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Abstract
This dissertation establishes the contexture theory tomathematically char-

acterize the mechanism of representation learning, also known as pretrain-
ing. Despite the remarkable empirical success of foundation models, it is not
very clearwhat representations they learn, andwhy these representations are
useful for various disparate downstream tasks. A scientific understanding of
representation learning is critical, especially at this point when scaling up the
model size is producing diminishing returns, and designing new pretraining
methods is imperative for further progress.

Prior work treated different representation learning methods quite differ-
ently, whereas the contexture theory provides a unified framework for delin-
eating the representations these methods learn. The central argument is that
a representation is learned from the association between the input X and a
context variable A. We prove that if an encoder captures the maximum in-
formation of this association, in which case we say that the encoder learns the
contexture, then it will be optimal on the class of tasks that are compatible
with the context. We also show that a context is the most useful when the as-
sociation betweenX andA is neither too strong nor too weak. The important
implication of the contexture theory is that increasing the model size alone
will achieve diminishing returns, and further advancements require better
contexts.

We demonstrate that lots of existing pretraining objectives can learn the
contexture, including supervised learning, self-supervised learning, genera-
tive models, etc. Based on that, we introduce two general objectives—SVME
and KISE, for learning the contexture. We also show how to mix multiple
contexts together, which is an effortless way to create better contexts from
existing ones. Then, we prove statistical learning bounds for representation
learning, and extend the framework to spectrally transformed kernel regres-
sion for semi-supervised learning. Finally, we discuss the effect of the data
distribution shift from pretraining to the downstream task.
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Chapter 1

Introduction to the Contexture Theory

Since around 2018, the field of machine learning (ML) has been shifting from mainly
end-to-end deep learning to a new paradigm driven by foundation models [15], which are
very large models trained on huge datasets. Foundation models achieve great success
on a variety of domains, including computer vision (CV) [23, 60, 109], natural language
processing (NLP) [34, 102, 117], and more recently tabular data [66, 144]. It has al-
ready become common practice to apply foundation models to any new learning task
by supervised fine-tuning (SFT) or alignment via reinforcement learning (RL) [110].
Another popular area inML right now is generative modeling, thanks to the remarkable
success of diffusion models [64, 74, 132] and large language models (LLMs) [1, 37, 45].

Foundation models are trained by representation learning, which aims to train an en-
coder for the inputs that “makes it easier to extract useful information when building
classifiers or other predictors” [9]. In the context of foundation models, representa-
tion learning is also known as “pretraining”, after which a predictor is fitted on top of
the representation for a specific downstream task. Figure 1.1 illustrates the modern ML
paradigm using LLMs as an example. An LLM is pretrained on a huge dataset such as
Wikipedia, with a self-supervised learning (SSL) task such as masked token prediction
or next token prediction. Then, it is applied to a variety of downstream tasks such as
sentiment analysis, summarizing, translation, question answering, etc.

Despite the large body of work on representation learning, we do not have a system-
atic characterization of the mechanism of representation learning. A critical question
that has remained unanswered to a satisfactory extent is the following:

What representations do foundation models learn, and why are these representations useful for a
variety of downstream tasks?

In classical statistical learning theory, there is no mystery regarding what is being
learned—a mapping from input X to target Y is being learned. However, in represen-
tation learning, the very target itself is unclear. For example, what representations does
masked token prediction learn, and why are they useful in understanding the sentiment
of user reviews on Netflix? For a long time, this has been attributed to the transferabil-
ity of deep learning, but (a) the essence of such transferability is vague, and (b) the
assumption that transferability is a property of “deep learning” is questionable.

The lack of understanding in the mechanism of representation learning also leads
to other mysteries. For example, supervised learning has been widely used for learn-
ing representations—neural networks trained on ImageNet [120] were themost popular

1



Pretraining
dataset

(Wikipedia)

Pretraining
(Masked token
prediction)

Foundation model
(Language model)

Downstream tasks
(Sentiment analysis,
summarizing, etc.)

Figure 1.1: Illustration of the modern ML paradigm driven by foundation models and
representation learning, using language models as an example in the parentheses.

representations in the early days of the deep learning boom [72]. One uses the output
of an intermediate layer, typically the layer before the last linear layer, as the representa-
tion of the input. However, [112] found that these representations tend to collapse to a
few clusters, a phenomenon known as neural collapse. In this case, why are these repre-
sentations still useful? Another mystery is representational convergence—[73] empirically
showed that large neural networks of different architectures trained by optimizing dif-
ferent objectives all align with a common representation independent of the architecture
and the objective, under the measurement of representational alignment [89]. Is this uni-
versally true? And how to characterize this common representation?

The above questions are naturally interesting to learning theorists, but why should
the broader ML community care about understanding the mechanism of representation
learning, if empirical success seems to be always achievable with existing approaches by
scaling up the model size, an observation known as scaling laws [84]? This is because
sustainable success or progress is not always guaranteed. Although some argue that
scaling up the size of the model can allow some abilities to “emerge” [154], substantial
evidence suggests that many abilities cannot be obtained solely from scaling, which is
why additional training signals such as alignment [110] are necessary. Meanwhile, it
is widely observed that the current pretraining paradigm is producing diminishing re-
turns, which is why Ilya Sutskever, the scientist behind AlexNet [92] and GPT [117],
remarked that “pretraining as we know it will end” recently at NeurIPS 2024 [134]. To
make further progress, we need a better understanding of the mechanism of pretrain-
ing, which is crucial for designing future generations of pretraining methods, and this
is how this field can make scientific progress.

Another important reasonwhyunderstanding themechanismof representation learn-
ing and foundationmodels is imperative is the safety concerns of AI. There has long been
a debate on whether AI poses an existential threat to human beings, and neither camp
can convince the opposing camp. Such a debate has become more and more heated
since the advent of ChatGPT, and reached its peak at the recent Paris AI summit held on
February 12, 2025. We sawworld leaders arguing about how to regulate AI, but reaching
an agreement is extremely difficult, thoughmost leaders agreed that some extent of reg-
ulation on AI is necessary, and one reason is that these leaders received quite different
opinions from their scientists. Advancing learning theory and the science of foundation
models is necessary for us to understand the potential risk of AI, so that we can develop
a universal and scientific protocol for AI regulation.

1.1 Central Theme: Representations from Association
The purpose of this dissertation is to establish a new theoretical framework dubbed the
contexture theory in order to characterize the mechanism of representation learning.

2



The central argument of this theory is that representations are learned from the asso-
ciation between the inputX and a context variableA. We refer to such an association
as a contexture. This thesis will prove this argument mathematically and rigorously. In
addition, this idea is related to a key concept in psychology—the two systems of think-
ing.

Psychologist Daniel Kahneman categorizes human thinking into two systems [83].
System 1 thinking refers to fast, automatic, and associative thinking, such as associating
a photo of a cat with the animal cat that can meow, associating 2 + 2 with 4, associating
an Englishwordwith its Chinese equivalent, etc. System 2 thinking refers to slow, effort-
ful, and logical thinking, such as looking for a golden retriever in an image of 30 dogs,
calculating 177 × 284, and following the proof in a math paper. Decades of research in
psychology has shown that the human brain works differently for these two systems of
thinking. For example, one piece of evidence is that the pupils dilate when a person is
doing system 2 thinking, but not system 1 thinking.

The contexture theory implies that representation learning is capable of doing any
type of system 1 thinking, such as image recognition, sentence completion, simple trans-
lation, etc. As long as one can specify X and A, their association can be learned by a
large model with a sufficient amount of data. This result substantiates the famous deep
learning hypothesis by Ilya Sutskever [134], stating that “a large neural network can
do anything a human can do in a fraction of a second”. Hence, system 1 thinking is
generally easy, but system 2 thinking is still very hard. For example, teaching an LLM
how to reason usually requires complicatedmethods such as chain of thought [155] and
test-time scaling [53, 78], which are beyond the scope of this thesis.

The contexture theory resolves lots of mysteries about deep learning and foundation
models, and can lead to better pretraining algorithms. Specifically, in this thesis we will
address the following questions:

• What representations do foundation models learn, and why are they useful for a
wide range of downstream tasks?

• What variational objectives can be used to learn such representations?
• What does the mechanism of representation learning imply about scaling laws?
• How can we further improve foundation models beyond scaling?
• Are there statistical guarantees for representation learning in the finite data regime?

Takeaways. The key takeaways from this thesis are summarized as follows:
• Representation learning can be understood as recovering the space spanned by the

top singular functions of the expectation operator jointly induced by the input X
and a context variable A. We call this process learning the contexture.

• These top singular functions can be learned by training a very expressive model to
optimize certain variational objectives.

• Scaling up the model size alone inevitably leads to a diminishing return. Further
improvement requires better contexts.

• A context is the most useful when the association between X and A is neither too
strong nor too weak, in which case the singular values of the expectation operator
decay neither too fast nor too slowly.

• If we have multiple contexts whose associations are either too strong or too weak,
then we can obtain a better context by mixing them together.

• The representation dimension controls the trade-off between approximation error
and estimation error, both of which are influenced by the context complexity.
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• Achieving good generalization under data distribution shift is extremely hard, and
heuristic methods such as reweighting samples usually do not work as expected.

This introductory chapter is primarily devoted to establishing the foundations of the
contexture theory. After this chapter, the rest of this thesis is organized as follows.

Chapter 2. This chapter demonstrates that the contexture can be learnedusing a variety
of variational objectives, because these objectives are optimized if and only if the encoder
learns the contexture. These objectives include supervised learning, self-supervised
learning, generative models, knowledge distillation, etc. Moreover, two general objec-
tives for learning the contexture are introduced: SVME and KISE. The key implication
is that scaling brings the representation more aligned to the top singular functions, and
when the alignment is high enough, further scaling will achieve a diminishing return.

Chapter 3. This chapter studies how to evaluate an encoder or a context. For encoders,
we focus on intrinsic evaluation, which does not depend on any task. Intrinsic evaluation
is carried out on a class of tasks that are compatiblewith the context, andwe prove that if
the task is known to be compatible with the context a priori, then learning the contexture
is the optimal thing to do. For contexts, we evaluate them only with their spectra. The
key result is that a good context should have a moderate association between X and
A, so that the decay rate of its singular values is neither too fast nor too slow. Then,
we propose a quantitative evaluation metric, and show that it correlates with the actual
downstream performance on real datasets.

Chapter 4. This chapter studies how to learn representations from amixture ofmultiple
contexts. The general approach consists of three base operations: convolution, convex
combination and concatenation. Mixing multiple contexts allows us to obtain contexts
with moderate associations from strong or weak ones. Detailed algorithms for learning
the contexture of these mixtures are provided. We test these algorithms on real tabular
datasets, and find that they can achieve higher performance than state-of-the-art meth-
ods such as XGBoost [22].

Chapter 5. This theory-intense chapter establishes statistical guarantees for contexture
learning. A key object is the context complexity, which characterizes the smoothness of
the top singular functions. Then, we extend these results to the more general spectrally
transformed kernel regression (STKR) for semi-supervised learning.

Chapter 6. The theory developed so far has assumed that the data distribution is fixed,
but in practice there is always a distribution shift from the pretrain to the downstream
data. This chapter discusses some challenges in studying such distribution shifts, includ-
ing the sensitivity to outliers, and the hardness of distributionally robust generalization.

1.2 Contexts: Definition and Examples
This thesis studies the following learning setting: the number of unlabeled samples is
much larger than the number of labeled samples. Learning methods in this situation
can be categorized as either semi-supervised learning or representation learning. Semi-
supervised learning directly learns a predictor on both labeled and unlabeled samples.
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Method Input X Context Variable A

Supervised learning on ImageNet Image Label of the object in the image
Rotation prediction [46] Image Rotated image
BERT [34]: masked token prediction Text Masked text
Vision-language model CLIP [116] Image Text caption describing the image
K-nearest neighbors (KNN) Sample A nearest neighbor of X
Diffusion models for images Image Image plus additive noise
GPT [117]: next token prediction Text First k tokens of the text

Table 1.1: Examples of inputs and context variables.

Representation learning first learns an encoder with the unlabeled samples, and then
fits a predictor on the encoder with the labeled samples, as illustrated in Figure 1.1. This
thesis mainly studies representation learning, but the theory can also be generalized to
semi-supervised learning, whichwill be discussed in Section 5.3 when introducing spec-
trally transformed kernel regression. For now, let us focus on representation learning.

Let X be the input space, and let PX be the data distribution. PX is always assumed
to be fixed until Chapter 6. The L2 functional space w.r.t. PX is a Hilbert space denoted
by L2(PX ), whose inner product is given by ⟨f1, f2⟩PX

= EX∼PX [f1(X)f2(X)], and norm
is given by ∥f∥PX

=
√
⟨f, f⟩PX

.
Representation learning aims to learn an encoder Φ : X → Rd. Φ(x) is called the

embedding of x, and d is the embedding dimension. We denote Φ = [ϕ1, · · · , ϕd], and
assume that ϕi ∈ L2(PX ) for all i. The encoder Φ can be either deterministic or random-
ized. A randomized Φ is a random variable that takes value in Ed, which is the space
of all deterministic d-dimensional encoders. Recall that a random variable is formally a
measurable function Φ : Ω→ Ed for a sample space Ω.

There are various ways to use a pretrained encoder Φ in a downstream task. This
thesis exclusively uses the simplest yet a very commonway called a linear probe, which
fits a linear predictor on top of Φ such that the final predictor is WΦ(x) + b. If Φ is
randomized, then we first draw a deterministic encoder from the distribution of Φ (that
is, fix a sample in Ω), and then fit a linear probe on top of this encoder.

A context is provided by a context variableA ∈ A, andA is called the context space.
The contexture is the relationship between X and A, given by their joint distribution
P+(x, a). Let PX and PA be the marginal distributions of P+. Let L2(PA) be the L2 func-
tional space w.r.t. PA, with inner product ⟨·, ·⟩PA

and norm ∥·∥PA
. For simplicity, we

assume that the probability spaces of both PX and PA are compact Hausdorff spaces.
The definition of contexts covers awide range ofmachine learningmethods. Table 1.1

lists some examples of X and A. Here are some concrete examples.

Labels. A is the label ofX . Labels can take different forms, such as discrete categories
in classification, continuous values in regression, or structured outputs like text captions
of images in vision-language models. Labels may be obtained from human annotators,
or in pseudo-forms such as clusters. Typically, labels are provided as compatible pairs
of (x, a) sampled from the joint distribution P+.

Random transformations. These are perturbations (augmentations) on the inputs that
presumably do not change the semantics of the inputs by too much. In this case, A is the
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corrupted version ofX . For example, transformations for images include translation, ro-
tation, flipping, masking, Gaussian noise, Cutout [35] andMixup [169]. P+ is provided
by the transformation such that one can sample A ∼ P+(·|x) for arbitrarily many times.

Graphs. Graph data is very common in industry, such as social networks, drug discov-
ery, cybersecurity, etc. Graphs also appear in domains that do not involve with graphs
explicitly. For example, K-nearest neighbors (KNN) gives a graph where every sample
is connected to its nearest neighbors. Graphs can also be continuous: for example, man-
ifold learning [8, 29] approximates a differential operator such as the Laplace-Beltrami
operator on a manifold with the continuous limit of a family of graphs. For graphs, we
have A = X , and P+(a|x) is proportional to the weight of the edge between x and a.

Feature maps and teacher models. Both are functions that map x ∈ X to a feature
encoding z ∈ Z , where Z is typically a Hilbert space. Feature maps are usually defined
by humans, while teacher models are learned from data. For example, feature maps for
images include PNG, JPEG, etc. Feature maps can also be implicitly defined by kernels
[124]. A popular example of teacher models is pretrained language models released
by tech companies. It is important to note that Z is not A, and it is possible that A is
unknown. For example, for these LLMs, if they are close-sourced, then we do not know
how they are exactly pretrained.

1.3 Spectral Properties of a Context
The joint distribution P+ ofX and A induces an operator from L2(PA) to L2(PX ), which
we call the expectation operator. Basically, it computes the conditional expectation of a
function g ∈ L2(PA) given x ∈ X . This operator is very intuitive: Suppose we want to
predict for an input x, but we only have a predictor g on space A; the most reasonable
prediction in this scenario is E[g(A)|x]. The adjoint operator of the expectation operator
is also an expectation operator, but in the reverse direction.
Definition 1.1. The expectation operator TP+ : L2(PA)→ L2(PX ) is defined as

(TP+g)(x) =

∫
g(a)P+(a|x)da = E[g(A)|x] for all g ∈ L2(PA).

Its adjoint operator T ∗
P+ : L2(PX )→ L2(PA), which satisfies ⟨f, TP+g⟩PX = ⟨T ∗

P+f, g⟩PA for
all f ∈ L2(PX ) and g ∈ L2(PA), is given by

(
T ∗
P+f

)
(a) =

∫
f(x)P

+(a|x)PX (x)
PA(a)

dx = E[f(X)|a].

Remark 1.2. In general, the operator TP+ is independent of the data distribution PX , because the
stochastic mapping x 7→ A does not depend on the distribution of X . For example, the mapping
from an image to its label is independent of the data distribution on the image space. On the
other hand, the adjoint operator T ∗

P+ depends on PX due to Bayes’ rule. For example, given the
same label “dog”, a class-conditional generative model trained on CIFAR-10 [91] and another
one trained on ImageNet [120] will generate very different images.

An easier way to understand these operators is to use the following shorthand nota-
tions. Since computing TP+ requires drawing A from P+(·|X) given X , we write TP+ :
X → A. Similarly, we can write T ∗

P+ : A → X . We can also compose the two operators
as T ∗

P+TP+ : X → A→ X ′, meaning that we first sample A ∼ P+(·|X), and then sample
X ′ ∼ P+(·|A). Similarly, we have TP+T ∗

P+ : A → X → A′. Both T ∗
P+TP+ : L2(PA) →
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L2(PA) and TP+T ∗
P+ : L2(PX )→ L2(PX ) are self-adjoint operators, and they are the inte-

gral operators of the following p.s.d. kernels.
Definition 1.3. The positive-pair kernel [81] k+A and its dual kernel k+X are defined as

k+A(a, a
′) =

P+(a, a′)

PA(a)PA(a′)
=

∫
P+(a|x)P+(a′|x)dPX (x)

PA(a)PA(a′)
;

k+X(x, x
′) =

P+(x, x′)

PX (x)PX (x′)
=

∫
P+(x|a)P+(x′|a)dPA(a)

PX (x)PX (x′)
=

∫
P+(a|x)P+(a|x′)

PA(a)
da.

Their integral operators are given by

Tk+A
= T ∗

P+TP+ : L2(PA)→ L2(PA)
(
Tk+A

g
)
(a) =

∫
g(a′)k+A(a, a

′)dPA(a
′);

Tk+X
= TP+T ∗

P+ : L2(PX )→ L2(PX )
(
Tk+X

f
)
(x) =

∫
f(x′)k+X(x, x

′)dPX (x
′).

We use Tk : f 7→
∫
f(x′)k(·, x′)dPX (x

′) to denote the integral operator of any kernel k.
Throughout this work, we assume that Tk+A and Tk+X are both Hilbert-Schmidt operators.
We say that λ ∈ R is an eigenvalue of Tk+A with eigenfunction ν ∈ L2(PA), if Tk+Aν = λν.
Under the above assumption, by Hilbert-Schmidt theorem, we can order the eigenvalues
by 1 = λ0 ≥ λ1 ≥ · · · ≥ 0, and the corresponding eigenfunctions ν0, ν1, · · · form an
orthonormal basis (ONB) of L2(PA). Here λi ≤ 1 because of Jensen’s inequality, and it
is easy to see that ν0 ≡ 1 is always an eigenfunction of Tk+A with λ0 = 1.

Similarly, denote the eigenfunctions and eigenvalues of Tk+X by µi and κi. Then, we
can order the eigenvalues by 1 = κ0 ≥ κ1 ≥ · · · ≥ 0, where µ0 ≡ 1, and µ0, µ1, · · · form
an ONB of L2(PX ). The two sets of eigenfunctions have the following connection.
Lemma 1.4 (Duality property). For all i, we have λi = κi ∈ [0, 1]. And if λi > 0, then we
have µi = λ

− 1
2

i TP+νi, and νi = λ
− 1

2
i T ∗

P+µi.
Proof For any i such that λi > 0, we have T ∗

P+TP+νi = λiνi. Thus, TP+T ∗
P+TP+νi =

λiTP+νi, which shows that TP+νi is an eigenfunction of TP+T ∗
P+ with eigenvalue λi. For

any i, j such that λi > 0 and λj > 0, we have〈
λ
− 1

2
i TP+νi, λ

− 1
2

j TP+νj

〉
PX

= λ
− 1

2
i λ

− 1
2

j ⟨TP+νi, TP+νj⟩PX
= λ

− 1
2

i λ
− 1

2
j ⟨T ∗

P+TP+νi, νj⟩PA

= λ
− 1

2
i λ

− 1
2

j ⟨λiνi, νj⟩PA
= I[i = j],

which implies that
{
λ
− 1

2
i TP+νi

}
i:λi>0

is orthonormal. Similarly, all κi > 0 are eigenvalues

of T ∗
P+TP+ , and

{
κ
− 1

2
i T ∗

P+µi

}
i:κi>0

is orthonormal. This implies the result.

This result leads to the singular value decomposition (SVD) of TP+ . We say that
si = λ

1
2
i is a singular value of TP+ , associatedwith the left singular function µi ∈ L2(PX )

and the right singular function νi ∈ L2(PA). Since we choose µ0 ≡ 1 and ν0 ≡ 1. all other
µi (and νi) must have zero mean because they are orthogonal to µ0 (and ν0). Moreover,
we have the following spectral decomposition of P+.
Lemma 1.5 (Spectral decomposition). We have P+(x, a) =

∑
i siµi(x)νi(a)PX (x)PA(a).
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Figure 1.2: The association between X and A determines the shape of the spectrum.

Proof ∀i,
〈 P+(x,a)
PX (x)PA(a)

, νi
〉
PA

=
∫
P+(a|x)νi(a)da = (TP+νi)(x) =

(
λ

1
2
i µi

)
(x) = siµi(x).

Since {νi}i≥0 is an ONB, we have P+(x,a)
PX (x)PA(a)

=
∑∞

i=0 siµi(x)νi(a).

This result immediately leads to the following spectral decomposition of the two ker-
nels. The proof is left as an exercise to the reader.
Corollary 1.6. k+X(x, x′) =

∑
s2iµi(x)µi(x

′), and k+A(a, a′) =
∑
s2i νi(a)νi(a

′).
The set of eigenvalues {s20, s21, · · ·} is called the spectrum of the context. The shape

of the spectrum, or more precisely the decay rate of the eigenvalues, is determined by
the strength of association between X and A, which we also call the association of the
context. In general, the stronger the association, the slower the decay. Consider two
extreme cases: (i) When A and X are independent, the association is the weakest; (ii)
When A = X , the association is the strongest. In case (i), only s20 = 1 is positive, and all
other eigenvalues are 0, so the eigenvalues decay the fastest. In case (ii), all eigenvalues
are 1, so there is no decay at all (in fact, in this case Tk+X is not Hilbert-Schmidt if X and
A are infinite sets). Figure 1.2 illustrates the spectrum on different association levels.

There are two key results in the contexture theory. First, a useful context should
have a moderate association, and its eigenvalues should decay neither too fast nor too
slowly. Obviously, the context in either extreme case above is useless, sinceA provide no
additional information. Second, given a context, among all d-dimensional encoders, the
“optimal” one (“optimal” to be formally defined later) should recover the linear space
spanned by µ1, · · · , µd, for which we say that the encoder learns the contexture of P+.
Definition 1.7. A deterministic d-dimensional encoder Φ = [ϕ1, · · · , ϕd] learns the contex-
ture of P+, if there exists a set of top-d singular functions {µ1, · · · , µd} of TP+ (excluding
µ0 ≡ 1), such that span{ϕ1, · · · , ϕd} = span{µ1, · · · , µd}. If the multiplicity of sd > 1,
then any set of top-d singular functions suffices. We also say that such a Φ extracts the top-d
eigenspace of Tk

+
X
.

Definition 1.8. A randomized d-dimensional encoder Φ = [ϕ1, · · · , ϕd] learns the contexture
of P+ (or extracts the top-d eigenspace of Tk+X), if it learns the contexture almost surely.

Remark 1.9. In this definition, µ0 ≡ 1 is excluded, because the bias term b in the downstream
linear probe implicitly includes µ0, so there is no reason to waste one dimension to encode µ0.
Note that extracting the top-d eigenspace only requires recovering the linear span, so any invert-
ible linear transformation on Φ makes no difference. A harder task is extracting the exact top-d
eigenfunctions, which requires estimating every function µi for i ∈ [d]. Although TP+ is inde-
pendent of PX , the contexture of P+ depends on PX , since µ1, · · · , µd are defined w.r.t. PX . Thus,
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the same TP+ leads to different contextures when there is a distribution shift in PX , in which case
we say that the contexture is skewed.

The intuition why learning the contexture is ideal is that such a representation keeps
the most information (variance) of the context, which is analogous to principal compo-
nent analysis (PCA) in the finite-dimensional case. Consider the case where X and A
are both finite sets. Let N = |X | andM = |A|. Then, a function f ∈ L2(PX ) is a vector
in RN , g ∈ L2(PA) is a vector in RM , and TP+ is essentially a matrix T ∈ RN×M . Suppose
we want to learn a d-dimensional embedding E ∈ RN×d for the N samples in X , and
it should preserve the information of T as much as possible, then what should we do?
PCA states that we should use the top-d left singular vectors of T asE, which are equiv-
alent to the top-d eigenvectors of TT⊤, because they maximize the explained variance.
Similarly, functional spaces are essentially infinite-dimensional vector spaces, so the d-
dimensional embedding ofX that preserves the most information of TP+ consists of the
top-d left singular functions of TP+ , or equivalently the top-d eigenfunctions of TP+T ∗

P+ .

1.4 Three Types of Access and Example Contexts
In reality, contexts can be provided in a variety of ways. Let us analyze the examples in
Section 1.2. Labels are usually provided one alongside each sample, that is the training
set is {(xi, ai)}mi=1. Random transformations are provided as subroutines, which can be
called infinitely many times for the same input. A graph is provided as either an adja-
cency list or an adjacency matrix; the former allows one to sample a neighbor of x, and
the latter can be viewed as a kernel. Finally, when given a teacher model, we might not
even know what space A it was trained on.

Generally speaking, there are three types of access we can have to a context. For the
context of labels, we have pair access. For random transformations, we have transfor-
mation access. For a graph, if it is given by an adjacency matrix, then we have kernel
access; if it is given by an adjacency list, then we have transformation access. As for the
teacher model, we will show that we have kernel access to its context in Section 2.3.
Definition 1.10. (i) We say that a context has pair access, if we have access to a dataset of

{(xi, ai)}mi=1 that is i.i.d. sampled from P+.
(ii) We say that a context has kernel access (k-access), if we have access to a kernel k :
X ×X → R that approximates the dual kernel of the context. We do not need to know the
space A to have k-access.

(iii) We say that a context has transformation access (T -access), if for any x ∈ X , one can
sample a ∼ P+(·|x) for arbitrarily many times.

In practice, for a context with T -access, after randomly transforming an input X to
A, we usually want to map it back to the input space X . For example, after we apply
random cropping to an image, we usuallymap it back to the original dimension by either
stretching the crop or padding it with white pixels; after masking a sentence, we fill in
themasked position with a special token [MASK]. Such amapping is called the heuristic
inverse of P+, whichwe denote byQ+. Its expectation operator TQ+ is normally different
from T ∗

P+ , because T ∗
P+ depends on PX while TQ+ in most cases does not depend on PX .

Definition 1.11. A user-defined conditional distribution Q+(x|a) that maps a ∈ A back to the
input space X is called the heuristic inverse of P+.

T -access is stronger than pair access. For example, in supervised learning, the context
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Figure 1.3: Illustration of a transformation graph.

has pair access but not T -access, because the label of any x outside the training set is not
given, so we cannot sample A ∼ P+(·|x) for such x. As an exercise, the reader can think
about what type of access each context in Table 1.1 has.

Contextswith different types of access require different representation learningmeth-
ods. For example, contrastive learning [23] needs to sample two views A,A+ ∼ P+(·|x)
for each training sample x, and this requires T -access. If we only have pair access, then
we might only have one a for each x. In the next chapter, we will show how to learn the
contexture for each type of access.

In what follows, we analyze the three example contexts above in greater detail, and
calculate their dual kernels.
Example 1.12 (Classification tasks). Let A = {1, 2, · · · , C} be a finite set of labels. The label
is deterministic, meaning that each x ∈ X is mapped to one label with probability 1 by P+.
Denote the label of x by ax. The training set is {(xi, axi

)}mi=1, so this context has pair access. For
this context, k+X(x, x′) = I[ax = ax′ ]PA(A = ax)

−1, s0 = · · · = sC−1 = 1, and all other singular
values are 0. The span ofµ0, · · · , µC−1 is the same as span{f1, · · · , fC}, where fi(x) = I[ax = i].

Example 1.13 (Graphs). Let G = (V , E) be an undirected graph, where each edge (u, v) has a
non-negative weight w(u, v) such that w(u, v) = w(v, u). Let w(u, v) = 0 if u and v are not
connected. Let the degree of node u be D(u) =

∑
v∈V w(u, v), and let Dsum =

∑
u∈V D(u). Let

PX (u) =
D(u)
Dsum

, and P+(v|u) = w(u,v)
D(u)

, whereA = X = V . Then, it can be shown that PA = PX ,
and k+X(x, x′) = Dsum

D(x)D(x′)

∑
u∈V

w(x,u)w(x′,u)
D(u)

. This graph is given by an adjacency list, and this
context has T -access.

Example 1.14 (Random transformations on a finite input space). Let X be a finite set, and
let the context be given by a random transformation. For example, if X is the set of all text of
up to 512 tokens on a vocabulary of size 30, 000, then X is a finite set. Let N be the size of X .
Without loss of generality, assume that PX (x) > 0 for every x ∈ X . This context has T -access.

The transformation graph G = (V , E) is defined as V = X , and (x1, x2) ∈ E if they can
be transformed to the same a. Figure 1.3 gives an illustration of a transformation graph, which
was originally introduced as the augmentation graph by [57] in the context of self-supervised
learning based on data augmentation.

Define matrix W ∈ RN×N as W [i, j] = P+(xi, xj) =
∫
P+(xi|a)P+(xj|a)dPA(a), which

is the weight of edge (xi, xj). Then, the degree of node xi is
∑

x P
+(xi, x) = PX (xi). Define

matrix D ∈ RN×N as D = diag{PX (x1), · · · , PX (xN)}. The singular function µi is now an
N -dimensional vector. It is easy to see thatWµi = s2iDµi, that is (s2i , µi) is a pair of generalized
eigenvalue and eigenfunction. We can also rewrite it as (D−W )µi = (1−s2i )Dµi, whereD−W
is the (unnormalized) Laplacian matrix of the transformation graph [26]. Thus, µ1, · · · , µd are
the bottom eigenvectors of the graph Laplacian.
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1.5 Prior Work
In this century, machine learning has gone through three paradigms: kernel methods,
end-to-end deep learning, and foundationmodels. Representation learning is a key part
in all three paradigms. This section provides a short review of their history.

Kernel methods were quite popular when machine learning was dominated by sup-
port vector machines (SVMs) [62]. An SVM is a linear predictor, but when the relation-
ship between the input X and the target Y is not linear, we need a non-linear feature
map Φ such that there is a linear relationship between Φ(X) and Y . The kernel trick
says that we do not need to explicitly specify Φ, but only need to specify a kernel k such
that k(x, x′) = ⟨Φ(x),Φ(x′)⟩, and then we can train an SVM on top of this kernel. The
reason why a kernel is more ideal in some applications is that k is easier to define than
Φ. For example, if we assume that samples close in the Euclidean space are similar, then
k can be defined as a kernel that is larger when the distance is smaller, such as the RBF
kernel or the KNN kernel. However, to compute Φ, one needs to learn the eigenmap
that consists of the top eigenfunctions of Tk [8], and this is hard in practice. For this
reason, at that time kernel methods were more popular than representation learning in
semi-supervised learning [10, 124].

However, kernel methods and SVMs began to fall short when people started to apply
machine learning to harder tasks, such as ImageNet classification [92]. The relationship
between Y and X in these tasks are too complex, and no human-designed kernel can
work well on these tasks. Deep learning became extremely popular when people found
out that a deep neural network trained to approximate the target function can automat-
ically learn the complex relationship between Y and X , so there is no need to design a
kernel. In other words, kernel methods define Φ by specifying a kernel, whereas deep
learning obtains Φ by optimizing a variational objective using a large function approxi-
mator. End-to-end deep learning has been very successful in supervised learning.

For semi-supervised learning, a variety of deep learning methods have been pro-
posed [145]. To use the unlabeled samples, manymethods require themodel to “behave
well” on the unlabeled samples, which is commonly known as consistency regularization:
For each unlabeled sample x, we augment it into x′ and x′′ in two different ways, and ask
themodel to give similar outputs to x′ and x′′. Somemethods define x′ and x′′ as the out-
puts of models at different epochs, such as temporal ensembling [93] andmean teachers
[136]. Somemethods use a strong augmentation to obtain x′ and aweak one to obtain x′′,
such as FixMatch [131] and noisy student [160]. Some methods use adversarial attack,
such as virtual adversarial training [107]. Some methods use the interpolation between
two input/target pairs, such as MixUp [169] and MixMatch [11]. These methods use
context variables x′ and x′′ to learn a predictor for semi-supervised learning.

In the modern ML paradigm, a variety of downstream tasks share the same gigantic
unlabeled dataset. In this scenario, end-to-end semi-supervised learning is not ideal, be-
cause for every different task we need to learn a predictor on all labeled and unlabeled
samples, which is very inefficient. To solve this problem, people proposed to use trans-
fer learning, which is the basis of foundation models. The assumption is that a large
model trained on task 1 can be transferred to tasks 2, 3 and so on, which is a widely
observed phenomenon in deep learning [72], though why such transfer learning works
has not been fully explained. Under this assumption, one can pretrain a large encoder
on the huge unlabeled dataset using a general task, so that when learning a predictor for
another task, one does not need to use the gigantic unlabeled dataset again.

Foundation models are usually trained by self-supervised learning, and there is a

11



large body of work on the theoretical analysis of self-supervised learning. One line of
research studies the effectiveness of contrastive learning by showing its features are op-
timal when used to fit a linear predictor on certain downstream tasks [123, 142, 143],
robust to class imbalance [100], and suitable for unsupervised domain adaptation [58,
126]. Masked prediction tasks have been shown to be useful for reducing the down-
stream sample complexity [96] and for parameter identifiability [99]. In terms of lan-
guage applications, [123] explained why next-word prediction can benefit sentiment
classification, and [153] studied the effect of prompt tuning through the lens of implicit
Bayesian inference. Regarding the optimization in representation learning, there have
been prior works on the training dynamics and loss landscapes of contrastive learn-
ing [80, 139, 156], non-contrastive learning [114, 140, 157], and masked prediction [70,
161]. There is also a line of theoretical work that connects self-supervised learning to
information theory [2, 5, 129].

More related to this thesis is a line of work that formulates contrastive learning as a
Laplacian operator over the augmentation graph. The idea of studying data augmen-
tation from a kernel perspective was first explored in [31, 108, 118]. [57] defined the
augmentation graph and then proved a generalization bound for the spectral contrastive
loss. Then, [122] pointed out that this model-class-free bound could be vacuous with a
hypercube construction. As a response to this argument, [56] included the effect of the
encoder’s inductive bias into their new generalization bounds. Then, [81] defined the
positive-pair kernel for the augmentation graph, [152] connected contrastive learning
to message passing on the augmentation graph, and [20] proved generalization bounds
that do not depend on the function class of Φ (but they still need to assume that the tar-
get function belongs to the RKHS of a known kernel). My ownwork [167, 168] extended
these results to any augmentation-based self-supervised learning (not only contrastive
learning), and then the more general spectrally transformed kernel regression, which
builds the link between representation learning and semi-supervised learning.

The common weakness of the papers mentioned above is that they treated different
representation learning methods quite differently. For example, contrastive learning,
non-contrastive learning and masked autoencoders have been regarded as inherently
distinct methods, and for each method there is a line of theoretical work. Consequently,
despite the large body of theoretical work, our understanding of representation learn-
ing is still quite muddled. The contexture theory established in this thesis provides a
universal and lucid characterization of the mechanism of a wide range of representation
learning methods. The key takeaway is that the various methods are all learning the
contexture of a context, so using which method is less important than the context itself.

Also closely related to this thesis is a line of work on representation alignment [43,
73, 75, 89]. Representation similarity has also been studied in neuroscience [90]. These
papers aims to compare between two representations, while this thesis mainly focuses
on evaluating a single representation, or the context on which it is trained.
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Chapter 2

Learning the Contexture with
Variational Objectives

Learning the contexture requires extracting the top-d eigenspace of a kernel integral op-
erator Tk+X . Conventionally, this is done by kernel PCA [124, Chapter 14]. Let k be a p.s.d.
kernel, and let Tk : L2(PX ) → L2(PX ) be its integral operator. Suppose we can compute
k(x, x′) for all x, x′ ∈ X . Then, given a training set {xi}mi=1, kernel PCA estimates the
top-d eigenfunctions of Tk as follows:

1. Build the Gram matrixG ∈ Rm×m of k, such that G[i, j] = k(xi, xj).
2. Compute the eigenvalues and eigenvectors {(λi,vi)}mi=1 ofG, where λ1 ≥ · · · ≥ λm,

and v1, · · · ,vd form an ONB of Rm. Assume that λd > 0.
3. µ̂i(x) = λ−1

i

∑m
j=1 k(x, xj)vi[j] is an estimation of the i-th eigenfunction.

Kernel PCA has two issues. First, it requires that k(x, x′) can be efficiently estimated
for all x, x′ (which is k-access), but this is not always possible; for example, k(x, x′) is
hard to estimate when it is the dual kernel of a random transformation context, since
estimating PA(a)

−1 with high precision requires lots of samples from P+. Second, it is
not scalable for huge datasets. In general, the time complexity of eigen-decomposition
can be regarded as O(m3). As of today, the fastest algorithm for eigen-decomposition in
theory has O(mω) complexity with ω ≈ 2.38 [32], which is still not very scalable.

However, it is possible to have a more efficient algorithm than kernel PCA, because
kernel PCA can extract the exact top-d eigenfunctions, while our goal is to only extract
the top-d eigenspace of Tk+X , that is we do not need to estimate the exact function µi.
Moreover, we can also make the algorithm faster if we are willing to sacrifice precision.

This chapter shows how to learn the contexture with a variational objective R(Φ),
meaning that this objective is optimized if and only if Φ extracts the top-d eigenspace of
Tk+X

= TP+T ∗
P+ . Recall that this excludes µ0 ≡ 1. Provided with such an objective, one

can learn the contexture by optimizing an expressive deep neural network. We will also
show that some existing objectives, such as generative models and RLHF, can learn the
contexture of a mixture of multiple contexts.

Someof the objectiveswe are going to discuss extract the top-d eigenspace ofTP+ΛT ∗
P+

instead, where Λ : L2(PA)→ L2(PA) is the integral operator of a kernel kΛ called the loss
kernel. The loss kernel depends on the loss function. In this case, since the constant
function is not necessarily the top-1 eigenfunction of TP+ΛT ∗

P+ , we do not exclude any
eigenfunction.

This chapter does not discuss the numerical aspect of obtaining the optima of these
objectives. Doing so in a generalizable way requires an expressive model architecture

13



and a good optimizer, which this thesis will not discuss. In fact, [28] showed that neural
networks trained with popular gradient methods such as Adam [86] will not converge
to any point, but will oscillate around what they termed the edge of stability. How to
extend the contexture theory to that situation is an open problem. Moreover, all objec-
tives to be discussed are spectral (that is L2) rather than information theoretic, because
the contexture theory is based on the spectral properties of TP+ . For example, the mean
squared error (MSE) is used for classification tasks instead of the cross entropy loss, and
the spectral contrastive loss [57] is used for contrastive learning instead of the NT-Xent
loss [22]. How to extend the contexture theory to information theoretic loss is posed as
an open problem.

The important implication of the analysis in this chapter is that one key role of scaling
up the model size is to bring the learned representation space more aligned to the one
spanned by the top-d eigenfunctions of Tk+X . This will be empirically demonstrated in
Section 2.6. Consequently, when the two spaces have already become close enough, ad-
ditional scaling will be less helpful. This is a major reason why scaling has been achiev-
ing a diminishing return recently. Further improvement requires the creation of new
contexts. We envision that the next major breakthrough in pretraining will be a result
of context scaling, where very powerful and complicated contexts are obtained from an
enormous amount of data, rather than human heuristics.

Notation: For any f ∈ L2(PX ), denote its mean by f̄ = EPX [f(X)], and its centered
version by f̃ = f − f̄ . The same notation is used for multi-dimensional functions and
random variables, as long as the distribution is clear from context.
Definition 2.1. The covariance matrix of any Φ : X → Rd, denoted by CovPX [Φ], is a d× d
matrix C where C[i, j] =

〈
ϕ̃i, ϕ̃j

〉
PX

.

2.1 Three Illustrative Examples
Let us revisit the three examples in Section 1.4, namely supervised learning, learning
with a graph and learning with a random transformation. Through these examples, the
reader can get a sense of how to learn the contexture via variational objectives.

Classification tasks. Let there be C classes, and let A be a C-dimensional one-hot vec-
tor. Let the predictor be a linear predictor on top ofΦ, defined asWΦ(x)+b. For a neural
network, Φ(x) is the output of the layer before the last linear layer. If b is an arbitrary
vector, then the linear predictor is biased; if b = 0 is fixed, then it is unbiased. Consider
training an unbiased linear predictor with the mean squared error:

R(Φ) = min
W∈RC×d

E
(X,A)∼P+

[
∥WΦ(X)− A∥22

]
. (2.1)

Theorem 2.2 (Proof in Appendix A.1). Suppose A is a one-hot vector. Then, Φ∗ minimizes
Eqn. (2.1) if and only if Φ∗ extracts the top-d eigenspace of TP+ΛT ∗

P+ , where Λ is the integral
operator of kΛ(a, a′) = I[a = a′], and (Λg)(a) = g(a)PA(a). If all classes have the same size,
then TP+ΛT ∗

P+ and TP+T ∗
P+ share the same top-d eigenfunctions.

Remark 2.3. Note that the constant function is not necessarily the top eigenfunction ofTP+ΛT ∗
P+ ,

so in this result no eigenfunction is excluded, which is different from Definition 1.7 where µ0 ≡ 1
is excluded.
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It turns out that Λ is a consequence of class imbalance. In Section 1.4 we showed
that the top eigenfunctions of TP+T ∗

P+ are indicator functions for theC classes, and these
functions are independent of the class sizes. However, in practice we know that when
there is a class imbalance, the smaller classes are harder to learn. The operator Λ gives
more weights to larger classes, and as a result the larger classes have more impact on the
top-d eigenfunctions. With this insight, in order to get rid of Λ, we can use the following
balanced loss, also known as importance weighting [128]:

R(Φ) = min
W∈RC×d

E
(X,A)∼P+

[
1√
PA(A)

∥WΦ(X) + b− A∥22

]
. (2.2)

Theorem 2.4 (Proof in Appendix A.2). Φ∗ minimizes Eqn. (2.2) if and only if Φ∗ learns the
contexture of P+.

Remark 2.5. Compared to the original objective in [128], the denominator in Eqn. (2.2) is√
PA(A) instead of the original PA(A).
The above results can partially explain the phenomenon of neural collapse [112]:

When the label A is deterministic, and there are d classes of the same size, neural col-
lapse is the phenomenon that a sufficiently trained deep representation collapses to an
equiangular tight frame (ETF) ϕ1, · · · , ϕd, where ϕi(x) = c(I[x belongs to class i]− d−1)
for some non-zero constant c. Note that the span of ϕ1, · · · , ϕd is the same as the span of
µ0, · · · , µd−1, computed in Section 1.4. However, the above results cannot explain why
the representation exactly converges to these d functions. To explain this, one needs to
analyze the training dynamics, which depends on the specific optimizer such as gradient
methods, whereas all results proved in this chapter are independent of the optimizer.

When the classes have different sizes, it is easy to see that the dual kernel of TP+ΛT ∗
P+

is k+X(x, x′) = I[x and x′ have the same label]. This is equivalent to the simplex-encoded
labels interpolation (SELI) defined by [138], which generalizes neural collapse. When
X is a finite set, the SEL matrix defined in their Definition 2 is the centered kernel of k+X .

Regression tasks. LetA ∈ RdA be a real-valued randomvariable, and consider training
Φ using the mean squared error:

R(Φ) = min
W∈RdA×d,b∈RdA

E
(X,A)∼P+

[
∥WΦ(X) + b− A∥22

]
. (2.3)

Theorem 2.6 (Proof in Appendix A.3). Φ∗ minimizes Eqn. (2.3) if and only ifΦ∗ extracts the
top-d eigenspace of TP+ΛT ∗

P+ . If the linear predictor is unbiased (b = 0), then kΛ(a, a′) = ⟨a, a′⟩;
if it is biased (b can be arbitrary), then kΛ(a, a′) =

〈
ã, ã′

〉
.

