prototypical statistical tasks, such as parameter estimation in
online linear regression and auto-regressive modeling, and bounded mean estimation via
a new (multivariate) empirical Bernstein concentration inequality.

2.1 Introduction
The first Concentration inequalities are employed in many disparate mathematical fields. In
particular, time-uniform martingale concentration has proven itself a critical tool in advancing
research areas such as multi-armed bandits [88, 3, 102], differential privacy [163, 162], Bayesian
learning [33], and online convex optimization [108, 83]. While martingale concentration in-
equalities have historically been proved in a largely case-by-case manner, recently Howard et al.
[74] provided a unified framework for constructing time-uniform concentration inequalities. By
introducing a single “sub-ψ” assumption that carefully controls the tail behavior of martingale
increments, Howard et al. [74, 75] prove a master theorem that recovers (in fact improves) many
classical examples of concentration inequalities, for example those of Blackwell [16], Hoeffding
[70], Freedman [64], Azuma [10], de la Peña et al. [40].

Despite the generality of the framework of Howard et al. [74, 75], their results have not been
extended to understanding the growth of “self-normalized” vector-valued processes. If (Sn)n≥0

is a process evolving in Rd and (Vn)n≥0 is a process of d×d positive semi-definite matrices mea-
suring the “accumulated variance” of (Sn)n≥0, self-normalized concentration aims to control the
growth of the normalized process (∥V −1/2

n Sn∥)n≥0. Self-normalized processes naturally arise in
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a variety of common statistical tasks, examples of which include regression problems [98, 99, 14]
and contextual bandit problems [3, 30]. As such, any advances in self-normalized concentration
for vector-valued processes could directly yield improvements in methodology and analysis of
foundational statistical algorithms.

In this work, we provide a new, general approach for constructing self-normalized concen-
tration inequalities. By naturally generalizing the sub-ψ condition of Howard et al. [74, 75] to
d-dimensional spaces, we are able to construct a single “master” theorem that provides time-
uniform, self-normalized concentration under a variety of noise settings. We prove our results by
first constructing a time-uniform concentration inequality for scalar-valued processes that non-
asymptotically matches law of the iterated logarithm and then extending this result to higher
dimensions using a geometric argument. From our inequality, we can derive a multivariate ana-
logue of the famed law of the iterated logarithm, which we show to be essentially tight. Lastly,
we apply our inequality to common statistical tasks, such as calibrating confidence ellipsoids
in online linear regression, estimating model parameters in vector auto-regressive models, and
estimating a bounded mean via a new “empirical Bernstein” concentration inequality.

2.1.1 Related Work and History
Martingale concentration arguably originated in the work of Ville [157], who showed that the
growth of non-negative supermartingales can be controlled uniformly over time. This result,
now known commonly referred to as Ville’s inequality, acts as a time-uniform generalization
of Markov’s inequality [50]. This result was later extended to submartingale concentration by
Doob [47] in an eponymous result, now called Doob’s maximal inequality. From these two
inequalities, a variety of now classical martingale concentration inequalities were proved, such
as Azuma’s inequality [10], which serves as a time-uniform, martingale variant of Hoeffding’s
inequality [70] for bounded random variables, and Freedman’s inequality [64], which serves as
a martingale variant of Bennett’s inequality [13] for sub-Poisson, bounded random variables.

Of particular note are the various self-normalized inequalities of de la Peña [42, 40, 41, 43],
which provide time-uniform control of the growth of a process (Sn)n≥0 in terms of an associ-
ated accumulated variance process (Vn)n≥0. In particular, the authors derive their results using
a technique first presented by Robbins called the method of mixtures [38, 37], which involves
integrating over a family of parameterized exponential supermartingales to obtain significantly
tighter (in terms of asymptotic behavior) inequalities than those mentioned earlier. Bercu and
Touati [14] also investigate self-normalized concentration in the style of de la Peña, deriving
bounds when the increments of (Sn)n≥0 may exhibit asymmetric heavy-tailed behavior and, in
later work, [15] study the effects of weighing predictable and empirical quadratic variation pro-
cesses in deriving self-normalized concentration results.

Recently, Howard et al. [74] presented a single “master” theorem that ties together much of
the literature surrounding scalar-valued concentration (self-normalized or not). Inspired by the
classical Cramer-Chernoff method (see Boucheron et al. [18] for instance), which provides high
probability tail bounds for a random variable X in terms of its cumulant generating function (or
CGF) ψ, the authors present a unified “sub-ψ” condition on a stochastic process. This condition
relates the growth of a process (Sn)n≥0 to some corresponding accumulated variance process
(Vn)n≥0 through a function ψ which obeys many similar properties to a CGF. In particular, the
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authors prove “line-crossing” inequalities for sub-ψ processes, giving a bound on the probability
that (Sn)n≥0 will ever cross a line parameterized by ψ and the accumulated variance (Vn)n≥0.
By strategically picking ψ and (Vn)n≥0, the master theorem in Howard et al. [74] can be used to
reconstruct, unify and even improve a variety of existing self-normalized concentration inequal-
ities (such as those in the preceding paragraph), as well as to prove several new ones. Using
these ideas in a followup work, Howard et al. [75] prove a time-uniform concentration inequality
for scalar-valued processes whose rate non-asymptotically matches the law of the iterated loga-
rithm (LIL) [50]. The only caveat to this result is that the concentration inequality only applies
to sub-ψ processes when ψ is either the CGF of a sub-Gaussian (denoted ψN ) or sub-Gamma
(denoted ψG,c) random variable. While any CGF-like function ψ function can be bounded by
aψG,c for some choice of a, c > 0 (see Proposition 1 of Howard et al. [75]), this conversion
could in general result in loose constants. As a stepping stone toward proving our multivariate
concentration inequalities, we generalize the non-asymptotic LIL results of Howard et al. [75] to
arbitrary sub-ψ process, greatly increasing the applicability of the obtained results.

To the best of our knowledge, there are relatively few existing results on the self-normalized
concentration of vector-valued processes. De la Peña [42] leverage the above-mentioned method
of mixtures alongside Ville’s inequality to bound the probability that the self-normalized ran-
dom vector V −1/2

n Sn ∈ Rd belongs to some mixture-dependent convex set. These bounds are,
in particular, not closed form, and their asymptotic rate of growth is unclear. Our bounds, in-
stead, directly provide time-uniform bounds on the process (∥V −1/2

n Sn∥)n≥0 in terms of rela-
tively simple function of the variance process (Vn)n≥0. In particular, we use our bounds to derive
a multivariate law of the iterated logarithm that is tight in terms of dependence on Vn and the
ambient dimension d up to small, absolute, known constants. While de la Peña et al. [41, 42] do
provide an asymptotic LIL for vector processes, it hides an unknown constant and lacks explicit
dependence on the dimension d.

In the case where the increments of (Sn)n≥0 satisfy a sub-Gaussian condition, significantly
more is known about vector-valued self-normalized concentration. Abbasi-Yadkori et al. [3]
provide a clean bound on ∥V −1/2

n Sn∥ in terms of log det(Vn) using an argument that directly
follows from an earlier, method-of-mixtures based argument of de la Peña et al. [41]. First, our
bounds are significantly more general than those of Abbasi-Yadkori et al. [3] and de la Peña et al.
[41], because ours apply to general sub-ψ processes. Additionally, our bounds grow proportion-
ally to log log γmax(Vn) and log κ(Vn) (γmax and κ represent maximum eigenvalue and condition
number respectively, defined later). Thus, even in the setting of sub-Gaussian increments with
predictable covariance, our results are not directly comparable in general. We believe deriving
log-determinant rate inequalities for general sub-ψ processes is an interesting open problem, but
leave it for future work.

There exist other concentration inequalities for vector-valued data that are not directly re-
lated to the self-normalized bounds presented in this paper. First, there are several existing
time-uniform concentration results for Banach space-valued martingales [128, 129, 74]. These
results are obtained by placing a smoothness assumption on the norm of the Banach space, and
in turn provide time-uniform control on the norm of the martingale. We note that although we
are working in a Banach space, we are not trying to control the norm of the underlying process
∥Sn∥, and instead want to control the self-normalized quantity

∥∥∥V −1/2
n Sn

∥∥∥. In particular, the
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process (V −1/2
n Sn)n≥0 is not in general a martingale, so the above results cannot be directly ap-

plied. Second, there are many concentration results that involve bounding the operator norm of
Hermitian matrix-valued martingales using the matrix Chernoff method [8, 31, 151, 152]. Once
again, it does not seem like these bounds for matrix-valued processes can be readily applied to
obtain vector-valued concentration of the form presented in this paper. Third, in their work on es-
timating convex divergences, Manole and Ramdas [116] derive a self-normalized concentration
inequality for i.i.d. random vectors drawn from some distribution on Rd. The form of this bound
resembles that of the central concentration inequality presented in this paper. However, we note
that our result allows for arbitrary martingale dependence between the increments of the process
(Sn)n≥0. Furthermore, the argument used in Manole and Ramdas [116] cannot be generalized to
the setting of arbitrary dependence, as the authors derive their results using certain reverse mar-
tingale arguments which must be conducted with respect to the exchangeable filtration generated
by a sequence of random variables, which implies the increments of (Sn)n≥0 must, at the very
least, be exchangeable random variables.

2.1.2 Our Contributions

We now provide a brief, illustrative summary of our primary contributions. For now, when we
refer to a process (Sn) being sub-ψ with variance proxy (Vn), the reader should think of the
increments of Sn having associated CGF ψ with weights proportional to Vn. This is not precise,
but will be made exact when we provide rigorous definitions of the sub-ψ condition for both
scalar and vector-valued processes in Section 2.2 below. We present the primary contributions in
the order they appear in the paper.

1. First, in Section 2.3, we show that if (Sn)n≥0 is a scalar (i.e. R-valued) sub-ψ process with
variance proxy (Vn)n≥0, then, with high probability, it holds that

Sn = O

(
Vn · (ψ∗)−1

(
1

Vn
log log(Vn)

))
for all n ≥ 0 simultaneously. In the case where ψ(λ) = ψG,c(λ) :=

λ2

2(1−cλ) is the CGF as-
sociated with a sub-Gamma random variable (see Boucheron et al. [18]), our bound reduces
to

Sn = O
(√

Vn log log(Vn) + c log log(Vn)
)
.

Thus, this result can be reviewed as a direct generalization of the primary contributions of
Howard et al. [75], who only provide time-uniform, self-normalized concentration results
for sub-Gamma processes (Note that in the special case c = 0, sub-Gamma concentration
reduces to sub-Gaussian concentration).

2. Next, in Section 2.4, we show that if (Sn)n≥0 is a vector valued process that is sub-ψ with
variance proxy (Vn)n≥0, then, with high probability, simultaneously for all n ≥ 0,

∥V −1/2
n Sn∥ = O

(√
γmin(Vn) · (ψ∗)−1

(
1

γmin(Vn)
[log log(γmax(Vn)) + d log κ(Vn)]

))
,
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where γmin(Vn) and γmax(Vn) refer, respectively, to the minimum and maximum eigenval-
ues of the (proxy) covariance matrix Vn, and κ(Vn) :=

γmax(Vn)
γmin(Vn)

is the condition number of
matrix Vn. We can compare our bounds to existing results [41, 3] in the subGaussian case
where ψ(λ) = ψN(λ) :=

λ2

2
is the CGF of a standard normal random variable. In this case,

our bound simplifies to

∥V −1/2
n Sn∥ = O

(√
log log(γmax(Vn)) + d log κ(Vn)

)
.

Existing results on the self-normalized concentration for processes with sub-Gaussian in-
crements provide upper bounds of the form ∥V −1/2

n Sn∥ = O
(√

log det(Vn)
)

, which are,
in general, incomparable to our bounds. When κ(Vn) is small, our bounds may be tighter,
but if γmax(Vn) ≫ γmin(Vn), the determinant-based bounds may be tighter.

3. Lastly, in Sections 2.5 and 2.6, we apply our vector-valued self-normalized concentration
results to statistical tasks. In Section 2.5, we create non-asymptotically valid confidence
ellipsoids for estimating unknown slope parameters in online linear regression with sub-ψ
noise in observations. In particular, these results can be viewed as extending the confidence
ellipsoids of Abbasi-Yadkori et al. [3], which hold only in the sub-Gaussian setting. We
further specialize these bounds to model estimation in vector autoregressive models (i.e.
in the VAR(p) model), generalizing a result of Bercu and Touati [14]. In Section 2.6, we
prove a multivariate, self-normalized empirical Bernstein inequality, generalizing a result
of Howard et al. [75] to d-dimensional space.

In sum, we provide time-uniform, self-normalized concentration inequalities for both scalar
and vector-valued processes that hold under quite general noise conditions. Not only are these
bounds of theoretical interest, but they are in fact applicable to common statistical tasks — in
particular those that can be framed in the online linear regression framework.

2.2 Background and Sub-ψ Processes
In this section we discuss the key sub-ψ condition leveraged in deriving self-normalized concen-
tration results for vector-valued processes. We arrive at our vector sub-ψ condition by extending
the eponymous condition defined in the setting of scalar-valued processes [74, 75], to high di-
mensional spaces. We first summarize some notation that will be used ubiquitously.

Notation: Throughout, we define N = {0, 1, 2, · · · } to be the set of natural numbers, which we
assume to begin at 0. We let ⟨x, y⟩ = x⊤y denote that standard Euclidean inner product on Rd.
Additionally, we let Sd−1 := {x ∈ Rd : ∥x∥ = 1} denote the unit sphere and Bd := {x ∈ Rd :
∥x∥ ≤ 1} the unit ball in Rd. By L+(Rd), we denote the set of all d × d positive semi-definite
matrices, with Id ∈ L+(Rd) denoting the d-dimensional identity matrix. For V ∈ L+(Rd), let
γmax(V ) denote the largest eigenvalue of V , γmin(V ) the smallest eigenvalue of V , and let

κ(V ) :=
γmax(V )

γmin(V )
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denote the condition number of V . Each such V admits a spectral decomposition of the form V =∑d
i=1 γi(V )viv

⊤
i , where (γi(V ))i∈[d] is the non-increasing sequence of eigenvalues associated

with matrix V and (vi)i∈[d] is the corresponding sequence of unit eigenvectors, which we know
forms an orthonormal basis for Rd. For ρ > 0, let

V ∨ ρId :=
d∑
i=1

(γi(V ) ∨ ρ)viv⊤i ,

where for scalars a, b ∈ R, a ∨ b := max{a, b}.
For a strictly increasing, differentiable convex function ψ : [0, λmax) → R we let ψ∗ :

[0, umax) → R≥0 denote its convex conjugate, given by ψ∗(u) := supλ∈[0,λmax) uλ−ψ(λ), where
umax := limλ↑λmax ψ

′(λ). In the sequel, we will always assume supλ∈[0,λmax) ψ
′(λ) = ∞, and

hence will have umax = ∞. Some key properties of convex conjugation are that (a) ψ∗ is convex,
(b) (ψ∗)∗ = ψ, and (c) (ψ∗)′ = (ψ′)−1.

Let (Z, ρ) denote a metric space, and let T ⊂ Z. For ϵ > 0, we say that a set K ⊂ Z is an ϵ-
covering for T if, for any z ∈ T , there exists a point π(z) ∈ K satisfying ρ(z, π(z)) ≤ ϵ. We call
π : T → K a “projection” onto the covering, which maps each point in T onto the nearest point
in K (or an arbitrary one if not unique). If K ⊂ T , we call K a proper ϵ-covering of T . We will
exclusively consider proper coverings in the sequel. We define the ϵ-covering number N(T, ϵ, ρ)
of T to be the cardinality of the smallest proper ϵ-covering of T . Any proper ϵ-covering of T
obtaining this minimum will be called minimal. In the special case (Z, ρ) = (Rd, ∥ · ∥) and
T = Sd−1, we denote the ϵ-covering number of T by Nd−1(ϵ).

Lastly, if (Sn)n≥0 is some process evolving in a space X and n ≥ 1, we define the nth
increment of (Sn)n≥0 to be ∆Sn := Sn − Sn−1. If a filtration (Fn)n≥0 is understood from
context, we may use the notation En[·] = E (· | Fn) for easing notational burden. By default, we
take F0 := {∅,Ω} and Fn = σ(S1, . . . , Sn).

Sub-ψ Processes: We now describe in more detail a condition that links the growth of a process
(Sn)n≥0 evolving in Rd to a corresponding “accumulated variance process” (Vn)n≥0 taking values
in L+(Rd). This linking will occur through the consideration of a family of exponential processes
in which a scaled version of (Sn)n≥0 along any fixed direction is compensated by (Vn)n≥0 and
a function ψ that measures the heaviness of the tails of ∆Sn. ψ should be thought of as acting
like the cumulant generating function (or CGF) of ∆Sn — we will make this notion precise in
our later discussion of CGF-like functions. These exponential processes will behave like non-
negative supermartingales, and thus will allow us to apply powerful time-uniform concentration
results to bound the growth of an appropriately normalized version of (Sn)n≥0. Due to the central
of role ψ in connecting the growth of (Sn)n≥0 and (Vn)n≥0, we will adopt the terminology of
Howard et al. [74, 75] from the scalar case and refer to the condition as the “sub-ψ condition”.

Before formally defining the sub-ψ condition, we must briefly discuss the properties of the
heretofore vaguely defined function ψ. ψ will be a cumulant generating function-like (or CGF-
like) function, which roughly means it behaves like the CGF of some random variable. More
explicitly, by a CGF-like function, we mean a twice continuously-differentiable function ψ :
[0, λmax) → R≥0 satisfying (a) ψ is strictly convex, (b) ψ(0) = ψ′(0) = 0, and (c) ψ′′(0) > 0.
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Notable examples of CGF-like functions include ψN(λ) := λ2

2
, the CGF of a standard normal

random variable;

ψE,c(λ) :=
− log(1− cλ)− cλ

c2
,

the CGF of a (centered) exponential random variable; ψP,c(λ) := ecλ−cλ−1
c2

, the CGF of a centered
Poisson random variable; and

ψG,c(λ) :=
λ2

2(1− cλ)
,

a bound on the CGF of a centered Gamma random variable. Note that, in particular, ψG,0 = ψN .
Basic theory regarding CGF-like functions is discussed in detail in Appendix 2.A. While we will
use many nontrivial properties of CGF-like functions freely hereinafter, we will always make the
proper forward reference to Appendix 2.A.

We now present the sub-ψ condition for scalar processes, and later for vector processes. First
introduced in Howard et al. [74], the sub-ψ condition very heuristically states that, for each
n ≥ 0, the cumulant generating function for Sn is dominated by Vn · ψ, where ψ is some CGF-
like function per the above definition. More precisely, the sub-ψ condition for scalar-valued
processes is as follows.

Definition 2.2.1. Let ψ : [0, λmax) → R≥0 be CGF-like, let (Sn)n≥0 and (Vn)n≥0 be respectively
R-valued and R≥0-valued processes adapted to some filtration (Fn)n≥0. We say that (Sn, Vn)n≥0

is sub-ψ (or equivalently that (Sn)n≥0 is a sub-ψ process with variance proxy (Vn)n≥0) if for every
λ ∈ [0, λmax), the exponential process exp {λSn − ψ(λ)Vn} is (almost surely) upper bounded by
some non-negative supermartingale (Lλn)n≥0 with respect to (Fn)n≥0:

Mλ
n := exp {λSn − ψ(λ)Vn} ≤ Lλn, for all n ≥ 0.

As an easy example, consider the case where (Xn)n≥1 is a sequence of i.i.d. mean zero
random variables with CGF ψ(λ) = logEeλX1 . Letting Sn :=

∑n
m=1Xm and Vn := n, it is easy

to see that Mλ
n is a non-negative martingale with respect to the natural filtration generated by the

Xn’s (and thus we can take Lλn =Mλ
n ).

Definition 2.2.1 generalizes the above example to a setting where the random variables may
have more complicated dependence structures, and “nonparametric” tail conditions, including
settings where Vn can itself be adapted to (Fn)n≥0 (as opposed to constant or predictable variance
processes), a key ingredient in self-normalized bounds. Recently, Howard et al. [74] compiled a
rich selection of examples of such sub-ψ processes. For more examples, one can specialize each
of the multivariate sub-ψ processes following Definition 2.2.2 below to the setting d = 1.

The above definition for scalar-valued processes suggests a straightforward means of gener-
alizing the sub-ψ condition to the setting where (Sn)n≥0 is Rd-valued and (Vn)n≥0 is L+(Rd)-
valued. Namely, (Sn, Vn)n≥0 should be sub-ψ if, for any direction ν ∈ Sd−1, the scalar-valued
process (⟨ν, Sn⟩, ⟨ν, Vnν⟩)n≥0 is sub-ψ. We formalize this in the following definition, which
recovers Definition 2.2.1 in the case d = 1.

Definition 2.2.2. Let ψ : [0, λmax) → R≥0 be CGF-like, and let (Sn)n≥0 and (Vn)n≥0 be respec-
tively Rd-valued and L+(Rd)-valued processes adapted to some filtration (Fn)n≥0. We say that
(Sn, Vn)n≥0 is sub-ψ if, for every ν ∈ Sd−1, the projected process (⟨ν, Sn⟩, ⟨ν, Vnν⟩)n≥0 is sub-ψ

15



in the sense of Definition 2.2.1. In other words, (Sn, Vn)n≥0 is sub-ψ if, for any ν ∈ Sd−1 and
λ ∈ [0, λmax), there is a non-negative supermartingale (Lλ·νn )n≥0 with respect to (Fn)n≥0 such
that

Mλ·ν
n := exp {λ⟨ν, Sn⟩ − ψ(λ)⟨ν, Vnν⟩} ≤ Lλ·νn , for all n ≥ 0.

It is straightforward to confirm that if (Sn, Vn)n≥0 is sub-ψ, then (Sn, Vn + ρId)n≥0 and
(Sn, Vn ∨ ρId)n≥0 are sub-ψ as well. Furthermore, it is also straightforward to check that the
rescaled process (Sn/

√
ρ, Vn/ρ)n≥0 is sub-ψρ, where ψρ : [0,

√
ρλmax) → R≥0 is given by

ψρ(λ) := ρψ(λ/
√
ρ).

These transformations are important as they will allow us to exclusively study processes satisfy-
ing V1 ≥ 1 in the sequel. For the sake of completeness, we prove that ψρ is in fact CGF-like in
Proposition 2.A.2 in Appendix 2.A. We codify the above observations into the following propo-
sition for ease of reference.

Proposition 2.2.3. Suppose (Sn, Vn)n≥0 is sub-ψ with (inherently with respect to some filtration
(Fn)n≥0). Then, for any fixed ρ > 0,

1. (Sn, Vn + ρId)n≥0 is sub-ψ with respect to (Fn)n≥0,

2. (Sn, Vn ∨ ρId)n≥0 is sub-ψ with respect to (Fn)n≥0, and

3. (Sn/
√
ρ, ρ−1Vn)n≥0 is sub-ψρ with respect to (Fn)n≥0, where ψρ(λ) := ρψ(λ/

√
ρ).

As we will see, Definition 2.2.2 will prove to be the “right” generalization of the sub-ψ
condition to high-dimensional settings. In more detail, from the condition, we will derive a
general, time-uniform bound on the self-normalized process (∥V −1/2

n Sn∥)n≥0 that will be tight
up to small, multiplicative constants.

Four Examples of Sub-ψ Processes: We now provide four practically-relevant examples of
multivariate sub-ψ processes — one for each of the aforementioned CGF-like functionsψN , ψP , ψE,c,
and ψG,c. In each of the examples below, we assume we are studying some process (Xn)n≥1 that
is adapted to some filtration (Fn)n≥0.

1. If Xn =d −Xn | Fn−1 (that is, the Xn are conditionally symmetric), Lemma 3 of de la
Peña et al. [41] can be used to show that Sn :=

∑n
m=1Xm is sub-ψN with variance proxy

Vn :=
∑n

m=1XmX
⊤
m. This provides salient example of how the sub-ψ condition can be

leveraged to provide meaningful concentration for processes whose increments may even
lack a well-defined mean (e.g. take the Xn to be i.i.d. Cauchy random variables).

2. If ∥Xn∥ ≤ c almost surely, a standard Bennett-style argument (see the proof of Theorem
2.9 in Boucheron et al. [18]) shows that Sn :=

∑n
m=1 {Xm − Em−1Xm} is sub-ψP,c with

variance proxy Vn :=
∑n

m=1 Em−1XmX
⊤
m.

3. As will be seen in Section 2.6, if ∥Xn∥ ≤ 1/2 almost surely1, then Sn :=
∑n

m=1 {Xm − Em−1Xm}
is sub-ψE,1 with variance proxy Vn :=

∑n
m=1(Xm − µ̂m−1)(Xm − µ̂m−1)

⊤. In the above,

1Note that the the assumption ∥Xn∥ ≤ 1
2 can be replaced by any constant by appropriately changing the scale

parameter of the sub-Exponential CGF.
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µ̂n := 1
n

∑n
m=1Xm is the time-average mean given the first n samples. From this condition,

one can derive a multivariate, self-normalized “empirical Bernstein” inequality. This type
of inequality is useful in statistical applications [161] due to the fact its tightness adapts to
the observed (i.e. empirical) variance within the samples witnessed.

4. Lastly, if En−1|⟨ν,Xn⟩|k ≤ k!
2
ck−2En−1⟨ν,Xn⟩2 for all directions ν ∈ Sd−1 and some

constant c > 0, a standard application of the Bernstein condition in each direction ν ∈ Sd−1

(see Theorem 2.10 of Boucheron et al. [18]) yields that Sn :=
∑n

m=1 {Xm − Em−1Xm} is
sub-ψG,c with variance proxy Vn :=

∑n
m=1 Em−1XmX

⊤
m.

Super-Gaussian CGFs: We draw attention to super-Gaussian ψ:
a CGF-like function ψ is super-Gaussian if ψ(λ)

λ2
is an increasing function of λ.

In words, ψ is super-Gaussian if it grows at least as rapidly as ψN , the CGF of a N (0, 1) random
variable. Most notable examples of CGF-like functions are super-Gaussian, with particularly
important examples being ψN , ψE,c, ψG,c, and ψP,c. Informally, one typically needs to use a
super-Gaussian CGF if the underlying random process is heavier tailed than a sub-Gaussian
process.

One example of a CGF that is not super-Gaussian would be ψB,p(λ), the CGF of a centered
Bernoulli random variable X with P(X = 1) = p. We discuss equivalent definitions and prop-
erties of CGF-like functions in detail in Appendix 2.A. While our bounds will hold in the case
where (Sn, Vn)n≥0 is sub-ψ for arbitrary ψ, they are particularly clean when ψ is super-Gaussian,
and we emphasize this case going forward.

2.3 A General Non-Asymptotic LIL for Scalar Processes
In this section, we prove a high-probability, time-uniform bound on the growth of a scalar process
(Sn)n≥0 normalized by some measure of accumulated variance (Vn)n≥0. In particular, in The-
orem 2.3.1 below, we show that if (Sn, Vn)n≥0 is a sub-ψ process, then, with high probability,
simultaneously for all n ≥ 0,

Sn = O

(
Vn · (ψ∗)−1

(
1

Vn
log log(Vn)

))
,

where we have omitted dependence on several user-chosen parameters and constants for the sake
of exposition. Dividing both sides by

√
Vn yields a result in “self-normalized” form that looks

more akin to the results in subsequent sections, but we adopt the above form for consistency with
existing results [74, 75]. Since (ψ∗)−1(u) ∼

√
2u as u ↓ 0 whenever ψ(λ) ∼ λ2

2
as λ ↓ 0 (as is

the case for all CGF-like functions addressed in the previous section), for large values of Vn, the
above high probability bound can be written as

Sn = O(
√
Vn log log(Vn)),

thus allowing our results in this section to be viewed as a non-asymptotic (i.e. finite sample)
version of the law of the iterated logarithm. We further describe connections between our scalar-
valued bound and the law of the iterated logarithm in Subsection 2.3.2 below.
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While we construct the bounds in this section as a requisite for deriving self-normalized
concentration inequalities for vector-valued processes, we believe the results are of independent
interest. In particular, our results are significantly more general than those of Howard et al. [75],
whose bounds serve as the current state-of-the-art for scalar-valued self-normalized concentra-
tion. Unlike the results of Howard et al. [75], which only hold for sub-ψG,c (i.e. sub-Gamma)
processes, our results hold for general sub-ψ processes. While Howard et al. [74] show that
any CGF-like function ψ can be bounded pointwise by aψG,c for appropriately chosen constants
a, c > 0, this comparison can be loose. We illustrate this in Figure 2.1 in Appendix 2.D, which
shows that the time-uniform boundary presented in Theorem 2.3.1 (applied in the sub-Poisson
setting ψ = ψP,c) can offer improved concentration over the main theorem of Howard et al. [75],
which requires converting sub-ψP,c process to sub-ψG,c processes in order to be applied. This
case is of particular interest, as straightforward calculation shows ψP,c(λ) ≤ ψG,c(λ) for all λ.
Other examples demonstrating this disparity in bounds can be readily constructed as well. Fur-
thermore, even in the case of sub-ψG,c processes, our bounds are essentially flush with those of
Howard et al. [75] in the sub-Gamma case, being multiplicatively looser by a vanishingly small
factor as certain tuning parameters are appropriately selected, as illustrated in Figure 2.2, also in
Appendix 2.D. We further discuss comparisons between our bounds and those of Howard et al.
[75] following the proof of Theorem 2.3.1.

Before presenting the main theorem of this section, we discuss heuristically how we are able
to generalize the results of Howard et al. [75]. Much like the “stitching” technique of the afore-
mentioned authors, our argument proceeds, roughly, by breaking “intrinsic” time into geometric
epochs of the form {αk ≤ Vn < αk+1} and then optimizing a tight linear inequality in each pe-
riod. The key difference in our argument is in how we optimize this linear boundary for (Sn)n≥0

in each epoch. The techniques leveraged by Howard et al. [75] yield a boundary that is defined
in terms of ψ−1

G,c, the inverse of the CGF-like function associated with a Gamma distribution.
From our understanding of the classical Chernoff argument, we know that if a mean zero random
variableX has associated CGF ψ(λ) := logEeλX , then we have P

(
X ≥ (ψ∗)−1

(
log
(
1
δ

)))
≤ δ.

Thus, although the Chernoff argument doesn’t directly apply in this time-uniform setting, we at
the very least expect to obtain a boundary defined in terms of (ψ∗)−1. By coupling this intuition
with the time-uniform line crossing inequalities of Howard et al. [74], we are able to obtain an
extremely general inequality for sub-ψ processes with a surprisingly straightforward argument.

With the above discussion in mind, we present Theorem 2.3.1.

Theorem 2.3.1. Suppose (Sn, Vn)n≥0 is a real-valued sub-ψ process for some CGF-like function
ψ : [0, λmax) → R≥0 satisfying limλ↑λmax ψ

′(λ) = ∞. Let α > 1, ρ > 0, and δ ∈ (0, 1) be
constants respectively representing the stitching epoch length, the minimum intrinsic time, and
the error probability. Let h : R → R≥0 be an increasing function such that

∑
k∈N h(k)

−1 ≤ 1,
representing how the error is spent across epochs. Define the function ℓρ : R≥0 → R≥0 by

ℓρ(v) = log

(
h

(
logα

(
v ∨ ρ
ρ

)))
+ log

(
1

δ

)
,

where we have suppressed the dependence of ℓρ(v) on α, h for brevity. Then, we have

P
(
∃t ≥ 0 : Sn ≥ (Vn ∨ ρ) · (ψ∗)−1

(
α

Vn ∨ ρ
ℓρ(Vn)

))
≤ δ.

18



We provide a full proof of Theorem 2.3.1 in Section 2.7 below. Except for the unavoidable
error probability δ, we briefly elaborate on the other user-specified constants that appear in the
statement of the theorem:

1. α > 1 controls the spacing of “intrinsic time” or accumulated variance of the process
(Sn)n≥0. Heuristically, Theorem 2.3.1 will be obtained by optimizing tight, linear bound-
aries on events of the form {αk ≤ Vn < αk+1}.

2. ρ > 0 gives the first “intrinsic time” at which our boundaries start depending on the variance
process (Vn)n≥0. When 0 ≤ Vn < ρ, the boundary will only depend on ρ.

3. h : R → R>0 is a function satisfying
∑

k≥0 h(k)
−1 ≤ 1. h defines how much of the overall

probability mass associated with failure (determined by δ) to allocate to each event of the
form {αk ≤ Vn < αk+1}.

In the above, we view the parameters ρ, and h as critical, since they directly affect the shape
and validity of the bound, whereas we view α as less critical, as any small variation in α will
only minimally affect the tightness of the bound in terms of constants. For example, a reasonable
choice of this temporal spacing parameter is α = 1.05. Howard et al. [75] discuss reasonable
choices for the function h, and we emphasize in the sequel the choice of h(k) := (k + 1)sζ(s),
where s > 1 is a tuning parameter and ζ is the Riemann zeta function. This choice is of particular
theoretical interest as it yields non-asymptotic rates that depend on log log(Vn) (up to constants),
thus allowing our bound to be viewed as a general, non-asymptotic version of the LIL. We in
particular use this choice of h in the proof of Corollary 2.3.2 in Subsection 2.3.2 below.

2.3.1 Comparison With Existing Bounds
We compare our results to those presented in Theorem 1 of Howard et al. [75], who provide time-
uniform, self-normalized concentration for scalar processes in the sub-ψG,c case, where we recall
ψG,c(λ) :=

λ2

2(1−cλ) is the CGF-like function associated with a sub-Gamma random variable. We
start by analyzing the special case c = 0, in which ψG,0 = ψN is the CGF of a N (0, 1) random
variable. In our notation, the authors show that if (Sn, Vn)n≥0 is a sub-ψN process, then, with
probability at least 1− δ, simultaneously for all t ≥ 0,

Sn ≤

√(
α1/4 + α−1/4

√
2

)2

(Vn ∨ ρ)ℓρ(Vn).

Noting that (ψ∗
N)

−1(u) =
√
2u, our results yield that, with probability at least 1− δ, simultane-

ously for all n ≥ 0,

Sn ≤
√
2α(Vn ∨ ρ)ℓρ(Vn).

A straightforward computation yields that, for all α > 1,
(
α1/4+α−1/4

√
2

)2
≤ 2α, showing that the

bounds of Howard et al. [75] are (slightly) tighter than our own. However, for α < 2.06, we have

2α ≤ 2
(
α1/4+α−1/4

√
2

)2
, showing that our bounds are looser than those of Howard et al. [75] by a

multiplicative factor of no more than
√
2 in this regime. In particular, as α is decreased towards
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1, the multiplicative factor by which our bounds are suboptimal to those of Howard et al. [75]
vanishes to 1.

In the general case of c > 0, Theorem 1 in Howard et al. [75] yields that with probability at
least 1− δ, we have

Sn ≤

√(
α1/4 + α−1/4

√
2

)2

(Vn ∨ ρ)ℓρ(Vn) +
(√

α + 1

2

)2

ℓρ(Vn) + c

(√
α + 1

2

)
ℓρ(Vn).

(2.3.1)
Meanwhile, noting that (ψ∗

G,c)
−1(x) =

√
2x+ cx (this can be readily checked, or see Boucheron

et al. [18] e.g.), our results yield that, with probability at least 1− δ, we have

Sn ≤
√

2α(Vn ∨ ρ)ℓρ(Vn) + cαℓρ(Vn).

In this situation, a general comparison between the resulting bounds isn’t clear. Our second
term is larger, but it is a lower order term. Regarding the first term, for small Vn and α, we
may expect our bound to be tighter, as we don’t suffer from the second additive term inside of
the square root. On the other hand, for any α > 1 and moderate to large Vn, by our analysis
in the sub-Gaussian case of ψ = ψN (which is recovered when c = 0), we expect the bound
from Howard et al. [75] to be tighter for the same reason. We plot a detailed comparison be-
tween Theorem 2.3.1 applied in the sub-ψG,c case and Equation 2.3.1 in Figure 2.2, found in
Appendix 2.D.

We emphasize that the bounds of Howard et al. [75] hold only in the sub-Gamma case. While
sub-Gamma concentration can be applied to sums of sub-Exponential and sub-Poisson random
variables, this approximation is far from tight, especially in small sample sizes. Our results hold
directly for any CGF-like function ψ, including all listed in Section 2.2.

2.3.2 Asymptotic Law of the Iterated Logarithm
In the preceding paragraphs, we derived time-uniform bounds for general scalar-valued sub-ψ
processes. In particular, we argued our presented results generalized those of Howard et al. [75],
who show a similar result for the case ψ = ψG,c =

λ2

2(1−cλ) (i.e. when ψ is the CGF-like function
associated with a sub-Gamma random variable). As noted above, for any fixed step size α > 1,
in the case c = 0 (i.e. when ψ = ψN is the CGF of a standard Gaussian random variable), the
bounds of Howard et al. [75] dominate ours, albeit by a vanishingly small multiplicative factor
as α ↓ 1.

This begs the following question: are our bounds “optimal” in the sense that, by appropriately
selecting the tuning parameters, they recover the asymptotic (upper) law of the iterated logarithm
with the correct constant. In Corollary 2.3.2 below, we show that this exactly the case, and thus
derive a law of the iterated logarithm for sub-ψ processes.

Corollary 2.3.2. Let (Sn)n≥0 be sub-ψ with variance proxy (Vn)n≥0, and suppose that ψ(λ) ∼ λ2

2

as λ ↓ 0 and Vn −−−→
n→∞

∞. Then,

lim sup
n→∞

Sn√
2Vn log log(Vn)

≤ 1 almost surely.
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Corollary 2.3.2 follows as a direct consequence of Corollary 2.4.6, which provides an asymp-
totic law of the iterated logarithm for vector-valued sub-ψ processes, noting that the dependence
of the bound on the condition number of Vn vanishes in the scalar case.

We provide some brief intuition for our proof of Corollary 2.3.2. In the proof, we consider
a sequence of bounds (indexed by n ≥ 1), with tuning parameters (αt)t≥1, (δt)t≥1, and (ht)t≥1

satisfying αt ↓ 1, δt ↓ 0, and ht(k) := (k + 1)ιtζ(ιt), where ιt ↓ 1. We assume ρ := 1, as by
assumption the variance (Vn)n≥0 will grow towards infinity and thus the initial time at which the
bound is valid will not matter. Heuristically, smaller values of the aforementioned parameters
(being αt, δt, ιt) imply that the ratio between our bounds and

√
2Vn log log(Vn) will be closer to

1 for large values of Vn, but will suffer from an increased “bias” or additive penalty for small
values of Vn. Since we assume Vn grows towards infinity almost surely, the effect of the additive
bias becomes negligible in the large intrinsic time limit (i.e. as Vn → ∞).

In more detail, for any t ≥ 1, we show that for large values of time n ≥ Nt (Nt may be
random), we have Vn·(ψ∗)−1

(
α
Vn
ℓ1(Vn)

)
≤ (1+η)Ct

√
2Vn log log(Vn), whereCt ↓ 1 as n→ ∞

and η > 0 is some pre-fixed parameter. Given we have such a bound for all t ≥ 1, we can apply
the first Borel-Cantelli lemma (which describes when certain sequences of events will happen
either “infinitely often” or only “finitely often”) to show that lim supn→∞

Sn√
2Vn log log(Vn)

≤ (1 +

η). Since η > 0 was arbitrary, the desired bound follows.

2.4 Main result
We now present the main result of this paper: a time-uniform, self-normalized concentration
inequality for a general class of processes evolving in Rd. We now discuss the intuition for our
argument. Our results follow by coupling our scalar-valued self-normalized inequalities, pre-
sented in the previous section, with a simple but careful geometric covering argument. At a high
level, our results in the previous section could be seen as controlling the growth of the process
(Sn)n≥0 over various scales of “intrinsic time”, determined by the accumulated variance process
(Vn)n≥0. Analogously, to handle the multivariate nature of results in this section, we need to
carefully control how the accumulated variance process (this time a matrix-valued process), dis-
torts the geometry of Rd across various scales. In this setting, the level of distortion is controlled
by κ(Vn) := γmax(Vn)/γmin(Vn), the condition number of the positive semi-definite matrix Vn
(if γmin(Vn) = 0, κ(Vn) = ∞ by convention).

Theorem 2.4.1. Suppose (Sn)n≥0 is a sub-ψ process with variance proxy (Vn)n≥0 taking values
Rd. Let α > 1, β > 1, ρ > 0, ϵ ∈ (0, 1), and δ ∈ (0, 1) be constants, and let h : R → R≥0 be an
increasing function such that

∑
k∈N h(k)

−1 ≤ 1. Define the function2 Lρ : Sd+ → R≥0 by

Lρ(V ) := log

(
h

(
logα

(
γmax(V ∨ ρId)

ρ

)))
+ log

(
1

δ

1

1− β−1

)
+ log

(
β
√
κ(V ∨ ρId) ·Nd−1

(
ϵ

β
√
κ(Vn ∨ ρId)

))
.

2Recall Nd−1(ϵ) was defined to be the ϵ-covering number of Sd−1.
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If ψ is super-Gaussian, meaning ψ(λ)/(λ2/2) is an increasing function of λ, then

P

(
∃n ≥ 0 :

∥∥(Vn ∨ ρId)−1/2Sn
∥∥ ≥

√
γmin(Vn ∨ ρId)

1− ϵ
· (ψ∗)−1

(
α

γmin(Vn ∨ ρId)
Lρ(Vn)

))
≤ δ.

In addition to the parameters α, ρ, and h from Theorem 2.3.1, there are two new user-specified
constants that govern the geometric aspects of our bound presented in Theorem 2.4.1.

1. β > 1 controls the spacing of how the action of the sequence of matrices (Vn)n≥0 distorts
the geometry of Rd. Heuristically, Theorem 2.4.1 will be obtained by optimizing self-
normalized inequalities on events of the form {βk ≤

√
κ(Vn) < βk+1} and carefully

performing a union bound.

2. ϵ ∈ (0, 1) controls the “mesh” or level of granularity at which we approximate the geometry
of the unit sphere Sd−1 in the covering argument we make.

In the vocabulary of our preceding results, we view neither β nor ϵ as being critical parameters
in optimizing our boundary. In particular, for simplicity, reasonable default choices would be
β = 2 and ϵ = 1

2
.

Before proving Theorem 2.4.1, we comment that a result similar to the above holds even
in the setting where the CGF-like function ψ is not super-Gaussian. In particular, en route to
proving the above, we will show that, if (Sn, Vn)n≥0 is sub-ψ for any CGF-like ψ, we have

P

(
∃n ≥ 0 :

∥∥(Vn ∨ ρId)−1/2Sn
∥∥ ≥ sup

ν∈Sd−1

√
⟨ν, Vnν⟩
1− ϵ

· (ψ∗)−1

(
α

⟨ν, Vnν⟩
Lρ(Vn)

))
≤ δ.

The assumption that ψ is super-Gaussian merely allows us to compute the supremum over ν ∈
Sd−1 in the above expression, giving the result a cleaner form. This assumption is not restrictive,
as many reasonable examples of CGF-like functions are super-Gaussian (e.g. ψN , ψG,c, ψE,c,
and ψP,c to name a few encountered earlier).

To simplify the above bound further (at the cost of introducing some looseness) we can
plug in upper bounds on Nd−1(ϵ) into Theorem 2.4.1. We prove the following lemma in Ap-
pendix 2.C, and it follows from a simple geometric argument. The following bound is not tight,
but suffices for subsequent asymptotic analysis. We use the bound presented in Corollary 2.4.2
over the bound Nd−1(ϵ) ≤

(
3
ϵ

)d (which follows from Lemma 5.7 of Wainwright [158]) due to
slightly improved dependence on d in the exponent. If desired, one could obtain an analogue of
Corollary 2.4.3 using the aforementioned bound as well, or even any bound on Nd−1(ϵ).

Lemma 2.4.2. Let ϵ ∈ (0, 1) be arbitrary and d ≥ 1. Then,

Nd−1(ϵ) ≤ Cd

(
3

ϵ

)d−1

,

where Cd is a constant that does not depend on ϵ.

With the above bound on the covering number of Sd−1, we have the following corollary.
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Corollary 2.4.3. Assume the same setup as in Theorem 2.4.1. Define Lcovρ : L+(Rd) → R≥0 by

Lcovρ (V ) := log

(
h

(
logα

(
γmax(V ∨ ρId)

ρ

)))
+ log

(
Cd

δ(1− β−1)

)
+ d log

(
3β
√
κ(V ∨ ρId)
ϵ

)
.

Then,

P

(
∃n ≥ 0 :

∥∥(Vn ∨ ρId)−1/2Sn
∥∥ ≥

√
γmin(Vn ∨ ρId)

1− ϵ
· (ψ∗)−1

(
α

γmin(Vn ∨ ρId)
Lcovρ (Vn)

))
≤ δ.

Proof. The result immediately follows by applying Theorem 2.4.1 and noting the bound

β
√
κ(V ∨ ρId) ·Nd−1

(
ϵ

β
√
κ(V ∨ ρId)

)
≤

3β
√
κ(Vn ∨ ρId)
ϵ

·

(
3β
√
κ(V ∨ ρId)
ϵ

)d−1

=

(
3β
√
κ(V ∨ ρId)
ϵ

)d

,

which holds for all positive semi-definite matrices V ∈ L+(Rd). ■

Treating the tuning parameters α, β, ϵ, ρ as constants and selecting h : R≥0 → R≥0 satisfying
h(k) = O(log(k)) (which, as noted by Howard et al. [75], holds when h(k) := (k + 1)sζ(s) for
any s > 1), Corollary 2.4.3 yields that, with high probability, simultaneously for all n ≥ 0,

∥∥V −1/2
n Sn

∥∥ = O

(√
γmin(Vn) · (ψ∗)−1

(
1

γmin(Vn)
[log log(γmax(Vn)) + d log κ(Vn)]

))
.

We now specify (in terms of big-Oh notation) our bounds to the setting of two common CGF-
like functions. First, we consider the case ψ(λ) = ψG,c(λ) = λ2

2(1−cλ) , for which we recall that(
ψ∗
G,c

)−1
(x) =

√
2x+ cx, and so our bounds yield that

∥∥V −1/2
n Sn

∥∥ = O

(√
log log(γmax(Vn)) + d log κ(Vn) +

c√
γmin(Vn)

[log log(γmax(Vn)) + d log κ(Vn)]

)

Further specifying to the case ψ(λ) = ψN(λ) = λ2

2
(which is equivalent to the case ψ = ψG,c

with c = 0), the above bound reduces to the form:∥∥V −1/2
n Sn

∥∥ = O
(√

log log(γmax(Vn)) + d log κ(Vn)
)
. (2.4.1)

The bound (2.4.1), in particular, captures the asymptotic growth rate of very general classes of
sub-ψ process when ψ(λ) ∼ λ2

2
as λ ↓ 0 (in a sense that we will make fully precise soon).
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2.4.1 Comparison With Existing Bounds
Now that we have presented the main result of the paper in Theorem 2.4.1 and examined the
dimensional dependence of the bound in Corollary 2.4.3, we can compare our bounds to existing
results in the literature. As a warm up (and sanity check), we ensure our bound presented in
Theorem 2.4.1 recovers the results presented in Theorem 2.3.1, up to multiplicative or additive
constants.

Comparison with Scalar Bounds: If (Sn, Vn)n≥0 is sub-ψ and taking values in R, we note
that for any ϵ ∈ (0, 1), N0(ϵ) = 2. Thus, Theorem 2.4.1 yields that, with probability at least
1− δ, simultaneously for all n ≥ 0 (assuming Vn ≥ ρ for simplicity),

Sn√
Vn

≤
√
Vn · (ψ∗)−1

(
α

Vn
Lρ(Vn)

)
=

1

1− ϵ

√
Vn · (ψ∗)−1

(
α

Vn

[
ℓρ(Vn) + log

(
1

1− β−1

)
+ log (2β)

])
= C1

√
Vn · (ψ∗)−1

(
α

Vn
[ℓρ(Vn) + C2]

)
,

where we have defined C1 := 1
1−ϵ and C2 := log

(
1

1−β−1

)
+ log (2β) for convenience. On the

other hand, Theorem 2.3.1 yields that, with probability at least 1−δ, simultaneously for all n ≥ 0
such that Vn ≥ ρ,

Sn√
Vn

≤
√
Vn · (ψ∗)−1

(
α

Vn
ℓρ(Vn)

)
.

As expected, the bound yielded by Theorem 2.4.1 is looser than the that of Theorem 2.3.1,
due to the extra union bound needed in the covering argument. However, the looseness is only
by an absolute multiplicative factor C1 and an additive factor of C2 inside (ψ∗)−1. Since the
N0(ϵ) = 2 for all ϵ ∈ (0, 1), the multiplicative factor can be forced to be arbitrarily small by
appropriately choosing the covering parameter ϵ (e.g. sending ϵ ↓ 0 yields C1 ↓ 1). Likewise,
the impact of the additive factor becomes vanishingly small as Vn → ∞.

Method of Mixtures Bounds: Next, we compare our multivariate, self-normalized bounds to
the “method of mixtures” bounds for sub-Gaussian concentration, in particular the following
bound that follows from Example 4.2 of de la Peña et al. [41] and Theorem 1 of Abbasi-Yadkori
et al. [3] and has become a staple in constructing confidence sets in online learning tasks [95,
165, 48]. We rephrase their sub-Gaussian result in the setting of “sub-ψN” concentration to ease
comparison with our results.

Fact 2.4.4 (de la Peña et al. [41], Abbasi-Yadkori et al. [3]). Let (Sn, Vn)n≥0 be an Rd-valued
sub-ψN process where Vn =

∑n
m=1 Em−1∆Sm∆S

⊤
m. Then, for any δ ∈ (0, 1) and any ρ > 0,

with probability at least 1− δ, simultaneously for all n ≥ 0,

∥∥(Vn + ρId)
−1/2Sn

∥∥ ≤

√
2 log

(
1

δ

√
det (Id + ρ−1Vn)

)
.
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We note that the above bound holds only in the case where the process (Sn)n≥0 has sub-
Gaussian increments, and it is not obvious whether or not a similar result holds for other tails,
for more CGF-like functions ψ, and adapted (not predictable) Vn. In the case ψ = ψN , as noted
in (2.4.1), our bound is of the form

∥∥∥V −1/2
n Sn

∥∥∥ = O
(√

log log(γmax(Vn)) + d log κ(Vn)
)
.

These two bounds (those based on the determinant of the variance proxy and those based on
the condition number of the variance proxy) are fundamentally incomparable. When Vn is well-
conditioned, we expect our bounds to be tighter than the bound in Fact 2.4.4, as our bounds will
be of order ≈

√
log log(γmax(Vn)) + d. If κ(Vn) ≈ γmax(Vn), we may expect the determinant

rate bound in Fact 2.4.4 to be tighter, as the bound provided by Theorem 2.4.1 will be of or-
der ≈

√
log log(γmax(Vn)) + d log(γmax(Vn)), and d log γmax(Vn) ≥ log det(Vn) (ignoring the

shift ρ in the covariance matrix). One particularly useful feature of our bounds is that the do
not require a shift in variance proxy as the bound in Fact 2.4.4 does. It is an interesting open
problem to derive determinant-rate self-normalized bounds under more general tail conditions
and for adapted (not predictable) Vn.

Backwards Martingale Bounds: As a last point of comparison, we relate our bounds to the
recent bounds constructed by Manole and Ramdas [116] using backwards or reverse martingale
techniques. We note that the bounds of Manole and Ramdas [116] hold for any fixed norm on
Rd (e.g. ℓp norms, for instance), but we only present the result in the case of the ℓ2 norm, as this
is the setting in which our bounds are comparable. The authors leverage the following bounds in
estimating an unknown, multivariate mean from i.i.d. data. In our statement below, we center all
observations so that the unknown mean always takes value zero for ease of comparison.