Remark 2.7. Kernel k(a, a′) = ⟨a, a′⟩ is called the linear kernel, and k(a, a′) =
〈
ã, ã′

〉
is called

the centered linear kernel w.r.t. distribution PX . Theorem 2.2 is a special case of Theorem 2.6.

Graphs. Let G = (V , E) be an undirected graph. Let the weight of each edge w(u, v)
be non-negative. Let D(u) =

∑
v∈V w(u, v) and Dsum =

∑
u∈V D(u). Define a node dis-

tribution PX (u) = D(u)
Dsum

. Define the context as A = V , and P+(u, v) = w(u,v)
Dsum

. Then, the
following constrained optimization problem learns the contexture:

minimize
Φ:X→Rd

1

2
E(u,v)∼P+

[
∥Φ(u)− Φ(v)∥22

] s.t. CovPX [Φ] = I. (2.4)

15



Similar Reconstruct

Figure 2.1: Two widely used self-supervised learning algorithms with random transfor-
mations. Left: Multi-view learning. Right: Reconstruction.

The constraint CovPX [Φ] = I is called the orthonormality constraint. This constraint is
necessary becausewithout it, a degenerate solution could beΦ being a constant function,
which is called the feature collapse problem. Implementing this constraint in practice
is not easy. The most straightforward approach is to minimize the Lagrangian of this
optimization problem, in which the constraint is implemented as a penalty term, such
as in VICReg [6]. More details will be discussed later, and for now let us assume that
this constraint can be enforced.
Theorem 2.8 (Proof in Appendix A.4). Let Φ∗ be any solution to Eqn. (2.4) (so that for any
constant c, Φ∗ + c is also a solution). Then, Φ̃∗ learns the contexture of P+.

Self-supervised learning (SSL) with random transformations. SSL is usually based
on data augmentation, a random transformation that does not alter the semantics of the
input by too much. There are two popular methods: multi-view learning and recon-
struction, as illustrated in Figure 2.1. In multi-view learning, one draws two views that
are transformed from the same input, and enforces the encoder to give similar embed-
dings to these two views. In reconstruction, one trains a neural network with the goal of
mapping each view A to its original input X . Then, the penultimate layer of this neural
networks is taken as the representation.

Let us start with multi-view learning. If A,A+ are two views independently drawn
from P+(·|X) for the same X , then (A,A+) is called a positive pair. If A,A− are in-
dependently drawn from PA, meaning that they can be views of different inputs, then
(A,A−) is called a negative pair. Multi-view learning trains an encoder Ψ : A → Rd by
enforcing Ψ(A) ≈ Ψ(A+). Note that Ψ is an encoder on A, while the required Φ should
be an encoder on X . Although it has been common practice to directly apply Ψ to X at
downstream whenever possible, such a practice is not theoretically correct. For exam-
ple, a BERT [34] is trained on masked sentences and it never sees a complete sentence
at pretrain time; as such, one cannot assume that the embeddings it gives to complete
sentences retain 100% quality, even though it works well on many real tasks. The theo-
retically correct way of using Ψ is converting it to Φ by means of the average encoder:

Φ = TP+Ψ; Φ(x) = EA∼P+(·|x)[Ψ(A)].

For any input x, Φ(x) can be estimated via Monte Carlo: first sample a number ofA from
P+(·|x), and then take the mean ofΨ(A). This Monte Carlo estimation requires T -access
to the context, as defined in Definition 1.10.

Multi-view learning also has the feature collapse problem. If only Ψ(A) ≈ Ψ(A+) is
enforced, then one degenerate solution is to give all A the same embedding. There are
two popular solutions to this problem: contrastive learning and non-contrastive learn-
ing. Contrastive learning brings the embeddings of negative pairs far apart, that is in-
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creasing the distance betweenΨ(A) andΨ(A−). Non-contrastive learning has two types:
asymmetry-based and constraint-based. The asymmetry-based approach applies two
encoders with slight (training or architectural) differences to the same x. For example,
BYOL [50] updates one encoder with exponential moving average (EMA) and the other
in the standard way to create asymmetry, and SimSiam [24] puts stop gradient on one
of the encoders but not the other. The constraint-based approach, such as Barlow Twins
[163] and VICReg [6], uses the same orthonormality constraint as Eqn. (2.4).

Let us demonstrate that multi-view learning can learn the contexture with two ex-
ample objectives. The spectral contrastive loss [57] is given by

R(Ψ) = E
X∼PX

E
A,A+∼P+(·|X)

E
A−∼PA

[
−
〈
Ψ̃(A), Ψ̃(A+)

〉
+

1

2

〈
Ψ̃(A), Ψ̃(A−)

〉2]
; (2.5)

and constraint-based non-contrastive learning solves the following problem:

minimize
Ψ:A→Rd

E
X∼PX

E
A,A+∼P+(·|X)

[∥∥Ψ(A)−Ψ(A+)
∥∥2
2

]
s.t. CovPA [Ψ] = I. (2.6)

Theorem 2.9 (Proof inAppendixA.5). LetΨ∗ be anyminimizer ofEqn. (2.5), or any optimal
solution to Eqn. (2.6). Then, Ψ̃∗ extracts the top-d eigenspace of T ∗

P+TP+ , and Φ̃∗ = TP+Ψ̃∗

learns the contexture of P+.
For reconstruction, suppose X ⊆ RdX , and let the predictor be WΨ(a) + b, where b

can be 0 if the predictor is unbiased. The pretraining objective is given by

R(Ψ) = min
W∈RdX×d, b∈RdX

E
(X,A)∼P+

[
∥WΨ(A) + b−X∥22

]
. (2.7)

Theorem 2.10. Let Ψ∗ be any minimizer of Eqn. (2.7). Then, Ψ̃∗ extracts the top-d eigenspace
of TP+ΛT ∗

P+ , where Λ is the integral operator of kΛ(x, x′) = ⟨x̃, x̃′⟩ if the predictor is biased, or
kΛ(x, x

′) = ⟨x, x′⟩ if the predictor is unbiased.
Proof The proof is the same as Theorem 2.6, which is left as an exercise.

The three illustrate examples demonstrate that many existing popular variational ob-
jectives can already learn the contexture. The next step is to make themmore general so
that they can be adapted to a wider variety of contexts.

2.2 General Objectives: SVME and KISE
Section 1.4 introduced three types of access to a context: pair access, kernel access (k-
access), and transformation access (T -access). This section presents two general objec-
tives: SVME for pair access, and KISE for k-access. SVME can also be used for T -access
since it is stronger than pair access.

To motivate SVME, think about the weaknesses of contrastive and non-contrastive
learning objectives in Eqns. (2.5) and (2.6). First, they require the stronger T -access,
since for pair access, it is not always possible to draw two views of the same x. Second,
using the average encoder is not ideal since it slows down inference.

Single-view multi-encoder (SVME) learning addresses both weaknesses. It pro-
duces the encoder Φ directly, and needs only one view for each x; thus, it only requires
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pair access. It does so at the cost of training more than one encoders. SVME with two
encoders is formulated as the following optimization problem.

SVME: minimize
Φ:X→Rd; Ψ:A→Rd

E
(X,A)∼P+

[
∥Φ(X)−Ψ(A)∥22

] s.t. CovPX [Φ] = I. (2.8)

SVME can be viewed as a combination of asymmetry-based and constraint-based non-
contrastive learning. It uses a similar double-encoder architecture as asymmetry-based
non-contrastive learning, and the asymmetry here is that the constraint is only imposed
on Φ but not Ψ. Meanwhile, it uses the same orthonormality constraint as mentioned
earlier. If A = X , then similar to BYOL and SimSiam, one can implement Φ and Ψ as
two heads on top of the same neural network backbone. SVME can have more than two
encoders, which we shall see later in this chapter.

SVME is inspired by multi-modal learning. For example, in vision-language models
like CLIP [116], Φ can be the image encoder, and Ψ can be the text encoder.

For k-access, usually k is an approximation of the dual kernel. For simplicity, let us
assume that we have access to k+X(x, x′) for all x, x′. Then, for any f ∈ L2(PX ), we can
estimate Tk+Xf with Monte Carlo given a set of inputs. The objective of kernel-integral
single-encoder (KISE) learning is formulated as

KISE: minimize
Φ:X→Rd

E
X∼PX

[∥∥∥Φ̃(X)
∥∥∥2
2
−
〈
Φ̃(X), Tk+X

Φ̃(X)
〉]

s.t. CovPX [Φ] = I. (2.9)

Different from SVME, KISE only trains one encoder Φ. KISE is similar to the spectral in-
ference network (SpIN)method proposed by [113]. SpINmaximizes

〈
Φ̃(X), Tk+X

Φ̃(X)
〉
,

while KISE is more numerically stable when using gradient methods because the objec-
tive is lower bounded by zero, provided that all eigenvalues of Tk+X are in [0, 1]. Maxi-
mizing SpIN might cause the model weights to explode, but minimizing KISE will not.

The following result shows that both SVME and KISE can learn the contexture of P+,
and they are in fact equivalent.
Theorem 2.11 (Proof in Appendix A.6). In Eqn. (2.8), if Ψ is substituted with the optimal
Ψ when Φ is fixed, then this problem becomes equivalent to Eqn. (2.9). Let Φ∗ be any optimal
solution to Eqn. (2.9), then Φ̃∗ learns the contexture of P+.

Converting k-access to T -access. There is an additional way of using k-access, which
requires the kernel k to be always non-negative. The idea is similar to the objective for
graphs that we saw earlier. Define the degree D as D(x) =

∫
k(x, x′)dPX (x

′), and define
a new context P+ as P+(a|x) = k(x, a)PX (a)/D(x), where A = X . One has T -access to
this context if one can access k(x, x′) for all x, x′.

If k is the dual kernel of the original context, then we have D(x) ≡ 1. For any eigen-
function µi of Tk with eigenvalue s2i , we have TP+µi = s2iµi. Since obviously T ∗

P+ = TP+ ,
µi is a singular function of TP+ with singular value s2i . Hence, the context of P+ has the
same singular functions as the original context, with all singular values squared.

Implementing the orthonormality constraint. The orthonormality constraint in SVME
and KISE can be implemented by VICReg [6]. Let {(x1, a1), · · · , (xm, am)} be a batch of
training samples. The VICReg objective is the sum of an invariance loss, a variance loss
and the covariance loss, defined as

L(Φ,Ψ) =
1

m

m∑
k=1

∥Φ(xk)−Ψ(ak)∥22 +
α

d

d∑
i=1

(
1−

√
C[i, i] + ϵ

)
+
+

β

d(d− 1)

∑
i ̸=j

C[i, j]2,
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where (x)+ = max {0, x} is the ReLU function, ϵ is a small positive constant for numerical
stability, andC is the empirical covariance matrix: C[i, j] = 1

m−1

∑m
k=1 ϕ̃i(xk)ϕ̃j(xk). α, β

are two positive hyperparameters. The first term is the invariance loss that aligns the
two encoders. The second term is the variance loss that pulls

∥∥∥ϕ̃∥∥∥
PX

closer to 1. The
third term is the covariance loss that makes the d dimensions orthogonal to each other.

Although VICReg is used a lot in our experiments, we observe that the two regular-
ization terms cannot enforce the orthonormality constraint perfectly. In fact, both the
variance loss and the covariance loss cannot converge to zero. Alternatively, we tried
projecting Φ to become orthonormal after each epoch, but doing so does not improve
the performance of the encoder. Finding better ways than VICReg to enforce the or-
thonormality constraint is posed as an open problem.

2.3 Distilling Knowledge from Teacher Models
This part discusses how to learn from the context given by a teacher model. Not only
does this have lots of applications in practice, but also it gives us a way to convert a
context with any access to one with k-access, which will be very useful in later chap-
ters. Teacher models are very common in practice nowadays. Many big tech companies
release their large language models or generative models, all of which can be viewed
as teacher models. However, using these models usually incurs a cost, and these mod-
els are often too large to be deployed locally (especially in academic labs). As a result,
knowledge distillation [63] becomes very attractive—people would like to distill their
knowledge to smaller and more affordable models of their own.

LetΦt : X → Rdt be a teachermodel, which is presumably learned from some context
variable A. If the model is close-sourced, then we cannot see A at all, and we may not
even know what space A is. Even if the model is open-sourced and we know the space
A, very few companies release A as a part of their pretraining data. Indeed, it appears
that the quality of Φt largely depends on the quality of A (the quality of the context), so
most companies keep it as their business secret.

Even though we might not know A, it is still possible to distill the knowledge of Φt

if we can query Φt for a sufficient number of times. We can construct its centered linear
kernel kt(x, x′) =

〈
Φ̃t(x), Φ̃t(x

′)
〉
, and use KISE to extract its top eigenspace. It is easy to

see that µ0 ≡ 1 is an eigenfunction of kt with eigenvalue 0.
Two remarks on thismethod. First, we still cannot accessPX if the data is not released.

If we use our own data from another distribution during distillation, then the contexture
will be skewed. Second, the linear kernel kt of the teacher model is not equal to k+X .
In fact, it contains the information of at most the top-dt eigenfunctions of k+X , which
nonetheless is already sufficient for knowledge distillation purpose.

In addition to KISE, we can use the following objective for distillation:

R(Φ) = min
W∈Rdt×d, b∈Rdt

EX∼PX

[
∥WΦ(X) + b− Φt(X)∥22

]
. (2.10)

This objective extracts the top-d eigenspace of Tkt , with a (centered) linear kernel as the
loss kernel. This can be proved in the same way as Theorem 2.6. We leave this proof as
an exercise. Let Tk+X be the dual kernel of the original context Φt was trained on. If Φt

extracts the top-dt eigenspace of Tk+X and preserves their order as well, and d ≤ dt, then
apparently the Φwe learn will extract the top-d eigenspace of Tk+X .
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However, one issue is that Φt might not preserve the original order of the eigenfunc-
tions. Among all the objectives we have discussed so far, only the spectral contrastive
loss Eqn. (2.5) can preserve the original eigenvalues; all the other objectives can only
recover the space spanned by the top eigenfunctions. Therefore, given a teacher model,
it is unsafe to assume that it preserves the original order of the eigenfunctions. One
way to completely erase the eigenfunctions of the teacher model is to whiten Φt before
constructing kt, that is multiplying Φ̃t by [Cov(Φt)]

−1/2. The resulting kt will have the
same eigenfunctions as the original kt, but its eigenvalues become all either 0 or 1. This
is called a spectrally transformed kernel (STK), which will be discussed in more detail
in Chapter 5. Note that whitening is not useful for knowledge distillation from a single
teacher model, but will be quite useful later when there are multiple contexts.

Converting any access to k-access. Any pretrained encoder can be a teacher model.
Thus, for any context, we can first pretrain an encoder with it, view the encoder as a
teacher model, and then obtain a context with k-access using the above approach. This
alsomakes storing contexts very simple. Suppose a context is only available for a limited
amount of time, for example due to copyright limitations. All we need to do is to pretrain
an encoder using the context and store it. Then, we can use the context whenever we
want later on.

Social impact. Whether knowledge distillation constitutes a copyright infringement is
an important problem. Recently, DeepSeek [53] showed that it is possible to use a fairly
small budget to distill the knowledge of an OpenAI model that cost billions of dollars
to pretrain. Moreover, the analysis above shows that such knowledge distillation cannot
be prevented by making the model close-sourced. As such, big tech companies might
be less and less incentivized to grant public access to their models at a low price, fearing
that it would be too easy for other companies to copy their work. This might slow down
the development of AI.

2.4 Learning from a Mixture of Contexts
The objectives discussed so far can only learn from one context. In practice, it is of-
ten the case that there are multiple training signals that we can leverage. For example,
there might be multiple random transformations, such as translation, flipping, cropping
and color distortion for images. There could also be multiple labels for each sample,
or labels and a graph. Here we demonstrate that one can learn representations from
multiple training signals by mixing multiple contexts, and in fact some existing learning
algorithms are implicitly doing this. Specifically, we discuss two base operations: con-
volution and convex combination. Chapter 4 will provide a more general framework for
mixing multiple contexts.

Suppose there are r contexts given by P+
1 , · · · , P+

r , and PX is the marginal distribu-
tion of every P+

j . Let k+X1, · · · , k
+
Xr be their dual kernels. Then, the convolution of these

contexts is defined to have the top eigenfunctions of Tk+X1
Tk+X2

· · ·Tk+Xr
· · ·Tk+X2

Tk+X1
as its

contexture; and the convex combination of these contexts is defined to have the top
eigenfunctions of∑r

j=1wjTk+Xj
as its contexture, for some fixed non-negative w1, · · · , wr.

The convolution usually appears when one composesmultiple random transformations;
for example, when one applies translation, flipping and cropping to the same image. The
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Figure 2.2: Convolution and convex combination of multiple transformations on images.

convex combination appears when the objective is the weighted sum of multiple indi-
vidual objectives, each of which is designed for one context, as illustrated in Figure 2.2.

Now let us look at three concrete examples: supervised learning with a feature map,
multi-step generative models, and RLHF.

Supervised learning with a feature map. When X is a space of real-world objects, the
inputs need to be mapped to numerical vectors via a feature map Ω : X → Rdω so that
they can be stored in a computer. For example, if X is the space of images, then Ω can
be PNG or JPEG. The quality of Ω affects the quality of the context. Generally speaking,
PNG is better than JPEG because it is lossless, while JPEG loses information.

Assume that Ω is a deterministic mapping. Define operator TΩ : L2(Pω) → L2(PX )
and its adjoint operator T ∗

Ω : L2(PX )→ L2(Pω) as

(TΩh)(x) = h(Ω(x)); (T ∗
Ωf)(ω) =

∫
f(x)dP (x|ω).

In this scenario, an encoder Φ can be trained as follows. First, train Γ : Rdω → Rd

via supervised learning. Then, define Φ = TΩΓ. For classification tasks, similar to Sec-
tion 2.1, Γ is trained using an unbiased predictor and the mean squared error:

R(Γ) = min
W∈RdA×d,b∈RdA

E
(X,A)∼P+, ω=Ω(X)

[
∥A−WΓ(ω)− b∥22

]
. (2.11)

Theorem 2.12 (Proof in Appendix A.8). Φ∗ minimizes Eqn. (2.11) if and only if Γ∗ extracts
the top-d eigenspace of T ∗

ΩTP+ΛT ∗
P+TΩ (including µ0 ≡ 1), where Λ is the integral operator of

kΛ(a, a
′) = I[a = a′]. In this case, Φ∗ = TΩΓ

∗ extracts the top-d eigenspace of TkΩTP+ΛT ∗
P+TkΩ ,

where kΩ is the dual kernel associated with Ω such that TkΩ = TΩT
∗
Ω.

Similar to Theorem 2.4, one can get rid of Λ using the balanced loss. We can see that
thisΦ∗ learns the convolution of two contexts, one given byΩ and the other given by P+.
One important application of supervised learning with a feature map is node represen-
tation learning on graphs. Two contexts are available in this application: the graph, and
each node has a node feature. Popular methods such as graph neural networks (GNNs)
[55] train an encoder Γ(ω), where ω is the node feature.

Multi-step generative models. There are two extremely popular generative models
nowadays—large languagemodels and denoising diffusionmodels [64, 132]. Bothmod-
els can generate inputX from a starting point A in a number of steps. The starting point
Amay ormay not contain information aboutX . In large languagemodels,A is a prompt,
which contains partial information about X , and generation is done token by token; in
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diffusion models, A is white noise that has zero information about X , and generation is
done by a number of denoising steps.

Although generativemodels have achieved remarkable success inmany applications,
what representations these models are learning is quite unclear, and whether these rep-
resentations can be applied to tasks other than generation is an active research topic. For
example, recently [25, 159] studied whether the representations of diffusion models can
be used for recognition tasks, and they found that thesemodels “have strong recognition
power for understanding the visual content”. The common perception is that generative
modeling and representation learning are two completely different paradigms in ma-
chine learning, but in fact they can be connected via the contexture theory.

Amulti-step generativemodel, such as a diffusionmodel or aGPT, generates an input
x by a1 → a2 → · · · → ar → x, where aj+1 contains more information about x than aj .
The starting point a1 may or may not contain information about x. For diffusion models,
aj is x plus Gaussian noise; for language models, aj+1 is aj plus one more token at the
end. The following is a general formulation of multi-step generative modeling, which
does not need to assume the specific form of x or aj .

LetAj be the space of aj . Let P+
j be the joint distribution ofX and Aj . We use SVME

to train (r+1) encoders. Specifically, we train an encoderΨj : Aj → Rd for every j, along
with Φ : X → Rd. Each Ψj is trained with the goal of generating x in one shot: Given
aj ∈ Aj , we find the x̂ such that Φ(X̂) is the closest to Ψj(aj), and this x̂ should be close
to the original x. The training objective for this goal is given by

Rj(Φ;Ψj) = E(X,Aj)∼P+
j

[
∥Ψj(Aj)− Φ(X)∥22

]
.

Let w = [w1, · · · , wL] be a weight vector where wj ≥ 0. The overall objective is

minimize
Φ,Ψ1,··· ,Ψr

RGEN(Φ;Ψ1, · · · ,Ψr) =
r∑

j=1

wjRj(Φ;Ψj) s.t. CovPX [Φ] = I. (2.12)

Although each Ψj is pretrained with the goal of generating x in one shot, actual genera-
tion is still performed in multiple steps. Specifically, given aj ∈ Aj , we find aj+1 ∈ Aj+1

such that Ψj+1(aj+1) is the closest to Ψj(aj). Such a procedure resembles a denoising
diffusion model, which trains a noise approximator ϵθ(·, j) for j ∈ [r] by closing the gap
between x and aj − ϵθ(aj, j) (this objective aims to denoise aj in one shot), while the
actual generation is done in multiple steps.

One great thing about SVME is that even though there are lots of encoders, the con-
straint is only imposed on Φ. The following result shows that this objective learns the
contexture of a convex combination of the r contexts. It is a corollary of the general result
in Section 4.2, so the proof will be deferred until then.
Corollary 2.13. Let k+Xj be the dual kernel of P

+
j . LetΦ∗ be any optimal solution to Eqn. (2.12).

Then, Φ̃∗ extracts the top-d eigenspace of
∑

j wjk
+
Xj .

It should be clarified that both diffusion models and large language models use a
single-model architecture, commonly known as a decoder-only architecture, but can also
be called an encoder-only architecture if the model is used as a representation. The
above analysis does not apply to encoder-decoder architectures such as VAE [87] and
GAN [48], because the representations of these encoders are meaningless without the
corresponding decoders. The output of VAE and GAN is a Gaussian random vector,
whose association with X is indecipherable without the decoder. Therefore, VAE and
GAN cannot be analyzed in the same way as above.
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Alignment in RLHF. Reinforcement learning with human feedback (RLHF) is a com-
mon technique in fine-tuning LLMs. Let Φref be a reference model, such as a model
trained by supervised fine-tuning (SFT). Let A1, A2 be two random variables on Awith
possibly different distributions, both ofwhich are associatedwithX . For instance,X can
be an English sentence, andA1, A2 can be two Chinese translations of the same sentence.
There is also a critic function C : X → {1, 2}, such that for any input x, if C(x) = 1,
then A1 is preferred; otherwise, A2 is preferred. The goal of RLHF is to fine-tune the
model to learn such preference (which is also known as alignment), while still keeping
the model close to Φref. In practice, it is observed that if Φ is too far away from Φref, then
its performance will be very poor, a phenomenon known as over-optimization [44, 110].
Thus, we need to make sure that Φ does not go too far away from Φref.

Let Ralign(Φ,Ψ) =
∑

i=1,2 Pr
X∼PX

[C(X) = i] E
X∼PX

[
∥Φ(X)−Ψ(Ai)∥22

∣∣ C(X) = i
] be the

alignment loss based on SVME. To implement this loss, for each sample (x, a1, a2, c)
where c is the critic output, one simply updates the model to minimize ∥Φ(x)−Ψ(a1)∥22
if c = 1, and ∥Φ(x)−Ψ(a2)∥22 if c = 2. Then, define a loss that reflects the gap between
Φ and Φref asRref(Φ) = min

W ,b
E
[
∥WΦ(X) + b− Φref(X)∥22

]. This loss function is invariant
under invertible linear transformations on Φ, because such transformations have no im-
pact on the downstream performance when Φ is used with a linear probe. The overall
objective is given by

minimize
Φ,Ψ

Ralign(Φ,Ψ) + βRref(Φ) s.t. CovPX [Φ] = I

for some β > 0. Similar to generative models, this objective also learns the contexture of
a convex combination of two contexts. The first context is given by a the random variable
A on A, such that P+(x, a) = Pr[C(x) = 1]P+

A1
(x, a) + Pr[C(x) = 2]P+

A2
(x, a). The second

context is provided by the teacher model Φref, similar to Eqn. (2.10).

2.5 Extracting Exact Eigenfunctions and Eigenvalues
So farwehave seen that a variety of variational objectives can extract the top-d eigenspace
of Tk+X , meaning that they can recover the linear space spanned by µ1, · · · , µd. Onemight
ask if it is possible to extract the exact top-d eigenfunctions using a variational objective
instead of kernel PCA. This is indeed possible. [33] proposed neural eigenfunctions to
extract the exact top-d eigenfunctions of Tk+X . It solves the following problem:

minimize
Φ:X→Rd

E
[∥∥∥Φ̃(X)

∥∥∥2
2
−
〈
Φ̃(X), Tk+X

Φ̃(X)
〉]

s.t.
∥∥∥ϕ̃i

∥∥∥2
PX

= 1, ∀i ̸= j :
〈
ϕ̃i, Tk+X

ϕ̃j

〉
PX

= 0.

(2.13)

Its difference from KISE is that it changes the constraint
〈
ϕ̃i, ϕ̃j

〉
PX

= 0, which enforces
the different dimensions to be orthogonal, to

〈
ϕ̃i, Tk+X

ϕ̃j

〉
PX

= 0. Interestingly, this small
change allows the extraction of the exact eigenfunctions. It should be emphasized that
the d eigenfunctions are obtained simultaneously, not sequentially.
Theorem 2.14 (Proof in Appendix A.7). Let the optimal Φ∗ of Eqn. (2.13) be [ϕ∗

1, · · · , ϕ∗
d],

then we can choose the eigenfunctions µ1, µ2, · · · of Tk+X that have non-increasing eigenvalues
and form an ONB of L2(PX ), such that ϕ̃∗

1, · · · , ϕ̃∗
d is a permutation of µ1, · · · , µd.
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With T -access, we can use multi-view learning to extract the exact eigenfunctions.

minimize
Ψ:A→Rd

E
[∥∥∥Ψ̃(A)− Ψ̃(A+)

∥∥∥2
2

]
s.t.

∥∥∥ψ̃i

∥∥∥2
PA

= 1, ∀i ̸= j : E[ψ̃i(A)ψ̃j(A
+)] = 0,

whereA,A+ are positive samples drawn from P+(·|X) of the sameX . We can prove that
Ψ̃ extracts the exact top-d eigenfunctions of Tk+A in the sameway as Theorem 2.14. And by
Lemma 1.4, the average encoder Φ̃ = TP+Ψ̃ also extracts the exact top-d eigenfunctions
of Tk+X multiplied by some constants.

Post-hoc approach. Suppose we have a pretrainedΦ that learns the contexture, can we
obtain the exact eigenvalues and eigenfunctions of Tk+X? The answer is yes. Since Φ does
not necessarily contain the information of the exact eigenvalues and eigenfunctions, we
still need to use the context, via either kernel access or pair access.

First, suppose we have kernel access to the context. Since Φ̃ spans the same space
as µ1, · · · , µd, it suffices to learn a matrix Q ∈ Rd×d such that Φ̃Q = [α1µ1, · · · , αdµd]
for some α1, · · · , αd ̸= 0. Then, these αi can be eliminated by normalizing Φ̃Q to have
unit variance in each dimension. The matrixQ and the eigenvalues can be estimated as
follows:

1. Estimate the covariance matrix CΦ ∈ Rd×d = CovPX [Φ]with Monte Carlo.
2. EstimateBΦ ∈ Rd×d, whereBΦ[i, j] =

〈
ϕ̃i, Tk+X

ϕ̃j

〉
PX

, with Monte Carlo.
3. Solve the generalized eigenvalue problem BΦv = λCΦv. Let the eigenvalues be
λ1 ≥ · · · ≥ λd ≥ 0, and the orthonormal eigenvectors be v1, · · · ,vd. Then, Q =
[v1, · · · ,vd], and λi is an estimation of the i-th eigenvalue of Tk+X , which is s2i . Since
d is not very large, this eigen-decomposition is efficient.

Let us elaborate on why this method works. For simplicity, assume that the top-d
eigenvalues of Tk+X are distinct; without this assumption, the result can still be proved
with a more verbose proof. Let U = [µ1, · · · , µd], and suppose Φ̃ = UR for some in-
vertible R ∈ Rd×d. Since Cov[U ] = I and

〈
U, Tk+X

U
〉
PX

= diag{s21, · · · , s2d}, we have
CΦ = R⊤R and BΦ = R⊤diag{s21, · · · , s2d}R. Thus, the generalized eigenvalues are
equal to s21, · · · , s2d, and Rvi = αiei for some αi ̸= 0, where ei = [0, · · · , 0, 1, 0, · · · , 0].
This implies thatRQ = diag{α1, · · · , αd}. Hence, Φ̃Q = [α1µ1, · · · , αdµd].

Second, if we have pair access instead of k-access, then the eigenvalues andQ can be
obtained as follows: Let Φ and Ψ be trained via SVME. We can estimate CΦ = CovPX [Φ]
and BΨ = CovPA [Ψ] via Monte Carlo. Then similarly, we solve the generalized eigen-
value problemBΦv = λCΦv to obtain the eigenvalues andQ.

Finally, if our goal is only to estimate the eigenvalues but not the eigenfunctions, then
Φ need not to be trainedwith the entire dataset. In fact, [125] showed that for any fixed d,
the sum s21+ · · ·+ s2d can be estimated with low error usingΘ(d) i.i.d. samples. By union
bound, all s21, · · · , s2d can be estimated with low error using Θ(d log d) i.i.d. samples.

Estimating eigenvalues with the post-hoc approach. Let us demonstrate the post-hoc
method on 3 real datasets from OpenML [146]: abalone, fifa, and kings_county.
We only extract the eigenvalues here, and later in Section 2.6 we will investigate the
eigenfunctions. We use KNN with K = 60 as context, where A = X , and P+(x′|x) =
K−1 if x′ is a K-nearest neighbor of x and 0 otherwise. For this context, we can exactly
compute k+X , and thus we can obtain the exact eigenvalues (ground truth) using kernel
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Figure 2.3: Estimating the eigenvalues using the post-hoc approach withm samples.

Dataset m = 100 m = 300 m = 600 m = 1000 m = 2000 Full dataset
abalone 0.157 0.124 0.088 0.104 0.110 0.088
fifa 0.218 0.151 0.137 0.134 0.133 0.131
kings_county 0.278 0.264 0.190 0.183 0.177 0.177

Table 2.1: Average estimation error of the top-256 eigenvalues.

PCA. Meanwhile, we pretrain Φ with one of the variational objectives using a random
subset of m samples, and estimate the eigenvalues using the post-hoc approach. Then,
we compare the estimation with the ground truth.

We use a 2-layer wide Tanh-activated neural network with embedding dimension
d = 512 and hidden dimension 20,000 as Φ. We train the model through non-contrastive
learning Eqn. (2.6), with the orthonormality constraint implemented by VICReg, and
AdamW [86, 104] as the optimizer. We varym and compare the estimated top-d0 eigen-
values with the ground truth, where d0 = 256. The estimated eigenvalues and the
ground truth are plotted in Figure 2.3. From the plots, we observe that the eigenval-
ues estimated by our estimation method decay faster than the ground truth, even if the
full dataset is used. We hypothesize that the main reason is that even though we use
a very wide neural network, its function class is still a subset of L2(PX ). Consequently,
the inductive bias of the model architecture has an impact on the encoder, and therefore
the learned contexture can be viewed as a mixture of the inductive bias and the original
KNN context. This mixture causes the eigenvalues to decay faster, which explains the
observation in Figure 2.3. Another reason is related to optimization. Since the model is
non-convex, gradient methods cannot find the minima of the objective.

The average estimation error of the top-256 eigenvalues is reported in Table 2.1. The
error is defined as 1

d0

∑d0
i=1 |ŝ2i−s2i |, where ŝ2i is the estimated eigenvalue. The table shows

that when m ∈ [600, 1000] ≈ [0.5d0 log d0, 0.7d0 log d0], the performance is comparable to
using the full dataset, which verifies the theoretical result of [125]. The estimation error
is not zero even if the full dataset is useddue to the aforementioned reasons. In summary,
the post-hoc method can estimate the eigenvalues using a small subset of samples, but
the estimated eigenvalues decay faster than the ground truth.

2.6 Implications on the Scaling Law
It has been widely observed that the performance of deep neural networks on many real
tasks increases with the model size, which is known as the scaling law [84]. Further-
more, it has been observed that models of different architectures, such as ResNets [61]

25



and ViTs [36], learn highly aligned representations under the metrics in [89] when the
models are sufficiently large, even if they are trained with different objectives.

To explain this phenomenon, [73] proposed the platonic representation hypothesis,
which states that “neural networks, trained with different objectives on different data
and modalities, are converging to a shared statistical model of reality in the representa-
tion spaces”. The assumptions of this hypothesis are that the neural networks are large
enough, and there is a sufficient amount of data.

The contexture theory provides a new perspective on the role of scaling. It implies
that the so-called “reality” is in fact the top eigenfunctions of Tk+X . When using a neu-
ral network as Φ, the function class of Φ is a subset of L2(PX ); and when scaling up the
model size, this subset gets closer to the entire space L2(PX ), and thus the learned rep-
resentation becomes closer to the top-d eigenfunctions of Tk+X , which are independent of
the model architecture (so this is not a special property of neural networks). This also
explains why recently it has been observed that increasing the model size is producing
a diminishing return. When the model is large enough so that the learned representa-
tion is highly aligned with the top-d eigenfunctions, then further increasing the model
size will be less useful. [73] also observed that models trained in different modalities all
align with the same shared representation. This suggests that commonly used contexts
in different modalities have similar top eigenfunctions. Note that this cannot be true for
all contexts. For a very weird context such as randomly shuffling the pixels of an image,
its top eigenfunctions are surely not aligned with this shared representation.

In this section, we use an experiment to show that the representation learned by a
neural network is indeed aligned with the top-d eigenfunctions, which provides empir-
ical evidence to support the above arguments.

Experiment overview. The purpose of this experiment is to examine whether a large
neural network can learn the contexture well, and whether scaling up the model size
makes the learned representation more aligned to the top-d eigenfunctions. We com-
pare between two encoders. The first encoder is obtained via kernel PCA on the dual
kernel, so it consists of the exact top-d eigenfunctions. The second encoder is obtained
via training a large neural network to optimize an objective that can learn the contexture.
Then, we compute the representational alignment of these two encoders. The most clas-
sical metric is the canonical-correlation analysis (CCA) metric R2

CCA, which is invariant
under invertible linear transformations to the encoders. [89] proposed a variant called
linear CKA, which is only invariant under orthogonal transformations. In our setting,
since we only care about the span of ϕ1, · · · , ϕd, we would like the metric to be invariant
under all invertible transformations, which is why we use CCA. In addition, we also use
the mutual KNN metric with 10 neighbors proposed by [73], which measures the in-
tersection over union (IoU) of nearest neighbors between the two representations. This
metric is not invariant under invertible linear transformations, so we whiten the two
representations such that their covariance matrices are both identities.

Setup. We use the abalone dataset from OpenML, and split the dataset into a pre-
train set, a downstream train set and a downstream test set by 70%-15%-15%. Like what
we used earlier, we choose K-nearest neighbors (KNN) with K = 30 to be the con-
text. The embedding dimension is set to be d = 128. For the second encoder, we train
a fully-connected neural network with Tanh activation and skip connections for a suf-
ficient number of steps with full-batch AdamW, and vary the depth and width of the
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Figure 2.4: Alignment between the learned representation and the top-d eigenfunctions
of Tk+X on the abalone dataset. Solid curves: CCA. Dashed curves: mutual KNN. Depth
here means the number of hidden layers.

network so that we can study their effect on the alignment. Here, “depth” refers to the
number of hidden layers—for example, a 2-layer neural network has depth 1. For each
width and depth, we run the experiments 15 times with different random initializations,
and report the average alignment.

In our experiments, we observe the dimension collapse problem [80]—if we set the
output dimension of the neural network to be d, then the rank of the learned representa-
tion will usually be less than d, meaning that it can only extract the top-d′ eigenspace for
some d′ < d. [80] proved that this problem can be caused by the training dynamics of
self-supervised learning, that is a large neural network trained with a gradient method
cannot find the minima, but will find a low-rank solution instead.

To fix this issue, we set the output dimension of the neural network to be d1 = 512 > d.
After we obtain the d1-dimensional encoder, similar to Section 2.5 we estimate the ma-
tricesCΦ andBΦ, and solve the generalized eigenvalue problemBΦv = λCΦv. Let V =
[v1, · · · ,vd] ∈ Rd1×d be the top-d eigenvectors; then, we use Φ̃V as the d-dimensional rep-
resentation. In otherwords, we use the 128 principal components of the 512-dimensional
embedding.

Results. Figure 2.4 plots the alignment between the two encoders while varying the
depth and width of the neural network. we can see that when the depth and width are
chosen correctly, the CCA can be as high as 0.9, and the mutual KNN can be over 0.8.
Note that these alignment metric values are very high. For example, in [73], the mutual
KNNmetric value is usually below 0.2. Hence, the representation learned by the neural
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network is highly aligned with the top-d eigenfunctions.
The top plot studies neural networks with increasing widths. We can see that when

the neural network is not so wide, increasing the width will make the alignment higher.
However, once the neural network is wide enough, further increasing the width might
have a negative effect. For example, when the depth is 3, the alignment is the highest
when the width is 512, and the alignment becomes lower when the network is wider
than 512. Since increasing the width can only make the function class of Φ larger, this
phenomenon is not due to the expressivity of the neural network. We hypothesize that
this is because optimizing a larger model is harder. Consequently, with the same num-
ber of pretraining steps, a larger model will be farther away from the minima, and the
alignment decreases.

The bottom plot studies neural networks with increasing depths, and the observa-
tion is similar. When the network is shallow, increasing the depth makes the alignment
higher. However, once the network is deep enough, further increasing the depth might
have a negative effect. We also observe from the bottom plot that a width-512 network
has higher alignment than widths 1024 and 2048. In addition, the alignment cannot
reach 1. This is because the model is non-convex, so the real optima (the precise top-d
eigenspace) cannot be found by gradient methods.

In summary, we draw two conclusions from this experiment: (i) the representation
learned by a large neural network is highly aligned with the top-d eigenfunctions; (ii)
once the neural network is wide and deep enough, further increasing its size will not
make the alignment higher, and might even have a negative effect. Hence, we put for-
ward the following argument about the scaling law: Once the model is large enough
such that Φ is already highly aligned with the top-d eigenfunctions, further increasing
the model size inevitably yields diminishing returns.

When the model is already large enough, a better context is necessary for further
improvement. The next part of this thesis studies how to obtain a better context. There
are two questions that need to be addressed. First, what context is good and what con-
text is “better”? In particular, if we want the representation to be transferable to a wide
variety of downstream tasks, then how should we evaluate the representation without
testing it on a specific task? Second, how to obtain better contexts? Creating new con-
texts from scratch is obviously difficult, so are there easier options? These questions will
be addressed in the following two chapters.

Code and data availability. The code for the experiment in this section can be found at
https://1drv.ms/u/c/ea9fe908498c8b82/EWb_t4e-27VKsoSTWV6J_yQBUFsuWSAXbRHJK4GoUEynjw?e=r4ROdU. The
data can be downloaded from OpenML.
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Chapter 3

Intrinsic Evaluation: The Optimality of
Learning the Contexture

This chapter focuses on the evaluation of encoders and contexts. How to tell if an encoder
is good or not? There are two methods as summarized in [15, Sec. 4]. The first method
is extrinsic evaluation, where we choose a specific downstream task, fit a predictor on
top of the encoder, and use the performance of that predictor as the evaluation of the
encoder. In practice, this performance is ultimately what we care about. The second
method is intrinsic evaluation, which is independent of any downstream task. Intrinsic
evaluation ismore useful in the analysis of pretraining for two reasons: (i)Wewould like
the encoder to be transferable to a wide variety of downstream tasks, so only evaluating
it on one task is usually insufficient; (ii) Foundation models are often used on tasks they
are not designed for, so we cannot assume that we know all the tasks at pretrain time.

Obviously, no encoder is good for all tasks. For any encoder, one can adversarially
construct a task for which the encoder is poor. However, such tasks are not what we care
about. For example, in NLP, downstream tasks that we care about include sentiment
analysis, sentence completion, translation, question answer, etc. Counting how many
words in a paragraph contain the letter "e" is a valid task, and large language models are
not really good at it (see Figure 3.1), but this task is not one that we would usually care
about. Therefore, we need to define a class of relevant tasks, and the intrinsic evaluation
of the encoder is conducted on this class.

How to define such a class of relevant tasks at pretrain time? The only information
we have at pretrain time is the context, and the prior knowledge that the context should
be useful for learning an encoder for any task of interest. Note that a downstream task
need not to “look similar” to the context; for example, a BERT trainedwithmasked token
prediction can be used for sentiment analysis, though these two tasks look quite differ-
ent. Thus, we need a quantitative description of the usefulness of a context for a task,
for which we define the compatibility between a context and a task.

Once we define the class of compatible tasks, we can prove that the encoder that
learns the contexture is optimal for this class of tasks, in the sense that it minimizes the
worst-case approximation error. On the other hand, if the task is not compatible, then
it is likely that the encoder will have a bad performance. This explains why LLMs are
so powerful that they can perform well on various tasks, but they struggle with easy
tasks such as answering factual questions, where they often produce seemingly correct
but completely wrong answers, a phenomenon known as hallucination [69]. In short,
answering factual questions is not compatible with the context of next token prediction.

The significance of this result is that it reduces the problem of pretraining to the
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User: Count how many words in the following paragraph
contains the letter "e":
Overall, although there does not ... the proposed metric
is useful for choosing hyperparameters and comparing
contexts in practice.

Claude 3.7 Sonnet: I’ll count the words containing the
letter "e" in the paragraph you provided. Let me go
through it word by word:
1. "Overall" - contains "e"
...
58. "and" - no "e"
59. "comparing" - contains "e"
60. "contexts" - contains "e"
61. "in" - no "e"
62. "practice" - contains "e"
Counting the words with the letter "e": 42 words out
of 62 total words contain the letter "e".

Figure 3.1: An example where the LLMClaude 3.7 Sonnet (as of April 14, 2025) makes a
mistake on a task that is not quite relevant toNLP. Line 59 iswrong because “comparing”
does not contain the letter “e”. The final answer is also wrong.

problem of finding a good context. Once we have the context, we can use any variational
objective in the last chapter, and the resulting foundation model is guaranteed to have
the optimal performance if it can learn the contexture well. We will also discuss how
to intrinsically evaluate an arbitrary encoder, which depends on two key concepts—the
induced RKHS and the ratio trace. Thus, even if the foundation model does not learn
the contexture, we are able to predict its performance on compatible tasks.

Finally, we study what contexts are good contexts. The key finding is that a good
context should have a moderate association between X and A, so that the decay rate of
the singular values is neither too fast nor too slow. Qualitatively, if the association is
too weak, then there will be very few tasks that are compatible with the context, so the
resulting encoder will not be transferable to a wide range of tasks. On the other hand, if
the association is too strong, then the sample complexity of learning the contexture and
the downstream predictor will be very high. Quantitatively, we propose a metric that
measures the usefulness of a context. This metric only depends on the singular values,
so it can be efficiently estimated using the post-hoc approach described in Section 2.5.
Experiments show that the metric correlates well with the actual performance of the
encoder on real datasets.

3.1 Compatibility, Optimality of Contexture
Adownstream task is represented by a target function. Most downstream tasks, such as
prediction, clustering, and segmentation, can be associated with a target function f ∗ ∈
L2(PX ). For example, multi-class classification can be associatedwithmultiple one-vs-all
labeling functions. After Φ is pretrained, and the training samples of the downstream
task are revealed, there are a number of ways to use Φ, such as fitting a small neural
network on top, using a kernel method, supervised fine-tuning (SFT), etc. This thesis
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focuses on the simplest way called a linear probe, where one fits the downstream data
with a linear predictor on top of Φ. Specifically, the downstream predictor is given by
f̂(x) = WΦ(x) + b. Since W and b can be arbitrarily chosen, the mean and variance of
f ∗ have no impact on the difficulty of learning f ∗. Hence, our definition of compatibility
should be independent of them.

Given a context P+, we say that a task is compatible with it, if the information the
context provides makes it easier to learn a predictor for the task. Formally, consider a
training set for supervised learning {(ai, yi)}ni=1, where yi = f ∗(xi) + ξi ∈ R for some
small random noise ξi. In this dataset, the original inputs xi are unknown, and only one
ai ∼ P+(·|xi) is provided for each i. The most straightforward method of learning a
predictor for this task is as follows: we first fit a predictor ĝ : A → R on this dataset,
and then convert it to f̂ : X → R with f̂ = TP+ ĝ, assuming that we have T -access to the
context. f ∗ is said to be compatible with the context if this methodworks well, for which
two conditions are necessary:
(i) There exists a g∗ ∈ L2(PA) such that f ∗ = TP+g∗.
(ii) The variance of g∗ conditioned on x, denoted by Var[g∗(A)|x], is low on average.

Condition (i) says that the labels yi can be approximated by a function in the range
of TP+ , up to the small noise ξi. Condition (ii) ensures that g∗(ai) ≈ f ∗(xi) ≈ yi; without
this condition, the ĝ fit on {(ai, yi)} cannot approximate g∗.

The compatibility defined below is based on the above insights.
Definition 3.1. The compatibility with P+ of f ∈ L2(PX ) such that f̃ ̸= 0 is defined as

ρ(f, P+) = max
g∈L2(PA),g ̸=0

〈
f̃ , TP+g

〉
PX∥∥∥f̃∥∥∥

PX
∥g∥PA

∈ [0, 1]. (3.1)

The compatibility is defined this way so that it is independent of the mean and vari-
ance of f . Here is a formula for the compatibility of any f ∗ with P+. For simplicity, let f ∗

has mean zero. Let f ∗ =
∑
i≥1

uiµi and g∗ =
∑
i≥1

viνi. Then, ρ(f ∗, P+) = max
vi

∑
i siuivi√∑

i u
2
i

√∑
i v

2
i

=√∑
s2i u

2
i∑

u2
i

by Cauchy-Schwarz inequality (the maximum is attained when vi ∝ siui). To
estimate ρ(f ∗, P+) for any f ∗, the most straightforward way is to find the g∗ ths maxi-
mizes the fraction on the right-hand side. This is much more efficient than training a
d-dimensional encoder.

Under this definition, the class of (1− ϵ)-compatible tasks is defined as

Fϵ(P
+) =

{
f ∈ L2(PX ) : ρ(f, P

+) ≥ 1− ϵ
}
, (3.2)

for any ϵ > 0. When ϵ is small, this is a class of compatible downstream tasks, and it can
be shown that this class satisfies the two conditions aforementioned:
Theorem 3.2 (Proof in Appendix B.1). For any f ∗ ∈ Fϵ(P

+), there exists a g∗ ∈ L2(PA)
such that f ∗(x) = E[g∗(A)|x], and g∗ satisfies

E
X∼PX

E
A,A′∼P+(·|X)

[
(g∗(A)− g∗(A′))

2
]
≤ 4ϵ∥g∗∥2PA

. (3.3)

Next, we showwhy an encoder that learns the contexture is optimal. First, we need to
define “optimal”, which involves the evaluation of an encoder. The ultimate evaluation
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of Φ is the performance of the downstream predictor. Let f(x) = WΦ(x) + b be the
downstream linear probe. The performance of f can be measured by the mean squared
error (MSE):

err(f, f ∗) = ∥f − f ∗∥2PX
= EX∼PX [(f(X)− f ∗(X))2].

Let fΦ be the projection of f ∗ onto the linear space spanned by ϕ1, · · · , ϕd. Then, when
using a linear probe, the above error can be decomposed as

err(f, f ∗) = ∥fΦ − f ∗∥2PX︸ ︷︷ ︸
Approximation error

+ ∥f − fΦ∥2PX︸ ︷︷ ︸
Estimation error

.

The embedding dimension d controls the trade-off between the two errors. If d is
larger, then the span of Φ will become larger, so the approximation error will be lower;
meanwhile, the downstream sample complexity will be higher, so the estimation error
will increase. There are two ways in which Φ affects the final prediction error. First, the
distance from f ∗ to the span of Φ decides the approximation error. Second, the smooth-
ness of ϕ1, · · · , ϕd affects the sample complexity of both pretraining and downstream.
The second part will be studied in Chapter 5, and this chapter evaluates Φ by the ap-
proximation error. More specifically, Φ is evaluated on the class of compatible tasks
Fϵ(P

+) by its worst-case approximation error.
Definition 3.3. Let F ⊂ L2(PX ) be a function class where f ∈ F ⇒ αf ∈ F for all α ∈ R.
The worst-case approximation error of Φ : X → Rd on F is defined as

err(Φ;F) = max
f∈F(P+), ∥f∥PX

=1
err(Φ, f);

where err(Φ, f) = EΦ

[
min

w∈Rd, b∈R

∥∥w⊤Φ + b− f
∥∥2
PX

]
.

Here,EΦ is taken over the randomness ofΦ. WhenΦ is randomized, one first samples
a deterministic Φ from the distribution, and then fits w and b accordingly.

The following result is one of the main results of the contexture theory. It says two
things. First, if we know a priori the downstream task is compatible, then learning the
contexture is the optimal thing to do, because it minimizes the worst-case approxima-
tion error. Second, what if the task is incompatible? We cannot argue that no encoder
works for an incompatible task. In a hypothetical scenario, if an oracle tells us the target
function f ∗ in advance, then we can set ϕ1 = f ∗ to achieve perfect performance. What
we can argue is that for any low compatibility level and any encoder Φ, there exists an
f ∗ on that level such that Φ is poor for f ∗.
Theorem 3.4 (Proof in Appendix B.2). Suppose 1 − ϵ ≤ s1. For any d, among all Φ =
[ϕ1, · · · , ϕd] where ϕi ∈ L2(PX ) , Φ minimizes err(Φ;Fϵ(P

+)) if and only if it learns the con-
texture of TP+ . The error is given by

min
Φ:X→Rd, ϕi∈L2(PX )

err(Φ;Fϵ(P
+)
)
=
s21 − (1− ϵ)2

s21 − s2d+1

.

Conversely, for any d-dimensional encoder Φ and any ϵ > 0, there exists f ∈ L2(PX ) such that
ρ(f, P+) = 1− ϵ, and err(Φ, f) ≥ s21−(1−ϵ)2

s21−s2d+1
.
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3.2 Intrinsic Evaluation of an Arbitrary Encoder
Given a context that is compatible with the task, the encoder that learns the contexture is
optimal. Now what about an arbitrary encoder Φ? Is it possible to bound its worst-case
approximation error on the class of compatible tasks? To derive such a bound, two key
objects are necessary: the induced RKHS and the ratio trace.

Denote the range of T ∗
P+ by R(T ∗

P+) =
{
T ∗
P+f

∣∣ f ∈ L2(PX )
}.

Definition 3.5. The induced RKHS of P+, denoted by HP+ , is the Hilbert space R(T ∗
P+) with

the inner product given by
〈
T ∗
P+f1, T

∗
P+f2

〉
HP+

= ⟨f1, f2⟩PX
.

An alternative formula is that for any h1, h2 ∈ HP+ where h1 =
∑
uiνi and h2 =∑

viνi, there is ⟨h1, h2⟩HP+
=
∑

uivi
s2i

.

Proposition 3.6. The induced RKHSHP+ has the following properties:
(i) k+A is the reproducing kernel, such that h(a) =

〈
h, k+A(a, ·)

〉
HP+

for all h ∈ HP+ .
(ii) HP+ is isometric to span{µi : si > 0}, which is a subspace of L2(PX ).
(iii) f ∗ ∈ Fϵ(P

+) is equivalent to h∗ = T ∗
P+f ∗ satisfying the following isometry property:

(1− ϵ)
∥∥∥h̃∗∥∥∥

HP+

≤
∥∥∥h̃∗∥∥∥

PA
≤
∥∥∥h̃∗∥∥∥

HP+

. (3.4)

Proof For any h ∈ HP+ where h = T ∗
P+f and f =

∑
uiµi, by Corollary 1.6 we have〈

h, k+A(a, ·)
〉
HP+

=
〈∑

siuiνi,
∑

s2i νi(a)νi

〉
HP+

=
∑

siuiνi(a) = h(a),

which proves (i). (ii) is obvious. Regarding (iii), recall that f ∗ =
∑
uiµi ∈ Fϵ(P

+) is
equivalent to∑i≥1 s

2
iu

2
i ≥ (1 − ϵ)2

∑
i≥1 u

2
i , and this is

∥∥∥h̃∗∥∥∥
PA
≥ (1 − ϵ)

∥∥∥h̃∗∥∥∥
HP+

. Mean-

while, it is obvious that
∥∥∥h̃∗∥∥∥

PA
≤
∥∥∥h̃∗∥∥∥

HP+

always holds.

Definition 3.7. Define covariance matricesCΦ = CovPX [Φ], andBΦ = CovPA [T
∗
P+Φ]. IfCΦ is

invertible, then the ratio trace ofΦw.r.t. P+ is defined asRT(Φ;P+) = RT(ϕ1, · · · , ϕd;P
+) :=

Tr(C−1
Φ BΦ); otherwise, let Φ′ = [ϕi1 , · · · , ϕit ] be the maximal linearly independent subset of

[ϕ1, · · · , ϕd], and define the ratio trace of Φ the same as the ratio trace of Φ′.
The ratio trace of any Φ essentially measures how well Φ is aligned with the contex-

ture of P+. Multiplying Φ by any invertible matrix does not change its ratio trace. The
matrices CΦ andBΦ here are the same as in Section 2.5. If Φ learns the contexture, then
its ratio trace is s21 + · · ·+ s2d, which can be easily shown by setting ϕi = µi. In fact, this is
the maximum ratio trace of any d-dimensional encoder.
Lemma 3.8. Suppose ϕ1, · · · , ϕd are orthonormal and all have zero mean. Then, we have

∥T ∗
P+ϕ1∥2PA

+ · · ·+ ∥T ∗
P+ϕd∥2PA

≤ s21 + · · ·+ s2d.

Proof Let ϕi =
∑

j≥1 qijµj for i ∈ [d]. Then, Q = (qij) is a matrix with d orthonormal
rows and infinitely many columns. It is easy to see that the left-hand side is equal to
Tr(QDQ⊤), where D = diag{s21, s22, · · ·}. Let qj be the j-th column of Q. For all j ∈ [d],
there is ∑j

i=1 q
⊤
i qi ≤ j; and for any j > d, there is ∑j

i=1 q
⊤
i qi ≤ d. Thus, using Abel
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transformation, we have

Tr(QDQ⊤) = Tr(DQ⊤Q) =
∞∑
j=1

s2jq
⊤
j qj =

∞∑
j=1

(
j∑

i=1

q⊤
i qi

)(
s2j − s2j+1

)
≤

d∑
j=1

s2j ,

as desired.

The ratio trace induces a key quantity in the approximation error bound called the
trace gap, which reflects the gap between Φ and the top-d singular functions. The larger
the trace gap is, the larger the approximation error will be. A simple definition is s21 +
· · · + s2d+1 − RT(Φ;P+), whose lower bound s2d+1 can be achieved by the top-d singular
functions, the optimal encoder. However, there is an issue with this definition. For ex-
ample, consider an encoder with d = 1000. It learns the top-10 singular functions, but
the other 990 dimensions are complete noise that has zero contribution to RT(Φ;P+).
The approximation error of this encoder should be no higher than that of the top-10
singular functions, because adding more dimensions will never make the approxima-
tion error higher. However, if d becomes larger and RT(Φ;P+) stays the same, then
s21 + · · · + s2d+1 − RT(Φ;P+) will become larger, so this quantity does not correlate with
the approximation error in this scenario. The following definition fixes this issue.
Definition 3.9. For any linearly independent f1, · · · , fd′ ∈ L2(PX ), denote F = [f1, · · · , fd′ ],
CF = CovPX [F ], andBF = CovPA [F ]. The trace gap of Φ w.r.t. P+ is defined as

TG(Φ;P+) := inf
d′≤d

inf
f1,··· ,fd′

{
s21 + · · ·+ s2d′+1 − Tr(C−1

F BF )
}
.

Obviously, this definition of trace gap is upper bounded by s21+· · ·+s2d+1−RT(Φ;P+).
It solves the issue in the previous example, because having completely noisy dimensions
does not affect the trace gap. The following result bounds the approximation error.
Theorem 3.10. Suppose TG(Φ;P+) < s21, and ϵ > 1− s1. Then,

err(Φ;Fϵ(P
+)) ≤ s21 − (1− ϵ)2 + s1TG(Φ;P+)

s21 − TG(Φ;P+)2
.

Remark 3.11. This bound is fairly tight. IfΦ learns the contexture, then by Theorem 3.4 we have
err(Φ;Fϵ(P

+)) =
s21−(1−ϵ)2

s21−s2d+1
, and TG(Φ;P+) = sd+1. Compared to this exact formula, the above

upper bound only has an extra s1TG(Φ;P+) term in the numerator.
Proof Let f1, · · · , fd′ be the functions thatminimize s21+· · ·+s2d′+1−Tr(C−1

F BF ). Without
loss of generality, assume that f1, · · · , fd′ have zero mean and are orthonormal. Let F =
span{f1, · · · , fd′}, andH = span{T ∗

P+f1, · · · , T ∗
P+fd′

}. For any f ∈ Fϵ(P
+)with ∥f∥PX

=
1, let h = T ∗

P+f ∈ HP+ , and let fF be the projection of f onto F . Since err(Φ;Fϵ(P
+)) is

upper bounded by ∥f − fF∥2PX
, it suffices to show that ∥f − fF∥2PX

is upper bounded by
the right-hand side.

Let α2 = ∥fF∥2PX
, and β2 = ∥f − fF∥2PX

, where α and β are non-negative. Then,
α2+β2 = ∥f∥2PX

= 1 = ∥h∥2HP+
. The isometry property says that (1−ϵ)2(α2+β2) ≤ ∥h∥2PA

.
Let f − fF = βf0 where ∥f0∥PX

= 1. Let hF = T ∗
P+hF and h0 = T ∗

P+f0. Then, we
have ∥hF∥2PA

≤ s21∥fF∥
2
PX

= s21α
2. Meanwhile, since f0 is orthogonal to f1, · · · , fd′ , by

Lemma 3.8 we have
∥∥T ∗

P+f0
∥∥2
PA

+
∥∥T ∗

P+f1
∥∥2
PA

+ · · ·+
∥∥T ∗

P+fd′
∥∥2
PA
≤ s21 + · · ·+ s2d′+1, which
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implies that
∥∥T ∗

P+f0
∥∥2
PA
≤ s21 + · · · + s2d′+1 − Tr(C−1

F B−1
F ). Let τ = TG(Φ;P+). Then, we

have

∥h∥2PA
= ∥hF + βh0∥2PA

≤ ∥hF∥2PA
+β2∥h0∥2PA

+2β∥hF∥PA
∥h0∥PA

≤ s21α
2+ τ 2β2+2s1ταβ.

Thus, we have (1− ϵ)2(α2+β2) ≤ s21α
2+ τ 2β2+2s1ταβ, which implies that (s21− τ 2)β2 ≤

[s21 − (1− ϵ)2](α2 + β2) + 2s1ταβ ≤ [s21 − (1− ϵ)2 + s1τ ](α
2 + β2), as desired.

Connection to Fisher discriminant analysis. Fisher discriminant analysis [7, 101, 106],
or more generally linear discriminant analysis (LDA), is a classical method of learning
linear classifiers in statistics. Herewe show that Fisher discriminant analysis has a strong
connection to the contexture theory. Suppose X ⊆ RdX . Fisher discriminant analysis
defines the following between-class covariance matrix SB ∈ RdX×dX and within-class
covariance matrix SW ∈ RdX×dX :

SB =

∫∫ {
(E[X | A = a1]− E[X | A = a2])(E[X | A = a1]− E[X | A = a2])

⊤
}
;

SW =

∫
EP+

[
(X − E[X | A = a])(X − E[X | A = a])⊤

∣∣∣ A = a
]
dPA(a).

In the original formulation of Fisher discriminant analysis, A is the label of X . Here we
extend it to a general context variable. Consider a linear encoder Φ(x) = Wx, where
W ∈ Rd×dX . Then, one solves the following optimization problem to findW :

maximize
W∈Rd×dX

J(W ) = Tr
[(
WSBW

⊤)(WSWW⊤)−1
]

s.t. WSWW⊤ is invertible.

Here, J(W ) is called the Fisher discriminant. Define Ψ(a) = EP+ [WX|A = a]. Then,
we can see that

WSBW
⊤ =

∫∫
(Ψ(a1)−Ψ(a2))(Ψ(a1)−Ψ(a2))

⊤dPA(a1)dPA(a2);

WSWW⊤ =

∫
EP+

[
(Φ(X)−Ψ(a))(Φ(X)−Ψ(a))⊤

∣∣∣ A = a
]
dPA(a).

Let CΦ = E[Φ̃(X)Φ̃(X)⊤] andBΦ = E[Ψ̃(A)Ψ̃(A)⊤]. Then, we have

WSBW
⊤ = 2

{
E
[
Ψ(A)Ψ(A)⊤

]
− Ψ̄Ψ̄⊤} = 2E

[
Ψ̃(A)Ψ̃(A)⊤

]
= 2BΦ;

WSWW⊤ =

∫
EP+

[
Φ(X)Φ(X)⊤ −Ψ(a)Ψ(a)⊤

∣∣ A = a
]
dPA(a)

= E
[
Φ(X)Φ(X)⊤

]
− E

[
Ψ(A)Ψ(A)⊤

]
= E

[
Φ̃(X)Φ̃(X)⊤

]
− E

[
Ψ̃(A)Ψ̃(A)⊤

]
= CΦ −BΦ.

Therefore, J(W ) = 2Tr[(CΦ−BΦ)
−1BΦ], which is very similar to the ratio trace defined

in Definition 3.7. Recall that an encoder that learns the contexture maximizes the ratio
trace. A well-known result is that J(W ) is maximized when W consists of the top-
d eigenvectors of S−1

W SB. Hence, Fisher discriminant analysis is almost equivalent to
contexture learning under the constraint that the encoder must be linear.
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3.3 Evaluating Context Usefulness
The previous chapter argued that better contexts are essential to further improve foun-
dation models, but how to create better contexts is a challenging open problem. This
section studies an easier problem—how to evaluate a context before pretraining. We say
that a context is useful for a downstream task, if it can lead to an encoder with good per-
formance on this task. However, since we might not know the task at pretrain time, we
can only predict if the context is useful in general. Solving this problem is a prerequisite,
because if we cannot even decide whether a context is good or not, then there will be no
way for us to create better contexts.

Evaluating a context is more difficult than evaluating an encoder. When evaluating
an encoder, we can assume that the task is known to be compatible with the context.
However, when evaluating a context, we cannotmake this assumption. Instead, a context
is better if it is compatible with more tasks, because such a context can lead to more
transferable encoders, and our evaluation should take this into consideration.

Given a context and a dataset, the only things we can use are the singular values and
singular functions of the context. However, estimating the singular functions is as hard
as pretraining an encoder, whereas the singular values can be efficiently estimated using
the post-hoc approach in Section 2.5 with a small subset of samples. Therefore, a metric
will be more ideal if it only uses the singular values (the spectrum).

In this section, we show that it is possible to evaluate the usefulness of a context with
only its singular values. Thismight seem counter-intuitive, because suppose the encoder
learns the contexture, then only the singular functions will affect the performance of
the encoder. When µ1, · · · , µd are fixed, the space spanned by ϕ1, · · · , ϕd is also fixed
and is independent of s1, · · · , sd. The reason why this is possible is that the singular
values and the singular functions are intrinsically connected. Recall that k+X(x, x′) =∑
s2iµi(x)µi(x

′), and that it must satisfy k+X(x, x′) ≥ 0 for all x, x′, which is quite a strict
constraint. Therefore, when µ1, µ2, · · · are fixed, one cannot choose s21, · · · , s2d arbitrarily.
Conversely, the singular values limit the possible choices of the singular functions.

In this section, we propose a metric for evaluating context usefulness, and the metric
only depends on the singular values. Note that there does not exist a universal metric,
because whether the context is useful on a task or not depends on their compatibility,
which cannot be estimated without the knowledge of the task. However, our experi-
ments show that the proposed metric generally works well on real datasets.

Qualitative analysis. In Section 1.3we showed that the shape of the spectrumdepends
on the association strength between X and A, also called the association of the context.
The singular values decay slower if the association is stronger. Here we show that the
decay rate of the singular values has a great impact on the usefulness of the context.

The central argument is: A useful context should have a moderate association. To
get an intuition, consider the two extreme cases in Section 1.3: (i) A is independent of
X , then there is only one positive singular value; (ii) A = X , then all singular values are
1. Both contexts are clearly useless because they provide no additional information. In
what follows, we qualitatively explain why a context is not very useful if its association
is too strong or too weak.

Recall that any compatible task f ∗ =
∑
uiµi ∈ Fϵ(P

+) as defined in Eqn. (3.2) needs
to satisfy∑i≥1 s

2
iu

2
i ≥ (1 − ϵ)2

∑
i≥1 u

2
i . This is easier to satisfy if si are large. Thus, if

the association is too weak and the singular values decay too fast, then Fϵ(P
+)will be a

very small set. Consequently, very few tasks will be compatible with the context, so an
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encoder trained on the context will not be transferable to various tasks.
On the other hand, when the association is too strong, there are two consequences.

First, more singular functions have large singular values, and to learn all of them, one
needs to use a larger d, which makes the sample complexity of learning the downstream
linear predictor higher. Second, the singular functionswith large singular values become
less smooth, so learning them requires more pretraining samples. In Chapter 5 we will
define the context complexity that quantitatively measures the smoothness of the top
singular functions, and we will show that the context complexity is higher when the
context has a stronger association.

Quantitative metric. We now propose a metric that quantitatively measures the gen-
eral usefulness of a context. The metric only depends on the singular values of the con-
text. The metric assumes that the pretraining method aims to learn the contexture of the
context, and it does not work for an arbitrary encoder.

Our metric is defined as

τd =
1

1− s2d+1

+ β

∑d
i=1 s

2
i∑d0

i=1 s
2
i

, (3.5)

where β > 0 is a parameter, and d0 is the maximum d we consider. Typically d0 ranges
from 512 to 8192. We choose β = 1 and d0 = 512 in our experiments. τd is a proxy of the
prediction error when the embedding dimension is d. Thus, the d that minimizes τd can
be viewed as the optimal embedding dimension predicted by themetric, and τ evaluates
the context when d is chosen optimally. Since this metric only depends on the singular
values, it can be efficiently estimated using the post-hoc approach in Section 2.5, with
which we can estimate the spectrum using a subset of Θ(d0 log d0) samples.

This metric is derived in the following way. Let the target function be f ∗ = f0 + f1,
where ⟨f0, f1⟩PX

= 0, f0 is not compatible with the context, and f1 is compatible with the
context. Then, the prediction error can be decomposed into three components:
(i) The approximation error of f1
(ii) The approximation error of f0
(iii) The estimation error

By Theorem 3.4, component (i) can be bounded by s21−(1−ϵ)2

s21−s2d+1
, and we simplify this

to the first term because s1 is very close to 1 in most real cases, and the numerator is
a constant. Component (ii) is smaller if the context has a stronger association; thus, it
should be negatively correlatedwith∑d0

i=1 s
2
i . Component (iii) is larger if the context has

a stronger association, or if d is large. Based on the result in Chapter 5, it is positively
correlated with∑d

i=1 s
2
i . The second term of the metric combines these two components,

and it is designed to be bounded by 1.

Compared to previous metrics. Some previously proposed metrics are also based on
the decay rate of the spectrum. [3] proposed a metric based on the eigenvalues of ΦΦ⊤

for a particular pretrained encoder Φ; that is, they use the λ that satisfies ⟨Φ,Φ⟩PX f = λf
for some f ̸= 0. Here, ⟨Φ,Φ⟩PX

is the covariance matrix, assuming that Φ is centered.
In contrast, our metric is based on the general eigenvalues satisfying ⟨Φ, TP+Φ⟩PX

f =
s2⟨Φ,Φ⟩PX

f for some f ̸= 0, as discussed in Section 2.5. These two sets of eigenvalues
are fundamentally different. The eigenvalues s2i we use are invariant under invertible
linear transformations on Φ, while λi are not. This suggests that our metric is more
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Figure 3.2: Metric illustration on abalone. Top row: context spectra. Bottom row: solid
curves are τd divided by 6; dashed curves are the actual downstream prediction error.
We divide τd by 6 to fit it in the same plot.

desirable since invertible linear transformations on Φ do not affect the performance of
the downstream linear probe.

Now we empirically examine τd on the two datasets. First, we apply the metric to
the abalone dataset and use KNN as the context, similar to Section 2.6. We adjust the
association of the context by changingK. In particular, we chooseK = 150 (weak),K =
30 (moderate) andK = 5 (strong). We obtain the exact eigenvalues and eigenfunctions
of Tk+X using kernel PCA. In Figure 3.2, we plot the spectra of the three contexts in the top
row. Then, in the bottom row, we compare τd against the prediction error of the linear
probe under different d. We can see that when the association is weak or moderate,
τd first decreases and then increases, which tracks the actual error. However, when the
association is too strong, τd monotonically decreaseswith d, and it cannot track the actual
error.

Second, we apply the metric to the MNIST dataset. The context is random cropping
with crop ratio α. We adjust the association of the context by changing α. In particular,
we choose α = 0.5 (weak), α = 0.2 (moderate) and α = 0.05 (strong). Since kernel
PCA is not scalable to datasets as large as MNIST, we instead train a neural network.
Specifically, we train a LeNet [95] using the non-contrastive learning objective formu-
lated earlier, and the AdamW optimizer. Then, we estimate the top eigenvalues using
the post-hoc approach in Section 2.5. The downstream task is a binary classification
task—whether the digit is greater than 4. After pretraining, a linear probe is fit on top
of Φ using ridge regression. The result is plotted in Figure 3.3.

From Figure 3.3, we can see that when the association is not too strong, τd first de-
creases and then increases, similar to Figure 3.2. However, on MNIST, the downstream
error monotonically decreases with d, unlike abalone. This disparity is due to the dif-
ference between the twodownstream tasks. To demonstrate this, in Figure 3.4weplot the
cosine similarity between the target function f ∗ and the estimated i-th eigenfunction on
the two datasets. We can see that the variance of f ∗ on abalone is mostly concentrated
on the top-5 eigenfunctions, with the first cosine similarity being almost 0.5. In contrast,
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Figure 3.3: Metric illustration on MNIST, similar to Figure 3.2.
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Figure 3.4: Comparison of the downstream task between abalone and MNIST.

the variance of f ∗ on MNIST is more scattered, and the cosine similarity is still close to 0.1
for the 150-th eigenfunction. Consequently, having a large d on abalonewill have a lit-
tle impact on the approximation error but will increase the estimation error significantly.
On the other hand, having a larger d on MNIST will decrease the approximation error
more than it increases the estimation error, which is why the total error monotonically
decreases with d.

The takeaway from this experiment is that although in general a context with a mod-
erate association is good, in reality it still depends on the actual downstream task. For
example, on abalone the weakest context actually leads to the lowest error, because the
variance of f ∗ is concentrated on the top-5 eigenfunctions. On the other hand, on MNIST
the strongest context leads to the lowest error, because the variance of f ∗ is scattered
among a lot of features, and a stronger association allows more features to be discov-
ered. Hence, no evaluation metric would universally work for all contexts and down-
stream tasks, but a metric would still be useful if it correlates well with the actual error
in most scenarios, and thus can provide insights into choosing the right context and the
right hyperparameters, such as the mask or crop ratio.
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Empirical verification of the proposed metric. Although our metric is derived from
the decomposition of the prediction error, it is still heuristic and is not an upper bound
of the actual error. Here we show that the metric correlates well with the actual error on
many real datasets. Therefore, our metric is useful as it can help practitioners to select
among various pretraining methods or choose the hyperparameters efficiently.

We use 28 real classification and regression datasets from OpenML that are widely
used in machine learning research. Each dataset is randomly split into a pretrain set, a
labeled downstream training set, and a downstream test set by 70%-15%-15%. For each
d, we obtain the top-d eigenfunctions of Tk+X via kernel PCA, and then fit a linear probe
on top of it using ridge regression. Then, we select the best d∗ that achieves the lowest
test mean squared error, which is denoted by errd∗ . The correlation between τ and errd∗
is reported. The following four types of contexts are used in the experiment.

• RBF kernels: k(x, a) = exp(−γ∥x− a∥2). Define P+(a|x) ∝ k(x, a) for each x.
• KNN: P+(a|x) = K−1 if a is a KNN of x; otherwise, it is 0.
• RBF ⋆ Masking: First randomly mask 20% of the features, and then apply RBF

kernels to the other features. The Tk+X of this context can be estimated as follows:
first randomly draw 50masks, and then compute their average Tk+X .

• KNN ⋆Masking: 20% random masking and then apply KNN.
For each of these contexts, A = X . For each type, 35 contexts are obtained by adjust-

ing the γ for RBF kernels, and K for KNN. The association between X and A for these
35 contexts are different, and the experiment makes sure that the contexts in every type
range from very weak to very strong association. “⋆Masking” here means the convolu-
tion with masking, as mentioned in Section 2.4. We do not use masking alone because
the dual kernel of masking is hard to estimate.

Table 3.1 reports the correlation between τ and errd∗ over all the 140 contexts. The
most commonmetric is the Pearson correlation, but it can only detect linear correlations,
while the correlation between τ and errd∗ is not necessarily linear. Thus, we also report
the distance correlation [135], which is another common metric that can detect non-
linear correlations but cannot tell if the correlation is positive or negative because this
metric is always non-negative.

The median reported in the table shows that on more than half of the datasets, the
Pearson correlation is over 0.5, which is generally considered a strong correlation. The
distance correlation is even higher. As expected, themetric does notwork on all datasets.
For example, the Pearson correlation is very negative on brazilian_houses andfifa.

To understand when our metric might fail, we further visualize the results by plot-
ting τ against errd∗ on five of the datasets in Figure 3.5. In this figure, plots (a), (b) and
(c) are three success cases where a clear positive correlation can be observed, and plots
(d) and (e) display two failure cases. Plot (d) shows a common failure case: if τ is very
close to 2 = β + 1, meaning that the metric believes that the association is extremely
weak or extremely strong, then the metric will predict that the context is bad. However,
a generally bad context can still be good on some tasks. For example, a very weak con-
text still works well on a task that only uses the top-3 singular functions of the context.
Therefore, it is advisable to abstain from using the metric when it is too close to β + 1.

Plot (e) shows a case where the metric is generally good for every single context type
but has poor cross-type behavior. Specifically, it fails to predict that KNN is worse than
RBF on this dataset. This suggests that our metric might not be able to compare different
types of contexts. For example, if two contexts of completely different types have similar
spectra, then our metric will indicate that they are similarly useful. This is because our
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Dataset Size (↑) #Feature Type Pearson Distribution
credit-approval 690 15 Cls 0.583 0.683
breast-w 699 9 Cls 0.072 0.255
diabetes 768 8 Cls 0.737 0.740
solar_flare 1066 10 Reg 0.019 0.262
Moneyball 1232 14 Reg 0.680 0.650
yeast 1269 8 Cls 0.221 0.256
cmc 1473 9 Cls 0.867 0.860
Wine 1599 11 Reg -0.084 0.212
scene 2407 299 Cls 0.608 0.685
dna 3186 180 Cls 0.881 0.843
splice 3190 60 Cls 0.831 0.801
kr-vs-kp 3196 36 Cls 0.543 0.512
abalone 4177 8 Reg 0.028 0.470
spambase 4601 57 Cls 0.775 0.858
colleges 7603 44 Reg 0.155 0.387
mushroom 8124 22 Cls 0.185 0.340
kin8nm 8192 8 Reg 0.805 0.760
pumadyn32nh 8192 32 Reg 0.938 0.961
cpu_activity 8192 21 Reg 0.709 0.825
SpeedDating 8378 120 Cls 0.590 0.656
grid_stability 10000 12 Reg 0.925 0.911
sulfur 10081 6 Reg -0.180 0.487
brazilian_houses 10692 9 Reg -0.290 0.563
fifa 19178 28 Reg -0.349 0.663
superconductivity 21263 81 Reg 0.141 0.367
kings_county 21613 21 Reg 0.842 0.882
health_insurance 22272 11 Reg 0.601 0.749
cps88wages 28155 6 Reg 0.250 0.479

Mean 0.431 0.611
Median 0.587 0.659

Table 3.1: Correlation between τ and the actual error errd∗ on all 4 types of contexts.

metric only depends on the spectrum. However, it could be possible that for a particular
task, one context is good and the other is bad, and ourmetric cannot reflect this disparity.

Overall, although there does not exist a universal metric that works for all contexts
and tasks, and our metric does have failure cases, the experiment results here provide
empirical evidence that more often than not, the proposed metric correlates well with
the actual prediction error of the downstream linear probe. Hence, the proposed metric
is useful for choosing hyperparameters and comparing contexts in practice.

In summary, this chapter first defined the compatibility between a task and a context,
and then discussed the intrinsic evaluation of encoders and contexts. The key takeaway
is that when we know a priori that the downstream task is compatible with the context
we are given, then the optimal thing to do is learning the contexture. The intrinsic eval-
uation of an arbitrary encoder depends on two key concepts—the induced RKHS and
the ratio trace. For the intrinsic evaluation of contexts, the key takeaway is that a good
context should have a moderate association. Moreover, we proposed a metric that only
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Figure 3.5: Scatter plots of τ versus errd∗ . Dashed line: Linear fit.

depends on the spectrum of the context. Themetric correlates with the actual prediction
error on many real datasets.

Code and data availability. The code for Figure 3.2 can be found at https://1drv.ms/

u/c/ea9fe908498c8b82/EV11dVAUVCdCnkw31CHrZC0BOEmsudZ7swpTKvzcfod5uA?e=axm6XG. The code for Ta-
ble 3.1 is at https://1drv.ms/u/c/ea9fe908498c8b82/EcqvS70ynvdCsma6MoSDRcwBZPRw5uThHUXQcz9P7vNQZQ?
e=7ULQey. All datasets can be downloaded from OpenML.
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Chapter 4

Mixing Multiple Contexts

We have shown that creating better contexts is imperative for further improving the per-
formance of foundation models. However, creating new contexts from scratch is ex-
tremely challenging. Normally, it requires new domain knowledge obtained from sci-
entific research, or collecting new data through experiments or human labeling such
as in RLHF, both of which require considerable effort. As a result, the contexts used
for pretraining rarely change. For example, in computer vision, although various objec-
tives have been proposed such as contrastive and non-contrastive learning and masked
autoencoders, the context is always based on image corruption, such as random crop-
ping, masking and color distortion. In NLP, base language models have always been
pretrained on the context of masking tokens like BERT [34]. There are many variants of
BERT, such as determining whether a sentence completion is correct instead of actually
completing amasked sentence like Electra [27], predicting the next token rather than to-
kens in the middle of a sentence like GPT [117], and predicting the next group of tokens
like Medusa [21]. In all these variants, the context variable A is a masked version of X .

This chapter introduces a much easier way to obtain better contexts. We know that a
good context should have a moderate association. Consider the following scenario: we
have a number of contexts, but none of them is useful enough because the association is
either too strong or too weak. Then, how can we get a better context? The idea is to mix
these contexts together, so that we can obtain a context with a moderate association.

In fact, mixing multiple contexts is quite common in practice, though it has never
been fully formalized as a unified framework like this chapter. One very widely used
method is composing different data augmentation techniques together. For example,
common data augmentations for images include translation, rotation, random cropping,
color distortion, etc. Each augmentation defines one context, and sequentially applying
them to the same image leads to the convolution of their contexts.

Another common practice when there aremultiple contexts is optimizing aweighted
sum of different objectives. Suppose there are r desiderata we want our model to satisfy,
and desideratum j can be achieved by minimizing objective Rj . A natural idea is to
minimize∑wjRj for some w1, · · · , wr > 0, so that we minimize all Rj simultaneously.
In machine learning, if R1 is the main objective, then other Rj are also called penalty
terms. Common penalty terms include the L2 or RKHS norm of the model weight, the
local smoothness of themodelw.r.t. a certainmanifold, the distance to a referencemodel,
etc. The weighted sum of the objectives learns the contexture of what we call the convex
combination of the r contexts.

To get an intuition of convolution and convex combination, consider the example in
Figure 4.1. In this example, |X | = 4. We know that P+ induces a joint distribution on
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Figure 4.1: An example of two contexts (solid and dashed edges) where |X | = 4.

X × X : P+(x, x′) =
∫
P+(x|a)P+(x′|a)dPA(a). We can then obtain P+(x′|x), which are

labeled as edge weights in Figure 4.1. In other words, each context induces a random
walk on the graph. There are two contexts in Figure 4.1. P+

1 corresponds to the solid
edges, and P+

2 corresponds to the dashed edges.
Convolution, denoted by ⋆, is equivalent to amulti-step randomwalk. P+

2 ⋆P
+
1 means

thatwe first walk one step on the solid edges (P+
1 ), and thenwalk one step on the dashed

edges (P+
2 ). For example, (P+

2 ⋆ P+
1 )(x4|x1) =

∑
x P

+
2 (x4|x)P+

1 (x|x1) = 0.6× 0.3 + 0.4×
0.7 = 0.46. Similarly, P+

1 ⋆ P+
2 ⋆ P+

1 is equivalent to a solid-dashed-solid random walk.
In general, convolution does not have the commutative property.

Convex combination, denoted by +, is equivalent to a stochastic one-step random
walk. 0.6P+

1 +0.4P+
2 means that we walk one step; with probability 0.6 the step is on the

solid edges, and with probability 0.4 the step is on the dashed edges. For example, if we
are standing at x1, then under 0.6P+

1 +0.4P+
2 , with probability 0.6×0.3+0.4×0.5 = 0.38

we will walk to x2, and with probability 0.62 we will walk to x3. Convex combination
can be combined with convolution. For example, P+

2 ⋆ (0.6P+
1 + 0.4P+

2 ) means that we
first take one step using 0.6P+

1 + 0.4P+
2 , and then take another step using P+

2 .
We can show that the set of contexts forms a near-ringwith scalarmultiplication (also

called a module), where convolution is multiplication and convex combination is addi-
tion with scalar multiplication. “Near”-ring means that it only has the right distributive
property but not the left one; that is, (0.6P+

1 + 0.4P+
2 ) ⋆ P+

2 = 0.6P+
1 ⋆ P+

2 + 0.4P+
2 ⋆ P+

2 ,
but P+

2 ⋆ (0.6P+
1 + 0.4P+

2 ) is not distributive.
There is a third operation formixingmultiple contexts called concatenation. Concate-

nation is completely different from the other two operations, because convolution and
convex combination act on the input space X , whereas concatenation acts on the output
space of the encoder. Specifically, given r contexts, one trains an individual encoder Φj

for each context, and then concatenate them as Φ(x) = [Φ1(x), · · · ,Φr(x)]. Concatena-
tion is a classical and very popular method, and it is connected to a whole field in data
science known as feature engineering. In feature engineering, people create different
features based on different signals (formulated as contexts in this thesis), and then train
a model on their concatenation.

Mixture of experts (MOE) [76] is a popular method that is a stronger version of
concatenation. In MOE, we first train individual encoders Φ1, · · · ,Φr for the r contexts,
and then at the downstream stage, we train a gating function g : X → Rr that assigns
weights to the r encoders for each x. The overall encoder is Φ(x) =∑r

j=1 g(x)jΦj(x), and
finally a linear probe is fit on top of Φ. The common practice is to implement g as a small
neural network, and its output space is usually restricted to∆r−1, the (r−1)-dimensional
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unit simplex, so that g(x) is a probability distribution over the r encoders. This can be
easily done by adding a softmax layer to the end of the neural network. Concatenation
is a special case of MOE, where g is restricted to be a constant function.

In what follows, we conduct a deep analysis on the three base operations for mixing
multiple contexts: convolution, convex combination and concatenation. Importantly,
we discuss in what situations each operation should be used. After that, we apply the
three operations to real-world tabular datasets, and we find that they can improve the
performance of state-of-the-art methods such as XGBoost [22].

4.1 Convolution
Suppose we have r contexts given by P+

1 , · · · , P+
r . LetAj be the context space of P+

j , and
letQ+

j be the heuristic inverse of P+
j (Definition 1.11). Asmentioned earlier, convolution

is similar to composingmultiple data augmentation techniques. Assuming that we have
T -access to every context, we can transform X by X P+

1−−→ A1

Q+
1−−→ X1

P+
2−−→ A2

Q+
2−−→ X2

P+
3−−→

· · ·
Q+

r−1−−−→ Xr−1
P+
r−−→ Ar. This Ar is defined as the context variable of the convolution

P+
r ⋆ · · · ⋆ P+

1 . The heuristic inverse of P+
r ⋆ · · · ⋆ P+

1 is defined as Q+
r . Then, it is easy to

see that convolution has the associative property.
In the general case, we might not have T -access to all contexts, but we can assume

that each context has either k-access or T -access. This is a weak assumption since it has
been shown previously that any access can be converted to k-access.

For every j ∈ [r], define a kernel kj as follows:
• If it has k-access, let kj be the kernel we have access to.
• If it has T -access, let kj(x, x′) =

∫
Q+

j (x
′|a)dP+

j (a|x)/PX (x
′) if j < r. If j = r, then

define kr = k+Xr as the exact dual kernel of context r.
Proposition 4.1. The integral operator of the dual kernel of the convolution of the r contexts is
equal to Tk1Tk2 · · ·Tkr · · ·Tk2Tk1 .

Remark 4.2. When each Tkj is a bounded compact self-adjoint operator, this operator is also
bounded compact self-adjoint, so the Hilbert-Schmidt theorem still applies. Note that this operator
is not equal to Tkr · · ·Tk1 , which is not necessarily a self-adjoint operator.
Proof We prove by induction on r. When r = 1 this is obvious. Suppose the result holds
for r − 1. Let k+j be the dual kernel between X1 and Aj . Then, we have

k+r (x, x
′) =

∫∫
k1(x, z)k

+
r−1(z, z

′)k1(z
′, x′)dPX (z)dPX (z

′),

so it is easy to see that Tk+r = Tk1Tk+r−1
Tk1 , which shows that the result holds for r.

We now discuss how to learn the contexture of a convolution. If we have T -access to
every context, then we can simply transform X → Ar, and use SVME on X and Ar. If
we have T -access to P+

1 , · · · , P+
r−1 but k-access to P+

r , then it is also very simple. We can
transform X → Xr−1, and use KISE on X and Xr−1.

The more difficult scenario is when we have k-access to P+
j for some j < r. Let

j1 < j2 < · · · < jl be all such j. We now present an algorithm that learns the contexture.
First, initialize Φ0 = Φ, and X0 = X . Second, transform X0 → Xj1−1 using the T -access
toP+

1 , · · · , P+
j1−1. Third, letΦ1(X) = (Tkj1Φ

0)(Xj1−1), which can be estimatedwithMonte
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Algorithm 1 Extracting top-d eigenspace of a convolution of contexts
1: Initialize encoder Φ : X → Rd; If have T -access to context r, initialize Ψ : Ar → Rd

2: for each training step do
3: Sample a batch of samples {x1, · · · , xm}
4: Center Φ: Φ← Φ− 1

m

∑m
i=1Φ(xi)

5: for i ∈ [m] do x0i ← xi; setB ← 0 ∈ Rd×m, k ← null
6: for j = 1, · · · , r − 1 do
7: if have k-access to context j then
8: if k = null then
9: B ←

[
Φ(xj−1

1 ), · · · ,Φ(xj−1
m )

]
∈ Rd×m

10: else
11: Set Gram matrixG ∈ Rm×m asG[p, q] = k(xp, x

j−1
q ); B ← 1

m
BG

12: k ← k+Xj ; for i ∈ [m] do xji ← xi ▷ reset xji to the original input
13: else ▷ T -access to context j
14: Sample aji ∼ P+

j (·|xj−1
i ), xji ∼ Q+

j (·|a
j
i )

15: if k = null then ▷ for every j ≤ r − 1, context j has T -access
16: B ← [Φ(xr−1

1 ), · · · ,Φ(xr−1
m )] ∈ Rd×m

17: else
18: Set Gram matrixG ∈ Rm×m asG[p, q] = k(xp, x

r−1
q ); B ← 1

m
BG

19: if has k-access to r then
20: Set Gram matrixGr ∈ Rm×m as Gr[p, q] = k+Xr(xp, xq); C ← 1

m
BGr ∈ Rd×m

21: Define L = 1
m

[∑m
i=1 ∥Φ(xi)∥

2
2 − ⟨B,C⟩

]
▷ ⟨B,C⟩ = Tr

(
BC⊤)

22: else ▷ T -access to context r
23: Sample ari ∼ P+

r (·|xi); Center Ψ: Ψ← Ψ− 1
m

∑m
i=1Ψ(ai)

24: C ← [Ψ(ar1), · · · ,Ψ(arm)] ∈ Rd×m

25: Define L = 1
m

[∑m
i=1 ∥Φ(xi)∥

2
2 + ∥C∥

2
F − 2⟨B,C⟩

]
▷ ∥C∥2F =

∑
i,j C[i, j]2

26: Update Φ to minimize loss L, subject to CovPX [Φ] = I

Carlo using the k-access to kj1 . Fourth, let Xj1 = X , and transform Xj1 → Xj2−1 using
the T -access to P+

j1+1, · · · , P+
j2−1. Fifth, let Φ2(X) = (Tkj2Φ

1)(Xj2−1). Repeat these two
steps until we get Φl, and transform Xjl → Xr−1. Finally, the learning objective is SVME
if we have T -access to P+

r , or KISE if we have k-access to P+
r .