Fact 2.4.5 (Corollary 23 of Manole and Ramdas [116]). Let Sn :=
∑n

m=1Xm, where (Xn)n≥0

are i.i.d. with mean 0. Let h : R → R≥0 satisfy
∑∞

k=0 h(k)
−1 ≤ 1, and let ψ : [0, λmax) → R≥0

be CGF-like. Suppose that, for any λ ∈ [0, λmax) and n ≥ 0, supν∈Sd−1 logEeλ⟨ν,Xn⟩ ≤ ψ(λ).
Then, for any δ ∈ (0, 1), with probability at least 1− δ, simultaneously for all n ≥ 0,

∥Sn/
√
n∥ ≤

√
n

1− ϵ
· (ψ∗)−1

(
2

n

[
log(h(log2(n))) + log

(
1

δ

)
+ logNd−1(ϵ)

])
.

It is clear that the process (Sn)n≥0 is sub-ψ with variance proxy (Vn)n≥0 given by Vn := nId,
and so Theorem 2.4.1 (taking ρ = 1) applied to this setting yields that, with probability at least
1− δ, simultaneously for all n ≥ 1,

∥Sn/
√
n∥ ≤

√
n

1− ϵ
· (ψ∗)−1

(
α

n

[
log(h(logα(n))) + log

(
β

δ(1− β−1)

)
+ logNd−1(ϵ)

])
.

In this particular setting, our bound is almost equivalent to that of Manole and Ramdas [116],
being looser is a vanishingly small additive factor log

(
β

1−β−1

)
due to the covering argument

needed to control the geometric “distortions” induced by the variance proxy (Vn)n≥0. However,
we note that our bound is significantly more general, as it allows for arbitrary martingale de-
pendence between observed random variables. This is in contrast to the bound of Manole and
Ramdas [116], as this bound is only valid if the data are known to be i.i.d. (or, at the very least,
exchangeable). The argument used by Manole and Ramdas [116] does not readily generalize
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to general dependence structures because they leverage reverse martingales in the exchangeable
filtration, thus requiring that the data be exchangeable.

2.4.2 Vector Laws of the Iterated Logarithm
In Corollary 2.3.2, we discussed how our scalar bounds can be used to derive a version of the
law of the iterated logarithm for scalar sub-ψ processes. In particular, this bound obtained the
optimal constant matching the case of i.i.d. random variables (see Durrett [50], Chapter 8 or
Howard et al. [75]), showing that our bounds are unimprovable asymptotically.

In the multivariate setting, our bounds do not just depend on log log(γmax(Vn)), but also
on log κ(Vn). This dependence is not simply an artefact of our analysis, as de la Peña et al.
[41] show an example of a 2-dimensional process (Sn)n≥0 and (Vn)n≥0 satisfying ∥V −1/2

n Sn∥ ∼√
log κ(Vn) almost surely.
In this section, we aim to show that our results are asymptotically optimal in the following

sense. First, we show that, under a simple set of assumptions, if (Sn, Vn)n≥0 is a sub-ψ, then

lim supn→∞
∥V −1/2

n Sn∥√
2 log log(γmax(Vn))+d log κ(Vn)

≤ 1 almost surely. Secondly, we show that this bound

is “tight” in the sense that there exists a sub-ψ process (Sn, Vn)n≥0 such that ∥V −1/2
n Sn∥ =

Θ(
√

log log γmax(Vn) + d log κ(Vn)) almost surely.
We start by presenting the first result, which can be viewed as an “upper law of the iterated

logarithm”. We prove this result in Section 2.7.

Corollary 2.4.6. Let (Sn)n≥0 be an Rd-valued sub-ψ process with variance proxy (Vn)n≥0.
Suppose that (a) ψ(λ) ∼ λ2

2
as λ ↓ 0, (b) γmin(Vn) −−−→

n→∞
∞ almost surely, and (c) and

log(γmax(Vn))/γmin(Vn)) = o(1) almost surely. Then,

lim sup
n→∞

∥V −1/2
n Sn∥√

2 log log γmax(Vn) + d log κ(Vn)
≤ 1

almost surely.

We can compare the above corollary to the discussion at the beginning of Section 3 of de la
Peña et al. [41], where the authors show that when (Sn)n≥0 and (Vn)n≥0 satisfy certain assump-
tions based on finiteness of pth moments, one has

lim sup
n→∞

∥(Vn + V )−1/2Sn∥√
log log γmax(V + Vn) + log κ(Vn + V )

= O(1) almost surely,

where the constant masked by the “Big-Oh” notation maybe be random. Our bound is more
precise than their bound in that (a) we obtain an explicit constant in our asymptotic bound, (b)
the bound recovers the LIL in the case d = 1 (see the earlier discussed Corollary 2.3.2), and (c)
our bound elicits explicit dependence on the ambient dimension d.

The remaining question is if the above law of the iterated logarithm is tight. As afore-
mentioned, de la Peña et al. [41] show the existence of a two-dimensional process satisfying
∥V −1/2

n Sn∥ ∼ log κ(Vn) almost surely. We first describe this example, and then show how to
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extend it to higher dimensions. In particular, we will construct a process that attains the same
rate as the upper bound presented in our Corollary 2.4.6, up to a small, absolute constant. We
start by describing the example of de la Peña et al. [41].

Example 2.4.7. Let (ϵn)n≥1 be a sequence of i.i.d. N (0, 1) random variables, and let (Fn)n≥0 be
the natural filtration associated with (ϵn)n≥1. First, define the regressors (Un)n≥1 by U1 = 0 and
Un+1 := Un + ϵn, where for a sequence (yn)n≥1 we define yn := 1

t
(y1 + y2 + · · · + yn). Then,

embed these regressors into R2 by defining the process (Xn)n≥1 as Xn := (1, Un)
⊤. Clearly, by

construction, the process (Xn)n≥1 is (Fn)n≥0-predictable.
With these sequentially constructed regressors, one can construct a martingale (Sn)n≥0 with

respect to (Fn)n≥0 given by Sn :=
∑n

m=1 ϵmXm and a corresponding predictable covariance
process (Vn)n≥0 given by Vn =

∑n
m=1XmX

⊤
m. de la Peña et al. [41] show that the following

hold almost surely:
1. γmax(Vn) ∼ n (1 +

∑∞
m=1 s

−1ϵm),

2. γmin(Vn) ∼ log(n)
1+

∑∞
m=1m

−1ϵm
, and

3. ∥V −1/2
n Sn∥ ∼

√
log(n).

Noting that log κ(Vn) = log(γmax(Vn)/γmin(Vn)) ∼ log(n), we see that we have ∥V −1/2
n Sn∥ ∼√

log κ(Vn) almost surely. Further, it is easily checked that (Sn, Vn)n≥0 is sub-ψN , per Defini-
tion 2.2.2. Thus, this example shows that the logarithmic dependence on κ(Vn) in Theorem 2.4.1
cannot, in general, be dropped.

While the above example demonstrates the inevitability of having log κ(Vn) appear in non-
asymptotic, self-normalized concentration for vector-valued processes, it does not capture de-
pendence on dimensionality. In the next example, we show that there exists sub-ψ processes

(Sn, Vn)n≥0 such that ∥V −1/2
n Sn∥ ∼

√
d
2
log κ(Vn), showing our upper bounds are within a mul-

tiplicative factor
√
2 of optimal.

Example 2.4.8. Suppose d is even. Let (S(1)
n )n≥0, . . . , (S

(d/2)
n )n≥0 be i.i.d. copies of the pro-

cess constructed in Example 2.4.7, (V (1)
n )n≥0, . . . , (V

(d/2)
n )n≥0 the corresponding predictable co-

variance processes, and (Fn)n≥0 the smallest filtration for which (ϵ
(1)
n )n≥1, . . . , (ϵ

(d/2)
n )n≥1 are

adapted, i.e. the filtration given by Fn := F (1)
n

∨
· · ·
∨
F (d/2)
n , where F

∨
G denotes the “join”

of σ-algebras F ,G, i.e. the smallest σ-algebra containing both.
Define the Rd-valued process (Sn)n≥0 by Sn :=

(
S
(1)
n , . . . , S

(d/2)
n

)
, and the corresponding

covariance process (Vn)n≥0 by

Vn :=


V

(1)
n 0 · · · 0

0 V
(2)
n · · · 0

... . . . 0

0 · · · · · · V
(d/2)
n

 .

Clearly (Sn)n≥0 is (Fn)n≥0-adapted and (Vn)n≥0 is (Fn)n≥0-predictable. Moreover, it can
readily be checked that (Sn, Vn)n≥0 is a sub-ψN process.
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Since Vn is a block-diagonal matrix, we clearly have γmax(Vn) = maxi∈[d/2] γmax(V
(i)
n ) and

γmin(Vn) = mini∈[d/2] γmin(V
(i)
n ). Thus, using the reasoning on the almost sure behavior on

γmax(V
(i)
n ) and γmin(V

(i)
n ) presented in Example 2.4.7, we see that log κ(Vn) ∼ log(n) almost

surely. Further, it isn’t hard to see that

∥V −1/2
n Sn∥2 = S⊤

n V
−1
n Sn

= (S(1)
n )⊤(V (1)

n )−1S(1)
n + · · ·+ (S(d/2)

n )⊤(V (d/2)
n )−1S(d/2)

n ∼ d

2
log κ(Vn).

Thus, we have shown that, up to small constants, the dependence on log κ(Vn) and d in Theo-
rem 2.4.1 (and thus the corresponding dependence in Corollary 2.4.6) is unimprovable.

2.5 Applications to Online Linear Regression
We now use our self-normalized bounds to construct confidence ellipsoids for slope estimation
in online linear regression. In online linear regression, a statistician interacts with an environ-
ment over a sequence of rounds. At the beginning of each round, he adaptively (perhaps using
observations from previous rounds) selects a point Xn ∈ Rd, and then observes noisy feedback
Yn := ⟨Xn, θ

∗⟩ + ϵn, where ϵn represents some mean zero noise variable and θ∗ is a fixed slope
vector. The goal of the statistician is to produce a confidence sequence for the unknown slope
vector — that is, a time indexed sequences of sets that all simultaneously contain the unknown
parameter with high probability. We formalize the online linear regression model as follows.

Model 2.5.1 (Online Linear Regression). Let (Fn)n≥0 be a filtration and θ∗ ∈ Rd a fixed (un-
known) slope vector. The online linear regression model is characterized by three processes:
(a) a (Fn)n≥0-predictable Rd-valued sequence (Xn)n≥1 representing adaptively-chosen covari-
ates, (b) a (Fn)n≥0-adapted scalar-valued processes (ϵn)n≥1 representing noise, and (c) (Yn)n≥1

given as Yn = ⟨Xn, θ
∗⟩ + ϵn representing noisy responses. We assume the residual process

Sn :=
∑n

m=1 ϵmXm is sub-ψ with (predictable) variance proxy Vn :=
∑n

m=1XmX
⊤
m, where ψ

is a super-Gaussian CGF-like function.

For a fixed regularization parameter ρ > 0, we consider the sequence of least squares esti-
mates with shrinkage given by

θ̂n := (X⊤
nXn ∨ ρId)−1X⊤

nYn, n ≥ 1,

where Xn ∈ Rt×d has X1, . . . , Xn as its rows and Yn ∈ Rd is a column vectors with Y1, . . . , Yn
as its entries. Clearly θ̂n reduces to the standard least-squares estimator when γmin(X

⊤
nXn) ≥ ρ.

The assumption that (Sn, Vn) is sub-ψ is often mild. For example, it is satisfied (a) if
logEn−1 exp{λϵn} ≤ ψN(λ) for all λ ∈ R (i.e. ϵn is conditionally sub-Gaussian), or (b) if
∥Xn∥ ≤ 1 for all n ≥ 1 and logEn−1 exp{±λϵn} ≤ ψ(λ) for some super-Gaussian ψ and
all λ ∈ [0, λmax). We prove this in Proposition 2.B.1 in Appendix 2.B. The assumption that
∥Xn∥ ≤ 1 for all n ≥ 1 in the above can be replaced with the assumption that ∥Xn∥ ≤ R for any
fixed R > 0 by appropriate rescaling. This type of boundedness assumption is regularly made in
the mult-armed bandit literature [3, 30, 102], and thus has practical relevance.

28



2.5.1 Time-Uniform Confidence Ellipsoids

We briefly discuss how confidence ellipsoids are constructed in classical least-squares regression.
In this setting, one observes a matrix of covariates X ∈ Rn×d and a response vector Y ∈ Rn

given by Y = Xθ∗ + ϵ, where ϵ ∼ N (0, σ2Id). If X⊤X is full rank, it is well-known [136, 91]
that the least-squares estimate for θ∗, given by θ̂ := (X⊤X)−1X⊤Y, satisfies

σ−1∥(X⊤X)1/2(θ̂ − θ∗)∥ ∼ χ2
q,

where χ2
q denotes the Chi-squared distribution with q degrees of freedom. Letting xq,δ denote its

δth upper quantile3 it follows that the set

C := {θ ∈ Rd : σ−1∥(X⊤X)1/2(θ̂ − θ)∥ ≤ xq,δ}

forms an exact 1− δ confidence ellipsoid for θ∗ centered at θ̂.
The above confidence ellipsoid fails to be valid when X is no longer fixed or when the added

noise variables are no longer i.i.d. Gaussian, which is the case presented in our heuristic model
above. To circumvent this failure of classical statistical machinery, we can leverage our self-
normalized bounds for vector-valued processes to construct confidence ellipsoids for θ∗ that are
valid across all time steps uniformly. We do exactly this in the following theorem.

Theorem 2.5.2. Consider Model 2.5.1, let δ ∈ (0, 1) be arbitrary and set Vn := X⊤
nXn =∑n

m=1XmX
⊤
m. Then, with probability at least 1− δ, simultaneously for all n ≥ 1, we have

∥(Vn∨ρId)1/2(θ̂n−θ∗)∥ <
√
γmin(Vn ∨ ρId)

1− ϵ
·(ψ∗)−1

(
α

γmin(Vn ∨ ρId)
Lρ(Vn)

)
+
√
ρ∥θ∗∥1γmin(Vn)<ρ,

where the parameters α, ϵ, β, h and the function Lρ (which partially masks parameter depen-
dence) are as outlined in Theorem 2.4.1.

The dependence on the norm of the unknown slope vector in Theorem 2.5.2 may be a mild
irritant, but note that the indicator function multiplying it ensures that the term necessarily disap-
pears for large n. Also note that assuming a known bound on ∥θ∗∥ is common in many statistical
tasks, in particular those related to bandit optimization [3, 30, 102]. Nonetheless, this depen-
dence can be fully removed by sacrificing validity of the bound above bound when the minimum
eigenvalue of X⊤

nXn is small. This is made precise as follows.

Corollary 2.5.3. Assume the same setup as Theorem 2.5.2. Then, we have

P

(
∃n ≥ 0 : ∥V 1/2

n (θ̂n − θ∗)∥ ≥
√
γmin(Vn)

1− ϵ
· (ψ∗)−1

(
α

γmin(Vn)
Lρ(Vn)

)
and Vn ⪰ ρId

)
≤ δ.

We can similarly derive a result for the ridge estimators of the unknown slope parameter,
which are given by θ̃n := (X⊤

nXn + ρId)
−1X⊤

nYn. We prove the following in Appendix 2.B.

3that is, xq,δ > 0 is the unique value satisfying P(X ≥ xq,δ) = δ, where X ∼ χ2
q
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Corollary 2.5.4. Assume the setup outlined in Theorem 2.5.2 above. Consider the sequence of
ridge estimates (θ̃n)n≥1 given by

θ̃n := (X⊤
nXn + ρId)

−1X⊤
nYn.

Set Vn := X⊤
nXn. With probability at least 1− δ, simultaneously for all n ≥ 1, we have

∥(Vn+ρId)1/2(θ̃n−θ∗)∥ <
√
γmin(Vn + ρId)

1− ϵ
·(ψ∗)−1

(
α

γmin(Vn + ρId)
Lρ(Vn + ρId)

)
+
√
ρ∥θ∗∥,

where the parameters α, ϵ, β, h and the function Lρ (which partially masks parameter depen-
dence) are as outlined in Theorem 2.4.1.

Comparison with Existing Bounds: Many results concerning finite-sample properties of re-
gression estimators are based either in the setting of fixed design [158, 5] or in the the case
of independent covariates [96, 97]. Moreover, these results are more often than not concerned
with bounding the ℓ2-error of the estimator, i.e. the quantity ∥θ̂n − θ∗∥, as opposed to the self-
normalized quantities we study.

The main points of comparison for our results have been derived in the online learning/regression
literature. We compare our results to those of Abbasi-Yadkori et al. [3]. In their work, Abbasi-
Yadkori et al. [3] construct a confidence sequence for estimating an unknown slope vector θ∗

by utilizing self-normalized concentration for sub-Gaussian processes (in particular, leveraging
a Gaussian mixture technique that dates back to Example 4.2 in de la Peña et al. [41]). While
subsequent confidence sequences have been derived in the setting of regression with variance
estimation [48], semiparametric regression with bounded confounding [95], and ridge regres-
sion in reproducing kernel Hilbert spaces [165, 2], we focus just on the original contributions of
Abbasi-Yadkori et al. [3] since all subsequent results exhibit the same rate and hold only in the
setting of sub-Gaussian noise.

Fact 2.5.5 (Theorem 2 of Abbasi-Yadkori et al. [3]). Let (Fn)n≥0 be a filtration, let (Xn)n≥1

be an (Fn)n≥0-predictable sequence in Rd, and let (ϵn)n≥1 be a real-valued (Fn)n≥1-adapted
sequence such that conditional on Fn−1, logEn−1 exp {λϵn} ≤ ψN(λ) for all λ ∈ R. Then, for
any ρ > 0 and δ ∈ (0, 1),

P

(
∃n ≥ 0 : ∥(Vn + ρId)

1/2(θ̃n − θ∗)∥ ≥

√
2 log

(
1

δ

√
det(Id + ρ−1Vn)

)
+
√
ρ∥θ∗∥

)
≤ δ,

where θ̃n is the ridge regression estimator outlined in Corollary 2.5.4 and Vn :=
∑n

m=1XmX
⊤
m.

We compare our results to Fact 2.5.5 in the setting ψ = ψN , as this is the only setting
in which the results of Abbasi-Yadkori et al. [3] are valid. We first qualitatively compare the
above confidence sequence to the one presented in Corollary 2.5.4. Both bounds suffer the same
dependence on the norm of the unknown slope vectors and differ only in the first term. Namely,
as noted earlier, (ψ∗

N)
−1(u) = ψ−1

N (u) =
√
2u, so in this setting our bound reduces to the form

∥(Vn + ρId)
1/2(θ̃n − θ∗)∥ ≤

√
2αLρ(Vn + ρId) +

√
ρ∥θ∗∥
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= O
(√

log log γmax(ρ−1Vn + Id) + d log κ(Vn + ρId)
)

simultaneously for all n ≥ 0 with probability at least 1 − δ. Thus, the same comparison made
in Subsection 2.4.1 applies in this setting — when the (shifted) covariance Vn + ρId is poorly
conditioned, the bound presented in Fact 2.5.5 would be expected to be tighter. Likewise, when
Vn + ρId is well-conditioned, Corollary 2.5.4 may be tighter.

A more interesting comparison is between Fact 2.5.5 and Theorem 2.5.2 (more specifically,
Corollary 2.5.3 following the theorem statement). Whereas the above fact provides conver-
gence guarantees for ridge regression estimates, Corollary 2.5.3 applies directly to the unreg-
ularized, least-squares estimates of the unknown slope vector. In particular, the bound does not
depend on ∥θ∗∥, the norm of the unknown slope vector. This may be desirable in many sta-
tistical settings in which either advanced knowledge of such a bound is unavailable or only a
loose bound on the quantity is known. Moreover, this bound is interesting in itself as no shift
in covariance is required in constructing the confidence ellipsoids. The rate given by Corol-
lary 2.5.3 is essentially the same that provided by Corollary 2.5.4 modulo the presence of a shift
in the covariance matrix, i.e. the corollary yields that with high probability, uniformly in time,
∥V 1/2

n (θ̂n − θ∗)∥ = O
(√

log logmax(ρ
−1Vn) + d log κ(Vn)

)
.

2.5.2 Applications to Vector Autoregressive Models
We now show how to apply our confidence ellipsoids from Subsection 2.5.1 in the section to
a vector autoregressive model. We take inspiration from Bercu and Touati [14], who leverage
self-normalized concentration results for scalar-valued processes to measure the convergence of
least-squares and Yule-Walker estimates for a simple one stage autoregressive model (i.e. an
AR(1) model). We focus solely on the least-squares estimates in the sequel. We provide a brief,
high-level qualitative comparison between these results and our own. The following results may
be of practical interest as autoregressive models and other time series models are frequently
applied to problems in econometrics [5, 137] and finance [126, 39].

The results we provide in this section are more general than those of Bercu and Touati [14] in
three ways. First, these authors assume that all noise variables are Gaussian, whereas we allow
the noise to be instead conditionally sub-Gaussian. Second, we handle a vector autoregressive
model, whereas Bercu and Touati [14] only handle the univariate case. Lastly, we handle the
problem of general autoregression with p-stages of lag, whereas Bercu and Touati [14] only
handle the case p = 1. Our bounds are also different than those of Bercu and Touati [14] in that
they are derived in terms of the predictable covariance associated with observations, whereas
those of Bercu and Touati [14] are stated in terms of total number of observations. With these
comparisons in hands, we now describe the p-stage vector autoregressive model (hereinafter
referred to as VAR(p) for short).

Model 2.5.6. A p stage vector-valued autoregressive model, denoted by VAR(p), is an Rd-
valued process (Yn)n≥−p+1 such that Y−p+1, . . . , Y0 ∈ Rd and Yn :=

∑p
i=1AiYn−i + ϵn where

(a) Ai ∈ Rd×d are fixed matrices for all i ∈ [p], and (b) ϵn satisfies logEn−1 exp{λ⟨ν, ϵn⟩} ≤ λ2

2
,

where ν ∈ Sd−1 and λ ∈ [0, λmax). In the above, En−1[·] := E (· | Fn−1), where (Fn)n≥0 is the
filtration given by Fn := σ(Ym : −p+ 1 ≤ m ≤ n), for any n ≥ 1.
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For more details on vector autoregressive models, see [68]. In words, a process (Yn)n≥0

satisfies the conditions of a p-stage autoregressive (or VAR(p)) model if Yn is a linear function
of Yn−1, . . . , Yn−p plus mean zero noise. In the above, the values Y−p+1, . . . , Y0 are treated as
fixed nonrandom vectors, as is typical in much of the time series analysis literature. However,
all results in the sequel still hold if Y−p+1, . . . , Y0 are random variables that are independent of
the noise sequence (ϵn)n≥1. Typically, the VAR(p) model also admits a vector mean parameter
µ ∈ Rd, having the relationship Yn = µ +

∑p
i=1ApYn−p + ϵn for all n ≥ 1, but we omit this to

simplify exposition.
The goal of the statistician running an autoregressive model is twofold: (a) to estimate the

unknown matrix parameters A1, . . . , Ap, and (b) to calibrate confidence in his estimates. Before
discussing classical approaches to estimating these parameters, we simplify notation. We define
the “stacked” transition matrix Π ∈ Rd×dp and process vectors (Xn)n≥1 ∈ Rdp by

Π := (A1, . . . , Ap) and Xn := (Yn−1, Yn−2, . . . , Yn−p)
⊤ .

For i ∈ [d], we denote by π(i) ∈ Rdp the ith row of the stacked matrix Π. We likewise denote
by ϵn(i) ∈ R the ith component of the noise vector ϵn and Xn(i) the ith component of the state
vector Xn. Let Xn ∈ Rn×dp be the matrix with X1, . . . , Xn as its rows, and let Yn ∈ Rn×d have
Y1, . . . , Yn as its rows. For i ∈ [d], let Yn(i) ∈ Rn denote the ith column of Yn.

If (ϵn)n≥1 are i.i.d. N (0, σ2Id) with known standard deviation σ, it is well-known (see Hamil-
ton [68], Chapter 11) that the maximum likelihood estimate for Π at time n ≥ 1, for now denoted
Π̂n, has rows π̂n(i) that are just the least-squares estimates given by

π̂n(i) :=
(
X⊤
nXn

)−1
X⊤
nYn(i). (2.5.1)

It thus makes sense to study the convergence on these row-wise estimates in the remainder of
this section. We focus on studying the convergence of a single row estimate, as the general case
follows from union-bounding over the validity of the d row estimates. The proof of the following
is a straightforward consequence of Theorem 2.5.2, and we provide the brief proof of the result
in Appendix 2.B.

Corollary 2.5.7. For a fixed coordinate i ∈ [d], let (π̂n(i))n≥1 be the sequence of estimates
outlined in (2.5.1). Let ρ > 0 and δ ∈ (0, 1) be arbitrary. Define the covariance process (Vn)n≥1

by Vn := X⊤
nXn. Then, with probability at least 1− δ, simultaneously for all n ≥ 1, we have

∥(Vn ∨ ρIdp)1/2(π̂n(i)− π(i))∥ ≤ 1

1− ϵ

√
2αLρ(Vn) +

√
ρ∥θ∗∥1γmin(Vn)<ρ,

where the parameters α, ϵ, β, h and the function Lρ (which partially masks parameter depen-
dence) are as outlined in Theorem 2.4.1.

We now compare Corollary 2.5.7 to traditional asymptotic analyses of equation estimation in
the VAR(p) model. First, note that, in Model 2.5.6 and Corollary 2.5.7, we place no assumptions
on the matrices A1, . . . , Ap ∈ Rd×d. This is in contrast to typical asymptotic analyses, which
must assume that all solutions z ∈ C to the equation

det
(
Id + A1z + A2z

2 + · · ·+ Apz
p
)
= 0 (2.5.2)
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have modulus |z| > 1 (which we assume holds for validity of the following comparison). In
the setting of independent Gaussian noise, as discussed above, the stacked process (Xn)n≥1 is
ergodic and admits some stationary distribution π over Rdp. It is known is known that, for any i ∈
[d],

√
nV 1/2(π̂n(i) − π(i)) ⇒ N (0, σ2Idp), where V = Eπ[XnX

⊤
n ] = limn→∞

1
n

∑n
m=1XmX

⊤
m

(the final equality comes from the ergodicity of (Xn)n≥1). For large n, one would thus expect
that ∥V 1/2

n (π̂n(i)− π(i))∥ ≲
√
dp with high probability.

We compare our non-asymptotic bounds to this rate. Observe that, Corollary 2.5.7 yields
that, with high-probability, simultaneously for all n ≥ 1,

∥V 1/2
n (π̂i(n)− π(i))∥ = O

(√
dp log κ(Vn) + log log (γmax(Vn))

)
.

If limn→∞
1
n

∑n
m=1XmX

⊤
m = V for some fixed positive-definite matrix V (as will be the case

if the ϵn are i.i.d.) and n is a sufficiently large “target round”, we can view the above as stat-
ing ∥V 1/2

n (π̂i(t) − π(i))∥ is bounded above by a term growing like O(
√
log log γmax(Vn) + dp)

(since κ(Vn) = κ(V ) = O(1) for large n, almost surely). As expected in time-uniform con-
centration, the bounds presented in Corollary 2.5.7 are looser than those provided by the central
limit theorem by a doubly logarithmic factor.

Comparison with Existing Bounds: We lastly make a brief comparison with the bounds of
Bercu and Touati [14] in the univariate case. In this case, the autoregressive model is parame-
terized by a scalar a ∈ R instead of a sequence of matrices. We thus denote the least-squares
estimator of a at time n ≥ 1 as ân :=

∑n
m=1Xn−1Xn∑n

m=1X
2
n−1

, departing from our notation of π̂n, which
was relevant for estimating a row in a stacked matrix. We state the bound of Bercu and Touati
[14] for convenience.

Fact 2.5.8 (Corollary 5.2 of Bercu and Touati [14]). Suppose a ∈ R is fixed. Further, suppose
(Yn)n≥0 is given by Y0 ∼ N (0, 1) and Yn := aYn−1 + ϵn, where (ϵn)n≥1 are a sequence of i.i.d.
N (0, 1) random variables independent of Y0. Then, for any fixed x > 0 and n ≥ 1, we have

P (|ân − a| ≥ x) ≤ 2 exp

{
−nx2

2(1 + yx)

}
,

where yx is the unique solution to the equation ψ∗
P,1(yx) = x2, where we recall ψ∗

P,1(u) =
(1 + u) log(1 + u)− u.

We draw several high-level comparisons between the bounds. First, the bound in Corol-
lary 2.5.7 is self-normalized, being defined in terms of the empirical variance Vn =

∑n
m=1 Y

2
n−1.

The bound in Fact 2.5.8, on the other hand, depends just on the number of samples used to con-
struct the least-squares estimator, and thus is not self-normalized. Another difference between
the conclusions of Fact 2.5.8 and Corollary 2.5.7 is that Fact 2.5.8 holds only for an individual,
fixed sample size n ≥ 1 whereas Corollary 2.5.7 is valid for all n ≥ 1 simultaneously. To use
Fact 2.5.8 to obtain a time-uniform guarantee, one would need to use a union bound argument
to allocate the total failure probability over many rounds. The setting Fact 2.5.8 is also highly
parametric, assuming that both the noise and initial state are i.i.d. Gaussian random variables.
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Corollary 2.5.7, on the other hand, makes no such assumptions, allowing an arbitrary initial state
and conditionally sub-Gaussian noise variables.

An explicit comparison of the above bounds is difficult, but we can empirically compare the
bounds by simulating a simple AR(1) model. We provide such a comparison in Figure 2.3 in
Appendix 2.D, which plots, for a fixed failure probability δ ∈ (0, 1) the autoregressive guarantee
from Corollary 2.5.7 against the corresponding guarantee provided by Fact 2.5.8. In Subfig-
ure 2.3a we plot the bound from Fact 2.5.8 without providing a union bound correction. We thus
emphasize that, as plotted, the boundary is only valid point-wise, and not for all n ≥ 1 simulta-
neously or for arbitrary stopping times. In Subfigure 2.3b, we make a union bound correction.
Figure 2.3 indicates that Corollary 2.5.7 performs similarly to Fact 2.5.8 when specified to the
scalar setting. We believe our bound may be preferable in application over that of Fact 2.5.8 as it
is not only significantly more general, but it also inherently adapts to the variance of the observed
autoregressive iterates.

2.6 A Self-Normalized, Multivariate Empirical Bernstein In-
equality for Bounded Vectors

We construct a multivariate empirical Bernstein inequality, extending the Theorem 4 of Howard
et al. [75] to higher dimensions. Empirical Bernstein-style bounds serve as a useful tool in
common statistical tasks such as forming confidence sequences for estimating unknown means
[161]. These bounds are of practical importance as they inherently adapt to the variance of a
sequence of observations. If actual observations are tightly clustered, the resulting confidence
bounds will be tighter. Likewise, if observations are well-dispersed, the resulting confidence set
will be more conservative. To apply empirical Bernstein these bounds, a statistician must only
know that the observations belong to a some bounded set.

To the best of our knowledge, we provide the first multivariate, self-normalized empirical
Bernstein. Existing bounds either only hold in the scalar setting [161, 75], or do not normalize
the quantity being estimated by the accumulated variance process (See, for instance, the work
of Cutkosky [36] in the case of Hilbert space-valued variables). Providing confidence ellipsoids
for mean estimation is desirable as it allows the confidence sets to reflect the “total amount of
information” gathered in any given direction.

We now present the primary result of this section. In our result, we focus on the case where
all observations have norm bounded above by 1/2 for simplicity. This is mostly for theoretical
convenience. While the more general setting where (Xn)n≥1 belongs to some bounded, convex
set is of interest, it can be readily analyzed by reducing to the case where observations lie in
1
2
Bd4.

4If (Xn)n≥1 lies in some arbitrary convex, bounded set K ⊂ Rd, we can first compute the outer John ellipsoid
E of K, which is the minimal volume ellipsoid containing the convex set K [82]. In many settings, such as in
the setting where K belongs to certain families of polytopes, there are computationally efficient algorithms that
compute E [34, 149]. With E at hand, we can “recenter” our observations by defining a new sequence (X ′

n)n≥0 by
X ′

n := Xn− p, where p :=
∫
E
xdx is the center of mass of E. We then have the equality E− p = 1

2A
1/2Bd, where

A is some positive semi-definite matrix. We thus transform our observations into a final sequence (X ′′
n)n≥0 defined

by X ′′
n := A−1/2(Xn − p), which lies almost surely in 1

2Bd.
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For the remainder of this section, we adopt the notation ℓδρ and Lδρ instead of ℓρ and Lρ to
explicitly make known the dependence on the confidence parameter δ. We make this depen-
dence explicit as we will be union bounding in the sequel, and thus it will be useful to track the
dependence.

Theorem 2.6.1. Let (Xn)n≥1 be a sequence of random vectors in Rd such that ∥Xn∥ ≤ 1/2
almost surely, for all n ≥ 1, and let (Fn)n≥0 be a filtration to which (Xn)n≥1 is adapted. Then,
the process (Sn)n≥0 given by Sn :=

∑n
m=1(Xm − Em−1Xm) is sub-ψE,1 with variance proxy

(Vn)n≥0 given by Vn :=
∑n

m=1(Xm− µ̂m−1)(Xm− µ̂m−1)
⊤, where µ̂n := n−1

∑n
m=1Xm. Thus,

by Theorem 2.4.1, for any fixed choice of parameters ρ, α, δ, β, ϵ, h, we have

P

(
∃n ≥ 0 :

∥∥(Vn ∨ ρ)−1/2Sn
∥∥ ≥

√
γmin(Vn ∨ ρ)

1− ϵ
· (ψ∗

E,1)
−1

(
αLδρ(Vn)

γmin(Vn ∨ ρ)

))
≤ δ.

In particular, since a sub-ψE,1 process is sub-ψG,1, this implies that, with probability at least
1− δ, simultaneously for all n ≥ 0,

∥(Vn ∨ ρ)−1/2Sn∥ ≤
√

2αLδρ(Vn) +
αLδρ(Vn)

γmin(Vn ∨ ρ)
.

We now compare the bound presented in Theorem 2.6.1 to existing empirical Bernstein-style
results. In particular, our main point of comparison will be the following, scalar-valued bound
from Howard et al. [75].

Proposition 2.6.2 ([75, Theorem 4]). Suppose (Xn)n≥1 satisfiesXn ∈ [−1/2, 1/2] almost surely
for all n ≥ 1, and let (Sn)n≥0, (µ̂n)n≥0, and (Vn)n≥0 be as in Theorem 2.6.1. For any choice of
parameters α, δ, h, ρ, we have with probability at least 1− δ, simultaneously for all n ≥ 1,

|Sn| ≤
√
k21(Vn ∨ ρ)ℓ2δρ (Vn) + k22ℓ

2δ
ρ (Vn)

2 + k2ℓ
2δ
ρ (Vn),

where k1 := α1/4+α−1/4
√
2

, k2 :=
√
α+1√
2

, and ℓδρ is as given in Theorem 2.3.1.

Note that ℓ2δρ appears as opposed to ℓδρ in Proposition 2.6.2 due to an application of a a union
bound in controlling both the upper and lower tail of Sn. In the case d = 1, Theorem 2.6.1
yields that, with probability at least 1 − δ, |Sn| ≤ 1

1−ϵ

[√
2α(Vn ∨ ρ)Lδρ(Vn) + Lρ(Vn)

]
. This

serves as a sanity check, showing that up to small constants, the univariate bound presented
in Theorem 2.6.1 is equivalent to that in Proposition 2.6.2. While one may expect the bound
from Proposition 2.6.2 to be tighter for large values of Vn (as discussed in Section 2.3.1), this
multiplicative gap can be made arbitrarily small by appropriately selecting tuning parameters.

2.7 Proofs of Main Results
In this section, we provide the proofs of what we view as the primary two results of this paper:
Theorem 2.3.1 and Theorem 2.4.1. We additionally prove Corollary 2.4.6, which, while not a
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primary contribution of this work, has a proof that is similar in spirit to the other two results
derived in this section. We start with the proof of Theorem 2.3.1, as the scalar bounds derived
will play an integral role in the proof of Theorem 2.4.1

Proof of Theorem 2.3.1. First, observe that it suffices to show that, in the case (Sn, Vn)n≥0 is
sub-ψ and Vn ≥ 1, ∀n ≥ 0, we have

P
(
∃n ≥ 0 : Sn ≥ Vn · (ψ∗)−1

(
α

Vn
ℓ1(Vn)

))
≤ δ, (2.7.1)

because, in the general case, we can consider the rescaled process (S ′
n, V

′
n) := (Sn/

√
ρ, (Vn ∨

ρ)/ρ)n≥0 and apply the concentration result from the case where ρ = 1. In more detail, clearly
by construction V ′

n ≥ 1 for all n ≥ 1, and by Proposition 2.2.3, we know (S ′
n, V

′
n)n≥0 is sub-ψρ,

where we recall ψρ(·) = ρψ(·/√ρ). Thus, noting that (ψ∗
ρ)

−1(x) =
√
ρ(ψ∗)−1(x/ρ) (Proposi-

tion 2.A.2), we have

δ ≥ P
(
∃n ≥ 0 : S ′

n ≥ V ′
n · (ψ∗

ρ)
−1

(
α

V ′
n

ℓ1(V
′
n)

))
= P

(
∃n ≥ 0 :

Sn√
ρ
≥ Vn ∨ ρ

ρ
·
(
ψ∗
ρ

)−1
(

αρ

Vn ∨ ρ
ℓ1

(
Vn ∨ ρ
ρ

)))
= P

(
∃n ≥ 0 :

Sn√
ρ
≥ Vn ∨ ρ

ρ

√
ρ · (ψ∗)−1

(
α

Vn ∨ ρ
ℓρ(Vn)

))
= P

(
∃n ≥ 0 : Sn ≥ (Vn ∨ ρ) · (ψ∗)−1

(
α

Vn ∨ ρ
ℓρ(Vn)

))
,

which demonstrates the claimed bound in the theorem statement. Thus, going forward, we just
prove the bound presented in (2.7.1).

For k ∈ N, define the “intercept and slope” pair (xk,mk) by

xk := αk(ψ∗)−1

(
log(h(k)/δ)

αk

)
, mk := αk,

and define gk : R≥0 → R≥0 by

gk(v) := xk + s

(
xk
mk

)
(v −mk),

where s is the “slope transform” outlined in Appendix 2.A. Since we have assumed limλ↑λmax ψ
′(λ) =

∞, we can apply Lemma 2.A.5 to obtain

P (∃n ≥ 0 : Sn ≥ gk(Vn)) ≤ exp

{
−mkψ

∗
(
xk
mk

)}
=

δ

h(k)
.

Now, since s(u) ≤ u (Proposition 2.A.6), observe that for αk ≤ v < αk+1, we have

min
j∈N

gj(v) ≤ gk(v) = xk + s

(
xk
mk

)
(v −mk)
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≤ xk +
xk
mk

(v −mk) = v
xk
mk

(2.7.2)

= v · (ψ∗)−1

(
log(h(k)/δ)

αk

)
≤ v · (ψ∗)−1

(
α

v
log

(
h(logα(v))

δ

))
= v · (ψ∗)−1

(α
v
ℓ1(v)

)
,

where the third inequality comes from the fact k ≤ logα(v), h is increasing, and v ≤ αk+1. Now,
observe that we have, by a union bound

P
(
∃n ≥ 0 : Sn ≥ Vn · (ψ∗)−1

(
αℓ1(Vn)

Vn

))
≤ P

(
∃n ≥ 0 : Sn ≥ min

k∈N
gk(Vn)

)
= P

(⋃
k∈N

{∃n ≥ 0 : Sn ≥ gk(Vn)}

)
≤
∑
k∈N

P(∃n ≥ 0 : Sn ≥ gk(Vn))

≤ δ
∑
k∈N

h(k)−1 ≤ δ,

completing the proof. ■

We now go about proving Theorem 2.4.1. Before proving the theorem, we state a simple
geometric lemma that will be needed in proving our result. In short, the following lemma states
that a certain change of variables on Sd−1 does not increase the distance between points of a
covering to a significant degree. We prove the following in Appendix 2.C.

Lemma 2.7.1. LetK be a proper ϵ-cover of Sd−1, and let π : Sd−1 → K be a projection mapping
onto the cover K. Let T be a positive-definite matrix, and let κ := γmax(T )

γmin(T )
denote its condition

number. Let πT : Sd−1 → Sd−1 be defined as πT (ν) :=
T 1/2π(ω)

∥T 1/2π(ω)∥ , where ω ∈ Sd−1 is the unique
element satisfying

ν =
T 1/2ω

∥T 1/2ω∥
. (2.7.3)

Then, for any ν ∈ Sd−1, we have

∥ν − πT (ν)∥ ≤
√
κϵ.

With the above lemma we can now prove the main result of the paper.

Proof of Theorem 2.4.1. Observe that if (Sn, Vn)n≥0 is a sub-ψ process (in the sense of Defini-
tion 2.2.2), then so is (Sn, Vn ∨ ρId), so it suffices to assume Vn ⪰ ρId going forward.
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For j ∈ N, let Kj be a fixed, minimal proper ϵ
βj -cover of the unit sphere Sd−1, and let

Nj := N(Sd−1, ϵ/βj, ∥ · ∥). Let ℓ(j)ρ : R≥0 → R≥0 be the function ℓρ defined in Theorem 2.3.1
with δ set to the value δj defined by

δj :=

(
1− β−1

βj

)
δ/Nj.

That is, ℓ(j)ρ is the function given by

ℓ(j)ρ (v) := log

(
h

(
logα

(
v ∨ ρ
ρ

)))
+ log

(
1

δj

)
= log

(
h

(
logα

(
v ∨ ρ
ρ

)))
+ log

(
βj

δ(1− β−1)
Nj

)
.

Now, since (Sn, Vn)n≥0 is an Rd-valued sub-ψ process, by Definition 2.2.2, we know that, for
any fixed ν ∈ Sd−1, (⟨ν, Sn⟩, ⟨ν, Vnν⟩)n≥0 is sub-ψ in the scalar sense of Definition 2.2.1. Hence,
by applying Theorem 2.3.1, for any fixed ν ∈ Sd−1, we have

P
(
∃n ≥ 0 : ⟨ν, Sn⟩ ≥ ⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
ℓ(j)ρ (⟨ν, Vnν⟩)

))
≤
(
1− β−1

βj

)
δ/Nj.

(2.7.4)
Noting that ⟨ν, Vnν⟩ ≤ γmax(Vn) for all ν ∈ Sd−1 and that (ψ∗)−1 is an increasing function

of its argument, we see that (2.7.4) still holds with ℓ(j)ρ (⟨ν, Vnν⟩) replaced by ℓ(j)ρ (γmax(Vn)).
Now, for each j ∈ N, define the “bad” event Bj as

Bj :=

{
∃n ≥ 0, ν ∈ Kj : ⟨ν, Sn⟩ ≥ ⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
ℓ(j)ρ (γmax(Vn))

)}
.

A straightforward union bound over theNj elements of the coverKj alongside (2.7.4) yields that
P(Bj) ≤ 1−β−1

βj δ. Defining now the global “bad” event B as

B :=

{
∃j ∈ N,∃ν ∈ Kj,∃n ≥ 0 : ⟨ν, Sn⟩ ≥ ⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
ℓ(j)ρ (γmax(Vn)⟩)

)}
=
⋃
j∈N

Bj.

An additional straightforward union bound over indices j ∈ N yields

P(B) = P

(⋃
j∈N

Bj

)
≤
∑
j∈N

P(Bj) ≤ (1− β−1)δ
∑
j∈N

β−j = δ.

Now, for j ∈ N and n ≥ 0, let π(j)
n := πVn be the projection mapping from Sd−1 onto the finite

set Kj(n) :=
{
V

1/2
n ν/∥V 1/2

n ν∥ : ν ∈ Kj

}
⊂ Sd−1, as in Lemma 2.7.1. Note that while Kj(n)

is a random subset of the unit sphere (through its dependence on the “accumulated variance”
operator Vn at time n), the underlying ϵ

βj -cover Kj of Sd−1 is fixed. Further, for j ∈ N and
n ≥ 0, define the event Ej(n) by

Ej(n) :=
{
βj ≤

√
κ(Vn) < βj+1

}
.
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On the event Ej(n), for any j ∈ N and n ≥ 0, we have∥∥V −1/2
n Sn

∥∥ = sup
ω∈Sd−1

〈
ω, V −1/2

n Sn
〉
= sup

ω∈Sd−1

{〈
ω − π(j+1)

n (ω), V −1/2
n Sn

〉
+
〈
π(j+1)
n (ω), V −1/2

n Sn
〉}

≤ sup
ω∈Sd−1

∥∥ω − π(j+1)
n (ω)

∥∥ · ∥∥V −1/2
n Sn

∥∥+ sup
ω∈Kj+1(n)

〈
ω, V −1/2

n Sn
〉

≤ ϵ

βj+1

√
κ(Vn)

∥∥V −1/2
n Sn

∥∥+ sup
ν∈Kj+1

〈
V

1/2
n ν

∥V 1/2
n ν∥

, V −1/2
n Sn

〉

≤ ϵ
∥∥V −1/2

n Sn
∥∥+ sup

ν∈Kj+1

⟨ν, Sn⟩√
⟨ν, Vnν⟩

.

In the above, the first equality comes from the variational representation of the norm ∥ · ∥ and
the second equality comes from adding and subtracting

〈
π
(j+1)
n (ω), V

−1/2
n Sn

〉
. Further, the first

inequality comes from splitting the supremum and applying Cauchy-Schwarz to the first term,
the second inequality comes from applying Lemma 2.7.1 to

∥∥∥ω − π
(j+1)
n (ω)

∥∥∥ and applying the
definition of Kj+1(n), and the final inequality comes from simplifying the second term and from
observing that, on the event Ej(n),

√
κ(Vn) < βj+1.

Further, observe that, on the event Ej(n), we have the inequality

ℓ(j+1)
ρ (γmax(Vn)) = log

(
h

(
logα

(
γmax(Vn) ∨ ρ

ρ

)))
+ log

(
1

δ(1− β−1)

)
+ log

(
Njβ

j+1
)

≤ log

(
h

(
logα

(
γmax(Vn) ∨ ρ

ρ

)))
+ log

(
1

δ(1− β−1)

)
+ log

(
β
√
κ(Vn)Nd−1

(
ϵ

β
√
κ(Vn)

))
= Lρ(Vn).

In the above, the inequality follows from observing that βj ≤
√
κ(Vn). From this, rearrang-

ing, we see that, for any j ∈ N and n ≥ 0, on the event Ej(n) ∩Bc we have

∥∥V −1/2
n Sn

∥∥ ≤ 1

1− ϵ
sup

ν∈Kj+1

⟨ν, Sn⟩√
⟨ν, Vnν⟩

≤ 1

1− ϵ
sup

ν∈Kj+1

√
⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
ℓρ(γmax(Vn))

)
≤ 1

1− ϵ
sup

ν∈Kj+1

√
⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
Lρ(Vn)

)
≤ 1

1− ϵ
sup
ν∈Sd−1

√
⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
Lρ(Vn)

)
.
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If (jn)n∈N is any sequence of natural numbers, and we define G(jn) :=
⋂
n≥0 {Ejn(n) ∩Bc},

it is clear that, on the event G(jn), the inequality

∥∥V −1/2
n Sn

∥∥ ≤ 1

1− ϵ
sup
ν∈Sd−1

√
⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
Lρ(Vn)

)
(2.7.5)

holds simultaneously for all n ≥ 0. Noting that we have the identity Bc =
⊎

(jn)n∈N
G(jn) yields

that (2.7.5) actually holds simultaneously for all n ≥ 0 on the event Bc. What we have done in
the above is break the “good” event Bc into geometric buckets based on the condition number
at each time, and then noted that the regardless of the realized sequence of condition numbers
(κ(Vn))n≥0, the target inequality holds.

This proves the claim for arbitrary CGF-like functions ψ, which is presented following The-
orem 2.4.1. Now, if we further assume ψ is super-Gaussian, on the event Bc defined above, we
have ∥∥V −1/2

n Sn
∥∥ ≤ 1

1− ϵ
sup
ν∈Sd−1

√
⟨ν, Vnν⟩ · (ψ∗)−1

(
α

⟨ν, Vnν⟩
Lρ(Vn)

)
=

1

1− ϵ
sup

x∈[γmin(Vn),γmax(Vn)]

√
x · (ψ∗)−1

(α
x
Lρ(Vn)

)
.

Now, by Lemma 2.A.3, we know the assumption that ψ is a super-Gaussian CGF-like function
implies that ψ∗ is a sub-Gaussian CGF-like function. Moreover by the same proposition, we
see that ψ∗(C·) is a sub-Gaussian CGF-like function for any positive C > 0. Consequently,
by Proposition 2.A.3, we see that (ψ∗)−1(Cu)/

√
u is an increasing function of u, and thus by

making the change of variable x := 1
u

, that
√
x(ψ∗)−1

(
C
x

)
a decreasing function of x. Thus, we

have that, on the event Bc (which, we recall, occurs with probability at least 1− δ)∥∥V −1/2
n Sn

∥∥ ≤ 1

1− ϵ
sup

x∈[γmin(Vn),γmax(Vn)]

√
x · (ψ∗)−1

(α
x
Lρ(Vn)

)
≤
√
γmin(Vn)

1− ϵ
· (ψ∗)−1

(
α

γmin(Vn)
Lρ(Vn)

)
simultaneously for all n ≥ 0, proving the desired result. A symmetric argument holds in the case
that the CGF-like function ψ is instead sub-Gaussian, with γmax(Vn) replacing γmin(Vn) in the
final inequality.

■

Lastly, we prove Corollary 2.4.6, which in turn can be used to derive Corollary 2.3.2. While
we do not consider this corollary a primary contribution of our work, we include the proof in this
section due to its closeness (in spirit) to the previous two proofs.

Proof of Corollary 2.4.6. Recalling that (ψ∗
N)

−1(u) =
√
2u, the assumption that ψ(λ) ∼ λ2

2

implies there, for any η > 0, there exists an u ∈ R>0 such that

(ψ∗)−1(u) ≤ (1 + η)(ψ∗
N)

−1(u) = (1 + η)
√
2u
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for all u ∈ [0, u]. Let (αt)t≥1, (ιt)t≥1, (ϵt)t≥1, and (βt)t≥1 be such that αt, ιt, βt ↓ 1 and ϵt ↓ 0
monotonically and let (δt)t≥1 be such that (a) δt ↓ 0 monotonically and (b)

∑∞
t=1 δt <∞. Define

the sequence of functions ht : N → R≥0 by ht(s) := ζ(ιt)(1 + s)ιt . Let Nt be the (almost surely
finite) random time given by

Nt := inf
{
n ≥ 0 :

α

γmin(Vn′)
L1(Vn′) ≤ u ∀n′ ≥ n, and

log

(
Cdζ(ιt)

δt(log(αt))ιt(1− β−1
t )

)
+ d log

(
3βt
ϵt

)
≤ ιt

t
log log(γmax(Vn))

}
.

Theorem 2.4.1 instantiated with the covering number bound in Lemma 2.4.2 implies that, with
probability at least 1− δt, simultaneously for all n ≥ Nt, we have

∥∥V −1/2
n Sn

∥∥ ≤
√
γmin(Vn)

1− ϵt
· (ψ∗)−1

(
αt

γmin(Vn)
L1(Vn)

)

≤ 1 + η

1− ϵt

√√√√2αt

[
ιt log log(Vn) + log

(
Cdζ(ιt)

δt(log(αt))ιt(1− β−1
t )

)
+ d log

(
3βt
√
κ(Vn)

ϵt

)]

≤ 1 + η

1− ϵt

√
2αtιt

(
1 +

1

t

)
log log(γmax(Vn)) + αtd log κ(Vn).