The detailed algorithm is listed in Algorithm 1. One can prove that for any t ∈ [0, l]
and any j ∈ [jt, jt+1 − 1], Φt(Xj) has the same distribution as (TkjTkj−1

· · ·Tk1Φ)(X).
Hence, Φl(Xr−1) has the same distribution as (Tkr−1Tkj−1

· · ·Tk1Φ)(X). By Theorem 2.11,
this algorithm extracts the top-d eigenspace of the operator.

Standardizing kernels. If we only have k-access to some contexts, then it is important
to standardize these kernels. We say that a p.s.d. kernel kj is standardized, if µ0 ≡ 1 is
an eigenfunction of Tkj with eigenvalue 1, and all eigenvalues of Tkj belong to [0, 1]. To
see why standardizing k1, · · · , kr is necessary, consider a case where k1 has much larger
eigenvalues than the other kernels; then, when mixing these contexts, context 1 could
dominate over the other contexts. We can standardize any p.s.d. kernel in three steps:
(i) Center the kernel: k(x, x′)← k̃(x, x′), whichmakes µ0 an eigenfunctionwith eigen-

value 0. The centered kernel is defined as follows.

46



Definition 4.3. For any p.s.d. kernel k : X × X → R, its centered kernel is given by

k̃(x, x′) = k(x, x′)−
∫
k(z, x′)dPX (z)−

∫
k(x, z′)dPX (z

′)+

∫∫
k(z, z′)dPX (z)dPX (z

′),

which is a p.s.d. kernel that satisfies
∫
k(x, z)dPX (z) =

∫
k(z, x)dPX (z) = 0 for any x.

(ii) Divide k by its largest eigenvalue, which makes all its eigenvalues at most 1.
(iii) k(x, x′)← k(x, x′) + 1, which makes µ0 an eigenfunction with eigenvalue 1.

The only “hyperparameter” we need to tune for a convolution is the order of the
contexts, because convolution is not commutative. In practice today, the order usually
does not matter too much. For example, it matters very little whether we first translate
an image and then crop it, or we first crop it and then perform the translation. However,
as we obtain more complex contexts especially through context scaling, this order could
become very important.

Apart from supervised learning with feature maps discussed in Section 2.4, another
example of convolution is supervised contrastive learning [85]. Given a sample X , su-
pervised contrastive learning first randomly samples X1 that has the same class as X ,
and then augments X1 → A2 via cropping, flipping, etc. Supervised contrastive learn-
ing learns the convolution of the class context P+

1 and the augmentation context P+
2 .

Finally, let us discuss when we should use convolution. In practice, convolution is
used to create “harder” pretraining tasks. For example, in self-supervised learning, mul-
tipleweak data augmentations are composed together to create a stronger augmentation.
One great example is SimCLR [23], whose success is largely due to its aggressive crop
ratio and color distortion, both of whichmake the augmentation stronger. When an aug-
mentation is stronger, the association between X and A becomes weaker. Hence, con-
volution should be used when all contexts have strong associations, because it always
weakens the association.

4.2 Convex Combination
A convex combination of P+

1 , · · · , P+
r is written asw1P

+
1 +· · ·+wrP

+
r . Usuallywe require

that w = [w1, · · · , wr] ∈ ∆r−1, so that it is a probability distribution over the r contexts.
In this case, the convex combination can be understood as follows: given an input X ,
one first samples one P+

j from the probability distribution w over the r contexts, and
then samples A ∼ P+

j (·|X). This A is the context variable of the convex combination.
Theoretically speaking, w1, · · · , wr can be any real values, but we assume thatw ∈ ∆r−1

in this chapter unless stated otherwise.
Learning the contexture of a convex combination is simple: we only need to use a

weighted sum of individual learning objectives. Assume that we have either pair access
or k-access to every context. For each context j, we can learn its contexture using either
SVME or KISE. Define its individual objective as

Rj =


EX∼PXEAj∼P+

j (·|X)

[
∥Φ(X)−Ψj(Aj)∥22

]
, pair access to P+

j ;

EX∼PX

[∥∥∥Φ̃(X)
∥∥∥2
2
−
〈
Φ̃(X), Tkj Φ̃(X)

〉]
, k-access to P+

j .

Then, we can learn the contexture of their convex combination by minimizing∑j wjRj

subject to CovPX [Φ] = I . This approach might need more than two encoders, since it
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requires oneΨj for each context j with pair access. An alternative approach is to convert
every pair access to k-access first, but this leads to a huge overhead.

If we have pair access to context j, let kj = k+Xj ; if we have k-access to context j, let kj
be the kernel we have access to, and assume that it has been standardized. The following
result shows that the dual kernel of the convex combination is w1k1 + · · · + wrkr, the
linearly combined kernel. If every kj is standardized and w ∈ ∆r−1, then the linearly
combined kernel is also standardized. Linearly combining multiple kernels is a classical
technique in multiple kernel learning [47].
Theorem 4.4 (Proof inAppendix C.1). LetΦ∗ be aminimizer of the weighted sum of objectives∑

j wjRj subject to CovPX [Φ] = I . Then, Φ̃∗ extracts the top-d eigenspace of
∑

j wjkj .
Convolution and convex combination have the right distributive property.

Proposition 4.5. (w1P
+
1 + · · ·+ wrP

+
r ) ⋆ P+

0 = w1P
+
1 ⋆ P+

0 + · · ·+ wrP
+
r ⋆ P+

0 .
Proof Let kL be the dual kernel of the left, and kR be the dual kernel of the right. It
suffices to show that TkL = TkR . Using what was proved earlier, we have

TkL = Tk0(w1Tk1 + · · ·+ wrTkr)Tk0 = w1Tk0Tk1Tk0 + · · ·+ wrTk0TkrTk0 = TkR ,

as desired.

Remark 4.6. The left distributive property does not hold, that is, P+
0 ⋆ (w1P

+
1 + · · · + wrP

+
r )

and w1P
+
0 ⋆ P+

1 + · · ·+ wrP
+
0 ⋆ P+

r are not necessarily equal.
The hyperparameters we need to tune for the convex combination are the weights

w1, · · · , wr, which should be chosen based on the associations of the contexts. Usually, if
a context is very weak or strong, then we would give it a small weight to limit its impact.
For example, in RLHF we have two contexts: the alignment context and the reference
model context. The alignment context has a strong association—for a given prompt,
there are multiple possible valid completions A, but alignment selects a small number
of preferred completions from all valid ones. Consequently, alignment reduces the con-
ditional entropyH(A|X), soA has a stronger association withX . The more selective the
critic, the stronger the association. On the other hand, the reference model context has
a moderate association, provided that the reference model is well trained. Therefore, in
practice, people usually give a much larger weight to the reference model context than
to the alignment context, so that the model will not be too different from the reference
model.

Convex combination is usually used to balance strong and weak associations. It can
also be used when all contexts have very strong associations. In this case, we want to
select the w1, · · · , wr that weaken the association as much as possible. We show that
this can be achieved by playing a zero-sum game between a Φ-player who learns the
encoders, and a w-player who picks w to maximize the loss of the Φ-player. The game
has the following minimax form.

minimize
Φ:X→Rd; Ψj :Aj→Rd

max
w∈∆r+1

L(Φ,Ψ1, · · · ,Ψr;w) :=
∑r

j=1
wjRj s.t. CovPX [Φ] = I. (4.1)

Φ is allowed to be randomized, that is the Φ-player can use a mixed strategy. Obviously,
the w-player has an optimal pure strategy, so w need not to be randomized. Let us
analyze the Nash equilibrium of this game. First, notice that the Φ-player only needs to
pick Φ. Once Φ is picked, the optimal Ψj’s can be determined as follows.
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Algorithm 2 Convex combination: Solving the minimax game
Input: Step size η > 0
1: Initialize encoder Φ : X → Rd, and Ψj : Aj → Rd if needed; w ← [1/r, · · · , 1/r]
2: for training step t = 1, 2, · · · , T do
3: Fixw, and find the optimal Φ,Ψj to Eqn. (4.1). Denote the optimal Φ at step t by Φt

4: ComputeR1, · · · ,Rr; Update wj ← wj · exp(ηRj), then normalize wj ← wj∑r
i=1 wi

5: The Φ-player picks the uniform distribution over Φ1,Φ2, · · · ,ΦT (a randomized Φ)

Proposition 4.7. Suppose context j has pair access. Then, when Φ is fixed, the optimal Ψj that
minimizesRj is Ψ∗

j = T ∗
P+
j

Φ.

Proof This is the same as the proof of Theorem 2.11.

When both players play optimally and the game reaches Nash equilibrium, the value
of EΦ[L(Φ,Ψ1, · · · ,Ψr;w)] is called the value of this game, denoted by L∗. The expecta-
tion is taken over the randomness of Φ. The following result gives the optimal strategy
of the w-player, and the formula for L∗.
Theorem 4.8. Let 1 = λ0(w) ≥ λ1(w) ≥ · · · be the eigenvalues of Tw1k1+···+wrkr . Let w∗ be
the optimal strategy of the w-player. Then, the game value of Eqn. (4.1) is

L∗ = d−
∑d

i=1
λi(w

∗), and w∗ minimizes
∑d

i=1
λi(w) over all w ∈ ∆r+1.

Proof For a fixed w, when Φ̃ learns the contexture of ∑j wjkj , the loss is L = d −∑d
i=1 λi(w). Thus, the optimal w∗ that maximizes Lmust minimize∑d

i=1 λi(w).

To solve this game, we can use an algorithm similar to the Hedge algorithm in online
learning [42]. The algorithm is listed inAlgorithm2. A standard result in online learning
shows that this algorithm can find the value of this game.
Theorem 4.9 (Proof in Appendix C.2). LetRt

j be the lossRj in step t. Suppose there exists a
constant C > 0 such that Rt

j ≤ C holds for all t, j. Denote L(w) = 1
T

∑T
t=1

(∑r
j=1wjRt

j

)
. If

η =
√
log r

C
√
T

where T > log r, then

sup
w∈∆r+1

L(w) ≤ max
w∈∆r+1

min
Φ,Ψ1,··· ,Ψr

r∑
j=1

wjRj +
2C
√
log r√
T

= L∗ +
2C
√
log r√
T

,

which implies that L(w)→ L∗ as T →∞.
Convex combination cannot be used when all contexts have weak associations, be-

cause the decay rate of its eigenfunctions is upper bounded by that of the strongest con-
text. That is, convex combination cannot make the association stronger.

4.3 Concatenation
Concatenation is easy to implement: For each context j, one trains an encoder Φj , and
then concatenates them into a single encoder by Φ(x) = [Φ1(x), · · · ,Φr(x)]. Concatena-
tion is usedwhen all contexts haveweak associations. We cannot learn rich features from
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Base operation Concatenation Convolution Convex combination
When to use? All weak associations All strong associations Mixed weak/strong

Table 4.1: When to use each base operation of mixing contexts.

a context with a weak association, but if we have several such contexts and concatenate
them, then the features will be richer. Since concatenation could lead to redundant fea-
tures that increase the sample complexity, it should not be used for contexts with very
strong associations.

To further elaborate on concatenation, let us suppose X is a finite set, and |X | = N .
Then, the dual kernel of each context j is anN×N matrix denoted byKj . The dual kernel

of the concatenation can be understood as


K1 0

K2

. . .
0 Kr

, whose eigenvalues are

the union of the eigenvalues of every individual Kj . Therefore, the eigenvalues of the
concatenation decay more slowly than those of any individual context.

The hyperparameters of concatenation are the dimensions of Φ1, · · · ,Φr, denoted by
d1, · · · , dr. One good way to select them is the following: first, estimate the singular
values s(j)1 , s

(j)
2 , · · · of each context j using the post-hoc approach in Section 2.5; then,

select d1, · · · , dr such that s(1)d1+1, s
(2)
d2+1, · · · , s

(r)
dr+1 are all close and small.

Table 4.1 summarizes when to use each of the three base operations. We can see that
these three operations cover all possible scenarios.

4.4 Application to Tabular Data
Themethods ofmixing contexts provide uswith an opportunity to create better contexts
almost effortlessly. Here we test these methods on real-world tabular datasets. We focus
on tabular data for two reasons:
(i) It is important: Tabular data is the most common type of data in industry.
(ii) It is challenging: So far deep learning has not been as successful on tabular data as

it is on other modalities. In particular, XGBoost [22] has long been the state of the
art on tabular data.

There are several complications of tabular data that make it more difficult for deep
learning than image and text:
(i) Heterogeneous features, such as categorical and numerical columns.
(ii) Features have different meanings, unlike e.g. images where all features are pixels.
(iii) Much lower signal-to-noise ratio than othermodalities, andmissing values (NaNs).

Setup. We use 118 datasets and run a grid search on tens of thousands of hyperpa-
rameter combinations for each method and dataset. Using a large number of datasets
and hyperparameters ensures that the bias of dataset and hyperparameter selection is
reduced as much as possible. We focus on prediction tasks, and use 98 classification
datasets and 20 regression datasets (labeled reg-20). The 98 classification datasets fur-
ther consist of 56 smaller ones (labeled cls-56) with fewer than 1500 samples, and 42
larger ones (labeled cls-42). All datasets are real-world datasets from OpenML [146],
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Linear Rand-Forest CatBoost XGBoost MLP ResNet FT-Transformer TabPFN
cls-56 Perf 79.030.28 82.010.31 82.790.29 82.030.30 83.590.29 83.630.29 82.840.30 82.960.30
cls-56 Rank 5.38 4.93 4.11 5.00 3.14 2.95 3.84 3.75
Prior work∗ 61 76 85 74 57 77 75 84
cls-42 Perf 85.050.09 89.030.08 89.710.09 90.430.08 90.040.10 90.030.09 90.420.09 87.980.08
cls-42 Rank 6.26 4.36 4.07 2.83 3.17 3.05 2.81 5.10
reg-20 Perf 56.601.20 78.760.43 80.350.37 80.260.41 78.220.41 78.370.44 57.410.36 N/A
reg-20 Rank 6.40 4.10 3.20 2.55 3.30 3.65 3.95 N/A

Table 4.2: Baseline average performances (accuracy orR2-score) (%) and rankings. Stan-
dard deviations reported in the subscripts. ∗For cls-56, we compare with the numbers
reported in the prior work by [105, Table 2], whose caption says “57 data sets” but one
data set is actually duplicated.

and they cover a wide range of domains. We use 10 train-val-test splits (which we call
10 folds) for each dataset and report the standard deviation of performance. For evalua-
tion, our metrics are the accuracy for classification, and the R2-score for regression. We
consider two performances close if their difference is less than one standard deviation.

Baselines. We start by evaluating the baseline methods and two recent methods that
are widely compared to in the literature—FT-Transformer [49] and TabPFN [65]. Ta-
ble 4.2 reports the average performances and rankings of eight baseline methods. For
the rankings, we rank the methods from 1 to 8 on each dataset (ties get the same rank-
ing) and take the average for every method. From the table we can see that:

• Compared to the prior work [105], most methods (except CatBoost and TabPFN)
get much higher performance in our experiments. In their paper, ResNet was re-
ported to be much better than MLP, which is not very reasonable. On the other
hand, in our experiments, MLP and ResNet have almost the same performance.
This shows that careful hyperparameter tuning gives us more accurate baselines.

• To our surprise, MLP and ResNet perform the best on the 56 small classification
data sets, though conventional wisdom suggests that deep learning is bad on small
data sets. However, XGBoost has a much higher performance than MLP on the 42
larger classification data sets and the regression data sets. Based on this observa-
tion, we use MLP and XGBoost as our main baselines.

Methods. We consider the following four types of contexts:
(i) Y-Linear kernel (Y-Lin): We use the centered linear kernel on Y defined after The-

orem 2.6, that is k(y, y′) = ⟨ỹ, ỹ′⟩. More specifically, we use an STK of the kernel,
which transforms all eigenvalues above threshold c = 0.1 to 1 and the rest to 0.

(ii) XGBoost (XGB): An XGBoost model consists of dt trees. We construct a teacher
model Φt : X → Rdt , where each dimension is the output of one tree.

(iii) SCARF [4] (SF): Randomly masks some columns and replaces them with ran-
dom values sampled fromUnif[cmin, cmax], where cmin and cmax are the smallest and
largest values of this column in the training set.

(iv) Cutmix (CM): Randomlymasks some columns and replace themwith values from
the same column but other random rows.

We use ⊕ to denote concatenation. For example, “⊕ XGB” refers to concatenation
with the XGBoost teacher model. We use “+” to denote convex combination, where the
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XGBoost MLP Y-Lin SCARF Cutmix SCARF + Y-Lin Cutmix + Y-Lin
cls-56 Perf 82.030.30 83.590.29 83.580.31 82.080.30 81.930.30 83.490.32 83.640.32

cls-56 Rank 4.89 2.96 3.25 4.00 4.18 3.36 3.05
cls-42 Perf 90.430.08 90.040.10 90.600.07 88.150.09 88.060.09 90.550.08 90.560.08
cls-42 Rank 3.19 3.12 2.45 4.81 4.88 2.45 2.50

Table 4.3: Results on the 98 classification datasets.
XGBoost MLP Y-Lin SF + Y-Lin CM + Y-Lin (SF + Y-Lin) ⊕ XGB (CM + Y-Lin) ⊕ XGB

reg-20 Perf 80.260.41 78.220.41 78.800.61 79.170.45 78.990.53 81.070.47 81.040.52
reg-20 Rank 3.55 3.95 3.90 3.60 4.10 2.50 2.65

Table 4.4: Results on the 20 regression datasets. We omit SCARF and Cutmix because
their performances are low.

weights w are the minimax weights in Eqn. (4.1).

Results. Table 4.3 reports the performance of sevenmethods on the classificationdatasets.
We can see that only using SCARF or Cutmix leads to pretty bad performance, largely
because their association is too strong, as shown in Section 3.3. However, when they
are mixed with Y-Lin, the mixture has a weaker association, and thus the performance
becomes much better. The performance of Y-Lin is very close to MLP on the 56 small
datasets, but much higher than MLP on the 42 large datasets. This suggests that repre-
sentation learning usually works better with larger datasets.

Table 4.4 reports the performance of seven methods on the regression datasets. We
can see that Y-Lin is better thanMLP butworse thanXGBoost. Mixing Y-Linwith SCARF
or Cutmix slightly improves the performance, and concatenating with XGBoost further
significantly improves the performance. The mixture of SCARF, Y-Lin and XGBoost
achieves a much higher average performance than XGBoost.

The above results show that if we mix the right set of contexts, then we can achieve a
higher performance than a single context. Moreover, on all three benchmarks our meth-
ods significantly improve over XGBoost, and on all but cls-56 our methods signifi-
cantly improve over MLP. These experiments showcase the practical value of the contex-
ture theory. Note that these experiments are only a start, and we expect there to be a
large room of improvement if we can find better contexts for tabular data.

In summary, whenwe havemultiple contextswith either strong orweak associations,
we can mix them to obtain a better context with a moderate association. This chapter in-
troduced three base operations: convolution, convex combination and concatenation.
While mixing multiple contexts is a useful method, to achieve a revolutionary break-
through, we still need to create new contexts that are completely different from existing
ones. In otherwords, we are not suggesting that context scaling can be achieved by solely
mixing existing contexts.
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Chapter 5

Statistical Learning Bounds for
Representation Learning

This chapter studies representation learning in the finite sample regime, that is when
there are only finite pretraining and downstream samples, how well one can learn the
encoder and the downstream predictor. Recall that the prediction error can be decom-
posed as the sumof the approximation error and the estimation error. The key takeaways
of this chapter are summarized as follows.
(i) When the embedding dimension d increases, the approximation error decreases,

but the estimation error increases.
(ii) The approximation error consists of two parts: (a) the distance from the target

function to the function class; (b) howwell the function class can be approximated.
(iii) Contexture learning (extracting the top-d eigenspace) can be viewed as a spectrally

transformed kernel (STK). It transforms all eigenvalues other than the top-d to be
zero. It loses some information, but achieves the fastest eigenvalue decay.

(iv) Other STKs such as the inverse Laplacian are popular in semi-supervised learning,
because they are more efficient than extracting the top-d eigenspace.

This chapter first defines the context complexity, and then proves the generalization
bounds for contexture learning. After that, we generalize contexture learning to spec-
trally transformed kernel regression (STKR), and prove generalization bounds for STKR.

5.1 Context Complexity
So far, our intrinsic evaluation of a context has only relied on the singular values of the
context. However, the singular functions of the context, particularly their smoothness,
also have a great impact on the generalization performance. Consider two contexts with
similar spectra, but the first one has smoother singular functions than the second one.
Then, given the same number of pretrain samples, it is easier to approximate the top-d
singular functions of the first context. The context complexity is defined to mathemati-
cally characterize such smoothness.

Definition 5.1. The context complexity of P+ is defined as κ :=
∥∥k+X∥∥1/2∞ , such that

k+X(x, x) =
∑

s2iµi(x)
2 =

∫
P+(x|a)P+(a|x)

PX (x)
da = Dχ2

(
P+(·|x) ∥ PA

)
+ 1 ≤ κ2

holds for PX -almost all x, where Dχ2(P ∥ Q) =
∫
(dP
dQ
− 1)2dQ is the χ2-divergence.
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3. Block Mask + Flip
2. Block Mask
1. RandomMask
Original Sample 1 1 -1-1 1 -1 1 1

0 0 -1 0 1 -1 1 0
1 0 0 0 0 -1 1 1
1 0 0 -1 1 1 1 -1

Masked Flipped
0 0.5 1

1

1.5

2

Mask Ratio α

y1 = 2− α
y2 = 21−α

y3 = (α2 − 2α + 2)1−
α
2

Figure 5.1: Left: Three mask-type data augmentations on the hypercube data model.
Right: Their theoretical κ2/dX with different mask ratio α.

This κwas initially introduced as the augmentation complexity by [167] in the context
of self-supervised learning. If κ is finite, then κ2 ≥

∫
k+X(x, x)dPX (x) =

∑
s2i , which

means that Tk+X is a trace-class operator. If k is the centered kernel of k+X , then k(x, x) =∑
i≥1 s

2
iµi(x)

2 ≤ κ2 − 1. Usually κ≫ 1, so we use k(x, x) ≤ κ2 for simplicity.
Now let us see some examples of masking, and estimate their context complexity.

Intuitively, the context of a data augmentation is more complex if the augmentation is
stronger, that is the association betweenX andA is weaker. For masking, the mask ratio
clearly controls the context complexity. In addition, the complexity also depends on the
type of masking. For example, consider a checkerboard-style masking, where for any
two adjacent pixels, exactly one of them is masked. This masking has a mask ratio of
50%, but clearly it is much weaker than the one that puts all 50% masking on the center
of the image where the object is located. The context complexity provides a quantitative
way to measure the strength of a data augmentations of different types.

Hypercube datamodel. Consider the hypercube datamodel introduced by [122]: X =

{−1, 1}dX , and PX is the uniform distribution over X . Consider three random masking
methods similar to those studied in [20]: (i) Independent randommasking; (ii) Cutout-
like block masking [35]; (iii) BERT-like masking. See Figure 5.1 (left) for an illustration.
Denote the mask ratio by α. Let us compute the κ for these three masking methods,
which are denoted by κr, κc, κb, respectively.
Example 5.2. Consider a random masking augmentation, i.e. for any x ∈ X , each coordi-
nate x(i) is randomly and independently masked to be 0 (i.e. 0 denotes the [MASK] token) with
probability α ∈ (0, 1) . Then, its context complexity is given by κ2r = (2− α)dX .

Example 5.3. Consider random block masking, i.e. masking x(i), x(i+1), · · · , x(i+r−1) for r =
⌈αdX ⌉ and a uniformly random i ∈ [dX − r], for any x ∈ X . Then, κ2c ≤ [2(1−α)]dX .

Example 5.4. Consider random block masking with flipping, where for any x ∈ X , first
mask x(i), · · · , x(i+r−1) to be 0 for r = ⌈αdX ⌉ and a uniformly random i ∈ [dX − r], then
randomly flip the sign of each remaining coordinate independently with probability α

2
. Then, its

context complexity is bounded by κ2b ≤
[
(α2 − 2α + 2)(1−α/2)

]dX .
See Appendix D.1 for the derivation of the above κ. Figure 5.1 (right) plots the κ2/dX

for all three examples. We can see that κ becomes lower as the mask ratio α increases.
Moreover, when α ∈ (0, 1) is fixed, Cutout-like masking has a lower κ than indepen-
dent random masking, and BERT-like masking has a lower κ than Cutout-like masking.
Cutout has a weaker association than random masking, and BERT has an even weaker
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Figure 5.2: Histograms of log k+X(x, x)2 for random masking on wikipedia-simple
with mask ratio α. The dashed vertical line in each plot indicates the 99th percentile.

association. Thus, these examples show that κ is lower when the association is weaker.
Another observation is that all three κ have an exponential dependency on dX . This

is a manifestation of the typical curse of dimensionality in high-dimensional statistics.
One way tomake κ polynomial in dX is to use a context with very weak association, such
as a very strong data augmentation. For example, if A is a finite set with a small size,
then κwill be polynomial. However, contexts with suchweak association usually lead to
substantially worse performance in practice. The bounds to be proved in this chapter de-
pend on κ polynomially, meaning that they are not really useful in the high-dimensional
scenario. In practice, however, representation learning can still achieve good perfor-
mances when the data dimension is high. How to address this discrepancy is posed as
an open problem.

Real language models. Now let us estimate the κ of some real language models. We
use the NLP dataset wikipedia-simple, and consider the context of masking tokens,
where x is a complete text whereas a is a masked version of x. Recall that κ2 is an upper
bound of k+X(x, x) =

∫ P+(x|a)P+(a|x)
PX (x)

da. For a fixed x, this integration can be estimated
with Monte Carlo (by sampling a set of a ∼ P+(·|x)), and then κ2 can be estimated by
its maximum over x ∈ X . For x = [x(1), · · · , x(l)]where x(i) is the ith token, we have
logP+ (x|a) = logP+

(
x(1)
∣∣a)+ logP+

(
x(2)
∣∣a, x(1))+ · · ·+ logP+

(
x(l)
∣∣a, x(1), · · · , x(l−1)

)
.

We can leverage a bi-directional masked language model such as a BERT, and then
compute P+(x(i)|a, x(<i)) auto-regressively: For each i ∈ [l], use the BERT to output
P+(x(i)|a, x(<i)), and then replace a(i) with x(i) for i+1. As such, we can estimate P+(x|a),
and PX (x) can be estimated by P+(x|a0)where a0 is a fully masked text.

A natural idea is to estimate k+X(x, x) for a random subset of samples, and output
their maximum as an estimate of κ2. However, this approach has two issues. First,
supx k

+
X(x, x) is statistically impossible to estimate from a subset of data without any

extra assumptions on the distribution of k+X(x, x). Second, almost all real datasets con-
tain outliers, which are very different frommost samples. These outliers have very large
k+X(x, x), but given that these outliers have little impact on the actual pretraining, we do
not want to take these large k+X(x, x) into account. To fix these two issues, we can use the
99th percentile of k+X(x, x). First, the percentile can be estimated with a finite confidence
interval via sampling regardless of the distribution of k+X(x, x) [54, Section 5.2]. Second,
we get rid of the outliers if they are fewer than 1 percent. Figure 5.2 plots the histograms
of log k+X(x, x)2 for random masking on wikipedia-simple. The dashed line in each
plot indicates the 99th percentile. We can see from the plots that the 99th percentile is a
good choice, as it picks out the outliers where k+X(x, x) is too large.
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Figure 5.3: Left: Estimated log κ2 (99th percentile) on wikipedia-simple, which is the
average of five runs with different random seeds. Right: Downstream performance on
QNLI and SST-2. The solid line is the test accuracy and the dashed line is the train-test
gap. The highest test accuracy is labeled on each plot.

Figure 5.3 (left) plots the 99th percentile of log κ2 of four contexts: random masking,
randommasking with flipping, block masking, and block masking with flipping. Mask-
ing randomly masks α of the tokens. Masking with flipping masks α/2 of the tokens
and replaces another α/2 of the tokens with random tokens. Note that this replace rate
is higher than the common 80-10-10 strategy in NLP, because we want to magnify the
effect of flipping. From the plot, we can see that the complexity drops as α increases as
expected. One observation is that the “Random + Flip” curve intersects with “Block”
and “Block + Flip”, suggesting that block masking has a stronger effect when α is small,
whereas flipping has a stronger effect when α is large.

Figure 5.3 (right) plots the real downstream performance of BERT with different
mask ratios on QNLI [149] and SST-2 [130]. The models are roberta-large trained
with the fast pretraining recipe in [158]. The context is random masking without the
80-10-10 strategy. At downstream, the encoder is fine-tuned along with the linear head
following common practice. From the plot, we can see that the highest test accuracy
(solid line) is achieved at α = 0.15 on QNLI and at α = 0.40 on SST-2. This is because
the association between X and A is moderate when α is neither too big nor too small.
The dashed line is the gap between the train accuracy and test accuracy. On QNLI, the
gapmonotonically decreaseswithα; on SST-2, it is U-shaped, with the lowest atα = 0.40.
We will come back to explain this observation after we prove the generalization bounds.

5.2 Generalization Bounds for Contexture Learning
Suppose there arem pretrain samples x1, · · · , xm and n downstream samples x̃1, · · · , x̃n,
jointly i.i.d. sampled from PX . Usuallym≫ n. This section proves an error boundwhen
an encoder is learnedwith x1, · · · , xm, and then a predictor is fitwith x̃1, · · · , x̃n. Assume
that the context has kernel access, and assume that the kernel k that we have access to is
the centered kernel of k+X . In practice there could be a difference between k+X and k, but
since this difference depends on what k we have, this is not something we can analyze
in our study of generalization. Therefore, for simplicity we ignore this difference. The
scenario where the context has pair or transformation access will be discussed later.

Let s2i , µi be the actual eigenvalues and eigenfunctions of Tk. The empirical top-d
eigenfunctions of Tk can be estimated with kernel PCA as introduced at the beginning
of Chapter 2, which is reiterated as follows.
(i) Compute the Gram matrixG ∈ Rm×m : G[i, j] = k(xi, xj).
(ii) Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 be the eigenvalues ofG, with orthonormal eigenvectors

v1, · · · ,vm. Note that λ1 has the same order asm, so it can be much greater than 1.

56



(iii) Assume that λd > 0. Let ϕi(x) =
1√
λi

∑m
j=1 vi[j]k(x, xj), for i ∈ [d].

Although ideally wewould like a bound for any target function inFϵ(P
+), we cannot

prove a universal bound for the entire Fϵ(P
+). To see why, consider the following ex-

ample. Suppose f ∗ is a (1− ϵ/2)-compatible function that is easy to learn, and ∥f ∗∥ = 1.
Suppose there is a µD with an extremely large D, such that the functiion is very noisy
and it has large values on all the samples we have. Let f ′ = f ∗ + ϵ

4
µD. It is easy to show

that f ′ ∈ Fϵ(P
+), but learning f ′ with the samples we have is impossible. In order to

make learning possible, we have to get rid of the extremely noisy components.
To this end, we define a variant of the induced RKHS in Section 3.2.

Definition 5.5. Define the induced RKHS of k as Hk = {f =
∑
siuiµi |

∑
u2i <∞}. For

f1 =
∑
uiµi, f2 =

∑
viµi ∈ Hk, define their inner product as ⟨f1, f2⟩Hk

=
∑

uivi
s2i

.

Note that Hk is a subset of L2(PX ), rather than L2(PA). Obviously Hk is the RKHS
of k, that is for any f ∈ Hk, we have ⟨f, k(·, x)⟩Hk

= f(x). In particular, we have
⟨k(·, x), k(·, x′)⟩Hk

= k(x, x′). This implies that for all i, j ∈ [d], we have

⟨ϕi, ϕj⟩Hk
=

1√
λiλj

m∑
q,r=1

vi[q]vj[r]⟨k(·, xq), k(·, xr)⟩Hk
=

1√
λiλj

v⊤
i Gvj = I[i = j].

That is, ϕ1, · · · , ϕd are orthonormal in the Hilbert space Hk. Note that when there are
finite samples, it is impossible to make ϕ1, · · · , ϕd orthonormal in L2(PX ) since we have
no access to PX . GivenHk, define the following set of compatible functions.
Definition 5.6. The set of functions (1 − ϵ)-compatible withHk is defined as

FHk
(P+) =

{
f ∈ Hk

∣∣∣∣ ∥∥∥f̃∥∥∥Hk

≥
∥∥∥f̃∥∥∥

PX
≥ (1− ϵ)

∥∥∥f̃∥∥∥
Hk

}
.

Proposition 5.7. FHk
(P+) ⊆ Fϵ(P

+).

Proof Let f =
∑

i uiµi ∈ FHk
(P+). Then, ∑i u

2
i ≥ (1 − ϵ)

∑
i
u2
i

s2i
. By Cauchy-Schwarz

inequality, we have (∑i s
2
iu

2
i )
(∑

i
u2
i

s2i

)
≥ (
∑

i u
2
i )

2. Thus,∑i s
2
iu

2
i ≥

∑
i u

2
i .

The following lemma can be proved in the same way as Lemma 3.8, which is left as
an exercise to the reader.
Lemma 5.8. For any f1, · · · , fd ∈ Hk such that ⟨fi, fj⟩Hk

= I[i = j], we have

∥f1∥2PX
+ · · ·+ ∥fd∥2PX

≤ s21 + · · ·+ s2d.

Approximation error bound. Our goal is to prove a universal bound for FHk
(P+).

First, let us bound the approximation error. Previously, the approximation error was
defined as the distance from f ∗ to the span of Φ in space L2(PX ). However, since we
cannot compute the distance in space L2(PX )with only finite samples, here we define it
with the distance in spaceHk. Specifically, let fΦ be the projection of f ∗ onto the span of
Φ in spaceHk, that is ⟨f ∗ − fΦ, fΦ⟩Hk

= 0. Let f ∗−fΦ = βf0, where β ≥ 0 and ∥f0∥Hk
= 1.

The above lemma implies that ∥ϕ1∥2PX
+ · · ·+ ∥ϕd∥2PX

+ ∥f0∥2PX
≤ s21 + · · ·+ s2d+1.

Hence, to bound ∥f 2
0∥, it suffices to prove a lower bound for ∥ϕ1∥2PX

+ · · · + ∥ϕd∥2PX
.

Using the definition of eigenvectors, it is not hard to show that 1
m

∑m
j=1 ϕi(xj)

2 = λi

m
for
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all i ∈ [d], which is the empirical L2 norm of ϕi. Therefore, we need to bound two things:
(i) the gap between λ1+···+λd

m
and s21+ · · ·+s2d; (ii) the gap between the empirical L2 norm

and the actual L2 norm.
Using [13, Theorem 3.2], for any δ ∈ (0, 1), gap (i) can be bounded by

λ1 + · · ·+ λd
m

≥ s21 + · · ·+ s2d −
κ2√
m

√
1

2
log

6

δ
with probability at least 1− δ

2
. (5.1)

Gap (ii) can be bounded using classical generalization bounds with the Rademacher
complexity.
Definition 5.9. Let F be a function class. Let S = {x1, · · · , xm} be i.i.d. drawn from PX . The
empirical Rademacher complexity of F on S is defined as

R̂S(F) = Eσ1,··· ,σm

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
,

where σ1, · · · , σm are Rademacher variables, which are i.i.d. uniform random variables taking
values in {−1,+1}. The Rademacher complexity of F is defined as

Rm(F) = ES[R̂S(F)].

Define the following function class:

Fd :=
{
F = f 2

1 + · · ·+ f 2
d

∣∣∣ fi ∈ Hk; ∀i, j ∈ [d], ⟨fi, fj⟩Hk
= I[i = j]

}
.

Since ϕ2
1 + · · · + ϕ2

d ∈ Fd, it suffices to bound
∣∣ 1
m

∑m
i=1 F (xi)− E[F (X)]

∣∣ for all F ∈ Fd,
which requires Rm(Fd) and a bound for |F (x)|. Let ϕi =

∑
j uijsjµj , and U = (uij) =

[u1, · · · ,ud], which is a matrix with d columns and infinitely many rows. Then, U⊤U =
Id. Let M(x) = [s1µ1(x), s2µ2(x), · · · ]. Then, by Definition 5.1, we have ∥M (x)∥22 =∑
s2iµi(x)

2 ≤ κ2 for PX -almost all x. Thus, for PX -almost all x, we have

|F (x)| =
∣∣M (x)⊤UU⊤M (x)

∣∣ ≤ ∥M (x)∥22
∥∥UU⊤∥∥

2
≤ κ2 for all F ∈ Fd.

Regarding Rm(Fd), we have the following result.

Lemma 5.10 (Proof in Appendix D.2). Rm(Fd) ≤
√
d√
m
κ2.

Hence, by [148, Theorem 4.10], with probability at least 1− δ
2
we have∣∣∣∣∣ 1m

m∑
i=1

F (xi)− EPX [F (X)]

∣∣∣∣∣ ≤ κ2√
m

(
2
√
d+

√
2 log

2

δ

)
for all F ∈ Fd,

which implies that

∥ϕ1∥2PX
+ · · ·+ ∥ϕd∥2PX

≥ λ1 + · · ·+ λd
m

− κ2√
m

(
2
√
d+

√
2 log

2

δ

)
. (5.2)

Combining Eqns. (5.1) and (5.2), with probability at least 1− δ we have

∥ϕ1∥2PX
+ · · ·+ ∥ϕd∥2PX

≥ s21 + · · ·+ s2d −
κ2√
m

(
2
√
d+ 3

√
log

6

δ

)
.
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Thus, by Lemma 5.8, we get

∥f0∥2PX
≤ s2d+1 +

κ2√
m

(
2
√
d+ 3

√
log

6

δ

)
.

Let α = ∥fΦ∥2Hk
≥ s−2

1 ∥fΦ∥
2
PX

. Then, we have

α2+β2 = ∥f ∗∥2Hk
≤
∥f ∗∥2PX

(1− ϵ)2
≤
(
∥fΦ∥PX

+ β∥f0∥PX

)2
(1− ϵ)2

≤
s21α

2 + β2∥f0∥2PX
+ (α2 + β2)s1∥f0∥PX

(1− ϵ)2
.

With some simple algebra, we get

(s21−∥f0∥
2
PX

)β2 ≤
[
s21 − (1− ϵ)2 + s1∥f0∥PX

]
(α2+β2) ≤

[
s21 − (1− ϵ)2 + s1∥f0∥PX

] ∥f ∗∥2PX

(1− ϵ)2
.

Note that ∥f ∗ − fΦ∥Hk
= β, and ∥f ∗ − fΦ∥PX

= β∥f0∥PX
. Hence, we have proved the

following bound for the approximation error.
Theorem 5.11. Let fΦ be the projection of any f ∗ ∈ FHk

(P+) onto the span of Φ, such that
⟨f ∗ − fΦ, fΦ⟩Hk

= 0. Suppose (1− ϵ)2 < s21. Then, for any δ ∈ (0, 1), with probability at least
1− δ we have

∥f ∗ − fΦ∥2Hk
≤
s21 − (1− ϵ)2 + s1

√
s2d+1 +

κ2√
m

(
2
√
d+ 3

√
log 6

δ

)
s21 − s2d+1 − κ2√

m

(
2
√
d+ 3

√
log 6

δ

) ·
∥f ∗∥2PX

(1− ϵ)2
;

∥f ∗ − fΦ∥2PX
≤
s21 − (1− ϵ)2 + s1

√
s2d+1 +

κ2√
m

(
2
√
d+ 3

√
log 6

δ

)
s21 − s2d+1 − κ2√

m

(
2
√
d+ 3

√
log 6

δ

) ·
s21∥f ∗∥2PX

(1− ϵ)2
,

assuming that the denominator is positive.
Comparing to Theorem 3.4, we can see that this bound is fairly tight whenm is suffi-

ciently large. The only differences are that the numerator has an extra term that is close
to s1sd+1 (sd+1 should be pretty small), and ∥f ∗∥2PX

is multiplied by s21
(1−ϵ)2

.

Estimation error bound. Next, we bound the estimation error of the predictor fit on
top of Φ using the n labeled downstream samples. The bound consists of two parts:
(i) Assume that the labels are generated from fΦ(x̃i). Let f̂ be the learned predictor.

Then, the gap
∥∥∥f̂ − fΦ∥∥∥

PX
can be bounded using standard generalization bounds.

(ii) However, the real labels are generated from f ∗(x̃i) instead of fΦ(x̃i). Thus, we need
to bound the gap between f ∗(x̃i) and fΦ(x̃i).

Let the downstream training set be {(x̃i, yi)}ni=1 i.i.d. drawn from a distribution PX ,Y
with marginal distribution PX , and we assume the following moment condition [41]:

EPX ,Y [|Y − f ∗(X)|r] ≤ 1

2
r!σ2Lr−2 for all r ≥ 2 and PX -almost all x, (5.3)

for some σ, L > 0. For example, if Y ∼ N (f ∗(X), σ2), then this condition holds with
L = σ. Denote y = [y1, · · · , yn], y∗ = [f ∗(x̃1), · · · , f ∗(x̃n)], and y∗

Φ = [fΦ(x̃1), · · · , fΦ(x̃n)].
Then, yΦ = y−y∗ +y∗

Φ consists of the original labels shifted by fΦ− f ∗. Part (i) bounds
the estimation error assuming that the labels are yΦ. Then, part (ii) bounds the gap
between yΦ and y.
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Part (i) Estimation error bound for kernel ridge regression. Let the downstream pre-
dictor be f(x) = w⊤Φ(x). Here we consider an unbiased linear predictor for simplicity.
The proof when the predictor is biased is the same but a bit more verbose. Consider
fitting w with ridge regression given by

w̃ = argmin
w

{
1

n

(
yΦ[i]−w⊤Φ(x̃i)

)2
+ βn∥w∥22

}
,

where the regularization parameter βn can change with n. When n is larger, typically
we would like βn to be smaller, because we have more samples so can use a smaller
regularization to achieve the same level of generalization. Let f̃(x) = w̃⊤Φ(x). Note that
f̃ ∈ Hk, and

∥∥∥f̃∥∥∥2
Hk

=
∑
w̃2

i ∥ϕi∥2Hk
= ∥w̃∥22. Thus, the above regression is equivalent to a

kernel ridge regression onHk, where the regularization term is βn
∥∥∥f̃∥∥∥2

Hk

.
Denote Φ = [Φ(x̃1), · · · ,Φ(x̃n)] ∈ Rd×n. A standard result in statistics shows that

w̃ =
(
ΦΦ⊤ + nβnId

)−1
ΦyΦ. (5.4)∥∥∥f̃ − fΦ∥∥∥2

PX
can be bounded using the results in [41]. To use their results, apart from

the moment condition Eqn. (5.3), three additional conditions are required:
• Eigenvalue decay (EVD): Let ζ1 ≥ ζ2 ≥ · · · be the eigenvalues of the RKHS. Then,
ζi ≤ c1i

− 1
p for some constant c1 > 0 and p ∈ (0, 1].

• Embedding condition (EMB): There exists a constant c2 > 0 such that for any
f ∈ Hk, ∥f∥∞ ≤ c2∥f∥Hk

. Here ∥f∥∞ is the smallest B such that |f(x)| ≤ B for
PX -almost all x.

• Source condition (SRC): There exists a constant c3 > 0 such that ∥f∥Hk
≤ c3.

Space Hk obviously satisfies (EVD) because its rank is d, so the condition holds for
any p ∈ (0, 1]. For f = fΦ, it satisfies (EMB)with c2 = κ, because for any x0 ∈ X , we have
f(x0) = ⟨f, k(x0, ·)⟩Hk

≤ ∥f∥Hk
∥k(x0, ·)∥Hk

, and ∥k(x0, ·)∥2Hk
= ∥

∑
s2iµi(x0)µi(·)∥2Hk

=∑
s2iµi(x0)

2 ≤ κ2 for PX -almost all x0. Moreover, assuming that f ∗ is fixed, f = fΦ also
satisfies (SRC) with c3 = ∥f ∗∥PX

/(1− ϵ) because ∥fΦ∥Hk
≤ ∥f ∗∥Hk

.
With all these conditions, invoking Theorem 3.1 in [41], we get the following.