Thus, for t ≥ 1, define the event An by

At =

{
∃n ≥ Nt :

∥∥V −1/2
n Sn

∥∥ ≥ 1 + η

1− ϵt

√
2αtιt

(
1 +

1

t

)
log log(Vn) + αtd log κ(Vn)

}
,

and observe that by the above argument P(At) ≤ δt. Note that, for arbitrary γ > 1, we have

Aγ :=
{
∥V −1/2

n Sn∥ > (1 + η)
√
γ [2 log log(Vn) + d log κ(Vn)] i.o.

}
⊂ lim sup

t→∞
At :=

⋂
t≥1

⋃
k≥t

Ak,

where i.o. denotes an event occurring infinitely often. By the first Borel-Cantelli lemma (see
Durrett [50], Chapter 2) we have

P(Aγ) ≤ P

(⋂
t≥1

⋃
k≥t

Ak

)
= 0,

since
∑∞

t=1 P(At) ≤
∑∞

t=1 δt <∞. Thus, with probability 1, we have

lim sup
n→∞

Sn

(1 + η)
√
γ [2 log log(Vn) + d log κ(Vn)]

≤ 1,

but since η > 0 and γ > 1 where arbitrary, the result follows.
■
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2.8 Conclusion and Discussion

Self-normalized quantities arise naturally in a variety of high-dimensional statistical tasks, with
online learning [4, 2, 165, 30, 33], time series analysis [14, 137], and hypothesis testing [142,
143, 130, 161] being several notable examples. Despite their crucial role in common statistical
tasks, very little has been explored in terms of self-normalized concentration outside of the sub-
Gaussian setting. In this paper, we present a time-uniform, self-normalized concentration for
sub-ψ processes, i.e. processes whose increments, roughly, have cumulant generating function
bounded by ψ. Our results are closed form, have small constants, and have parameters that can
be fine-tuned for a statistician’s desired application. Moreover, with our bounds, we can establish
an asymptotic law of the iterated logarithm for vector-valued processes that recovers the law of
iterated logarithm for scalar sub-ψ processes first established by Howard et al. [75].

Along with our primary result on the self-normalized concentration of vector-valued pro-
cesses, we make variety of additional contributions. En route to proving Theorem 2.4.1, we prove
a non-asymptotic law of the iterated for sub-ψ processes, generalizing the results of Howard
et al. [75] beyond just the sub-Gamma setting. Likewise, we demonstrate how to leverage our
self-normalized inequalities in several practical statistical settings. In particular, we derive non-
asymptotically valid confidence ellipsoids for online linear regression, describe how to construct
confidence sets for vector autoregressive models, and prove a multivariate empirical Bernstein
inequality. There are undoubtedly many more settings in which our bounds can be applied, and
we leave the exploration of these applications for interesting future work.

While the results presented in this paper are quite general, there are still many interesting
questions about self-normalized concentration to be answered. As a first example, existing re-
sults on the self-normalized concentration of sub-Gaussian random vectors yield a bound that is
proportional to O

(√
log det(Vn)

)
[41, 42, 3]. This is in contrast to the results discussed in this

work, which provide bounds of the form O
(√

log log γmax(Vn) + d log κ(Vn)
)

. As discussed
in Section 2.4, neither form of bound uniformly dominates the other. In particular, when Vn is
well-conditioned, our concentration results may be preferable, but for poorly-conditioned Vn,
determinant rate bounds may be desirable. A major open question is whether determinant rate
bounds can be obtained for general sub-ψ processes, or if the determinant rate is just attainable
in the sub-Gaussian setting. The techniques discussed in this paper do not seem directly applica-
ble to this setting, and so we thus leave obtaining determinant rate bounds as compelling future
work.

This work demonstrates that simple, closed-form bounds on self-normalized processes can
be established under very general distributional assumptions. While existing works consider a
setting in which the increments of processes are sub-Gaussian, concentration of measure should
not be viewed as a “one size fits all” phenomenon. For instance, the noise observed in taking
real-world may not be sub-Gaussian, but rather perhaps sub-Exponential, sub-Gamma, or even
heavy tailed. Overall, our bounds provide a means by which the statistician can properly calibrate
confidence in these more delicate settings.
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2.A Properties of CGF-like Functions
The cumulant generating function (or CGF) of a random variable plays an integral role in un-
derstanding concentration of measure phenomena, such as through the classical Chernoff style
of argument [74, 18]. Suppose X is a random variable such that EX = 0, EeλX < ∞ for all
λ ∈ [0, λmax), and limλ↑λmax EeλX = ∞. The cumulant generating function of X , which can
be thought of as “compressing” all of the moments of X into a single function, is the mapping
ψ : [0, λmax) → R≥0 given by ψ(λ) := logEeλX .

In this appendix, we study properties of cumulant generating function-like (or CGF-like)
functions, which are functions that may not be the CGF of any random variable, but display
similar analytic properties to CGFs. If ψ : [0, λmax) → R≥0 is the CGF of a random variable,
straightforward calculation yields that ψ(0) = ψ′(0) = 0, ψ′′(λ) > 0, and ψ is strictly convex.
As such, we say a twice continuously differentiable function ψ : [0, λmax) → R≥0 is CGF-like
if it obeys these aforementioned properties. We study various properties of CGF-like functions
in the sequel, as these properties form the foundation of our results studying the self-normalized
concentration of sub-ψ processes.

Proposition 2.A.1. Suppose ψ : [0, λmax) → R≥0 is CGF-like. Then convex conjugate ψ∗ :
[0, umax) → R≥0 defined by ψ∗(u) := supλ∈[0,λmax) λu− ψ(u), is also CGF-like, where umax :=
supλ∈[0,λmax) ψ

′(λ).

Proof. Clearly ψ∗ is convex and twice continuously-differentiable. Next, observe that

ψ∗(0) = sup
λ∈[0,λmax)

{−ψ(λ)} = ψ(0) = 0.

Further, using the fact that (ψ∗)′ = (ψ′)−1, we have that

(ψ∗)′(0) = (ψ′)−1(0) = 0.

Lastly, we have that

(ψ∗)′′(0) = ((ψ′)−1)′(0) =
1

ψ′′((ψ′)−1(0))
=

1

ψ′′(0)
> 0.

Thus, ψ∗ is also CGF-like. ■

If ψ : [0, λmax) → R≥0 is CGF-like, then for any ρ > 0, the “rescaled” function ψρ :
[0,

√
ρλmax) → R≥0 given by ψρ(λ) := ρψ(λ/

√
ρ) is also CGF-like. These rescaled CGF-like

functions arise naturally in studying processes that have been re-normalized to have Vn ⪰ idH
for all n ≥ 0. These rescaled functions ψρ exhibit the following properties.

Proposition 2.A.2. Let ψ : [0, λmax) → R≥0 be CGF-like, and let ψρ : [0,
√
ρλmax) → R≥0 be

as above. The following hold.
1. ψρ is a CGF-like function.

2. ψ∗
ρ(u) = ρψ∗(u/

√
ρ).

3. (ψ∗
ρ)

−1(x) =
√
ρ(ψ∗)−1

(
x
ρ

)
.
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Proof. The validity of the first claim follows immediately by the definition of a CGF-like func-
tion.

To see the validity of the second claim, note that

ψ∗
ρ(u) = sup

λ∈[0,√ρλmax)

{
uλ− ρψ

(
λ
√
ρ

)}
.

Differentiating the inner expression on the right-hand side and setting equal to zero furnishes that
the supremum is obtained at λ =

√
ρ(ψ′)−1(u/

√
ρ). Plugging this back into the above expression

yields

ψ∗
ρ(u) =

√
ρu(ψ′)−1

(
u
√
ρ

)
− ρψ

(
(ψ′)−1

(
u
√
ρ

))
= ρ

[
u
√
ρ
(ψ′)−1

(
u
√
ρ

)
− ψ

(
(ψ′)−1

(
u
√
ρ

))]
= ρψ∗

(
u
√
ρ

)
,

which proves the second item.
Laslty, the third item can be readily checked as

ψ∗
ρ

(
√
ρ(ψ∗)−1

(
x

ρ

))
= ρ(ψ∗)

(√
ρ

√
ρ
(ψ∗)−1

(
x

ρ

))
= ρ

x

ρ
= x.

Applying (ψ∗
ρ)

−1 to both sides thus yields the desired result.
■

Throughout our work, we are especially interested in studying sub-ψ processes whose incre-
ments exhibit tail behavior that is either “heavier” or “lighter” than that of a Gaussian random-
variable. More concretely, we study processes where ψ is a super-Gaussian (respectively sub-
Gaussian) CGF-like function, i.e. a CGF-like function where ψ(λ)

λ2
is a non-decreasing (respec-

tively non-increasing) function of λ. In words, a CGF-like function ψ is super-Gaussian (or sub-
Gaussian) if it increases more rapidly (less rapdily) than the CGF of a standard normal random
variable. We focus on super-Gaussian CGF-like functions in the sequel, but exactly analogous
results hold for sub-Gaussian CGF-like functions. Super-Gaussian CGF-like functions enjoy a
number of convenient properties and equivalent definitions, which we enumerate below.

Proposition 2.A.3. Suppose ψ : [0, λmax) → R≥0 is a CGF-like function. The following hold.

1. ψ is super-Gaussian if and only if ψ′(λ) ≥ 2ψ(λ)
λ

.

2. If ψ is super-Gaussian, then so is φ := aψ(b·) : [0, λmax/b) → R≥0 for any a, b > 0.

3. If ψ is super-Gaussian, then ψ−1(x)√
x

is a decreasing function of x ∈ [0,∞).

4. ψ is super-Gaussian if and only if its convex conjugate ψ∗ is sub-Gaussian.
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Proof. 1. Differentiating via the product rule yields(
ψ(λ)

λ2

)′

=
ψ′(λ)

λ2
− 2ψ(λ)

λ3
.

Consequently, we have (
ψ(λ)

λ2

)′

≥ 0 ⇔ ψ′(λ) ≥ 2ψ(λ)

λ
,

proving the desired result.

2. This result follows from the equivalent condition presented in the first part of the proposi-
tion. In particular, observe that we have

φ′(λ) = abψ′(bλ) ≥ 2ab
ψ(bλ)

bλ
=

2φ(λ)

λ
,

proving the desired result.

3. Straightforward calculus yields(
ψ−1(x)√

x

)′

=
(ψ−1)′(x)√

x
− 1

2

ψ−1(x)

x3/2
=

1√
xψ′(ψ−1(x))

− 1

2

ψ−1(x)

x3/2
.

Next, the assumption of ψ being super-Gaussian yields

ψ′(ψ−1(x)) ≥ 2ψ(ψ−1(x))

ψ−1(x)
=

2x

ψ−1(x)
.

Combining these two panels furnishes(
ψ−1(x)√

x

)′

=
1√

xψ′(ψ−1(x))
− 1

2

ψ−1(x)

x3/2
≤ 1

2

ψ−1(x)

x3/2
− 1

2

ψ−1(x)

x3/2
= 0,

which is what we wanted.

4. We prove the forward direction as the proof of the reverse direction is exactly analogous.
Recall that the super-Gaussianity of ψ implies that for all λ ∈ [0, λmax), we have ψ′(λ) ≥
2ψ(λ)
λ

. In particular, taking λ = (ψ∗)′(u) for u ∈ [0, umax) for umax := supλ ψ
′(λ) yields:

u = ψ′((ψ′)−1(u)) = ψ′((ψ∗)′(u)) ≥ 2ψ((ψ∗)′(u))

(ψ∗)′(u)
.

Rearranging and noting that ψ = (ψ∗)∗ yields

(ψ∗)′(u) ≥ 2ψ((ψ∗)′(u))

u
=

2 supw∈[0,umax) {w(ψ∗)′(u)− ψ∗(w)}
u

≥ 2 {u(ψ∗)′(u)− (ψ∗)(u)}
u

= 2(ψ∗)′(u)− 2ψ∗(u)

u
.
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Now, subtracting 2(ψ∗)′(u) from both sides yields

−(ψ∗)′(u) ≥ −2ψ∗(u)

u
.

Multiplying both sides by −1 furnishes the desired result.
■

We conclude this section by discussing the slope transform, a recently proposed transform
of a CGF-like function that can be used to construct time-uniform, line-crossing inequalities for
martingales [74].

Definition 2.A.4. Suppose ψ : [0, λmax) → R≥0 is a CGF-like function. The slope transform
associcated with ψ is the mapping s : [0, umax) → R≥0 given by

s(u) :=
ψ ((ψ∗)′(u))

(ψ∗)′(u)
.

The slope transform, while abstract and perhaps a bit unintuitive in nature, is of great utility
in optimizing our time-uniform, scalar-valued inequalities in the main body of this paper. In par-
ticular, we will leverage the following inequality in the proof of Theorem 2.3.1. In the following,
recall that for a fixed CGF-like function ψ : [0, λmax) → R≥0, we defined the quantity umax as
umax := supλ ψ

′(λ). For most examples considered in this paper (in particular in the case of
super-Gaussian ψ), umax = ∞.

Lemma 2.A.5 (Howard et al. [74]). Suppose ψ : [0, λmax) → R≥0 is CGF-like, and suppose
(Sn, Vn)n≥0 is a sub-ψ process, per Definition 2.2.1. Then, for any m > 0, δ ∈ (0, 1), and any
x ∈ (0,mumax), we have

P
(
∃n ≥ 0 : Sn ≥ x+ s

( x
m

)
(Vn −m)

)
≤ exp

{
−mψ∗

( x
m

)}
.

While the slope transform s(u) may be a generally complicated function, the following upper
bound allows us to greatly simplify our analysis. It is proven in Howard et al. [74].

Proposition 2.A.6. Suppose ψ : [0, λmax) → R≥0 is CGF-like. Let s : [0, umax) → R≥0 be the
associated slope transform. Then, for any u ∈ [0, umax), s(u) ≤ u.

2.B Proofs of Results from Sections 2.5 and 2.6
In this appendix, we provide proofs for all results related to applications of Theorem 2.4.1. We
start by proving the regression-based results from Section 2.5, and then move on to proving
our empirical Bernstein bound, as discussed in Section 2.6. We begin by providing practically-
relevant examples of when the residual process Sn =

∑n
m=1 ϵmXm defined in Model 2.5.6 is

sub-ψ with variance proxy Vn =
∑n

m=1XmX
⊤
m.

Proposition 2.B.1. Suppose (Xn)n≥1, (ϵn)n≥1, and (Fn)n≥0 are as outlined in Model 2.5.1.
Let us define the residual process (Sn)n≥0 by Sn :=

∑n
m=1 ϵmXm and the covariance process

(Vn)n≥0 by Vn :=
∑n

m=1XmX
⊤
m. Then, (Sn)n≥0 is sub-ψ with variance proxy (Vn)n≥0 if either

of the following conditions is satisfied.
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1. (ϵn)n≥1 satisfies logEn−1 exp {λϵn} ≤ ψN(λ) for all n ≥ 1 and λ ≥ 0.

2. ∥Xn∥ ≤ 1 almost surely for all n ≥ 1 and (ϵn)n≥1 satisfies logEn−1 exp {λϵn} ≤ ψ(λ) for
all n ≥ 1 and λ ∈ [0, λmax), where ψ : [0, λmax) → R≥0 is some super-Gaussian CGF-like
function.

Proof. The proof of 1 is straightforward, so we just prove 2. Observe that, from the assumption
that ψ : [0, λmax) → R≥0 is a super-Gaussian CGF-like function, we have that, for any λ1 <
λ2 ∈ [0, λmax),

ψ(λ1)

λ21
≤ ψ(λ2)

λ22
.

Consequently, for any direction ν ∈ Sd−1, λ ∈ [0, λmax), and ∥x∥ ≤ 1, we have

ψ(λ⟨ν, x⟩)
λ2⟨ν, x⟩2

≤ ψ(λ)

λ2
.

Combining this with with the CGF bound on the noise variable ϵn presented in Proposi-
tion 2.B.1 (along with the assumption that ∥Xn∥ ≤ 1), we have

logE
(
eλ⟨ν,Xn⟩ϵn | Fn−1

)
≤ ψ(λ⟨ν,Xn⟩) ≤ ⟨ν,Xn⟩2ψ(λ),

where in the above we have used the fact that Xn is Fn−1-measurable. This immediately yields
that, for any λ ∈ [0, λmax) and ν ∈ Sd−1, the process (Mλ,ν

n )n≥0 given by

Mλ,ν
n := exp

{
λ
∑
m≤n

ϵm⟨ν,Xm⟩ − ψ(λ)
∑
m≤n

⟨ν,Xm⟩2
}

= exp {λ⟨ν, Sn⟩ − ψ(λ)⟨ν, Vnν⟩}

is a non-negative supermartingale. Consequently, the scalar-valued process (⟨ν, Sn⟩, ⟨ν, Vnν⟩)n≥0

is sub-ψ for any ν ∈ Sd−1. Thus, by definition, the vector process (Sn, Vn)n≥0 is sub-ψ in the
vector-valued sense provided in Definition 2.2.2.

■

We now prove Theorem 2.5.2.

Proof of Theorem 2.5.2. For a Hermitian matrix A ∈ Rd×d let A ∧ ρId be defined equivalently
to A ∨ ρId except with the eigenvalue being set to γi(A) ∧ ρ versus γi(A) ∨ ρ. Observe that we
have the identity

A = A ∨ ρId + A ∧ ρId − ρId. (2.B.1)

Note that we can write the difference between our estimate and the true slope parameter as

θ̂n − θ∗ = (Vn ∨ ρId)−1X⊤
n (Xnθ

∗ + ϵ1:t)− θ∗

= (Vn ∨ ρId)−1(X⊤
nXn ∨ ρId +X⊤

nXn ∧ ρId − ρId)θ
∗ + (Vn ∨ ρId)−1Sn − θ∗

= (Vn ∨ ρId)−1
(
X⊤
nXn ∧ ρId − ρId

)
θ∗ + (Vn ∨ ρId)−1Sn,

where in the above we have defined the “residual process” (Sn)n≥0 as Sn :=
∑n

m=1 ϵmXm ∈
Rd. In the above, the second line follows from the first by applying the equality outlined in
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Equation (2.B.1), the third follows from the second by recalling Vn = X⊤
nXn and noting a

cancellation between the first and last term.
Thus, applying the triangle inequality gives us

∥(Vn ∨ ρId)1/2(θ̂n − θ∗)∥ ≤ ∥(Vn ∨ ρId)−1/2(X⊤
nXn ∧ ρId − ρId)θ

∗∥+ ∥(Vn ∨ ρId)−1/2Sn∥
≤ √

ρ∥θ∗∥1γmin(X⊤
nXn)<ρ + ∥(Vn ∨ ρId)−1/2Sn∥,

where the second line follows from the first via straightforward algebraic manipulation and
bounding. What remains is to bound ∥(Vn∨ ρId)−1/2Sn∥. But since we have assumed (Sn)n≥0 is
sub-ψ with variance proxy (Vn)n≥0, Theorem 2.4.1 implies that, with probability at least 1 − δ,
simultaneously for all n ≥ 1, we have

∥(Vn ∨ ρId)−1/2Sn∥ ≤
√
γmin(Vn ∨ ρId)

1− ϵ
· (ψ∗)−1

(
α

γmin(Vn ∨ ρId)
Lρ(Vn)

)
,

which finishes the proof. ■

We now prove Corollary 2.5.4. The proof below is almost identical to the proof of Theo-
rem 2.5.2, modulo slight modifications, so omit many details.

Proof of Corollary 2.5.4. Using a similar line of reasoning, we see that we have the (determin-
istic) inequality

∥(Vn + ρId)
1/2(θ̃n − θ∗)∥ ≤ ρ∥(Vn + ρId)

−1/2θ∗∥+ ∥(Vn + ρId)
−1/2Sn∥

≤ √
ρ∥θ∗∥+ ∥(Vn + ρId)

−1/2Sn∥,

where (Sn)n≥0 is the residual process outlined in the proof of Theorem 2.5.2. The result now
follows by noting that (Sn, Vn)n≥0 is sub-ψ in the vector-sense of Definition 2.2.2. ■

What remains is to prove Corollary 2.5.7, which concerns the estimation of model parameters
in the VAR(p) model. The proof of the corollary just involves casting the estimation of model
parameters in terms of the online linear regression model, i.e. Model 2.5.1. By the assumption
that ψ = ψN , per the discussion following the statement of Theorem 2.5.2, it is not necessary to
assume ∥Xn∥ ≤ 1 for all n ≥ 1.

Proof of Corollary 2.5.7. Let (Fn)n≥0 be the filtration outlined in Model 2.5.6, i.e. Fn :=
σ(Ym : −p + 1 ≤ m ≤ n). Note that the Rk-valued sequence (Xn)n≥1 is (Fn)n≥1-predictable
and the Rd-valued noise sequence (ϵn)n≥1 is (Fn)n≥0-adapted. Further noting the identity

Yn(i) = ⟨π(i), Xn⟩+ ϵn,

we see that we are exactly in the setting of Model 2.5.1. Thus, applying Theorem 2.5.2 yields
the desired result. ■

Lastly, we prove Theorem 2.6.1, which provides a self-normalized, time-uniform empirical
Bernstein inequality for multivariate processes. In the proof of Theorem 2.6.1, we will need the
following lemma, which can be extracted from the proof of Theorem 4 in Howard et al. [75],
which in turn generalizes a result by Fan et al. [59].
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Lemma 2.B.2 (Theorem 4 of Howard et al. [75]). Let (Xn)n≥0 be a real-valued sequence of
random variables adapted to some filtration (Fn)n≥0. Suppose that |Xn| ≤ 1/2 almost surely
for all n ≥ 1. Then, for any λ ∈ [0, λ), the process

Lλn := exp

{
λ
∑
m≤n

(Xm − Em−1Xm)− ψE,1(λ)
∑
m≤n

(Xm − µ̂m−1)
2

}

is a non-negative supermartingale with respect to (Fn)n≥0. Consequently, (
∑n

m=1(Xm − Em−1Xm))n≥0

is sub-ψE,1 with variance proxy (
∑n

m=1(Xm − µ̂m−1)
2)n≥0.

We now prove Theorem 2.6.1. All we need to do in the proof is check that the process
(Sn, Vn)n≥0 is sub-ψE in the sense of Definition 2.2.2. This boils down to checking that the pro-
jection of (Sn, Vn)n≥0 onto any direction vector is sub-ψE in the scalar sense. With Lemma 2.B.2
in hand, checking this condition becomes trivial.

Proof. To prove the result, it suffices to check that (Sn, Vn) is sub-ψE,1, per Definition 2.2.2.
Thus, we show that, for any ν ∈ Sd−1, (⟨ν, Sn⟩, ⟨ν, Vnν⟩)n≥0 is sub-ψE,1 in the sense of Defini-
tion 2.2.1. Clearly, ⟨ν, Sn⟩ ∈ [−1/2, 1/2] almost surely. Further, we have

⟨ν, Vnν⟩ =
n∑

m=1

⟨ν, (Xm − µ̂m−1)(Xm − µ̂m−1)
⊤ν⟩

=
n∑

m=1

⟨ν,Xm − µ̂m−1⟩2

=
n∑

m=1

(⟨ν,Xm⟩ − ⟨ν, µ̂m−1⟩)2.

Thus, Lemma 2.B.2 implies that (⟨ν, Sn⟩, ⟨ν, Vnν⟩)n≥0 is sub-ψE,1, so the first claim follows.
The second claim follows from Theorem 2.4.1. Finally, for any λ ∈ [0, 1),

ψE,1(λ) = − log(1− λ)− λ ≤ λ2

2(1− λ)
=: ψG,1(c),

so (Sn, Vn)n≥0 is sub-ψG,1 also. Noting that

(ψ∗
G,1)

−1(u) =
√
2u+ u

yields the final claim. Proofs of these two facts surrounding ψE,1 and ψG,1 can be found in
Boucheron et al. [18]. ■

2.C Proofs of Technical Lemmas
In this section, we provides proofs for the technical lemmas used in proving the main results of
this paper. We start by proving Lemma 2.7.1, which is used in the proof of Theorem 2.4.1.
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Proof of Lemma 2.7.1. Let ν ∈ Sd−1 be arbitrary and let ω ∈ Sd−1 be the unique vector satisfy-
ing (2.7.3). By the definition of ω and πT , we have

∥ν − πT (ν)∥ =

∥∥∥∥ T 1/2ω

∥T 1/2ω∥
− T 1/2π(ω)

∥T 1/2π(ω)∥

∥∥∥∥
≤ max

{∥∥∥∥ T 1/2ω

∥T 1/2ω∥
− T 1/2π(ω)

∥T 1/2ω∥

∥∥∥∥ ,∥∥∥∥ T 1/2ω

∥T 1/2π(ω)∥
− T 1/2π(ω)

∥T 1/2π(ω)∥

∥∥∥∥}
≤ γmax(T

1/2)

∥T 1/2ω∥ ∧ ∥T 1/2π(ω)∥
∥ω − π(ω)∥ ≤

√
κϵ.

Above, the second inequality follows from pulling out the denominator in each term of the
maximum and bounding ∥T 1/2(ω − π(ω))∥ ≤ γmax(T

1/2)∥ω − π(ω)∥ and the last inequality
follows as ∥T 1/2ω∥ ∧ ∥T 1/2π(ω)∥ ≥ γmin(T

1/2), and ∥ω − π(ω)∥ ≤ ϵ by definition of projec-
tion onto a cover. The first inequality follows from a simple calculation. To elaborate, assume
∥T 1/2ω∥ ≠ ∥T 1/2π(ω)∥, as in the case of equality there is nothing to prove in the inequality.
Notice that if ∥T 1/2ω∥ < ∥T 1/2π(ω)∥, then q := T 1/2ω/∥T 1/2ω∥ lies on the surface of the unit
ball, and p := T 1/2π(ω)/∥T 1/2ω∥ lies outside of the unit ball (i.e. has norm greater than 1).
The projection of p onto the unit ball is exactly T 1/2π(ω)/∥T 1/2π(ω)∥, which is closer to q than
p since projections onto convex sets decrease Euclidean distance to all points. The maximum
above comes from handling the case ∥T 1/2ω∥ > ∥T 1/2π(ω)∥, which is analogous. This shows
the desired result. ■

We now prove Lemma 2.4.2, which is leveraged in the proof of Corollary 2.4.6 and Corol-
lary 2.4.3.

Proof of Lemma 2.4.2. We start by providing an upper bound on the proper ϵ-covering number
for Sd−1

∞ := {x ∈ Rd : ∥x∥∞ := maxj∈[d] |xj| = 1}. Note that we can write

Sd−1
∞ =

d⋃
i=1

F+
i ∪ F−

i ,

where F+
i := {x ∈ Rd : xi = 1, ∥x−i∥∞ ≤ 1} and F−

i := {x ∈ Rd : xi = −1, ∥x−i∥∞ ≤ 1},
where x−i ∈ Rd−1 is the vector x with the ith component omitted. For any i ∈ [d], s ∈ {+,−},
there is a natural isometry between F s

i and the (d − 1)-dimensional ℓ∞ ball defined as B∞
d−1 :=

{x ∈ Rd−1 : ∥x∥∞ ≤ 1} given by x ∈ Rd 7→ x−i ∈ Rd−1. In particular, this implies the proper
ϵ-covering number of F s

i under the ℓ2-norm is bounded as

N (F s
i , ϵ, ∥ · ∥) = N

(
B∞
d−1, ϵ, ∥ · ∥

)
≤

Vold−1(B∞
d−1)

Vold−1(Bd−1)

(
3

ϵ

)d−1

,

where the last inequality follows from Lemma 5.7 of Wainwright [158]. From this, we see that
we have the bound

N
(
Sd−1
∞ , ϵ, ∥ · ∥

)
≤ 2d

Vold−1(B∞
d−1)

Vold−1(Bd−1)

(
3

ϵ

)d−1

= Cd

(
3

ϵ

)d−1

,
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where we have summed over the 2d different (d − 1)-dimensional faces F+
1 , F

−
1 , . . . , F

+
d , F

−
d

and defined the constant Cd := 2d
Vold−1(B∞

d−1)

Vold−1(Bd−1)
.

Let K now denote a minimal proper ϵ-covering of Sd−1
∞ , and let π : Sd−1

∞ → K denote the
projection onto the covering. Further, let p : Rd → Bd denote the ℓ2 projection onto the unit ball.
We claim that the set K ′ := {p(x) : x ∈ K} is a proper ϵ-covering of Sd−1 under the ℓ2 norm.
The fact that p(x) ∈ Sd−1 is immediate. Next, note that for any y ∈ Sd−1, there is some x ∈ Sd−1

∞
such that p(x) = y. Observe that z := p(π(x)) ∈ K ′. Since p is an ℓ2 projection, we know that

∥y − z∥ = ∥p(x)− p(π(x))∥ ≤ ∥x− π(x)∥ ≤ ϵ,

so we have shown that K ′ is a proper ϵ-covering.
■
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2.D Figures

(a) α = 1.01 (b) α = 1.05

(c) α = 1.25 (d) α = 1.5

Figure 2.1: Comparing the boundary of Theorem 2.3.1 in the case ψ = ψP,c with the boundary
of Theorem 1 in Howard et al. [75], recapped in (2.3.1). Note that to apply the boundary of
Howard et al. [75], we need to leverage the fact that a sub-ψP,c process (Sn)n≥0 is also sub-ψG,c
with the same variance proxy (Vn)n≥0. We have made the parameter selection c = 1, δ = 0.01,
ρ = 1, and h(k) = (1 + k)2ζ(2), and have correspondingly varied α over several values. We
see that for reasonably small choices of intrinsic time spacing α > 1, our boundary is tighter
than that of Howard et al. [75]. Thus, we see that although a sub-ψP,c process can be viewed as a
sub-ψG,c process, this conversion introduces looseness, making our time-uniform concentration
result generally preferable in this setting.
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(a) α = 1.01 (b) α = 1.05

(c) α = 1.25 (d) α = 1.5

Figure 2.2: Comparing the boundary of Theorem 2.3.1 in the case ψ = ψG,c with the boundary of
Howard et al. [75] (presented in Equation 2.3.1). We have made the parameter selection c = 1,
δ = 0.01, ρ = 1, and h(k) = (1 + k)2ζ(2), and have correspondingly varied α over several
values. As expected from our discussion, our boundary is looser than that of Howard et al. [75]
for all values of α, with the gap between the boundaries vanishing as the geometric spacing α
of variance/intrinsic time is decreased towards 1. Since α = 1.01 or α = 1.05 are reasonable
choices for applying our concentration inequalities, our bounds are just as applicable as those of
Howard et al. [75] even in the sub-Gamma setting.
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(a) Fact 2.5.8 vs. Corollary 2.5.7 without union bound (b) Fact 2.5.8 vs. Corollary 2.5.7 with union bound

Figure 2.3: A comparison of the bounds on |ân − a| provided by Fact 2.5.8 and Corollary 2.5.7.
In plotting both bounds, we have fixed the failure probability as δ = 0.01. We have numerically
solved for x such that the right hand side of Fact 2.5.8 is equal to the target failure probability.
When applying Corollary 2.5.7, we have set α = 1.5, h(k) = (1 + k)2ζ(2), ρ = 1, and note
that dependence on ϵ and β can be removed in the univariate case. In Subfigure 2.3a, we plot
Fact 2.5.8 point-wise (i.e. we set the failure probability to be δ for each sample size n), and in
Subfigure 2.3b, we take a union bound over samples, setting the failure probability to be 6δ

n2π2 for
each t.
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Chapter 3

Mean Estimation in Banach Spaces Under
Infinite Variance and Martingale
Dependence

We consider estimating the shared mean of a sequence of heavy-tailed random variables
taking values in a Banach space. We revisit and extend a simple truncation-based mean
estimator by Catoni and Giulini. While existing truncation-based approaches require a
bound on the raw (non-central) second moment of observations, our results hold under
a bound on either the central or non-central pth moment for some p > 1. In particu-
lar, our results hold for distributions with infinite variance. The main contributions of the
paper follow from exploiting connections between truncation-based mean estimation and
the concentration of martingales in 2-smooth Banach spaces. We prove two types of time-
uniform bounds on the distance between the estimator and unknown mean: line-crossing
inequalities, which can be optimized for a fixed sample size n, and non-asymptotic law
of the iterated logarithm type inequalities, which match the tightness of line-crossing in-
equalities at all points in time up to a doubly logarithmic factor in n. Our results do not
depend on the dimension of the Banach space, hold under martingale dependence, and all
constants in the inequalities are known and small.

3.1 Introduction

Mean estimation is perhaps the most important primitive in the statistician’s toolkit. When the
data is light-tailed (perhaps sub-Gaussian, sub-Exponential, or sub-Gamma), the sample mean
is the natural estimator of this unknown population mean. However, when the data fails to have
finite moments, the naive plug-in mean estimate is known to be sub-optimal.

The failure of the plug-in mean has led to a rich literature focused on heavy-tailed mean
estimation. In the univariate setting, statistics such as the thresholded/truncated mean estima-
tor [153, 78], trimmed mean estimator [125, 113], median-of-means estimator [124, 81, 9], and
the Catoni M-estimator [22, 159] have all been shown to exhibit favorable convergence guaran-
tees. When a bound on the variance of the observations is known, many of these estimates enjoy
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sub-Gaussian rates of performance [110], and this rate gracefully decays when only a bound on
the pth central moment is known for some p > 1 [19].

In the more challenging setting of multivariate heavy-tailed data, modern methods include the
geometric median-of-means estimator [121], the median-of-means tournament estimator [112],
and the truncated mean estimator [23]. We provide a more detailed account in Section 3.1.2.

Of the aforementioned statistics, the truncated mean estimator is by far the simplest. This
estimator, which involves truncating observations to lie within an appropriately-chosen ball cen-
tered at the origin, is extremely computationally efficient and can be updated online, very desir-
able for applied statistical tasks. However, this estimator also possesses a number of undesirable
properties. First, it is not translation invariant, with bounds that depend on the raw moments of
the random variables. Second, it requires a known bound on the pth moment of observations for
some p ≥ 2, thus requiring that the observations have finite variance. Third, bounds are only
known in the setting of finite-dimensional Euclidean spaces — convergence is not understood in
the setting of infinite-dimensional Hilbert spaces or Banach spaces.

The question we consider here is simple: are the aforementioned deficiencies fundamental
to truncation-based estimators, or can they be resolved with an improved analysis? The goal of
this work is to show that the latter is true, demonstrating how a truncation-based estimator can
be extended to handle fewer than two central moments in general classes of Banach spaces.

3.1.1 Our Contributions

In this work, we revisit and extend a simple truncation-based mean estimator due to Catoni
and Giulini [23]. Our estimator works by first using a small number of samples to produce a
naive mean estimate, say through a sample mean. Then, the remaining sequence of observations
is truncated to lie in an appropriately-sized ball centered at this initial mean estimate. These
truncated samples are then averaged to provide a more robust estimate of a heavy-tailed mean.

While existing works study truncation-based estimators via PAC-Bayesian analyses [23, 32,
100], we find it more fruitful to study these estimators using tools from the theory of Banach
space-valued martingales. In particular, by proving a novel extension of classical results on the
time-uniform concentration of bounded martingales due to Pinelis [128, 129], we are able to
greatly improve the applicability of truncation-based estimators. In particular, our estimator and
analysis improves over that in [23] in the following ways:

1. The analysis holds in arbitrary 2-smooth Banach spaces instead of just finite-dimensional
Euclidean space. This not only includes Hilbert spaces but also the commonly-studied Lα

and ℓα spaces for 2 ≤ α <∞.

2. Our results require only a known upper bound on the conditional central pth moment of
observations for some p > 1, and are therefore applicable to data lacking finite variance.
Existing bounds for truncation estimators, on the other hand, require a bound on the non-
central second moment.

3. Our bounds are time-uniform and hold for data with a martingale dependence structure. We
prove two types of inequalities: line-crossing inequalities, which can be optimized for a
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target sample size, and non-asymptotic law of the iterated logarithm (LIL) type inequalities,
which match the tightness of the boundary-crossing inequalities at all times simultaneously
up to a doubly logarithmic factor in the sample size.

4. We show that our estimator exhibits strong practical performance, and that our derived
bounds are tighter than existing results in terms of constants. We run simulations which
demonstrate that, for appropriate truncation diameters, the distance between our estimator
and the unknown mean is tightly concentrated around zero.

Informally, if we assume that the central pth moments of all observations are conditionally
bounded by v, and we let µ̂n denote our estimate after n samples, then we show that

∥µ̂n − µ∥ = O
(
v1/p(log(1/δ)/n)

p−1
p

)
with probability ≥ 1− δ.

As far as we are aware, the only other estimator to obtain the same guarantee in a similar setting
is Minsker’s geometric median-of-means [121] (while he doesn’t state this result explicitly, it is
easily derivable from his main bound). Minsker also works in a Banach space, but assumes that it
is separable and reflexive, whereas we will assume that it is separable and smooth. While we ob-
tain the same rates, we feel that our truncation-style estimator has several benefits over geometric
median-of-means. First, it is computationally lightweight and easy to compute exactly. Second,
our line-crossing inequalities do not require as many tuning parameters to instantiate. Third, we
handle martingale dependence while Minsker does not. Finally, our analysis is significantly dif-
ferent from Minsker’s—and from existing analyses of other estimators under heavy-tails—and
may be of independent interest.

3.1.2 Related Work
Section 3.1.1 discussed the relationship between this paper and the two most closely related
works of Catoni and Giulini [23] and Minsker [121]. We now discuss how our work is related to
the broader literature, none of which addresses our problem directly, but tackles simpler special
cases of our problem (e.g., assuming more moments or boundedness, or with observations in
Hilbert spaces or Euclidean spaces).

Heavy-tailed mean estimation under independent observations. Truncation-based (also called
threshold-based) estimators have a rich history in the robust statistics literature, dating back to
works from Tukey, Huber, and others [78, 153]. These estimators have either been applied in
the univariate setting or in Rd as in Catoni and Giulini [23]. A related estimator is the so-called
trimmed-mean estimator, which removes extreme observations and takes the empirical mean of
the remaining points [125, 113]. For real-valued observations with finite variance, the trimmed-
mean has sub-Gaussian performance [125].

Separately, Catoni and Giulini [22] introduce an approach for mean estimation in Rd based
on M-estimators with a family of appropriate influence functions. This has come to be called
“Catoni’s M-estimator.” It requires at least two moments and fails to obtain sub-Gaussian rates.
It faces the the additional burden of being less computationally efficient. A series of followup
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works have improved this estimator in various ways: Chen et al. [26] extend it to handle a p-
th moment for p ∈ (1, 2) for real-valued observations, Gupta et al. [67] refine and sharpen the
constants, and Mathieu [120] studies the optimality of general M-estimators for mean estimation.

Another important line of work on heavy-tailed mean estimation is based on median-of-
means estimators [124, 81, 9]. These estimators generally break a dataset into several folds,
compute a mean estimate on each fold, and then compute some measure of central tendency
amongst these estimates. For real-valued observations, Bubeck et al. [19] study a median-of-
means estimator that holds under infinite variance. Their estimator obtains the same rate as ours
and Minsker’s. Most relevant for our work is the result on geometric median-of-means due to
Minsker [121], which can be used to aggregate several independent mean estimates in general
separable Banach spaces. In Hilbert spaces, when instantiated with the empirical mean under a
finite variance assumption, geometric median-of-means is nearly sub-Gaussian (see discussion
in Section 3.1.1). We compare our threshold-based estimator extensively to geometric median-
of-means in the sequel and demonstrate that we obtain the same rate of convergence.

Another important result is the multivariate tournament median-of-means estimator due to
Lugosi and Mendelson [112]. For i.i.d. observations in (Rd, ∥ · ∥2) with shared covariance ma-
trix (operator) Σ, then Lugosi and Mendelson [112] show this estimator can obtain the optimal
sub-Gaussian rate ofO(

√
Tr(Σ)/n+

√
∥Σ∥op log(1/δ)/n). However, this result requires the ex-

istence of a covariance matrix and does not extend to a bound on the p-th moment for p ∈ (1, 2),
which is the main focus of this work.

While the original form of the tournament median-of-means estimator was computationally
inefficient (with computation hypothesized to be NP-Hard in a survey by Lugosi and Mendelson
[110]), a computationally efficient approximation was developed by Hopkins [72], with followup
work improving the running time [28]. Tournament median-of-means was extended to general
norms in Rd [111], though the authors note that this approach is still not computationally feasible.
Median-of-means style approaches have also been extended to general metric spaces [77, 29].
Of the above methods, only the geometric median-of-means estimator can handle observations
that lack finite variance.

Sequential concentration under martingale dependence. Time-uniform concentration bounds,
or concentration inequalities that are valid at data-dependent stopping times, have been the focus
of significant recent attention [74, 75, 166]. Such results are often obtained by identifying an
underlying nonnegative supermartingale and then applying Ville’s inequality [157], a strategy
that allows for martingale dependence quite naturally. This approach is also used here. Wang
and Ramdas [159] extend Catoni’s M-estimator to handle both infinite variance and martingale
dependence in R, while Chugg et al. [32] give a sequential version of the truncation estimator in
Rd, though they require a central moment assumption and finite variance. The analyses of both
Catoni and Giulini [23] and Chugg et al. [32] rely on so-called “PAC-Bayes” arguments [21, 33].
Intriguingly, while we analyze a similar estimator, our analysis avoids such techniques and is
much closer in spirit to Pinelis-style arguments [128, 129].

Howard et al. [74, 75] provide a general collection of results on time-uniform concentra-
tion for scalar processes, which in particular imply time-uniform concentration results for some
heavy-tailed settings (e.g. symmetric observations). Likewise, Whitehouse et al. [166] provide
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a similar set of results in Rd. While interesting, we note that these results differ from our own
in that they are self-normalized, or control the growth of a process appropriately normalized by
some variance proxy (here a mixture of adapted and predictable covariance). The results also
don’t apply when only a bound on the pth moment is known, and the latter set of results have
explicit dependence on the ambient dimension d.

Concentration in Hilbert and Banach Spaces. There are several results related to concen-
tration in infinite-dimensional spaces. A series of works has developed self-normalized, sub-
Gaussian concentration bounds in Hilbert spaces [164, 2, 30] based on the famed method of
mixtures [40, 41]. These results have not been extended to more general tail conditions. Signif-
icant progress has been made on the concentration of bounded random variables in smooth and
separable Banach spaces. Pinelis [128, 129] presented a martingale construction for bounded
observations, thus enabling dimension-free Hoeffding and Bernstein inequalities. Dimension-
dependence is replaced by the smoothness parameter of the Banach space, which for most prac-
tical applications (in Hilbert spaces, say) equals one. These results were strengthened slightly by
Howard et al. [74]. Recently, Martinez-Taboada and Ramdas [118] gave an empirical-Bernstein
inequality in Banach spaces, also using a Pinelis-like construction. Our work adds to this grow-
ing literature by extending Pinelis’ tools to the heavy-tailed setting.

3.1.3 Preliminaries
We introduce some of the background and notation required to state our results. We are interested
in estimating the shared, conditional mean µ of a sequence of random variables (Xn)n≥1 living
in some separable Banach space (B, ∥ · ∥). Recall that a Banach space is a complete normed
vector space; examples include Hilbert spaces, ℓα sequence spaces, and Lα spaces of functions.
We make the following central assumption.

Assumption 1. We assume (Xn)n≥1 are a sequence of B-valued random variables adapted to a
filtration F ≡ (Fn)n≥0 such that

(1) E(Xn | Fn−1) = µ, for all n ≥ 1 and some unknown µ ∈ B, and

(2) supn≥1 E (∥Xn − µ∥p | Fn−1) ≤ v <∞ for some known constants p ∈ (1, 2] and v > 0.

The martingale dependence in condition (1) above is weaker than the traditional i.i.d. as-
sumption, requiring only a constant conditional mean. This is useful in applications such as
multi-armed bandits, where we cannot assume that the next observation is independent of the
past. Meanwhile, condition (2) allows for infinite variance, a weaker moment assumption than
past works studying concentration of measure in Banach spaces (e.g., [121, 128, 129]). In Ap-
pendix 3.A we replace condition (2) with a bound on the raw moment (that is, E(∥Xn∥p|Fn−1))
for easier comparison with previous work. We note that other works studying truncation-based
estimators have exclusively considered the p ≥ 2 setting where observations admit covariance
matrices [32, 23, 110]. We focus on p ∈ (1, 2] in this work, but it is likely our techniques could
be naturally extended to the p ≥ 2 setting. We leave this as interesting future work.

In order obtain concentration bounds, we must assume the Banach space is reasonably well-
behaved. This involves assuming that is it both separable and smooth. A space is separable if it
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contains a countable, dense subset, and a real-valued function f : B → R is (2, β)-smooth if, for
all x, y ∈ B, f(0) = 0, |f(x+ y)− f(x)| ≤ ∥y∥, and

f 2(x+ y) + f 2(x− y) ≤ 2f 2(x) + 2β2∥y∥2. (3.1.1)

We assume that the norm is smooth in the above sense.

Assumption 2. We assume that the Banach space (B, ∥ · ∥) is both separable and (2, β)-smooth,
meaning that the norm satisfies (3.1.1).

Assumption 2 is common when studying Banach spaces [128, 129, 74, 118]. We emphasize
that β is not akin to the dimension of the space. For instance, infinite-dimensional Hilbert spaces
have β = 1 and Lα and ℓα spaces have β =

√
α− 1 for α ≥ 2. Thus, bounds which depend on

β are still dimension-free.

Notation and background. For notational simplicity, we define the conditional expectation
operator En−1[·] to be En−1[X] := E(X | Fn−1) for any n ≥ 1. If S ≡ (Sn)n≥0 is some
stochastic process, we denote the n-th increment as ∆Sn := Sn − Sn−1 for any n ≥ 1. For any
process or sequence a ≡ (an)n≥1, denote by an the first n values: an = (a1, . . . , an). We say
the process S is predictable with respect to filtration F , if Sn is Fn−1-measurable for all n ≥ 1.
Our analysis will make use of both the Fréchet and Gateaux derivatives of functions in a Banach
space. We do not define these notions here but instead refer to Ledoux and Talagrand [106].

Outline. Section 3.2 provides statements of the main results. Our main result, Theorem 3.2.1,
is a general template for obtaining bounds (time-uniform boundary-crossing inequalities in par-
ticular) on truncation-style estimators. Corollary 3.2.2 then instantiates the template with par-
ticular parameters to obtain tightness for a fixed sample size. Section 3.3 is dedicated to the
proof of Theorem 3.2.1. Section 3.4 then uses a technique known as “stitching” to extend our
line-crossing inequalities to bounds which shrink to zero over time at an iterated logarithm rate.
Finally, Section 3.5 provides several numerical experiments demonstrating the efficacy of our
proposed estimator in practice.

3.2 Main Result
Define the mapping

Trunc : B → [0, 1] by x 7→ 1 ∧ ∥x∥
∥x∥

. (3.2.1)

Clearly, Trunc(x)x is just the projection of x onto the unit ball in B. Likewise, Trunc(λx)x
is the projection of x onto the ball of radius λ−1 in B. We note that the truncated observations
Trunc(Xn)Xn are themselves random variables, which are adapted to the underlying filtration
F .

As we discussed in Section 3.1.1, previous analyses of truncation-style estimators have relied
on a bound on the raw second moment. To handle a central moment assumption, we will center
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our estimator around a naive mean estimate which has worse guarantees but whose effects wash
out over time.

To formalize the above, our estimate of µ at time n will be

µ̂n(k) ≡ µ̂n(k, λ, Ẑk) :=
1

n

∑
k<m≤n

{
Trunc(λ(Xm − Ẑk))(Xm − Ẑk) + Ẑk

}
, (3.2.2)

where Ẑk is a naive mean estimate formed using the first k samples and λ > 0 is some fixed
hyperparameter. Defining Ẑ0 = 0 when k = 0, we observe that µ̂n(0) is the usual truncation
estimator, analyzed by Catoni and Giulini [23] in the fixed-time setting and Chugg et al. [32] in
the sequential setting. To state our result, define

Kp :=
1

p/q + 1

(
p/q

p/q + 1

)p/q
where

1

p
+

1

q
= 1, (3.2.3)

which depends on the Holder conjugate q of p. Note that Kp < 1 for all p > 1. In fact,
limp→1Kp = 1, limp→∞Kp = 0, and Kp is decreasing in p. We also define the constant

Cp(B) =

{
2p−1( e

2−3
4

), if (B, ∥ · ∥) is a Hilbert space,
β22p+1( e

2−3
4

), otherwise,
(3.2.4)

which depends on the geometry and smoothness β of the Banach space (B, ∥ · ∥). In a Hilbert
space (for which β = 1), the variance of our supermartingale increments can be more easily
bounded. If the norm is not induced by an inner product, then Cp(B) suffers an extra factor of
four. Note that e

2−3
4

< 1.1.
Our main result is the following template for bounding the deviations of µ̂n assuming some

sort of concentration of Ẑk around µ.

Theorem 3.2.1 (Main result). Let X1, X2, . . . be random variables satisfying Assumption 1
which lie in some Banach space (B, ∥ · ∥) satisfying Assumption 2. Suppose we use the first
k samples to construct Ẑk which satisfies, for any δ ∈ (0, 1],

P(∥µ− Ẑk∥ ≥ r(δ, k)) ≤ δ, (3.2.5)

for some function r : (0, 1]× N → R≥0. Fix any δ ∈ (0, 1]. Decompose δ as δ = δ1 + δ2 where
δ1, δ2 > 0. Then, for any λ > 0, with probability 1− δ, simultaneously for all n ≥ k, we have:∥∥∥µ̂n(k, λ, Ẑk)− µ

∥∥∥ ≤ λp−1(Cp(B) +Kp2
p−1)(v + r(δ2, k)

p) +
log(2/δ1)

λ(n− k)
. (3.2.6)

The guarantee provided by Theorem 3.2.1 is a line-crossing inequality in the spirit of [74].
That is, if we multiply both sides by n−k, it provides a time-uniform guarantee on the probability
that the left hand side deviation between µ̂n and µ ever crosses the line parameterized by the right
hand side of (3.2.6). If we optimize the value of λ for a particular sample size n∗, the bound will
remain valid for all sample sizes, but will be tightest at and around n = n∗. To obtain bounds
that are tight for all n simultaneously, one must pay an additional iterated logarithmic price in
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n. To accomplish this, Section 3.4 will deploy a carefully designed union bound over geometric
epochs—a technique known as “stitching” [75]. However, for practical applications where the
sample size is known in advance, we recommend Theorem 3.2.1 and its corollaries.

Next we provide a guideline on choosing λ in Theorem 3.2.1. The proof is straightforward.

Corollary 3.2.2. In Theorem 3.2.1, consider taking

λ =

(
log(2/δ1)

(Cp(B) +Kp2p−1)(n− k)(v + r(δ2, k)p)

)1/p

. (3.2.7)

Then, with probability at least 1− δ1 − δ2, we have

∥µ̂n(k)− µ∥ ≤
(
(Cp(B) +Kp2

p−1)(v + r(δ2, k)
p)
)1/p( log(2/δ1)

n− k

)(p−1)/p

.

In particular, as long as k = o(n), r(δ, k) = o(1) and δ1, δ2 = Θ(δ), we have

∥µ̂n(k)− µ∥ = O

(
v1/p

(
log(1/δ)

n

)(p−1)/p
)
. (3.2.8)

This is the desired rate per the discussion in Section 3.1.1, matching the rate of other estima-
tors which hold under infinite variance. In particular, it matches the rates of Bubeck et al. [19] in
scalar settings and Minsker [121] in Banach spaces.

Now let us instantiate Theorem 3.2.1 when we take Ẑk to be either the sample mean or
Minsker’s geometric median-of-means. The latter provides a better dependence on δ2 but at an
additional computational cost. As we’ll see in Section 3.5, this benefit is apparent for small
sample sizes, but washes out as n grows.

Corollary 3.2.3. Let (B, ∥ · ∥) satisfy Assumption 2 and X1, . . . , Xn satisfy Assumption 1. For
some k < n, let Ẑk be the empirical mean of the first k observations. Given δ > 0, decompose it
as δ = δ1 + δ2 for any δ1, δ2 > 0. Then, with probability 1− δ,

∥µ̂n(k)− µ∥ ≤ 2v1/pC1/p
p

(
log(2/δ1)

(n− k)1/p

)(p−1)/p(
1 +O

(
1

δ2kp−1

))
, (3.2.9)

where Cp = Cp(B) + Kp2
p−1. If, on the other hand, Ẑk is the geometric median-of-means

estimator with appropriate tuning parameters, then with probability 1− δ,

∥µ̂n(k)− µ∥ ≤ 2v1/pC1/p
p

(
log(2/δ1)

(n− k)1/p

)p−1
(
1 +O

(
log(1/δ2)

p−1

k(p−1)/p

))
. (3.2.10)

When Ẑk is the empirical mean, if k = k(n) = ⌊log2(n)⌋ (say), we have n − k(n) ≥ n/2
for n ≥ 2, so (3.2.9) recovers the rate in (3.2.8), since the additional factor of O( 1

δ2k(n)p−1 ) =

O( 1
δ2 log(n)

p−1 ) is o(1) and vanishes. When Ẑk is the geometric median-of-means, this error term
vanishes even faster.
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3.3 Proof of Theorem 3.2.1

We will prove a slightly more general result that reduces to Theorem 3.2.1 in a special case.
Throughout this section, fix two F-predictable sequences, (Ẑn) ∈ BN and (λn) ∈ RN

+. Define

ξ̂n ≡ ξ̂n(λ
n, Zn) :=

∑
m≤n

λm
{
Trunc(λmYm)Ym + Ẑm

}
where Ym := Xm − Ẑm, (3.3.1)

If we take λn to be constant and Ẑm = Ẑ to be F0-measurable, then ξ̂n = nλµ̂n. We will make
such a substitution at the end of this analysis to prove the desired result. However, working with
the more general process (3.2.2) has advantages. In particular, it allows us to consider sequences
of predictable mean-estimates, if desired.

Our preliminary goal is to find a process (Vn)n≥0 such that the process

Mn(λ
n) = exp

{∥∥∥∥ξ̂n − µ
∑
m≤n

λm

∥∥∥∥− Vn(λ
n)

}
, (3.3.2)

is upper bounded by a nonnegative supermartingale; in other words; in recent parlance, it is
an e-process [131]. Applying Ville’s inequality will then give us a time-uniform bound on the
deviation of the process ∥(

∑
m≤n λm)

−1ξ̂n − µ∥ in terms of Vn(λ). We will let

Vn(λ) = (Cp(B) +Kp2
p−1)Gn,

where Gn ≡ Gn(λ
n, Ẑn) :=

∑
m≤n

λpm(v + ∥µ− Ẑm∥p), (3.3.3)

is a weighted measure of the deviation of the naive estimates Ẑ1, . . . , Ẑn from µ. Since it is
difficult to reason about the difference between ξ̂n and µ

∑
m≤n λm directly, we introduce the

proxy
µ̃n(λ) := En−1[Trunc(λYn)Yn] + Ẑn, (3.3.4)

and argue about ∥ξ̂n−
∑

m≤n λmµ̃m(λm)∥ and λm∥µ̃m(λm)−µ∥. We then bound the difference
∥ξ̂n − µ

∑
m≤n λm∥ using the triangle inequality.

3.3.1 Step 1: Bounding ∥µ̃n(λ)− µ∥
We need the following analytical property of Trunc, which will be useful in bounding the trunca-
tion error with fewer than two moments. We note that the following lemma was used by Catoni
and Giulini [23] for k ≥ 1. We prove the result for k > 0.

Lemma 3.3.1. For any k > 0 and x ∈ B, we have that

1− Trunc(x) ≤ ∥x∥k

k + 1

(
k

k + 1

)k
.
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Proof. Fix k > 0. It suffices to show that f(t) := 1 − 1∧t
t

≤ t
k+1

(
k
k+1

)k
=: gk(t) for all t ≥ 0.

For t ∈ [0, 1], the result is obvious. For t ≥ 1, we need to do a bit of work. First, note that
gk(1) > f(1) = 0, and that both gk and f are continuous. Further, we only have gk(t) = f(t)
precisely when t = k+1

k
. Let this value of t be t∗. This immediately implies that gk(t) ≥ f(t) for

t ∈ [1, t∗]. To check the inequality for all t ≥ t∗, it suffices to check that f ′(t) < g′k(t). We verify
this by direct computation. First, f ′(t) = 1

t2
. Likewise, we have that g′k(t) = tk−1

(
k
k+1

)k+1.
Taking ratios, we see that

g′k(t)

f ′(t)
= tk+1

(
k

k + 1

)k+1

≥
(
k + 1

k

)k+1(
k

k + 1

)k+1

= 1,

proving the desired result. ■

We can now proceed to bounding ∥µ̃n(λ)− µ∥.

Lemma 3.3.2. Let X be a B-valued random variable and suppose En−1∥X − µ∥p ≤ v < ∞.
Let Ẑn be Fn−1-predictable and µ̃n be as in (3.3.4). Then:

∥µ− µ̃n(λ)∥ ≤ Kp2
p−1λp−1(v + ∥Ẑn − µ∥p).

Proof. Since Ẑn is predictable, we may treat it as some constant z when conditioning on Fn−1.
Using Holder’s inequality, write

∥µ− µ̃n(λ)∥ = ∥En−1[Xn]− En−1[Trunc(λ(Xn − z))(Xn − z) + z]∥
= ∥En−1[{1− Trunc(λ(Xn − z))}(Xn − z)∥
≤ E[|1− Trunc(λ(Xn − z))|q]1/qE[∥Xn − z∥p]1/p,

where 1/p + 1/q = 1. The second expectation on the right hand side can be bounded using
Minkowski’s inequality and the fact that ∥ · ∥p is convex for p ≥ 1:

En−1[∥Xn − z∥p] = En−1[∥Xn − µ+ µ− z∥p]
≤ 2p−1 (En−1[∥Xn − µ∥p] + ∥z − µ∥p)
≤ 2p−1(v + ∥z − µ∥p). (3.3.5)

Next, by Lemma 3.3.1, we have for any k > 0.

En−1[|1− Trunc(λ(Xn − z))|q] ≤ En−1

[(
λk∥Xn − z∥k

k + 1

(
k

k + 1

)k)q]
.

In particular, selecting k = p
q
, we have

En−1[|1− Trunc(λ(Xn − z))|q] ≤ Kq
pEn−1 [λ

p∥Xn − z∥p] ≤ Kq
pλ

p2p−1(v + ∥z − µ∥p),

where Kp as defined in (3.2.3). Piecing everything together, we have that

En−1[|1− Trunc(λ(Xn − z))|q]1/q ≤ Kpλ
p/q2(p−1)/q(v + ∥z − µ∥p)1/q.

Therefore, recalling that p/q = p−1, we have ∥µ− µ̃n(λ)∥ ≤ Kpλ
p−12p−1(v+∥z−µ∥p), which

is the desired result. ■
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3.3.2 Step 2: Bounding ∥ξ̂n(λn)−
∑

m≤n λmµ̃m(λm)∥

We can now proceed to bounding ∥ξ̂n(λn)−
∑

m≤n λmµ̃m(λm)∥ = ∥Sn(λn, Ẑn)∥ where

Sn ≡ Sn(λ
n, Ẑn) :=

n∑
m=1

λm

{
Trunc(λmYm)Ym + Ẑm − µ̃m(λm)

}
. (3.3.6)

and µ̃ is as in (3.3.4). Note that S is a martingale with respect to F . The following proposition is
the most technical result in the paper. It follows from a modification of the proof of Theorem 3.2
in Pinelis [129], combined with a Bennett-type inequality for 2-smooth separable Banach spaces
presented in Pinelis [129, Theorem 3.4]. We present the full result here, even those parts found
in Pinelis’ earlier work, for the sake of completeness.

Proposition 3.3.3. Let (Xt)t≥1 be a process satisfying Assumption 1 and lying in a Banach space
(B, ∥ · ∥) satisfying Assumption 2. Then, the exponential process

Un(λ
n, Ẑn) := exp

{∥∥∥Sn(λn, Ẑn)
∥∥∥− Cp(B)Gn

}
,

is bounded above by a nonnegative supermartingale with initial value 2, where Gn is defined
by (3.3.3).

Proof. Fix some n ≥ 1 and let Un = Un(λ
n, Ẑn). We first observe that

∥∆Sn∥ = λn∥Trunc(λnYn)Yn + Ẑn − µ̃n(λn)∥
≤ λn∥Trunc(λnYn)Yn∥+ λn∥Ẑn − µ̃n(λn)∥ ≤ 2,

by definition of Trunc. Let Tn = Trunc(λnYn)Yn. If (B, ∥ · ∥) is a Hilbert space with inner
product ⟨·, ·⟩ (which induces ∥ · ∥), then

En−1∥∆Sn∥2 = λ2nEn−1⟨Tn − En−1Tn, Tn − En−1Tn⟩ ≤ λ2nEn−1∥Tn∥2.

Otherwise, we have

En−1∥∆Sn∥2 ≤ λ2n{En−1 (∥Tn∥+ ∥En−1Tn∥)2}
≤ 2λ2n{En−1∥Tn∥2 + ∥En−1Tn∥2} ≤ 4λ2nEn−1∥Tn∥2,

where the penultimate inequality uses that (a+ b)2 ≤ 2a2 + 2b2 and the final inequality follows
from Jensen’s inequality. Therefore, we can write

En−1∥∆Sn∥2 ≤ Cλ2nEn−1∥Tn∥2, (3.3.7)

where C = 1 if ∥ · ∥ is induced by an inner product, and C = 4 otherwise. We note that this extra
factor of 4 is responsible for the two cases in the definition of Cp(B) in (3.2.4). Carrying on with
the calculation, write

En−1∥∆Sn∥2 ≤ Cλ2nEn−1

[
∥Tn∥p∥Tn∥2−p

]
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≤ CλpnEn−1 ∥Tn∥p

≤ CλpnEn−1 ∥Yn∥p

≤ Cλpn2
p−1(v + ∥µ− Ẑn∥p), (3.3.8)

where the final inequality follows by the same argument used to prove (3.3.5) in Lemma 3.3.2.
We have shown that the random variable ∥∆Sn∥ is bounded and its second moment (conditioned
on the past) can be controlled, which opens the door to Pinelis-style arguments (see Pinelis [129,
Theorem 3.4] in particular). Define the function φ : [0, 1] → R≥0 by

φ(θ) := En−1 cosh (∥Sn−1 + θ∆Sn∥) .

In principle, the norm function need not be smooth, and so the same applies to φ. However,
Pinelis [129] proved that one may assume smoothness of the norm without loss of generality (see
Pinelis [129, Remark 2.4]). Thus, a second order Taylor expansion yields

En−1 cosh(∥Sn∥) = φ(1) = φ(0) + φ′(0) +

∫ 1

0

(1− θ)φ′′(θ)dθ.

Observe that

φ′′(θ) ≤ β2En−1

[
∥∆Sn∥2 cosh(∥Sn−1∥)eθ∥∆Sn∥

]
≤ β2 cosh(∥Sn−1∥)En−1

[
∥∆Sn∥2

]
e2θ,

where the first inequality follows from the proof of Theorem 3.2 in Pinelis [129] and Theorem 3
in Pinelis [128], and the second inequality is obtained in view of ∥∆Sn∥ ≤ 2.

Next, by the chain rule, we have

φ′(0) =
d

dt
(En−1 cosh(∥Sn−1 + t∆Sn∥))

∣∣
t=0

= En−1

[
d

dt
cosh(∥Sn−1 + t∆Sn∥)

∣∣∣
t=0

]
= En−1

[
⟨Df∥f∥

∣∣
f=Sn−1

,∆Sn⟩ ·
d

dx
cosh(x)

∣∣
x=∥Sn−1∥

]
=
〈
Df∥f∥

∣∣
f=Sn−1

,En−1∆Sn

〉
· d
dx

cosh(x)
∣∣
x=∥Sn−1∥

= 0,

where ⟨Dfφ(f) |f=g, y − x⟩ denotes the Gateaux derivative of φ with respect to f at g in the
directon of y−x. The final equality follows from the fact that (Sn)n≥0 is itself a martingale with
respect to (Fn)n≥1. Thus, leveraging that φ′(0) = 0, we have

En−1 cosh(∥Sn∥) = φ(0) + φ′(0) +

∫ 1

0

(1− θ)φ′′(θ)dθ

≤ cosh(∥Sn−1∥)
(
1 + β2En−1

[
∥∆Sn∥2

] ∫ 1

0

(1− θ)e2θdθ

)
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(i)

≤ cosh(∥Sn−1∥)
(
1 + β2

(
e2 − 3

4

)
En−1

[
∥∆Sn∥2

])
(ii)

≤ cosh(∥Sn−1∥)
(
1 + Cp(B)λpn(v + ∥µ− Ẑn∥p)

)
(iii)

≤ cosh(∥Sn−1∥) exp
{
Cp(B)λpn(v + ∥µ− Ẑn∥p)

}
,

where (i) is obtained in view of
∫ 1

0
(1− θ)eaθdθ = ea−a−1

a2
, (ii) is obtained from (3.3.8) (and also

using that β = 1 in a Hilbert space), and (iii) follows from 1 + u ≤ eu for all u ∈ R. Since
n ≥ 1 was arbitrary, rearranging yields that the process defined by cosh(∥Sn∥) exp {−Cp(B)Gn}
is a nonnegative supermartingale. Noting that 1

2
exp (∥Sn∥) ≤ cosh(∥Sn∥) yields the claimed

result. ■

3.3.3 Step 3: Bounding Mn(λ
n)

We now combine Lemma 3.3.2 and Proposition 3.3.3 to write down an explicit form for the
supermartingale Mn(λ

n) in (3.3.2).

Lemma 3.3.4. Let (Xn)n≥1 and (B, ∥·∥) be as in Proposition 3.3.3. Then, the process (Mn(λ
n))

defined by

Mn(λ
n) := exp

{∥∥∥∥∥ξ̂n − µ
∑
m≤n

λm

∥∥∥∥∥− (Cp(B) +Kp2
p−1)Gn

}
,

is bounded above by a nonnegative supermartingale with initial value 2.

Proof. Recall that µ̃n(λ) = En−1[Trunc(λYn)Yn] + Ẑn. Applying the triangle inequality twice
and Lemma 3.3.2 once, we obtain∥∥∥∥∥ξ̂n − µ

∑
m≤n

λm

∥∥∥∥∥ ≤

∥∥∥∥∥ξ̂n −∑
m≤n

λmµ̃m(λm)

∥∥∥∥∥+∑
m≤n

λm∥µ̃(λm)− µ∥

≤ ∥Sn∥+Kp2
p−1
∑
m≤n

λpm(v + ∥µ− Ẑm∥p) = ∥Sn∥+Kp2
p−1Gn.

Therefore,

Mn(λ
n) = exp

{∥∥∥∥ξ̂n − µ
∑
m≤n

λm

∥∥∥∥− (Cp(B) +Kp2
p−1)Gn

}
≤ exp

{
∥Sn∥+Kp2

p−1Gn − (Cp(B) +Kp2
p−1)Gn

}
= exp {∥Sn∥ − Cp(B)Gn} ,

which is itself upper bounded by a nonnegative supermartingale with initial value 2 by Proposi-
tion 3.3.3. ■

We are finally ready to prove Theorem 3.2.1, which follows as a consequence of the following
result.
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Proposition 3.3.5. Let (B, ∥ · ∥) satisfy Assumption 2 and (X ′
n)n≥1 satisfy Assumption 1 with

respect to some filtration (Gn)n≥0. Suppose Ẑ is G0-measurable and there exists some function
r : (0, 1) → R≥0 such that, for any δ ∈ (0, 1],

P(∥µ− Ẑ∥ ≥ r(δ)) ≤ δ. (3.3.9)

Fix any δ ∈ (0, 1]. Decompose δ as δ = δ1 + δ2 where δ1, δ2 > 0. Then, for any λ > 0, with
probability 1− δ, simultaneously for all n ≥ 1, we have:

∥µ̂n − µ∥ ≤ λp−1(Cp(B) +Kp2
p−1)(v + r(δ2)

p) +
log(2/δ1)

λn
, (3.3.10)

where µ̂n = 1
n

∑
m≤n{Trunc(λ(X ′

m − Ẑ))(X ′
m − Ẑ) + Ẑ}.

Proof. LetB1 = {∃n :Mn(λ
n) ≥ 2/δ1} where (Mn) is as in Lemma 3.3.4. By Ville’s inequality

(Section 3.1.3), P(B1) ≤ δ1. Let B2 = {∥µ − Ẑ∥ ≥ r(δ2)}. By assumption, P(B2) ≤ δ2. Set
B = B1∪B2 so that P(B) ≤ δ. We take the sequence of predictable values (λn) in Lemma 3.3.4
to be constant and set λn = λ > 0 for all n. On the event Bc we have log(Mn(λ

n)) ≤ log(2/δ1)
for all n ≥ 1. That is, with probability 1− δ,

∥ξ̂n − λnµ∥ ≤ (Cp(B) +Kp2
p−1)Gn + log(2/δ1), (3.3.11)

and
Gn = nλp(v + ∥µ− Ẑ∥p) ≤ nλp(v + r(δ2)

p). (3.3.12)

Substituting (3.3.12) into (3.3.11) and dividing both sides by nλ gives the desired result. ■

Proof of Theorem 3.2.1. Given (Xn)n≥1 as in the statement of Theorem 3.2.1 apply Proposi-
tion 3.3.5 with X ′

n = Xn+k and Gn = Fn+k for all n ≥ 0. ■

3.4 Law of the Iterated Logarithm Rates
In the previous section, we derived a time-uniform, line-crossing inequality that controlled (with
high probability) the deviation between a truncated mean estimator and the unknown mean. This
inequality was parameterized by a scalar/truncation level λ, which, when optimized appropri-
ately, could guarantee a width of O(v1/p(log(1/δ)/n)(p−1)/p) with probability at least 1− δ for a
preselected sample size n. However, in many settings, one may not know a target sample size in
advance and may wish to observe the data sequentially and stop adaptively at a data-dependent
stopping time.

To generalize our bound to an anytime-valid setting (i.e., one where the sample size is not
known in advance and may be data-dependent), we use a technique known as stitching [75].
This involves deploying Theorem 3.2.1 once per (geometrically spaced) epoch, and then using a
carefully constructed union bound to obtain coverage simultaneously for all sample sizes.

The idea is to apply Theorem 3.2.1 once per geometrically spaced epoch with different
parameters k and λ in each epoch. We then take a union bound over epochs. Due to the
time-uniformity of Theorem 3.2.1, the resulting estimator can be updated within the epoch,
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not only at their boundaries. The bound depends on a “stitching function” h which satisfies∑
j≥1 1/h(j) = 1 and a parameter η which determines the geometric spacing of the epochs,

which are the intervals [ηj, ηj+1). For simplicity we take η = 2.

Theorem 3.4.1 (Stitching). Let (B, ∥·∥) satisfy Assumption 2 and (Xn)n≥1 satisfy Assumption 1.
Suppose that for each k, Ẑk is a Fk−1-predictable estimate such that

P(∥µ− Ẑk∥ ≥ r(δ, k)) ≤ δ, (3.4.1)

for some r : (0, 1) × N → R≥0. Given any n, let jn = ⌊log2(n)⌋. Let h : N → R>0 satisfy∑
j≥1 1/h(j) ≤ 1. Fix any δ ∈ (0, 1] and let µ̂n be as in (3.2.2). Then there exist constants

(λj)j≥1 such that with probability 1− δ, simultaneously for all n ≥ 2, we have:

∥µ̂n(jn, λjn , Ẑjn)− µ∥ = O

(
(v + r(δ/2, jn)

p)1/p
(
log(h(jn)/δ)

n

)(p−1)/p
)
. (3.4.2)

A few words are in order before we prove Theorem 3.4.1. As we discussed above, the idea is
to apply a different estimator µ̂n(jn) in each epoch [2j, 2j+1). That is, the number of observations
we set aside for the naive estimate in epoch [2j, 2j+1) is j. (One could replace j by any k(j) where
k(j) grows slower than 2j .) The bound holds for all n ≥ 2 so that we avoid various trivialities
about defining the naive estimate Ẑ1. Finally, note that to get iterated logarithm rates, h can be
any polynomial which satisfies

∑
j≥1 h

−1(j) ≤ 1 (e.g., h(j) = j(j + 1)).

Proof of Theorem 3.4.1. We will apply Theorem 3.2.1 once in every epoch [2j, 2j+1) for j ≥ 1.
In epoch [2j, 2j+1) we apply the estimator µ̂n(j) = µ̂n(j, λj, Ẑj), where λj > 0 is fixed. For any
δj > 0, Theorem 3.2.1 provides the guarantee that

P(∃n ∈ [2j, 2j+1) : ∥µ̂n(j)− µ∥ ≥ W (n, j)) ≤ δj,

where

W (n, j) = λp−1
j (Cp(B) +Kp2

p−1)(v + r(δj/2, j)
p) +

log(4/δj)

λj(n− j)
. (3.4.3)

(Here the two terms above have split δj into δj/2 + δj/2). Let δj = δ/h(j) so that
∑

j δj ≤ δ.
Note that jn corresponds to the epoch in which n belongs, i.e., n ∈ [2jn , 2jn+1). Therefore,

P (∃n ≥ n0 : ∥µ̂n(jn)− µ∥ ≥ W (n, jn))

≤
∑
j≥1

P(∃n ∈ [2j, 2j+1) : ∥µ̂n(jn)− µ∥ ≥ W (n, jn))

≤
∑
j≥1

δj ≤ δ.

It remains to select λj so that W (n, jn) decreases at the desired rate. Choose

λj =

(
log(4/δj)

D(v + rpj )
· ℓj
2j

)1/p

,
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where D = Cp(B) + Kp2
p−1, rj = r(δj/2, j), and ℓj = log(1/δj). With this choice, (3.4.3)

becomes

W (n, jn) = (D(v + rpjn))
1/p (log(4/δjn))

1−1/p

((
ℓjn
2jn

)1−1/p

+

(
2jn

ℓjn

)1/p

· 1

n− jn

)

Now, since n− jn = n− ⌊log2(n)⌋ ≥ n/2 for n ≥ 2, 2jn ≤ n, and ℓjn ≥ 1, we have(
2jn

ℓjn

)1/p

· 1

n− jn
≤ 2

n1−1/p
= o(1).

Further, 2jn ≥ n/2 and log2(n) ≤ jn + 1, so(
ℓjn
2jn

)1−1/p

≤
(
2 log(h(jn)/δ)

n

)1−1/p

= O

(
log(h(⌊log2(n)⌋)/δ)

n

)1−1/p

.

Noticing that log(4/δjn) = O(log(h(⌊log2(n)⌋)/δ)) by the same reasoning, we have

W (n, jn) = O

(
(v + rpjn)

1/p

(
log h(⌊log2(n)⌋) + log(1/δ)

n

)1−1/p
)
,

as claimed. ■

As was done with Theorem 3.2.1, one can instantiate Theorem 3.4.1 with particular esti-
mators to achieve specific rates. For instance, if Ẑk is the plug-in mean estimate, then we can
take r(δ, k)p = O( v

δkp−1 ), so r(δ/2, jn)p = O( v
δ log(n)p−1 ) = o(1). If, in addition, we take say

h(j) = j(j + 1) for j ≥ 1, we achieve a final rate of

O

(
v1/p

(
log log n+ log(1/δ)

n

)1−1/p
)
, (3.4.4)

which loses only an iterated logarithm factor compared to the line-crossing inequality presented
in Section 3.2. For p = 2, this asymptotic width is optimal by the law of the iterated loga-
rithm [69, 132]. For 1 < p < 2, such a law does not necessarily exist—it depends on whether
the distribution is in the domain of partial attraction of a Gaussian [92, 115]. Thus, while we
cannot claim asymptotic optimality in this case, we note that our result extends and compliments
recent efforts to obtain confidence sequences with iterated logarithm rates to the case of infinite
variance (e.g., [75, 159, 32]).

For the purposes of constructing time-uniform bounds in practice, it’s worth tracking the
constants throughout the proof of Theorem 3.4.1. Doing so, we obtain a width of

W (n, jn) = (D(v + r(δ/2, jn)
p))1/p

((
2 log(h(jn)/δ)

n

)1−1/p

+
2

n1−1/p

)
, (3.4.5)

where D = Cp(B) +Kp2
p−1 and jn = ⌊log2(n)⌋.
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3.5 Bound Comparison and Simulations
In the above sections, we argued that the truncated mean estimator, when appropriately opti-
mized, could obtain a distance from the true mean of O

(
v1/p (log(1/δ)/n)(p−1)/p ) with high

probability. In particular, this rate matched that of the geometric median-of-means estimator due
to Minsker [121]. In this section, we study the empirical instead of theoretical performance of
our bounds and estimator.

Comparing Tightness of Bounds In Figure 3.1, we compare the confidence bounds obtained
for our truncation-based estimators optimized for a fix sample size (Corollary 3.2.3) against
other bounds in the literature. Namely, we compare against geometric median-of-means [121],
the sample mean, and (in the case a shared covariance matrix exists for observations) the tourna-
ment median-of-means estimator [112]. We plot the natural logarithm of the bounds against the
logarithm base ten of the sample sizes n for n ∈ [102, 1010] and for p ∈ {1.25, 1.5, 1.75, 2.0}. We
assume δ = 10−4 and v = 1. For truncation-based estimates, we assume k = ⌊n/10⌋ samples
are used to produce the initial mean estimate and the remaining n− k are used for the final mean
estimate. We plot the resulting bounds for when the initial mean estimate is either computed
using the sample mean or geometric median-of-means. For the tournament median-of-means
estimate, we assume observations take their values in Rd for d = 100, and that the corresponding
covariance matrix is the identity Σ = Id/d.

As expected, all bounds have a slope of −(p − 1)/p when n is large, indicating equivalent
dependence on the sample size. For all values of p, the truncation-based estimator using ge-
ometric median-of-means as an initial estimate obtains the tightest rate once moderate sample
sizes are reached (n = 104 or n = 105). When p ∈ {1.25, 1.5}, much larger sample sizes are
needed for truncation-based estimates with a sample mean initial estimate to outperform geo-
metric median means (needing ≥ 1010 samples for p = 1.25). For p = 2.0 (i.e., finite variance)
the tournament median-of-means estimate, despite achieving optimal sub-Gaussian dependence
on λmax(Σ) and Tr(Σ) = v, performs worse than even the naive mean estimate. This is due to
prohibitively large constants. These plots suggest that the truncation-based estimate is a practical
and computationally efficient alternative to approaches based on median-of-means.

Performance of Estimators on Simulated Data In Figure 3.2, we examine the performance
of the various mean estimators by plotting the distance between the estimates and the true mean.
To do this, we sample n = 100, 000 i.i.d. samples X1, . . . , Xn ∈ Rd for d = 10 in the following
way. First, we sample i.i.d. directions U1, . . . , Un ∼ Unif(Sd−1) from the unit sphere. Then, we
sample i.i.d. magnitudes Y1, . . . , Yn ∼ Pareto(a) from the Pareto II (or Lomax) distribution with
a = 1.75.1 The learner then observes X1 = Y1 · U1, . . . , Xn = Yn · Un, and constructs either a
geometric median estimate, a sample mean estimate, or a truncated mean estimate.

To compute the number of folds for geometric median-of-means, we follow the parameter
settings outlined in Minsker [121] and assume a failure probability of δ = 10−4 (although we
are not constructing confidence intervals, the failure probability guides how to optimize the esti-
mator). Once again, we consider the truncated mean estimator centered at both the sample mean

1If Y ∼ Pareto(a), the Y has inverse polynomial density ∝ (1 + x)−a.
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(a) p = 2.0 (b) p = 1.75

(c) p = 1.5 (d) p = 1.25

Figure 3.1: For p ∈ {1.25, 1.5, 1.75}, we plot the tightness of optimized bounds associated with
the sample mean, geometric median-of-means (Geo-MoM), truncation with initial sample mean
estimate, and truncation with initial Geo-MoM estimate. We assume n ∈ [102, 1010], v = 1.0,
δ = 10−4, and k = n/10. In the case p = 2.0, we assume a shared covariance matrix Σ exists so
we can plot the tournament median-of-means bounds assuming λmax(Σ) = v/d and d = 100.
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(a) λ = 0.0005 (b) λ = 0.005

(c) λ = 0.05 (d) λ = 0.5

Figure 3.2: We compare the empirical distributions of distance between the mean estimate and
the true mean for a variety of estimators. We generate n = 106 i.i.d. samples in R10 as outlined
above, and use k = ⌊

√
106⌋ samples to construct initial mean estimates. We compute these

estimates of 250 runs. For truncation-based estimates, we consider λ ∈ [0.0005, 0.005, 0.05, 0.5].
We only include the sample mean in the first plot for readability.

and a geometric median-of-means estimate. We always use k = ⌊
√
n⌋ samples to construct the

initial estimate, and produce a plot for hyperparameter λ ∈ [0.0005, 0.005, 0.05, 0.5].
We construct these estimators over 250 independent runs and then construct box and whisker

plots summarizing the empirical distance between the estimators and the true mean. The boxes
have as a lower bound the first quartile Q1, in the middle the sample median M , and at the top
the third quartile Q3. The whiskers of the plot are given by the largest and smallest point falling
within M ± 1.5 × (Q3 − Q2), respectively. All other points are displayed as outliers. We only
include the sample mean in the first plot as to not compress the empirical distributions associated
with other estimates.

As expected, the sample mean suffers heavily from outliers. For λ ∈ {0.0005, 0.005} (cor-
responding to truncation at large radii), the geometric median-of-means estimate is roughly two
times closer to the mean than either truncation-based estimate. In the setting of aggressive trun-
cation (λ ∈ {0.05, 0.5}), the truncated mean estimator centered at the geometric median-of-
means initial estimate offers a significantly smaller distance to the true mean than just geometric
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median-of-means alone. The truncated estimate centered at the sample mean performs similarly
for λ = 0.05, but suffers heavily from outliers when λ = 0.5. Interestingly, the recommended
truncation level for optimizing tightness at n = 100, 000 samples is λ ≈ 0.0004 per Corol-
lary 3.2.2. Our experiments reflect that one may want to truncate more aggressively than is
recommended in the corollary. In practice, one could likely choose an appropriate truncation
level through cross-validation.

3.6 Summary

In this work, we presented a novel analysis of a simple truncation/threshold-based estimator of
a heavy-tailed mean in smooth Banach spaces, strengthening the guarantees on such estimators
that currently exist in the literature. In particular, we allow for martingale dependence between
observations, replace the assumption of finite variance with a finite p-th moment for 1 < p ≤ 2,
and let the centered p-th moment be bounded instead of the raw p-th moment (thus making the
estimator translation invariant). Our bounds are also time-uniform, meaning they hold simulta-
neously for all sample sizes. We provide both a line-crossing inequality that can be optimized
for a particular sample size (but remains valid at all times), and a bound whose width shrinks to
zero at an iterated logarithm rate. Experimentally, our estimator performs quite well compared
to more computationally intensive methods such as geometric median-of-means, making it an
appealing choice for practical problems.

3.A Noncentral moment bounds

For completeness, we state our bound when we assume only a bound on the raw (uncentered)
p-th moment of the observations. This was the setting studied by Catoni and Giulini [23]. We
replace assumption 1 with the following:

Assumption 3. We assume (Xn)n≥1 are a sequence of B-valued random variables adapted to a
filtration (Fn)n≥0 such that

(1) E(Xn | Fn−1) = µ, for all n ≥ 1 and some unknown µ ∈ B, and

(2) supn≥1 E (∥Xn∥p | Fn−1) ≤ v < ∞ for some known p ∈ (1, 2] and some known constant
v > 0.

With only the raw moment assumption, we do not try and center our estimator. Instead we
deploy µ̂n(0, λ, 0) = 1

n

∑
m≤n Trunc(λXm)Xm. With this estimator we obtain the following

result, which achieves the same rate as Catoni and Giulini [23] and Chugg et al. [32].

Theorem 3.A.1. LetX1, X2, . . . be random variables satisfying Assumption 3 which live in some
Banach space (B, ∥ · ∥) satisfying Assumption 2. Fix any δ ∈ (0, 1]. Then, for any λ > 0, with
probability 1− δ, simultaneously for all n ≥ 1, we have:

∥µ̂n(0, λ, 0)− µ∥ ≤ 2vλp−1(Cp(B) +Kp2
p−1) +

log(2/δ)

λn
. (3.A.1)
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Moreover, if we want to optimize the bound at a particular sample size n∗ and we set

λ =

(
log(2/δ)

2n∗v(Cp(B) +Kp2p−1)

)1/p

,

then with probability 1− δ,

∥µ̂n(0, λ, 0)− µ∥ ≤ (2v(Cp(B) +Kp2
p−1))1/p

(
log(1/δ)

n

)1−1/p

. (3.A.2)

Proof. Apply Theorem 3.2.1 with k = 0 and Ẑk = 0. Then note that we can take r(δ, 0) = v1/p

for all δ since ∥µ∥ ≤ (E∥X∥p)1/p ≤ v1/p by Jensen’s inequality. ■
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Part II

Applications of Martingale Concentration
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Chapter 4

Fully Adaptive Composition in Differential
Privacy

Composition is a key feature of differential privacy. Well-known advanced composition
theorems allow one to query a private database quadratically more times than basic pri-
vacy composition would permit. However, these results require that the privacy parameters
of all algorithms be fixed before interacting with the data. To address this, Rogers et al.
[133] introduced fully adaptive composition, wherein both algorithms and their privacy
parameters can be selected adaptively. They defined two probabilistic objects to measure
privacy in adaptive composition: privacy filters, which provide differential privacy guar-
antees for composed interactions, and privacy odometers, time-uniform bounds on pri-
vacy loss. There are substantial gaps between advanced composition and existing filters
and odometers. First, existing filters place stronger assumptions on the algorithms being
composed. Second, these odometers and filters suffer from large constants, making them
impractical. We construct filters that match the rates of advanced composition, including
constants, despite allowing for adaptively chosen privacy parameters. En route we also
derive a privacy filter for approximate zCDP. We also construct several general families of
odometers. These odometers match the tightness of advanced composition at an arbitrary,
preselected point in time, or at all points in time simultaneously, up to a doubly-logarithmic
factor. We obtain our results by leveraging advances in martingale concentration. In sum,
we show that fully adaptive privacy is obtainable at almost no loss.

4.1 Introduction
Differential privacy [55] is an algorithmic criterion that provides meaningful guarantees of in-
dividual privacy for analyzing sensitive data. Intuitively, an algorithm is differentially private if
similar inputs induce similar distributions on outputs. More formally, an algorithm A : X → Y
is differentially private if, for any set of outcomes G ⊂ Y and any neighboring inputs x, x′ ∈ X ,

P(A(x) ∈ G) ≤ eϵP(A(x′) ∈ G) + δ, (4.1.1)

where ϵ and δ are the privacy parameters of the algorithm.
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A key property of differential privacy is graceful composition. Suppose A1, . . . , An are al-
gorithms such that each Am is (ϵm, δm)-differentially private. Advanced composition [57, 84]
states that, for any δ′ > 0, the composed sequence of algorithms is (ϵ, δ)-differentially private,
where δ = δ′ +

∑
m≤n δm, and

ϵ =

√√√√2 log

(
1

δ′

)∑
m≤n

ϵ2m +
∑
m≤n

ϵm

(
eϵm − 1

eϵm + 1

)
. (4.1.2)

When all privacy parameters are the same and small, we roughly have ϵ = O(
√
nϵm). Hence,

analysts can make use of sensitive datasets with a slow degradation of privacy.
However, there is a major disconnect between most existing results on privacy composition

and modern data analysis. As analysts view the outputs of algorithms, the future manner in
which they interact with the data changes. Advanced composition allows analysts to adaptively
select algorithms, but not privacy parameters. In many cases, analysts may wish to choose the
subsequent privacy parameters based on the outcomes of the previous private algorithms. For
example, if an analyst learns, from past computations, that they only need to run one more
computation, they should be able to use the remainder of their privacy budget in the final round.
Likewise, if an analyst is having a hard time deriving conclusions, they should be allowed to
adjust privacy parameters to extend the allowable number of computations.

This desideratum has motivated the study of fully adaptive composition, wherein one is al-
lowed to adaptively select the privacy parameters of the algorithms. Rogers et al. [133] define
two probabilistic objects which can be used to ensure privacy guarantees in fully adaptive com-
position. The first, called a privacy filter, is an adaptive stopping condition that ensures an entire
interaction between an analyst and a dataset retains a pre-specified target privacy level, even
when the privacy parameters are chosen adaptively. The second, called a privacy odometer, pro-
vides a sequence of high-probability upper bounds on how much privacy has been lost up to any
point in time. While this work took the first steps towards fully adaptive composition, their filters
and odometers suffered from large constants and the latter suffered from sub-optimal asymptotic
rates.

We show that, as long as a target privacy level is pre-specified, one can obtain the same rate as
advanced composition, including constants. We also construct families of privacy odometers that
are not only tighter than the originals, but can be optimized for various target levels of privacy.
Overall, we show that full adaptivity is not a cost—but rather a feature—of differential privacy.

4.1.1 Related Work
Privacy Composition: There is a long line of work on privacy composition. The “basic com-
position” theorem states that, when composing private algorithms, the privacy parameters (both
ϵ and δ) add up linearly [55, 54, 51]. The “advanced composition” theorem allows the total ϵ
to grow sublinearly with a small degradation on δ [57]. Later work [84, 123] studies “optimal”
composition, a computationally intractable formula that tightly characterizes the overall privacy
of composed mechanisms.

More recently, several variants of privacy have been studied including (zero)-concentrated
differential privacy (zCDP) [20, 53], Renyi differential privacy (RDP) [122], and f -differential
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privacy (f -DP) [46]. These all exhibit tighter composition results than differential privacy, but
for restricted classes of mechanisms. These results do not allow adaptive choices of privacy
parameters.

Privacy Filters and Odometers: Rogers et al. [133] originally introduced privacy filters and
odometers, which allow privacy composition with adaptively selected privacy parameters. While
their contributions provide a decent approximation of advanced composition, their bounds suffer
from large constants, which prevents practical usage. Our work directly improves over these
initial results. First, we construct privacy filters essentially matching advanced composition. We
also provide flexible families of privacy odometers that outperform those of Rogers et al. [133].

Feldman and Zrnic [61] leverage RDP to construct Rényi filters, where they require individual
mechanisms to satisfy RDP. Since our proof establishes a new privacy filter for approximate
zCDP [20], our results also extend to approximate RDP [127], which directly generalizes their
Rényi filter. Even though it is also possible to obtain a privacy filter for (ϵ, δ)-DP through Rényi
filters [61], this result requires a stronger assumption that algorithms being composed satisfy
probabilistic (i.e. point-wise) differential privacy [85]. Since converting from differential privacy
to probabilistic differential privacy can be costly (see Lemma 4.4.2), our filters demonstrate an
improvement by avoiding the conversion cost.

More recently, Koskela et al. [93] and Smith and Thakurta [146] provide privacy filters for
Gaussian DP (GDP) [46]. However, their results do not hold for more general mechanisms under
f -DP and therefore cannot handle algorithms with rare “catastrophic” privacy failure events, in
which the privacy loss goes to infinity. Both of our (ϵ, δ)-filter and approximate zCDP filters can
handle such events.

Feldman and Zrnic [61] and Lécuyer [105] construct RDP odometers. The former work
sequentially composes Rényi filters and the latter work simultaneously runs multiple Rényi filters
and takes a union bound. Neither odometer provides high probability, time-uniform bounds on
privacy loss, making these results incomparable to our own. We believe our notion of odometers,
which aligns with that of Rogers et al. [133], is more natural.

To prove our results, we leverage time-uniform concentration results for martingales [73,
76]. The bounds in these papers directly improve over related self-normalized concentration
results [40, 27]. These latter bounds were leveraged in Rogers et al. [133] to construct filters and
odometers.

4.1.2 Summary of Contributions
In this work, we provide two primary contributions. We present these results in full rigor follow-
ing a brief discussion of privacy basics and martingale theory in Section 4.2.

In Theorem 4.3.3 of Section 4.3, we construct privacy filters that match the rate of advanced
composition, significantly improving over results of Rogers et al. [133]. Our filter follows from a
more general approximate zCDP/RDP filter [20, 127] presented in Theorem 4.3.1. In particular,
this approximate zCDP/RDP filter greatly generalizes existing filters from the pure RDP setting
[61]. This extension allows us to capture a broader class of algorithms and avoids the conversion
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(a) Comparing lower order terms (b) Comparing privacy odometers

Figure 4.1: Figure 4.1a compares the lower order terms of advanced composition and our privacy
filter. Figure 4.1b compares the original odometer of Rogers et al. [133] with our odometers
(filter, mixture, and stitched).

loss when translating bounds between pure RDP and (ϵ, δ)-differential privacy. We state an
informal version of filter in the case of approximate differential privacy below1.

Informal 4.1.1 (Improved Privacy Filter). Fix target privacy parameters ϵ > 0 and δ > 0, and
suppose (An)n≥1 is an adaptively selected sequence of algorithms. Assume thatAn is (ϵn, δn)-DP
conditioned on the outputs of the first n−1 algorithms, where ϵn and δn may depend on outputs of

A1, . . . , An−1. If a data analyst stops interacting with the data before
√
2 log

(
1
δ

)∑
m≤n+1 ϵ

2
m +

1
2

∑
m≤n+1 ϵ

2
m > ϵ, then the entire interaction is (ϵ, δ)-DP.

In Theorem 4.4.5 of Section 4.4, we construct improved privacy odometers — that is, se-
quences of upper bounds on privacy loss which are all simultaneously valid with high probabil-
ity. Our three families of odometers theoretically and empirically outperform those of Rogers
et al. [133]. See Figure 4.1b for a comparison.

For both results, our key insight is to view adaptive privacy composition as depending not
on the number of algorithms being composed, but rather on the sums of squares of privacy
parameters,

∑
m≤n ϵ

2
m. This shift to looking at “intrinsic time” allows us to apply recent advances

in time-uniform concentration [73, 76] to privacy loss martingales. Overall, our results show that
there is essentially no cost for fully adaptive private data analysis.

1In Appendix 4.D, we provide an alternative proof for our privacy filter result through reductions to generalized
randomized response. While it gives the exact same rates, we believe it could be of independent interest. For
example, it may be useful for obtaining filters with rates like the optimal composition [123, 84], which used a
similar reduction to randomized response in their analysis.
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4.2 Background on Differential Privacy
Throughout, we assume all algorithms map from a space of datasets X to outputs in a measurable
space, typically either denoted (Y ,G) or (Z,H). For a sequence of algorithms (An)n≥1, we often
consider the composed algorithm A1:n := (A1, . . . , An). For more background on measure-
theoretic matters, as well as on the notion of neighboring datasets, see Appendix 4.A.

We start by formalizing a generalization of differential privacy in which the privacy param-
eters of an algorithm An can be functions of the outputs of A1, . . . , An−1. In particular, we
replace the probabilities in Equation (4.1.1) with conditional probabilities given relevant random
variables.

Definition 4.2.1 (Conditional Differential Privacy). Suppose A and B are algorithms mapping
from a space X to measurable spaces (Y ,G) and (Z,H) respectively. Suppose ϵ, δ : Z → R≥0

are measurable functions. We say the algorithm A is (ϵ, δ)-differentially private conditioned on
B if, for any neighbors x, x′ ∈ X and for all measurable sets G ∈ G, we have

P (A(x) ∈ G | B(x))

≤ eϵ(B(x))P (A(x′) ∈ G | B(x)) + δ(B(x)).

For conciseness, we will write either ϵ or ϵ(x) for ϵ(B(x)) and likewise δ or δ(x) for δ(B(x)).

In the nth round of adaptive composition, we will set A := An and B := A1:n−1. In this
setting, the analyst has functions ϵn, δn : Yn−1 → R≥0 and takes the nth round privacy parame-
ters to be ϵn(A1:n−1(x)) and δn(A1:n−1(x)). In other words, the analyst uses the outcome of the
first n − 1 algorithms to decide the level of privacy for the nth algorithm, ensuring that An is
(ϵn, δn)-differentially private conditioned on A1:n−1.

We will also leverage the notion of zero-concentrated differential privacy (zCDP) [20], which
often provides a cleaner analysis for privacy composition. First, we will recall the definition of
Rényi divergence.

Definition 4.2.2. The Rényi divergence from P to Q of order λ ≥ 1 is defined as

Dλ(P∥Q) :=
1

λ− 1
log

(
EY∼P

[(
P (Y )

Q(Y )

)λ−1
])

.

The notion of zCDP bounds the Rényi divergence from A(x) to A(x′) for any neighbors x
and x′. We will focus on a conditional version of a more general definition called approximate
zCDP [20, 127] that permits a small probability of unbounded Rényi divergence. The conditional
approximate zCDP definition we provides uses the convex mixture formulation adapted from
Papernot and Steinke [127], since it is more convenient for our proof. In Appendix 4.C.1, we will
show that in the case δ and ρ are constant, this definition is equivalent to the original definition
in Bun and Steinke [20].
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Definition 4.2.3 (Conditional Approximate zCDP). Suppose A : X × Z → Y with outputs in a
measurable space (Y ,G). Suppose δ, ρ : Y → R≥0. We say the algorithm A satisfies conditional
δ(z)-approximate ρ(z)-zCDP if, for all z ∈ Z and any neighboring datasets x, x′, there exist
probability transition kernels2 P ′, P ′′, Q′, Q′′ : Z × G → [0, 1] such that the conditional outputs
are distributed according to the following mixture distributions:

A(x; z) ∼ (1− δ(z))P ′(· | z) + δ(z)P ′′(· | z)
A(x′; z) ∼ (1− δ(z))Q′(· | z) + δ(z)Q′′(· | z),

where for all λ ≥ 1, Dλ(P
′(· | z)∥Q′(· | z)) ≤ ρ(z)λ and Dλ(Q

′(· | z)∥P ′(· | z)) ≤ ρ(z)λ for
all z ∈ Z .

We will also use the notions of filtration and martingales.

Filtration and Martingales: A process (Xn)n∈N is said to be a martingale with respect to a
filtration (Fn)n∈N if, for all n ∈ N, (a) Xn is Fn-measurable, (b) E|Xn| < ∞, and (c) E(Xn |
Fn−1) = Xn−1. Correspondingly, (Xn)n∈N is a supermartingale if E(Xn | Fn−1) ≤ Xn−1.
In our context, we will consider the natural filtration (Fn(x))n∈N generated by (An(x))n≥1. In
our proofs, we construct the appropriate (super)martingales so that we can leverage the optional
stopping theorem and time-uniform concentration to obtain privacy filters and odometers [157,
73, 76]. We present a full exposition of the mathematical tools in Appendix 4.A and 4.B.

4.3 Privacy Filters
We now provide our main results on privacy filters. In general, a privacy filter is a function N
that takes the privacy parameters of a sequence of private algorithms as input and decides to
stop at some point so that the composition of these algorithms satisfies a pre-specified level of
privacy. We will first present a privacy filter for approximate zCDP (Theorem 4.3.1), which will
immediately imply the privacy filter result for (ϵ, δ)-DP (Theorem 4.3.3). Since approximate
zCDP bounds Rényi divergence of all orders λ, our proof for Theorem 4.3.1 also directly implies
a privacy fiter for approximate RDP [127], which generalizes the RDP filter by Feldman and
Zrnic [61].

Our (ϵ, δ)-DP filter improves on the rate of the original filter presented in Rogers et al. [133]
and matches the rate of advanced composition that requires pre-fixed choices of privacy param-
eters. Even though it is also possible to obtain an (ϵ, δ)-DP filter through the result of Feldman
and Zrnic [61], our privacy filters avoid their conversion costs and provide a tighter bound.3

We can now state our general privacy filter in terms of approximate zCDP.

Theorem 4.3.1 (Approximate zCDP filter). Let (An)n≥1 be an adaptive sequence of algorithms,
where An : X × Yn−1 → Y . Assume that δn, ρn : Yn−1 → R≥0. For any n ≥ 1, assume that

2A probability transition kernel P ′ : Z ×G → [0, 1] is a mapping such that P (· | z) : G → [0, 1] is a probability
measure for each z ∈ Z .

3Feldman and Zrnic [61, Section 4.3] apply Rényi filters to algorithms which satisfy (conditional) probabilistic
differential privacy (pDP). In general, a lossy conversion from (ϵ, δ)-DP to (ϵ, δ)-pDP is required to apply their filter.
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An(·; y1:n−1) is conditionally δn(y1:n−1)-approximate ρn(y1:n−1)-zCDP for any prior outcomes
y1:n−1. We define the function N : Y∞ → N where

N(y1, y2, · · · ) = inf

{
n :

n+1∑
m=1

ρm(y1:m−1) > ρ

}
∧ inf

{
n :

n+1∑
m=1

δm(y1:m−1) > δ

}
.

Then A1:N(·)(·) is δ-approximate ρ-zCDP, where N(x) = N((An(x))n≥1).

We note that the argument used to prove the above theorem immediately implies a privacy
filter for approximate RDP, and thus Theorem 4.3.1 can be viewed as a strict generalization
of the work of Feldman and Zrnic [61]. Further, Theorem 4.3.1 implies a privacy filter under
(ϵ, δ)-differential privacy. To show this implication, we will use the following conversion results.

Lemma 4.3.2 ([20]). If A satisfies (ϵ, δ)-DP, then A satisfies δ-approximate 1
2
ϵ2-zCDP. If A

satisfies δ-approximate ρ-zCDP, then A satisfies (ρ+ 2
√
ρ ln(1/δ′), δ + (1− δ)δ′)-DP.

We can now obtain our (ϵ, δ)-privacy filter by a conversion of individual approximate differ-
ential privacy parameters to approximate zCDP ones, application of the approximate zCDP filter,
and the conversion of approximate zCDP back to approximate differential privacy.

Theorem 4.3.3 ((ϵ, δ)-DP filter). Suppose (An)n≥1 is a sequence of algorithms such that, for any
n ≥ 1, An is (ϵn, δn)-differentially private conditioned on A1:n−1. Let ϵ > 0 and δ = δ′ + δ′′ be
target privacy parameters such that δ′ > 0 and δ′′ ≥ 0. We define the function N : Y∞ → N
where

N(y1, y2, · · · ) = inf

{
n :

n+1∑
m=1

ϵ2ℓ(y1:m−1)/2 > ρ

}
∧ inf

{
n :

n+1∑
m=1

δm(y1:m−1) > δ

}
.

Then, the algorithm A1:N(·)(·) is (ρ+ 2
√
ρ log(1/δ), δ)-DP, where N(x) := N((An(x))n≥1).

Proof of Theorem 4.3.1. In our proof, we assume that
∑∞

n=1 δn(y1:n−1) ≤ δ for all sequences
(yn)n≥1 without loss of generality. Let P1:n andQ1:n denote the joint distributions of (A1, . . . , An)
with inputs x and x′, respectively. We overload notation and write P1:n(y1, . . . , yn) andQ1:n(y1, . . . , yn)
for the likelihood of y1, . . . , yn under input x and x′ respectively. We similarly write Pn(yn |
y1:n−1) and Qn(yn | y1:n−1) for the corresponding conditional densities.

By Bayes rule, for any n ∈ N, we have

P1:n(y1, · · · , yn) =
n∏

m=1

Pm(ym | y1:m−1),

Q1:n(y1, · · · , yn) =
n∏

m=1

Qm(ym | y1:m−1).