Theorem 5.12. For any p ∈ (0, 1] and sufficiently large n ≥ 1 and η > 0, suppose we choose
βn = Θ

(
n− 1

1+p

)
. Then, there exists a constant A > 0 independent of n and η, such that with

probability at least 1− 4eη, we have
∥∥∥f̃ − fΦ∥∥∥

PX
≤ s1

∥∥∥f̃ − fΦ∥∥∥
Hk

, and

∥∥∥f̃ − fΦ∥∥∥2
Hk

≤ 2
√
βn
∥f ∗∥2PX

(1− ϵ)2
+ Aη2

κ
2

(
σ2 +

∥f∗∥2PX
(1−ϵ)2

)
nβ

1
2
+p

n

+
κ2max

{
L2, 4κ2

∥f∗∥PX 2

(1−ϵ)2

}
n2
√
βn

.
We can see that as n → ∞, there is

∥∥∥f̃ − fΦ∥∥∥
PX
→ 0. when p is very small, we can

think of this bound as O( κ2
√
n
). In the ideal case, all singular values except the top-d are 0;

then, κ2 can be viewed as an approximation of∑d
i=1 s

2
i . This is the bound that we used

to derive the metric in Section 3.3.
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Part (ii) Shift in the labels. The actual downstream predictor is given by

ŵ =
(
ΦΦ⊤ + nβnId

)−1
Φy, (5.5)

similar to Eqn. (5.4). Let f̂(x) = ŵ⊤Φ(x). Then, we have∥∥∥f̂ − f̃∥∥∥2
Hk

=

∥∥∥∥[(ΦΦ⊤ + nβnId
)−1

Φ(y − yΦ)
]⊤

Φ

∥∥∥∥2
Hk

=
∥∥∥(ΦΦ⊤ + nβnId

)−1
Φ(y − yΦ)

∥∥∥2
2
.

LetQ = ΦΦ⊤+nβnId. It suffices to bound ∥Q−1Φ∥22 and ∥y − yΦ∥22. To bound these,
we need the following lemma, which can be proved using the Rademacher complexity.
Lemma 5.13 (Proof in Appendix D.3). Let F =

{
f1f2

∣∣ f1, f2 ∈ Hk; ∥f1∥Hk
, ∥f2∥Hk

≤ 1
}
.

Then, Rn(F) ≤ κ2
√
n
. Ifm ≥ n, then for any δ ∈ (0, 1), with probability at least 1− δ,

∥∥Φ⊤u
∥∥2
2
≥ n

m
λd − κ2

√
n

(
4 + 2

√
2 log

2

δ

)
for any unit vector u ∈ Rd.

∥Q−1Φ∥22 is equal to the largest eigenvalue ofΦ⊤Q−2Φ, which is also the largest eigen-
value of Q−2ΦΦ⊤ by Sylvester’s theorem. Let ξ1 ≥ · · · ≥ ξd ≥ 0 and α1, · · · ,αd be the
eigenvalues and orthonormal eigenvectors of ΦΦ⊤ ∈ Rd×d. If ξi = 0, then αi is also an
eigenvector ofQ−2ΦΦ⊤ with eigenvalue 0. If ξ > 0, then we have

Qαi =
(
ΦΦ⊤ + nβnId

)
αi = (ξi + nβn)αi,

which implies that Q2αi = (ξi + nβn)
2αi =

(ξi+nβn)
2

ξi
ΦΦ⊤αi. Thus, αi is an eigenvector

of Q−2ΦΦ⊤ with eigenvalue ξi
(ξi+nβn)

2 . We can therefore conclude that
(

ξi
(ξi+nβn)

2

)
are all

the eigenvalues ofQ−2ΦΦ⊤. Meanwhile, by Lemma 5.13, we have

ξd = α⊤
d ΦΦ⊤αd =

∥∥Φ⊤αd

∥∥2
2
≥ n

m
λd − κ2

√
n

(
4 + 2

√
2 log

2

δ

)
.

When n ≥ 4κ4m2

λ2
d

(
4 + 2

√
2 log 2

δ

)2
, we have ξd ≥ nλd

2m
, which implies that ∥Q−1Φ∥22 ≤

2m
nλd

.
Remember that λ1 has the same order asm, so we should view λd as also having roughly
the same order asm.

Regarding ∥y − yΦ∥22, it is equal to
∑n

i=1 F (x̃i)where F (x) = (f ∗(x)−fΦ(x))2, andwe
have already bounded ∥f ∗ − fΦ∥2Hk

in Theorem 5.11. We can boundF using Lemma 5.13.
Corollary 5.14 (Proof in Appendix D.4). With probability at least 1− δ, we have

∥y − yΦ∥22
n

≤ ∥f ∗ − fΦ∥2PX
+ ∥f ∗ − fΦ∥2Hk

κ2√
n

(
2 +

√
2 log

2

δ

)
.

Next, note that G(x) = (f̂(x)−f̃(x))2

∥f̂−f̃∥2Hk

∈ F defined in Lemma 5.13, and

n∑
i=1

(
f̂(x̃i)− f̃(x̃i)

)2
=
∥∥∥Φ⊤(ΦΦ⊤ + nβnId

)−1
Φ(y − yΦ)

∥∥∥2
2
≤ ∥y − yΦ∥22
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because
∥∥∥Φ⊤(ΦΦ⊤ + nβnId

)−1
Φ
∥∥∥
2
≤ 1. Thus, using Corollary 5.14, we get

∥∥∥f̂ − f̃∥∥∥2
PX
≤ 1

n

n∑
i=1

(
f̂(x̃i)− f̃(x̃i)

)2
+
∥∥∥f̂ − f̃∥∥∥2

Hk

κ2√
n

(
2 +

√
2 log

2

δ

)

≤ ∥y − yΦ∥22
n

[
1 +

2κ2

λd
√
n

(
2 +

√
2 log

2

δ

)]

≤ 3

2

(
∥f ∗ − fΦ∥2PX

+
λd
4
∥f ∗ − fΦ∥2Hk

)
,

where the last step uses n ≥ 4κ4

λ2
d

(
4 + 2

√
2 log 2

δ

)2
. Combining the above inequality with

Theorem 5.12, we obtain a bound for
∥∥∥f̂ − fΦ∥∥∥2

PX
.

Dependency on the context complexity. Our prediction error bound decreases with
κ, meaning that the weaker the association of the context, the better the generalization
will be. Let us revisit the experimental results in Figure 5.3 (right). On QNLI, the train-
test gap decreases with the mask ratio α, which matches our bound. However, on SST-
2, the train-test gap first decreases and then increases. The reason is that our bound
assumes that f ∗ ∈ FHk

(P+), but as the association becomes weaker, FHk
(P+) becomes

smaller and smaller. When the association becomes tooweak, f ∗ might no longer belong
to FHk

(P+), and our bound will no longer hold. In this case, further weakening the
association might make the train-test gap larger.

Pair/transformation access. The above analysis assumed that we have access to the
centered dual kernel of the context. What if we have pair or transformation access in-
stead? Recall that the dual kernel is k+X(x, x′) =

∫ P+(a|x)P+(a|x′)
PA(a)

da. If we have transfor-
mation access, then we can assume that we have full access to P+(a|x) for any given
x. The main problem appears in the denominator, because we can only estimate PA(a)
by 1

m

∑m
i=1 P

+(a|xi). Although their difference can be shown to be small if P+(a|x) is
assumed to be smooth in x, if PA(a) itself is very small, then a tiny estimation error of
PA(a) will have a huge impact on k+X because it is in the denominator. For this reason,
we also need to assume that PA(a) is bounded away from zero for all a, in order to get a
reasonable generalization bound. Such a bound was proved in [167].

The case with pair access to the context is evenmore challenging, because in this case
we have to estimate P+(a|x), so we need to consider the sample complexity of a as well.
Deriving a bound for this case is posed as an open problem.

5.3 Spectrally Transformed Kernel Regression
The previous section showed that fitting the linear probewith ridge regression is equiva-
lent to kernel ridge regression on a subspace of the inducedRKHS, spannedbyϕ1, · · · , ϕd.
In fact, this is a special case of spectrally transformed kernel regression (STKR) [168].
Definition 5.15. Let k : X ×X → R be a p.s.d. kernel such that k(x, x′) =

∑∞
i=1 λiµi(x)µi(x

′),
where λ1 ≥ λ2 ≥ · · · and µ1, µ2, · · · are the eigenvalues and eigenfunctions of Tk. Then, a
spectrally transformed kernel (STK) of k is defined as ks(x, x′) =

∑∞
i=1 s(λi)µi(x)µi(x

′),
for some transformation function s : [0,+∞)→ [0,+∞) such that s(0) = 0.
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Figure 5.4: (a) A graph examplewhere the kernel is the adjacencymatrix. Shaded nodes
are labeled and white nodes are unlabeled. (b) In KRR, the unlabeled nodes are useless
and can be removed, so the graph becomes three isolated nodes. (c) With a two-step
random walk k2, x1 and x2 are connected, and x2 and x3 are connected.

An STK has the same eigenfunctions as the original kernel. In general one would
like s to be a monotonically non-decreasing function, so that the spectral transformation
does not change the order of the eigenfunctions,
Example 5.16. If ϕ1, · · · , ϕd are obtained by kernel PCA described in the previous section, and
the downstream linear probe is fit using ridge regression, then this process is equivalent to doing
kernel ridge regression on an STK ks, where s(λi) = λiI[i ≤ d] is called the truncation function.

STKR is extremely useful in a semi-supervised learning settingwhere there aremuch
more unlabeled samples than labeled samples. One might ask what is the point of using
an STK or extracting the top-d eigenspace, instead of directly performing kernel ridge
regression with k. The answer is that in many cases, regression with k would fail, but
with ks it would not. This can be demonstrated with a concrete example. Consider the
graph in Figure 5.4 (a), where the shaded nodes are labeled but the white nodes are not,
and the context is that connected nodes are similar. Then, k can be the adjacency matrix
of this graph. Let Hk be the RKHS of k. Recall that given a labeled dataset {(x̃i, yi)}ni=1,
kernel ridge regression (KRR) with k is given by

f̂ ∈ argmin
f∈Hk

{
1

n

n∑
i=1

(f(x̃i)− yi)2 + βn∥f∥2Hk

}
,

for which there is a classical Representer Theorem [124, Theorem 4.2]:
Theorem 5.17. All minimizers of KRR admit the form f̂ ∗(x) =

∑n
j=1 α

∗
i k(x, x̃j), where

α∗ ∈ arg inf
α∈Rn

 1

n

n∑
i=1

[
n∑

j=1

αjk(x̃i, x̃j)− yi

]2
+ βn

n∑
i,j=1

αiαjk(x̃i, x̃j)

.
What this theorem implies is that KRR only uses the labeled samples, and the large

number of unlabeled samples are not used at all. This means that in Figure 5.4 (a), the
white nodes are not used by KRR. When all the white nodes are removed, the graph
becomes (b)—a graph with three isolated nodes, which is a useless context.

So what goes wrong here? The key is that the graph only says that x1 and x4 are
similar, and x4 and x2 are similar. However, it does not say that x1 and x2 are similar,
that is it cannot imply the transitivity of similarity on its own. Therefore, in the eyes of
this graph, x1, x2, x3 are three completely independent nodes, which is why the graph is
useless in KRR. However, STKR assumes that similarity is transitive, and this allows us
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Hk Hk1.5 Hk2 Hk3Hks

Figure 5.5: Illustration of themultiscale smoothness induced by diffusion, producing the
chainHk ⊇ Hk1.5 ⊇ Hk2 ⊇ Hk3 ⊇ · · · . The RKHS of the spectrally transformed kernel ks
isHks marked in bold, which is in this chain but not necessarily equal to anyHkp .

to start at any point x and do a random walk up to some number of steps, and the node
we land on is still similar to x. For example, if we allow random walks up to two steps,
then the graph becomes Figure 5.4 (c), which no longer consists of three isolated nodes.

To formalize this idea of random walk, define the following power spaces.
Definition 5.18. A power space is an RKHS associated with kp for any p ≥ 1, where

kp(x, x′) =
∞∑
i=1

λpiµi(x)µi(x
′);

Hkp =

{
f =

∑
uiµi

∣∣∣∣ ∑ u2i
λpi

<∞
}
,
〈∑

uiµi,
∑

viµi

〉
Hkp

=
∑ uivi

λpi
.

The proof of the following proposition is left as an exercise.
Proposition 5.19. For any p ≥ 1, there is kp+1(x, x′) =

∫
kp(x, z)k(z, x′)dPX (z).

This formula shows that when p is an integer, kp can be viewed as a p-step random
walk. When p is a real number, kp is essentially a continuous random walk, which is
called a diffusion process. This definition requires p ≥ 1, because when p < 1, Hkp is
not necessarily an RKHS, due to the following classical result [124, p. 36].
Proposition 5.20. Let H be a Hilbert space of real-valued functions on X . For any x ∈ X ,
define an evaluation functional Lx : H → R as (Lxf) = f(x). Then,H is an RKHS if and only
if for all x ∈ X , Lx is a continuous operator, that is there exists a constant Mx > 0 such that
|f(x)| ≤Mx∥f∥H for all f ∈ H. (Note: supxMx =∞ is allowed.)

In the last section, it has been shown that Mx = κ when p = 1. Obviously, for any
p > 1 and f ∈ Hkp , we have ∥f∥2Hkp

≥ λ1−p
1 ∥f∥

2
Hk

. Thus,Hkp is still an RKHS when p > 1.
However, when p < 1, it is easy to construct an example whereHkp is not an RKHS.

kp is an example of an STK, and {kp}p≥1 forms a chain of function classes: L2(PX ) ⊃
Hk1 ⊃ Hk1.5 ⊃ Hk2 ⊃ · · · , as illustrated in Figure 5.5. We say that any function f ∈ Hks

is smooth w.r.t. the kernel ks, and the diffusion process inducesmultiscale smoothness.
The kernel metric of kp is dkp(x, x′) = ∥kp(x, ·)− kp(x′, ·)∥Hkp

=
∑
λpi (µi(x) − µi(x

′))2,
which is equivalent to the diffusion distance defined in [29].

The key result of this section is the generality of STK. Suppose the target function is
smooth w.r.t. a certain measure of smoothness. Then, under some mild conditions, the
class of all smooth functions under this measure must be the RKHS of some STK. This
is a quite insightful result because it essentially says that if we know how to deal with
Hks , then we can deal with almost any kind of downstream task.

Specifically speaking, each kp defines a measure of smoothness. We are interested
in a certain measure of smoothness called the target smoothness, which satisfies the
following condition: For any two functions f1 and f2, if all kp say that f1 is smoother than
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f2, then the target smoothnessmust also say that f1 is smoother than f2. This is called the
condition of preserving relative smoothness. This is a weak condition, because usually
f1 is smoother at some scale p while f2 is smoother at some other scale q. However, if
f1 is smoother at all scales, then it must also be smoother under the target smoothness.
In addition, there are two more assumptions: (i) All smooth functions under the target
smoothness form a Hilbert spaceHt; (ii)Ht ⊆ Hk.

To prove the result, we need to formally define the term “smoothness”.
Definition 5.21. For any Hilbert space H ⊂ L2(PX ), the smoothness of f ∈ H w.r.t. H is

defined as rH(f) =
∥f̃∥2

PX

∥f̃∥2Hks

.

Smoothness is an alias of compatibility, because rH(f) ≥ (1 − ϵ)2 is equivalent to f
being (1− ϵ)-compatible withH as per Definition 5.6. The key result is as follows.
Theorem 5.22 (Proof in Appendix D.5). Suppose Ht ⊆ Hk preserves relative smoothness:
for any f1, f2 ∈ L2(PX ), if rHkp

(f1) ≥ rHkp
(f2) for all p ≥ 1, then rHt(f1) ≥ rHt(f2). Then,Ht

is an RKHS, whose reproducing kernel is an STK for a transformation function s such that:
(i) s is monotonically non-decreasing;
(ii) s(λ) ≤Mλ for some constantM > 0;
(iii) s is continuous on [0,+∞);
(iv) s is C∞ on (0,+∞).

STKR is the generalization of contexture learning from representation learning to
semi-supervised learning. In semi-supervised learning, STKR is usually much more
efficient than extracting the top-d eigenspace. The following is a popular example.
Example 5.23 (Inverse Laplacian). For η ∈ (0, λ−1

1 ), define ks such that ks−1(x, x′) = k−1(x, x′)−
ηk0(x, x′). k−1 and k0 are STKs with s(λ) = λ−1 and s(λ) = λ0. Then, the reciprocal of s is
given by s−1(λ) = λ−1 − η > 0 for λ ∈ (0, λ1], which means that s(λ) = λ

1−ηλ
=
∑∞

p=1 η
p−1λp,

and ∥f∥2Hks
= ∥f∥2Hk

− η∥f∥2PX
.

The inverse Laplacian used to be very popular for semi-supervised learning, because
it can be implemented very efficiently via a method called label propagation [170, 171].

5.4 Implementation andGeneralizationAnalysis of STKR
Now we develop the algorithms for STKR for a wide variety of STKs, including the in-
verse Laplacian. After that, we derive generalization bounds for the algorithms. In par-
ticular, we consider polynomial STKs with s(λ) =∑∞

p=1 πpλ
p, where πp ≥ 0 for all p.

Since ks =
∑∞

p=1 πpk
p, it suffices to show how to estimate kp. For example, when

p = 2, we have k2(x, x′) =
∫
k(x, z)k(x′, z)dPX (z) ≈ 1

m+n

∑m+n
i=1 k(x, xi)k(x

′, xi), that is
we estimate k2 by Monte Carlo. Here, xm+i = x̃i. Recall that KRR does not use the
m unlabeled samples at all, but here we can make use of the unlabeled samples when
estimating kp. Similarly, we can estimate kp for all positive integer p as follows:

1. Compute Gram matrixGk ∈ R(m+n)×(m+n), whereGk[i, j] = k(xi, xj).
2. Let k̂1 = k. Define vk(x) ∈ Rm+n as vk(x)[i] = k(x, xi).
3. Compute k̂p(x, x′) = vk(x)

⊤Gp−2
k vk(x

′)

(m+n)p−1 iteratively for p = 2, 3, · · · .
Then, an estimate of ks is given by k̂s =

∑∞
p=1 πpk̂

p. One difference is that previously
we only use the m unlabeled samples to estimate the top-d eigenfunctions, but here we
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Algorithm 3 STKR-Prop for simple s
Input: Gk,Gk,n, F , s, βn, y, γ, ϵ
1: Initialize: α̂← 0 ∈ Rn

2: while True do
# Compute u = (Gk̂s,n

+ nβnIn)α̂

3: α̃← 1
m+n

Fα̂, v ← 0 ∈ Rm+n

4: for p = q, · · · , 2 do v ← Gkv
m+n

+ πpα̃

5: u← F⊤v + π1Gk,nα̂+ nβnα̂
6: if ∥u− y∥2 < ϵ∥y∥2 then return α̂
7: α̂← α̂− γ(u− y)

Algorithm 4 STKR-Prop for simple s−1

Input: Gk, s−1(λ), βn, y, γ, ϵ
1: Initialize: θ ← 0 ∈ Rm+n, ỹ ← [y,0m]

⊤

2: while True do
# Compute u = Mθ

3: v ← 0 ∈ Rm+n

4: for p = q − 1, · · · , 0 do v ← Gkv
m+n

+ ξpθ

5: u←
[(

Gr
k

(m+n)r−1θ
)
[1 : n],0m

]⊤
+ nβnv

6: a← u− ỹ, θ ← θ − γa
7: if ∥a∥2 < ϵ∥y∥2 then return θ

use all (m+ n) samples to estimate k̂s. This difference is small in practice provided that
m≫ n. Later we will see why we can use all (m+ n) samples in this situation.

We useGk,n ∈ Rn×n to denote the Gram matrix on the n labeled samples, and define
vk,n(x) ∈ Rn as vk,n(x)[i] = k(x, x̃i). Similarly, define Gks,n,vks,n,Gk̂s,n

and vk̂s,n
. Let f̃

and f̂ be the predictor obtained from KRR with ks and k̂s, respectively. The following
closed-form formulas can be derived from the Representer Theorem:f̃(x) = vks,n(x)

⊤α̃, α̃ = (Gks,n + nβnIn)
−1y;

f̂(x) = vk̂s,n
(x)⊤α̂, α̂ =

(
Gk̂s,n

+ nβnIn

)−1

y.
(5.6)

Here, y = [y1, · · · , yn]. To obtain f̂ , it suffices to solveAα̂ = y forA = Gk̂s,n
+nβnIn.

Let us consider two scenarios: (i) s is simple: For some q, πp = 0 for all p > q; (ii) s−1 is
simple: s−1(λ) =

∑q−1
p=0 ξpλ

p−r, such as the inverse Laplacian. Here “simple” means that
the polynomial contains only a few terms.

For scenario (i), directly computing A is slow because it involves lots of matrix-
matrix multiplications. A faster alternative is iterative methods, such as Richardson it-
eration [119], which solves a linear system Ax = b by iteratively computing x(t+1) =
x(t) + γ(b − Ax(t)) for some γ > 0. Richardson iteration is guaranteed to converge to
the solution when γ is chosen correctly. While computing A is slow, computing Ax(t)

is very efficient because it only involves matrix-vector multiplication. This method is
called STKR propagation (STKR-Prop), because it is a generalization of label propaga-
tion (Label-Prop) for the inverse Laplacian. Define F ∈ R(m+n)×n as F [i, j] = k(xi, x̃j).
The algorithm is listed in Algorithm 3.

The next question is, given α̂, how to efficiently compute f̂(x) for a test input x? We
do not want to compute vk̂s,n

(x), which involves another set of matrix-vector multiplica-
tions. An efficient way is that we can store the v computed in line 4 of Algorithm 3 in
the memory. Then, f̂(x) =∑m+n

i=1 k(xi, x)v[i] +π1
∑n

j=1 k(x̃j, x)α̂[j] for any x ∈ X , which
only needs O(m+ n) time to compute.

For scenario (ii)where s could be complex but s−1(λ) =
∑q−1

p=0 ξpλ
p−r is simple, we can

no longer estimate Gk̂s,n
α. However, we can do the following transformation: Let Q =∑q−1

p=0 ξp
(

Gk

m+n

)p. Then, we haveGk̂s
Q = (m+ n)

(
Gk

m+n

)r, whereGk̂s
∈ R(m+n)×(m+n) is the

Grammatrix of k̂s on all (m+ n) samples. Therefore, we can efficiently computeGk̂s
Qx

for any vector x, and this motivates us to find a θ ∈ Rm+n such that Qθ = [α̂,0m]
⊤. To

solve for θ, we need (m + n) linear equations. The last m elements of Qθ are all zero,
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which provides us with m linear equations. Since Aα̂ = y, the first n elements of AQθ
must be y, which provides us with another n linear equations. Overall, we can find θ by
solvingMθ = ỹ, where

M = (m+ n)Ĩn

(
Gk

m+ n

)r

+ nβnQ, ỹ = [y,0m]
⊤.

Here, Ĩn = diag{1, · · · , 1, 0, · · · , 0}, with n ones and m zeros. Once again, we can solve
for θ using Richardson iteration. The algorithm is listed in Algorithm 4. After running
this algorithm, we can store ( Gk

m+n

)r−1
θ in the memory. Then, for any test input x, we can

compute f̂(x) with f̂(x) = vk(x)
⊤( Gk

m+n

)r−1
θ in O(m+ n) time.

Next, let us study the time complexity of these two algorithms. Assume that com-
puting k(x, x′) for any x, x′ ∈ X takes O(1) time. To start with, let us review a classical
result about Richardson iteration.
Lemma 5.24. Consider solvingAx = b with Richardson iteration, whereA ∈ Rn×n is positive
definite, and x, b ∈ Rn. Let λmax and λmin be the largest and smallest eigenvalue of A, and let
τ = λmax

λmin
be the condition number of A. Then, by choosing γ = 2

λmax+λmin
and setting the stop

criterion as
∥∥x(t+1) − x(t)

∥∥
2
< ϵ∥b∥2, the iteration stops in O

(
τ log 1

ϵ

)
steps.

Proof Let x∗ be the solution such that Ax∗ = b. By x(t+1) = x(t) + γ(b − Ax(t)), we
have x(t+1) − x∗ = (In − γA)(x(t) − x∗). If we start with x(0) = 0, then this implies that
x∗ − x(t) = (In − γA)tx∗. When γ = 2

λmax+λmin
, we have

∥∥x∗ − x(t)
∥∥
2
≤ ∥In − γA∥t2∥x

∗∥2 =
(
1− 2λmin

λmax + λmin

)t

∥x∗∥2 ≤ exp

(
− 2λmint

λmax + λmin

)
∥x∗∥2.

This implies that
∥∥x(t+1) − x(t)

∥∥
2
≤ 2 exp

(
− 2λmint

λmax+λmin

)
∥x∗∥2 ≤ 2 exp(− t

τ
)∥x∗∥2. Thus,

the iteration stops when t = O
(
τ log 1

ϵ

). Moreover, when the iteration stops, we have∥∥Ax(t) − b
∥∥
2
= γ−1

∥∥x(t+1) − x(t)
∥∥
2
< γ−1ϵ∥b∥2.

Let λ1 be the largest eigenvalue of Tk. Whenm and n are sufficiently large, the largest
eigenvalue ofGk̂s,n

is close to ns(λ1). Meanwhile, the smallest eigenvalue ofA = Gk̂s,n
+

nβnIn is at least nβn. Therefore, τ can be upper bounded byO(β−1
n s(λ1)). Moreover, each

iteration in Algorithm 3 has a time complexity of O((m + n)2q). Thus, the overall time
complexity of Algorithm 3 is O((m+ n)2qβ−1

n s(λ1) log
1
ϵ
).

For Algorithm 4, the analysis is similar but muchmore complex. We have the follow-
ing result regarding its time complexity.
Theorem 5.25 (Proof in Appendix D.6). Let ρ(λ) = λr

s(λ)
=
∑q−1

p=0 ξpλp, where ρ(0) = ξ0 >

0. Then, ρ(λ) is a continuous function on [0,+∞). Denote its maximum and minimum on
[0, λ1] by ρmax and ρmin. Then, with γ = (nλr1)

−1, Algorithm 4 has a total time complexity of
O
(
(m+ n)2

max {q,r}λr
1β

−1
n

ρmin
log
[
max

{
1
ϵ
,

λr
1ρmax∥y∥2

nβ2
nρ

2
min∥α̂∗∥2

}])
, where α̂∗ is the exact solution.

We have seen how to implement STKR when s is a polynomial. Now let us derive
the generalization bound for the general STKR. Define the following function class:

Fϵ(Hks) =
{
f ∈ Hks

∣∣∣ ∥f∥2Hks
≤ ϵ∥f∥2PX

}
.
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This class is similar to FHk
(P+), and it contains functions with smoothness at least ϵ−1

w.r.t. Hks . Our result consists of an approximation error bound and an estimation er-
ror bound. Recall the definition of f̃ and f̂ in Eqn. (5.6). The approximation error is
the gap between f̃ and f ∗, and the estimation error is the gap between f̂ and f̃ . The
approximation error can be bounded by the result in [41].
Theorem 5.26 (Proof in Appendix D.7). Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of Tk. LetM
be given by Theorem 5.22. Suppose the moment condition Eqn. (5.3) holds, and the eigenvalues
decay by order p−1 for some p ∈ (0, 1], that is s(λi) = O(i−

1
p ) for all i. Choose βn = Θ(n− 1

1+p ).
Then, there exists a constant c0 > 0 independent of n ≥ 1 and τ ≥ κ−1M− 1

2 (recall that
κ2 = ∥k∥∞), such that∥∥∥f̃ − f ∗

∥∥∥2
PX
≤ c0τ

2κ2M
[(
ϵ∥f ∗∥2PX

+ σ2
)
n− 1

1+p +max
{
L2, κ2Mϵ∥f ∗∥2PX

}
n− 1+2p

1+p

]
holds for all f ∗ ∈ Fϵ(Hks) with probability at least 1− 4e−τ , given that n is sufficiently large.

Remark 5.27. [41] showed that the learning rate O(n− 1
1+p ) is minimax optimal, which means

that one can construct an example where the learning rate is at most O(n− 1
1+p ). When κ2 =

∥k∥∞ <∞, one can always choose p = 1 because i · s(λi) ≤
∑i

j=1 s(λj) ≤M
∑
λj ≤Mκ2.

Regarding the estimation error, we prove the following result.
Theorem 5.28 (Proof in Appendix D.8). Let λ̂1 be the largest eigenvalue of Gk

m+n
, and denote

λmax = max
{
λ1, λ̂1

}
. Then, for any δ ∈ (0, 1), with probability at least 1− δ we have

∥∥∥f̂ − f̃∥∥∥2
PX
≤ 8s(λmax) ∇λ

(
s(λ)

λ

)∣∣∣∣
λ=λmax

β−2
n κ4√
m+ n

(
2 +

√
2 log

1

δ

)
∥y∥22
n

.

This result requires λ̂1, for which there is the following result.
Lemma 5.29 ([125], Theorem 2). For any δ ∈ (0, 1), with probability at least 1− δ we have

λ̂1 ≤ λ1 +
κ2√
m+ n

[
2
√
2 +

√
19 log

2(m+ n+ 1)

δ

]
.

The key to prove Theorem 5.28 is using the complexity of Hks to prove a uniform
deviation bound for

∣∣∣k̂s(x, xi)− ks(x, xi)∣∣∣ for all x and i. Thus, we can see why we only
used the m unlabeled samples to extract the top-d eigenspace, but can use all (m + n)
samples in STKR. The reason is that for uniform deviation bounds, the function class
must be independent of the training samples. For the top-d eigenfunctions, the down-
stream function class is the span of ϕ1, · · · , ϕd, and the proof of Theorem 5.12 was based
on this function class. This function class depends on them unlabeled samples. If the n
labeled samples were also used, then the uniform deviation bound would not hold. On
the other hand, in Theorem 5.28, the function class if Hks , which is independent of all
(m+ n) samples. Hence, we can use all the (m+ n) samples in STKR.

5.5 Empirical Study of Contexture Learning and STKR
This section conducts some experiments on STKR with the following goals:
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Classes Nodes Edges Train Validation
Cora 7 2,708 10,556 5.17 18.46
CiteSeer 6 3,327 9,104 3.61 15.03
PubMed 3 19,717 88,648 0.3 2.54
Amazon - Computers 10 13,752 491,722 1.45 1.45
Amazon - Photos 8 7,650 238,162 2.09 2.09
Coauthor - CS 15 18,333 163,788 1.64 1.64
Coauthor - Physics 5 34,493 495,924 0.29 0.29
DBLP 4 17,716 105,734 0.45 0.45
CoraFull 70 19,793 126,842 7.07 7.07

Table 5.1: Number of classes, nodes, edges, and fractions (%) of train/validation sets.

(i) Verify that STKR-Prop (Algorithms 3 and 4)workswith general polynomial s, such
as the inverse Laplacian, and compare them to label propagation (Label-Prop).

(ii) Explore possible reasons why the inverse Laplacian works so well in practice, by
examining the effect of p on the performance when using STKR with s(λ) = λp.

(iii) Compare extracting the top-d eigenspace with STKR and Label-Prop.
The experiments here focus on graph node classification tasks. The datasets used

are listed in Table 5.1, and they all come from the PyTorch Geometric library [40]. Each
dataset is split into four sets: train, validation (val), test and other. Among them, train
and val contain labeled samples, while test and other contain unlabeled samples. Both
the transductive and the inductive settings are tested.

• In the transductive setting, the samples in all four sets are available at train time.
The learner hides the labels of val samples for validation. Thus, n is the size of the
train set, whilem is the size of all other three sets combined.

• In the inductive setting, samples in the test set are invisible at train time. The
learner hides the entire val set (samples and labels) for validation. Thus, n is the
size of the train set, whilem is the size of the other set.

Label propagation (Label-Prop) only works for the transductive setting, and is im-
plemented as follows: LetW be the adjacency matrix of the graph, such thatW [i, j] = 1
if xi and xj are connected, and 0 otherwise. Let D be a diagonal matrix such that
D[i, i] =

∑
j W [i, j]. Let S = D− 1

2WD− 1
2 . Following [170], Label-Prop solves

(Im+n − ηS)ŷ = ỹ, where y = [y,0m].

Then, ŷ contains the predicted labels for all (m+ n) samples. On the other hand, STKR
works for both transductive and inductive settings. Its base kernel k is defined as

k(x, x′) = (m+ n)
W (x, x′)√
D(x)D(x′)

,

whereW (xi, xj) = W [i, j]. For the transductive setting,D(xi) = D[i, i]; for the inductive
setting, D(xi) =

∑
j /∈ test nodesW (xi, xj), that is the sum is taken over only visible nodes.

We use 1% of the samples as test samples. Each experiment is run with 10 random
seeds for splitting the dataset. The results are reported in Table 5.2, fromwhichwemake
the following observations:

• STKR works pretty well with general polynomial s(λ) in the inductive setting. In
the transductive setting, the performance of STKR-Propwith the inverse Laplacian
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CS CiteSeer Computers Cora CoraFull DBLP Photo Physics PubMed

LP (t) 79.072.19 52.737.72 77.303.05 73.336.00 54.473.24 66.443.78 83.955.78 84.334.86 72.285.55

Lap (t) 78.962.53 52.127.67 77.813.94 77.045.74 53.812.34 65.425.02 84.086.52 84.224.86 71.934.86
Poly (t) 79.132.29 48.798.51 76.724.12 71.485.80 53.253.54 64.524.20 79.217.20 84.454.89 72.184.66
Topd (t) 78.803.22 46.061.08 80.803.06 69.267.82 50.362.85 64.864.60 84.616.30 83.202.25 65.385.66
Lap (i) 78.422.81 46.066.97 77.152.64 67.787.62 53.303.24 65.204.92 84.875.66 83.115.09 70.364.80
Poly (i) 79.022.42 44.559.15 71.974.13 65.199.11 51.983.88 64.524.05 78.427.80 84.684.83 70.764.28
Topd (i) 79.133.35 41.526.71 80.803.28 63.706.00 47.413.39 63.163.41 85.535.68 82.443.88 64.314.95
KRR (i) 13.112.29 13.645.93 26.354.34 28.528.56 19.802.22 44.803.86 33.957.07 19.741.46 20.762.06

Table 5.2: The test accuracy (%) of Label-Prop (LP), STKR-Prop with inverse Laplacian
(Lap), with polynomial s(λ) = λ8 (Poly), with kernel PCA (Topd), and with s(λ) = λ
(KRR). (t) and (i) indicate transductive and inductive. Standard deviations are given
across ten random seeds. Best/second-best results are in bold/underlined.
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Figure 5.6: Performance of STKR-Prop with s(λ) = λp and 8 iterations. The best βn with
the highest test accuracy is selected. Each experiment is run with 10 random seeds.

is similar to Label-Prop, and STKR-Prop with polynomial s is slightly worse. The
performance under the inductive setting is slightlyworse than that under the trans-
ductive setting, which is reasonable since there is less information at train time for
the inductive setting. It is also worth noting that the running time of STKR-Prop is
similar to that of Label-Prop with the same number of iterations.

• STKR with s(λ) = λp for p > 1 is much better than KRR (where p = 1). Moreover,
we test STKR with s(λ) = λp for more choices of p ∈ {1, 2, 4, 6, 8}, and report the
results on three data sets in Figure 5.6. It is clear that a larger p leads to higher
performance. This suggests one possible reason why inverse Laplacian works so
well empirically: It contains kp for p = 1, 2, · · · , so it can use multi-step similarity
information up to infinitely many steps.

• Extracting the top-d eigenspace with kernel PCA can achieve pretty high perfor-
mance. Specifically, on 3 of the 9 datasets we use, such as Computers, STKR with
top-d truncation is better than Label-Prop and STKR with inverse Laplacian. This
shows that STKRwith inverse Laplacian and STKRwith top-d truncation plus ker-
nel PCA are two parallel methods—neither is superior to the other one.

In conclusion, this chapter first derived generalization bounds for contexture learn-
ing, that is extracting the top-d eigenspace with finite samples. The key quantity is the
context complexity, which reflects the smoothness of the eigenfunctions. Next, this chap-
ter introduced a more general formulation called STKR, and presented its implementa-
tion as well as generalization bounds. The key takeaway from this chapter is how the
context affects the sample complexity of representation learning.

70



Chapter 6

Generalization Under Distribution Shift

The contexture theory characterizes the mechanism of representation learning, thereby
advancing the science of foundationmodels. However, one main assumption of the con-
texture theory is that the data distribution PX is fixed. This is a very strong assumption
that is hardly true in practice. In reality, the distributions of the pretrain data and the
downstream data are always different. Whether a model trained on one distribution can
still achieve good performance on another distribution is called the problem of out-of-
distribution (OOD) generalization. The main takeaway from this chapter is that OOD
generalization is extremely hard, both in theory and in practice.

There is a rich body of work on OOD generalization in machine learning, statistics,
applied probability and optimization [12, 68, 115, 128]. In deep learning, there are two
types of research on OOD generalization. The first type studies how to transfer a model
trained on one domain to another domain, also known as transfer learning [111] or do-
main adaptation [151]. The second type studies how to train robust models against
distribution shift, that is preserving the model’s performance on the new distribution.
Such research is valuable in safety-critical applications or domains where the data is
constantly changing, such as finance. Both types of research are relevant to foundation
models. For example, how to apply an LLM trained onWikipedia to a dataset of Python
codes is the first type of research. How to make sure that an LLM always generates
proper responses to prompts it has never seen is the second type of research. The first
type ismore related to the fine-tuning stage rather than the representation learning stage
of foundation model training. Therefore, this chapter focuses on the second type.

In representation learning, a foundation model is pretrained on one distribution P ,
and then applied to another distribution Q. This chapter studies an easier problem,
which is the standard problem in the literature: A predictor is trained on P and then
evaluated on Q. We assume that the distribution shift only contains covariate shift,
where the ground truth target function is always fixed, and only the distribution of X
changes. In practice, there are two types of covariate shift [88].

• In domain generalization, the support of Qmight contain samples that are not in
the support of P . This is the typical scenario in domain adaptation.

• In subpopulation shift, the support of Q is a subset of the support of P . Alterna-
tively we can writeQ≪ P , that isQ is absolutely continuous to P . Mathematically
this means that for any set A, P (A) = 0 implies Q(A) = 0.

In the context of foundation models, it suffices to study subpopulation shift. There
are twomain reasons. First, the pretraining set is very large, so it is very unlikely to have
test samples that do not appear in the pretraining set. Second, even in domain adapta-
tion, the common practice is to fine-tune the foundation model on the new distribution
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before using it. It is rarely the case that a model is used on a completely new distribution
without any fine-tuning. For these reasons, this chapter focuses on subpopulation shift
exclusively.

6.1 Reweighting and DRO
In subpopulation shift, P and Q are different distributions on the same set of samples.
Thus, one can viewQ as assigning different weights to the samples than P . For example,
given a training set {(xi, yi)}ni=1, P is usually defined as the uniform distribution over the
n samples, whileQ gives differentweights to these samples. Since themodel is evaluated
on Q, we care more about those samples where Q place larger weights than P , because
these samples have greater impact on the evaluation. We call them upweighted samples.

Empirical risk minimization (ERM) is the standard training algorithm in deep learn-
ing. It assumes that the training samples are i.i.d. sampled from the data distribution,
and minimizes the average model risk over the training samples. Let ℓ(ŷ, y) be the loss
function. Then, ERM minimizes the following empirical risk:

R̂ERM(f) =
1

n

n∑
i=1

ℓ(f(xi), yi).

However, if P and Q give different weights to the samples, then ERM could achieve
low performance onQ if its risk on the upweighted samples on higher than average [14,
67, 137]. One common example of this is class imbalance, whichwas briefly discussed in
Section 2.1. In a classification task, if some classes are significantly smaller than the other
classes, then amodel trained via ERMwill typically have high risk on these small classes.
However, the model is required to have good performance on every class, meaning that
Q places larger weights on these small classes than P . As a result, the ERM model is
poor in the class imbalance situation.

Given the above discussion, the most straightforward way to tackle the subpopu-
lation shift is reweighting, also known as importance weighting [128]. The idea is to
assign a different weight P ′ to the samples in the training loss, such that P ′ = Q. The
importance weighting (IW) empirical risk is

R̂IW(f) =
1

n

n∑
i=1

Q(xi)

P (xi)
ℓ(f(xi), yi).

Note that P (x) and Q(x) are the weights of x, and they are not necessarily the density
functions. For example, in class imbalance, P (x) is proportional to the size of the class
of x. If the goal is to have good performance on every class, thenQ(x) is the same for all
x. Consequently,RIW divides the loss on each sample by its class size, thereby assigning
larger weights to samples in smaller classes. Note that this is different from Eqn. (2.2),
which divides the sample loss by the square root of its class size.

Importance weighting assumes that we knowQ at train time. What ifQ is unknown?
This is the more common case in training foundation models. The pretraining dataset is
a very large and comprehensive dataset, while the downstream task usually focuses on
only one domain, that is a small part of the pretraining data. However, since wemay not
know the downstream task at pretrain time, we do not knowwhich data it will focus on.

Distributionally robust optimization (DRO) is the most popular approach when
Q is unknown. It aims to minimize the model risk on the worst Q whose distance to P
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is bounded by some ρ > 0. The distance from one distribution to another is also known
as a divergence function, and is denoted byD(Q ∥ P ). Note thatD(Q ∥ P )might not be
symmetric, that is we could have D(Q ∥ P ) ̸= D(P ∥ Q). The DRO risk is defined as

RD,ρ(f ;P ) = sup
Q

{
E(X,Y )∼Q[ℓ(f(X), Y )]

∣∣ D(Q ∥ P ) ≤ ρ
}
. (6.1)

The constraint D(Q ∥ P ) ≤ ρ comes from our prior knowledge about Q. The following
are two examples of DRO.
Example 6.1. Conditional value at risk (CVaR) [38, Example 3] aims to maximize the
model’s performance on the worst α fraction of the data, for some fixed α ∈ (0, 1). For exam-
ple, CVaR is widely used in finance, where the model needs to perform well when the market is at
its lowest point. In this scenario, we have Q(x) ≤ α−1P (x) for all x, that is the sample weight
under P is at least α times the weight under Q. Thus, D(Q ∥ P ) = sup Q(x)

P (x)
, and ρ = α−1.

Example 6.2. In group DRO (GDRO) [121], the data is divided into a number of groups, and
the model is required to perform well on the worst group. This is a common scenario in the field
of machine learning fairness. For example, a credit approval model is required to be fair across all
races. Then, the groups are defined by the races. In this case, P (x) and Q(x) are the weights on
the group of x, D(Q ∥ P ) = sup Q(x)

P (x)
, and ρ is the number of groups.

Both reweighting and DRO are quite heuristic, but do they actually work in practice?
The results are mixed. For example, balancing the classes can usually give the model
higher performance on small classes, but at the cost of the average performance. Mean-
while, [121] showed that reweighting andDROmethods can overfit very easily, and they
usually requiremuch stronger regularization than ERM, or early stopping. Furthermore,
[51] conducted a large-scale empirical study, and showed the surprising negative result
that reweighting are not better than ERM onmost real datasets. The authors argued that
reweighting were reported better in prior work only because the ERM baseline had not
been sufficiently tuned.

The rest of this chapter will show two reasons why reweighting and DROmight fail.
The first reason is related to the training dynamics of these methods. The second reason
is related to their sensitivity to the outliers in the dataset. Possible solutions to each
failure mode will be discussed. These analyses are based on my work [164, 165, 166].

6.2 Generalized Reweighting (GRW) Versus ERM
Let the input space be X ⊆ RdX , and we assume that all x ∈ X satisfies ∥x∥2 ≤ 1.
Consider learning a target function f ∗ : X → R using a training set {(xi, yi)}ni=1. Denote
X = (x1, · · · , xn) ∈ RdX×n, and Y = (y1, · · · , yn) ∈ Rn. For any function g : X 7→ Rm, we
overload notation and denote g(X) = (g(x1), · · · , g(xn)) ∈ Rm×n.

The difference between reweighting and DRO is that Q is fixed in reweighting are
fixed, while it is not in DRO. Here we present a general formulation called generalized
reweighting (GRW). At training step t, GRWminimizes the following weighted empir-
ical risk:

R̂q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi), (6.2)

where q(t) = (q
(t)
1 , · · · , q(t)n ) is the sample weight vector, such that q(t)1 + · · · + q

(t)
n = 1.

If q(t) does not change with t, we call it static GRW; if q(t) can change with t, we call it
dynamic GRW. Note that ERM is a special case of static GRW.
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Importance weighting is obviously an example of static GRW. Group DRO is an ex-
ample of dynamic GRW, and here is how it is usually implemented. Let there be K
groups. Denote the empirical risk over group k by R̂k(f), and the model at time t by
f (t). For all k ∈ [K], group DRO iteratively sets q(t)i = g

(t)
k /nk for all (xi, yi) in group k,

where g(t)k is the group weight that is updated by

g
(t)
k ∝ g

(t−1)
k exp

[
νR̂k

(
f (t−1)

)]
for some ν > 0. The group weights are normalized so that q(t)1 + · · · + q

(t)
n = 1. [121,

Proposition 2] showed that for convex settings, the GroupDRO risk of iterates converges
to the global minimum with the rate O(t−1/2) if ν is sufficiently small.

The key result of this section is that GRW cannot improve over ERM, because the
models they produce are too similar. It relies on two key assumptions. First, the model
is over-parameterized, meaning that the number of parameters is (much) greater than
the number of samples. This is the usual case in deep learning. Second, the optimizer is
gradient descent with a sufficiently small learning rate. Our results also hold for other
gradient methods such as momentum SGD and Adam, as long as the training loss con-
verges to zero.

Let us first gain some insights from linear models, using an analysis similar to [52].
Then, we will study neural networks.