By our assumption of approximate zCDP at each step n, we can write the conditional likeli-
hoods of Pn and Qn as the following convex combinations:

Pn(yn | y1:n−1) = (1− δn(y1:n−1))P
′
n(yn | y1:n−1) + δn(y1:n−1)P

′′
n (yn | y1:n−1),
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Qn(yn | y1:n−1) = (1− δn(y1:n−1))Q
′
n(yn | y1:n−1) + δn(y1:n−1)Q

′′
n(yn | y1:n−1),

such that for all λ ≥ 1 and all prior outcomes y1:n−1, we have both

Dλ

(
P ′
n(· | y1:n−1) ∥ Q′

n(· | y1:n−1)
)
≤ ρn(y1:n−1)λ, (4.3.1)

Dλ

(
Q′
n(· | y1:n−1) ∥ P ′

n(· | y1:n−1)
)
≤ ρn(y1:n−1)λ. (4.3.2)

Now, from Lemma 4.C.5, we can then write these distributions as a convex combination of
“good” distributions for which Rényi divergence is small, and “bad” distributions for which the
divergence may be unbounded. In more detail, using the assumption that

∑∞
n=1 δn(y1:n−1) ≤ δ

for all seqeunces (yn)n≥1, we have, for all n ≥ 1,

P1:n(y1, · · · , yn) = (1− δ)
n∏

m=1

P ′
m(ym|y1:m−1)︸ ︷︷ ︸

P ′
1:n(y1,··· ,yn)

+δP ′′
1:n(y1, · · · , yn) (4.3.3)

Q1:n(y1, · · · , yn) = (1− δ)
n∏

m=1

Q′
m(ym|y1:m−1)︸ ︷︷ ︸

Q′
1:n(y1,··· ,yn)

+δQ′′
1:n(y1, · · · , yn). (4.3.4)

From the above, if N : Y∞ → N is the time outlined in the theorem statement, it follows that
the joint densities4 P1:N of A1(x), · · ·AN(x)(x) and Q1:N of A1(x

′), · · ·AN(x′)(x
′), and both can

be written as a convex combination of distributions (P ′
1:N , P

′′
1:N) and (Q′

1:N , Q
′′
1:N):

P1:N(y1, y2, · · · , yN) = (1− δ)
N∏
n=1

P ′
n(yn|y1:n−1)︸ ︷︷ ︸

P ′
1:N (y1,y2,··· ,yN )

+δP ′′
1:N(y1, y2, · · · , yN)

Q1:N(y1, y2, · · · , yN) = (1− δ)
N∏
n=1

Q′
n(yn|y1:n−1)︸ ︷︷ ︸

Q′
1:N (y1,y2,··· ,yN )

+δQ′′
1:N(y1, y2, · · · , yN)

In the above, we notate quantities in terms of “N” instead of “N(x)” or “N(x′)” since N only
depends on the underlying dataset x or x′ through the observed sequence of iterates (yn)n≥1.

What remains now is to bound the Rényi divergence between P ′
N andQ′

N . We do this using an
optional stopping argument for non-negative supermartingales (Lemma 4.B.1). Suppose (Y ′

n)n≥1

is a process whose nth finite-dimensional distribution is given by P ′
n. For any fixed λ ≥ 1, define

the process (M (λ)
n )n≥0 by:

M (λ)
n := exp

{
(λ− 1)

∑
m≤n

[
log

(
P ′
m(Y

′
m | Y ′

1:m−1)

Q′
m(Y

′
m | Y ′

1:m−1)

)
− λρm(Y

′
1:m−1)

]}
. (4.3.5)

4We ignore measure-theoretic concerns about specifying which dominating measures these densities are defined
with respect to.
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It is clear thatM (λ)
n is a non-negative supermartingale with respect to natural filtration (F ′

n)n≥1

given by F ′
n := σ(Y ′

m : m ≤ n), a fact that we confirm in Lemma 4.C.4. We emphasize that
(F ′

n)n≥1 is not in fact the data generating filtration, but rather a tool used for theoretical anal-
ysis. In more detail, we consider this filtration because, heuristically, approximate zCDP aims
at bounding the moment generating function of a “good” portion of the joint distribution — the
true joint distribution may allow some probability of catastrophic failure (i.e. unbounded privacy
loss). We adopt the same convention that N := N(y1, y2, . . . ) with the explicit values of (yn)n≥1

clear from context. Observe that N((Y ′
n)n≥1) is a stopping time with respect to (F ′

n)n≥0. We
now invoke optional stopping (Lemma 4.B.1), which yields

E[M (λ)

N(Y ′
1 ,Y

′
2 ,... )

] ≤ 1 =⇒ E

exp
(λ− 1)

∑
n≤N(Y ′

1 ,Y
′
2 ,··· )

{
log

(
P ′
n(Y

′
n | Y ′

1:n−1)

Q′
n(Y

′
n | Y ′

1:n−1)

)
− λρn(Y

′
1:n−1)

} ≤ 1

=⇒ E

exp
(λ− 1)

∑
n≤N(Y ′

1 ,Y
′
2 ,··· )

log

(
P ′
n(Y

′
n | Y ′

1:n−1)

Q′
n(Y

′
n | Y ′

1:n−1)

) ≤ eλ(λ−1)ρ

=⇒ E
[
exp

(
(λ− 1) log

(
P ′
1:N(Y

′
1:N)

Q′
1:N(Y

′
1:N)

))]
≤ eλ(λ−1)ρ.

What we have just showed is precisely that

Dλ (P
′
1:N | Q′

1:N) ≤ ρλ,

which is precisely the desired result. A symmetric argument yields an identical bound on
Dλ(Q

′
1:N | P ′

1:N). Thus, we have showed the desired result. ■

4.4 Privacy Odometers
Previously, we constructed privacy filters that matched the rate of advanced composition while
allowing both algorithms and privacy parameters to be chosen adaptively. While privacy filters
require the total level of privacy to be fixed in advance, it is desirable to track the privacy loss
at all steps without a pre-fixed budget [109]. We now study privacy odometers which provide
sequences of upper bounds on accumulated privacy loss that are valid at all points in time simul-
taneously with high probability.

4.4.1 Background on Privacy Loss and Odometers
To formally introduce privacy odometers, we will first revisit the notion of privacy loss, which
measures how much information is revealed about the underlying input dataset. For neighbors
x, x′ ∈ X , let px and px

′ be the densities of A(x) and A(x′) respectively. The privacy loss
between A(x) and A(x′) is defined as

L(x, x′) := log

(
px(A(x))

px′(A(x))

)
. (4.4.1)
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By Equation (4.4.1), a negative privacy loss suggests that the input is more likely to be x′, and
likewise a positive privacy loss suggests that the input is more likely to be x. We now generalize
privacy loss to its conditional counterpart.

Definition 4.4.1 (Conditional Privacy Loss). Suppose A and B are as in Definition 4.2.1. Sup-
pose x, x′ ∈ X are neighbors. Let px(·|·), px′(·|·) : Y × Z → R≥0 be conditional densities for
A(x) and A(x′) respectively given B(x).5 The privacy loss between A(x) and A(x′) conditioned
on B is given by

LB(x, x′) := log

(
px(A(x)|B(x))

px′(A(x)|B(x))

)
.

Suppose An is the nth algorithm being run and we have already observed A1:n−1(x) for some
unknown input x ∈ X . If we are trying to guess whether x or a neighbor x′ produced the data,
we would consider the privacy loss between An(x) and An(x′) conditioned on A1:n−1(x). It is
straightforward to characterize the privacy loss of a composed algorithm A1:n in terms of the
privacy loss of each constituent algorithm A1, · · · , An. Namely, from Bayes rule,

L1:n(x, x
′) =

∑
m≤n

Lm(x, x′), (4.4.2)

where Lm(x, x′) is shorthand for the conditional privacy loss between Am(x) and Am(x′) given
A1:m−1(x), per Definition 4.4.1. Equation (4.4.2) also holds at arbitrary random times N(x) that
only depend on the dataset x ∈ X through observed algorithm outputs.

The simple decomposition of privacy loss noted above motivates the study of an “alternative”,
probabilistic definition of differential privacy. Intuitively, an algorithm should be differentially
private if, with high probability, the privacy loss is small. More formally, an algorithm A : X →
Y is said to be (ϵ, δ)-probabilistically differentially private, or (ϵ, δ)-pDP for short, if, for all
neighboring inputs x, x′ ∈ X , we have P (|L(x, x′)| > ϵ) ≤ δ. In the previous line (as well as in
the remainder of the section), the randomness in L(x, x′) comes from the randomized algorithm
A.

Unfortunately, as noted by Kasiviswanathan and Smith [85] (in which pDP is called point-
wise indistinguishability), pDP is a strictly stronger notion than DP. In particular, if an algorithm
is (ϵ, δ)-pDP, it is also (ϵ, δ)-DP. The converse in general requires a costly conversion.

Lemma 4.4.2 (Conversions between DP and pDP [85]). If A is (ϵ, δ)-pDP, then A is also (ϵ, δ)-
DP. Conversely, if A is (ϵ, δ)-DP, then A is (2ϵ, 2δ

ϵeϵ
)-pDP.

We note that that Guingona et al. [66] have recently shown that other possible conversion rates
from probabilistic differential privacy to approximate differential privacy are possible. However,
we note that these conversions require trading off tightness in the approximation parameter ϵ
and the approximation parameter δ. In particular, a fully tight conversion from probabilistic
differenial privacy to approximate differential privacy is not possible. We will work with the
conditional counterpart of probabilistic differential privacy (pDP).

5To ensure the existence of conditional densities, it suffices to assume that Y and Z are Polish spaces under
some metrics dY and dZ , and that G and H are the corresponding Borel σ-algebras associated with dY and dZ [50].
These measurability assumptions are not restrictive, as Euclidean spaces, countable spaces, and Cartesian products
of the two satisfy these assumption.
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Definition 4.4.3 (Conditional Probabilistic Differential Privacy). Suppose A : X → Y and
B : X → Z are algorithms, and ϵ, δ : Z → R≥0 are measurable. Then, A is said to be (ϵ, δ)-
probabilistically differentially private conditioned on B if, for any neighbors x, x′ ∈ X , we
have

P (|LB(x, x′)| > ϵ(B(x))|B(x)) ≤ δ(B(x)).

While in Theorem 4.3.3 we assumed that the algorithms being composed were conditionally
differentially private, here, we need to assume conditional probabilistic privacy. This is because
our goal is not differential privacy, but rather tight control over privacy loss. We conjecture that
a version of our privacy odometer (in Theorem 4.4.5) that replaces pDP by DP and leaves all
else identical does not hold. Our intuition for this conjecture is that there exist simple examples
of algorithms satisfying (ϵ, δ)-DP that don’t satisfy (ϵ, δ)-pDP (see Appendix 4.F, for instance).
We believe that, by sequentially composing such algorithms and using anti-concentration results,
one can show that some odometers fail to be valid. We leave this as potential future work. In
sequential composition, we would assume the nth algorithm An is (ϵn, δn)-pDP conditioned on
A1:n−1. The privacy parameters would be given as functions of A1:n−1(x). Now we state the
definition of privacy odometer, which provides bounds on privacy loss under arbitrary stopping
conditions (e.g. conditions based on model accuracy).

Definition 4.4.4 (Privacy Odometer [133]). Let (An)n≥1 be an adaptive sequence of algorithms
such that, for all n ≥ 1, An is (ϵn, δn)-pDP conditioned on A1:n−1. Let (un)n≥1 be a sequence
of functions where un : Rn−1

≥0 × Rn−1
≥0 → R≥0. Let δ ∈ (0, 1) be a target confidence parameter.

For x ∈ X , n ≥ 1, define Un(x) := un(ϵ1:n−1(x), δ1:n−1(x)). Then, (un)n≥1 is called a δ-privacy
odometer if, for all x, x′ ∈ X neighbors, we have

P (∃n ≥ 1 : L1:n(x, x
′) > Un(x)) ≤ δ.

4.4.2 Improved Privacy Odometers
We construct our privacy odometers in Theorem 4.4.5. Our technical centerpiece is time-uniform
concentration inequalities for martingales [157, 73, 76]. For a martingale (Mn)n∈N and confi-
dence level δ > 0, time-uniform concentration inequalities provides bounds (Un)n∈N satisfying
P(∃n ∈ N : Mn > Un) ≤ δ. Thus, if we can create a martingale from privacy loss, we can
use time-uniform concentration to construct odometers. Our proof first considers the case where
each An is (ϵn, 0)-pDP and the privacy loss martingale (Mn)n∈N [57] is given by M0 = 0 and:

Mn := Mn(x, x
′) := L1:n(x, x

′)−
∑
m≤n

E
(
Lm(x, x′)|Fn−1(x)

)
(4.4.3)

We then extend to the case of δn ≥ 0 via conditioning.
To construct their filters and odometers, Rogers et al. [133] use self-normalized concentration

inequalities [40, 27]. We instead use advances in time-uniform martingale concentration [73, 76],
which yields tighter results.

Theorem 4.4.5. Suppose (An)n≥1 is a sequence of algorithms such that, for any n ≥ 1, An
is (ϵn, δn)-pDP conditioned on A1:n−1. Let δ = δ′ + δ′′ be a target approximation parameter
such that δ′ > 0, δ′′ ≥ 0. Define N := N((δn)n≥1) := inf

{
n ∈ N : δ′′ <

∑
m≤n+1 δm

}
and

Vn :=
∑

m≤n ϵ
2
m. Define the following:
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1. Filter odometer. For any ϵ > 0, let y∗ :=
(
−
√
2 log

(
1
δ′

)
+
√

2 log
(
1
δ′

)
+ ϵ
)2

. Define

functions (uFn )n≥1 by

uFn (ϵ1:n, δ1:n) :=

∞ n > N√
2y∗ log( 1

δ′ )
2

+

√
2 log( 1

δ′ )
2
√
y∗

Vn +
1
2
Vn otherwise.

2. Mixture odometer. For any γ > 0, define the sequence of functions (uMn )n≥1 by

uMn (ϵ1:n, δ1:n) :=

∞ n > N√
2 log

(
1
δ′

√
Vn+γ
γ

)
(γ + Vn) +

1
2
Vn otherwise.

3. Stitched odometer. For any v0 > 0, define the sequence of functions (uSn)n≥1 by

uSn(ϵ1:n, δ1:n) :=

∞ n > N or Vn < v0

1.7

√
Vn

(
log log

(
2Vn
v0

)
+ 0.72 log

(
5.2
δ′

))
+ 1

2
Vn else.

Then, any of the sequences (uFn )n≥1, (uMn )n≥1, or (uSn)n≥1 is a δ-privacy odometer.

The proof of Theorem 4.4.5 can be found in Appendix 4.E. We now provide intuition for
our odometers, which are plotted in Figure 4.3. Our insight is to view odometers not as func-
tions of the number of algorithms being composed, but rather as functions of the intrinsic time∑

m≤n ϵ
2
m. This reframing allows us to leverage the various time-uniform concentration inequal-

ities discussed in Appendix 4.B. The filter odometer is the tightest odometer when the value∑
m≤n ϵ

2
m is close to a fixed accumulated variance y∗, but the tightness drops off precipitously

when
∑

m≤n ϵ
2
m is far from y∗. The mixture odometer, which is named after the the method of

mixtures [132, 45, 76], sacrifices tightness at any fixed point in time to obtain overall tighter
bounds on privacy loss. This odometer can be numerically optimized, in terms of ρ, for tightness
at a predetermined value

∑
m≤n ϵ

2
m. The stitched odometer, whose name derives from Theo-

rem 4.B.4, is similarly tight across time. This odometer requires that
∑

m≤n ϵ
2
m exceed some

pre-selected “variance” v0 before becoming nontrivial (i.e. finite). Larger values of v0 will yield
tighter odometers, albeit at the cost of losing bound validity when accumulated variance is small.
With this intuition, we can compare our odometers to the original presented in Rogers et al.
[133].

Lemma 4.4.6 (Theorem 6.5 in Rogers et al. [133]). Assume the same setup as Theorem 4.4.5,
and fix δ = δ′ + δ′′, where 1

e
≥ δ′ > 0 and δ′′ ≥ 0. Define the sequence of functions (uRn )n≥1 by

uRn (ϵ1:n, δ1:n) :=



∞, n > N√
2Vn

(
log(110e) + 2 log

(
log(|x|)
δ′

))
+ 1

2
Vn n ≤ N, Vn ∈

[
1

|x|2 , 1
]

√
2
(

1
|x|2 + Vn

) (
1 + 1

2
log (1 + |x|2Vn)

)
log log

(
4
δ′
log2(|x|)

)
+1

2
Vn,

otherwise

,

where |x| denotes the number of elements in dataset x. Then, (uRn )n≥1 is a δ-privacy odometer.

90



(a) Comparing filter odometers (b) Comparing mixture odometers (c) Comparing stitched odometers

Figure 4.2: Comparison of filter, mixture, and stitched odometers plotted as functions of∑
m≤n ϵ

2
m. We set δ′ = 10−6 and assume all algorithms being composed are purely differen-

tially private for simplicity.

(a) New odometers vs. original (b) New odometers vs. pointwise ad-
vanced composition

Figure 4.3: Figure 4.3a compares our odometers to the original. Figure 4.3b compares them
with advanced composition optimized point-wise. The curve plotted for advanced composition
is valid at any fixed time, but not uniformly over time. Our odometers nevertheless provide a
close approximation.

Our new odometers improve over the one presented in Lemma 4.4.6. First, the above odome-
ter has an explicit dependence on dataset size. In learning settings, datasets are large, degrading
the quality of the odometer. Secondly, the tightness of the odometer drops off outside of the
interval

[
1

|x|2 , 1
]
. If any privacy parameter of an algorithm being composed exceeds 1, the bound

becomes significantly looser. Lastly, and perhaps most simply, the form of the odometer is com-
plicated. Our odometers all have relatively straightforward dependence on the intrinsic time∑

m≤n ϵ
2
m.

We now examine the rates of all odometers. For simplicity, let v :=
∑

m≤n ϵ
2
m. The stitched

odometer has a rate of O(
√
v log log(v)) in its leading term, asymptotically matching the law of

the iterated logarithm [132] up to constants. Both the original privacy odometer and the mixture
odometer have a rate of O(

√
v log (v)), demonstrating worse asymptotic performance. The filter

odometer has the worst asymptotic performance, growing linearly as O (v). This does not mean
the stitched odometer is the best odometer, since target levels of privacy are often kept small.

To empirically compare odometers, it suffices to consider the setting of pure differential pri-
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vacy, as the odometers identically depend on (δn)n≥1. Each presented odometer can be viewed
as a function of v, allowing us to compare odometers by plotting their values for a continuum
of v. Figure 4.3a shows that there is no clearly tightest odometer. All odometers, barring the
original, dominate for some window of values of v. While the stitched odometer is asymptot-
ically best, the mixture odometer is tighter for small values of v. Likewise, if one knows an
approximate target privacy level, the filter odometer is tightest. This behavior is expected from
our understanding of martingale concentration [73, 76]: there is no uniformly tightest bound-
ary containing (with probability 1 − δ) the entire path of a martingale; boundaries that are tight
early must be looser later, and vice versa. In fact, we conjecture that our bounds are essentially
unimprovable in general — this conjecture stems from the fact that the time-uniform martin-
gale boundaries employed have error probability essentially equal to δ, which in turn stems from
the deep fact that for continuous-path (and thus continuous-time) martingales, Ville’s inequality
(Theorem 1.0.2)—that underlies the derivation of these boundaries—holds with exact equality.
Since we operate in discrete-time, the only looseness in Ville’s inequality stems from lower-order
terms that reflect the possibility that at the stopping time, the value of the stopped martingale may
not be exactly the value at the boundary.

In Figure 4.3b, we compare our odometers with advanced composition optimized in a point-
wise sense for all values of v simultaneously. This boundary is not a valid odometer, as advanced
composition only holds at a prespecified point in intrinsic time v. Our odometers are almost tight
with advanced composition for the values of v plotted. Our filter odometer lies tangent to the
advanced composition curve, as expected from Section 5.2 of Howard et al. [73].

4.5 Future Directions

There are many open problems related to fully adaptive composition. For example, even though
privacy filters have been studied under the notion of Gaussian DP [146, 93], privacy filters and
odometers have not been studied for general f -DP [46]. It also has not been investigated whether
adaptivity in privacy parameter selection improves the performance of iterative algorithms such
as private SGD. Intuitively, it should be beneficial to let the iterates of an algorithm guide future
choices of privacy parameters. Optimal composition results [84, 123, 170] have yet to be consid-
ered in a setting where privacy parameters are adaptively selected. In Appendix 4.D, we provide
another proof of Theorem 4.3.3, which leverages a reduction of private algorithms to generalized
randomized response. Since such a reduction was used in the proofs of Kairouz et al. [84] and
Murtagh and Vadhan [123], we believe this proof can be useful for optimal composition with
adaptively chosen privacy parameters.

4.A Measure-Theoretic Formalism

Below, we provide some measure-theoretic formalisms and details regarding datasets and neigh-
boring relations.
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Neighboring Datasets: Roughly speaking, an algorithm is differentially private if it difficult to
distinguish between output distributions when the algorithm is run on similar inputs. In general,
this notion of similarity amongst inputs is defined as a neighboring relation ∼ between elements
on the input space X . In particular, if two inputs (also referred to as datasets or databases)
x, x′ ∈ X satisfy the neighboring relation x ∼ x′, the we say x and x′ are neighbors.

There are several canonical examples of neighboring relations on the space of inputs X . One
example is where X = Xn for some data domain X. The data domain can be viewed as the
set of all possible individual entries for a dataset, and the space Xn correspondingly contains all
possible n element datasets. In this setting, databases x, x′ ∈ X may be considered neighbors
if x and x′ differ in exactly one entry. Another slightly more general setting is when X = X∗,
i.e., all possible datasets of finite size. In this situation, the earlier notion of neighboring still
makes sense. However, in addition, we may say input datasets x and x′ are neighbors if x
can be obtained from x′ by either adding or deleting an element. This is a very natural notion
of neighboring, as under such a relation an algorithm would be differentially private if it were
difficult to determine the presence or absence of an individual. Our work is agnostic to the precise
choice of neighboring relation. As such, we choose to leave the notion as general as possible.

Algorithms and Random Variables: We will consider algorithms as randomized mappings
A : X → Y taking inputs from X to some output space Y . To be fully formal, we consider
the output space Y as a measurable space (Y ,G), where G is some σ-algebra denoting possible
events. Recall that a σ-algebra S for a set S is simply a subset of 2S containing S and ∅ that is
closed under countable union, intersection, and complements. When we say A is an algorithm
having inputs in some space X , we really mean A(x) is a Y-valued random variable for any
x ∈ X . The space X need not have an associated σ-algebra, as algorithm inputs are essentially
just indexing devices. Given a sequence of algorithms (An)n≥1, (An(x))n≥1 is a sequence of
Y-valued random variables, for any x ∈ X .6

Since we are dealing with the composition of algorithms, we write A1:n(x) as shorthand for
the random vector of the first n algorithm outputs, i.e. A1:n(x) = (A1(x), . . . , An(x)). For-
mally, the random vector A1:n(x) takes output values in the product measurable space (Yn,G⊗n)
where G⊗n denotes the n-fold product σ-algebra of G with itself. Likewise, since the num-
ber of algorithm outputs one views in fully-adaptive composition may be random, if N is a
random time (i.e. a N-valued random variable), we will often consider the random vector
A1:N(x) = (A1(x), . . . , AN(x)).

Filtrations and Stopping Times: Since privacy composition involves sequences of random
outputs, we will use the measure-theoretic notion of a filtration. If we have fixed an input x ∈ X ,
we can assume the random sequence (An(x))n≥1 is defined on some probability space (Ω,F ,P).
Given such a probability space, a filtration (Fn)n∈N of F is a sequence of σ-algebras satisfying:
(i) Fn ⊂ Fn+1 for all n ∈ N, and (ii) Fn ⊂ F for all n ∈ N. Given an arbitrary Y-valued discrete-
time stochastic process (Xn)n≥1, it is often useful to consider the natural filtration (Fn)n∈N given
by Fn := σ(Xm : m ≤ n) and F0 = {∅,Ω}. Intuitively, a filtration formalizes the notion

6Even if algorithms have different types of outputs (maybe some algorithms have categorical outputs while others
output real-valued vectors), Y can still be made appropriately large to contain all possible outcomes.
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of accumulating information over time. In particular, in the context of the natural filtration
generated by a stochastic process, the nth σ-algebra in the filtration Fn essentially represents the
entirety of information contained in the first n random variables. In other words, if one is given
Fn, they would know all possible events/outcomes that could have occurred up to and including
timestep n.

Lastly, we briefly mention the notion of a stopping time, as this measure-theoretic object is
necessary to define privacy filters. Given a filtration (Fn)n∈N, a random time N is said to be a
stopping time with respect to (Fn)n∈N if, for any n, the event {N ≤ n} ∈ Fn. In words, a ran-
dom timeN is a stopping time if given the information in Fn we can determine whether or not we
should have stopped by time n. Stopping times are essential to the study of fully-adaptive com-
position, as a practitioner of privacy will need to use the adaptively selected privacy parameters
to determine whether or not to stop interacting with the underlying sensitive database.

4.B Martingale Inequalities
In this appendix, we provide a thorough exposition into the concentration inequalities leveraged
in this paper. First, at the heart of supermartingale concentration is Ville’s inequality [157], which
was stated in Theorem 1.0.2.

We do not directly leverage Ville’s inequality in this work, but all inequalities we use can
be directly proven from Theorem 1.0.2 [73, 76]. In short, each inequality in this supplement is
proved by carefully massaging a martingale of interest into a non-negative supermartingale.

Another useful tool we will leverage is Doob’s optional stopping theorem.

Lemma 4.B.1 (Optional stopping theorem [49]). Let (Xn)n∈N be a nonnegative supermartingale
with respect to some filtration (Fn)n∈N. Then E [Xτ ] ≤ E [X0] for all stopping times τ that are
potentially infinite.

For our alternative proof of the privacy filter (in Section 4.D), we leverage the following
special case of a recent advance in time-uniform martingale concentration [73]. The following
Theorem 4.B.2 is just a special case of the main result in Howard et al. [73], and we include the
proof for completeness. When we say a random variable X is σ2-subGaussian conditioned on
some sigma-algebra G, we mean that, for all λ ≥ 0,

E
(
eλX | G

)
≤ eλ

2σ2/2.

In particular, if X is σ2-subGaussian as above, this does not imply that −X is σ-subGaussian
(because the condition is only assumed for λ ≥ 0). In general, X can have different behaviors in
its left and right tail, see for example the discussion of the differing tails of the empirical variance
of Gaussians in Howard et al. [76].

Theorem 4.B.2. Let (Mn)n∈N be a martingale with respect to some filtration (Fn)n∈N such that
M0 = 0 almost surely. Moreover, let (σn)n≥1 be a (Fn)n∈N-predictable sequence of random
variables such that, conditioned on Fn−1, ∆Mn := Mn − Mn−1 is σ2

n-subGaussian. Define
Vn :=

∑
m≤n σ

2
m. Then, we have, for all a, b > 0,

P
(
∃n ∈ N :Mn ≥ b

2
+

b

2a
Vn

)
≤ exp

(
−b2

2a

)
.
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Proof of Theorem 4.B.2. Let (Mn)n∈N be the martingale listed in the theorem statement. Ob-
serve that, for any a, b > 0, the process (Xn)n∈N given by

Xn := exp

(
b

a
Mn −

b2

2a2

∑
m≤n

σ2
m

)

is a non-negative supermartingale. As such, applying Ville’s inequality (Theorem 1.0.2) yields

P
(
∃n ∈ N : Xn > exp

(
b2

2a

))
≤ exp

(
− b2

2a

)
.

Now, on such event, taking logs and rearranging yields

b

a
Mn ≤ b2

2a
+

b2

2a2

∑
m≤n

σ2
m.

Multiplying both sides by a
b

finishes the proof. ■

The predictable process (Vn)n∈N is a proxy for the accumulated variance of (Mn)n∈N up
to any fixed point in time. In particular, the process (Vn)n∈N can be thought of as yielding
the “intrinsic time” of the process. The free parameters a and b thus allow us to optimize the
tightness of the boundary for some intrinsic moment in time. This is ideal for us, as, for the sake
of composition, the target privacy parameter ϵ can guide us in finding a point in intrinsic time
(that is, in terms of the process (Vn)n∈N) to optimize for. We discuss how to apply this inequality
to prove privacy composition results both in this supplement and in Section 4.3.

We also leverage the following martingale inequalities from Howard et al. [76] in Section 4.4,
where we construct various families of time-uniform bounds on privacy loss in fully-adaptive
composition. These inequalities take on a more complicated form than Theorem 4.B.2, but we
explain the intuition behind them in the sequel. The first bound we present relies on the method
of mixtures for martingale concentration, which stems back to Robbins’ work in the 1970s [132].
There are many good resources providing an introduction to the method of mixtures [45, 87, 76].

Theorem 4.B.3. Let (Mn)n∈N be a martingale with respect to some filtration (Fn)n∈N such that
M0 = 0 almost surely. Moreover, let (σn)n≥1 be a (Fn)n∈N-predictable sequence of random
variables such that, conditioned on Fn−1, ∆Mn := Mn − Mn−1 is σ2

n-subGaussian. Define
Vn :=

∑
m≤n σ

2
m and choose a tuning parameter γ > 0. Then, for any δ > 0, we have

P

∃n ∈ N :Mn ≥

√√√√2(Vn + γ) log

(
1

δ

√
Vn + γ

γ

) ≤ δ.

The next inequality relies on the recent technique of boundary stitching, first presented in
Howard et al. [76]. Intuitively, the technique works by breaking intrinsic time — that is, time
according to the accumulated variance process (Vn)n∈N — into roughly geometrically spaced
pieces. Then, one optimizes a tight-boundary in each region and takes a union bound. The actual
details are more technical, but are not needed in this work.
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Theorem 4.B.4. Let (Mn)n∈N be a martingale with respect to (Fn)n∈N such that M0 = 0 almost
surely. Moreover, let (σn)n≥1 be a (Fn)n∈N-predictable sequence of random variables such that,
conditioned on Fn−1, both ∆Mn := Mn − Mn−1 and −∆Mn are σ2

n-subGaussian. Define
Vn :=

∑
m≤n σ

2
m and choose a starting intrinsic time v0 > 0. Then, for any δ ∈ (0, 1), we have

P

(
∃n ∈ N :Mn ≥ 1.7

√
Vn

(
log log

(
2Vn
v0

)
+ .72 log

(
5.2

δ

))
and Vn ≥ v0

)
≤ δ.

Note that the original version of Theorem 4.B.4 as found in Howard et al. [76] has more free
parameters to optimize over, but we have already simplified the expression to make the result
more readable. The free parameter v0 > 0 in the above boundary gives the intrinsic time at
which the boundary becomes non-trivial (i.e., the tightest available upper bound before Vn ≥ v0
is ∞).

We qualitatively compare these bounds in Section 4.4, wherein we construct various time-
uniform bounds on privacy loss processes. For now, Theorem 4.B.2 can be thought of as pro-
viding a tight upper bound on a martingale at a single point in intrinsic time, providing loose
guarantees elsewhere. On the other hand, Theorems 4.B.3 and 4.B.4 provide decently tight
control over a martingale at all points in intrinsic time simultaneously, although at the cost of
sacrificing tightness at any given fixed point.

4.C Details in Proof of Approx-zCDP Filter

4.C.1 Equivalence of Approximate zCDP Definitions
We will show that our definition of approximate zCDP is equivalent to the original definition of
approximate zCDP due to Bun and Steinke [20]. Let us first restate their definition as a condition
on a private algorithm A.

Condition 4.C.1 (Original definition of Bun and Steinke [20]). For any neighboring datasets
x, x′, there exist events E and E ′ such that for all λ ≥ 1,

Dλ(A(x) | E∥A(x′) | E ′) ≤ ρλ,

Dλ(A(x
′) | E ′∥A(x) | E) ≤ ρλ,

P(A(x) ∈ E) ≥ 1− δ, and
P(A(x′) ∈ E ′) ≥ 1− δ.

Our definition is adapted from the approximate Rényi differential privacy definition due to
Papernot and Steinke [127]. We restate the (unconditional) definition below.

Condition 4.C.2 (Adapted from Papernot and Steinke [127]). For any neighboring datasets x, x′,
there exist distributions P ′, P ′′, Q′, Q′′ such that the outputs are distributed according to the fol-
lowing mixture distributions:

A(x) ∼ (1− δ)P ′ + δP ′′, A(x′) ∼ (1− δ)Q′ + δQ′′

with for all λ ≥ 1, Dλ(P
′∥Q′) ≤ ρλ and Dλ(P

′∥Q′) ≤ ρλ.
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Theorem 4.C.3. Conditions 4.C.1 and 4.C.2 are equivalent.

Proof of Theorem 4.C.3. Fix any neighbors x, x′. Suppose an algorithm A satisfies Condition
4.C.1 for some events E,E ′. Then we could let P ′ and Q′ be the conditional distributions
P(A(x) ∈ · | A(x) ∈ E) and P(A(x′) ∈ · | A(x′) ∈ E ′) respectively. Then let

P ′′(·) = 1

δ

(
P(A(x) ∈ · | A(x) ∈ Ec)P(A(x) ∈ Ec)

+ P ′(·) (P(A(x) ∈ E)− (1− δ))
)
,

Q′′(·) = 1

δ

(
P(A(x′) ∈ · | A(x′) ∈ E ′c)P(A(x′) ∈ E ′c)

+Q′(·) (P(A(x′) ∈ E ′)− (1− δ))
)
.

Then A(x) is distributed according to the mixture (1 − δ)P ′ + δP ′′, and A(x′) is distributed
according to the mixture (1 − δ)Q′ + δQ′′. Thus, A also satisfies condition 4.C.2 given that
Dλ(P

′∥Q′) ≤ λρ and Dλ(Q
′∥P ′) ≤ λρ by our assumption of Condition 4.C.1.

Now supposeA satisfies Condition 4.C.2 for some pairs of distributions (P ′, P ′′) and (Q′, Q′′).
Then we can view the output distribution of A(x) as generating a Bernoulli random variable C
such that with probability (1 − δ), C = 1 and A(x) draws an outcome from P ′ and with prob-
ability C = 0 and A(x) draws an outcome from P ′′. Similarly, we can view A(x′) as flipping
a coin C ′ such that A(x′) draws an outcome from Q′ when C ′ = 1. Then letting the events E
be all the randomness of A(x) such that C = 1 and E ′ be all the randomness of A(x′) such that
C ′ = 1 satisfies condition 4.C.1. ■

4.C.2 Missing Proofs
The following proof technique was used in prior works, including [24, 61]

Lemma 4.C.4. Let (M (λ)
n )n≥1 be as defied in Equation (4.3.5). Then, (M

(λ)
n )n≥1 is a non-

negative supermartingale with respect to its natural filtration (F ′
n)n≥1 given by F ′

n := σ(Y ′
m :

m ≤ n).

Proof. For any k ≥ 1,

E[M (λ)
n | F ′

n−1] = E

[
M

(λ)
n−1 exp

(
(λ− 1) log

(
P ′
n(Y

′
n | Y ′

1:n−1)

Q′
n(Y

′
n | Y ′

1:n−1)

)
− λ(λ− 1)ρn(Y

′
1:n−1)

)
| F ′

n−1

]

=M
(λ)
n−1 E

[(
P ′
n(Y

′
n | Y ′

1:n−1)

Q′
n(Y

′
n | Y ′

1:n−1)

)(λ−1)

| F ′
n−1

]
· exp

(
−λ(λ− 1)ρn(Y

′
1:n−1)

)
≤M

(λ)
n−1 exp

(
λ(λ− 1)ρn(Y

′
1:n−1)

)
exp
(
−λ(λ− 1)ρn(Y

′
1:n−1)

)
=M

(λ)
n−1,

where the last inequality follows from the R[́enyi divergence bound due to approximate zCDP.
■
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Lemma 4.C.5. Let the distributions P1:n, Q1:n, P
′
1:n, Q

′
1:n be defined in (4.3.3), (4.3.4) for any

n ≥ 1. Then there exists distributions P ′′
1:n and Q′′

1:n such that

P1:n = (1− δ)P ′
1:n + δP ′′

1:n,

Q1:n = (1− δ)Q′
1:n + δQ′′

1:n.

Proof. We will show the decomposition for P1:n, and the proof follows identically for the de-
composition of Q1:n. First, we can express P1:n(y1, · · · , yn) for any y1, · · · yn as follows:

P1:n(y1, · · · , yn) =
n∏

m=1

Pm(ym | y1:m−1)

=
n∏

m=1

[
(1− δm(y1:m−1))P

′
m(ym | y1:m−1) + δm(y1:m−1)P

′′
m(ym | y1:m−1)

]
=
∑
S⊆[n]

(∏
m∈S

δm(y1:m−1)
∏
m∈Sc

(1− δm(y1:m−1))

)
︸ ︷︷ ︸

wS(y1:m)

·
∏
m∈S

P ′′
m(ym | y1:m−1)

∏
m≤n,m/∈S

P ′
m(ym | ym−1)︸ ︷︷ ︸

fS(y1:m)

It suffices to show that w∅(y1:m) ≥ 1 − δ for all y1:m. To see this, we have the following by
assumption

w∅ =
∏
m≤n

(1− δm(y1:m−1)) ≥ 1−
∑
m≤n

δm(y1:m−1) ≥ 1− δ.

■

4.D An Alternative Proof for Theorem 4.3.3
We begin by providing an alternative statement to Theorem 4.3.3, which is fully stated in terms
of ϵ’s and δ’s. Straightforward calculations can confirm the equivalence of the two statements.

Theorem 4.D.1. Suppose (An)n≥1 is a sequence of algorithms such that, for any n ≥ 1, An is
(ϵn, δn)-differentially private conditioned on A1:n−1. Let ϵ > 0 and δ = δ′ + δ′′ be target privacy
parameters such that δ′ > 0, δ′′ ≥ 0. Consider the function N : R∞

≥0 × R∞
≥0 → N given by

N((ϵn)n≥1, (δn)n≥1) := inf

n : ϵ <

√√√√2 log

(
1

δ′

) ∑
m≤n+1

ϵ2m +
1

2

∑
m≤n+1

ϵ2m or δ′′ <
∑

m≤n+1

δm

 .

Then, the algorithmA1:N(·)(·) : X → Y∞ is (ϵ, δ)-DP, whereN(x) := N((ϵn(x))n≥1, (δn(x))n≥1).
In other words, N is an (ϵ, δ)-privacy filter.

We first prove Theorem 4.D.1 under a stronger assumption on the algorithms being com-
posed.
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Lemma 4.D.2. Theorem 4.D.1 holds under the stronger assumption that, for any n ≥ 1, An is
(ϵn, δn)-pDP conditioned on A1:n−1.

To prove Lemma 4.D.2, we need to following bound on the conditional expectation of privacy
loss, which can be immediately obtained from the bound on expected privacy loss presented in
Bun and Steinke [20].

Lemma 4.D.3 (Proposition 3.3 in Bun and Steinke [20]). Suppose A and B are algorithms such
that A is ϵ-differentially private conditioned on B. Then, for any input dataset x ∈ X and
neighboring dataset x′ ∼ x, we have that

E (L(x, x′)|B(x)) ≤ 1

2
(ϵ(B(x)))2 .

Now, we prove Lemma 4.D.2.

Proof of Lemma 4.D.2. To begin, we assume that the algorithms (An)n≥1 satisfy (ϵn, 0)-pDP
conditioned on A1:n−1. We will show how to alleviate this assumption on the approximation
parameter in the second half of the proof. Fix an input database x ∈ X . For convenience,
we denote by (Fn(x))n∈N the natural filtration generated by (An(x))n≥1. Since we have fixed
x ∈ X , for notational simplicity, we write ϵn for the random variable ϵn(A1:n−1(x)) and define
δn similarly. Additionally, by N we mean the stopping time N((ϵn)n∈N, (δn)n∈N). Recall that we
have already argued that, for any neighboring dataset x′ ∼ x, the process

Mn := Mn(x, x
′) = L1:n(x, x

′)−
∑
m≤n

E
(
Lm(x, x′)|Fm−1(x)

)
is a martingale with respect to (Fn(x))n∈N. Further observe that its increments ∆Mn := Ln(x, x′)−
E (Ln(x, x′)|Fn−1(x)) are ϵ2n-subGaussian conditioned on Fn−1(x).

Thus, by Theorem 4.B.2, we know that, for any b, a > 0, we have

P
(
∃n ∈ N :Mn ≥ b

2
+

b

2a
Vn

)
≤ exp

(
−b2

2a

)
,

where the process (Vn)n∈N given by Vn :=
∑

m≤n ϵ
2
m is the accumulated variance up to and

including time n. Thus, it suffices to optimize the free parameters a and b to prove the result.
To do this, consider the following function f : R≥0 → R≥0 given by

f(y) =

√
2 log

(
1

δ′

)
y +

1

2
y.

Clearly, f is a quadratic polynomial in
√
y which is strictly increasing. In particular, one can

readily check that

y∗ :=

(
−

√
2 log

(
1

δ′

)
+

√
2 log

(
1

δ′

)
+ ϵ

)2

(4.D.1)

solves the equation f(y) = ϵ, where ϵ > 0 is the target privacy parameter.
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As such, setting a := y∗ and b :=
√

2 log
(
1
δ′

)
y∗ yields

exp

(
−b2

a

)
= exp

(
−2y∗ log

(
1
δ′

)
y∗

)
= δ′.

Furthermore, expanding the definition of (Mn)n∈N, we see that for the selected parameters
the parameters yield, with probability at least 1− δ′, for all n ≤ N we have:

L1:n(x, x
′) ≤ b

2
+

b

2a
Vn +

∑
m≤n

E
(
Lm(x, x′) | Fm−1

)
≤ b

2
+

b

2a

∑
m≤n

ϵ2m +
1

2

∑
m≤n

ϵ2m

=
1

2

√
2 log

(
1

δ′

)
y∗ +

1

2

√
2 log

(
1
δ′

)
y∗

y∗

∑
m≤n

ϵ2m +
1

2

∑
m≤n

ϵ2m

≤ 1

2

√
2 log

(
1

δ′

)
y∗ +

1

2

√
2 log

(
1

δ′

)
y∗ +

1

2

∑
m≤n

ϵ2m

=

√
2 log

(
1

δ′

)
y∗ +

1

2

∑
m≤n

ϵ2m ≤

√
2 log

(
1

δ′

)
y∗ +

1

2
y∗ = ϵ.

Thus, we have proven the desired result in the case where all algorithms have δn = 0.
Now, we show how to generalize our result to the case where the approximation parameters

δn are not identically zero. Define the events

A := {∃n ≤ N : L1:n(x, x
′) > ϵ} , and

B := {∃n ≤ N : Ln(x, x′) > ϵn} .

Our goal is to show that, with N defined as in the statement of Theorem 4.3.3, that P(A) ≤ δ.
Simply using Bayes rule, we have that

P(A) = P(A ∩Bc) + P(A ∩B) ≤ P(A|Bc) + P(B) ≤ δ′ + P(B),

where the second inequality follows from our already-completed analysis in the case that δn = 0.
Now, we show that P(B) ≤ δ′′, which suffices to prove the result as we have, by assumption,
δ = δ′ + δ′′.

Define the modified privacy loss random variables (L̃n(x, x′))n∈N by

L̃n(x, x′) :=

{
Ln(x, x′) n ≤ N

0 otherwise
.

Likewise, define the modified privacy parameter random variables ϵ̃n and δ̃n in an identical man-
ner. Then, we can bound P(B) in the following manner:

P(∃n ≤ N : Ln(x, x′) > ϵn) = P
(
∃n ∈ N : L̃n(x, x′) > ϵ̃n

)
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≤
∞∑
n=1

P
(
L̃n(x, x′) > ϵ̃n

)
=

∞∑
n=1

EP
(
L̃n(x, x′) > ϵ̃n|Fn−1

)
≤

∞∑
n=1

Eδ̃n = E

[
∞∑
n=1

δ̃n

]
= E

[∑
n≤N

δn

]
≤ δ′′.

Thus, we have have proven the desired result in the general case. ■

Our key insight above is to view filters as functions of the “intrinsic time” determined by
privacy parameters,

∑
m≤n ϵ

2
m. Lemma 4.D.2 can also be obtained leveraging the analysis for

Rényi filters [61]. However, our approach to proving Lemma 4.D.2 has the advantage that it
does not require reductions between different modes of privacy. While Lemma 4.D.3, which
bounds expected privacy loss, does require some complicated analysis, we only ever need to
apply Lemma 4.D.2 to instances of randomized response, in which case computing the privacy
loss bound is trivial.

We now use Lemma 4.D.2 to prove Theorem 4.D.1. Recall that Lemma 4.4.2 shows that algo-
rithms that satisfy pDP also satisfy DP, but the converse is not true and may require a conversion
cost. To avoid this cost, we define following generalization of randomized response.

Definition 4.D.4 (Conditional Randomized Response). Let R := {0, 1,⊤,⊥} and 2R be the
corresponding power set of R. Then, R taking inputs in {0, 1} to outputs in the measurable
space (R, 2R) is an instance of (ϵ, δ)-randomized response if, for b ∈ {0, 1}, R(b) outputs the
following:

R(b) =


b with probability (1− δ) eϵ

1+eϵ

1− b with probability (1− δ) 1
1+eϵ

⊤ with probability δ if b = 1

⊥ with probability δ if b = 0.

More generally, suppose B : {0, 1} → Z is a randomized algorithm. For functions ϵ, δ :
Z → R≥0, we say R is an instance of (ϵ, δ)-randomized response conditioned on B if, for
any true input b′ ∈ {0, 1} and hypothesized alternative b ∈ {0, 1}, the conditional probability
P(R(b) ∈ ·|B(b′) = z) is the same as the law of (ϵ(z), δ(z))-randomized response with input bit
b.

Conditional (ϵ, δ)-randomized response satisfies both conditional (ϵ, δ)-DP and conditional
(ϵ, δ)-pDP. We will leverage the fact that it satisfies both privacy definitions with the same pa-
rameters. A surprising result in the nonadaptive setting is that any (ϵ, δ)-DP algorithm can be
viewed as a randomized post-processing of (ϵ, δ)-randomized response [84]. We generalize this
result to the adaptive conditional setting below. In the language of Blackwell’s comparison of
experiments [17], instances of randomized response are “sufficient” for instances of arbitrary DP
algorithms, and we prove that the same is true for conditional randomized response and condi-
tionally DP algorithms. In what follows, by a transition kernel ν, we mean that for any b ∈ Z
and r ∈ R, ν(·, r | b) is a probability measure on (Y ,G).
Lemma 4.D.5 (Reduction to Conditional Randomized Response). Let A and B map from X to
measurable spaces (Y ,G) and (Z,H), respectively. Suppose A is (ϵ, δ)-differentially private
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conditioned on B. Fix neighbors x0, x1 ∈ X , and let R be an instance of (ϵ, δ)-randomized
response conditioned onB′, whereB′ : {0, 1} → Z is the restricted algorithm satisfyingB′(b) =
B(xb). Then, there is a transition kernel ν : G ×R×Z → [0, 1] such that, for all b, b′ ∈ {0, 1},
P (A(xb) ∈ · | B′(b′)) = νb,b′ , where νb,b′ = E (ν(·, R(b) | B′(b′)) | B′(b′)).7

Lemma 4.D.5 tells us that the conditional distribution obtained by averaging the kernel
ν(·, R(b) | B′(b′)) over the randomness in R(b) matches the conditional distribution of A(xb).
To prove Lemma 4.D.5, first recall the important fact that any differentially private algorithm can
be viewed as a post-processing of randomized response [84], as stated in Lemma 4.D.6 below.

Lemma 4.D.6 (Reduction to Randomized Response [84]). Let algorithm A : X → Y be (ϵ, δ)-
DP. Let R be an instance of (ϵ, δ)-randomized response. Then, for any neighbors x0, x1 ∈ X ,
there is a transition kernel ν : G ×R → [0, 1] such that for b ∈ {0, 1}, we have P(A(xb) ∈ ·) =
νb, where8 νb = Eν(·, R(b)).

In Lemma 4.D.5 of Section 4.3, we generalized Lemma 4.D.6 to the case of conditional dif-
ferential privacy. To do this, we introduced conditional randomized response in Definition 4.D.4.
In conditional randomized response, on the event {B = z}, the conditional laws of R(0) and
R(1) just become that of regular randomized response with some known privacy parameters ϵ(z)
and δ(z). We now prove Lemma 4.D.5.

Proof of Lemma 4.D.5. Let b, b′ ∈ {0, 1} be arbitrary. For any outcome {B′(b′) = z}, let
Pz(A(xb) ∈ ·) be the probability measure P(A(xb) ∈ ·|B′(b′) = z). In particular, this mea-
sure does not depend on the input bit b′. By the assumptions of conditional differential pri-
vacy (Definition 4.2.1), it follows that under the probability measure Pz, A(xb) is (ϵ(z), δ(z))-
differentially private. Moreover, it also follows that R is an instance of (ϵ(z), δ(z))-randomized
response under Pz. Consequently, Lemma 4.D.6 yields the existence of a kernel νz such that
Pz(A(xb) ∈ ·) = Ezνz(·, R(b)), where the averaged measure is as defined in Footnote 8. Setting
ν(·, R(b)|z) := νz(·, R(b)), we see that

P(A(xb) ∈ · | B′(b′) = z) = E (ν(·, R(b) | z) | B′(b′) = z) ,

7By νb,b′(·) := E (ν(·, R(b) | B′(b′)) | B′(b′)), we mean that νb,b′ is the (random) averaged probability measure:

νb,b′(·) = P(R(b) = 1 | B′(b′))ν(·, 1 | B′(b′))

+ P(R(b) = 0 | B′(b′))ν(·, 0 | B′(b′))

+ P(R(b) = ⊥ | B′(b′))ν(·,⊥ | B′(b′))

+ P(R(b) = ⊤ | B′(b′))ν(·,⊤ | B′(b′)).

8 By νb(·) := Eν(·, R(b)), we mean νb is the averaged probability measure given by

νb(·) = P(R(b) = 1)ν(·, 1) + P(R(b) = 0)ν(·, 0)
+ P(R(b) = ⊥)ν(·,⊥) + P(R(b) = ⊤)ν(·,⊤).
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which thus yields

P(A(xb) ∈ · | B′(b′)) = E (ν(·, R(b) | B′(b′)) | B′(b′)) ,

where the conditionally averaged measure is as described in Footnote 7 in the main body of the
paper. This proves the desired result. ■

Lastly, before proving Theorem 4.D.1, we need the following lemma. This lemma essentially
tells us that if A is (ϵ, δ)-pDP conditioned on B, and A′ is a randomized post-processing algo-
rithm, then releasing the vector (A,A′) is also (ϵ, δ)-pDP conditioned on B. Note that this is not
in contradiction with the converse direction of Lemma 4.4.2, as releasing the output of A′ alone
may not satisfy conditional (ϵ, δ)-pDP. But once we observe A, since A′ is a post-processing, we
can gleam no more information about the true underlying dataset.

Lemma 4.D.7. Suppose A,B are algorithms with inputs in X and outputs in measurable spaces
(Y ,G) and (Z,H) respectively. Assume A is (ϵ, δ)-pDP conditioned on B. Let (S,S) be a
measurable space and suppose µ : S × Y × Z → [0, 1] is a conditional transition kernel.
Suppose A′ : X → S is an algorithm satisfying

P (A′(x) ∈ · | A(x′) = y,B(x′) = z) = µ(·, y | z), (4.D.2)

for all y ∈ Y , z ∈ Z , and x, x′ ∈ X . Then, the joint algorithm (A,A′) : X → Y × S is also
(ϵ, δ)-pDP conditioned on B.

Proof of Lemma 4.D.7. Let x, x′ ∈ X be arbitrary neighboring datasets. Let qxB, q
x′
B be the

corresponding conditional joint densities of (A(x), A′(x)) and (A(x′), A′(x′)) given B(x) re-
spectively. Likewise, let pxB, p

x′
B be the corresponding conditional densities of A(x) and A(x′)

respectively conditioned on B(x), and qxB,A, q
x′
B,A the conditional densities of A′(x) and A′(x′)

given A(x) and B(x). Let L(A,A′)
B (x, x′) denote the joint privacy loss between (A(x), A′(x)) and

(A(x′), A′(x′)) given B(x), while LAB(x, x′) denotes the privacy loss between A(x) and A(x′)
given B(x). We have, using Bayes rule,

L(A,A′)
B (x, x′) = log

(
qxB(A(x), A

′(x) | B(x))

qx
′
B (A(x), A

′(x) | B(x))

)
= log

(
pxB(A(x) | B(x))

px
′
B (A(x) | B(x))

·
qxB,A(A

′(x) | B(x), A(x))

qx
′
B,A(A

′(x) | B(x), A(x))

)

= log

(
pxB(A(x) | B(x))

px
′
B (A(x) | B(x))

)
= L(A)

B (x, x′),

The first equality on the second line follows from the assumption outlined in Equation (4.D.2).
More specifically, since we have

P (A′(x) ∈ ·|A(x), B(x)) = µ(·, A(x) | B(x)) =

P (A′(x′) ∈ ·|A(x), B(x)) ,

it follows that the conditional densities qxB,A and qx′B,A are equal almost surely. Since A is (ϵ, δ)-
pDP conditioned on B, the result now follows. ■
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We now can prove Theorem 4.D.1 using these tools.

Proof of Theorem 4.D.1. Fix arbitrary neighbors x0, x1 ∈ X . Let (Rn)n≥1 be a sequence of
algorithms such that Rn is an instance of (ϵn, δn)-randomized response conditioned on A′

1:n−1 :
{0, 1} → Yn−1, where A′

m : {0, 1} → Y is the restricted algorithm given by A′
m(b) := Am(xb),

for allm ≥ 1. Lemma 4.D.5 guarantees the existence of a sequence of transition kernels (νn)n≥1,
νn : G × R × Yn−1 → [0, 1] such that, for all n ≥ 1 and b, b′ ∈ {0, 1}, we have P(A′

n(b) ∈ · |
A′

1:n−1(b
′)) = ν

(n)
b,b′ almost surely. Here, ν(n)b,b′ is the averaged conditional probability, as defined

in terms of νn in Lemma 4.D.5 and Footnote 7. This equality means we can find an underlying
probability space (i.e. a coupling) such that the random post-processing draws from the kernel
νn(·, Rn(b) | A′

1:n−1(b
′)) equal A′

n(b) almost surely, for all n ≥ 1.
Now, for any n ≥ 1, since Rn is an instance of (ϵn, δn)-randomized response conditioned on

A′
1:n−1, it follows that Rn is in fact (ϵn, δn)-pDP conditioned on A′

1:n−1. Moreover, this also im-
plies that Rn is (ϵn, δn)-pDP conditioned on (A′

1:n−1, R1:n−1), since, by definition, ϵn and δn only
depend on the realizations of R1:n−1 through the outputs of A′

1:n−1. By Lemma 4.D.7, it follows
that for all n ≥ 1, the algorithm (Rn, A

′
n) is (ϵn, δn)-pDP conditioned on (R1:n−1, A

′
1:n−1). Thus,

by Lemma 4.D.2, it follows that the composed algorithm (R1:N ′(·)(·), A′
1:N ′(·)(·)) is (ϵ, δ)-DP,

where N ′(b) := N(xb) and ϵ, δ and N , are as outlined in the statement of Theorem 4.3.3.
Lastly, since differential privacy is closed under arbitrary post-processing [52], it follows that

A′
1:N ′(·)(·) is (ϵ, δ)-differentially private. Since x0 and x1 were arbitrary neighboring inputs, the

result follows, i.e. A1:N(·)(·) : X → Y∞ is (ϵ, δ)-differentially private. ■

4.E Proof for Privacy Odometers in Theorem 4.4.5
We now show the formal proof for our privacy odometers presented in Theorem 4.4.5 in Sec-
tion 4.4.

Theorem 4.4.5. As in the proof of Theorem 4.D.2, we first consider the case where δn = 0 for all
n ≥ 1. In this case, fix an input dataset x ∈ X and a neighboring dataset x′ ∈ X . Let (Mn)n∈N
be the corresponding privacy loss martingale as outlined in Equation (4.4.3), where we implicitly
hide the dependence on x, x′, which are fixed. Let (un)n≥1 be one of the sequences outlined in
the theorem statement, and define Un := un(ϵ1:n, δ1:n) for all n ≥ 1, where once again we write
ϵn and δn for ϵn(A1:n−1(x)) and δn(A1:n−1(x)) respectively. It follows from Theorems 4.B.2,
4.B.3, and 4.B.4 that

P (∃n ∈ N :Mn > Bn) ≤ δ,

for Bn = Un − 1
2

∑
m≤n ϵ

2
m. Recalling that Mn =

∑
m≤n{Lm(x, x′) − E(Lm(x, x′)|Fn−1(x))}

and that E(Ln(x, x′)|Fn−1(x)) ≤ 1
2
ϵ2n for all n ∈ N, it thus follows that

P (∃n ∈ N : L1:n(x, x
′) > Un) ≤ δ,

where (Fn(x))n≥1 is again the natural filtration generated by (An(x))n≥1. Thus, since x ∼ x′

were arbitrary, we have shown that (un)n≥1 is a δ-privacy odometer in the case δn = 0 for all
n ≥ 1.

To generalize to the case where δn may be nonzero, we can apply precisely the same argument
used in the second part of the proof of Lemma 4.D.2, thus proving the general result. ■

104



4.F An Algorithm Satisfying (ϵ, δ)-DP but not (ϵ, δ)-pDP
In this appendix, we construct a simple algorithm taking binary inputs that satisfies (ϵ, δ)-DP but
not (ϵ, δ)-pDP. In particular, this provides intuition as to why we conjecture our odometers con-
structed in Section 4.4 would not hold under the assumption that the algorithms being composed
satisfy (ϵ, δ)-DP in general.

To this end, fix a privacy parameter ϵ > 0 and an approximation parameter δ ∈ (0, 1). Let
A : {0, 1} → {0, 1,⊤,⊥} be an instance of (ϵ, δ)-randomized response, and let B : {0, 1} →
{0, 1} be defined by

B(b) :=

{
1 if A(b) ∈ {1,⊤},
0 otherwise.

Since differential privacy is closed under arbitrary post-processing, it follows that the constructed
algorithm B is (ϵ, δ)-differentially private. On the other hand, setting x = 1, x′ = 0, we note that
on the event {B(1) = 1},

LB(1, 0) = log

(
P(B(1) = 1)

P(B(0) = 1)

)
= log

(
P(A(1) = 1) + P(A(1) = ⊤)

P(A(0) = 1) + P(A(0) = ⊤)

)
= log

(
δ + (1− δ) eϵ

1+eϵ

(1− δ) 1
1+eϵ

)

= log

(
δ + eϵ

1− δ

)
> ϵ.

Since straightforward calculation yields

P(B(1) = 1) = (1− δ)
eϵ

1 + eϵ
+ δ > δ,

we see that B does not satisfy (ϵ, δ)-pDP.
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Chapter 5

Brownian Noise Reduction: Maximizing
Privacy Subject to Accuracy Constraints

There is a disconnect between how researchers and practitioners handle privacy-utility
tradeoffs. Researchers primarily operate from a privacy first perspective, setting strict pri-
vacy requirements and minimizing risk subject to these constraints. Practitioners often
desire an accuracy first perspective, possibly satisfied with the greatest privacy they can
get subject to obtaining sufficiently small error. Ligett et al. [109] have introduced a “noise
reduction” algorithm to address the latter perspective. The authors show that by adding
correlated Laplace noise and progressively reducing it on demand, it is possible to produce
a sequence of increasingly accurate estimates of a private parameter while only paying a
privacy cost for the least noisy iterate released. In this work, we generalize noise reduc-
tion to the setting of Gaussian noise, introducing the Brownian mechanism. The Brownian
mechanism works by first adding Gaussian noise of high variance corresponding to the
final point of a simulated Brownian motion. Then, at the practitioner’s discretion, noise
is gradually decreased by tracing back along the Brownian path to an earlier time. Our
mechanism is more naturally applicable to the common setting of bounded ℓ2-sensitivity,
empirically outperforms existing work on common statistical tasks, and provides customiz-
able control of privacy loss over the entire interaction with the practitioner. We comple-
ment our Brownian mechanism with ReducedAboveThreshold, a generalization of the
classical AboveThreshold algorithm that provides adaptive privacy guarantees. Overall,
our results demonstrate that one can meet utility constraints while still maintaining strong
levels of privacy.

5.1 Introduction

Over the past decade, differential privacy has seen industry-wide adoption as a means of pro-
tecting sensitive information [58, 65]. By injecting appropriate amounts of noise, differentially
private algorithms allow the computation of population-level quantities of interest while guar-
anteeing individual-level privacy. Of the private mechanisms used in industry, those relating
to private empirical risk minimization (ERM) are perhaps the most impactful, in part due to
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their application in machine learning tasks [1, 148]. Researchers have developed many private
ERM mechanisms, ranging from least squares minimzation [138, 25] to subsampled gradient de-
scent [1, 11, 160]. Despite this vast literature, most existing results take the same broad approach:
they aim to minimize error (statistical risk) subject to strict privacy guarantees. While this strict
adherence to privacy constraints may be necessary in some applications, it often provides weak
utility guarantees [63] and can make some learning tasks impossible [56]. Industry applications
of differential privacy may desire an accuracy first perspective, setting desired risk requirements
for models used in production. Privacy may still be a desirable aspect of computation, but it is
by no means the only goal; minimizing risk may take center stage.

The main existing approach to this accuracy-oriented perspective on privacy was given by
Ligett et al. [109]. These authors introduce a noise reduction mechanism for gradually releasing
a private, high-dimensional parameter. By leveraging a Laplace-based Markov process [94], they
construct a mechanism for which the privacy loss of releasing arbitrarily many estimates of a pa-
rameter only depends on the privacy loss of the least noisy parameter viewed. This is in contrast
to results about the composition of private algorithms, in which privacy degrades according to
the total number of parameters witnessed [57, 84, 123]. The authors also demonstrate how to pri-
vately query the utility of observed parameters on private data by coupling their Laplace-based
mechanism with AboveThreshold, a classical differentially private algorithm [52, 114].

While the above mechanism provides significant privacy loss savings over a baseline method
that doubles the privacy loss each round, Laplace noise is unfit for many settings in which ℓ2-
sensitivity is used for calibrating noise. Since converting from ℓ2-sensitivity to ℓ1-sensitivity1

incurs a dimension-dependent cost, it is important to develop a noise reduction technique with
Gaussian noise.

Contributions and paper outline. We introduce the Brownian mechanism, a novel approach
for privately releasing a parameter vector subject to accuracy constraints. The Brownian mecha-
nism adds correlated Gaussian noise to a risk-minimizing parameter through a Brownian motion.
Noise is then iteratively stripped by moving adaptively backwards along the random walk until a
suitable stopping condition is met, such as meeting a target accuracy on a public dataset. In Sec-
tion 5.3, we define the Brownian mechanism and characterize its privacy loss. Using machinery
from martingale theory, we construct privacy boundaries for the Brownian mechanism — upper
bounds on privacy loss that hold simultaneously with high probability. In particular, the failure
probability of these bounds does not depend on the number of outcomes observed, overcoming
a seeming need for a union bound faced by Ligett et al. [109]. These privacy boundaries yield
provable, high-probability bounds on privacy loss under data-dependent stopping conditions.

If private data is used to evaluate risk, then the data-dependent stopping conditions can them-
selves leak information. To counter this, we introduce ReducedAboveThreshold in Section 5.5,
a generalization of the classical AboveThreshold algorithm for privately querying accuracy on
sensitive data. We show how to couple ReducedAboveThreshold and the Brownian mechanism
so that a data analyst only ever incurs twice the privacy loss they would incur if they had queried
accuracy on a public dataset. This is in contrast to the results in Ligett et al. [109], which note
that the privacy loss of AboveThreshold often dominates the privacy loss incurred from using
noise reduction.

1The ℓp sensitivity of f is defined as supx∼x′ ||f(x)− f(x′)||p for p ≥ 1.

108



Figure 5.1: An example of running the Brownian mechanism to gradually release a statistic f(x).
First, a very noisy version of the hidden parameter BM1(x) is viewed. Then, loss is measured, ei-
ther on a public dataset, or on a private dataset using a method such as ReducedAboveThreshold.
If a target loss is met, the process stops. Otherwise, noise is removed and the process repeats.

We empirically evaluate the Brownian mechanism and ReducedAboveThreshold in Sec-
tion 5.6, finding that the Brownian mechanism can offer privacy loss savings over the Laplace
noise reduction method introduced by Ligett et al. [109]. In our view, these results demonstrate
that the Brownian mechanism is a practical, intuitive mechanism for meeting accuracy require-
ments in private ERM.

Lastly, we derive other new mechanisms for noise reduction, of independent interest. We
generalize the Laplace process of Koufogiannis et al. [94] to continuous time in Section 5.4,
thus making the Laplace noise reduction mechanism of Ligett et al. [109] more flexible and
adaptive to data-dependent privacy levels. We also briefly mention a noise reduction mechanism
for Skellam noise in Section 5.4, a discrete distribution used in count queries [6].

5.2 Preliminaries
Differential privacy, privacy loss, and ex-post privacy. An algorithm A : X → Y is (ϵ, δ)-
differentially private if, for any measurable set E ⊂ Y and any neighboring inputs x ∼ x′,

P(A(x) ∈ E) ≤ eϵP(A(x′) ∈ E) + δ. (5.2.1)

In the above [55], ∼ denotes some arbitrary neighboring relation. Typically x ∼ x′ indicates
x and x′ differ in one entry, but any other relation suffices. While differential privacy has proven
itself a mainstay of private computation, condition (5.2.1) is too rigid to allow data analysts to
achieve a minimum desired accuracy. In other words, it embraces a privacy first perspective,
fixing a strict condition in terms of parameters ϵ and δ that must be met. We are interested in
the accuracy first perspective, setting a target accuracy and correspondingly optimizing privacy
parameters.

The above definition of differential privacy is qualitatively focused on bounding the information-
theoretic quantity of privacy loss [55, 57, 52].
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Definition 5.2.1 (Privacy Loss). Let A : X → Y be an algorithm, and fix neighbors x ∼ x′ in
X . Let px and px′ be the respective densities of A(x) and A(x′) on the space Y with respect to
some reference measure2. Then, the privacy loss between A(x) and A(x′) is the random variable

L(x, x′) := log

(
px(A(x))

px′(A(x))

)
.

We think of A(x) as the true outcome, and L(x, x′) measures how much more likely this
outcome is under the true input x versus an alternative x′. Privacy loss provides a probabilistic
definition of privacy. Namely, A is (ϵ, δ)-probabilistically differentially private if, for all neigh-
bors x ∼ x′,

P (L(x, x′) > ϵ) ≤ δ. (5.2.2)

While probabilistic differential privacy is not equivalent to differential privacy [85], (ϵ, δ)-
probabilistically differential privacy implies (ϵ, δ)-differential privacy. Probabilistic differential
privacy emerged as a means for studying privacy composition, and has been leveraged in proving
many results [84, 123, 133, 163]. A natural extension of privacy to the accuracy-oriented regime
is ex-post privacy, which allows the bound in condition (5.2.2) to depend the observed algorithm
output.

Definition 5.2.2 (Ligett et al. [109]). Let A : X → Y be an algorithm and E : Y → R≥0 a
function. We say A is (E , δ)-ex-post private if, for any neighboring inputs x ∼ x′, we have

P (L(x, x′) > E(A(x))) ≤ δ.

While any algorithm is trivially ex-post private with E(A(x)) := ∞, the goal is to make
E(A(x)) as small as possible. We describe theoretical tools for obtaining ex-post privacy guar-
antees in Section 5.3, and empirically compute the ex-post privacy distributions of various mech-
anisms in Section 5.6.

Background on Noise Reduction. Heuristically, a noise reduction mechanism allows a data
analyst to view multiple, increasingly accurate estimates of a risk minimizing parameter while
only paying an ex-post privacy cost for the least noisy iterate observed. Pinning down a general
definition of a noise reduction mechanism is difficult, as any definition would need to depend
on how the released parameter estimates were produced. In this paper, we consider the relevant
case of additive noise mechanisms. Below, we provide an explicit definition of noise reduction
mechanisms for this setting.

In the following definition, we let (At)t≥0 be some collection of potentially correlated noise
variables. In particular,At should be thought of as marginally having either a multivariate normal
distribution N (0, tId) or multivariate Laplace distribution Lap(t). The index t can be viewed as
either “time” or “variance”, with larger values of t indicating greater variance of noise added.
Further, when we refer to a sequence of time functions (Tn)n≥1, we mean a sequence of functions
Tn : (Rd)n−1 → R>0 such that, for all n ≥ 1 and β1:n ∈ (Rd)n,

Tn+1(β1:n) ≤ Tn(β1:n−1). (5.2.3)

2For instance, if µx and µx′ are the laws of A(x) and A(x′) respectively, the reference measure can be taken to
be µx + µx′ .
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Intuitively, the nth time function gives the adaptively chosen variance of noise that will be added
to the nth parameter based on the first n− 1 observed parameters.

Let M : X → Y∞ be an algorithm mapping databases for sequences of outputs. Let Mn :
X → Y give the nth element of the sequence and M1:n : X → Yn the first n elements. We
assume Mn(x) := f(x) + ATn(x), where f : X → Y is some function that should be thought
of as producing a true, risk-minimizing parameter, (Tn)n≥1 is a sequence of time functions, and
Tn(x) := Tn(M1:n−1(x)).

Definition 5.2.3 (Noise Reduction Mechanism). Let (At)t≥0 and M : X → Y∞ be as above,
a ∈ Y any constant, and suppose At + a has marginal density pat . We say M is a noise reduction
mechanism if, for any n ≥ 1 and any neighboring datasets x ∼ x′, we have

L1:n(x, x
′) =

p
f(x)
Tn(x)

(Mn(x))

p
f(x′)
Tn(x)

(Mn(x′))
,

where L1:n(x, x
′) denotes the privacy loss between M1:n(x) and M1:n(x

′).

The only noise reduction mechanism in the literature uses a Markov process with Laplace
marginals [94] to gradually release a sensitive parameter [109]. As originally presented, this
Laplace Noise Reduction mechanism is nonadaptive, requiring a data analyst to fix a finite se-
quence of privacy parameters (ϵn)n∈[K] in advance. Instead of presenting this method as back-
ground, we describe it in Section 5.4, in which we construct an adaptive generalization of this
mechanism. We then leverage this generalization as a subroutine in ReducedAboveThreshold,
a generalization of AboveThreshold with adaptive privacy guarantees.

Background on Brownian Motion. We now provide a brief background on Brownian mo-
tion, perhaps the best-known example of a continuous time stochastic process [104].

Definition 5.2.4. A continuous time real-valued process (Bt)t≥0 is called a standard Brownian
motion if (1) B0 = 0, (2) (Bt)t≥0 has continuous sample paths, (3) (Bt) has independent in-
crements, i.e. Bt+s − Bs is independent of Bs for all s, t ≥ 0, and (4) Bt ∼ N (0, t) for all
t ≥ 0.

We say a process (Bt)t≥0 is a d-dimensional standard Brownian motion if each coordinate
process is an independent standard Brownian motion.

We use many properties of Brownian motion to construct the Brownian mechanism and an-
alyze its privacy loss in Section 5.3. One important property of Brownian motion is that it is a
continuous time martingale. This property allow us to use time-uniform supermartingale concen-
tration to characterize and bound the privacy loss of the Brownian mechanism at data-dependent
stopping times [73, 76]. We do not go into detail about martingale concentration in this back-
ground section, but rather defer it to Appendix 5.A. Additionally, (Bt)t≥0 is a Markov process.
This tells us that if we inspect the Brownian motion at times 0 ≤ t1 < t2 < · · · < tn, then
Bt2 , . . . , Btn can be viewed as a randomized post-processing of Bt1 that does not depend on Bs

for any s < t1. This property allows us to show that the privacy loss of the Brownian mechanism
— which adds noise to a parameter via a Brownian motion — only depends on the least noisy
parameter observed.
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5.3 The Brownian Mechanism: a Gaussian Noise Reduction
Mechanism

The Brownian mechanism works by simulating a Brownian motion starting at some multivariate
parameter; this parameter should be thought of as the risk-minimizing output if there were no
privacy constraints. The data analyst first observes the random walk at some large time. Then, if
so desired, the analyst “rewinds” time to an earlier point on the Brownian path, reducing noise to
obtain a more accurate estimate. Due to the Markovian nature of Brownian motion, the analyst
will only pay a privacy cost proportional to variance of the random walk at the earliest inspected
time.

Definition 5.3.1. Let f : X → Rd be a function and (Tn)n≥1 a sequence of time functions. Let
(Bt)t≥0 be a standard d-dimensional Brownian motion. The Brownian mechanism associated
with f and (Tn)n≥1 is the algorithm BM : X → (Rd)∞ given by

BM(x) :=
(
f(x) +BTn(x)

)
n≥1

,

where we set Tn(x) := Tn
(
f(x) +BT1(x), . . . , f(x) +BTn−1(x)

)
with T1(x) being constant.

We have chosen Tn(x) as indexing notation to denote dependence on x, even if this is only
through observed parameters. In the context of ERM, one can think of f as computing a risk
minimizing parameter associated with a private dataset x ∈ X . The data analyst uses Tn along
with the previous iterate to determine how far to rewind time to obtain the nth iterate.

The Brownian mechanism, as defined above, produces an infinite sequence of parameters. In
practice, a data analyst will only view finitely many iterates, stopping when some utility condition
has been met or a minimum privacy level is reached. We introduce stopping functions to model
how a data analyst adaptively interacts with noise reduction mechanisms.

Definition 5.3.2 (Stopping Function). Let M : X → Y∞ be a an algorithm. For x ∈ X , let
(Fn(x))n∈N be the filtration given by Fn(x) := σ(Mi(x) : i ≤ n).3 A function N : Y∞ → N is
called a stopping function if for any x ∈ X , N(x) := N(M(x)) is a stopping time with respect
to (Fn(x))n≥1.

A stopping function N is a rule used to decide when to stop viewing parameters that only
depends on the observed iterates of the noise reduction mechanism. N could heuristically be
“stop at the first time a parameter achieves an accuracy of 95% on a held-out dataset.” Recall
from Figure 5.1 and equation (5.2.3) that the later iterations of BM correspond to smaller noise
variances, meaning that Tn is a decreasing sequence in the number of iterations n. Further, the
filtration F defined above is quite different from the usual filtrations considered for Brownian
motions. In some cases, an analyst may want the stopping function to depend on the underlying
private dataset through more than just the released parameters, e.g. they may want their rule to
be “stop at the first time a parameter achieves an accuracy of 95% on the private dataset.” In this

3The notation σ(X) denotes the σ-algebra generated by X . N is said to be a stopping time with respect to (Xn)
if {N ≤ n} ∈ σ(Xm : m ≤ n) for all n ∈ N. This definition can be extended to allow for N to depend on
independent, external randomization, but we omit this for simplicity.
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case, additional privacy may be lost due to observing N(x). We detail how to handle this more
subtle case in Section 5.5.

Due to the Markovian nature of Brownian motion, we get the following lemma. We include
a proof in Appendix 5.B for completeness.

Lemma 5.3.3. Let x ∼ x′ be neighbors and (Tn)n≥1 a sequence of time functions. Then, for any
n ≥ 1, letting LBM

1:n (x, x
′) denote the privacy loss between BM1:n(x) and BM1:n(x

′), we have

LBM
1:n (x, x

′) = log

(
p
f(x)
Tn(x)

(BMn(x))

p
f(x′)
Tn(x)

(BMn(x))

)
,

where pµt is the density of a N (µ, tId) random variable. Furthermore, the above equality holds
if n is replaced by an almost surely bounded stopping function N(x).

Lemma 5.3.3 just tells us that the Brownian mechanism is a noise reduction mechanism, i.e.
that the privacy lost by viewing the first n iterates is exactly the privacy lost by viewing the nth
iterate in isolation.

The following theorem characterizes the privacy loss of the Brownian mechanism.

Theorem 5.3.4. Let BM be the Brownian mechanism associated with (Tn)n≥1, a function f :
X → Rd, and stopping function N . For neighbors x ∼ x′, the privacy loss between BM1:N(x)(x)
and BM1:N(x′)(x

′) is given by

LBM
1:N(x)(x, x

′) =
||f(x)− f(x′)||22

2TN(x)(x)
+

||f(x)− f(x′)||2
TN(x)(x)

WTN(x)(x),

where (Wt)t≥0 is a standard, univariate Brownian motion. Suppose f has ℓ2-sensitivity at most
∆2. Then, letting a+ := max(0, a), we have

LBM
1:N(x)(x, x

′) ≤ ∆2
2

2TN(x)(x)
+

∆2

TN(x)(x)
W+
TN(x)(x)

.

The above theorem can be viewed as a process-level equivalent of the well-known fact that
the privacy loss of the Gaussian mechanism has an uncentered Gaussian distribution [11]. We
prove the Theorem 5.3.4 in Appendix 5.B. Given the clean characterization of privacy loss above,
we now show how to construct high-probability, time-uniform privacy loss bounds. We define
privacy boundaries, which map the variance of BM to high-probability bounds on privacy loss.

Definition 5.3.5. A function ψ : R≥0 → R≥0 is a δ-privacy boundary for the Brownian mecha-
nism associated with time functions (Tn)n≥1 if for any neighboring datasets x ∼ x′, we have

P
(
∃n ≥ 1 : LBM

1:n (x, x
′) ≥ ψ(Tn(x))

)
≤ δ

Since the privacy loss of BM is a deterministic function of a Brownian motion, we can apply
results from martingale theory to construct general families of privacy boundaries.

Theorem 5.3.6. Assume the same setup as in Theorem 5.3.4. Let δ > 0 and f be a function with
ℓ2-sensitivity ∆2. The following classes of functions form δ-privacy boundaries.

113



1. (Mixture boundary) For any ρ > 0, ψMρ given by

ψMρ (t) :=
∆2

2

2t
+

∆2

t

√
2(t+ ρ) log

(
1

δ

√
t+ ρ

ρ

)
.

2. (Linear boundary) For any a, b > 0 such that 2ab = log(1/δ), ψLa,b given by

ψLa,b(t) :=
∆2

t

(
∆2

2
+ b

)
+∆2a.

We prove Theorem 5.3.6 in Appendix 5.B. In the same appendix, we plot the boundaries in
Figure 5.4.

Privacy boundaries serve a dual purpose for the Brownian mechanism. First, since time-
uniform concentration bounds are valid at arbitrary data-dependent times, that need not be stop-
ping times with respect to the standard forward Brownian Motion filtration [76], privacy bound-
aries provide ex-post privacy guarantees. Second, in many settings, it may be more natural for
a data analyst to adaptively specify target privacy levels instead of noise levels. This is, for in-
stance, the case in our experiments in Section 5.6. By inverting privacy boundaries, data analysts
can compute the proper amount of noise to remove at each step to meet target privacy levels.

We make the above precise in Corollary 5.3.7. In what follows, when we refer to a sequence
(En)n≥1 of privacy functions, we mean a sequence of functions En : (Rd)n−1 → R≥0 such that,
for all n and β1:n ∈ (Rd)n, En+1(β1:n) ≥ En(β1:n−1).

Corollary 5.3.7. Let N be a stopping function, as in Definition 5.3.2. If ψ is a δ-privacy bound-
ary for BM, we have

sup
x∼x′

P
(
LBM
N(x)(x, x

′) ≥ ψ
(
TN(x)(x)

))
≤ δ,

i.e. the algorithm BM1:N(·)(·) is
(
ψ(TN(·)(·)), δ

)
-ex post private, where (·) denotes a positional

argument for an input x ∈ X . Further, let (En)n≥1 be a sequence of privacy functions, and define

Tn(β1:n−1) := inf {t ≥ 0 : ψ(t) ≥ En(β1:n−1)} .

Then BM1:N(·)(·) is (EN(·)(·), δ)-ex post private, where En(x) is defined analogously to Tn(x).

Again, N should be thought of as a stopping rule based on parameter accuracy. En should be
thought of as a rule for choosing the nth privacy parameter given BM1:n−1(x).

5.4 An Adaptive, Continuous-Time Extension of Laplace Noise
Reduction

Here, we generalize the original noise reduction mechanism of Ligett et al. [109], which will
be used as a subroutine in Algorithm 1 in the following section. We first describe the original
Laplace-based Markov process of Koufogiannis et al. [94]. Fix any positive integer K and any
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finite, increasing sequence of times (tn)n∈[K]. Let (ζn)Kn=0 be the d-dimensional process given by
ζ0 = 0 and

ζn =

ζn−1 with probability
(
tn−1

tn

)2
ζn−1 + Lap(tn) otherwise.

(5.4.1)

Koufogiannis et al. [94] show that ζn ∼ Lap(tn) and that (ζn)Kn=0 is Markovian. Ligett et al.
[109] use the above process to construct a noise reduction mechanism. Namely, they define the
the Laplace Noise Reduction mechanism associated with f : X → Rd and (tn)n∈[K] to be the
algorithm LNR : X → (Rd)K given by LNR(x) := (f(x)+ ζK , . . . , f(x)+ ζ1). If tn := ∆1/ϵn,
then releasing nth component LNRn(x) in isolation is equivalent to running the classical Laplace
mechanism with privacy level ϵn.

We now extend the process (ζn)n∈[K] to a continuous time process with the same finite-
dimensional distributions. Let η > 0 be arbitrary, and let (Pt)t≥η be an inhomogeneous Poisson
process with intensity function λ(t) := 2

t
. For n ≥ 1, let Tn := inf{t ≥ η : Pt ≥ n} be the nth

jump of (Pt)t≥η and set T0 := η. Noting that Pt must be a nonnegative integer, define the process
(Zt)t≥η by

Zt :=
Pt∑
n=0

Lap(Tn). (5.4.2)

It is immediate that (Zt)t≥η is Markovian. We show in Appendix 5.D that Zt ∼ Lap(t). With
(Zt)t≥η, one can make LNR fully adaptive, meaning that the times (tn)n∈[K] at which it is invoked
need not be prespecified, and can depend on the underlying input database x by using time
functions.

Definition 5.4.1. Let f : X → Rd be a function and (Tn)n≥1 a sequence of time functions.
Let (Zt)t≥η be the process defined in Equation (5.4.2). The Laplace noise reduction mechanism
associated with f and (Tn)n≥1 is the algorithm LNR : X → (Rd)∞ given by

LNR(x) := (f(x) + ZTn(x))n≥1,

where again Tn(x) := Tn(f(x) + ZT1(x), . . . , f(x) + ZTn−1(x)) and T1(x) is constant.

If the analyst would prefer instead to specify privacy functions (En)n≥1, they can do so by
leveraging the corresponding time functions Tn(x) := ∆1/En(x), where En(x) is defined anal-
ogously to Tn(x). We leverage LNR in our experiments in Section 5.6 and the process (Zt)t≥0

as a subroutine in constructing ReducedAboveThreshold. An analogous argument to the one
used in proving Lemma 5.3.3 can be used to show LNR enjoys the following ex-post privacy
guarantee.

Proposition 5.4.2. Let LNR be associated with (Tn)n≥1 and a function f with ℓ1-sensitivity ∆1.
If N is stopping function, the algorithm LNR1:N(·)(·) is (∆1/TN(·)(·), 0)-ex post private.

Skellam Noise Reduction. Last, we briefly discuss how to generate a noise reduction mech-
anism for Skellam noise [6]. Recall that a random variable X has a Skellam distribution with
parameters λ1 and λ2 if X =d Y1 − Y2, where Y1 ∼ Poisson(λ1) and Y2 ∼ Poisson(λ2) are
independent Laplace random variables. For succinctness, we write X ∼ Skell(λ1, λ2).
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Let (P1(t))t≥0 and (P2(t))t≥0 be two independent, homogeneous Poisson process with rates
λ1 and λ2 respectively. Observe that the continuous time process (Xt)t≥0 given by Xt :=
P1(t) − P2(t) is clearly Markovian, has independent increments, and has Xt ∼ Skell(tλ1, tλ2).
Thus, (Xt)t≥0 can be used to define a Skellam noise reduction mechanism by releasing (f(x) +
XTn(x))n≥1 for some sequence of time functions (Tn)n≥1.

5.5 Privately Checking if Accuracy is Above a Threshold
In Section 5.3 we presented the Brownian mechanism, characterized its privacy loss, and showed
how to obtain ex-post privacy guarantees for arbitrary stopping functions. In particular, these
stopping functions could be based on the accuracy of the observed iterates on public held-out
data.

However, one may desire to privately check the accuracy of observed iterates on the dataset
x ∈ X . [109] were able to accomplish this goal by coupling LNR with AboveThreshold,
a classical algorithm for privately answering threshold queries [52]. In the context of ERM,
AboveThreshold iteratively checks if the empirical risk of each parameter is below a target
threshold, stopping at the first such occurrence. The downside to AboveThreshold is that it
requires a prefixed privacy level. In empirical studies, Ligett et al. [109] found this fixed privacy
cost dominated the ex-post privacy guarantees, showing little benefit to using noise reduction.

Below, we construct ReducedAboveThreshold, a generalization of AboveThreshold which
provides ex-post privacy guarantees. We show how to couple BM with ReducedAboveThreshold
to obtain tighter ex-post privacy guarantees than coupling with AboveThreshold would permit.
In particular, if BM is run using parameters (ϵn)n≥1 and ReducedAboveThreshold indicates the
N th parameter obtains sufficiently high accuracy, the privacy loss of the net procedure will be at
most 2ϵN — only twice the privacy loss that would be accrued by testing on public data.

Algorithm 1 ReducedAboveThreshold (via Laplace Noise Reduction)
Input: Algorithm Alg : X → Y∞, parameter ϵmax > 0, threshold τ , database x ∈ X , utility
u : Y × X → R where u(β, ·) is ∆-sensitive ∀β, privacy functions (En)n≥1 with En ≤ ϵmax

∀n.
for n ≥ 1 do

ϵn := En(Alg1:n−1(x)), Tn := 2∆/ϵn
ζn := ZTn , where (Zt)t≥η in Eq. (5.4.2) defines the LNR mechanism with η := 2∆/ϵmax.

ξn ∼ Lap
(

4∆
ϵn

)
if u(Algn(x), x) + ξn ≥ τ + ζn then

Print 1 and HALT
else

Print 0

τ should be seen as a target accuracy, Alg as a mechanism for releasing a parameter (e.g. BM,
LNR), and u as evaluating the accuracy of Algn(x) on x. ϵmax is an arbitrarily large constant,
representing the minimum level of privacy required, used to prevent the user from examining
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(Zt) at arbitrarily small times. The above generalizes to sequences of thresholds (τn)n≥1 and
sequences (un)n≥1 of functions un : Yn×X → R that are ∆-sensitive in their second argument,
but the added generality yields only marginal benefits. When En = ϵ for all n, Algorithm 1
recovers AboveThreshold as a special case. The intuition behind ReducedAboveThreshold
is that by gradually removing Laplace noise from the threshold, a data analyst can ensure that
privacy of the whole procedure only depends on the magnitude of Laplace noise added when the
algorithm halts. The following characterizes the privacy loss of Algorithm 1.

Theorem 5.5.1. For any n ≥ 1 and neighboring datasets x ∼ x′, let LAlg
1:n (x, x

′) denote the
privacy between Alg1:n(x) and Alg1:n(x

′). For any x ∈ X , define N(x) to be the first round
where ReducedAboveThreshold run on input x ∈ X outputs 1, that is

N(x) := inf{n ≥ 1 : ReducedAboveThresholdn(x) = 1}.

Then, the privacy loss between ReducedAboveThreshold(x) and ReducedAboveThreshold(x′),
denoted LRAT(x, x′), is bounded by

LRAT(x, x′) ≤ LAlg
1:N(x)(x, x

′) + EN(x)(Alg1:N(x)−1(x)).

We prove Theorem 5.5.1 in Appendix 5.C, where we also provide a utility guarantee for
ReducedAboveThreshold. This utility guarantee, much like the utility guarantee for AboveThreshold,
is in practice weak as it derives from a union bound. Using Theorem 5.5.1, we can simply choose
Alg = BM as a means of adaptively generating parameters. The following corollary, which fol-
lows immediately from the above theorem, provides the ex-post privacy guarantees of combining
ReducedAboveThreshold and BM.

Corollary 5.5.2. Let BM be the Brownian mechanism associated with a function f , decreas-
ing time functions (Tn)n≥1, and a a δ-privacy boundary ψ. Let ReducedAboveThreshold be run
with privacy functions (ψ(Tn))n≥1, threshold τ , and algorithm BM. Then, ReducedAboveThreshold
is
(
2ψ(TN(·)(·)), δ

)
-ex post private.

5.6 Experiments
Choice of tasks: We compare the performance of BM and LNR on the tasks of regularized
logistic regression via output perturbation [25] and ridge regression via covariance perturba-
tion [145].4 For logistic regression, we leveraged the KDD-99 dataset [90] with d = 38 features,
predicting whether network events can be classified as “normal” or “malicious”. For ridge re-
gression, we used the Twitter dataset [89] with d = 77 features to predict log-popularity of posts.
In each case, we ran our experiments on n = 10, 000 randomly sub-sampled data points. In order
to guarantee bounded sensitivity, we normalized each data point to have unit ℓ2 norm. We note
that this aspect differs from the experimentation conducted by Ligett et al. [109], who normalized
by the maximum ℓ2 norm, a non-private operation.

4The two tasks use the logistic loss ℓ(y, z) := log(1 + exp(−yz)) and the squared loss ℓ(y, z) := 1
2 (z − y)2.

The regularized loss on a dataset D := {(xi, yi)}i∈[n] is L(β,D) := 1
n

∑n
i=1 ℓ(yi, β

Txi) +
λ||β||22

2 .
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(a) Regularized Logistic Regression (b) Ridge Regression

Figure 5.2: Privacy loss plotted against loss (respectively regularized logistic and ridge loss) for
the statistical tasks of regularized logistic regression and ridge regression.

(a) Regularized Logistic Regression (b) Ridge Regression

Figure 5.3: Empirical privacy loss distributions for logistic regression and ridge regression with
loss assessed either (left) on the training data treated as a public, held-out dataset, (middle) via
AboveThreshold, or (right) via ReducedAboveThreshold.

Experiments: For each task, we conducted two experiments. We discuss the specific param-
eter settings for these experiments in Appendix 5.E. In the first experiment, we plotted guaranteed
(in the case of LNR) or high-probability (in the case of BM) privacy loss on the x-axis against
average loss (either logistic or ridge) on the y-axis. We conduct such a comparison as proba-
bility 1 privacy loss bounds cannot be provided for the Gaussian mechanism. Likewise, adding
a probability δ of minimally improves privacy loss for the Laplace mechanism. We computed
the average loss curve for each mechanism over 1,000 trials, and have included point-wise valid
95% confidence intervals.

In the second experiment, we plotted the empirical privacy loss distributions for BM and LNR
under the stopping conditions of loss being at most 0.41 for logistic regression and 0.025 for ridge
regression. For each mechanism, we evaluated this empirical distribution using three approaches
for testing empirical loss: treating the training data as a held-out dataset, using AboveThreshold,
and using our mechanism, ReducedAboveThreshold. In AboveThreshold, we set the privacy
parameter to be fixed at ϵ = 0.5. In ReducedAboveThreshold, we took the sequence of privacy
parameters to be the same as the sequence of privacy parameters used by BM and LNR. We once
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again computed these empirical distributions over 1,000 runs of each mechanism.
Findings: The findings of the two experiments are summarized in Figure 5.2 and Figure 5.3.

For both tasks, BM obtains significant improvements in loss over LNR near the privacy loss
level that was optimized for. For both tasks, the privacy loss distribution for BM has lower me-
dian privacy loss than that of LNR. In addition, the privacy loss distribution for BM is more
tightly concentrated around the median, indicating more consistent performance. The privacy
loss distribution for LNR has a heavy tail, demonstrating that many runs do not attain the tar-
get loss until high privacy loss costs are incurred. Comparing ReducedAboveThreshold and
AboveThreshold, we see that the privacy loss distribution for ReducedAboveThreshold has
higher variance than that of AboveThreshold. However, ReducedAboveThreshold attains a
significantly lower median level of privacy loss when coupled with BM. This latter point reflects
the observations of Ligett et al. [109], who note that when AboveThreshold is used to determine
stopping conditions on private data, it contributes the bulk of the privacy loss to the empirical
distributions. On the other hand, our figures demonstrate that ReducedAboveThreshold results
in a more mild privacy loss at target stopping conditions.

5.7 Conclusion
In this paper, we constructed the Brownian mechanism (BM), a novel approach to noise reduction
that adds noise to a hidden parameter via a Brownian motion. We not only precisely characterized
the privacy loss of the Brownian mechanism, but also bounded it through applying machinery
from continuous time martingale theory. We then demonstrated how the utility of the iterates
produced by BM can be assessed on private data via ReducedAboveThreshold, a generalization
of the classical AboveThreshold algorithm. This was itself accomplished by a continuous-time
generalization of the original Laplace noise reduction (LNR) mechanism. Last, we empirically
demonstrated that BM outperforms LNR on common statistical tasks, such as regularized logistic
and ridge regression.

We comment on several limitations and open problems related to our work. We considered
noise reduction mechanisms in the setting of one-shot privacy, in which only a single mechanism
is run on private data. Traditional composition results, such as those for fixed privacy param-
eters [57, 84, 123] or adaptively selected parameters [133, 62, 163] are not directly applicable
to algorithms satisfying ex-post privacy; additional machinery needs to be developed to handle
composition in this case. A naive approach to composition is possible, which involves summing
the ex-post privacy guarantees of composed algorithms and summing the corresponding δ’s, but
we expect this approach to be loose. Finally, noise reduction is currently only applicable to
output perturbation methods; it remains open to see how to combine noise reduction with other
prominent methods for private computation, such as objective perturbation.

5.A Background on Martingale Concentration
In this section, we provide a background on the basics of martingale concentration needed
throughout this paper. While standard Brownian motion (Bt)t≥0 is not a nonnegative super-

119



martingale, geometric Brownian motion given by Y λ
t := exp

(
λBt − λ2

2
t
)

is a nonnegative mar-
tingale for any λ ∈ R, and hence Ville’s inequality (Theorem 1.0.2) can be applied. In fact, the
probability in the lemma above becomes exactly δ when it is applied to a nonnegative martingale
with continuous paths like Y λ

t . From Ville’s inequality, the following line-crossing inequality for
Brownian motion can be obtained.

Lemma 5.A.1 (Line-Crossing Inequality). For δ ∈ (0, 1) and a, b > 0 satisfying e−2ab = δ, we
have

P (∃t ≥ 0 : Bt ≥ at+ b) = δ.

A proof of the above fact can be found in any standard book on continuous time martingale
theory [104, 50]. The above also follows from a special case of the more general time-uniform
Chernoff bound presented in Howard et al. [73], as discussed earlier in this document.

The above inequality can be seen as optimizing the tightness of the time-uniform boundary at
one preselected point in time. However, due to the adaptive nature of the Brownian mechanism
presented in Section 5.3, it is sometimes desirable to construct a time-uniform boundary which
sacrifices tightness at a fixed point in time to obtain greater tightness over all of time.

The aforementioned method of mixtures provides one such approach for constructing tighter
time-uniform boundaries [86, 76]. We discuss this concept briefly in the context of Brownian
motion. Observe that, since (Y λ

t )t≥0 is a nonnegative martingale, for any probability measure π
on R, the process (Xπ

t )t≥0 given by

Xπ
t :=

∫
R
Y λ
t π(dλ)

is also nonnegative martingale. By appropriately choosing the probability measure π and apply-
ing Ville’s inequality, one obtains the following concentration inequality [76].

Lemma 5.A.2 (Mixture Inequality). Let ρ > 0 and δ ∈ (0, 1) be arbitrary. Then,

P

∃t ≥ 0 : Bt ≥

√
2(t+ ρ) log

(
1

δ

√
t+ ρ

ρ

) = δ.

We leverage Lemmas 5.A.1 and 5.A.2 to construct the privacy boundaries in Theorem 5.3.6
in Appendix 5.B.

5.B Proofs From Section 5.3
Here, we prove the results from Section 5.3. We start by showing that BM is in fact a noise-
reduction mechanism, which is claimed in Lemma 5.3.3. To prove the cited lemma, it suffices to
show the following result.

Proposition 5.B.1. For ν ∈ Rd, let (Bν
t )t≥0 be a standard d-dimensional Brownian motion

starting at ν. Let (Tn)n≥1 be a sequence of decreasing time functions5 Tn : R(n−1)d → R,

5As before, T1 is implicitly a constant, independent of (Bν
t )t≥0
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(a) Variance of Noise vs. Privacy Loss (b) Privacy Loss vs. Variance of Noise

Figure 5.4: A comparison of the linear and mixture boundaries, both optimized for tightness
at ϵ = 0.3 with δ = 10−6. The first plot directly plots the corresponding bounds as in The-
orem 5.3.6. The second plot inverts the boundaries, showing the variance necessary to meet a
target privacy level.

N : R∞ → N a bounded stopping function, and define T νn := Tn

(
Bν
T ν
1
, . . . , Bν

T ν
n−1

)
and Nν :=

N
(
(Bν

T ν
n
)n≥1

)
. Let pν1:N denote the joint density of

(
Bν
T ν
1
, . . . , Bν

T ν
Nν

)
. Then, with probability 1,

we have

pν1:N

(
Bν
T ν
1
, . . . , Bν

T ν
Nν

)
pµ1:N

(
Bν
T ν
1
, . . . , Bν

T ν
Nν

) =

exp

(
−

(Bν
Tν
Nν

−ν)2

2TNν

)
exp

(
−

(Bν
Tν
Nν

−µ)2

2TNν

) ,
which is just the ratio between the density of a N (ν, T νNν ) random variable and a N (µ, T νNν )
random variable evaluated at Bν

T ν
Nν

.

A key part of proving the above proposition will be developing a strong Markov property
for Brownian bridges. Recall that a Brownian bridge is, in essence, a Brownian motion that
has been “pinned down” at some initial and terminating value. More rigorously, for a random
variable A ∈ Rd and a constant b ∈ Rd, a Brownian bridge (Xt)0≤t≤T with initial value X0 = A
and terminating value XT = b is a process that can be written in the form Xt =

T−t
T
A + Bt −

t
T
(BT − b), where (Bt)0≤t≤T is a standard d-dimensional Brownian motion that is independent

of A. The following properties of Brownian bridges follow from the definition.

Lemma 5.B.2 (Properties of Brownian Bridges). Let (Xt)0≤t≤T be a d-dimensional Brownian
bridge with X0 = A, for A being a random vector in Rd, and X1 = b, with b ∈ Rd fixed. Then,
the following hold:

1. If A′ ∈ Rd is independent of (Xt)t≥0, A and b′ ∈ Rd is constant, the process (X ′
t)0≤t≤T given

by

X ′
t := Xt +

T − t

T
A′ +

t

T
b′

is a d-dimensional Brownian bridge on [0, T ] with initial value X ′
0 = A+A′ and terminating

value X ′
T = b+ b′.
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2. µ(t) := EXt =
T−t
T

EA+ t
T
b for all 0 ≤ t ≤ T .

3. k(s, t) := Cov(Xs, Xt) =
(T−t)(T−s)

T 2 Cov(A) +
(
s ∧ t− st

T

)
Id.

4. For any C > 0, the process (X ′
t)0≤t≤CT given byX ′

t :=
√
CXt/C is a d-dimensional Brownian

bridge with initial point
√
CA and terminal point

√
Cb on [0, CT ).

5. If A ∼ N (µ,Σ), then (Xt)0≤t≤T is a continuous Gaussian process on [0, T ], and hence it’s
law is uniquely determined by µ and k.

If (Bt)t≥0 is a d-dimensional Brownian motion and τ is a stopping time with respect to the
natural filtration (Ft)t≥0, the strong Markov property for Brownian motion (see Theorem 2.20 of
Le Gall [104]) tells us that the process (Bτ+t−Bτ )t≥0 is also a d-dimensional Brownian motion
that is independent of Fτ . While we need to be a little more careful with scaling in the setting of
Brownian bridges, we can show a similar strong Markov property.

Lemma 5.B.3. Let (Xt)0≤t≤1 be a standard d-dimensional Brownian bridge with X0 = A and
X1 = b, and let (Gt)0≤t≤1 be the corresponding natural filtration. Let τ be a (Gt) stopping time.
Let (X(τ)

t )0≤t≤1−τ be the process defined by X(τ)
t := Xt+τ − 1−τ−t

1−τ Xτ − t
1−τ b, and define the

rescaled process (Y (τ)
t )0≤t≤1 by

Y
(τ)
t :=

√
1− τX

(τ)
t/(1−τ).

Then, (Yt)0≤t≤1 is a standard Brownian bridge with Y0 = Y1 = 0 independent of Gτ .

Proof. Step 1: reduction to the case a = b = 0: First, we note that it suffices to prove the result
when A = a is a constant. If we prove the result in this case, we note we have by the tower rule
for conditional expectations that, for any event E,

P(Y (τ) ∈ E) = E
[
P
(
Y (τ) ∈ E | A

)]
= E [P (Z ∈ E)] = P (Z ∈ E) ,

where (Zt)0≤t≤1 is a Brownian bridge with Z0 = Z1 = 0. Next, note it suffices to prove the
result in the case a = b = 0. Let (Xt)0≤t≤1 be a Brownian bridge satisfying X0 = a and X1 = b.
Define another process (X ′

t)t≥0 on the same probability space by X ′
t := Xt − (1− t)a− tb. By

the first part of Lemma 5.B.2, (X ′
t)t≥0 is a Brownian bridge on [0, 1] with initial point X ′

0 = 0
and X ′

1 = 0. Clearly, the natural filtration (Gt)0≤t≤1 for (Xt)0≤t≤1 is also the natural filtration for
(X ′

t)0≤t≤1. Further, a simple calculation yields that for any fixed 0 ≤ s ≤ t ≤ 1, X(s)′

t = X
(s)
t .

Thus it also follows that Y (τ)′

t = Y
(τ)
t for all (Gt) stopping times τ and all 0 ≤ t ≤ 1.

Step 2: considering when τ = T is deterministic: Thus, going forward we consider the
case where (Xt)0≤t≤1 is a Brownian bridge with X0 = X1 = 0. Clearly it suffices to consider
(Xt)0≤t≤1 to be one-dimensional in what follows, as in the multivariate case the coordinates of
X are independent one-dimensional Brownian bridges. We first consider the case where τ = T
is a constant time. In this case, the process (Zt)0≤t≤1 given by

Zt :=

{
Xt for 0 ≤ t < T,

X
(T )
t−T for T ≤ t ≤ 1
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is clearly a Gaussian process on [0, 1] that is continuous on [0, T ) and [T, 1]. To show the result,
we must show (1) for any s ∈ [0, T ), t ∈ [T, 1], k(s, t) := Cov(Zs, Zt) = 0 (this implies
X(T ), and hence Y (T ) is independent of GT ), (2) µ(t) := EZt = 0 for all t ∈ [T, 1], and (3)
k(s, t) := Cov(Zs, Zt) = (s − T ) ∧ (t − T ) − (s−T )(t−T )

1−T for all s, t ∈ [T, 1] (these final two
points show the law of X(T ) is that of a Brownian bridge since we already have sample path
continuity).