Insights from linearmodels. Consider a regression task, where the loss ℓ(ŷ, y) = 1
2
(ŷ−

y)2 is the squared loss. Consider using a linear model denoted by f(x) = ⟨θ, x⟩ for
θ ∈ RdX . We assume that the model is over-parameterized, that is dX > n. The weight
update rule of GRW under gradient descent (GD) is the following:

θ(t+1) = θ(t) − η
n∑

i=1

q
(t)
i ∇θℓ(f

(t)(xi), yi) = θ(t) − η
n∑

i=1

q
(t)
i (f (t)(xi)− yi)xi, (6.3)

where η > 0 is the learning rate. We now show that, under some assumptions, as t→∞,
θ(t) must converge to a common θ∗ for all GRW and ERM methods. The proof consists
of two steps. First, we prove that the training loss will converge to zero. In this case, as
long as x1, · · · , xn are linearly independent, θ∗ must be an interpolator, whichmeans that
⟨θ∗, xi⟩ = yi for all i ∈ [n]. Second, we prove that there is a unique interpolator θ∗. The
interpolator only depends on the starting point θ(0) and the training samples, but it does
not depend on the sample weights q(t). These results require the following assumption
about the sample weights.

Assumption 6.3. There are constants q1, · · · , qn such that for all i ∈ [n], there is q(t)i → qi as
t→∞. Moreover, mini qi = q∗ > 0.

This assumption says two things. First, the sample weights become stable after a
sufficient amount of training. It guarantees that the training loss will not change too
much between two consecutive training steps. Second, all samples have positiveweights,
which means that no sample is deleted from the training set. This is important because
the unique θ∗ depends on the training samples. If samples were deleted, θ∗ would not
be the same. The following theorem shows that the training loss will converge to zero.
Theorem 6.4 (Proof in Appendix E.1). If x1, · · · , xn are linearly independent, then there
exists a constant η0 > 0 such that: For any GRW algorithm satisfying Assumption 6.3, under
the update rule Eqn. (6.3) with η ≤ η0, the empirical ERM risk R̂ERM(f (t))→ 0 as t→∞.
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(a) Weight difference (µ = 0)

(b) Training loss (µ = 0)

(c) Weight difference (µ = 0.1)

(d) Training loss (µ = 0.1)
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Figure 6.1: Experiment results of ERM, importance weighting (IW) and group DRO
(GDRO) with the squared loss and L2 regularization on six MNIST images with a linear
model. µ is the regularization coefficient. All norms are L2 norms.

When x1, · · · , xn are linearly independent, Eqn. (6.3) implies that θ(t+1)−θ(t) is always
a linear combination of x1, · · · , xn. As a result, for all t, θ(t) − θ(0) ∈ span{x1, · · · , xn}.
This is an n-dimensional subspace of Rd. By Cramer’s rule, there is exactly one θ̃ in this
subspace such that ⟨θ̃+ θ(0), xi⟩ = yi for all i ∈ [n]. Therefore, θ∗ = θ̃+ θ(0) is unique and
independent of the sample weights. It only relies on θ(0) and x1, · · · , xn.

Finally, note that ERM is a special case of GRW. Thus, GRW produces the exact same
model as ERM, so it cannot improve over ERM. One way to solve this problem is adding
regularization. The regularization has two effects: (i) moving θ(t+1) − θ(t) out of the
span of x1, · · · , xn; (ii) preventing the model from achieving zero loss, that is interpo-
lating the training samples. Another solution is to add some new samples to (via data
augmentation for example), or delete som samples from the dataset.

Let us demonstrate this result with a simple experiment. The experiment is con-
ducted on a training set of six MNIST images, five of which are digit 0 and one is digit 1.
The two different digits define two groups. We use a 784-dimensional linear model and
run ERM, importance weighting and group DRO (with ν = 1). The results are reported
in Figure 6.1, in which (a) and (b) are the results when no regularization is applied.
From (a) we can see that the three models will converge to the same θ; from (b) we can
see that the training loss of all three models will converge to zero. Then, we apply L2

regularization and run the experiment again. From (c) and (d)we can see that when the
regularization is small, the training loss will still converge to zero, and the three models
will still converge to the same θ. From (e) and (f) we can see that the three models con-
verge to different points only when the regularization is so large that the training loss
does not converge to zero.

To conclude, we gain the following insight from the above analysis: Without a very
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large regularization, early stopping or altering the training set, GRW and ERMwill pro-
duce very similar models, so GRW cannot be better than ERM.

Wide neural networks, regression tasks. With this insight, we now study neural net-
works. In particular, we focus on sufficiently wide fully-connected neural networks within
the neural tangent kernel (NTK) regime [77]. The neural network is defined as

hl+1 =
W l

√
dl
xl + βbl ; x0 = x, xl+1 = σ(hl+1). (l = 0, · · · , L)

Here σ is a non-linear activation function,W l ∈ Rdl+1×dl andW L ∈ R1×dL , and d0 = dX .
The parameter vector θ consists of W 0, · · · ,W L and b0, · · · , bL (θ is the concatenation
of all flattened weights and biases). The final output is f(x) = hL+1. A wide neural
network has large d1, · · · , dL. Moreover, the neural network is initialized as{

W
l(0)
i,j ∼ N (0, 1)

b
l(0)
j ∼ N (0, 1)

(l = 0, · · · , L− 1) and
{
W

L(0)
i,j = 0

b
L(0)
j ∼ N (0, 1)

Finally, we assume that σ is differentiable everywhere; and both σ and its first-order
derivative σ̇ are Lipschitz, meaning that there exists a constant L > 0 such that |f(x1)−
f(x2)| ≤ L∥x1 − x2∥2 for all x1, x2. In the rest of this chapter, we will usewide NN to refer
to a neural network that satisfies all the above conditions.

The neural tangent kernel (NTK) is defined as Θ(0)(x, x′) = ∇θf
(0)(x)⊤∇θf

(0)(x′). Our
result is based on the following NTK theorem proved in [77].
Lemma 6.5. If σ is Lipschitz and dl → ∞ for l = 1, · · · , L sequentially, then Θ(0)(x, x′)
converges in probability to a non-degenerate deterministic limiting kernel Θ(x, x′). Here “non-
degenerate” means that Θ(x, x′) depends on x and x′ and is not a constant.

The kernel Gram matrix Θ = Θ(X,X) ∈ Rn×n is a positive semi-definite symmetric
matrix. Denote its largest and smallest eigenvalues by λmax and λmin. Note thatΘ is non-
degenerate, so we can assume that λmin > 0 (which is almost surely true when dL ≫ n).
Theorem 6.6 (Proof in Appendix E.2). Let f (t) be a wide NN trained by any GRW method
satisfying Assumption 6.3 with the squared loss. Let f (t)

ERM be the same model trained by ERM
from the same initial point. Suppose d1 = · · · = dL = d̃, ∇θf

(0)(x1), · · · ,∇θf
(0)(xn) are

linearly independent, and λmin > 0. Then, with a sufficiently small η, for any δ > 0, there
exists D̃(λ) > 0 such that when D̃(λ) ≤ d̃ →∞, with probability at least (1− δ) over random
initialization, there is

lim sup
t→∞

∣∣∣f (t)(x)− f (t)
ERM(x)

∣∣∣ = O(d̃−1/4)→ 0 for all x ∈ Rd such that ∥x∥2 ≤ 1.

This theorem says that on any test point x in the unit ball, the GRW model and the
ERM model produce almost the same output. Thus, the two models must have similar
OOD generalization performance. Note that for simplicity, we only prove for d1 = · · · =
dL = d̃→∞, but the result can be very easily extended to the case where dl/d1 → αl for
l = 2, · · · , L for some constants α2, · · · , αL, and d1 →∞.

The key of proving this theorem is to consider the following linearized neural network:

f
(t)
lin (x) = f (0)(x) +

〈
θ(t) − θ(0),∇θf

(0)(x)
〉
, (6.4)
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which is a linear model w.r.t. ∇θf
(0)(x). If ∇θf

(0)(x1), · · · ,∇θf
(0)(xn) are linearly inde-

pendent (which is almost surely true when themodel is overparameterized so that θ has
a very high dimension), then our previous insight tells us that the linearized network
will converge to the unique interpolator. It then suffices to show that the wide NN can
be approximated by its linearized version uniformly throughout training.

Now let us study the effect of L2 regularization, with which the GRW learning objec-
tive becomes

R̂µ

q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi) +

µ

2

∥∥θ − θ(0)∥∥2
2
. (6.5)

Adding regularization does make a difference to the model regardless of how big µ
is. However, to make it possible for GRW to improve over ERM, the regularization must
be large enough to significantly lower the training performance. Otherwise, the final model
would still be too close to the unregularized ERM model.

Theorem 6.7 (Proof in Appendix E.3). Let f (t)
reg be a regularized wide NN trained by any

GRW algorithm satisfying Assumption 6.3 with the squared loss. Suppose there existsM0 > 0
such that

∥∥∇θf
(0)(x)

∥∥
2
≤ M0 for all ∥x∥2 ≤ 1. Suppose λmin > 0, µ > 0, d1 = · · · = dL = d̃,

∇θf
(0)(x1), · · · ,∇θf

(0)(xn) are linearly independent, and the learning rate is sufficiently small.
If the empirical training risk of f (t)

reg satisfies lim supt→∞ R̂(f
(t)
reg) < ϵ for some ϵ > 0, then as

d̃→∞, with probability close to 1 over random initialization there is

lim sup
t→∞

∣∣∣f (t)
reg(x)− f

(t)
ERM(x)

∣∣∣ = O(d̃−1/4 +
√
ϵ)→ O(

√
ϵ) for all x ∈ Rd such that ∥x∥2 ≤ 1.

Linear models, classification tasks. So far we have been discussing regression tasks.
We now move on to binary classification, where the label space is Y = {+1,−1}, and
the loss is the logistic loss ℓ(ŷ, y) = log(1 + exp(−ŷy)). The big difference here is that the
logistic loss does not have finite minimizers. The logistic loss converging to zero means that
the model weight “explodes” to infinity instead of converging to a finite point.

Again consider the linear model f(x) = ⟨θ, x⟩. Prior work has shown a couple of
negative results under this setting. For example, [19] empirically observed that impor-
tance weighting does not improve over ERM for linear models, and [162] proved that for
importance weighting, as t→∞, ∥θ(t)∥2 →∞ and θ(t)/∥θ(t)∥2 converges to a unit vector
that does not depend on the sample weights, so it does not improve over ERM.

We extend these results to GRW. First, we show that when the training error goes to
zero, θ(t) will converge to the max-margin classifier defined as

θ̂MM = argmax
θ:∥θ∥2=1

{
min

i=1,··· ,n
yi · ⟨θ, xi⟩

}
.

Theorem 6.8 (Proof inAppendix E.4). Suppose x1, · · · , xn are linearly independent. Suppose
we use GRW such that for all i ∈ [n], lim inft→∞ q

(t)
i > 0. As t→∞, if the empirical risk R̂(f (t))

converges to zero and θ(t)/
∥∥θ(t)∥∥

2
→ u for some unit vector u, then u = θ̂MM.

This result is an extension of [133]. It implies that all GRWmethods including ERM,
if converge, must converge to the same point θ̂MM that does not depend on the sample
weights q(t)i . Next, we show that any GRW satisfying Assumption 6.3 does converge.
Definition 6.9. A first-order differentiable function f on D is called L-smooth for L > 0 if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥22 for all x, y ∈ D.
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An equivalent definition is that f is L-smooth if it satisfies

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 for all x, y ∈ D.

Theorem 6.10 (Proof in Appendix E.5). Suppose the loss function ℓ(ŷ, y) is convex, L-smooth
in ŷ and strictlymonotonically decreasing to zero as yŷ → +∞. Consider the linearmodel f(x) =
⟨θ, x⟩. Suppose x1, · · · , xn are linearly independent. For any GRW that satisfies Assumption 6.3
with qi, denote F (θ) =

∑n
i=1 qiℓ(⟨θ, xi⟩, yi). Then, for a sufficiently small learning rate η:

(i) F (θ(t))→ 0 as t→∞.
(ii)

∥∥θ(t)∥∥
2
→∞ as t→∞.

(iii) Let θR = argminθ{F (θ) : ∥θ∥2 ≤ R}. θR is unique for anyR such thatmin∥θ∥2≤R F (θ) <

mini qiℓ(0, yi). And if limR→∞
θR
R
exists, then limt→∞

θ(t)

∥θ(t)∥
2

also exists and they are equal.

This result is an extension of Theorem 1 in [79]. We show that the logistic loss satis-
fies the conditions of the above theorem and limR→∞

θR
R

= θ̂MM in Appendix E.6. Thus,
Theorem6.8 andTheorem6.10 imply that for a linearmodel, all GRWmethods satisfying
Assumption 6.3 (including ERM) will converge to the same point.

Wide neural networks, classification tasks. Wenow studywideNNswith regulariza-
tion. But before that, we have to point out that it is impossible to extend Theorem 6.10
to a wide NN without regularization. This is because for a neural network, if

∥∥θ(t)∥∥
2

goes to infinity, then ∥∇θf∥2 will also go to infinity, unlike a linear model where this
gradient is a constant. Consequently, the gap between the neural networks and its lin-
earized counterpart will “explode” under gradient descent, so we cannot prove that the
wide NN can always be approximated by its linearized version similar to the previous
section. However, with regularization, an approximation theorem can be proved.

Consider minimizing the regularized risk Eqn. (6.5) with a wide NN, and ℓ is the
logistic loss. Define the max-margin linearized NN as

fMM(x) =
〈
θ̂MM,∇θf

(0)(x)
〉

where θ̂MM = argmax
∥θ∥2=1

{
min

i=1,··· ,n
yi ·
〈
θ,∇θf

(0)(xi)
〉}

Note that fMM does not depend on q(t)i . We can again show that regularization only
works when it is large enough to sufficiently downgrade the training performance.
Theorem 6.11 (Proof in Appendix E.7). Suppose

∥∥∇θf
(0)(x)

∥∥
2
is bounded. Under the same

conditions of Theorem 6.7, when ℓ is the logistic loss, for any δ > 0 there exists a constant
C(δ) > 0 such that with probability at least 1− δ, the following holds as d̃→∞:
For any ϵ ∈ (0, 1

4
), if the training error has lim supt→∞ R̂

µ

q(t)(f
(t)
reg) < ϵ, then for any x such that

|fMM(x)| > C(δ) · (− log 2ϵ)−1/2, f (t)
reg(x) has the same sign as fMM(x) for a sufficiently large t.

Apart from adding a large regularization, is there any other way to prevent GRW
from obtaining almost the same model as ERM in classification? The main reason why
GRW always converges to the max-margin classifier regardless of the weights q(t)i is that
the logistic loss is exponentially tailed. Thus, one way to ensure that the sample weights
have an impact is to use a polynomially tailed loss. For example, [150] defined the fol-
lowing polynomially tailed loss for linear classifiers:

ℓα,β(ŷ, y) =


ℓleft(ŷ, y), if ŷy < β;

1

[ŷy − (β − 1)]α
, if ŷy ≥ β,
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Figure 6.2: Experiment results of ERM, importance weighting (IW) and group DRO
(GDRO) with the logistic loss (top row) and the polynomially tailed loss (bottom row)
on a linear model. All norms are L2 norms. θ̃ = θ/∥θ∥2.

where ℓleft is any function such that the overall loss function ℓα,β is convex, differentiable
and strictly decreasing. Here we empirically compare between the logistic loss and this
polynomially tailed loss on the sixMNIST imageswe used earlier. The results are plotted
in Figure 6.2, and we can observe the following:

• For either loss function, the training loss of each method converges to 0.
• In theory the norm of the ERM model will explode to infinity, but in reality it will

not because once the training loss becomes extremely small, it will turn into zero
in the floating number representation, and thus the training halts.

• We can see a fundamental difference between the logistic loss and the polynomially
tailed loss. For the logistic loss, the norm of the gap between importanceweighting
(or Group DRO) and ERM will converge to around 0.06 when the training stops,
while for the polynomially tailed loss, the norm will be larger than 0.22 and will
keep growing, which shows that for the polynomially tailed loss the normalized
model weights do not converge to the same point.

6.3 Sensitivity to Outliers
Another issue with DRO is its sensitivity to outliers, which are samples significantly
different from most of the sample in the dataset. Let us use CVaR as an example to see
why DRO is particularly sensitive to outliers. CVaR places all the weights on the worst
α fraction of the training samples. “Worst” here means that the model gets the highest
loss on these samples. However, almost all real datasets contain outliers, and by their
very definition, the model tends to have high loss on the outliers. This means that CVaR
is very likely to place large weights on many outliers, which will make training very
unstable, and the final performance pretty bad.
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Figure 6.3: Results of ERM and two DRO methods on the original COMPAS data set.

Let us use an experiment on a real dataset to show that this is a real problem in prac-
tice. We use the COMPAS dataset [94], a recidivism prediction data set with 5049 train-
ing instances (after pre-processing and train-test splitting). We construct four groups
on this data set with two sensitive features: race and sex. These two features define four
overlapping groups (demographic groups): White, Non-white, Male and Female. We use
a two-layer feed-forward neural network with ReLU activation, and train it with three
methods: ERM, CVaR, and χ2-DRO, which is a DROmethod to be introduced later. The
results are plotted in Figure 6.3. We report the average test accuracy, the the minimum
test accuracy on any group (the worst-group accuracy). From figures (a) and (b), we
can see that for both average and worst-group test accuracies, the two DROmethods are
worse than ERM. Moreover, the two DRO curves are jumping up and down, showcas-
ing the huge volatility of DRO training, in stark contrast to the stable curve of ERM. In
addition, the training loss is plotted in figure (c), and we can see that the loss curve is
pretty stable, meaning that this high volatility is not caused by optimization.

Next, we examine if this instability and poor performance is caused by the outliers in
the dataset. For this purpose, we “clean” the dataset by removing from it 1000 “potential
outliers”, which are the samples on which the ERM model has a high loss. Note that
these are not 100% outliers, but removing them has a huge impact on the performance
of the two DROmethods. We “clean” the dataset in five rounds. In each round, we train
a model from scratch on the samples with ERM, and then remove 200 training samples
that incur the highest loss on this model. After five rounds, 1000 instances are removed
in total, and we get a “clean” data set with 4049 samples. Figure 6.4 (a), (b) show the
results on the “clean” dataset, fromwhichwe can see that the twoDROmethods become
very stable and better than ERM. It should be emphasized that up to this point, we have
only removed samples from the dataset and added nothing into it. The outliers naturally
exist in the original data set.

One might argue that these high-loss samples are not necessarily outliers. Thus, to
further substantiate our claim, we conduct a third experiment where we add some out-
liers to the “clean” dataset. We use a common source of noise: incorrect labels. Specif-
ically, we randomly flip 20% of the labels of the “clean” COMPAS dataset, and run the
three methods again. The results are plotted in Figure 6.4 (c), (d). We can see that
while the label noise only slightly influences ERM, it significantly downgrades the per-
formance of the two DRO methods, and makes their training highly unstable again.

The experiment results so far should have convinced the reader that outliers have
a much greater impact on DRO than ERM, and they can make DRO poor and highly
unstable. In the following section, we will introduce a solution called DORO. Figure 6.4
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Figure 6.4: Average and worst-group test accuracies on: (a), (b) the “clean” dataset
where potential outliers are removed; (c), (d) the noisy set where label noise is added
to the “clean” set; (e), (f) the original COMPAS dataset, but with DORO algorithms.

(e), (f) plot the performance of DORO on the original COMPAS dataset (that is, before
cleaning). We can see that DORO is much better and more stable than DRO.

6.4 Distributionally and Outlier Robust Optimization
The idea of distributionally and outlier robust optimization, or DORO, can be summa-
rized by Figure 6.5. We know that CVaR places large weights on the worst samples,
which may contain lots of outliers. Instead, CVaR-DORO ignores the worst of the worst
samples, and places weights on the second-worst fraction of the samples, in order to
avoid potential outliers. We can extend this idea to a family of DRO method called the
Cressie-Read family.

Recall that a DRO method is defined by the constraint D(Q ∥ P ) ≤ ρ, where the
divergence functionD(Q ∥ P )measures the difference between Q and P . There are two
large families of divergence functions, namely integral probability metrics (IPMs) and
f -divergences. An IPM is defined as D(Q ∥ P ) = supf∈F [EX∼Qf(X)− EY∼Pf(Y )] for
some function classF . It is symmetric, so it is also written asD(Q,P ). Examples include
the total variation (TV) distance defined as D(Q,P ) = 1

2

∫
|Q(x) − P (x)|dx, maximum

mean discrepancy (MMD) defined as D(Q,P ) = ∥EX∼Qπ(X)− EY∼Pπ(Y )∥H for some
feature map π and some RKHS H, and the Wasserstein distance defined as D(Q,P ) =
infγ∈Γ(Q,P )

∫
ρ(x, y)dγ(x, y) for some metric function ρ(·, ·).

An f -divergence is defined as Df (Q ∥ P ) =
∫
f
(
dQ
dP

)
dP for some function f . An

f -divergence is not necessarily symmetric. For example, when f(t) = − log t, then
the f -divergence becomes the popular KL-divergence Df (Q ∥ P ) = DKL(P ∥ Q) =

81



0 0.2 0.4 0.6 0.8 1
0

0.5

1

DRO
DORO

0.1

Loss

Cu
m
ul
at
ive

de
ns

ity

Figure 6.5: Comparison between DRO and DORO for CVaR.

∫
log
(

P (x)
Q(x)

)
dP (x) (note that P and Q are reversed). The TV distance is the only non-

trivial divergence function that is both an IPM and an f -divergence.
The Cressie-Read family of Rényi divergence [30] is a family of f -divergences. For

any β > 1, the divergence is defined as

Dβ(Q ∥ P ) =
∫
fβ

(
dQ

dP

)
dP, where fβ(t) =

1

β(β − 1)

(
tβ − βt+ β − 1

)
.

The reason why we are interested in this family is that the DRO risk Eqn. (6.1) w.r.t.
Dβ has the following dual characterization (see [38, Lemma 1]):

RDβ ,ρ(f ;P ) = inf
η∈R

{
cβ(ρ)E(X,Y )∼P

[
(ℓ(f(X), Y )− η)β∗

+

] 1
β∗

+ η

}
, (6.6)

where (x)+ = max {x, 0}, β∗ = β
β−1

, and cβ(ρ) = (1 + β(β − 1)ρ)1/β .
We first show the relationship between the DRO loss and the worst-group risk. Sup-

pose there are K groups D1, · · · ,DK . Let Pk(x, y) = P ((x, y)|(x, y) ∈ Dk). Then, the
worst-group risk is given by

Rmax(f ;P ) = max
k=1,··· ,K

R(f ;Pk) = max
k=1,··· ,K

E(X,Y )∼P [ℓ(f(X), Y )|(X, Y ) ∈ Dk].

Consider the scenariowherewe do not knowD1, · · · ,DK at train time, but only know
that the smallest group is at least α ∈ (0, 1) of the population size. Then, we can use the
DRO risk given by the Cressie-Read family to obtain a surrogate of the worst-group risk,
as shown by the following result.
Proposition 6.12. Let α = mink=1,··· ,K P (Dk) ≤ exp(−1) ≈ 36.8% be the minima group size,
and define ρ = fβ(

1
α
), then we haveRmax(f ;P ) ≤ RDβ ,ρ(f ;P ).

Proof Note that f ′
β(t) = 1

β−1

(
tβ−1 − 1

). Thus, f ′
β(t) is decreasing when t ∈ [0, 1] and

increasing when t ∈ [1, 1
α

]. This implies that fβ(t) ≤ max
{
fβ(0), fβ

(
1
α

)}. We can further
verify that fβ

(
1
α

)
− fβ(0) = 1

β(β−1)

(
1
αβ − β

α

), which is non-negative when α ≤ β− 1
β−1 .

Since β > 1, we have β− 1
β−1 ≥ exp(−1). Thus, we have essentially proved that when

α ≤ exp(−1), there is
∀t ∈

[
0,

1

α

]
, fβ(t) ≤ fβ

(
1

α

)
.

For any k, there is dPk

dP
≤ 1

α
. Thus, we have

Dβ(Pk ∥ P ) =
∫
fβ

(
dPk

dP

)
dP ≤

∫
fβ

(
1

α

)
dP = fβ

(
1

α

)
,
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Method β β∗ ρ cβ(ρ) Dβ(Q ∥ P ) Risk notation
CVaR ∞ 1 − logα α−1 sup log dQ

dP
CVaRα(f ;P )

χ2-DRO 2 2 1
2

(
1
α
− 1
)2 √

1 +
(
1
α
− 1
)2 1

2

∫ (
dQ
dP
− 1
)2
dP RDχ2,ρ

(f ;P )

Table 6.1: The two DRO risks studied in our analysis.

which combined with the definition ofRDβ ,ρ completes the proof.

While the Cressie-Read family only defines the f -divergence for finite β ∈ (1,+∞),
it can be shown that the dual characterization Eqn. (6.6) is valid for β = ∞ as well,
for which Dβ becomes CVaR. Our analysis below focuses on two cases: (i) β = ∞,
which corresponds to CVaR; (ii) β = 2, which corresponds to the χ2-DRO risk used in
[59]. Table 6.1 summarizes the relevant information about these two DRO risks. Wewill
denote the CVaR risk by CVaRα(f ;P ), and the χ2-DRO risk byRDχ2,ρ

(f ;P ).
From Eqn. (6.6), we derive the following dual form of CVaR:

CVaRα(f ;P ) = inf
η∈R

{
α−1E(X,Y )∼P

[
(ℓ(f(X), Y )− η)+

]
+ η
}
. (6.7)

It is easy to see that the optimal η of Eqn. (6.7) is the α-quantile of the loss defined as

qf ;P (α) = inf
q

{
P(X,Y )∼P [ℓ(f(X), Y ) > q] ≤ α

}
. (6.8)

Proposition 6.12 implies that both CVaR and χ2-risks are upper bounds ofRmax.
Corollary 6.13. Let α = mink=1,··· ,K P (Dk) ≤ exp(−1) be the minimal group size, and ρ =
1
2

(
1
α
− 1
)2. Then, we haveRmax(f ;P ) ≤ CVaRα(f ;P ) ≤ RDχ2 ,ρ(f ;P ).

Proof Denote pk = P (Dk) for all k. Then, P (x, y) = pkP (x, y|Dk) + (1 − pk)P (x, y|Dk).
Let Q = Pk and Q′(x, y) = pk−α

1−α
P (x, y|Dk) +

1−pk
1−α

P (x, y|Dk). Then, P = αQ + (1 − α)Q′,
which by the definition of CVaR implies that EPk

[ℓ(f(X), Y )] ≤ CVaRα(f ;P ). Thus,
Rmax(f ;P ) ≤ CVaRα(f ;P ). On the other hand, for any Q such that there exists Q′ that
satisfiesP = αQ+(1−α)Q′, there is dQ

dP
(x, y) ≤ 1

α
a.e.. Thus,Dχ2(Q ∥ P ) ≤ 1

2

(
1
α
− 1
)2

= ρ.
This implies that CVaRα(f ;P ) ≤ RDχ2 ,ρ(f ;P ).

Method. We model the outliers in the dataset with Huber’s ϵ-contamination model
[71]. Let P be the clean distribution without outliers, and Ptrain be the observed contam-
inated training distribution. Then, this model assumes that

Ptrain = (1− ϵ)P + ϵP̃ , where P̃ is an arbitrary distribution, and 0 < ϵ <
1

2
.

As we saw in Figure 6.5, DORO ignores the worst samples where the loss is the high-
est. With this insight, we define the DORO risk as follows.
Definition 6.14. The expected ϵ-DORO risk is defined as

RD,ρ,ϵ(f ;Ptrain) = inf
P ′

{
RD,ρ(f ;P ′)

∣∣∣ ∃ P̃ ′ s.t. Ptrain = (1− ϵ)P ′ + ϵP̃ ′
}
. (6.9)

83



The DORO risk has the following relationship with the total variation.
Lemma 6.15. Let TV(P,Q) = 1

2

∫
X×Y |P (z)−Q(z)|dz be the total variation, and Ptrain be given

by the Huber’s model. Then the DORO risk can be lower bounded by

RD,ρ,ϵ(θ;Ptrain) ≥ inf
P ′′

{
RD,ρ(θ;P

′′) : TV(P, P ′′) ≤ ϵ

1− ϵ

}
.

Proof For anyP ′ such thatPtrain = (1−ϵ)P ′+ϵP̃ ′ for some P̃ ′. LetU(z) = min {P (z), P ′(z)}
for all z ∈ X × Y . Then, we have

(1− ϵ)U(z) + ϵP̃ (z) + ϵP̃ ′(z) ≥ Ptrain(z) for any z ∈ X × Y ,
as both P̃ (z) and P̃ ′(z) are non-negative. Integrating both sides produces ∫X×Y U(z)dz ≥
1−2ϵ
1−ϵ

, which implies that TV(P, P ′) ≤ ϵ
1−ϵ

. Thus, we have

RD,ρ(θ;P
′) ≥ inf

P ′′

{
RD,ρ(θ, P

′′) : TV(P, P ′′) ≤ ϵ

1− ϵ

}
,

which combined with the definition of the DORO risk proves the result.

With the Cressie-Read family, the DORO risk has the following dual formula:
Proposition 6.16 (Proof in Appendix E.8). Let ℓ be a continuous non-negative loss function,
and suppose Ptrain is a continuous distribution. Then, we have

RD,ρ,ϵ(f ;Ptrain) = inf
η

{
cβ(ρ) E

(X,Y )∼Ptrain

[
(ℓ− η)β∗

+

∣∣∣∣ Pr
(X′,Y ′)∼Ptrain

{ℓ > ℓ′} ≥ ϵ

] 1
β∗

+ η

}
,

where ℓ = ℓ(f(X), Y ), and ℓ′ = ℓ(f(X ′), Y ′).
With this dual formula, the DORO risk can be minimized using Algorithm 5. For

each batch of samples, this algorithm first sorts the samples by their training losses, and
then finds the optimal η∗ in the above dual form. For example, we can use Brent’smethod
[17] to find η∗. Then, this η∗ is fixed and θ is updated to minimize the dual form. This
algorithm is inspired by the ITLM algorithm [127], in which an alternative approach
to making DRO more robust to outliers was proposed—removing the potential outliers
from the dataset via data preprocessing. In comparison, DORO does not throw away
any data. In addition, preprocessing methods cannot cope with online data where new
samples are received in a stream, but DORO is still feasible.

Theoretical guarantee. We now show that the DORO risk is a surrogate of the worst-
group risk, meaning that the DORO risk is an upper bound. This result parallels Corol-
lary 6.13 in the uncontaminated setting, and guarantees that minimizing the DORO risk
over Ptrain efficiently minimizesRmax over P .

Theorem 6.17 (Proof in Appendix E.9). Let α = mink=1,··· ,K P (Dk), and ρ = 1
2

(
1
α
− 1
)2.

Suppose Ptrain satisfies the Huber’s ϵ-contamination model. Suppose ℓ is a non-negative loss
function with a uniformly bounded second moment: E(X,Y )∼P [ℓ(fθ(X), Y )2] ≤ σ2 for all θ.
Then, we have

Rmax(fθ;P ) ≤ max

{
3CVaRα,ϵ(fθ;Ptrain), 3α

−1σ

√
ϵ

1− ϵ

}
≤ max

{
3Dχ2,ρ,ϵ(fθ;Ptrain), 3α

−1σ

√
ϵ

1− ϵ

}
.

(6.10)
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Algorithm 5Minimizing the DORO risk with Dβ Divergence
Input: Batch size n, outlier fraction ϵ, minimal group size α, initial model weight θ
for each iteration do
Sample a batch (x1, y1), · · · , (xn, yn) ∼ Ptrain

Compute the sample losses: ℓi = ℓ(fθ(xi), yi) for i = 1, · · · , n
Sort the sample losses: ℓi1 ≥ · · · ≥ ℓin
Define F (θ, η) = cβ(ρ) · [ 1

n−⌊ϵn⌋
∑n

j=⌊ϵn⌋+1(ℓ(fθ(xij), yij)− η)
β∗
+ ]

1
β∗ + η

Find η∗ = argminη F (θ, η)
Update θ by one step to minimize ℓ(θ) = F (θ, η∗)with some gradient method

Dataset Method Average Accuracy Worst-group Accuracy

COMPAS

ERM 69.31± 0.19 68.83± 0.18
CVaR 68.52± 0.31 68.22± 0.30

CVaR-DORO 69.38± 0.10 69.11± 0.05
χ2-DRO 67.93± 0.40 67.32± 0.60
χ2-DORO 69.62± 0.16 69.22± 0.11

CelebA

ERM 95.01± 0.38 53.94± 2.02
CVaR 82.83± 1.33 66.44± 2.34

CVaR-DORO 92.91± 0.48 72.17± 3.14
χ2-DRO 83.85± 1.42 67.76± 3.22
χ2-DORO 82.18± 1.17 68.33± 1.79

CivilComments-Wilds

ERM 92.04± 0.24 64.62± 2.48
CVaR 89.11± 0.76 63.90± 4.42

CVaR-DORO 90.45± 0.70 68.00± 2.10
χ2-DRO 90.08± 0.92 65.55± 1.51
χ2-DORO 90.11± 1.09 67.19± 2.51

Table 6.2: Average/worst-group test accuracies of the selected models. (%)

Empirical evaluation. We test DORO on three datasets: COMPAS, CelebA [103] and
CivilComments-Wilds [16, 88]. CelebA is a facial recognition dataset, where the target
is whether the person has blond hair. CivilComments-Wilds is a toxicity identification
NLP dataset, where the target is whether an online post contains toxic contents. All
targets are binary. For COMPAS, we randomly sample 70% of the samples to be the
training data. The other two datasetse have official train-val-test splits. On COMPAS we
define 4 groups, and on each of the other datasets we define 16 groups.

We use a two-layer ReLU-activated feed-forward neural network on the COMPAS
dataset, a ResNet18 [61] on CelebA, and a BERT-base-uncased [34] on CivilComments-
Wilds. Each algorithm is run 300 epochs onCOMPAS, 30 epochs onCelebA and 5 epochs
onCivilComments-Wilds. The bestmodel is selected based on theworst-group accuracy
on the validation set. Note that in reality, the worst-group accuracy is not available be-
causewemight now know the groupmembership of each sample. Therefore, this model
selection strategy is an oracle one. We will discuss more on this point later.

Table 6.2 reports the 95% confidence intervals of the mean test accuracies on each
dataset. For DRO and DORO, we do a grid search to pick the best α and ϵ that achieve
the best worst-group accuracy. Each experiment is repeated 10 times on COMPAS and
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Method Average Worst-group

ERM 0.73± 0.06 8.59± 0.90
CVaR 11.53± 1.72 21.47± 0.71

CVaR-DORO 4.03± 1.57 16.84± 0.91
χ2-DRO 8.88± 2.98 19.06± 1.18
χ2-DORO 1.60± 0.34 13.01± 1.40

Table 6.3: Standard deviations of test accuracies during training on CelebA.

CelebA, and 5 times on CivilComments-Wilds with different random seeds. From the
table, we can conclude that DORO consistently outperformsDRO in terms of the average
and worst-group test accuracies.

Next, we show that DORO enhances training stability. We compute the standard
deviations of the average and worst-group test accuracies across epochs during training
on CelebA, and the results are reported in Table 6.3. We can see that DORO lowers the
standard deviations, which means that its training is more stable.

Difficulty of model selection. In our experiments, we select the best models based on
their worst-group validation accuracies, which is an oracle strategy. However, model
selection without access to the worst-group accuracy is extremely hard. We tried the
following three strategies of model selection in our experiments:

• Max average accuracy
• Min CVaR risk
• Min CVaR-DORO risk
All of these strategies are significantly worse than the oracle strategy. The main rea-

son is that though we have shown that CVaR and CVaR-DORO risks are surrogates of
the worst-group risk, they do not necessarily have a monotonic relationship. Therefore,
we pose model selection in this scenario as an open problem.

To summarize this chapter, we first introduced the most popular solutions to sub-
population shift—reweighting and DRO. Then, we demonstrated two issues they have.
First, they might not be able to improve over ERM because the models they lead to are
too similar. Thus, a large regularization, early stopping or a different loss function (such
as the polynomially tailed loss) is neccessary for them to work. Second, DRO is very
sensitive to outliers because it places large weights on them. To solve this problem, we
proposed the DORO risk which avoids the potential outliers.

The key takeaway from this chapter is that generalization under distribution shift,
or distributionally robust generalization (DRG), is extremely hard, much harder than
DRO. Over the past decade a lot of methods for DRO have been proposed, but whether
these models can lead to better DRG is questionable. In fact, as mentioned earlier, [51]
showed that many of these methods do not have better DRG. The same applies to repre-
sentation learning. For example, upweighting the data in a certain domain during pre-
training does not necessarily lead to a higher downstream performance on that domain.
Thus, we need to be very cautious of our heuristics.
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Chapter 7

Conclusion

Here is a summary of the key results from the contexture theory:
1. Representations are learned from the association between input X and a context

variable A, and we call this association the contexture.
2. Learning the contexture, or extracting the top-d eigenspace, can preserve the most

information of TP+ , the expectation operator.
3. The top-d eigenspace can be extracted by training a large encoder to optimize cer-

tain variational objectives. This is how deep representation learning works.
4. Learning the contexture is optimal if the task is compatible with the context.
5. Makingmodels larger inevitably produces diminishing returns, and creating better

contexts is necessary for further advancements of pretraining.
6. A good context should have a moderate association between X and A.
7. Mixing multiple existing contexts with convolution, convex combination and con-

catenation can lead to better contexts.
8. The context complexity affects the sample complexity of representation learning.
9. Learning the contexture can be viewed as STKR with the truncation function.

10. Analyzing the distribution shift from pretraining to downstream is very hard.
Let us conclude this thesis by discussing its limitations, and posing some open prob-

lems for future work.

Effect of optimization and model architecture. Throughout this thesis, we did not
analyze the effect of optimization and model architecture on representation learning,
though in Section 2.6 we showed that scaling up the model size brings the learned rep-
resentation closer to the top-d singular functions of TP+ . In reality, the implicit bias of
optimization and the inductive bias of model architecture are both very important to the
encoder. For optimization, [28] showed that if the model is trained with popular gra-
dient methods such as gradient descent or Adam [86], then after a sufficient amount
of training time, the model weights will oscillate around what they called the edge of
stability, instead of converging to any optimal weights. Thus, the first open problem is
whether the representation is always close to the top-d singular functionswhen it is oscil-
lating. And even better, can we characterize this oscillating representation as a dynam-
ical system? The inductive bias of the model architecture contains our prior knowledge
about the task, and thus should be considered as a part of the context. For example,
in Section 2.4 we proved that when the model is an encoder composed with a feature
map, then the representation trained via supervised learning will be the contexture of
the convolution of two contexts—the feature map and the label. Thus, the second open
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problem is how to express the inductive bias of any arbitrary model architecture as a
context, and how the context affects the learned representation.

Context scaling. The contexture theory makes an important prediction that the next
major breakthrough in pretraining will be the result of context scaling, where a much
better and more complex context is obtained from the real world rather than human
heuristics. For example, base large language models are pretrained with masked token
prediction. To further improve these models, RLHF [110] created new contexts by col-
lecting human preferences of different completions of the same prompt. Such large-scale
data collection serves as a major source of new contexts, and deep learning has been
proved to be quite capable of finding the patterns within these contexts. For example,
AlphaFold [82] can learn from the context between protein sequences and their struc-
tures through data collected from lab experiments. The major downside is that these
experiments are usually quite expensive, and could sometimes take years to conduct.

Another source of new contexts that has been explored quite a lot recently is multi
modalities [98]. In Section 2.2 we showed that multi-modal models such as CLIP can
learn from the context between different modalities. Apart from image and text, there
are many modalities to be explored, such as videos, tables, graphs, etc. The problem
is how to merge multiple modalities through the contexture theory in order to learn a
“world model”.

Towards system 2 thinking (reasoning). It was mentioned in the introduction that
the contexture learning only covers system 1 thinking, that is the fast, automatic and
associative thinking. Currently it is not applicable to system 2 thinking, such as logical
reasoning. Since system 2 thinking is slow and effortful for humans, we hypothesize
that pretraining alone is not sufficient for learning system 2 thinking—post-training is
necessary. Indeed, this has been a hot topic recently in LLM research [53, 78, 155].

The high-level idea is to train a model that does not produce outputs so quickly. In
pretraining, Φ is nothing more than a function, and computing Φ(x) on a computer usu-
ally requires only a fraction of a second. For system 2 thinking, we would like the com-
putation of Φ(x) to take a much longer time, which is called test-time scaling. It usually
involves a chain of thinking steps, such that a1 = Φ(x), a2 = Φ(x; a1), a3 = Φ(x; a1, a2)
and so on, and the final output is aL. Here, a1, a2, · · · are the intermediate results, also
known as a scratch pad. Recent theoretical studies [39, 97] also showed that such a se-
quential procedure is necessary for LLMs to carry out certain logical reasoning.

The open problem is: Will test-time scaling always improve the performance, or will
it achieve diminishing returns after some point? For example, when an LLM thinks
for 3 minutes, its performance is usually significantly better than if it only thinks for 1
minute. But is an LLM that thinks for 3 weeks significantly better than an LLM thinking
for 1 week? What about 3 years versus 1 year? If an LLM thinks for 3 years, will it be
able to solve problems that no human beings can solve, such as proving P ̸= NP ? To
answer these questions, we need a scientific understanding of the mechanism of system
2 thinking, similar to what we have done for system 1 thinking in this thesis.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.2
Let us first prove the following lemma.
Lemma A.1. TP+ΛT ∗

P+ is the integral kernel operator of the following kernel

k(x, x′) =

∫∫
kΛ(a, a

′)P+(a|x)P+(a′|x′)dada′.

Proof
By definition, we have (T ∗

P+h)(a′) =
∫
h(x′)P+(x′|a′)dx′, which implies that

(ΛT ∗
P+h)(a) =

∫
(T ∗

P+h)(a′)kΛ(a, a
′)PA(a

′)da′

=

∫∫
h(x′)P+(x′|a′)kΛ(a, a′)PA(a

′)dx′da′

=

∫∫
h(x′)P+(a′|x′)kΛ(a, a′)PX (x

′)dx′da′.

This further implies that

(TP+ΛT ∗
P+h)(x) =

∫
(ΛT ∗

P+h)(a)P+(a|x)da

=

∫∫∫
h(x′)kΛ(a, a

′)P+(a|x)P+(a′|x′)PX (x
′)dada′dx′

=

∫
h(x′)k(x, x′)PX (x

′)dx′,

as desired.

Now, we prove Theorem 2.2.
Proof Denote R(Φ,W ) = E

(X,A)∼P+

[
∥A−WΦ(X)∥22

]. Assuming, without loss of gen-
erality, that EX∼PX [ΦiΦj] = δij ; otherwise one can perform Gram-Schmidt process on Φi

and change W respectively. Thus, it amounts to minimize
R(Φ,W ) = E

X∼PX
E

A∼P+(·|X)

[
∥A−WΦ(X)∥22

]
= E

X∼PX
∥WΦ(X)∥22 − 2 E

(X,A)∼P+
⟨A,WΦ(X)⟩+ E

A∼PA
∥A∥22

= ∥W ∥2F − 2 E
(X,A)∼P+

⟨A,WΦ(X)⟩+ E
A∼PA

∥A∥22.
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DenoteW = (wij)1≤i≤dA,1≤j≤d. We have

∂R
∂wij

= 2wij − 2 E
(X,A)∼P+

[AiΦj(X)],

which implies that for a fixed Φ, the optimal W that minimizes this loss should satisfy

wij = E
(X,A)∼P+

[AiΦj(X)].

Combining the minimizer of W with R and notice that EA∼PA∥A∥
2
2 is a constant, it suf-

fices tomaximize

F (Φ) =
∑
i,j

[
E

(X,A)∼P+
AiΦj(X)

]2
=

∫ ∑
j

Φj(x1)Φj(x2)⟨a1, a2⟩PX (x1)P
+(a1|x1)PX (x2)P

+(a2|x2)dx1da1dx2da2

=

∫∫ ∑
j

Φj(x1)Φj(x2)k̂(x1, x2)PX (x1)PX (x2)dx1dx2,

where

k̂(x1, x2) =

∫∫
⟨a1, a2⟩P+(a1|x1)P+(a2|x2)da1da2 (A.1)

=

∫∫
I[a1 = a2]P

+(a1|x1)P+(a2|x2)da1da2.

Thus Φ∗ is a minimizer ofR(Φ) if Φ∗ extracts the top-d eigenfunctions of k̂(x1, x2). Com-
bining with LemmaA.1 yields that kΛ(a, a′) = I[a = a′]. Furthermore, we have (Λg)(a) =∫
g(a′)kΛ(a, a

′)dPA(a
′) = g(a)PA(a), as desired.

If all classes have the same size, we have PA(a) ≡ c ∈ (0, 1) where c is a constant.
Thus (Λg)(a) = g(a)PA(a) = cg(a), which implies that TP+ΛT ∗

P+ = cTP+T ∗
P+ . This con-

cludes that TP+ΛT ∗
P+ and TP+T ∗

P+ share the same top-d eigenfunctions.

A.2 Proof of Theorem 2.4

Proof Denote R(Φ,W ) = E(X,A)∼P+

[
1√

PA(A)
∥A−WΦ(X)∥22

]
. Assuming without loss

of generality that E(X,A)∼P+

[
1√

PA(A)
ΦiΦj

]
= I[i = j]; otherwise we can perform Gram-

Schmidt process on Φi and change the value of W respectively. Thus, it amounts to
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minimize

R(Φ,W ) = E
(X,A)∼P+

[
1√
PA(A)

∥A−WΦ(X)∥22

]

= E
(X,A)∼P+

[
1√
PA(A)

∥WΦ(X)∥22

]

− 2 E
(X,A)∼P+

〈
A√
PA(A)

,WΦ(X)

〉
+ E

A∼PA

[
∥A∥22√
PA(A)

]

= ∥W ∥2F − 2 E
(X,A)∼P+

〈
A√
PA(A)

,WΦ(X)

〉
+ E

A∼PA

[
∥A∥22√
PA(A)

]
.

DenoteW = (wij)1≤i≤dA,1≤j≤d. We have

∂R
∂wij

= 2wij − 2 E
(X,A)∼P+

[
Ai√
PA(A)

Φj(X)

]
,

which implies that for a fixed Φ, the minimizer of W satisfies

wij = E
(X,A)∼P+

[
Ai√
PA(A)

Φj(X)

]
.

Combining the minimizer ofW withR, it suffices to maximize

R′ =
∑
i,j

[
E

(X,A)∼P+

Ai√
PA(A)

Φj(X)

]2
=

∫∫ ∑
j

Φj(x1)Φj(x2)k̂(x1, x2)PX (x1)PX (x2)dx1dx2,

where
k̂(x1, x2) =

∫∫
⟨a1, a2⟩√

PA(a1)PA(a2)
P+(a1|x1)P+(a2|x2)da1da2

=

∫∫
I[a1 = a2]√
PA(a1)PA(a2)

P+(a1|x1)P+(a2|x2)da1da2

=

∫
P+(a|x1)P+(a|x2)

PA(a)
dy.

Thus Φ∗ is a minimizer ofR(Φ) if Φ∗ extracts the top-d eigenfunctions of k̂(x1, x2). Com-
bining with Definitions 1.3 and 1.7 yields the desired results.

A.3 Proof of Theorem 2.6
Proof If the linear predictor is unbiased, then the proof is the same as Appendix A.1.
Consider the case where the linear predictor is biased. Then the pretraining objective
can be rewritten as

R(Φ,W , b) = E
(X,A)∼P+

[∥∥∥Ã−W Φ̃(X)
∥∥∥2
2

]
+
∥∥∥b̂∥∥∥2

2
,
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where b̂ = WEX∼PX [Φ(X)]−EA∼PA [A]+b. Thus, if Γ andW are fixed, then the optimal
b∗ = EA∼PA [A]−WEX∼PX [Φ(X)].

Assuming, without loss of generality, that EX∼PX [Φ̃iΦ̃j] = δij ; otherwise we can per-
form Gram-Schmidt process on ϕ̃i and changeW accordingly. Then, it amounts to min-
imize

R(Φ,W , b∗) = ∥W ∥2F − 2 E
(X,A)∼P+

〈
Ã,W Φ̃(X)

〉
+ E

A∼PA

∥∥∥Ã∥∥∥2
2
,

for which we have
∂R
∂wij

= 2wij − 2 E
(X,A)∼P+

[
ÃiΦ̃j(X)

]
.

Thus, the optimal W is given by w∗
ij = E(X,A)∼P+

[
ÃiΦ̃j(X)

]
. Note that EA∼PA

∥∥∥Ã∥∥∥2
2
is a

constant. Thus, minimizingR(Φ,W ∗, b∗) is equivalent to maximizing

J =
∑
i,j

[
E

(X,A)∼P+
ÃiΦ̃j(X)

]2
=

∫ ∑
j

Φ̃j(x1)Φ̃j(x2)⟨ã1, ã2⟩PX (x1)P
+(a1|x1)PX (x2)P

+(a2|x2)dx1da1dx2da2

=

∫∫ ∑
j

Φ̃j(x1)Φ̃j(x2)k̂(x1, x2)PX (x1)PX (x2)dx1dx2,

where
k̂(x1, x2) =

∫∫
⟨ã1, ã2⟩P+(a1|x1)P+(a2|x2)da1da2.

Then, we can complete the proof in the same way as Appendix A.1.

A.4 Proof of Theorem 2.8
Proof Without loss of generality, suppose Φ̄ = 0. We have

(TP+f)(u) =
∑
v

f(v)
w(u, v)

D(u)
; ⟨TP+f, g⟩PX

=
∑
u,v

f(u)g(v)
w(u, v)

Dsum
= ⟨f, TP+g⟩PX

,

which implies that TP+ is self-adjoint. Therefore, the eigenfunctions of TP+ are the same
as those of T ∗

P+TP+ , with square root eigenvalues.
For the objective of Eqn. (2.4), we have

1

2
E(u,v)∼P+

[
∥Φ(u)− Φ(v)∥22

]
= E

(u,v)∼Pw

[
∥Φ(u)∥22 − ⟨Φ(u),Φ(v)⟩

]
=

d∑
i=1

(
∥ϕi∥2PX

− ⟨ϕi, TP+ϕi⟩PX

)
= d−

d∑
i=1

⟨ϕi, TP+ϕi⟩PX
.

Note that (u, v) and (v, u) can be drawn from P+ with equal probability. We conclude
that Φ extracts the top-d eigenfunctions of TP+ , which are the same as the top-d eigen-
functions of T ∗

P+TP+ . This implies that Φ̃ learns the contexture of TP+ .
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A.5 Proof of Theorem 2.9
Proof
(i) The spectral contrastive loss is

R(Ψ) = E
X∼PX

E
A,A+∼P+(·|X)

[
−
〈
Ψ̃(A), Ψ̃(A+)

〉
+

1

2
E

A−∼PA

[〈
Ψ̃(A), Ψ̃(A−)

〉2]]
.

Suppose ψi =
∑

j≥0 cijνj where νj is the ONB of L2(PA) in Lemma 1.4. Since νj is
the ONB of L2(PA) and ν0 ≡ 1, we can get for j ≥ 1, EPA [νj(a)] = δ0,j = 0. Thus we
can get ψ̃i = ψi − E[ψi] =

∑
j≥1 cijνj .

Denote matrix C = (cij)1≤i≤d,j≥1, matrix B = (bij) := C⊤C, and matrix D =
diag(s21, s22, · · · )where si is the singular value of TP+ . We have

E
X∼PX

E
A,A+∼P+(·|X)

[〈
Ψ̃(A), Ψ̃(A+)

〉]
=

∫∫∫ 〈
Ψ̃(a), Ψ̃(a+)

〉
P+(a|x)P+(a+|x)PX (x)dxdada

+

=

∫ 〈∫
Ψ̃(a)P+(a|x)dy,

∫
Ψ̃(a+)P+(a+|x)da+

〉
p(x)dx

=

∫ 〈
TP+Ψ̃(x), TP+Ψ̃(x)

〉
p(x)dx = ∥TP+Ψ̃∥2PX

=
∑
i

s2i bii;

and

E
A,A−∼PA

[〈
Ψ̃(A), Ψ̃(A−)

〉2]
=

∫∫ [ d∑
i=1

ψ̃i(a)ψ̃i(a
−)

]2
dPA(a)dPA(a

−)

=
∑

1≤i,j≤d

[∫
ψ̃i(a)ψ̃j(a)dPA(a)

]2
=
∑
i,j

b2ij.

Thus, we have

R(Ψ) = −
∑
i

s2i bii +
1

2

∑
i,j

b2ij = ∥B −D∥2F − ∥D∥2F .

So if suffices to minimize ∥B−D∥2F where rank(B) ≤ d. By Eckart-Young-Mirsky
Theorem, we know the minimizer of B is B∗ = diag(s21, · · · , s2d). Thus the mini-
mizer of C should be C∗ = Udiag(s1, · · · , sd) where U ∈ Rd×d is an orthonormal
matrix. This indicates the minimizer Ψ̃∗ extracts the top-d singular functions of
TP+ , and hence Φ̃∗ learns the contexture of P+.

(ii) Non-contrastive learning is done by minimizing

R(Ψ) = E
X∼PX

E
A,A+∼P+(·|X)

[∥∥Ψ(A)−Ψ(A+)
∥∥2
2

]
,

subject toCovPA [Ψ] = I . This amounts tominimizingF (Ψ) = −EA,A+ [
〈
Ψ̃(A), Ψ̃(A+)

〉
],

because R(Ψ) − 2F (Ψ) = 2 is a constant under the constraint CovPA [Ψ] = I .
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Suppose ψi =
∑

j≥0 cijνj where νj is the ONB of L2(PA) in Lemma 1.5. Since
EPA [νj(a)] = δ0,j , we can get ψ̃i = ψi − E[ψi] =

∑
j≥1 cijνj .

Using the same calculation as in (i), we have

F (Ψ) = − E
X∼PX

E
A,A+∼P+(·|X)

[〈
Ψ̃(A), Ψ̃(A+)

〉]
= −∥TP+Ψ̃∥2PX

= −
∑
i

s2i bii.

By EPA

[
ψ̃iψ̃j

]
= δij , we have ∑

i

bii =
∑
i,j

c2ij = d.

Since νi is an ONB of L2(PA), ψ̃1, · · · , ψ̃d are orthogonal, we have

bii =
d∑

j=1

c2ji =
d∑

j=1

〈
ψ̃j, νi

〉2
PA
≤ ∥νi∥2PA

= 1. (A.2)

Thus, we conclude that

LN(Ψ) +
d∑

i=1

s2i =
d∑

i=1

s2i (1− bii)−
∑
i>d

s2i bii ≥
d∑

i=1

s2d(1− bii)−
∑
i>d

s2dbii = 0,

which implies that LN(Ψ) ≥ −
∑d

i=1 s
2
i . To attain equality, we will have bii = 1 for

i = 1, · · · , d, and bii = 0 for i ≥ d + 1. By Eqn. (A.2), we can know Ψ∗ extracts the
span of ν1, · · · , νd, indicating that Ψ̃∗ extracts the top-d singular functions of TP+

and Φ̃∗ learns the contexture of P+.

A.6 Proof of Theorem 2.11
Proof We first show that when Φ is fixed in SVME, the optimal Ψ that minimizes the
objective is Ψ = T ∗

P+Φ. The SVME objective is

L = E
(X,A)∼P+

[
∥Φ(X)∥22 +Ψ(A)⊤(Ψ(A)− 2Φ(X))

]
=

d∑
i=1

{
∥ϕi∥2PX

+ ⟨ψi, ψi − 2T ∗
P+ϕi⟩PA

}
,

which implies that
∂L
∂ψi

= 2ψi − 2T ∗
P+ϕi.

Setting it to zero yields ψi = T ∗
P+ϕi. With this, the SVME objective becomes

L(Φ) =
d∑

i=1

{
∥ϕi∥2PX

− ∥T ∗
P+ϕi∥2PA

}
=

d∑
i=1

⟨ϕi, ϕi − TP+T ∗
P+ϕi⟩PX

because T ∗
P+ is the adjoint of TP+ . This L is exactly the objective of KISE. Under the or-

thonormality constraint, minimizingL(Φ) is equivalent tomaximizing∑d
i=1

〈
ϕi, Tk+X

ϕi

〉
PX

.
Then, we can use the proof of Theorem 2.9 (ii) to show that when Φ∗ is the optimal so-
lution, Φ̃∗ learns the contexture of P+.
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A.7 Proof of Theorem 2.14
Proof Without loss of generality assume that Tk+X has at least d+ 1 positive eigenvalues
(including λ0). First we prove a simple result in linear algebra: For any positive definite
matrix A, if vectors u1, · · · ,uk are pairwise orthogonal and satisfy u⊤

i Aui = 1 for all i,
then ∥u1∥22 + · · ·+ ∥uk∥22 ≤ λ−1

1 + · · ·+ λ−1
k , where 0 < λ1 ≤ λ2 ≤ · · · are the eigenvalues

of A. To prove this, let U be the matrix whose columns are u1, · · · ,uk. Then, U⊤U is
a diagonal matrix and all elements on the diagonal of U⊤AU are 1. Denote the sorted
diagonal elements of U⊤U by d1 ≥ d2 ≥ · · · ≥ dk ≥ 0. Let Q = UU⊤. A freshman
linear algebra exercise states that the eigenvalues of Q2 are d21, · · · , d2k, and the rest are
all zeros. Now considerU⊤UU⊤AU . It is easy to see that the diagonal elements of this
matrix are d1, d2, · · · , dk. This implies that Tr(U⊤UU⊤AU ) = Tr(U⊤U) = d1 + · · ·+ dk.
Thus, Tr(Q2A) = Tr(Q) = d1+ · · ·+dk, because Tr(AB) = Tr(BA). By von Neumann’s
trace inequality, there is Tr(Q2A) ≥ λ1d

2
1+ · · ·+λkd2k. So by Cauchy-Schwarz inequality,

(d1 + · · · + dk)
2 ≤ (λ−1

1 + · · · + λ−1
k ) Tr(Q2A) = (λ−1

1 + · · · + λ−1
k )(d1 + · · · + dk), which

implies that ∥u1∥22 + · · · + ∥uk∥22 = d1 + · · · + dk ≤ λ−1
1 + · · · + λ−1

k . The equality is only
attained when the Cauchy-Schwarz inequality attains equality, that is di = λ−1

i for all i.
For simplicity, we assume that the eigenvalues of Tk+X satisfy λ1 > λ2 > · · · > λd > 0.

If an eigenvalue hasmoremultiplicity, the proofwill be the same butmuchmore verbose.
Then, µ1, · · · , µd are fixed. Let ϕ̃∗

i =
∑

k uikµk. Then, Eqn. (2.13) is equivalent to the
following optimization problem:

maximize
uik

d∑
i=1

∑
k

λku
2
ik

s.t. ∀i ∈ [d] :
∑
k

u2ik = 1;

∀1 ≤ i < j ≤ d :
∑
k

λkuikujk = 0.

Obviously, for any λk = 0, the optimal uik should be zero. So without loss of general-
ity, we assume that all λk in the above problem are positive. DefinematrixU whose (i, k)-
th element is √λkuik. Denote the rows of U by u1, · · · ,ud. Let D = diag{λ−1

1 , λ−1
2 , · · ·

}.
Then, the constraints of the above problem become u⊤

i Dui = 1 for all i, and u1, · · · ,ud

are pairwise orthogonal. Thus, by the result we have just proved, the objective of this
problem satisfies ∥u1∥22 + · · ·+ ∥ud∥22 ≤ λ1 + · · ·+λd. The equality is only attained when
∥ui∥22 = λi for all i ∈ [d], assuming that ∥u1∥2 ≥ · · · ≥ ∥ud∥2. This is only possible when
u211 = u222 = · · · = u2dd = 1, which proves the result.

A.8 Proof of Theorem 2.12
Proof It suffices to show that T ∗

ΩTP+ΛT ∗
P+TΩ is the integral kernel operator of

k(ω, ω′) =

∫∫
kΛ(y, y

′)PY |ω(y|ω)PY |ω(y
′|ω′)dydy′.

After that, we can follow the proof in Appendix A.1 to prove the result.
Since x determines ω, y at the same time, we have y ⊥ ω|x. This implies that

P (ω|x) = P (ω|x, y), P (y|x) = P (y|x, ω).
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By definition, we have
(TΩh)(x

′) =

∫
h(ω′)P (ω′|x′)dω′,

which implies that

(T ∗
P+TΩh)(y

′) =

∫
(TΩh)(x

′)PX|Y (x
′|y′)dx′ =

∫∫
h(ω′)P (ω′|x′)PX|Y (x

′|y′)dx′dω′

=

∫∫
h(ω′)P (ω′|x′, y′)PX|Y (x

′|y′)dx′dω′ =

∫
h(ω′)Pω|Y (ω

′|y′)dω′.

Thus, we have

(ΛT ∗
P+TΩh)(y) =

∫
(T ∗

P+TΩh)(y
′)kΛ(y, y

′)PY (y
′)dy′

=

∫∫
h(ω′)Pω|Y (ω

′|y′)kΛ(y, y′)PY (y
′)dω′dy′.

This implies that

(T ∗
ΩTP+ΛT ∗

P+TΩh)(ω) =

∫
(TP+ΛT ∗

P+TΩh)(x)P (x|ω)dx

=

∫∫
(ΛT ∗

P+TΩh)(y)P (y|x)PX|ω(x|ω)dydx

=

∫∫
(ΛT ∗

P+TΩh)(y)P (y|x, ω)PX|ω(x|ω)dydx

=

∫
(ΛT ∗

P+TΩh)(y)PY |ω(y|ω)dy

=

∫∫∫
h(ω′)Pω|Y (ω

′|y′)kΛ(y, y′)PY (y
′)PY |ω(y|ω)dω′dy′dy

=

∫∫∫
h(ω′)kΛ(y, y

′)PY |ω(y|w)PY |ω(y
′|w′)Pω(ω

′)dydy′dω′,

as desired.
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Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 3.2
Proof Let f ∗ =

∑
uiµi, and g∗ =

∑
siuiνi. For this f ∗, the maximum in Eqn. (3.1) is

attained by g∗, so it suffices to show that g∗ satisfies Eqn. (3.3). By Bayes rule, we have

P+(A′|A = a) =

∫
P+(A′|X = x)P+(x|A′ = a)dx,

which implies that P+(A′ = a′|A = a) = k+A(a, a
′)PA(a

′). Therefore, we have

EX∼PXEA,A′∼P+(·|X)[g
∗(A)g∗(A′)] = EA∼PAEA′∼P (·|A)[g

∗(A)g∗(A′)]

= EA

[
g∗(A)

∫
g∗(a′)P (a′|A)da′

]
= EA

[
g∗(A)

∫
g∗(a′)k+A(a, a

′)PA(a
′)da′

]
=
〈
g∗, Tk+A

g∗
〉
PA
.

Since Tk+Ag
∗ = T ∗

P+TP+g∗ =
∑
s3iuiνi, Eqn. (3.3) is equivalent to

∑
(s2i−s4i )u2i ≤ 2ϵ

∑
s2iu

2
i .

Meanwhile, we have∑ s2iu
2
i ≥ (1 − ϵ)2

∑
u2i ≥ (1 − 2ϵ)

∑
u2i . By Cauchy-Schwarz in-

equality, we have (
∑
s4iu

2
i )(
∑
u2i ) ≥ (

∑
s2iu

2
i )

2 ≥ (1 − 2ϵ)(
∑
u2i )(

∑
s2iu

2
i ), which proves

Eqn. (3.3).

B.2 Proof of Theorem 3.4
Proof Since span(Φ) is at most rank-d, thus there exists f1 ∈ span{µ1, · · · , µd+1} with
∥f1∥PX = 1 that is orthogonal to span(Φ). Thus there exists f1, f2 ∈ span{µ1, · · · , µd+1}
with ∥f1∥PX = ∥f2∥PX = 1, f1 is orthogonal to span(Φ) and f2 ∈ span(Φ) (thus f1 ⊥ f2),
and µ1 ∈ span{f1, f2}. Suppose µ1 = α1f1 + α2f2 (without loss of generosity, assuming
α1, α2 ∈ [0, 1]) and denote f0 = α2f1 − α1f2. Then ∥f0∥PX = 1 and ⟨µ1, f0⟩PX = 0. Since
f1, f2 ∈ span{µ1, · · · , µd+1}, we have f0 ∈ span{µ2, · · · , µd+1} and thus E[f0] = 0.

Consider f = β1µ1 + β2f0 ∈ Fϵ(P
+) where β2

1 + β2
2 = 1, β1, β2 ∈ [0, 1]. Denote

f =
∑

i≥1 uiµi Then, we have∑i u
2
i = 1 and

β2
2 ≤

s21 − (1− ϵ)2

s21 − s2d+1

=⇒
∑
i≥1

s2iu
2
i ≥ s21β

2
1 + s2d+1β

2
2 = s21 − (s21 − s2d+1)β

2
2 ≥ (1− ϵ)2

∑
i

u2i .

Since f = (α1β1 + α2β2)f1 + (α2β1 − α1β2)f2, the approximation error of f is (α1β1 +

α2β2)
2. Define a function F (α1) = α1β1 + α2β2 = α1β1 +

√
1− α2

1β2 (α1 ∈ [0, 1]). We
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can show that dis function first increases and then decreases with α1. Thus, F (α1)
2 ≥

min{F (0)2, F (1)2} = min{β2
1 , β

2
2}. If β2

2 =
s21−(1−ϵ)2

s21−s2d+1
≤ 1

2
, then the approximation error is

always at least s21−(1−ϵ)2

s21−s2d+1
. To attain this lower bound, we must have∑i≥1 s

2
iu

2
i = s21β

2
1 +

s2d+1β
2
2 . This implies that f1 = µd+1, indicating that span(ϕ1, · · · , ϕd) = span(µ1, · · · , µd).

Thus, Φmust learn the contexture of TP+ .
On the other hand, if Φ learns the contexture, then the approximation of Φ on f will

be A :=
∑

i≥d+1 u
2
i . Then, we have

(1− ϵ)2 ≤
∑
i≥1

s2iu
2
i ≤ s21

d∑
i=1

u2i + s2d+1

∑
i≥d+1

u2i = s21 − (s21 − s2d+1)A,

and this implies that

A = min
w∈Rd, b∈R

∥∥w⊤Φ + b− f
∥∥2
PX
≤ s21 − (1− ϵ)2

s21 − s2d+1

.

When u21 = 1 − s21−(1−ϵ)2

s21−s2d+1
, u2d+1 =

s21−(1−ϵ)2

s21−s2d+1
, the equality holds. Thus, the lower bound

s21−(1−ϵ)2

s21−s2d+1
is attained if and only if Φ learns the contexture.

The converse part is obvious because for any Φwe can simply choose f = β1µ1+β2f0
as defined above. Then, we have f ∈ Fϵ(P

+), and the approximation error of Φ on this
f is at least s21−(1−ϵ)2

s21−s2d+1
.

98



Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 4.4
Proof By the proof of Theorem 2.11,Rj can be written as

Rj = d− EAj

∥∥∥(T ∗
P+Φ̃

)
(Aj)

∥∥∥2
2
= d−

d∑
i=1

〈
ϕ̃i, Tkj ϕ̃i

〉
PX
.

Therefore, the weighted sum L =
∑

j wjRj is equivalent to

L =
r∑

j=1

wj

(
d−

d∑
i=1

〈
ϕ̃i, Tkj ϕ̃i

〉
PX

)
= d−

d∑
i=1

〈
ϕ̃i,

r∑
j=1

(
wjTkj

)
ϕ̃i

〉
PX

,

where∑j wjTkj is equal to the integral operator of the linearly combined kernel∑j wjkj .
Thus, minimizing this L subject to the orthonormality constraint will make Φ̃ learn the
contexture, as shown in Theorem 2.11.

C.2 Proof of Theorem 4.9
For ease of reading and better use of notations, we restate our algorithm in Algorithm 6
and use the notation defined there in our proof. It is easy to verify that they are equiva-
lent. We first prove the following lemma.
Lemma C.1. Suppose Rt

k ≤ C holds for all t, k, for some constant C. If ηC < 1, then for any
w ∈ ∆r,

T∑
t=1

(
r∑

k=1

wkRt
k

)
−

t∑
t=1

lt ≤ C2Tη +
1

η
log r. (C.1)

Moreover, suppose T > log r and η =
√
log r

C
√
T
, Eqn. (C.1) becomes

T∑
t=1

(
r∑

k=1

wkRt
k

)
−

T∑
t=1

lt ≤ 2C
√
T log r.
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Algorithm 6 Solving the game Eqn. (4.1) (Rewritten)
Input: Embedding dimension d, priors P+

1 , · · · , P+
r , step size η

1: Initialize: L0 ← [0, · · · , 0], Φ : X → Rd, Ψk : Ak → Rd for k ∈ [r]
2: for t = 1, · · · , T do
3: W t =

∑
k exp(ηL

t−1
i ); wt

k =
exp(ηLt−1

k )

W t

4: Φt,Ψt
1, · · · ,Ψt

r ← argmin
∑

k wt
kRk, and get corresponding lossRt

k, lt =
∑

k wt
kRt

k

5: Update the loss vector Lt ← Lt−1 +Rt

Proof Consider the following potential function:

Ω(t) =
1

η
log(W t) =

1

η
log

(
r∑

k=1

exp(ηLt
k)

)
.

Since ex ≤ 1 + x+ x2 when x ≤ 1, thus we have

Ω(t)− Ω(t− 1) =
1

η
log

W t

W t−1
=

1

η
log

(
r∑

k=1

wt
k exp(ηRt

k)

)

≤ 1

η
log

(
r∑

k=1

wt
k[1 + ηRt

k + (ηRt
k)

2]

)

=
1

η
log

(
1 + η

r∑
k=1

wt
k[Rt

k + η(Rt
k)

2]

)

≤
r∑

k=1

wt
k[Rt

k + η(Rt
k)

2]

=
r∑

k=1

wt
kRt

k + η
r∑

k=1

wt
k(Rt

k)
2

≤
r∑

k=1

wt
kRt

k + C2η = lt + C2η.

Summing over t = 1, · · · , T and we can get

Ω(T )− Ω(0) ≤
t∑

t=1

lt + C2Tη. (C.2)

On the other hand, we know that for any k ∈ [r], there is

Ω(T ) ≥ LT
k =

T∑
t=1

Rt
k.

Thus we can get for any w ∈ ∆r,

Ω(T ) ≥
r∑

k=1

wkL
T
k =

T∑
t=1

(
r∑

k=1

wkRt
k

)
. (C.3)

Since Ω(0) = 1
η
log r, combining (C.2) and (C.3) yields

T∑
t=1

(
r∑

k=1

wkRt
k

)
−

t∑
t=1

lt ≤ C2Tη +
1

η
log r
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for any w ∈ ∆r.
Moreover, take η =

√
log r

C
√
T
< 1

C
and Eqn. (C.1) becomes

T∑
t=1

(
r∑

k=1

wkRt
k

)
−

T∑
t=1

lt ≤ 2C
√
T log r,

as desired.

Now, we finish the proof of Theorem 4.9.
Proof For any Φ̂, Ψ̂1, · · · , Ψ̂r, by the optimality of Φt,Ψt

1, · · · ,Ψt
r, we have

1

T

T∑
t=1

lt =
1

T

T∑
t=1

r∑
k=1

wt
kRt

k ≤
1

T

T∑
t=1

r∑
k=1

wt
kEX∼PXEY∼P+

k (·|X)∥Φ̂(X)− Ψ̂k(Y )∥22

=
r∑

k=1

∑T
t=1wt

k

T
EX∼PXEY∼P+

k (·|X)∥Φ̂(X)− Ψ̂k(Y )∥22

≤ max
w∈∆r

r∑
k=1

wkEX∼PXEY∼P+
k (·|X)∥Φ̂(X)− Ψ̂k(Y )∥22.

This implies that
1

T

T∑
t=1

lt ≤ min
Φ,Ψ

max
w∈∆r

r∑
k=1

wkRk.

On the other hand, for any w ∈ ∆r,

L(w) = 1

T

T∑
t=1

(
r∑

k=1

wkRt
k

)
.

Applying Lemma C.1, we can get

L(w) ≤ 1

T

T∑
t=1

lt +
2C
√
log r√
T

≤ min
Φ,Ψ

max
w∈∆r

r∑
k=1

wkRk +
2C
√
log r√
T

= L∗ +
2C
√
log r√
T

for any w ∈ ∆r, completing our proof.
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Appendix D

Proofs for Chapter 5

D.1 Context Complexity of Masking
Example D.1. Consider a random masking augmentation, i.e. for any x ∈ X , each coordi-
nate x(i) is randomly and independently masked to be 0 (i.e. 0 denotes the [MASK] token) with
probability α ∈ (0, 1) . Then, its context complexity is given by κ2r = (2− α)dX .

Proof We know that κ2 ≥ ∫ P+(a|x)2
PA(a)

da, whose right-hand side is a constant for all x by
symmetry. Given an a, suppose a has r coordinates masked and (dX − r) coordinates
unmasked. Then, there are 2r possible x that can be masked to become a. For each of
these x, P+(a|x) = αr(1 − α)dX−r. So p(a) =

∫
P+(a|x)PX (x)dx = 2r−dXαr(1 − α)dX−r.

Thus, we have

κ2 =

∫
P+(a|x)2

PA(a)
da =

dX∑
r=0

(
dX
r

)
α2r(1− α)2dX−2r

2r−dXαr(1− α)dX−r

=

dX∑
r=0

(
dX
r

)
αr(2− 2α)dX−r

= (α + 2− 2α)dX = (2− α)dX ,

which completes the proof.

Example D.2. Consider random block masking, i.e. masking x(i), x(i+1), · · · , x(i+r−1) for
r = ⌈αdX ⌉ and a uniformly random i ∈ [dX − r], for any x ∈ X . Then, κ2c ≤ [2(1−α)]dX .
Proof For any a, we have PA(a) =

1
dX−r+1

1
2dX−r , and P+(a|x) = 1

dX−r+1
if a is a masked

version of x. So there always is P+(a|x)
PA(a)

= 2dX−r ≤ 2(1−α)dX . Thus, we have κ2 ≤ 2(1−α)dX .

Example D.3. Consider random block masking with flipping, where for any x ∈ X , first
mask x(i), · · · , x(i+r−1) to be 0 for r = ⌈αdX ⌉ and a uniformly random i ∈ [dX − r], then
randomly flip the sign of each remaining coordinate independently with probability α

2
. Then, its

context complexity is bounded by κ2b ≤
[
(α2 − 2α + 2)(1−α/2)

]dX .
Proof For any a, we have PA(a) =

1
dX−r+1

1
2dX−r . Suppose a is a masked version of x, and

among the unmasked (dX − r) coordinates, a and x have k disagreeing coordinates. For
a given k, there are (dX − r+1)

(
dX−r

k

) possible a, and we have P+(a|x) = 1
dX−r+1

(α
2
)k(1−
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α
2
)dX−r−k. Thus, we have

∫
P+(a|x)2

PA(a)
da =

dX−r∑
k=0

(dX − r + 1)

(
dX − r
k

) 1
(dX−r+1)2

(α
2
)2k(1− α

2
)2dX−2r−2k

1
dX−r+1

1
2dX−r

=

dX−r∑
k=0

(
dX − r
k

)
2dX−r

(
α2

4

)k (
1− α +

α2

4

)dX−r−k

= 2dX−r

(
α2

4
+ 1− α +

α2

4

)dX−r

≤
(
α2 − 2α + 2

)dX−r ≤
(
α2 − 2α + 2

)(1−α/2)dX ,

which proves the bound.

D.2 Proof of Lemma 5.10

Proof Let fi =
∑

j uijsjµj , and U = (uij) = [u1, · · · ,ud]. U is a matrix with d columns
and infinitely many rows. Then, since ⟨fi, fj⟩Hk

= I[i = j], we have U⊤U = Id. Let
M (x) = [s1µ1(x), s2µ2(x), · · · ], and for a set of samples S = {x1, · · · , xm} denote Mj =
M (xj). Then, we have

R̂S(Fd) = Eσ1,··· ,σm

[
sup
F∈Fd

1

m

m∑
j=1

σiF (xj)

]

≤ Eσ1,··· ,σm

[
sup

U :U⊤U=Id

∣∣∣∣∣ 1m
m∑
j=1

d∑
i=1

σju
⊤
i MjM

⊤
j ui

∣∣∣∣∣
]

= Eσ1,··· ,σm

[
sup

U :U⊤U=Id

∣∣∣∣∣Tr
{
U⊤

(
1

m

m∑
j=1

σjMjM
⊤
j

)
U

}∣∣∣∣∣
]

= Eσ1,··· ,σm

[
sup

U :U⊤U=Id

∣∣∣∣∣Tr
{(

1

m

m∑
j=1

σjMjM
⊤
j

)
UU⊤

}∣∣∣∣∣
]
,

where σ1, · · · , σm are Rademacher variables, which are i.i.d. uniform random variables
taking values in {−1,+1}. Let β1 ≥ β2 ≥ · · · be the singular values of 1

m

∑m
j=1 σjMjM

⊤
j .

For any x,M (x)⊤M (x) =
∑
s2iµ

2
i (x) ≤ κ2, which implies thatM⊤

j Mj ≤ κ2.
For any U , the singular values of UU⊤ are d ones and lots of zeros. Moreover,∥∥∥ 1

m

∑m
j=1 σjMjM

⊤
j

∥∥∥2
F
=
∑∞

i=1 β
2
i . So by von Neumann’s trace inequality, we have

sup
U :U⊤U=Id

∣∣∣∣∣Tr
{(

1

m

m∑
j=1

σjMjM
⊤
j

)
UU⊤

}∣∣∣∣∣ ≤
d∑

i=1

βi ≤

√√√√d

d∑
i=1

β2
i ≤
√
d

m

∥∥∥∥∥
m∑
j=1

σjMjM
⊤
j

∥∥∥∥∥
F

.
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Thus, for any S, we have

R̂S(Fd) ≤
√
d

m
Eσ1,··· ,σm

∥∥∥∥∥
m∑
j=1

σjMjM
⊤
j

∥∥∥∥∥
F


=

√
d

m
Eσ1,··· ,σm

Tr

(

m∑
j=1

σjMjM
⊤
j

)⊤( m∑
l=1

σlMlM
⊤
l

)
1/2


≤
√
d

m

√√√√Eσ1,··· ,σm

[
Tr

(
m∑

j,l=1

σjσlMjM⊤
j MlM⊤

l

)]
(Jensen)

=

√
d

m

√√√√Tr

(
m∑

j,l=1

E[σjσl]MjM⊤
j MlM⊤

l

)

=

√
d

m

√√√√Tr

(
m∑
j=1

MjM⊤
j MjM⊤

j

)
=

√
d

m

√√√√ m∑
j=1

(
M⊤

j Mj

)2 ≤ √d√
m
κ2.

Since Rm(Fd) = ES[R̂S(Fd)], we have Rm(Fd) ≤
√
d√
m
κ2.

D.3 Proof of Lemma 5.13
Proof Let f1 =

∑
uisiµi and f2 =

∑
visiµi. Let u = [u1, u2, · · · ] and v = [v1, v2, · · · ].

Then, ∥u∥2 ≤ 1 and ∥v∥2 ≤ 1. For any S = {x1, · · · , xn}, let M (x) = [s1µ1(x), s2µ2(x)]
and Mj = M (xj). Then, we have

R̂S(F) ≤ Eσ1,··· ,σn

[
sup

∥u∥2≤1,∥v∥2≤1

∣∣∣∣∣ 1n
n∑

j=1

σju
⊤MjM

⊤
j v

∣∣∣∣∣
]

≤ 1

n
Eσ1,··· ,σn

∥∥∥∥∥
n∑

j=1

σjMjM
⊤
j

∥∥∥∥∥
2

 ≤ 1

n
Eσ1,··· ,σn

∥∥∥∥∥
n∑

j=1

σjMjM
⊤
j

∥∥∥∥∥
F


=

1

n
Eσ1,··· ,σn

Tr

(

n∑
j=1

σjMjM
⊤
j

)⊤( n∑
l=1

σlMlM
⊤
l

)
1/2


≤ 1

n

√√√√Eσ1,··· ,σn

[
Tr

{
n∑

j,l=1

σjσlMjM⊤
j MlM⊤

l

}]
(Jensen)

=
1

n

√√√√Tr

{
n∑

j,l=1

E[σjσl]MjM⊤
j MlM⊤

l

}
=

1

n

√√√√Tr

{
n∑

j=1

MjM⊤
j MjM⊤

j

}
≤ 1

n

√
nκ4.

Here the first line is not equality because of the absolute value. Since this holds for any
S, we have Rn(F) = Es[R̂S(F)] ≤ κ2

√
n
.
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By [148, Theorem 4.10], for any δ ∈ (0, 1), with probability at least 1− δ, both of the
following hold simultaneously for any f ∈ F :

∣∣∣∣∣ 1n
n∑

i=1

f(x̃i)− EX∼PX [f(X)]

∣∣∣∣∣ ≤ κ2√
n

(
2 +

√
2 log

2

δ

)
;∣∣∣∣∣ 1n

m∑
i=1

f(xi)− EX∼PX [f(X)]

∣∣∣∣∣ ≤ κ2√
m

(
2 +

√
2 log

2

δ

)
.

For any unit vector u ∈ Rd, let fu(x) = u⊤Φ(x). Then, ∥fu∥Hk
= 1, so f 2

u ∈ F . Moreover,
we have

m∑
i=1

fu(xi)
2 = ∥G[v1, · · · ,vd]u∥22 =

d∑
i=1

λiu
2
i ≥ λd.

Thus, using the above inequalities, assuming thatm ≥ n, we obtain

1

n

n∑
j=1

f(x̃j)
2 ≥ λd

m
− κ2√

n

(
4 + 2

√
2 log

2

δ

)
,

which implies the result since ∥Φu∥22 =
∑n

j=1 f(x̃j)
2.

D.4 Proof of Corollary 5.14
Proof Denote F = f ∗ − fΦ. Then, y− yΦ = [F (x̃1), · · · , F (x̃n)], and F 2

∥F∥2Hk

∈ F , where F
was defined in Lemma 5.13. Therefore, by Lemma 5.13, we have

1

n

n∑
j=1

F (x̃j) ≤ EX∼PX [F (X)2] + ∥F∥2Hk

κ2√
n

(
2 +

√
2 log

2

δ

)
,

as desired.

D.5 Proof of Theorem 5.22
Proof Let µ1, µ2, · · · be the eigenfunctions of Tk. First, let us show that Ht must be an
RKHS. since µ1 is the common top-1 eigenfunction of Tkp for all p ≥ 1, we have rkp(µ1) ≥
rkp(f) for all f ∈ Hk. By the condition of preserving relative smoothness, this implies
that for all f ∈ Ht ⊂ Hk, we have rt(µ1) ≥ rt(f). Let C0 = rt(µ1). Then, for any f ∈ Ht,
we have ∥f∥PX

≤
√
C0∥f∥Ht

. In other words, ∥·∥Ht
is a stronger norm than ∥·∥PX

on Ht.
Thus, for any sequence (hi) ∈ Ht such that ∥hi − h∥Hk

→ 0: first, we have h ∈ Hk because
Hk is a Hilbert space; second, we have ∥hi − h∥PX

→ 0. Similarly, if ∥hi − h′∥Hk
→ 0, then

∥hi − h′∥PX
→ 0.

Consider the inclusion map I : Ht → Hk, where Ih = h. For any sequence (hi) ∈ Ht

such that ∥hi − h∥Hk
→ 0 and ∥hi − h′∥Hk

→ 0, hi converges to both h and h′ under ∥·∥PX
,

so we must have h′ = h = Ih. This means that the graph of I is closed, so the closed
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graph theorem [18, Chapter 2] guarantees that I must be a bounded operator, meaning
that there exists a constant C such that ∥f∥Hk

≤ C∥f∥Ht
for all f ∈ Ht.

Let δx : f 7→ f(x) be the evaluation functional at point x. Since Hk is an RKHS,
there exists a constantMx > 0 such that |f(x)| ≤ Mx∥f∥Hk

for all f ∈ Hk. Thus, for any
f ∈ Ht ⊂ Hk, we have |f(x)| ≤ Mx∥f∥Hk

≤ MxC∥f∥Ht
. Thus, by Proposition 5.20, Ht is

also an RKHS. Let ks be the reproducing kernel of Ht. From now on, we will use Hks to
denoteHt.

Second, we prove by induction that µ1, · · · , µd are the top-d eigenfunctions of Tks ,
and ⟨µi, µj⟩Hks

= 0 for any i ̸= j. We have already shown that µ1 maximizes rHks
(f)

over all f ∈ Hks . Thus, µ1 must be the top-1 eigenfunction of Hks . Suppose d ≥ 2,
and µ1, · · · , µd−1 are the top-(d − 1) eigenfunctions and are orthogonal to each other in
Hks . LetH0 =

{
h
∣∣ ∀i ∈ [d− 1] : ⟨h, µi⟩PX

= 0
}. Obviously,H0∩Hkp is a closed subspace

of Hkp for any p ≥ 1. Moreover, for any f ∈ H0 ∩ Hks and any i ∈ [d − 1], we have
⟨f, µi⟩Hks

= s−1
i ⟨f, µi⟩PX

= 0, where si is the eigenvalue of Tks corresponding to µi. Thus,
Hks∩H0 is a closed subspace ofHks . By the condition of preserving relative smoothness,
µd maximizes rHks

(f) over f ∈ Hks ∩H0. Thus, µd is the d-th eigenfunction of Tks , and is
orthogonal to µ1, · · · , µd−1 inHks .

Third, we prove by contradiction that si ≤Mλi for all i. If this is false, then obviously
one can find t1 < t2 < · · · such that sti ≥ 1 · λti for all i. Consider f =

∑∞
i=1

√
i−1 · λtiµti .

Then, ∥f∥2Hk
=
∑

i i
−1 = +∞. Since Hks ⊂ Hk, this implies that ∥f∥2Hks

= +∞ =∑
i

λti

i·sti
≤
∑

i
1
i2
< +∞, which is a contradiction.

Fourth, we find a function s(λ) that satisfies the conditions in the theorem to interpo-
late (λi, si) for all i. We first point out that we can without loss of generality assume that
λi < 2λi+1 for all i: If there is an i that does not satisfy this condition, we simply insert
some new λ’s between λi and λi+1, whose corresponding s’s are the linear interpola-
tions between si and si+1, so that si ≤ Mλi still holds. With this assumption, it suffices
to construct a series of bump functions {fi}∞i=1, where fi ≡ 0 if λi = λi+1; otherwise,
fi(λ) = si − si+1 for λ ≥ λi and fi(λ) = 0 for λ ≤ λi+1. Such bump functions are C∞ and
monotonically non-decreasing. Then, define s(λ) =

∑
i fi(λ) for λ > 0, and s(0) = 0.

This sum of bump functions converges everywhere on (0,+∞), since it is a finite sum
locally everywhere. Clearly this s is monotonic, interpolates all the points, continuous
on [0,+∞) and C∞ on (0,+∞). And for all λ that is not λi, for instance λ ∈ (λi+1, λi),
there is s(λ) ≤ s(λi) ≤Mλi ≤ 2Mλi+1 ≤ 2Mλ. Thus, s(λ) = O(λ) for λ ∈ [0,+∞).

Remark D.4. In general, we cannot guarantee that s(λ) is differentiable at λ = 0. Here is a
counterexample: λi = 3−i, and si = 3−i if i is odd and 2 · 3−i if i is even. Were s(λ) to be
differentiable at λ = 0, its derivative would be 1 and also would be 2, a contradiction.

D.6 Proof of Theorem 5.25
Proof Let λ̂1 ≥ · · · ≥ λ̂m+n be the eigenvalues of Gk

m+n
. It is easy to show that Q has the

same eigenvectors as Gk

m+n
, with eigenvalues g(λ̂1), · · · , g(λ̂2). By Lemma 5.29 and Borel-

Cantelli lemma, as n→∞, λ̂1 a.s.−→ λ1. For simplicity, let us assume that λ is slightly larger
than λ1, so almost surely there is λ̂1 ≤ λ. Then, all eigenvalues ofQ are in [ρmin, ρmax].

The first part of this proof is to bound ∥ut∥2, where ut := (m+ n)Ĩn
(

Gk

m+n

)r
(θ∗ − θt).
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Let θt be the θ at iteration t, and θ∗ be the optimal solution. Since θ0 = 0, we have

θ∗ − θt =

[(
Im+n − γ

[
(m+ n)Ĩn

(
Gk

m+ n

)r

+ nβnQ

])
θ∗ + γỹ

]
−
[(

Im+n − γ
[
(m+ n)Ĩn

(
Gk

m+ n

)r

+ nβnQ

])
θt−1 + γỹ

]
=

(
Im+n − γ

[
(m+ n)Ĩn

(
Gk

m+ n

)r

+ nβnQ

])
(θ∗ − θt−1)

=

(
Im+n − γ

[
(m+ n)Ĩn

(
Gk

m+ n

)r

+ nβnQ

])t

θ∗.

(D.1)

Note that(
Gk

m+ n

)r/2(
Im+n − γ

[
(m+ n)Ĩn

(
Gk

m+ n

)r

+ nβnQ

])
=

(
Im+n − γ

[
(m+ n)

(
Gk

m+ n

)r/2

Ĩn

(
Gk

m+ n

)r/2

+ nβnQ

])(
Gk

m+ n

)r/2

.

Thus, by propagating ( Gk

m+n

)r/2 from left to right, we get
(

Gk

m+ n

)r/2

(θ∗ − θt) = (Im+n − γR)t
(

Gk

m+ n

)r/2

θ∗,

where R := (m + n)
(

Gk

m+n

)r/2
Ĩn
(

Gk

m+n

)r/2
+ nβnQ is a p.s.d. matrix. Denote the smallest

and largest eigenvalues of R by λ̃min and λ̃max. Then, λ̃min ≥ nβnρmin. In terms of λ̃max,
we have

(m+ n)

(
Gk

m+ n

)r/2

Ĩn

(
Gk

m+ n

)r/2

=

(
Gk

m+ n

) r−1
2 (

G
1
2
k ĨnG

1
2
k

)( Gk

m+ n

) r−1
2

.