We now check each of these properties. In what follows, recall that Xt = Bt − tB1 for some
(now one-dimensional) Brownian motion (Bt)0≤t≤1, and remember that Cov(Bs, Bt) = s ∧ t.

1. For s ∈ [0, T ) and t ∈ [0, 1 − T ], we have (assuming for now that E[X(T )
t ] = 0, which we

confirm in a later point)

Cov(Xs, X
(T )
t ) = E

[
Xs

(
Xt+T − 1− T − t

1− T
XT

)]
= E [XsXt+T ]−

1− T − t

1− T
E [XsXt] = s(1− t− T ) +

1− T − t

1− T
s(1− T )

= 0,

which confirms the first point.

2. For any t ∈ [0, 1− T ], we have

E
[
X

(T )
t

]
= E

[
Bt+T − (t+ T )B1 −

1− T − t

1− T
BT +

1− T − t

1− T
TB1

]
= 0,

proving the second point.

3. Lastly, using property 3 of Lemma 5.B.2, for s, t ∈ [0, 1− T ] s.t. s < t, we have

Cov
(
X(T )
s , X

(T )
t

)
= E

[(
Xs+T − 1− T − s

1− T
XT

)(
Xt+T − 1− T − t

1− T
XT

)]
= {(s+ T )− (s+ T )(t+ T )} − 1− T − t

1− T
{T − (s+ T )T}

− 1− T − s

1− T
{T − (t+ T )T}+ (1− T − t)(1− T − s)

(1− T )2
{
T − T 2

}
=

1

1− T

[
(s+ T )(1− T − t)(1− T )− T (1− T − s)(1− T − t)

]
=

(1− T − t)s

(1− T )
= s− st

1− T
.

Since we have shown that, for any T ∈ [0, 1], Y (T ) is independent of GT , we have that, for
any E ∈ Gt and any bounded, any fixed times 0 ≤ t1 < t2 < · · · < tp ≤ 1, and continuous
function F : Rdp → R≥0,

E1EF (Y (T )
t1 , . . . , F

(T )
tp ) = P(A)EF (Xt1 , . . . , Xtp),

which is a fact we will use in the sequel.
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Step 3: generalizing to general stopping times:
We now emulate a standard proof of the strong Markov property for Brownian motion to

extend to the case where τ is a (Gt)0≤t≤1 stopping time (in particular, the proof of Theorem 2.20
in Le Gall [104]).

It suffices to show that, for any A ∈ Gτ , 0 ≤ t1 < t2 < · · · < tp ≤ 1, and F : Rdp → R≥0

continuous and bounded that

E1AF (Y (τ)
t1 , . . . , Y

(τ)
tp ) = P(A)EF (Xt1 , . . . , Xtp).

As noted in Le Gall [104], this not only proves the independence of (Y
(τ)
t ) and Gτ , but

also demonstrates by taking A = Ω (where (Ω,F ,P) is the underlying probability space) that
(Y

(τ)
t ) and (Xt) have the same finite-dimensional distributions, and hence (Y

(τ)
t ) is a standard

d-dimensional Brownian bridge since sample paths are continuous.
For n a positive integer and T ∈ R, define T |n := min{k2−n : k ∈ Z, k2−n ≥ T}, i.e.

T |n is the smallest real of the form k2−n that is greater than or equal to T . A straightforward
expansion of Y (τ |n)

t yields that, for any t ∈ [0, 1], we have Y (τ |n)
t −−−→

n→∞
Y

(τ)
t , and thus bounded

convergence yields

E1AF (Y (τ)
t1 , . . . , Y

(τ)
tp ) = lim

n→∞
E1AF (Y (τ |n)

t1 , . . . , Y
(τ |n)
tp )

= lim
n→∞

2n∑
k=0

E1A1Ek
n
F (Y

(τ |n)
t1 , . . . , Y

(τ |n)
tp )

= lim
n→∞

2n∑
k=1

E1A1Ek
n
F (Y

(k2−n)
t1 , . . . , Y

(k2−n)
tp )

= lim
n→∞

2n∑
k=1

P(A ∩ Ek
n)EF (Y

(k2−n)
t1 , . . . , Y

(k2−n)
tp )

= P(A)EF (Xt1 , . . . , Xtp),

where (Xt)0≤t≤1 is a standard d-dimensional Brownian bridge, proving the desired result. In the
above, Ek

n := {(k − 1)2−n < τ ≤ k2−n}, and we use the identity 1Ek
n
F (Y

(τ |n)
t1 , . . . , Y

(τ |n)
tp ) =

1Ek
n
F (Y

(k2−n)
t1 , . . . , Y

(k2−n)
tp ). The second to last inequality follows from applying the result

where t is a deterministic time, noting that the event A ∩ Ek
n is Gk2−n-measurable.

Thus, we have shown the desired result. ■

Corollary 5.B.4. Let (Xt)0≤t≤1 be a d-dimensional Brownian bridge with X0 = A and X1 = b,
where A is a random variable. Let (Gt)0≤t≤1 be the corresponding natural filtration. Let τ be
a (Gt) stopping time. Then, for any G ∈ Gτ , the conditional law of the process (Xt)τ≤t≤1 given
{τ = T,Xτ = x} ∩ G is that of a Brownian bridge on [T, 1] with initial value XT = x and
terminal value X1 = b, i.e.

P(X ∈ · | τ = T,Xτ = x,G) = P(S ∈ · ),

where (St)T≤t≤1 is a Brownian bridge on [T, 1] with ST = x and S1 = b.
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Proof. Let (Zt)0≤t≤1 be a Brownian bridge wth Z0 = Z1 = 0. Applying the tower rule for
conditional expectation alongside Lemma 5.B.3 gives us, for all E ∈ F ,

P
(
Y (τ) ∈ E | τ,Xτ ,1G

)
= E

[
P
(
Y (τ) ∈ E | Fτ

)]
= P(Z ∈ E).

Thus, with probability one over the joint distribution of (Xτ , τ,1G), we have

P
(
Y (τ) ∈ E | Xτ = x, τ = t, G

)
= P(Z ∈ E).

With Lemma 5.B.2, we know that, since Y (τ) is a Brownian bridge with Y (τ)
0 = Y

(τ)
1 = 0 on

this event, then, 1√
1−T Y

(τ)
t(1−T ) = Xt+T − 1−T−t

1−T x + t
1−T b is a Brownian bridge with initial and

terminal value 0 on [0, 1 − T ]. The remainder of the result follows by adding 1−T−t
1−T x − t

1−T b,
applying the first part of Lemma 5.B.2, and reindexing the process to be defined on [T, 1]. ■

Lemma 5.B.3 and Corollary 5.B.4 above show that the conditional distributions of Brownian
bridges, even at stopping times, are very well-behaved — the conditional distributions are exactly
that of another Brownian bridge. We aim to apply these results to our analysis of the privacy loss
of the Brownian mechanism as follows. We will shortly that the distribution of the outputs of
the Brownian mechanism, which can be viewed as a Brownian motion being run in reverse, can
be equivalently viewed as a Brownian bridge with random (particularly, multivariate Gaussian)
initial state and fixed terminating state. Coupling this with the above strong Markov property, we
will show that even when an analyst picks arbitrarily complicated stopping functions, the privacy
loss looks as if the inspection times were fixed in advance.

First, we show that, for a fixed number n of time functions, the privacy loss is exactly as
outlined in the statement of Proposition 5.B.1.

Lemma 5.B.5. Let n ∈ N be arbitrary, and let T1, . . . , Tn be decreasing (i.e. non-increasing)
time functions. Let pν1:n denote the joint density of (Bν

T ν
1
, . . . , Bν

T ν
n
), where (Bν

t )t≥0 is a d-

dimensional Brownian motion starting at ν ∈ Rd and T νm := Tm

(
Bν
T ν
1
, . . . , Bν

T ν
m−1

)
. Then,

for any y1, . . . , yn ∈ Rd, we have6

pν1:n(y1, . . . , yn) ∝ν exp

(
−∥yn − ν∥2

2Tn

) n∏
m=2

exp

(
−∥ym−1 − ym∥2

2(Tm−1 − Tm)

)
,

where Tm = Tm(y1, . . . , ym−1) for notational convenience and ∝ν indicates that the constant of
proportionality does not depend on ν.

Proof. We prove the result by induction on n, with the base case of n = 1 being trivial. Assume
now the result holds for n. Recall that the first time function T1 is simply a constant. Define
the “backwards” process (Xν

t )0≤t≤T1 by Xν
t := Bν

T1−t, and let (Gt)0≤t≤T1 be the corresponding
natural filtration, i.e. Gt := σ(Xν

s : s ≤ t) = σ(Bν
T1−s : s ≤ t). Inspection yields that (Xν

t )0≤t≤T1
is a Brownian bridge with Xν

0 ∼ N (ν, T1Id) and Xν
T1

= ν.

6Since we may have Tm = Tm−1 for some m, we adopt the convention that when ym = ym−1,
exp

(
−(ym−ym−1)

2

2(Tm−Tm−1)

)
= 1. Likewise, when ym ̸= ym−1 in this setting, we adopt exp

(
−(ym−ym−1)

2

2(Tm−Tm−1)

)
= 0. After

the proof of this lemma, only the former case will occur.
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First, we note that the strong Markov property (in particular Corollary 5.B.4) yields that, for
any (Gt) stopping times τ1 ≤ · · · ≤ τn, the law of of (Xν

t )τn≤1≤T1 conditional on the event
{Xν

τ1
= y1, . . . , X

ν
τn = yn} is that of a Brownian bridge with initial point Xν

τn = yn and terminal
point Xν

T1
= ν. Applying this in the case τm = T1 − Tm, this yields that the conditional law of

(Xν
t )T1−Tn≤t≤T1 given {Xν

0 = y1, X
ν
T1−T2 = y2, . . . , X

ν
T1−Tn = yn} is a Brownian bridge with

initial point Xν
T1−Tn = yn and terminal point Xν

T1
= ν. But, this is equivalent to saying the

conditional law of (Bν
t )0≤t≤Tn given {Bν

Tn
= yn, . . . , B

ν
T1

= y1} is that of a Brownian bridge
with initial value Bν

0 = ν and terminal value Bν
Tn

= yn.
Next, note that, on the event {Bν

Tn
= yn, . . . , B

ν
T1

= y1}, the time function Tn+1 = Tn+1(y1, . . . , yn)
is constant in value. Following the from the preceding paragraph, the conditional density pν1:n+1(yn+1 |
y1, . . . , yn) is just that of a Brownian bridge with initial value Bν

0 = ν and Bν
Tn

= yn inspected at
time Tn+1. That is, from using the covariance and mean expressions for a Brownian bridge along
with the fact it is a Gaussian process, we have by Lemma 5.B.2

pν1:n+1(yn+1 | y1, . . . , yn) ∝ν exp

−

∥∥∥yn+1 − ν − Tn+1

Tn
(yn − ν)

∥∥∥2
2(Tn − Tn+1)

· Tn+1

Tn

 .

Thus, applying Bayes rule for densities alongside the inductive hypothesis, we have

pν1:n+1(y1, . . . , yn+1) = pν1:n(y1, . . . , yn)p
ν
1:n+1(yn+1 | y1, . . . , yn)

∝ν exp

(
−∥yn − ν∥2

2Tn

)
·

(
n∏

m=2

exp

(
−∥ym−1 − ym∥2

2(Tm−1 − Tm)

))
· exp

−

∥∥∥yn+1 − ν − Tn+1

Tn
(yn − ν)

∥∥∥2
2(Tn − Tn+1)

· Tn+1

Tn


= exp

(
−∥yn+1 − ν∥2

2Tn+1

)
·
n+1∏
m=2

exp

(
−∥ym−1 − ym∥2

2(Tm−1 − Tm)

)
,

which proves the desired claim. ■

With the above lemma, which shows that Proposition 5.B.1 holds when the number of time
functions is constant, we can now prove that Proposition 5.B.1 holds in full generality. The
idea behind the general proof is as follows. First, we consider the setting where an analyst has a
sequence of time functions T1, T2, . . . and uses a stopping functionN that satisfiesN((yn)n≥1) ≤
n for all possible strings of inputs. We then construct a sequence of exactly n time functions
S1, . . . , Sn such that pµ1:n

(
Bν
Sν
1
, . . . , Bν

Sν
n

)
= pµ1:N

(
Bν
T ν
1
, . . . , Bν

T ν
Nν

)
. Then, in the general case

where we only assume N((yn)n≥1) <∞ for all sequences (yn)n≥1, for any δ > 0, ν ∈ Rd, there

is some nνδ such that P
(
N

((
Bν
T ν
n

)
n≥1

)
≤ nν,δ

)
≥ 1 − δ, which will allow us to apply our

argument from the setting where N is bounded alongside a limiting argument.
With the above brief description of our technique at hand, we now prove Proposition 5.B.1.
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Proof of Proposition 5.B.1. By assumption, for all sequences (ym)m≥1 of elements of Rd, we
have N ((ym)m≥1) ≤ n for some fixed natural number n ∈ N. If (Tm)m≥1 is the original
sequence of stopping functions, define a new sequence by Sm := Tm∧N for all m ∈ [n].7

It is straightforward to see that, for any µ, ν ∈ Rd,

pµ1:N

(
Bν
T ν
1
, . . . , Bν

T ν
Nν

)
= pµ1:n

(
Bν
T1∧Nν , . . . , B

ν
T ν
n∧Nν

)
= pµ1:n

(
Bν
Sν
1
, . . . , Bν

Sν
n

)
.

Moreover, Lemma 5.B.5 yields that

pν1:n

(
Bν
Sν
1
, . . . , Bν

Sν
n

)
pµ1:n

(
Bν
Sν
1
, . . . , Bν

Sν
n

) =

exp

(
−

∥∥∥Bν
Sν
n
−ν

∥∥∥2
2Sν

n

)

exp

(
−

∥∥∥Bν
Sν
n
−µ

∥∥∥2
2Sν

n

) =

exp

−

∥∥∥∥Bν
Tν
Nν

−ν
∥∥∥∥2

2T ν
Nν


exp

−

∥∥∥∥Bν
Tν
Nν

−µ
∥∥∥∥2

2T ν
Nν

 ,

which is just the ratio between the density of a N (ν, T νNν ) random variable and a N (µ, T νNν )
random variable evaluated at Bν

T ν
Nν

, proving the desired result. ■

We now prove Theorem 5.3.4, which gives a closed form characterization of the Brownian
mechanism. In what follows, we use the same notation for the density of Brownian motion as in
the above proof.

Proof of Theorem 5.3.4. The second statement of the theorem is trivial and follows from our
assumption of bounded ℓ2 sensitivity. Hence, we only prove the first statement below.

From the results of Lemma 5.3.3, we have

LBM
1:N(x)(x, x

′) = log

pf(x)TN(x)(x)
(BMn(x))

p
f(x′)
TN(x)(x)

(BMn(x))


= −1

2

[
||BTN(x)

− f(x)||22
TN(x)(x)

−
||BTN(x)

− f(x′)||22
TN(x)(x)

]

Without loss of generality, and for the sake of simplicity, f(x) = 0. The privacy loss can be
written as

LBM
1:N(x)(x, x

′) =
1

2TN(x)(x)

(
−||BTN(x)(x)||

2
2 + ||BTN(x)(x) − f(x′)||22

)
= − 1

Tn(x)
⟨BTN(x)(x), f(x

′)⟩+ 1

2TN(x)(x)
||f(x′)||22

= −||f(x′)||2
TN(x)(x)

〈
BTN(x)(x),

f(x′)

||f(x′)||2

〉
+

1

2TN(x)(x)
||f(x′)||22

7While N technically accepts an infinite sequence (yn)n≥1 of vectors as input, by definition, checking
N ((yn)) ≤ m only requires examining the first m elements of the sequence y1, . . . , ym.
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= −||f(x′)||2
TN(x)(x)

〈
BTN(x)(x),

f(x′)

||f(x′)||2

〉
+

1

2TN(x)(x)
||f(x′)||22

= −||f(x′)||2
TN(x)(x)

WTn(x) +
1

2TN(x)(x)
||f(x′)||22.

Note that the last inequality follows from the fact that if (Bt)t≥0 is a d-dimensional Brownian
motion and z ∈ Rd is a unit vector under the ℓ2 norm, then the processWt := ⟨z, Bt⟩ is a standard
Brownian motion. Noting that (−Wt)t≥0 is also a Brownian motion furnishes the result. ■

We now use the characterization of privacy loss in Theorem 5.3.4 alongside the time-uniform
concentration results for continuous time martingales found in Appendix 5.A to construct two
general families of privacy boundaries. We now prove Theorem 5.3.6.

Proof of Theorem 5.3.6. Recall from Theorem 5.3.4 that we have the following bound

LBM
1:N(x)(x, x

′) ≤ ∆2

2TN(x)(x)
+

∆

TN(x)(x)
W+
TN(x)(x)

,

where A+ := max(A, 0). First, by leveraging Lemma 5.A.2, we see that, with probability at
least 1− δ, we have

LBM
1:N(x)(x, x

′) ≤ ∆2

2TN(x)(x)
+

∆

TN(x)(x)

√√√√√2(TN(x)(x) + ρ) log

1

δ

√
TN(x)(x) + ρ

ρ


= ψMρ (TN(x)(x)),

proving that ψMρ is a valid δ-privacy boundary. Likewise, by Lemma 5.A.1, we have that

LBM
1:N(x)(x, x

′) ≤ ∆2

2TN(x)(x)
+

∆

TN(x)(x)
(aTN(x)(x) + b) =

∆

TN(x)(x)

(
∆

2
+ b

)
+∆a

= ψLa,b(TN(x)(x)),

showing ψLa,b is a valid δ-privacy boundary.
■

5.C Proofs From Section 5.5
In this appendix, we provide proofs of the results in Section 5.5. We start by proving the privacy
guarantees for ReducedAboveThreshold.

Proof of Theorem 5.5.1. For ReducedAboveThreshold as described in Algorithm 1, on the
event {N(x) = n}, all information leaked about the underlying private dataset is contained in
Alg1:n(x) and α1:n(x), where αn(x) is defined to be the nth bit output by ReducedAboveThreshold.
For any y ∈ X , let qy1:n denote the joint density of (Alg1:n(y), α1:n(y)), p

y
1:n the marginal den-

sity of Alg1:n(y), and py1:n(· | ·) the conditional pmf of α1:n(y) given the observed values of

128



Alg1:n(y). As such, for any neighboring datasets x ∼ x′, on the event {N(x) = n}, the privacy
loss of ReducedAboveThreshold, denoted by LRAT(x, x′), is given by

LRAT
1:n (x, x′) = log

(
qx1:n(Alg1:n(x), α1:n(x))

qx
′

1:n(Alg1:n(x), α1:n(x))

)
= log

(
px1:n(Alg1:n(x))

px
′

1:n(Alg1:n(x))

)
+ log

(
px1:n(α1:n(x) | Alg1:n(x))
px

′
1:n(α1:n(x) | Alg1:n(x))

)
= log

(
px1:n(Alg1:n(x))

px
′

1:n(Alg1:n(x))

)
+ log

(
px1:n(0

n−11 | Alg1:n(x))
px

′
1:n(0

n−11 | Alg1:n(x))

)
= LAlg

1:n (x, x
′) + Ln(x, x

′),

where 0n−11 denotes the string of n − 1 0’s followed by a single 1. In the last line we leverage
the definition of the privacy loss between Alg1:n(x) and Alg1:n(x

′) and define

Ln(x, x
′) := log

(
px1:n(0

n−11 | Alg1:n(x))
px

′
1:n(0

n−11 | Alg1:n(x))

)
.

Now, to finish the result, it suffices to prove that, for any n, Ln(x, x′) ≤ En(Alg1:n−1(x)).
Without loss of generality, we can assume all thresholds take the same value τ across rounds,
as we can always define the shifted function u′n(Alg1:n(x), x) := un(Alg1:n(x), x)− τn + τ . To
prove our desired inequality, we proceed largely in the same way as the proof of AboveThreshold
found in Lyu et al. [114], noting that conditioning on Alg1:n(x) serves to fix the utility functions
u1(Alg1(x), ·), . . . , un(Alg1:n(x), ·) and the privacy levels

E1, E2(Alg1(x)), . . . , En(Alg1:n−1(x)).

For simplicity, going forward, we refer to the former quantities as u1(·), . . . , un(·) and the lat-
ter quantities just as ϵ1, . . . , ϵn. The only remaining caveat that we must take care in handling
variable amount of noise on the threshold introduced by LNR. Going forward, let P1:n denote
the conditional probability P(· | Alg1:n(x)). First, observe that we can write the numerator of
Ln(x, x

′) as

px
(
0n−11 | Alg1:n(x)

)
=

∫
Rn

gτ1:n(s1, . . . , sn)

(
n−1∏
i=1

P1:n (ui(x) + ξi < si)

)
P1:n (un(x) + ξn ≥ sn) ds⃗,

where gτ1:n represents the density for the joint distribution of (τ+Z(2∆/ϵm))nm=1, where (Z(t))t≥η
is as defined in Equation (5.4.2). We now need three inequalities. The first two are standard from
the analysis of Lyu et al. [114], so we do not provide a proof. The third inequality is a product of
our novel ReducedAboveThreshold mechanism, and hence we provide a proof. The inequalities
are:

1. For i < n and fixed si, P1:n(ui(x) + ξi < si) ≤ P1:n(ui(x
′) + ξi < si +∆),

2. for i = n and any sn, P1:n(un(x) + ξn ≥ sn) ≤ eϵn/2P1:n(un(x
′) + ξn ≥ sn +∆), and

3. for any s1:n ∈ Rn, gτ1:n(s1, . . . , sn) ≤ eϵn/2gτ1:n(s1 +∆, . . . , sn +∆).
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We now prove the third inequality. We have that

gτ1:n(s1, . . . , sn)

gτ−∆
1:n (s1, . . . , sn)

=
gτn(sn)g

τ
1:n−1(s1, . . . , sn−1 | sn)

gτ−∆
n (sn)g

τ−∆
1:n−1(s1, . . . , sn−1 | sn)

=
gτn(sn)

gτ−∆
n (sn)

≤ eϵn/2,

where the first equality follows from applying Bayes rule to the joint densities of the noisy
thresholds, and the second equality follows from the fact that (Z(t)) forms a Markov process.
This in particular implies that the density conditional density given the nth threshold satisfies
ga1:n−1(s1, . . . , sn−1 | sn) = gb1:n−1(s1, . . . , sn−1 | sn) for all a, b ∈ R. The last inequality
follows from examining the ratio of densities of Lap(τ, 2∆/ϵn) and Lap(τ −∆, 2∆/ϵn) random
variables. Now, observe that by a simple shift of parameters we have

gτ−∆
1:n (s1, . . . , sn) = gτ1:n(s1 +∆, . . . , sn +∆).

Plugging this in, we have

px
(
0n−11 | Alg1:n(x)

)
=

∫
Rn

gτ1:n(s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x) + ξi < si)

)
P1:n(un(x) + ξn ≥ sn)ds⃗

≤ eϵn/2
∫
Rn

gT−∆
1:n (s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x) + ξi < si)

)
P1:n(un(x) + ξn ≥ sn)ds⃗

≤ eϵn
∫
Rn

gτ−∆
1:n (s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x
′) + ξi < si +∆)

)
P(un(x′) + ξn ≥ sn +∆)ds⃗

= eϵn
∫
Rn

gτ1:n(s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x
′) + ξi < si)

)
P1:n(un(x

′) + ξn ≥ sn)ds⃗

= eϵnpx
′ (
0n−11 | Alg1:n(x)

)
.

Rearranging furnishes the desired result. ■

We can also prove a corresponding utility guarantee for ReducedAboveThreshold. As men-
tioned earlier, this utility guarantee is naive in the sense that it is derived from a union bound.
Thus, instead of plotting the utility guarantee in our experiments in Section 5.6, we instead plot
empirically observed loss/accuracy. Additionally, for the utility guarantee to hold, the sequence
of privacy functions (En)n≥1 must be constant functions, i.e. En = ϵn for each n. We now state
the formal, high-probability utility guarantee in the following proposition.

Proposition 5.C.1. Let (pn)n≥1 be a sequence of non-negative numbers such that
∑∞

i=1 pi = 1,
and let γ ∈ (0, 1) be a confidence parameter. Define the sequence of parameters (ηn)n≥1 by

ηn :=
4∆

ϵn

(
log

(
2

γ

)
− log(pn)

)
.
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Then, if N(x) is the time defined in Theorem 5.5.1, with probability at least 1− γ, we have

uN(x)(x) ≥ τN(x) − ηN(x).

Proof. The above utility guarantee follows from applying two simple union bounds. First, we
have

P

(⋃
n≥1

{|ξn| ≥ ηn/2}

)
≤
∑
n≥1

P(|ξn| ≥ ηn/2) =
∑
n≥1

exp

(
−ϵnηn
4∆

)
=
γ

2

∑
n≥1

pn = 1.

Second, we have that

P

(⋃
n≥1

{|ζn| ≥ ηn/2}

)
≤
∑
n≥1

P(|ζn| ≥ ηn/2) =
∑
n≥1

exp

(
−ϵnηn
2∆

)
≤ γ

2

∑
n≥1

pn = 1.

Thus, with probability at least 1− γ, we have simultaneously for all n ≥ 1 that |ξn| ≤ ηn/2 and
|ζn| ≤ ηn/2. Thus, with the same probability, on round N(x), we have

uN(x)(x) ≥ τN(x) − ηN(x).

■

5.D Proofs From Section 5.4
We first prove that the process defined in Equation (5.4.2) has Laplace marginal distributions.

Theorem 5.D.1. Let (Zt)t≥η be the process defined in Equation (5.4.2). Then, for any t ≥ η, we
have

Zt ∼ Lap(t).

In what follows, we sometimes use the notation Z(t) interchangeably with Zt for conve-
nience.

Proof. Recall that if X ∼ Lap(s), then X has characteristic function φs given by

φs(λ) =
1

1 + λ2s2
.

Let ϕ denote the characteristic function of Zt − Zη. Since Zη and Zt − Zη are independent, to
show Zt ∼ Lap(t), it suffices to show that

ϕ(λ) =
φt(λ)

φη(λ)
=

1 + λ2η2

1 + λ2t2
.

Now, observe that the inhomogenous Poisson process (Pt)t≥η can be written as (P̃ (et/2))t≥log(η2)

where P̃ is a homogeneous Poisson process with rate λ = 1 on [log(η2),∞). In terms of the
process P̃ , we can consider the process (Z̃t)t≥log(η2) given by

Z̃t =
∑
n≤P̃t

Lap
(
eT̃n/2

)
,
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where T̃n := inf{t ≥ log(η2) : P̃t ≥ n} and T̃0 = log(η2). It is easy to see that

Z̃(log
(
t2
)
)− Z̃(log

(
η2
)
) =d Zt − Zη.

Leveraging this identity, it follows that we have

ϕ(λ) = E
[
eiλ(Zt−Zη)

]
= E

[
eiλ(Z̃(log(t

2))−Z̃(log(η2)))
]

=
∞∑
n=0

η2

t2
[log(t2/η2)]

n

n!

∫
log(η2)≤u1<u2<···<un≤log(t2)

f (n)(u1, . . . , un)
n∏
i=1

E
[
eiλLap(e

ui/2)
]
du

=
η2

t2

∞∑
n=0

∫
log(η2)≤u1<u2<···<un≤log(t2)

n∏
i=1

1

1 + λ2eui
du. (5.D.1)

In the above, f (n)(u1, . . . , un) :=
n!

[log(t2/η2)]n
is the distribution of the order statistics (U(1), . . . , U(n))

of n i.i.d. random variables that are uniform on [log(η2), log(t2)]. Essentially, what we have done
is first conditioned of the number of Poisson arrivals that occur in the interval [log(η2), log(t2)].
Then, on the event {N(t) = n}, we condition again on the location of the n arrivals, which we
know to be uniformly distributed across the time interval. Once the arrival locations are known,
we can compute the conditional characteristic function, which is the the product of characteristic
functions as illustrated in the integral above.

Now, we show inductively that∫
log(η2)≤u1<u2<···<un≤log(t2)

n∏
i=1

1

1 + λ2eui
du =

1

n!

[
log

(
t2

η2
1 + λ2η2

1 + λ2t2

)]n
.

The base case of n = 1 is trivially true. Now, we have that∫
log(η2)≤u1<u2<···<un≤log(t2)

n∏
i=1

1

1 + λ2eui
du

=

∫ log(t2)

u1=log(η2)

1

1 + λ2eu1

∫
u1<u2<···<un

n∏
i=2

1

1 + λ2eui
du−1du1

=
1

(n− 1)!

∫ log(t2)

u=log(η2)

1

1 + λ2eu

[
log

(
t2

eu
1 + λ2eu

1 + λ2t2

)]n−1

du

=
1

n!

∫ log(t2)

log(η2)

d

du

[
− log

(
t2

eu
1 + λ2eu

1 + λ2t2

)]n
du =

1

n!

[
log

(
t2

η2
1 + λ2η2

1 + λ2t2

)]n
.

Leveraging this identity and picking up from the expression for ϕ(λ) in Equation (5.D.1), we
have that

ϕ(λ) =
η2

t2

∞∑
n=0

1

n!

[
log

(
t2

η2
1 + λ2η2

1 + λ2t2

)]n
=
η2

t2
exp

(
log

(
t2

η2
1 + λ2η2

1 + λ2t2

))
=

1 + λ2η2

1 + λ2t2
.

This proves the desired result. ■
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The above proof can also be leveraged to show that, for any finite fixed sequence of times
(tn)n∈[K], (Z(t1), . . . , Z(tK)) has the same distribution as (ζ1, . . . , ζK), where (ζn)n∈[K] is the
Laplace process associated with times (tn)n∈[K] as outlined in Equation (5.4.1). This justifies that
the process (Z(t))t≥η is in fact a continuous time generalization of the aforementioned discrete
time process.

5.E Additional Experimental Details
Parameter settings: We set the regularization parameter to be λ = 0.05 and note that the
ℓ2 and ℓ1-sensitivity for the output perturbation of logistic regression are respectively 2

nλ
and

2
√
d

nλ
. Likewise, for covariance perturbation in ridge regression, the ℓ2-sensitivities for privately

releasing XTX and XTy are both 2.0, and the corresponding ℓ1-sensitivities for releasing these
quantities are 2.0d and 2.0

√
d respectively [109, 25]. We set the failure probability for BM to

be δ = 10−6, and in each task map privacy parameters (ϵn) to times (tn) using the linear privacy
boundary ψLa,b optimized for tightness at ϵ = 0.3.

Optimizing privacy boundaries: We provide a high level description of how one may set the
parameters associated with the privacy boundaries discussed in Theorem 5.3.6. Let us consider
the case of the mixture boundary ψMρ for illustrative purposes.

Suppose a data analyst desires that the final level of privacy loss obtained by interacting with
the Brownian mechanism should be approximately ϵ. Then, intuitively, the analyst should want
to add the variance of the Gaussian noise added to be as small as possible when the privacy
boundary takes value ϵ. In mathematical notation, the analyst wants to find a parameter ρ∗

satisfying
ρ∗ = argmin

ρ
(ψMρ )−1(ϵ),

where we note that the inverse function (ψMρ )−1 exists as ψMρ is strictly increasing. While this
inverse has no closed form in general, the parameter ρ∗ can be efficiently computed using a few
lines of code. A similar, even more straightforward computation can be conducted for the linear
privacy boundary.

Simulating Noise Reduction Mechanisms: We briefly describe how a data analyst can pro-
duce samples from the Brownian mechanism and the Laplace noise reduction mechanism. First,
since T1(x) is a constant, we have BM1(x) ∼ N (f(x), T1(x)). Then, given BM1:m−1(x), we
have BMm(x) ∼ N

(
f(x) + Tm(x)

Tm−1(x)
(BTm−1(x)− f(x)), (Tm−1(x)−Tm(x))Tm(x)

Tm−1(x)

)
. Since simulat-

ing the Brownian mechnaism only requires normal samples, it can be efficiently computed.
Second, to sample from LNR, one can first generate the the points of arrival of the inhomo-

geneous Poisson process (Pt)t≥η up to time T1(x). Let T1, . . . , TN denote these arrival times,
where we note that N , the number of arrivals up to time T1(x), is a random variable. Then, one
can generate Ym ∼ Lap(Tm) for m ≤ N . From this information, the process (Zt)η≤t≤T1(x) can
be readily computed, as in Equation (5.4.2).
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Chapter 6

On the Sublinear Regret of GP-UCB

In the kernelized bandit problem, a learner aims to sequentially compute the optimum of
a function lying in a reproducing kernel Hilbert space given only noisy evaluations at se-
quentially chosen points. In particular, the learner aims to minimize regret, which is a
measure of the suboptimality of the choices made. Arguably the most popular algorithm
is the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm, which involves
acting based on a simple linear estimator of the unknown function. Despite its popularity,
existing analyses of GP-UCB give a suboptimal regret rate, which fails to be sublinear for
many commonly used kernels such as the Matérn kernel. This has led to a longstanding
open question: are existing regret analyses for GP-UCB tight, or can bounds be improved
by using more sophisticated analytical techniques? In this work, we resolve this open ques-
tion and show that GP-UCB enjoys nearly optimal regret. In particular, our results yield
sublinear regret rates for the Matérn kernel, improving over the state-of-the-art analyses
and partially resolving a COLT open problem posed by Vakili et al. Our improvements
rely on a key technical contribution — regularizing kernel ridge estimators in proportion
to the smoothness of the underlying kernel k. Applying this key idea together with a largely
overlooked concentration result in separable Hilbert spaces (for which we provide an in-
dependent, simplified derivation), we are able to provide a tighter analysis of the GP-UCB
algorithm.

6.1 Introduction

An essential problem in areas such as econometrics [60, 71], medicine [117, 119], optimal con-
trol [12, 7], and advertising [107] is to optimize an unknown function given bandit feedback, in
which algorithms only get to observe the outcomes for the chosen actions. Due to the bandit
feedback, there is a fundamental tradeoff between exploiting what has been observed about the
local behavior of the function and exploring to learn more about the function’s global behav-
ior. There has been a long line of work on bandit learning that investigates this tradeoff across
different settings, including multi-armed bandits [144, 102, 168], linear bandits [3, 147], and
kernelized bandits [30, 139, 154].

In this work, we focus on the kernelized bandit framework, which can be viewed as an exten-
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sion of the well-studied linear bandit setting to an infinite-dimensional reproducing kernel Hilbert
space (or RKHS) (H, ⟨·, ·⟩H). In this problem, there is some unknown function f ∗ : X → R of
bounded norm inH , where X ⊂ Rd is a bounded set. In each round n ∈ [N ], the learner uses pre-
vious observations to select an action Xn ∈ X , and then observes feedback Yn := f ∗(Xn) + ϵn,
where ϵn is a zero-mean noise variable. The learner aims to minimize (with high probability) the
regret at time T , which is defined as

RT :=
T∑
n=1

f ∗(x∗)− f ∗(Xn)

where x∗ := argmaxx∈X f
∗(x). The goal is to develop simple, efficient algorithms for the

kernelized bandit problem that minimize regretRT . We make the following standard assumption.
We also make assumptions on the underlying kernel k, which we discuss in Section 6.2.

Assumption 4. We assume that (a) there is some constant D > 0 known to the learner such that
∥f ∗∥H ≤ D and (b) for every n ≥ 1, ϵn is σ-subGaussian conditioned on σ(Y1:n−1, X1:n).

Arguably the simplest algorithm for the kernelized bandit problem is GP-UCB (Gaussian
process upper confidence bound) [150, 30]. GP-UCB works by maintaining a kernel ridge re-
gression estimator of the unknown function f ∗ alongside a confidence ellipsoid, optimistically
selecting in each round the action that provides the maximal payoff over all feasible functions.
Not only is GP-UCB efficiently computable thanks to the kernel trick, but it also offers strong em-
pirical guarantees [30]. The only seeming deficit of GP-UCB is its regret guarantee, as existing
analyses only show that, with high probability, RT = Õ(γT

√
T ), where γT is a kernel-dependent

measure of complexity known as the maximum information gain [150, 35]. In contrast, more
complicated, less computationally efficient algorithms such as SupKernelUCB [156, 135] have
been shown to obtain regret bounds of Õ(

√
γTT ), improving over the analysis of GP-UCB by

a multiplicative factor of
√
γT . This gap is stark as the bound Õ(γT

√
T ) fails, in general, to

be sub-linear for the practically relevant Matérn kernel, whereas Õ(
√
γTT ) is sublinear for any

kernel experiencing polynomial eigendecay [154].
This discrepancy has prompted the development of many variants of GP-UCB that, while

less computationally efficient, offer better regret guarantees in some situations [80, 140, 141].
(See a detailed discussion of these algorithms along with other related work in Appendix 6.A.)
However, the following question remains an open problem in online learning [155]: are existing
analyses of vanilla GP-UCB tight, or can an improved analysis show GP-UCB enjoys sublinear
regret?

6.1.1 Contributions
In this work, we show that GP-UCB obtains almost optimal, sublinear regret for any kernel
experiencing polynomial eigendecay. This, in particular, implies that GP-UCB obtains sublinear
regret for the commonly used Matérn family of kernels. We provide a brief roadmap of our paper
below.

1. In Section 6.3, we provide background into self-normalized concentration in Hilbert spaces.
In particular, in Theorem 6.3.1, we provide an independent, simplified derivation of a bound
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due to Abbasi-Yadkori [2], which concerns to self-normalized concentration of certain pro-
cess in separable Hilbert spaces. This bound has been largely overlooked in the kernel bandit
literature, so we draw attention to it in hopes it can be leveraged in solving further kernel-
based learning problems. As opposed to the existing bound of Chowdhury and Gopalan [30],
which involves employing a complicated “double mixture” argument, the bound we present
follows directly from applying the well-studied finite-dimensional method of mixtures along-
side a simple truncation argument [40, 41, 44, 3]. These bounds are clean and show simple
dependence on the regularization parameter.

2. In Section 6.4, we use leverage the self-normalized concentration detailed in Theorem 6.3.1 to
provide an improved regret analysis for GP-UCB. By carefully choosing regularization param-
eters based on the smoothness of the underlying kernel, we demonstrate that GP-UCB enjoys
sublinear regret of Õ

(
T

3+β
2+2β

)
for any kernel experiencing (C, β)-polynomial eigendecay. As

a special case of this result, we obtain regret bounds of Õ
(
T

ν+2d
2ν+2d

)
for the commonly used

Matérn kernel with smoothness ν in dimension d. Our new analysis improves over existing
state-of-the-art analysis for GP-UCB, which fails to guarantee sublinear regret in general for
the Matérn kernel family [30], and thus partially resolves an open problem posed by [155] on
the suboptimality of GP-UCB.

In sum, our results show that GP-UCB, the go-to algorithm for the kernelized bandit prob-
lem, is nearly optimal, coming close to the algorithm-independent lower bounds of Scarlett et al.
[135]. Our work thus can be seen as providing theoretical justification for the strong empirical
performance of GP-UCB [150]. Perhaps the most important message of our work is the impor-
tance of careful regularization in online learning problems. While many existing bandit works
treat the regularization parameter as a small, kernel-independent constant, we are able to obtain
significant improvements by carefully selecting the regularization parameter. We hope our work
will encourage others to pay close attention to the selection of regularization parameters in future
works.

6.2 Background and Problem Statement
Notation. We briefly touch on basic definitions and notational conveniences that will be used
throughout our work. If a1, . . . , an ∈ R, we let a1:n := (a1, . . . , an)

⊤. Let (H, ⟨·, ·⟩H) be a
reproducing kernel Hilbert space associated with a kernel k : X × X → R. We refer to the
identity operator on H as idH . This is distinct from the identity mapping on Rd, which we
will refer to as Id. For elements f, g ∈ H , we define their outer product as fg⊤ := f⟨g, ·⟩H
and inner product as f⊤g := ⟨f, g⟩H . For any n ≥ 1 and sequence of points x1, . . . , xn ∈ X
(which will typically be understood from context), let Φn := (k(·, x1), . . . , k(·, xn))⊤. We can
respectively define the Gram matrix Kn : Rn → Rn and covariance operator Vn : H → H
as Kn := (k(xi, xj))i,j∈[n] = ΦnΦ

⊤
n and Vn :=

∑n
m=1 k(·, xm)k(·, xm)⊤ = Φ⊤

nΦn. These two
operators essentially encode the same information about the observed data points, the former
being easier to work with when actually performing computations (by use of the well known
kernel trick) and latter being easier to algebraically manipulate.
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Suppose A : H → H is a Hermitian operator of finite rank; enumerate its non-zero eigenval-
ues as λ1(A), . . . , λk(A). We can define the Fredholm determinant of I + A as det(I + A) :=∏k

m=1(1 + λi(A)) [103]. For any n ≥ 1, ρ > 0, and x1, . . . , xn ∈ X , one can check via a
straightforward computation that det(In + ρ−1Kn) = det(idH + ρ−1Vn), where Kn and Vn are
the Gram matrix and covariance operator defined above. We, again, will use these two quantities
interchangeably in the sequel, but will typically prefer the latter in our proofs.

If (H, ⟨·, ·⟩H) is a (now general) separable Hilbert space and (φi)i≥1 is an orthonormal
basis for H , for any N ≥ 1 we can define the orthogonal projection operator πN : H →
span{φ1, . . . , φN} ⊂ H by πNf :=

∑N
i=1⟨f, φi⟩Hφi. We can correspondingly the define the

projection onto the remaining basis functions to be the map π⊥
N : H → span{φ1, . . . , φN}⊥

given by π⊥
Nf := f − πNf . Lastly, if A : H → H is a symmetric, bounded linear operator,

we let λmax(A) denote the maximal eigenvalue of A, when such a value exists. In particular,
λmax(A) will exist whenever A has a finite rank, as will typically be the case considered in this
paper.

Basics on RKHSs. Let X ⊂ Rd be some domain. A kernel is a positive semidefinite map
k : X × X → R that is square-integrable, i.e.

∫
X

∫
X |k(x, y)|2dxdy < ∞. Any kernel k has an

associated reproducing kernel Hilbert space or RKHS (H, ⟨·, ·⟩H) containing the closed span of
all partial kernel evaluations k(·, x), x ∈ X . In particular, the inner product ⟨·, ·⟩H on H satisfies
the reproducing relationship f(x) = ⟨f, k(·, x)⟩H for all x ∈ X .

A kernel k can be associated with a corresponding Hilbert-Schmidt operator, which is the
Hermitian operator Tk : L2(X ) → L2(X ) given by (Tkf)(x) :=

∫
X f(y)k(x, y)dy for any

x ∈ X . In short, Tk can be thought of as “smoothing out” or “mollifying” a function f accord-
ing to the similarity metric induced by k. Tk plays a key role in kernelized learning through
Mercer’s Theorem, which gives an explicit representation for H in terms of the eigenvalues and
eigenfunctions of Tk.

Fact 6.2.1 (Mercer’s Theorem). Let (H, ⟨·, ·⟩H) be the RKHS associated with kernel k, and let
(µi)i≥1 and (ϕi)i≥1 be the sequence of non-increasing eigenvalues and corresponding eigenfunc-
tions for Tk. Let (φi)i≥1 be the sequence of rescaled functions φi :=

√
µ
i
ϕi. Then,

H =

{
∞∑
i=1

θiφi :
∞∑
i=1

θ2i <∞

}
,

and (φi)i≥1 forms an orthonormal basis for (H, ⟨·, ·⟩H).
We make the following assumption throughout the remainder of our work, which is standard

and comes from Vakili et al. [154].

Assumption 5 (Assumption on kernel k). The kernel k : X×X → R satisfies (a) |k(x, y)| ≤ L
for all x, y ∈ X , for some constant L > 0 and (b) |ϕn(x)| ≤ B for all x ∈ X , for some B > 0.

“Complexity” of RKHS’s. By the eigendecay of a kernel k, we really mean the rate of decay
of the sequence of eigenvalues (µi)i≥1. In the literature, there are two common paradigms for
studying the eigendecay of k: (C1, C2, β)-exponential eigendecay, under which ∀i ≥ 1, µi ≤
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C1 exp
(
−C2i

β
)
, and (C, β)-polynomial eigendecay, under which ∀i ≥ 1, µi ≤ Ci−β . For ker-

nels experiencing exponential eigendecay, of which the squared exponential is the most important
example, GP-UCB is known to be optimal up to poly-logarithmic factors. However, for kernels
experiencing polynomial eigendecay, of which the Matérn family is a common example, existing
analyses of GP-UCB fail to yield sublinear regret. It is this latter case we focus on in this work.

Given the above representation in Fact 6.2.1, it is clear that the eigendecay of the kernel k
governs the “complexity” or “size” of the RKHS H . We make this notion of complexity precise
by discussing maximum information gain, a sequential, kernel-dependent quantity governing
concentration and hardness of learning in RKHS’s [35, 150, 154].

Let n ≥ 1 and ρ > 0 be arbitrary. The maximum information gain at time n with regulariza-
tion ρ is the scalar γn(ρ) given by

γn(ρ) := sup
x1,...,xn∈X

1

2
log det

(
idH + ρ−1Vn

)
= sup

x1,...,xn∈X

1

2
log det

(
In + ρ−1Kn

)
.

Our presentation of maximum information gain differs from some previous works in that we
encode the regularization parameter ρ into our notation. This inclusion is key for our results, as
we obtain improvements by carefully selecting ρ. Vakili et al. [154] bound the rate of growth of
γn(ρ) in terms of the rate of eigendecay of the kernel k. We leverage the following fact in our
main results.

Fact 6.2.2 (Corollary 1 in Vakili et al. [154]). Suppose that kernel k satisfies Assumption 5 and
experiences (C, β)-polynomial eigendecay. Then, for any n ≥ 1, we have

γn(ρ) ≤

((
CB2n

ρ

)1/β

log−1/β

(
1 +

Ln

ρ

)
+ 1

)
log

(
1 +

Ln

ρ

)
.

We last define the practically relevant Matérn kernel and discuss its eigendecay.

Definition/Fact 6.2.3. The Matérn kernel with bandwidth σ > 0 and smoothness ν > 1/2 is
given by

kν,σ(x, y) :=
1

Γ(ν)2ν−1

(√
2ν∥x− y∥2

σ

)ν

Bν

(√
2ν∥x− y∥2

σ

)
,

where Γ is the gamma function and Bν is the modified Bessel function of the second kind. It is
known that there is some constant C > 0 that may depend on σ but not on d or ν such that kν,σ
experiences

(
C, 2ν+d

d

)
-eigendecay [134, 154].

Basics on martingale concentration: If F is a σ-algebra, and ϵ is an R-valued random vari-
able, we say ϵ is σ-subGaussian conditioned on F if, for any λ ∈ R, we have logE

(
eλϵ | F

)
≤

λ2σ2

2
; in particular this condition implies that ϵ is mean zero. With this, we state the following

result on self-normalized processes. To our understanding, the following result was first pre-
sented in some form as Example 4.2 of de la Peña et al. [41] (in the setting of continuous local
martingales), and can be derived leveraging the argument of Theorem 1 in de la Peña et al. [44].
The exact form below was established (in the setting of discrete-time processes) in Theorem 1 of
Abbasi-Yadkori et al. [3], which is commonly leveraged to construct confidence ellipsoids in the
linear bandit setting.
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Fact 6.2.4 (Example 4.2 from [41], Theorem 1 from [3]). Let (Fn)n≥0 be a filtration, let
(Xn)n≥1 be an (Fn)n≥0-predictable sequence in Rd, and let (ϵn)n≥1 be a real-valued (Fn)n≥1-
adapted sequence such that conditional on Fn−1, ϵn is mean zero and σ-subGaussian. Then, for
any ρ > 0, the process (Mn)n≥0 given by

Mn :=
1√

det(Id + ρ−1Vn)
exp

{
1

2

∥∥(ρId + Vn)
−1/2Sn/σ

∥∥2
2

}
is a non-negative supermartingale with respect to (Fn)n≥0, where Sn :=

∑n
m=1 ϵmXm and

Vn :=
∑n

m=1XmX
⊤
m. Consequently, by Theorem 1.0.2, for any confidence δ ∈ (0, 1), the

following holds: with probability at least 1− δ, simultaneously for all n ≥ 1, we have

∥∥(Vn + ρId)
−1/2Sn

∥∥
2
≤ σ

√
2 log

(
1

δ

√
det(Id + ρ−1Vn)

)
.

Note the simple dependence on the regularization parameter ρ > 0 in the above bound.
While the regularization parameter ρ doesn’t prove important in regret analysis for linear bandits
(where ρ is treated as constant), the choice for ρ will be critical in our setting. In the following
section, we will discuss how Fact 6.2.4 can be extended to the setting of separable Hilbert spaces
essentially verbatim (an observation first noticed by Abbasi-Yadkori [2]).

6.3 A Remark on Self-Normalized Concentration in Hillbert
Spaces

We begin by discussing a key, self-normalized concentration inequality for martingales. We use
this bound in the sequel to construct simpler, more flexible confidence ellipsoids than currently
exist for GP-UCB. The bound we present (in Theorem 6.3.1 below) is, more or less, equivalent to
Corollary 3.5 in the thesis of Abbasi-Yadkori [2]. Our result is mildly more general in the sense
that it directly argues that a target mixture process is a nonnegative supermartingale. The result
in Abbasi-Yadkori [2] is more general in the sense it allows the regularization (or shift) matrix
to be non-diagonal. Either concentration result is sufficient for the regret bounds obtained in the
sequel.

The aforementioned corollary in [2], quite surprisingly, has not been referenced in central
works on the kernelized bandit problem, namely Chowdhury and Gopalan [30] and Vakili et al.
[154, 155]. In fact, strictly weaker versions of the conclusion have been independently rediscov-
ered in the context of kernel regression [48]. We emphasize that this result of Abbasi-Yadkori
[2] (and the surrounding technical conclusions) are very general and may allow for further im-
provements in problems related to kernelized learning.

We now present Theorem 6.3.1, providing a brief sketch and a full proof in Appendix 6.B.
We believe our proof, which directly shows a target process is a nonnegative supermartingale,
is of independent interest when compared to that of Abbasi-Yadkori [2] due to its simplicity.
In particular, our proof follows from first principles, avoiding advanced topological notions of
convergence (e.g. in the weak operator topology) and existence of certain Gaussian measures on
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separable Hilbert spaces, which were heavily utilized in the proof of Corollary 3.5 in Abbasi-
Yadkori [2].

Theorem 6.3.1 (Self-normalized concentration in Hilbert spaces). Let (Fn)n≥0 be a filtration,
(fn)n≥1 be an (Fn)n≥0-predictable sequence in a separable Hilbert space1 H such that ∥fn∥H <
∞ a.s. for all n ≥ 0, and (ϵn)n≥1 be an (Fn)n≥1-adapted sequence in R such that conditioned on
Fn−1, ϵn is mean zero and σ-subGaussian. Defining Sn :=

∑n
m=1 ϵmfm and Vn :=

∑n
m=1 fmf

⊤
m,

we have that for any ρ > 0, the process (Mn)n≥0 defined by

Mn :=
1√

det(idH + ρ−1Vn)
exp

{
1

2

∥∥(ρidH + Vn)
−1/2Sn/σ

∥∥2
H

}
is a nonnegative supermartingale with respect to (Fn)n≥0. Consequently, by Fact ??, for any
δ ∈ (0, 1), with probability at least 1− δ, simultaneously for all n ≥ 1, we have

∥∥(Vn + ρId)
−1/2Sn

∥∥
H
≤ σ

√
2 log

(
1

δ

√
det(idH + ρ−1Vn)

)
.

We can summarize our independent proof in two simple steps. First, following from Fact 6.2.4,
the bound in Theorem 6.3.1 holds when we project Sn and Vn onto a finite number N of coor-
dinates, defining a “truncated” nonnegative supermartingale M (N)

n . Secondly, we can make a
limiting arugment, showing M (N)

n is “essentially” Mn for large values of N .

Proof Sketch for Theorem 6.3.1. Let (φn)n≥1 be an orthonormal basis forH , and, for anyN ≥ 1,
let πN denote the projection operator onto HN := span{φ1, . . . , φN}. Note that the projected
process (πNSn)n≥1 is an H-valued martingale with respect to (Fn)n≥0. Further, note that the
projected variance process (πNVnπ⊤

N)n≥0 satisfies

πNVnπ
⊤
N =

n∑
m=1

(πNfm)(πNfm)
⊤.

Since, for any N ≥ 1, HN is a finite-dimensional Hilbert space, it follows from Lemma 6.B.1
that the process (M (N)

n )n≥0 given by

M (N)
n :=

1√
det
(
idH + ρ−1πNVnπ⊤

N

) exp{1

2

∥∥(ρidH + πNVnπ
⊤
N)

−1/2πNSn
∥∥2
H

}
,

is a nonnegative supermartingale with respect to (Fn)n≥0. One can check that, for any n ≥ 0,
M

(N)
n −−−→

N→∞
Mn. Thus, Fatou’s Lemma implies

E (Mn | Fn−1) = E
(
lim inf
N→∞

M (N)
n | Fn−1

)
≤ lim inf

N→∞
E
(
M (N)

n | Fn−1

)
1A space is separable if it has a countable, dense set. Separability is key, because it means we have a countable

basis, whose first N elements we project onto.
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≤ lim inf
N→∞

M
(N)
n−1

=Mn−1,

which proves the first part of the claim. The second part of the claim follows from applying
Ville’s inequality (Theorem 1.0.2) to the defined nonnegative supermartingale and rearranging.
See Appendix 6.B for details. ■

The following corollary specializes Theorem 6.3.1 (and thus Corollary 3.5 of Abbasi-Yadkori
[2]) to the case where H is a RKHS and fn = k(·, Xn), for all n ≥ 1. In this special case, we can
reframe the above theorem in terms familiar Gram matrixKn, assuming the quantity is invertible.
While we prefer the simplicity and elegance of working directly in the RKHSH in the sequel, the
follow corollary allows us to present Theorem 6.3.1 in a way that is computationally tractable.

Corollary 6.3.2. Let us assume the same setup as Theorem 6.3.1, and additionally assume
that (a) (H, ⟨·, ·⟩H) is a RKHS associated with some kernel k, and (b) there is some X -valued
(Fn)n≥0-predictable process (Xn)n≥1 such that (fn)n≥1 = (k(·, Xn))n≥1. Then, for any ρ > 0
and δ ∈ (0, 1), we have that, with probability at least 1− δ, simultaneously for all n ≥ 0,

∥∥(Vn + ρidH)
−1/2Sn

∥∥
H
≤ σ

√√√√2 log

(√
1

δ
det(In + ρ−1Kn)

)
.

If, in addition, the Gram matrix Kn = (k(Xi, Xj))i,j∈[n] is invertible, we have the equality

∥(In + ρK−1
n )−1/2ϵ1:n∥2 = ∥(ρidH + Vn)

−1/2Sn∥H .

We prove Corollary 6.3.2 in Appendix 6.B. With this reframing of Theorem 6.3.1, we com-
pare the concentration results of Theorem 6.3.1 (and thus Abbasi-Yadkori [2]) to the following,
commonly leveraged result from Chowdhury and Gopalan [30].

Fact 6.3.3 (Theorem 1 from Chowdhury and Gopalan [30]). Assume the same setup as
Fact 6.2.4. Let η > 0 be arbitrary, and let Kn := (k(Xi, Xj))i,j∈[n] be the Gram matrix
corresponding to observations made by time n ≥ 1. Then, with probability at least 1 − δ,
simultaneously for all n ≥ 1, we have

∥∥∥((Kn + ηIn)
−1 + In

)−1/2
ϵ1:n

∥∥∥
2
≤ σ

√
2 log

(
1

δ

√
det ((1 + η)In +Kn)

)
.

To make comparison with this bound clear, we parameterize the bounds in the above fact in
terms of η > 0 instead of ρ > 0 to emphasize the following difference: both sides of the bound
presented in Theorem 6.3.1 shrink as ρ is increased, whereas both sides of the bound in Fact 6.3.3
increase as η grows. Thus, increasing ρ in Theorem 6.3.1 should be seen as decreasing η in the
bound of Chowdhury and Gopalan [30]. The bounds in Corollary 6.3.2 and Fact 6.3.3 coincide
when ρ = 1 and η ↓ 0 (per Lemma 1 in Chowdhury and Gopalan [30]), but are otherwise not
equivalent for other choices of ρ and η.
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We believe Theorem 6.3.1 and Corollary 3.5 of Abbasi-Yadkori [2] to be signficantly more
usable than the result of Chowdhury and Gopalan [30] for several reasons. First, the aforemen-
tioned bounds directly extend the method of mixtures (in particular, Fact 6.2.4) to potentially
infinite-dimensional Hilbert spaces. This similarity in form allows us to leverage existing analy-
sis of Abbasi-Yadkori et al. [3] to prove our regret bounds, with only slight modifications. This
is in contrast to the more cumbersome regret analysis that leverages Fact 6.3.3, which is not only
more difficult to follow, but also obtains inferior, sometimes super-linear regret guarantees.

Second, we note that Theorem 6.3.1 provides a bound that has a simple dependence on ρ > 0.
In more detail, directly as a byproduct of the simplified bounds, Theorem 6.4.1 offers a regret
bound that can readily be tuned in terms of ρ. Due to their use of a “double mixture” technique
in proving Fact 6.3.3, Chowdhury and Gopalan [30] essentially wind up with a nested, doubly-
regularized matrix ((Kn + ηIn)

−1 + In)
−1/2 with which they normalize the residuals ϵ1:n. In

particular, this more complicated normalization make it difficult to understand how varying η
impacts regret guarantees, which we find to be essential for proving improved regret guarantees.

We note that the central bound discussed in this section does not provide an improvement
in dependence on maximum information gain in the sense hypothesized by Vakili et al. [155].
In particular, the authors hypothesized the possibility of shaving a

√
γn multiplicative factor

off of self-normalized concentration inequalities in RKHS’s. This was shown in a recent work
(see Lattimore [101]) to be impossible in general. Instead, Theorem 6.3.1 and Corollary 3.5 of
Abbasi-Yadkori [2] give one access to a family of bounds parameterized by the regularization
parameter ρ > 0. As will be seen in the sequel, by optimizing over this parameter, one can
obtain significant improvements in regret.

6.4 An Improved Regret Analysis of GP-UCB
In this section, we provide the second of our main contributions, which is an improved regret
analysis for the GP-UCB algorithm. We provide a description of GP-UCB in Algorithm 2.
While we state the algorithm directly in terms of quantities in the RKHS H , these quantities
can be readily converted to those involving Gram matrices or Gaussian processes for those who
prefer that perspective [30, 169].

As seen in Section 6.3, by carefully extending the “method of mixtures” technique (originally
by Robbins) of Abbasi-Yadkori et al. [3], Abbasi-Yadkori [2] and de la Peña et al. [40, 41]
to Hilbert spaces, we can construct self-normalized concentration inequalities that have simple
dependence on the regularization parameter ρ. These simplified bounds, in conjunction with
information about the eigendecay of the kernel k [154], can be combined to carefully choose ρ
to obtain improved regret. We now present our main result.

Theorem 6.4.1. Let T > 0 be a fixed time horizon, ρ > 0 a regularization parameter, and
assume Assumptions 5 and 4 hold. Let δ ∈ (0, 1), and for n ≥ 1 define

Un := σ

√
2 log

(
1

δ

√
det(idH + ρ−1Vn)

)
+ ρ1/2D.

Then, with probability at least 1−δ, the regret of Algorithm 2 run with parameters ρ, (Un)n≥1, D
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Algorithm 2 Gaussian Process Upper Confidence Bound (GP-UCB)

Input: Regularization parameter ρ > 0, norm bound D, confidence bounds (Un)n≥1, and time
horizon T .
Set V0 := 0, f0 := 0, E0 := {f ∈ H : ∥f∥H ≤ D}
for n = 1, . . . , T do

Let (Xn, f̃n) := argmaxx∈X ,f∈En−1⟨f, k(·, x)⟩H
Play action Xn and observe reward Yn := f ∗(Xn) + ϵn
Set Vn := Vn−1 + k(·, Xn)k(·, Xn)

⊤ and fn := (Vn + ρidH)
−1Φ⊤

nY1:n
Set En :=

{
f ∈ H :

∥∥(Vn + ρidH)
1/2(fn − f)

∥∥
H
≤ Un

}
satisfies

RT = O
(
γn(ρ)

√
T +

√
ργn(ρ)T

)
,

where in the big-Oh notation above we treat δ,D, σ,B, andL as being held constant. If the kernel
k experiences (C, β)-polynomial eigendecay for some C > 0 and β > 1, taking ρ = O(T

1
1+β )

yields Rn = Õ
(
T

3+β
2+2β

)
2, which is always sub-linear in T .

While we present the above bound with a fixed time-horizon, it can be made anytime by care-
fully applying a standard doubling argument (see Lattimore and Szepesvári [102], for instance).
We specialize the above theorem to the case of the Matérn kernel in the following corollary.

Corollary 6.4.2. Definition 6.2.3 states that the Matérn kernel with smoothness ν > 1/2 in
dimension d experiences (C, 2ν+d

d
)-eigendecay, for some constnatC > 0. Thus, GP-UCB obtains

a regret rate of Rn = Õ
(
T

ν+2d
2ν+2d

)
.

We note that our regret analysis is the first to show that GP-UCB attains sublinear regret for
general kernels experiencing polynomial eigendecay. Of particular import is that Corollary 6.4.2
of Theorem 6.4.1 yields the first analysis of GP-UCB that implies sublinear regret for the Matérn
kernel under general settings of ambient dimension d and smoothness ν. A recent result by Janz
[79], using a uniform lengthscale argument, demonstrates that GP-UCB obtains sublinear regret
for the specific case of the Matérn family when the parameter ν and dimension d satisfy a uni-
form boundedness condition independent of scale. Our results are (a) more general, holding for
any kernel exhibiting polynomial eigendecay, (b) don’t require checking uniform boundedness
independent of scale condition, and (c) follow from a simple regularization based argument. In
particular, the arguments of Janz [79] require advanced functional analytic and Fourier analytic
machinery.

We note that our analysis does not obtain optimal regret, as the theoretically interesting but
computationally cumbersome SupKernelUCB algorithm [135, 156] obtains a slightly improved
regret bound of Õ

(
T

β+1
2β

)
for (C, β)-polynomial eigendecay and Õ

(
T

ν+d
2ν+d

)
for the Matérn

kernel with smoothness ν in dimension d. Due to the aforementioned result of Lattimore [101],
which shows that improved dependence on maximum information gain cannot be generally ob-
tained in Hilbert space concentration, we believe further improvements on regret analysis for

2The notation Õ suppresses multiplicative, poly-logarithmic factors in T
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GP-UCB may not possible.
To wrap up this section, we provide a proof sketch for Theorem 6.4.1. The entire proof, along

with full statements and proofs of the technical lemmas, can be found in Appendix 6.C.

Proof Sketch for Theorem 6.4.1. Letting, for any n ∈ [T ], the “instantaneous regret” be defined
as rn := f ∗(x∗) − f ∗(Xn), a standard argument yields that, with probability at least 1 − δ,
simultaneously for all n ∈ [T ],

rn ≤ 2Un−1

∥∥(ρidH + Vn−1)
−1/2k(·, Xn)

∥∥
H
.

A further standard argument using Cauchy-Schwarz and an elliptical potential argument yields

Rn =
T∑
n=1

rn ≤ UT
√
2T log det(idH + ρ−1VT )

=

(
σ

√
2 log

(
1

δ

√
det(idH + ρ−1VT )

)
+ ρ1/2D

)√
2T log det(idH + ρ−1VT )

≤
(
σ
√
2 log(1/δ) + σ

√
2γT (ρ) + ρ1/2D

)√
4TγT (ρ) = O

(
γT (ρ)

√
T +

√
ργT (ρ)T

)
,

which proves the first part of the claim. If, additionally, k experiences (C, β)-polynomial eigen-

decay, we know that γT (ρ) = Õ

((
T
ρ

)1/β)
by Fact 6.2.2. Setting ρ := O(T

1
1+β ) thus yields

RT = O
(
γT (ρ)

√
T +

√
ργT (ρ)T

)
= Õ

(
T

3+β
2+2β

)
,

proving the second part of the claim.
■

6.5 Conclusion
In this work, we present an improved analysis for the GP-UCB algorithm in the kernelized bandit
problem. We provide the first analysis showing that GP-UCB obtains sublinear regret when the
underlying kernel k experiences polynomial eigendecay, which in particular implies sublinear
regret rates for the practically relevant Matérn kernel. In particular, we show GP-UCB obtains
regret Õ

(
T

3+β
2+2β

)
when k experiences (C, β)-polynomial eigendecay, and regret Õ

(
T

ν+2d
2ν+2d

)
for

the Matérn kernel with smoothness ν in dimension d.
Our contributions are twofold. First, we show the importance of finding the “right” concen-

tration inequality for tackling problems in online learning — in this case the correct bound being
a self-normalized inequality originally due to Abbasi-Yadkori [2]. We provide an independent
proof of a result equivalent to Corollary 3.5 of Abbasi-Yadkori [2] in Theorem 6.3.1, and hope
that our simplified, truncation-based analysis will make the result more accessible to researchers
working on problems in kernelized learning. Second, we demonstrate the importance of regu-
larization in the kernelized bandit problem. In particular, since the smoothness of the kernel k
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governs the hardness of learning, by regularizing in proportion to the rate of eigendecay of k,
one can obtain significantly improved regret bounds.

A shortcoming of our work is that, despite obtaining the first generally sublinear regret
bounds for GP-UCB, our rates are not optimal. In particular, there are discretization-based algo-
rithms, such as SupKernelUCB [156], which obtain slightly better regret bounds of Õ

(
T

1+β
2β

)
for (C, β)-polynomial eigendecay. We hypothesize that the vanilla GP-UCB algorithm, which
involves constructing confidence ellipsoids directly in the RKHS H , cannot obtain this rate.

The common line of reasoning [155] is that because the Lin-UCB (the equivalent algorithm in
Rd) obtains the optimal regret rate of Õ(d

√
T ) in the linear bandit problem setting, then GP-UCB

should attain optimal regret as well. In the linear bandit setting, there is no subtlety between esti-
mating the optimal action and unknown slope vector, as these are one and the same. In the kernel
bandit setting, estimating the function and optimal action are not equivalent tasks. In particular,
the former serves in essence as a nuisance parameter in estimating the latter: tight estimation of
unknown function under the Hilbert space norm implies tight estimation of the optimal action,
but not the other way around. Existing optimal algorithms are successful because they discretize
the input domain, which has finite metric dimension [139], and make no attempts to estimate the
unknown function in RKHS norm. Since compact sets in RKHS’s do not, in general, have finite
metric dimension [158], this makes estimation of the unknown function a strictly more difficult
task. In fact, recent work by Lattimore [101] demonstrate that self-normalized concentration in
RKHS’s, in general, cannot exhibit improved dependence on maximum information gain. This
further supports our hypothesis on the further unimprovability of the regret analysis of GP-UCB
past the improvements made in this paper.
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6.A Related Work

The kernelized bandit problem was first studied by Srinivas et al. [150], who introduce the GP-
UCB algorithm and characterize its regret in both the Bayesian and Frequentist setting. While the
authors demonstrate that GP-UCB obtains sublinear regret in the Bayesian setting for the com-
monly used kernels, their bounds fail to be sublinear in general in the frequentist setting for the
Matérn kernel, one of the most popular kernel choices in practice. Chowdhury and Gopalan [30]
further study the performance of GP-UCB in the frequentist setting. In particular, by leveraging
a martingale-based “double mixture” argument, the authors are able to significantly simplify the
confidence bounds presented in Srinivas et al. [150]. Unfortunately, the arguments introduced
by Chowdhury and Gopalan [30] did not improve regret bounds beyond logarithmic factors,
and thus GP-UCB continued to fail to obtain sublinear regret for certain kernels in their work.
Lastly, Janz [79] are able to obtain sublinear regret guarantees for certain parameter settings of
the Matérn kernel — in particular in settings where the eigenfunctions of the Hilbert-Schmidt
operator associated with the kernel are uniformly bounded independent of scale (Definition 28
in the cited work).

There are many other algorithms that have been created for kernelized bandits. Janz et al. [80]
introduce an algorithm specific to the Matérn kernel that obtains significantly improved regret
over GP-UCB. This algorithm adaptively partitions the input domain into small hypercubes and
running an instance of GP-UCB in each element of the discretized domain. Shekhar and Javidi
[141] introduce an algorithm called LP-GP-UCB, which augments the GP-UCB estimator with
local polynomial corrections. While in the worst case this algorithm recovers the regret bound
of Chowdhury and Gopalan [30], if additional information is known about the unknown function
f ∗ (e.g. it is Holder continuous), it can provide improved regret guarantees. Perhaps the most
important non-GP-UCB algorithm in the literature is the SupKernel algorithm introduced by
Valko et al. [156], which discretizes the input domain and successively eliminates actions from
play. This algorithm is signficant because, despite its complicated nature, it obtains regret rates
that match known lower bounds provided by Scarlett et al. [135] up to logarithmic factors.

Intimately tied to the kernelized bandit problem is the information-theoretic quantity of max-
imum information gain [35, 150], which is a sequential, kernel-specific measure of hardness of
learning. Almost all preceding algorithms provide regret bounds in terms of the max information
gain. Of particular import for our paper is the work of Vakili et al. [154]. In this work, the authors
use a truncation argument to upper bound the maximum information gain of kernels in terms of
their eigendecay. We directly employ these bounds in our improved analysis of GP-UCB. The
max-information gain bounds presented in Vakili et al. [154] can be coupled with the regret anal-
ysis in Chowdhury and Gopalan [30] to yield a regret bound of Õ

(
T

ν+3d/2
2ν+d

)
in the case of the

Matérn kernel with smoothness ν in dimension d. In particular, when ν ≤ d
2
, this regret bound

fails to be sublinear. In practical setting, d is viewed as large and ν is taken to be 3/2 or 5/2,
making these bounds vacuous [139, 169] The regret bounds in this paper are sublinear for any
selection of smoothness ν > 1

2
and d ≥ 1. Moreover, a simple computation yields that our regret

bounds strictly improve over (in terms of d and ν) those implied by Vakili et al. [154].
Last, we touch upon the topic of self-normalized concentration, which is an integral tool for

constructing confidence bounds in UCB-like algorithms. Heuristically, self-normalized aims to
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sequentially control the growth of processes that have been rescaled by their variance to look,
roughly speaking, normally (or subGaussian) distributed. The prototypical example of self-
normalized concentration in the bandit literature comes from Abbasi-Yadkori et al. [3], wherein
the authors use a well known technique called the “method of mixtures” to construct confidence
ellipsoids for finite dimensional online regression estimates. The concentration result in the
aforementioned work is a specialization of results in de la Peña et al. [40], which provide self-
normalized concentration for a wide variety of martingale-related processes, several of which
have been recently improved [74]. In a work that is largely overlooked in the kernel bandit com-
munity, Abbasi-Yadkori [2] extend their concentration result from Abbasi-Yadkori et al. [3] to
separable Hilbert spaces by using advanced functional analytic machinery. The bound we present
in this work is equivalent to the aforementioned bound in separable Hilbert spaces — we provide
an independent, simpler proof that avoids needing advanced tools from functional analysis. Per-
haps the best-known result on concentration in Hilbert spaces is that of Chowdhury and Gopalan
[30], who extend the results of Abbasi-Yadkori et al. [3] to the kernel setting using a “double
mixture” technique, allowing them to construct self-normalized concentration inequalities for
infinite-dimensional processes in RKHS’s. This bound has historically been used in analyzing
kernel bandit algorithms, although as we show in this work the bound of Abbasi-Yadkori [2]
(which we independently derive in Theorem 6.3.1) is perhaps better suited for online kernelized
learning problems.

6.B Technical Lemmas for Theorem 6.3.1

In this appendix, prove Theorem 6.3.1 along with several corresponding technical lemmas. While
many of the following results are intuitively true, we provide their proofs in full rigor, as there
can be subtleties when working in infinite-dimensional spaces. Throughout, we assume that the
subGaussian noise parameter is σ = 1. The general case can readily be recovered by considering
the rescaled process (Sn/σ)n≥0.

The first lemma we present is a restriction of Theorem 6.3.1 to the case where the underlying
Hilbert space (H, ⟨·, ·⟩H) is finite dimensional, say of dimension N . In this setting, the result
essentially follows immediately from Fact 6.2.4. All we need to do is construct a natural isomet-
ric isomorphism between the spaces H and RN , and then argue that applying such a mapping
doesn’t alter the norm of the self-normalized process.

Lemma 6.B.1. Theorem 6.3.1 holds if we additionally assume that H is finite dimensional, i.e.
if there exists N ≥ 1 and orthonormal functions φ1, . . . , φN such that

H := span {φ1, . . . , φN} .

Proof. Let τ : H → RN be the map that takes a function f =
∑N

n=1 θnφn ∈ H to its natural
embedding τf := (θ1, . . . , θN)

⊤ ∈ RN . Not only is the map τ an isomorphism between H and
RN , but it is also an isometry, i.e. ∥f∥H = ∥τf∥2 for all f ∈ H . Further, τ satisfies the relation
τ⊤ = τ−1.

Define the “hatted” processes (Ŝn)n≥1 and (V̂n)n≥1, which take values in RN and RN×N
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respectively as

Ŝn =
n∑

m=1

ϵmτk(·, Xm) and V̂n =
n∑

m=1

(τk(·, Xm))(τk(·, Xm))
⊤.

It is not hard to see that, by the linearity of τ , that for any n ≥ 1, we have Ŝn = τSn and
V̂n = τVnτ

⊤. We observe that (a) (V̂n + ρIN)
−1/2 = τ(Vn + ρidH)

−1/2τ⊤ and (b) that the
eigenvalues of V̂n are exactly those of Vn.

Since the processes (Ŝn)n≥1 and (V̂n)n≥1 satisfy the assumptions of Theorem 6.2.4, we see
that the process (Mn)n≥0 given by

Mn :=
1√

det
(
IN + ρ−1V̂n

) exp

{
1

2

∥∥∥(ρIN + V̂n)
−1/2Ŝn

∥∥∥2
2

}

is a non-negative supermartingale with respect to (Fn)n≥0. From observation (a), the fact τ is an
isometry, and the fact τ⊤ = τ−1, it follows that∥∥∥(V̂n + ρIN)

−1/2Ŝn

∥∥∥
2
=
∥∥τ(Vn + ρidH)

−1/2τ⊤τSn
∥∥
2

=
∥∥(Vn + ρidH)

−1/2τ−1τSn
∥∥
H

=
∥∥(Vn + ρidH)

−1/2Sn
∥∥
H
.

Further, observation (b) implies that

det
(
IN + ρV̂n

)
= det(idH + ρVn).

Substituting these identities into the definition of (Mn)n≥0 yields the desired result, i.e. that

Mn =
1√

det(idH + ρ−1Vn)
exp

{
1

2

∥∥(Vn + ρId)
−1/2Sn

∥∥2
H

}
.

is a non-negative supermartingale with respect to (Fn)n≥0. The remainder of the result follows
from applying Ville’s Inequality (Theorem 1.0.2) and rearranging.

■

We can prove Theorem 6.3.1 by truncating the Hilbert space H onto the first N components,
applying Lemma 6.B.1 to the “truncated” processes (πNSn)n≥0 and (πNVnπN)n≥0 to construct a
relevant, non-negative supermartingaleM (N)

n , and then show that the error from truncation in this
non-negative supermartingale tends towards zero as N grows large. The following two technical
lemmas are useful in showing that this latter truncation tends towards zero.

Lemma 6.B.2. For any n ≥ 1, let Vn be as in the statement of Theorem 6.3.1, and let πN be as
in Section 6.2. Then, we have

πNVnπN −−−→
N→∞

Vn,

where the above convergence holds under the operator norm on H .
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Proof. Fix ϵ > 0, n ≥ 1, and for m ∈ [n], let us write fm =
∑∞

i=1 θi(m)φi. Since we have
assumed ∥fn∥H < ∞ for all n ≥ 1, there exists some Nn < ∞ such that, for all m ∈ [n],
∥π⊥

Nn
fm∥2H =

∑∞
i=Nn+1 θi(m)2 < ϵ

2n
. We also have, for any m ∈ [n] and N ≥ 1, that

fm is an eigenfunction of fmf⊤
mπ

⊥
N = fm⟨fm, π⊥

N(·)⟩H with corresponding (unique) eigenvalue
∥fmf⊤

mπ
⊥
N∥op = λmax(fmf

⊤
mπ

⊥
N) = ∥π⊥

Nfm∥2H =
∑∞

i=N+1 θi(m)2. Observe that, as an orthogo-
nal projection operator, πN is self-adjoint, i.e. πN = π⊤

N . With this information, we see that, for
N ≥ Nn, we have

∥πNVnπN − Vn∥op ≤
n∑

m=1

∥∥πNfmf⊤
mπN − fmf

⊤
m

∥∥
op

=
n∑

m=1

∥∥πNfmf⊤
mπN − πNfmf

⊤
m + πNfmf

⊤
m − fmf

⊤
m

∥∥
op

≤
n∑

m=1

∥∥πNfmf⊤
mπN − πNfmf

⊤
m

∥∥
op
+
∥∥πNfmf⊤

m − fmf
⊤
m

∥∥
op

≤
n∑

m=1

∥πN∥op
∥∥fmf⊤

mπN − fmf
⊤
m

∥∥
op
+
∥∥πNfmf⊤

m − fmf
⊤
m

∥∥
op

=
n∑

m=1

2
∥∥fmf⊤

mπ
⊥
N

∥∥
op

=
n∑

m=1

2∥π⊥
Nfm∥2H < ϵ.

Since ϵ > 0 was arbitrary, we have shown the desired result. ■

Lemma 6.B.3. For any n ≥ 1, let Vn be as in Theorem 6.3.1, ρ > 0 arbitrary, and πN as in
Section 6.2. Then, we have

det
(
idH + ρ−1πNVnπN

)
−−−→
N→∞

det
(
idH + ρ−1Vn

)
.

Proof. We know that the mapping A 7→ det(idH + A) is continuous under the “trace norm”
∥A∥1 :=

∑∞
n=1 |λn(A)| [103]. Thus, to show the desired result, it suffices to show that ∥πNVnπN−

Vn∥1 −−−→
N→∞

0. Observe that both πNVnπN and Vn are operators of rank at most n, so so their
difference πNVnπN − Vn has rank at most 2n. Thus, we know that

∥πNVnπN − Vn∥1 ≤ 2n∥πNVnπN − Vn∥op −−−→
N→∞

0,

where the final convergence follows from Lemma 6.B.2. Thus, we have shown the desired result.
■

We now tie together all of these technical (but intuitive) results in the proof of Theorem 6.3.1
below.

Proof of Theorem 6.3.1. Let (φi)i≥1 be an orthonormal basis for H , and for N ≥ 1, let πN
denote the projection operator outlined in Section 6.2. Recall that πN = π⊤

N . Further HN :=
span{φ1, . . . , φN} ⊂ H is the image of H under πN . Since (Sn)n≥0 is an H-valued martingale
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with respect to (Fn)n≥0, it follows that the projected process (πNSn)n≥0 is an HN -valued mar-
tingale with respect to (Fn)n≥0. Further, note that the projected variance process (πNVnπ⊤

N)n≥0

satisfies

πNVnπ
⊤
N =

n∑
m=1

(πNfm)(πNfm)
⊤.

Since, for anyN ≥ 1,HN is a finite-dimensional Hilbert space, it follows from Lemma 6.B.1
that the process (M (N)

n )n≥0 given by

M (N)
n :=

1√
d̃et(idHN

+ ρ−1πNVnπ⊤
N)

exp

{
1

2

∥∥(ρidHN
+ πNVnπ

⊤
N)

−1/2πNSn
∥∥2
HN

}

=
1√

det
(
idH + ρ−1πNVnπ⊤

N

) exp{1

2

∥∥(ρidH + πNVnπ
⊤
N)

−1/2πNSn
∥∥2
H

}
,

is a non-negative supermartingale with respect to (Fn)n≥0. In the above idHN
denotes the identity

idH restricted to HN ⊂ H and d̃et denotes the determinant restricted to the subspace HN . The
equivalence of the second and third terms above is trivial.

We now argue that for any n ≥ 1,

lim
N→∞

M (N)
n =Mn. (6.B.1)

If we show this to be true, then we have, for any n ≥ 1

E (Mn | Fn−1) = E
(
lim inf
N→∞

M (N)
n | Fn−1

)
≤ lim inf

N→∞
E
(
M (N)

n | Fn−1

)
≤ lim inf

N→∞
M

(N)
n−1

=Mn−1,

which implies (Mn)n≥0 is a non-negative supermartingale with respect to (Fn)n≥0 thus proving
the result. In the above, the first inequality follows from Fatou’s lemma for conditional expecta-
tions (see Durrett [50], for instance), and the second inequality follows from the supermartingale
property.

Lemma 6.B.3 tells us that det(idH + ρ−1πNVnπN) −−−→
N→∞

det(idH + ρ−1Vn) for all n ≥ 1,
so to show the desired convergence in (6.B.1), it suffices to show that

∥(ρidH + πNVnπN)
−1/2πNSn∥H −−−→

N→∞
∥(ρidH + Vn)

−1/2Sn∥H for any n.

Let Vn := ρidH + Vn and Vn(N) := ρidH + πNVnπN in the following line of reason for
simplicity. We trivially have∣∣∥Vn(N)−1/2πNSn∥H − ∥V−1/2

n Sn∥H
∣∣ ≤ ∥∥Vn(N)−1/2πNSn − V−1/2

n Sn
∥∥
H

=
∥∥Vn(N)−1/2πNSn − Vn(N)−1/2Sn + Vn(N)−1/2Sn − V−1/2

n Sn
∥∥
H
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≤
∥∥Vn(N)−1/2

∥∥
op

∥∥π⊥
NSn

∥∥
H
+
∥∥Vn(N)−1/2 − V−1/2

n

∥∥
op
∥Sn∥H

−−−→
N→∞

0.

as limN→∞ ∥π⊥
Nf∥ = 0 for any f ∈ H of finite norm, and Lemma 6.B.2 tells us that ∥Vn −

πNVnπN∥op −−−→
N→∞

0, which in turn implies that ∥Vn(N)−1/2−V−1/2
n ∥op = ∥(ρidH+πNVnπN)−1/2−

(ρidH + Vn)
−1/2∥H −−−→

N→∞
0. Thus, we have shown the desired result.

The second part of the claim follows from a direct application of Theorem 1.0.2 and rear-
ranging.

■

As a final result in this appendix, we provide a proof of Corollary 6.3.2. This corollary allows
for a more direct comparison of Theorem 6.3.1 (and thus Corollary 3.5 of Abbasi-Yadkori [2])
with those of Chowdhury and Gopalan [30]. Our proof is a simple generalization Lemma 1 in
the aforementioned paper to the case of arbitrary regularization parameters.

Proof of Corollary 6.3.2. The first result is straightforward, and follows from the identity

det
(
idH + ρ−1Vn

)
= det

(
In + ρ−1Kn

)
,

which we bring to attention in Section 6.2.
The second result follows from the following line of reasoning. Before proceeding, recall

that Φn := (k(·, X1), . . . , k(·, Xn))
⊤, Vn = Φ⊤

nΦn, Kn = ΦnΦ
⊤
n and Sn =

∑n
m=1 ϵmk(·, Xm) =

Φ⊤
n ϵ1:n.∥∥(ρidH + Vn)

−1Sn
∥∥2
H
= ϵ⊤1:nΦn(ρidH + Φ⊤

nΦn)
−1Φ⊤

n ϵ1:n

= ϵ⊤1:n(ρ
−1/2Φn)

(
idH + (ρ−1/2Φn)

⊤(ρ−1/2Φn)
)−1

(ρ−1/2Φn)
⊤ϵ1:n

= ϵT1:nρ
−1ΦnΦ

⊤
n

(
In + ρ−1ΦnΦ

⊤
n

)−1
ϵ1:n

= ϵ⊤1:n(ρ
−1Kn)(In + ρ−1Kn)

−1ϵ1:n

= ϵ⊤1:n(In + ρK−1
n )−1ϵ1:n

=
∥∥(In + ρK−1

n )−1/2ϵ1:n
∥∥2
2
.

In the above, the second equality comes from pulling out a multiplicative factor of ρ form the
center operator inverse. The third inequality comes from the famed “push through” identity.
Lastly, the second to last equality comes from observing that (a) ρ−1Kn and (In+ ρ−1Kn)

−1 are
simultaneously diagonalizable matrices and (b) for scalars, we have the identity (1 + a−1)−1 =
a(1 + a)−1. Thus, we have shown the desired result. ■

6.C Technical Lemmas for Theorem 6.4.1
In this appendix, we provide various technical lemmas needed for the proof of Theorem 6.4.1.
We then follow these lemmas with a full proof of Theorem 6.4.1, which extends the sketch
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provided in the main body of the paper. Most of the following technical lemmas either already
exist in the literature [30] or are extensions of what is known in the case of finite-dimensional,
linear bandits [3]. We nonetheless provide self-contained proofs for the sake of completeness.

Lemma 6.C.1. Let (fn)n≥1 be the sequence of functions defined in Algorithm 2, and assume
Assumption 4 holds. Let δ ∈ (0, 1) be an arbitrary confidence parameter. Then, with probability
at least 1− δ, simultaneously for all n ≥ 1, we have

∥∥(Vn + ρidH)
1/2(fn − f ∗)

∥∥
H
≤ σ

√
2 log

(
1

δ

√
det(idH + ρ−1Vn)

)
+ ρ1/2D,

where we recall that the right hand side equals Un.

Proof. First, observe that we have

fn − f ∗ = (ρidH + Vn)
−1Φ⊤

nY1:n − f ∗

= (ρidH + Vn)
−1Φ⊤

n (Φnf
∗ + ϵ1:n)− f ∗

= (ρidH + Vn)
−1Φ⊤

n (Φnf
∗ + ϵ1:n)− f ∗ ± ρ(ρidH + Vn)

−1f ∗

= (ρidH + Vn)
−1Φ⊤

n ϵ1:n − ρ(ρidH + Vn)
−1f ∗.

Applying the triangle inequality to the above, we have∥∥(ρidH + Vn)
1/2(fn − f ∗)

∥∥
H
≤
∥∥(ρidH + Vn)

−1/2Φ⊤
n ϵ1:n

∥∥
H
+ ρ

∥∥(ρidH + Vn)
−1/2f ∗∥∥

H

≤ σ

√
2 log

(
1

δ

√
det(idH + ρ−1Vn)

)
+ ρ1/2D.

To justify the final inequality, we look at each term separately. For the first term, observe that
Vn = ρidH +

∑n
m=1 k(·, Xn)k(·, Xn)

⊤ and Sn := Φ⊤
n ϵ1:n =

∑n
m=1 ϵmk(·, Xm). Thus, we are in

the setting of Theorem 6.3.1, and thus have, with probability at least 1 − δ, simultaneously for
all t ≥ 0, ∥∥(ρidH + Vn)

−1/2Φ⊤
n ϵ1:n

∥∥
H
≤ σ

√
2 log

(
1

δ

√
det(idH + ρ−1Vn)

)
.

For the second term, observe that (a) λmin(ρidH + Vn) ≥ ρ and (b) by Assumption 4, we have
∥f ∗∥H ≤ D. Thus applying Holder’s inequality, we have, deterministically

ρ
∥∥(ρidH + Vn)

−1/2f ∗∥∥
H
≤ ρ

∥∥(ρidH + Vn)
−1/2

∥∥
op
∥f ∗∥H ≤ ρ1/2∥f ∗∥H ≤ ρ1/2D.

These together give us the desired result.
■

The following “elliptical potential” lemma, abstractly, aims to control the the growth of the
squared, self-normalized norm of the selected actions. We more or less port the argument from
Abbasi-Yadkori et al. [3], which provides an analogue in the linear stochastic bandit case. We
just need to be mildly careful to work around the fact we are using Fredholm determinants.
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Lemma 6.C.2. For any n ≥ 1, let Vn be the covariance operator defined in Algorithm 2, and let
ρ > 0 be arbitrary. We have the identity

det
(
idH + ρ−1Vn

)
=

n∏
m=1

(
1 +

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H

)
.

In particular, if ρ ≥ 1 ∨ L, where L is the bound outlined in Assumption 5, we have

n∑
m=1

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H
≤ 2 log det

(
idH + ρ−1Vn

)
.

Proof. LetHn ⊂ H be the finite-dimensional Hilbert spaceHn := span{k(·, X1), . . . , k(·, Xn)}.
Let detHn denote the determinant restricted to Hn, i.e. the map that acts on a (symmetric) oper-
ator A : Hn → Hn by detHn(A) :=

∏n
m=1 λm(A), where λ1(A), . . . , λn(A) are the enumerated

eigenvalues of A. Observe the identity

det
(
idH + ρ−1Vn

)
= det

Hn

(idHn + ρ−1Vn),

where we recall the determinant on the lefthand side is the Fredholm determinant, as defined in
Section 6.2. Next, following the same line of reasoning as Abbasi-Yadkori et al. [3], we have

det
Hn

(ρidHn + Vn)

= det
Hn

(ρidHn + Vn−1) det
Hn

(
idHn + (ρidHn + Vn−1)

−1/2k(·, Xn)k(·, Xn)
⊤(ρidHn + Vn−1)

−1/2
)

= det
Hn

(ρidHn + Vn−1)
(
1 +

∥∥(ρidHn + Vn−1)
−1/2k(·, Xn)

∥∥2
H

)
= · · · (Iterating n− 1 more times)

= det
Hn

(ρidH)
n∏

m=1

(
1 +

∥∥(ρidHn + Vm−1)
−1/2k(·, Xm)

∥∥2
H

)
= det

Hn

(ρidH)
n∏

m=1

(
1 +

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H

)
,

where the last equality comes from realizing, for allm ∈ [n], ∥(ρidHn+Vm−1)
−1/2k(·, Xm)∥H =

∥(ρidH + Vm−1)
−1/2k(·, Xm)∥H . Thus, rearranging yields

det
Hn

(idHn + ρ−1Vn) =
n∏

m=1

(
1 +

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H

)
,

which yields the first part of the claim.
Now, to see the second part of the claim, observe the bound x ≤ 2 log(1 + x),∀x ∈ [0, 1].

Observing that, for all m ∈ [n],
∥∥(ρidH + Vm−1)

−1/2k(·, Xm)
∥∥
H
≤ 1 when ρ ≥ 1 ∨ L, we have

n∑
m=1

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H
≤ 2

n∑
m=1

log
(
1 +

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H

)
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= 2 log

(
n∏

m=1

(
1 +

∥∥(ρidH + Vm−1)
−1/2k(·, Xm)

∥∥2
H

))
= 2 log det

(
idH + ρ−1Vn

)
,

proving the second part of the lemma. ■

With the above lemmas, along with the concentration results provided by Theorem 6.3.1, we
can provide a full proof for Theorem 6.4.1.

Proof of Theorem 6.4.1. We take the standard approach of (a) first bounding instantaneous re-
gret and then (b) applying the Cauchy-Schwarz inequality to bound the aggregation of terms. To
start, for any t ∈ [T ], define the “instantaneous regret” as rn := f ∗(x∗) − f ∗(Xn), where we
recall x∗ := argmaxx∈X f

∗(x). By applying Lemma 6.C.1, we have with probability at least
1− δ that

rn = f ∗(x∗)− f ∗(Xn)

≤ f̃n(Xn)− f ∗(Xn)

= f̃n(Xn)− fn−1(Xn) + fn−1(Xn)− f ∗(Xn)

= ⟨f̃n − fn−1, k(·, Xn)⟩H − ⟨fn−1 − f ∗, k(·, Xn)⟩H
≤
∥∥(ρidH + Vn−1)

−1/2k(·, Xn)
∥∥
H

(∥∥∥(ρidH + Vn−1)
1/2(f̃n − fn−1)

∥∥∥
H
+
∥∥(ρidH + Vn−1)

1/2(fn−1 − f ∗)
∥∥
H

)
≤ 2Un−1

∥∥(ρidH + Vn−1)
−1/2k(·, Xn)

∥∥
H
,

where f̃n and fn−1 are as in Algorithm 2. Note that, in the above, we apply Lemma 6.C.1
in obtaining the first inequality (which is the “optimism in the face of uncertainty” part of the
bound), and additionally in obtaining the last inequality. The second to last inequality follows
from applying Cauchy-Schwarz.

With the above bound, we can apply again the Cauchy-Schwarz inequality to see

RT =
T∑
n=1

rn ≤

√√√√T
T∑
n=1

r2n ≤ UT

√√√√2T
T∑
n=1

∥(ρidH + Vn−1)−1/2k(·, Xn)∥2H

≤ UT
√

2T log det(idH + ρ−1VT )

=

(
σ

√
2 log

(
1

δ

√
det(idH + ρ−1VT )

)
+ ρ1/2D

)√
2T log det(idH + ρ−1VT )

≤
(
σ
√
2 log(1/δ) + σ

√
2γT (ρ) + ρ1/2D

)√
4TγT (ρ)

= σγT (ρ)
√
8T +D

√
4ργT (ρ)T + σ

√
8T log(1/δ)

= O
(
γT (ρ)

√
T +

√
ργT (ρ)T

)
.

In the above, the second inequality follows from the second part of Lemma 6.C.2, the following
equality follows from substituting in UT , and the final inequality follows from the definition of
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the maximum information gain γT (ρ) and the fact that
√
a+ b ≤

√
a+

√
b for all a, b ≥ 0. The

last, big-Oh bound is straightforward. With this, we have proven the first part of the theorem.
Now, suppose the kernel k experiences (C, β)-polynomial eigendecay. Then, by Fact 6.2.2,

we know that

γT (ρ) ≤

((
CB2T

ρ

)1/β

log−1/β

(
1 +

LT

ρ

)
+ 1

)
log

(
1 +

LT

ρ

)

= Õ

((
T

ρ

)1/β
)
.

We aim to set ρ ≍
(
T
ρ

)1/β
, which occurs when ρ = O(T

1
1+β ). When this happens, we have

(
T

ρ

)1/β √
T = T

1
1+β

+ 1
2 = T

3+β
2+2β .

Applying this, we have that

RT = O
(
γT (ρ)

√
T +

√
ργT (ρ)T

)
= Õ

(
T

3+β
2+2β

)
,

which, in particular, is sublinear for any β > 1. Thus, we are done.
■
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Chapter 7

Concluding Remarks and Open Problems

Modern machine learning and data science are inherently sequential. For many tasks, a learner
must estimate unknown statistical quantities as data is adaptively collected over time. This data
is typically highly-correlated, often being generated through some human-in-the-loop process.
For instance, when a learner runs statistical queries in sequence using differentially private al-
gorithms, they must bound the amount of information that is leaked in order to ensure a target
privacy level is met. Likewise, in bandit optimization tasks, a learner must estimate unknown
reward functions as data is adaptively collected according to some policy. Classical statisti-
cal methods, which provide convergence guarantees under i.i.d. assumptions, fail to allow the
learner to perform inference in these settings. Instead, to form valid conclusions, researchers
must turn to martingale methods.

Martingale methods are often treated as a “trick” or as a “means to an end”, with martingale
concentration results being applied in many machine learning papers in an ad-hoc, black-box
manner. Naive application of martingale concentration inequalities can lead to suboptimal con-
vergence rates, and thus often an inappropriate treatment of the topic at hand. We view mar-
tingales and martingale methods as an end in themselves. That is, we believe that they warrant
thorough, independent study.

In this thesis, we provided a “start-to-finish” treatment of martingale concentration. In the
first part of this work, we focused on the theory underlying martingale concentration. We proved
time-uniform bounds on the growth of self-normalized martingales in scalar and multivariate
settings, with our focus being on constructing bounds that can be readily tuned to almost any tail
assumptions. We also derived novel martingale concentration inequalities in infinite-dimensional
spaces and provided intrinsic links between these bounds and heavy-tailed mean estimation. The
proofs of our results in these sections were often simple and geometric, offering fundamental
insights into how martingales concentrate in a variety of settings.

In the second half of this thesis, we switched our focus to the application of martingale
methods in practically relevant data science and machine learning tasks. We focused on two
applications of time-uniform martingale concentration to differentially private machine learning.
These applications required the careful use martingale concentration inequalities to control the
growth of privacy loss martingales, and resulted in significant improvements over the current
state-of-the-art. Likewise, we also showed how applying improved self-normalized concentra-
tion inequalities in separable Hilbert spaces could lead to sublinear regret rates in online kernel-
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ized learning tasks where previously only vacuous rates existed.
We now conclude by discussing some interesting open problems related to the work covered

in this thesis. We enumerate several interesting directions in the following paragraphs.

7.1 Open Questions
While this thesis thoroughly covered both the foundations and applications of martingale meth-
ods, there are still many interesting open questions that remain to be answered. The questions
enumerated below aim to greatly extend the generality of the results contained within this docu-
ment. For instance, this includes removing dimension dependence in self-normalized bounds to
extend finite-dimensional results to infinite-dimensional settings. We are unsure if the questions
below can be answered in the affirmative, but nonetheless find it important to include them.

Time-Uniform Martingale Concentration under Dual Norms In Chapter 3, we showed that
a simple, truncation-based estimator could estimate a unknown, infinite-dimensional mean at
a rate that matched that of geometric median-of-medians estimator due to Minsker [121]. To
prove our results, we generalized classical results on the concentration of bounded observations
in smooth Banach spaces originally due to Pinelis [128, 129, 74]. The assumption of smoothness
is quite general, and examples of smooth Banach spaces include all separable Hilbert spaces, ℓα

sequence spaces for α ≥ 2, and Lα function spaces for α ≥ 2. Unfortunately, our results did not
apply for ℓα and Lα spaces when α < 2.

In principal, one would expect a certain amount symmetry for ℓα and Lα norms. In particular,
if we let η denote the Holder conjugate of α (i.e. the value η defined through 1/α + 1/η = 1),
one would hope that rates of concentration under the ℓη and Lη norms would be similar to that
of ℓα and Lα spaces. More broadly, if we assume that some reflexive Banach spaces (B, ∥ · ∥)
is smooth, can we expect to obtain similar rates of concentration in the continuous dual space
(B∗, ∥ · ∥∗)? We make the following hypothesis, which may or may not be true.

Hypothesis 1. Let (Sn)n≥0 be a martingale taking values in the continuous dual (B∗, ∥ · ∥∗) of a
reflexive, smooth Banach space (B, ∥ · ∥). Further, suppose En−1∥∆Sn∥∗ ≤ 1 almost surely. Let,
for a confidence parameter δ ∈ (0, 1), (U δ

n)n≥1 be a sequence satisfying

P(∃n ≥ 0 : ∥Tn∥ ≥ U δ
n) ≤ δ

for all martingales/filtration pairs (Tn,Gn)n≥0 in (B, ∥ · ∥) with En−1∥∆Tn∥ ≤ 1 almost surely.
Then, one has

P(∃n ≥ 0 : ∥Sn∥∗ ≥ U δ
n) ≤ δ.

Dimension-Independent Self-Normalized Concentration Next, we spend some time dis-
cussing open directions related to self-normalized concentration. The results presented in Chap-
ter 2 applied to general classes of self-normalized processes and served as a significant general-
ization of existing results due to de la Peña et al. [40, 41]. While the latter set of bounds could
only be applied under sub-Gaussian tail conditions, our bounds could be applied in both light-
tailed (sub-Gaussian, sub-Gamma, sub-Exponential, sub-Poisson) and heavy-tailed (symmetric
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increments, finite variance) settings. Even in settings where both types of bounds could be ap-
plied, the results were incomparable. The self-normalized results due de la Peña, which relied
upon the method of mixtures [98, 99], depended on the accumulated variance (Vn)n≥0 through a
term that looked like the log-determinant of Vn. On the other hand, our bound depended on the
logarithm of the condition number of Vn. In some settings, our bounds would be preferable, and
in others, those of de la Peña would be tighter.

One advantage of the sub-Gaussian method of mixtures bounds is that they don’t explicitly
depend on the ambient dimension of the space. Rather, the ambient dimension is implicitly cap-
tured through the log-determinant term. Due to our derivation relying on a sequence of covers
of the unit ball, our bounds have explicit dependence on the ambient dimension d. We hypoth-
esize that, for general sub-ψ processes, it is possible to construct time-uniform concentration
results that do not explicitly depend on the dimension of the space. In particular, these bounds
would be applicable in general separable Hilbert spaces, including ℓ2 sequence spaces, L2 func-
tion spaces, and reproducing kernel Hilbert spaces (RKHS’s). We formalize this hypothesis as
follows, wherein uψ(Vn, δ) should be viewed as a time-uniform bound that depends on the un-
derlying CGF-like function ψ, the accumulated variance process (Vn)n≥0, and the chosen failure
probability δ ∈ (0, 1), but not the dimension dim(H) of the separable Hilbert space (H, ⟨·, ·⟩).

Hypothesis 2. Let (Sn)n≥0 be a process in some separable Hilbert space (H, ⟨·, ·⟩) and assume
(Sn) is sub-ψ with variance proxy (Vn)n≥0. Then, there exists some function uψ(Vn, δ) such that,
for any δ ∈ (0, 1), we have

P
(
∃n ≥ 0 :

∥∥V −1/2
n Sn

∥∥ ≥ uψ(Vn, δ)
)
≤ δ.

Noise Reduction for Sequential Differentially Private Algorithms Finally, we return to the
problem of developing noise reduction algorithms for differentially private empirical risk min-
imization. In Chapter 5, we described the Brownian mechanism BM, which added correlated
Gaussian noise to a risk minimizing parameter, and then slowly stripped away this noise until
a target accuracy was met. We similarly described analogues of the Brownian mechanisms for
other additive noise distributions such as Skellam noise and Laplace noise. While our algorithm
was naturally applicable to lightweight statistical models, such as ridge and logistic regression,
it was not readily applicable to more complicated models such as deep neural networks.

Why was this the case? While is it straightforward to measure the sensitivity of the outputs of
simple regression algorithms, it is extremely difficult if not impossible to measure how much the
training trajectory of a neural network changes if a single data point is removed from the training
set. To get around this, researchers train neural networks not by using additive noise mecha-
nisms on the final trained model, but rather by injecting appropriately scaled Gaussian noise
during model training via stochastic gradient descent. The Brownian mechanism, as outlined in
Chapter 5, is just an additive noise mechanism. It is not clear how to couple such a mechanism
with iterative training methods such as private SGD. We leave it as interesting and high impact
future work to figure out how to combine the two algorithms.
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7.2 Future Directions
Over the course of my PhD, I have worked on problems in a variety of fields. I started my PhD
by working on problems in scheduling and queueing theory. Halfway through my second year, I
switched to working on problems related to differential privacy and differentially private machine
learning. I felt like I first really hit my stride in my fourth year, when I started working on more
abstract problems related to martingale concentration. I enjoyed the generality of the problems
and the broad applicability of the results. Luckily, it seems I was able to sew together the various
projects I’ve worked on into a relatively coherent thesis.

So, what’s next? In the final year of my PhD, I began studying the connections between causal
inference and model calibration [167]. I enjoyed the theoretical depth, room for experimentation,
and practical relevance of this new research direction. Motivated by this, I’ll soon begin a postdoc
focused on the intersection of causal inference and machine learning. Once again, this marks
a substantial departure from my previous line of work. While changes can always be a little
frightening, the excitement of learning something new is what drew me to the PhD in the first
place.
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