By Sylvester’s theorem, all non-zero eigenvalues of G
1
2
k ĨnG

1
2
k are the eigenvalues of

ĨnGkĨn, i.e. the non-zero eigenvalues of GK,n. By Lemma 5.29, 1
n
∥GK,n∥2

a.s.−→ λ1, so
suppose ∥GK,n∥2 ≤ nλ. Then, λ̃max ≤ nλr + nβnρmax.

Since Mθ∗ = ỹ, and ( Gk

m+n

)r/2
M = R

(
Gk

m+n

)r/2, we have R
(

Gk

m+n

)r/2
θ∗ =

(
Gk

m+n

)r/2
ỹ.

Note thatR(Im+n − γR) = (Im+n − γR)R. Thus, we have(
Gk

m+ n

)r/2

(θ∗ − θt) = (Im+n − γR)t
(

Gk

m+ n

)r/2

θ∗

= R−1(Im+n − γR)tR

(
Gk

m+ n

)r/2

θ∗

= R−1(Im+n − γR)t
(

Gk

m+ n

)r/2

ỹ.

Nowwe bound ∥ut∥2. First, note that for any matricesA,B ∈ Rd×d whereB is p.s.d.,
there isu⊤A⊤BAu ≤ ∥B∥2∥Au∥22 ≤ ∥B∥2∥A⊤A∥2∥u∥22 for anyu ∈ Rd, so ∥A⊤BA∥2 ≤
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∥B∥2∥A⊤A∥2. Second, note that the last m elements of ỹ are zeros, which means that
ỹ = Ĩnỹ. Thus, we have

∥ut∥2 =
∥∥∥∥(m+ n)Ĩn

(
Gk

m+ n

)r

(θ∗ − θt)

∥∥∥∥
2

=

∥∥∥∥∥(m+ n)Ĩn

(
Gk

m+ n

)r/2

R−1(Im+n − γR)t
(

Gk

m+ n

)r/2

ỹ

∥∥∥∥∥
2

=

∥∥∥∥∥(m+ n)Ĩn

(
Gk

m+ n

)r/2

(Im+n − γR)t/2R−1(Im+n − γR)t/2
(

Gk

m+ n

)r/2

Ĩnỹ

∥∥∥∥∥
2

≤
∥∥∥(Im+n − γR)t/2R−1(Im+n − γR)t/2

∥∥∥
2

∥∥∥∥(m+ n)Ĩn

(
Gk

m+ n

)r

Ĩn

∥∥∥∥
2

∥ỹ∥2

≤ 1

λ̃min

∥Im+n − γR∥t2(nλ
r
1)∥y∥2,

where the last step is because we have already proved
∥∥∥(m+ n)Ĩn

(
Gk

m+n

)r
Ĩn

∥∥∥
2
≤ nλr1.

Now, for γ = 1
nλr , when n is sufficiently large it is less than 2

λ̃max+λ̃min
, because βn =

o(1). Thus, ∥Im+n − γR∥2 ≤ 1− λ̃min

nλr ≤ 1− βnρmin

λr . Thus, we have

∥ut∥2 ≤
(
1− βnρmin

λr

)t
λr

βnρmin

∥y∥2.

The second part of this proof is to bound ∥Q(θ∗ − θt)∥2. Let us return to Eqn. (D.1),
which says that

∥Q(θ∗ − θt+1)∥2 = ∥(Im+n − γnβnQ)Q(θ∗ − θt)− γQut∥2

≤
(
1− βnρmin

λr

)
∥Q(θ∗ − θt)∥2 +

ρmax

nλr
∥ut∥2.

Here again, we assume that n is large enough so that λr > βnρmin. This implies that

∥Q(θ∗ − θt+1)∥2 − t
(
1− βnρmin

λr

)t
ρmax∥y∥2
nβnρmin

≤
(
1− βnρmin

λr

)[
∥Q(θ∗ − θt)∥2 − (t− 1)

(
1− βnρmin

λr

)t−1
ρmax∥y∥2
nβnρmin

]

≤ · · · ≤
(
1− βnρmin

λr

)t[(
1− βnρmin

λr

)
∥Qθ∗∥2 +

ρmax∥y∥2
nβnρmin

]
.

Thus, there is ∥Q(θ∗ − θt)∥2 ≤
(
1− βnρmin

λr

)t∥Qθ∗∥2 + t
(
1− βnρmin

λr

)t−1 ρmax∥y∥2
nβnρmin

. Using 1 −
x ≤ e−x, we have

∥Q(θ∗ − θt)∥2 ≤ exp

(
−βnρmint

λr

)
∥Qθ∗∥2 + t exp

(
−βnρmin(t− 1)

λr

)
ρmax∥y∥2
nβnρmin

.

When t = t0 :=
4λr

βnρmin
log 2λrρmax∥y∥2

nβ2
nρ

2
min∥Qθ∗∥2 , by log(2x) ≤ x for x > 0, we have

exp

(
βnρmin

λr
t

2

)
≥
(

2λrρmax∥y∥2
nβ2

nρ
2
min∥Qθ∗∥2

)2

≥ 4λrρmax∥y∥2
nβ2

nρ
2
min∥Qθ∗∥2

log

(
2λrρmax∥y∥2
nβ2

nρ
2
min∥Qθ∗∥2

)
.
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Let F (t) := exp
(
βnρmin

2λr t
)
− ρmax∥y∥2

nβnρmin∥Qθ∗∥2 t. Then we have F (t0) ≥ 0. And it is easy to show
that for all t ≥ t0

2
, there is F ′(t) ≥ 0. This means that when t ≥ t0, there is F (t) ≥ 0, so

we have

∥Q(θ∗ − θt)∥2 ≤ exp

(
−βnρmint

λr

)
∥Qθ∗∥2 + exp

(
−βnρmin

λr

(
t

2
− 1

))
∥Qθ∗∥2.

Hence, when t ≥ max
{

2λr

βnρmin
log 2

ϵ
+ 2, t0

}
, we have ∥Q(θ∗ − θt)∥2 ≤ ϵ∥Qθ∗∥2, which

implies that the relative estimation error of α̂ is less than ϵ.

D.7 Proof of Theorem 5.26
Proof Let us look at the three conditions used in Theorem 5.12.

• Eigenvalue decay (EVD): This is a condition of the theorem.
• Embedding condition (EMB): For any f =

∑
uiµi ∈ Hk, for PX -almost all x we

have f(x)2 = (
∑
uiµi(x))

2 ≤
(∑ u2

i

λi

)
(
∑
λiµi(x)

2) ≤ ∥f∥2Hk
κ2 ≤ κ2M∥f∥2Hks

. Thus,
EMB holds with c2 = κ

√
M .

• Source condition (SRC): This holds with c3 =
√
ϵ∥f ∗∥PX

.
Thus, the theorem can be proved using the result in [41].

D.8 Proof of Theorem 5.28
Proposition D.5. For any p.s.d. matricesA,B ∈ Rd×d, we have Tr(AB) ≤ ∥A∥2Tr(B).
Proof An elementary proof can be found at https://math.stackexchange.com/
questions/2241879/reference-for-trace-norm-inequality.

Lemma D.6. For any δ ∈ (0, 1), with probability at least 1− δ the following holds for all p ≥ 1:∣∣∣k̂p(x, xj)− kp(x, xj)∣∣∣ ≤ (p− 1)λp−2
max

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
for all j ∈ [m+ n], x ∈ X ,

which implies that∣∣∣k̂s(x, xj)− ks(x, xj)∣∣∣ ≤ ∇λ

(
s(λ)

λ

)∣∣∣∣
λ=λmax

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
.

Proof For any x′ ∈ X and any p ≥ 1, we have

∥kp(·, x′)∥2Hk
=

∥∥∥∥∥∑
i

λpiµi(x
′)µi(·)

∥∥∥∥∥
2

Hk

=
∑
i

λ2pi µi(x
′)2

λi
≤ λ2p−2

1 κ2.

LetFp(x) = u⊤( Gk

m+n

)p
vk(x), whereu ∈ Rm+n satisfies ∥u∥1 ≤ 1. Since ⟨k(xi, ·), k(xj, ·)⟩Hk

=
k(xi, xj), we have ⟨vk,vk⟩Hk

= Gk. Thus,

∥Fp∥2Hk
=

〈
u⊤
(

Gk

m+ n

)p

vk,u
⊤
(

Gk

m+ n

)p

vk

〉
Hk

= u⊤ G2p+1
k

(m+ n)2p
u.
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SinceGk is p.s.d., we can defineG1/2
k . Using Proposition D.5, we have

∥Fp∥2Hk
= u⊤ G2p+1

k

(m+ n)2p
u = Tr

{
u⊤G

1/2
k

(
Gk

m+ n

)2p

G
1/2
k u

}

= Tr

{(
Gk

m+ n

)2p

G
1/2
k uu⊤G

1/2
k

}
≤ λ̂2p1 Tr

(
G

1/2
k uu⊤Gk

)
.

Moreover, Tr
(
G

1/2
k uu⊤Gk

)
= u⊤Gku =

∑m+n
i,j=1 uiujk(xi, xj) ≤

∑m+n
i,j=1 |uiujk(xi, xj)| ≤

κ2∥u∥21 ≤ κ2. Thus, we have ∥Fp∥Hk
≤ λ̂p1κ for all p ≥ 1.

For any p ≥ 1, define vkp(x) ∈ Rm+n as vkp(x)[i] = kp(x, xi) for i ∈ [m+ n]. Then,∣∣∣kp(x, xj)− k̂p(x, xj)∣∣∣
=

∣∣∣∣kp(x, xj)− 1

(m+ n)p−1
vk(x)

⊤Gp−2
k vk(xj)

∣∣∣∣
≤
∣∣∣∣kp(x, xj)− 1

m+ n
vkp−1(x)⊤vk(xj)

∣∣∣∣
+

p−2∑
q=1

1

(m+ n)q

∣∣∣∣vkp−q(x)⊤Gq−1
k vk(xj)− vkp−q−1(x)⊤

Gq
k

m+ n
vk(xj)

∣∣∣∣.
Since f(z) = kp−1(x, z)k(xj, z) ∈ F , where F was defined in Lemma 5.13, the first term
can be bounded as∣∣∣∣kp(x, xj)− 1

m+ n
vkp−1(x)⊤vk(xj)

∣∣∣∣
=

∣∣∣∣∣
∫
kp−1(x, z)k(xj, z)dPX (z)−

1

m+ n

m+n∑
i=1

kp−1(x, xi)k(xj, xi)

∣∣∣∣∣
≤ λp−2

1

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
,

where the last step uses ∥kp−1(x, ·)∥Hk
≤ λp−2

1 κ, and ∥k(xj, ·)∥Hk
≤ κ.

For the second term, since vk(xj) = Gkej where ej = [0, · · · , 0, 1, 0, · · · , 0], we have
p−2∑
q=1

1

(m+ n)q

∣∣∣∣vkp−q(x)⊤Gq−1
k vk(xj)− vkp−q−1(x)⊤

Gq
k

m+ n
vk(xj)

∣∣∣∣
=

∣∣∣∣∣
∫
kp−q−1(x, z)

[
e⊤
j

(
Gk

m+ n

)q

vk(z)

]
dPX (z)−

1

m+ n

m+n∑
j=1

kp−q−1(x, xj)

[
e⊤
j

(
Gk

m+ n

)q

vk(xj)

]∣∣∣∣∣
≤ λp−q−2

1 λ̂q1
κ4√
m+ n

(
2 +

√
2 log

1

δ

)
,

where the last step uses ∥kp−q−1(x, ·)∥Hk
≤ λp−q−2

1 κ, and
∥∥e⊤

j

(
Gk

m+n

)q
vk

∥∥
Hk
≤ λ̂q1κ since

∥ej∥1 = 1. Finally, note that∇λ

(
s(λ)
λ

)
=
∑∞

p=1 πp(p− 1)λp−2. Combining all of the above
yields the result.
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Corollary D.7. Under the settings of Lemma D.6, we have∣∣∣ks2(xi, xj)− ⟨k̂s(xi, ·), ks(xj, ·)⟩PX

∣∣∣+ ∣∣∣⟨k̂s(xi, ·), k̂s(xj, ·)⟩PX − ⟨k̂s(xi, ·), ks(xj, ·)⟩PX

∣∣∣
≤ 2s(λmax) ∇λ

(
s(λ)

λ

)∣∣∣∣
λ=λmax

κ4√
m+ n

(
2 +

√
2 log

1

δ

)

holds for all i, j ∈ [m+ n], where λmax = max
{
λ1, λ̂1

}
.

Proof Let Fp,q(x) = u⊤( Gk

m+n

)p
vkq(x) for any ∥u∥1 ≤ 1 and any p ≥ 0, q ≥ 1. By Proposi-

tion D.5, we have

∥Fp,q∥2Hk
= u⊤

(
Gk

m+ n

)p

Gk2q−1

(
Gk

m+ n

)p

u

= Tr

((
Gk

m+ n

)p−1/2
Gk2q−1

m+ n

(
Gk

m+ n

)p−1/2

G
1/2
k uu⊤G

1/2
k

)

≤ λ̂2p−1
1

∥∥∥∥Gk2q−1

m+ n

∥∥∥∥
2

Tr
(
G

1/2
k uu⊤G

1/2
k

)
= λ̂2p−1

1

∥∥∥∥Gk2q−1

m+ n

∥∥∥∥
2

u⊤Gku ≤ λ̂2p−1
1

∥∥∥∥Gk2q−1

m+ n

∥∥∥∥
2

κ2.

For any unit vector w ∈ Rm+n, we have

λ̂1 ≥ w⊤ Gk

m+ n
w =

1

m+ n

m+n∑
i,j=1

wiwjK(xi, xj) =
1

m+ n

∑
t

λtw
⊤Mtw,

where Mt ∈ R(m+n)×(m+n) is defined asMt[i, j] = µt(xi)µt(xj). Thus, we have

w⊤Gk2q−1

m+ n
w =

1

m+ n

∑
t

λ2q−1
t w⊤Mtw ≤ λ2q−2

1

1

m+ n

∑
t

λtw
⊤Mtw ≤ λ2q−2

1 λ̂1,

which implies that
∥∥∥Gk2q−1

m+n

∥∥∥
2
≤ λ2q−2

1 λ̂1. Thus, ∥Fp,q∥2Hk
≤ λ2q−2

1 λ̂2p1 κ
2.

Note that ⟨vk,vk⟩PX = Gk2 . So for any p, q ≥ 1 and any i, j ∈ [m+ n], there is:∣∣∣∣kp+q(xi, xj)−
〈
k̂p(xi, ·), kq(xj, ·)

〉
PX

∣∣∣∣ = ∣∣∣∣e⊤
i Gkp+qej − e⊤

i

Gp−1
k

(m+ n)p−1
Gkq+1ej

∣∣∣∣
≤

p−1∑
t=1

∣∣∣∣e⊤
i

Gp−t
k

(m+ n)p−t
Gkq+tej − e⊤

i

Gp−t−1
k

(m+ n)p−t−1
Gkq+t+1ej

∣∣∣∣
=

p−1∑
t=1

∣∣∣∣∣ 1

m+ n

m+n∑
l=1

[
e⊤
i

(
Gk

m+ n

)p−t−1

vk

]
(xl)
[
e⊤
j vkq+t

]
(xl)

−

〈
e⊤
i

(
Gk

m+ n

)p−t−1

vk, e
⊤
j vkq+t

〉
PX

∣∣∣∣∣
≤

p−1∑
t=1

λq+t−1
1 λ̂p−t−1

1

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
≤ (p− 1)λp+q−2

max

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
.
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Thus, we have∣∣∣ks2(xi, xj)− ⟨k̂s(xi, ·), ks(xj, ·)⟩PX

∣∣∣ = ∞∑
p,q=1

∣∣∣∣πpπq(kp+q(xi, xj)−
〈
k̂p(xi, ·), kq(xj, ·)

〉
PX

)∣∣∣∣
≤

∞∑
p,q=1

πpπq(p− 1)λp+q−2
max

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
.

Similarly, we can show that:∣∣∣∣〈k̂p(xi, ·), k̂q(xj, ·)〉
PX
−
〈
k̂p(xi, ·), kq(xj, ·)

〉
PX

∣∣∣∣
=

∣∣∣∣e⊤
i

Gp−1
k

(m+ n)p−1
Gk2

Gq−1
k

(m+ n)q−1
ej − e⊤

i

Gp−1
k

(m+ n)p−1
Gkq+1ej

∣∣∣∣
≤

q−1∑
t=1

∣∣∣∣e⊤
i

Gp−1
k

(m+ n)p−1
Gkt+1

Gq−t
k

(m+ n)q−t
ej − e⊤

i

Gp−1
k

(m+ n)p−1
Gkt+2

Gq−t−1
k

(m+ n)q−t−1
ej

∣∣∣∣
=

q−1∑
t=1

∣∣∣∣∣ 1

m+ n

m+n∑
l=1

[
e⊤
i

(
Gk

m+ n

)p−1

vkt+1

]
(xl)

[
e⊤
j

(
Gk

m+ n

)q−t−1

vk

]
(xl)

−

〈
e⊤
i

(
Gk

m+ n

)p−1

vkt+1 , e⊤
j

(
Gk

m+ n

)q−t−1

vk

〉
PX

∣∣∣∣∣
≤

q−1∑
t=1

λt1λ̂
p+q−t−2
1

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
≤ (q − 1)λp+q−2

max

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
,

which implies that∣∣∣⟨k̂s(xi, ·), k̂s(xj, ·)⟩PX − ⟨k̂s(xi, ·), ks(xj, ·)⟩PX

∣∣∣
=

∞∑
p,q=1

∣∣∣∣πpπq(〈k̂p(xi, ·), k̂q(xj, ·)〉
PX
−
〈
k̂p(xi, ·), kq(xj, ·)

〉
PX

)∣∣∣∣
≤

∞∑
p,q=1

πpπq(q − 1)λp+q−2
max

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
.

Combining the above inequalities, we obtain∣∣∣ks2(xi, xj)− ⟨k̂s(xi, ·), ks(xj, ·)⟩PX

∣∣∣+ ∣∣∣⟨k̂s(xi, ·), k̂s(xj, ·)⟩PX − ⟨k̂s(xi, ·), ks(xj, ·)⟩PX

∣∣∣
≤

∞∑
p,q=1

πpπq(p+ q − 2)λp+q−2
max

κ4√
m+ n

(
2 +

√
2 log

1

δ

)

= λmax ∇λ

(
s(λ)2

λ2

)∣∣∣∣
λ=λmax

κ4√
m+ n

(
2 +

√
2 log

1

δ

)
,

so we get the result by expanding the derivative.

We now prove Theorem 5.28.
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Proof Define vks,n(x) ∈ Rn such that vks,n(x)[i] = ks(x, xi). Define vk̂s,n
(x) similarly.

Recall the formulas f̃ = α̃⊤vks,n and f̂ = α̂⊤vk̂s,n
. Define f † := α̂⊤vks,n. Since Gk̂s,n

is
p.s.d., we can see that ∥α̂∥2 ≤ ∥y∥2

nβn
, and ∥α̂∥1 ≤

√
n∥α̂∥2. So by Corollary D.7, we have∥∥∥f̂ − f †

∥∥∥2
PX

= α̂⊤
〈
vk̂s,n

− vks,n,vk̂s,n
− vks,n

〉
PX

α̂

= α̂⊤
(
⟨k̂s(xi, ·), k̂s(xj, ·)⟩PX + ks2(xi, xj)− 2⟨k̂s(xi, ·), ks(xj, ·)⟩PX

)
α̂

≤ 2s(λmax) ∇λ

(
s(λ)

λ

)∣∣∣∣
λ=λmax

β−2
n κ4√
m+ n

(
2 +

√
2 log

1

δ

)
∥y∥22
n

.

By the definitions of α̃ and α̂, we can also see that:

(Gks,n + nβnIn)(α̂− α̃) =
(
Gks,n −Gk̂s,n

)
α̂. (D.2)

Note that
∥∥∥Gks,n −Gk̂s,n

∥∥∥
2
≤ n

∥∥∥Gks,n −Gk̂s,n

∥∥∥
max

. Here ∥M∥max = max |M [i, j]|. Thus,
we have∥∥∥f̃ − f †

∥∥∥2
Hks

= (α̂− α̃)⊤Gks,n(α̂− α̃)

= (α̂− α̃)⊤
(
Gks,n −Gk̂s,n

)
α̂− nβn(α̂− α̃)⊤(α̂− α̃)

≤ ∥α̂∥2
∥∥∥Gks,n −Gk̂s,n

∥∥∥
2
∥α̂∥2 + ∥α̃∥2

∥∥∥Gks,n −Gk̂s,n

∥∥∥
2
∥α̂∥2 − 0

≤ 2 ∇λ

(
s(λ)

λ

)∣∣∣∣
λ=λmax

β−2
n κ4√
m+ n

(
2 +

√
2 log

1

δ

)
∥y∥22
n

.

And note that we have
∥∥∥f̃ − f †

∥∥∥2
PX
≤ s(λ1)

∥∥∥f̃ − f †
∥∥∥2
Hks

≤ s(λmax)
∥∥∥f̃ − f †

∥∥∥2
Hks

. Thus,

∥∥∥f̂ − f̃∥∥∥2
PX
≤ 2

(∥∥∥f̂ − f †
∥∥∥2
PX

+
∥∥∥f̃ − f †

∥∥∥2
PX

)
≤ 8s(λmax) ∇λ

(
s(λ)

λ

)∣∣∣∣
λ=λmax

β−2
n κ4√
m+ n

(
2 +

√
2 log

1

δ

)
∥y∥22
n

,

as desired.
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Appendix E

Proofs for Chapter 6

E.1 Proof of Theorem 6.4
We need the following classical result in convex optimization.
Theorem E.1 ([141], p. 16). Let f be a convex and L-smooth function (Definition 6.9) on
D ⊆ RdX . Suppose it has a unique finite minimizer x∗. If one minimizes f with gradient descent
xt+1 = xt − η∇f(xt), staring from x0 with a fixed learning rate η ≤ 1

L
, then we have

f(xT ) ≤ f(x∗) +
1

ηT
∥x0 − x∗∥22 for all T > 0.

Now let us prove Theorem 6.4.
Proof Static GRW. We first prove the result for static GRW where q(t)i = qi > 0 for
all t. Let q∗ = mini qi. The minimization objective is F (θ) =

∑n
i=1 qi(x

⊤
i θ − yi)2, whose

Hessian is ∇2
θF (θ) = 2

∑n
i=1 qixix

⊤
i . Let A =

∑n
i=1 ∥xi∥

2
2. Since qi ∈ [0, 1], for any unit

vector v ∈ RdX , we have

v⊤∇2
θF (θ)v = 2

n∑
i=1

qi(x
⊤
i v)

2 ≤ 2
n∑

i=1

qi∥xi∥22 ≤ 2A,

which by Definition 6.9 implies that F is 2A-smooth. Thus, we have

F (θ2) ≤ F (θ1) + ⟨∇θF (θ1), θ2 − θ1⟩+ A∥θ2 − θ1∥22 for all θ1, θ2 ∈ RdX . (E.1)

Denote g(θ(t)) = X⊤θ(t) − Y ∈ Rn. Let √Q = diag(√q1, · · · ,√qn). Then, we have
F (θ(t)) =

∥∥√Qg(θ(t))∥∥2
2
, which implies that ∇F (θ(t)) = 2XQg(θ(t)). The update rule of

static GRW with gradient descent is thus given by

θ(t+1) = θ(t) − η
n∑

i=1

qixi
(
f (t)(xi)− yi

)
= θ(t) − ηXQg(θ(t)).

By Eqn. (E.1), we have

F (θ(t+1)) ≤ F (θ(t))− 2ηg(θ(t))⊤Q⊤X⊤XQg(θ(t)) + A
∥∥ηXQg(θ(t))

∥∥2
2
.

Since x1, · · · , xn are linearly independent, X⊤X is a positive definite matrix. Let its
smallest eigenvalue be λmin > 0. Note that

∥∥Qg(θ(t))∥∥
2
≥
√
q∗
∥∥√Qg(θ(t))∥∥

2
=
√
q∗F (θ(t)).
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Thus, we have g(θ(t))⊤Q⊤X⊤XQg(θ(t)) ≥ q∗λminF (θ
(t)). So we have

F (θ(t+1)) ≤ F (θ(t))− 2ηq∗λminF (θ
(t)) + Aη2

∥∥∥X√Q
∥∥∥2
2

∥∥∥√Qg(θ(t))
∥∥∥2
2

≤ F (θ(t))− 2ηq∗λminF (θ
(t)) + Aη2

∥∥∥X√Q
∥∥∥2
F
F (θ(t))

≤ F (θ(t))− 2ηq∗λminF (θ
(t)) + Aη2∥X∥2FF (θ

(t))

=
(
1− 2ηq∗λmin + A2η2

)
F (θ(t)).

Let η0 = q∗λmin

A2 . For any η ≤ η0, we have F (θ(t+1)) ≤ (1 − ηq∗λmin)F (θ
(t)) for all t, which

implies that F (θ(t))must converge to zero. Since every qi > 0, this implies that the ERM
risk must converge to zero.

Dynamic GRW. By Assumption 6.3, for any ϵ > 0, there exists tϵ such that for all
t ≥ tϵ, we have q(t)i ∈ (qi − ϵ, qi + ϵ) for all i. Let λmax and λmin be the largest and smallest
eigenvalues ofX⊤X , where λmin > 0. Fix ϵ = min

{
q∗

3
, (q

∗λmin)
2

12λ2
max

}
. Then, tϵ is also fixed.

Denote Q = diag(q1, · · · , qn). When t ≥ tϵ, the update rule of dynamic GRW is
θ(t+1) = θ(t)−ηXQ

(t)
ϵ

(
X⊤θ(t) − Y

). We use the subscript ϵ to indicate that
∥∥∥Q(t)

ϵ −Q
∥∥∥
2
<

ϵ. Because qi + ϵ
√

(qi + 3ϵ)qi and qi− ϵ ≥
√

(qi − ϵ)qi for all ϵ ≤ qi
3
, we can rewriteQ(t)

ϵ as
Q

(t)
ϵ =

√
Q

(t)
3ϵ

√
Q. So by Eqn. (E.1), we have

F (θ(t+1)) ≤ F (θ(t))− 2ηg(θ(t))⊤Q⊤X⊤X

√
Q

(t)
3ϵ

√
Qg(θ(t)) + A

∥∥∥∥ηX√Q
(t)
3ϵ

√
Qg(θ(t))

∥∥∥∥2
2

.

For all ϵ < qi
3
, we have√qi + 3ϵ−√qi ≤

√
3ϵ and √qi −

√
qi − 3ϵ ≤

√
3ϵ. Thus, we have∣∣∣∣g(θ(t))⊤Q⊤X⊤X

(√
Q

(t)
3ϵ −

√
Q

)√
Qg(θ(t))

∣∣∣∣
≤
∥∥∥∥√Q

⊤
X⊤X

(√
Q

(t)
3ϵ −

√
Q

)∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥2
2

≤
∥∥∥√Q

∥∥∥
2

∥∥X⊤X
∥∥
2

∥∥∥∥√Q
(t)
3ϵ −

√
Q

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥2
2

≤ λmax

√
3ϵF (θ(t)).

Since g(θ(t))⊤Q⊤X⊤XQg(θ(t)) ≥ q∗λminF (θ
(t)), and ϵ ≤ (q∗λmin)

2

12λ2
max

, we have

g(θ(t))⊤Q⊤X⊤X

√
Q

(t)
3ϵ

√
Qg(θ(t)) ≥

(
q∗λmin − λmax

√
3ϵ
)
F (θ(t)) ≥ 1

2
q∗λminF (θ

(t)).

Thus, for all ϵ ≤ 1
3
, we have

F (θ(t+1)) ≤ F (θ(t))− ηq∗λminF (θ
(t)) + Aη2

∥∥∥∥X√Q
(t)
3ϵ

∥∥∥∥2
2

∥∥∥√Qg(θ(t))
∥∥∥2
2

≤ (1− ηq∗λmin + A2η2(1 + 3ϵ))F (θ(t))

≤ (1− ηq∗λmin + 2A2η2)F (θ(t))

Let η0 = q∗λmin

4A2 . For any η ≤ η0, we have F (θ(t+1)) ≤ (1 − ηq∗λmin/2)F (θ
(t)) for all t ≥ tϵ,

which implies that limt→∞ F (θ(t)) = 0. Thus, the ERM risk converges to 0.
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E.2 Proof of Theorem 6.6
The proof of this theorem is largely based on the following result.
Lemma E.2 (Approximation Theorem). For a wide NN f (t) trained by any GRW satisfying
Assumption 6.3 with the squared loss, let f (t)

lin (x) = f (0)(x) +
〈
θ(t) − θ(0),∇θf

(0)(x)
〉
be its

linearized neural network trained by the same GRW (i.e. q(t)i are the same for both networks for
any i and t). Under the conditions of Theorem 6.6, with a sufficiently small learning rate, for any
δ > 0, there exist constants D̃ > 0 and C > 0 such that as long as d̃ ≥ D̃, with probability at
least (1− δ) over random initialization we have: for any test point x ∈ Rd such that ∥x∥2 ≤ 1,

sup
t≥0

∣∣∣f (t)
lin (x)− f

(t)(x)
∣∣∣ ≤ Cd̃−1/4

Proof We will use the following short-hand in the proof:
g(θ(t)) = f (t)(X)− Y

J(θ(t)) = ∇θf(X; θ(t)) ∈ Rp×n

Θ(t) = J(θ(t))⊤J(θ(t))

For any ϵ > 0, there exists tϵ such that for all t ≥ tϵ and all i, q(t)i ∈ (qi − ϵ, qi + ϵ). Let
Q = diag(q1, · · · , qn). Similar to Appendix E.1, we can rewrite Q(t) = Q

(t)
ϵ =

√
Q

(t)
3ϵ

√
Q.

The update rule of GRW of wide NN is

θ(t+1) = θ(t) − ηJ(θ(t))Q(t)g(θ(t)),

and when t ≥ tϵ, this can be rewritten as

θ(t+1) = θ(t) − ηJ(θ(t))
√

Q
(t)
3ϵ

[√
Qg(θ(t))

]
. (E.2)

Next, we need three lemmas.
Lemma E.3 ([147], Corollary 5.35). If A ∈ Rp×q is a random matrix whose entries are in-
dependent standard normal random variables, then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2),

√
p−√q − t ≤ λmin(A) ≤ λmax(A) ≤ √p+√q + t.

Lemma E.4 (Local Lipschitzness of the Jacobian). There exists a constantM > 0 such that
for any C0 > 0 and any δ ∈ (0, 1), there exists a D̃ such that: If d̃ ≥ D̃, then with probability at
least (1− δ) over random initialization, for any x such that ∥x∥2 ≤ 1, we have

∥∥∥∇θf(x; θ)−∇θf(x; θ̃)
∥∥∥
2
≤ M

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

∥∇θf(x; θ)∥2 ≤M∥∥∥J(θ)− J(θ̃)∥∥∥
F
≤ M

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

∥J(θ)∥F ≤M

, ∀θ, θ̃ ∈ B(θ(0), C0), (E.3)

where B(θ(0), R) =
{
θ :
∥∥θ − θ(0)∥∥

2
< R

}
.
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Proof By Lemma E.3, for any δ ∈ (0, 1), there exists D̃ > 0 andM1 > 0 such that if d̃ ≥ D̃,
thenwith probability at least 1−δ, the following holds for all θ such that

∥∥θ − θ(0)∥∥
2
< C0:

∀0 ≤ l ≤ L− 1 :
∥∥W l

∥∥
2
≤ 3
√
d̃;

∥∥W L
∥∥
2
≤ C0 ≤ 3d̃1/4; ∀0 ≤ l ≤ L :

∥∥βbl∥∥ ≤M1

√
d̃.

With these inequalities, for any x such that ∥x∥2 ≤ 1, we have∥∥h1
∥∥
2
=

∥∥∥∥ 1√
d0

W 0x+ βb0
∥∥∥∥
2

≤ 1√
d0

∥∥W 0
∥∥
2
∥x∥2 +

∥∥βb0∥∥
2
≤ (

3√
d0

+M1)
√
d̃;

∥∥hl+1
∥∥
2
=

∥∥∥∥∥ 1√
d̃
W lxl + βbl

∥∥∥∥∥
2

≤ 1√
d̃

∥∥W l
∥∥
2

∥∥xl
∥∥
2
+
∥∥βbl∥∥

2
(∀l ≥ 1);

∥∥xl
∥∥
2
=
∥∥σ(hl)− σ(0l) + σ(0l)

∥∥
2
≤ L0

∥∥hl
∥∥
2
+ σ(0)

√
d̃ (∀l ≥ 1).

Here, L0 is the Lipschitz constant of σ and σ(0l) = (σ(0), · · · , σ(0)) ∈ Rdl . Thus, we can
prove by induction that there exists an M2 > 0 such that

∥∥xl
∥∥
2
≤ M2

√
d̃ and

∥∥hl
∥∥
2
≤

M2

√
d̃ for all l = 1, · · · , L.

Denoteαl = ∇hlf(x) = ∇hlhL+1. For all 1 ≤ l ≤ L, we haveαl = diag(σ̇(hl))W
l⊤√
d̃
αl+1,

αL+1 = 1 and
∥∥αL

∥∥
2
=

∥∥∥∥diag(σ̇(hL))W
L⊤√
d̃

∥∥∥∥
2

≤ 3
4
√

d̃
L0. Since σ is L0-Lipschitz, we have

σ̇(x) ≤ L0 for all x ∈ R. Thus, we can prove by induction that there exists an M3 > 1

such that
∥∥αl
∥∥
2
≤M3/

4
√
d̃ for all l = 1, · · · , L (note that this is not true for L+1 because

αL+1 = 1).
For l = 0, ∇W 0f(x) = 1√

d0
x0α1⊤, so ∥∇W lf(x)∥2 ≤

1√
d0
∥x0∥2 ∥α1∥2 ≤

1√
d0
M3/

4
√
d̃.

And for any l = 1, · · · , L, ∇W lf(x) = 1√
d̃
xlαl+1, so ∥∇W lf(x)∥2 ≤

1√
d̃

∥∥xl
∥∥
2

∥∥αl+1
∥∥
2
≤

M2M3. (Note that ifM3 > 1, then
∥∥αL+1

∥∥
2
≤ M3; and since d̃ ≥ 1, there is

∥∥αl
∥∥
2
≤ M3

for l ≤ L.) Moreover, for l = 0, · · · , L, ∇blf(x) = βαl+1, so ∥∇blf(x)∥2 ≤ βM3. Thus,
there exists anM4 > 0, such that ∥∇θf(x)∥2 ≤ M4/

√
n. And since ∥xi∥2 ≤ 1 for all i, so

∥J(θ)∥F ≤M4.
Next, we consider the difference in ∇θf(x) between θ and θ̃. Let f̃ , W̃ , b̃, x̃, h̃, α̃ be

the function and the values corresponding to θ̃. We have∥∥∥h1 − h̃1
∥∥∥
2
=

∥∥∥∥ 1√
d0

(W 0 − W̃ 0)x+ β(b0 − b̃0)

∥∥∥∥
2

≤ 1√
d0

∥∥∥W 0 − W̃ 0
∥∥∥
2
∥x∥2 + β

∥∥∥b0 − b̃0
∥∥∥
2
≤
(

1√
d0

+ β

)∥∥∥θ − θ̃∥∥∥
2∥∥∥hl+1 − h̃l+1

∥∥∥
2
=

∥∥∥∥∥ 1√
d̃
W l(xl − x̃l) +

1√
d̃
(W l − W̃ l)x̃l + β(bl − b̃l)

∥∥∥∥∥
2

≤ 1√
d̃

∥∥W l
∥∥
2

∥∥xl − x̃l
∥∥
2
+

1√
d̃

∥∥∥W l − W̃ l
∥∥∥
2

∥∥x̃l
∥∥
2
+ β

∥∥∥bl − b̃l
∥∥∥
2

≤ 3
∥∥xl − x̃l

∥∥
2
+ (M2 + β)

∥∥∥θ − θ̃∥∥∥
2

(∀l ≥ 1)∥∥xl − x̃l
∥∥
2
=
∥∥∥σ(hl)− σ(h̃l)

∥∥∥
2
≤ L0

∥∥∥hl − h̃l
∥∥∥
2

(∀l ≥ 1).

Thus, we can prove by induction that there exists an M5 > 0 such that
∥∥xl − x̃l

∥∥
2
≤

M5

∥∥∥θ − θ̃∥∥∥
2
for all l.
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For αl, we have αL+1 = α̃L+1 = 1, and for all l ≥ 1,

∥∥αl − α̃l
∥∥
2
=

∥∥∥∥∥diag(σ̇(hl))
W l⊤√

d̃
αl+1 − diag(σ̇(h̃l))

W̃ l⊤√
d̃
α̃l+1

∥∥∥∥∥
2

≤

∥∥∥∥∥diag(σ̇(hl))
W l⊤√

d̃
(αl+1 − α̃l+1)

∥∥∥∥∥
2

+

∥∥∥∥∥diag(σ̇(hl))
(W l − W̃ l)⊤√

d̃
α̃l+1

∥∥∥∥∥
2

+

∥∥∥∥∥diag((σ̇(hl)− σ̇(h̃l)))
W̃ l⊤√

d̃
α̃l+1

∥∥∥∥∥
2

≤ 3L0

∥∥αl+1 − α̃l+1
∥∥
2
+
(
M3L0d̃

−1/2 + 3M3M5L1d̃
−1/4

)∥∥∥θ − θ̃∥∥∥
2
,

(E.4)
where L1 is the Lipschitz constant of σ̇. In particular, for l = L, though α̃L+1 = 1, since∥∥∥W̃ L

∥∥∥
2
≤ 3d̃1/4, Eqn. (E.4) is still true. Thus, we can prove by induction that there exists

anM6 > 0 such that
∥∥αl − α̃l

∥∥
2
≤ M6

4
√

d̃

∥∥∥θ − θ̃∥∥∥
2
for all l ≥ 1 (note that this is also true for

l = L+ 1).
Thus, for all θ, θ̃ ∈ B(θ(0), C0), and any x such that ∥x∥2 ≤ 1, we have∥∥∥∇W 0f(x)−∇W̃ 0 f̃(x)

∥∥∥
2
=

1√
d0

∥∥xα1⊤ − xα̃1⊤∥∥
2

≤ 1√
d0

∥∥α1 − α̃1
∥∥
2

≤ 1√
d0

M6

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2
;

and for l = 1, · · · , L, we have∥∥∥∇W lf(x)−∇W̃ l f̃(x)
∥∥∥
2
=

1√
d̃

∥∥xlαl+1⊤ − x̃lα̃l+1⊤∥∥
2

≤ 1√
d̃

(∥∥xl
∥∥
2

∥∥αl+1 − α̃l+1
∥∥
2
+
∥∥xl − x̃l

∥∥
2

∥∥α̃l+1
∥∥
2

)
≤

(
M2M6

4
√
d̃

+
M5M3√

d̃

)∥∥∥θ − θ̃∥∥∥
2
.

Moreover, for any l = 0, · · · , L, we have∥∥∥∇blf(x)−∇b̃l f̃(x)
∥∥∥
2
= β

∥∥αl+1 − α̃l+1
∥∥
2
≤ βM6

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2
.

Combining all the above, we can see that there exists a constant M7 > 0 such that∥∥∥∇θf(x)−∇θ̃f̃(x)
∥∥∥
2
≤ M7

√
n· 4
√

d̃

∥∥∥θ − θ̃∥∥∥
2
, so that

∥∥∥J(θ)− J(θ̃)∥∥∥
F
≤ M7

4
√

d̃

∥∥∥θ − θ̃∥∥∥
2
.

Lemma E.5. There exist constantsM > 0 and ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0], η ≤ η∗ and
any δ > 0, there exist R0 > 0, D̃ > 0 and B > 1 such that for any d̃ ≥ D̃, the following (i)
and (ii) hold with probability at least (1− δ) over random initialization when applying gradient
descent with learning rate η:

119



(i) For all t ≤ tϵ, there is∥∥g(θ(t))∥∥
2
≤ BtR0 (E.5)

t∑
j=1

∥∥θ(j) − θ(j−1)
∥∥
2
≤ ηMR0

t∑
j=1

Bj−1 <
MBtϵR0

B − 1
(E.6)

(ii) For all t ≥ tϵ, we have∥∥∥√Qg(θ(t))
∥∥∥
2
≤
(
1− ηq∗λmin

3

)t−tϵ

BtϵR0 (E.7)
t∑

j=tϵ+1

∥∥θ(j) − θ(j−1)
∥∥
2
≤ η
√
1 + 3ϵMBtϵR0

t∑
j=tϵ+1

(
1− ηq∗λmin

3

)j−tϵ

<
3
√
1 + 3ϵMBtϵR0

q∗λmin

(E.8)

Proof Note that for any x, f (0)(x) = βbL where bL is sampled from the standardGaussian
distribution. Thus, for any δ > 0, there exists a constant R0 such that with probability at
least (1− δ/3) over random initialization, we have

∥∥g(θ(0))∥∥
2
< R0. And by Lemma 6.5,

there exists D2 ≥ 0 such that for any d̃ ≥ D2, with probability at least (1− δ/3), we have∥∥Θ−Θ(0)
∥∥ ≤ q∗λmin

3
.

Let M be the constant in Lemma E.4. Let ϵ0 = (q∗λmin)
2

108M4 , B = 1 + η∗M2, and C0 =
MBtϵR0

B−1
+ 3

√
1+3ϵMBtϵR0

q∗λmin
. By Lemma E.4, there exists D1 > 0 such that with probability

at least (1 − δ/3), for any d̃ ≥ D1, Eqn. (E.3) is true for all θ, θ̃ ∈ B(θ(0), C0). By union
bound, with probability at least 1− δ, all the three above inequalities holds.

Let us prove Eqns. (E.5) and (E.6) by induction. They are obviously true for t = 0.
Suppose they are true for t. Then, for t+ 1, we have∥∥θ(t+1) − θ(t)

∥∥
2
≤ η

∥∥J(θ(t))Q(t)
∥∥
2

∥∥g(θ(t))∥∥
2
≤ η

∥∥J(θ(t))Q(t)
∥∥
F

∥∥g(θ(t))∥∥
2

≤ η
∥∥J(θ(t))∥∥

F

∥∥g(θ(t))∥∥
2
≤MηBtR0,

which means that Eqn. (E.6) is also true for t+ 1. In terms of Eqn. (E.5), we have∥∥g(θ(t+1))
∥∥
2
=
∥∥g(θ(t+1))− g(θ(t)) + g(θ(t))

∥∥
2

=
∥∥∥J(θ̃(t))⊤(θ(t+1) − θ(t)) + g(θ(t))

∥∥∥
2

=
∥∥∥−ηJ(θ̃(t))⊤J(θ(t))Q(t)g(θ(t)) + g(θ(t))

∥∥∥
2

≤
∥∥∥I − ηJ(θ̃(t))⊤J(θ(t))Q(t)

∥∥∥
2

∥∥g(θ(t))∥∥
2

≤
(
1 +

∥∥∥ηJ(θ̃(t))⊤J(θ(t))Q(t)
∥∥∥
2

)∥∥g(θ(t))∥∥
2

≤
(
1 + η

∥∥∥J(θ̃(t))∥∥∥
F

∥∥J(θ(t))∥∥
F

)∥∥g(θ(t))∥∥
2

≤ (1 + η∗M2)
∥∥g(θ(t))∥∥

2
≤ Bt+1R0.

Hence, Eqns. (E.5) and (E.6) are true for all t ≤ tϵ, which implies that
∥∥√Qg(θ(tϵ))∥∥

2
≤∥∥g(θ(tϵ))∥∥

2
≤ BtϵR0. Thus, Eqn. (E.7) is true for t = tϵ. And Eqn. (E.8) is obviously true

for t = tϵ.
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Next, let us prove Eqns. (E.7) and (E.8) by induction. Suppose they are true for t. By
Eqn. (E.2), for t+ 1 we have

∥∥θ(t+1) − θ(t)
∥∥
2
≤ η

∥∥∥∥J(θ(t))√Q
(t)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥
2

≤ η

∥∥∥∥J(θ(t))√Q
(t)
3ϵ

∥∥∥∥
F

∥∥∥√Qg(θ(t))
∥∥∥
2

≤ η
√
1 + 3ϵ

∥∥J(θ(t))∥∥
F

∥∥∥√Qg(θ(t))
∥∥∥
2

≤Mη
√
1 + 3ϵ

(
1− ηq∗λmin

3

)t−tϵ

BtϵR0,

which implies that Eqn. (E.8) holds for t+ 1. In terms of Eqn. (E.7), we have
∥∥∥√Qg(θ(t+1))

∥∥∥
2
=
∥∥∥√Qg(θ(t+1))−

√
Qg(θ(t)) +

√
Qg(θ(t))

∥∥∥
2

=
∥∥∥√QJ(θ̃(t))⊤(θ(t+1) − θ(t)) +

√
Qg(θ(t))

∥∥∥
2

=
∥∥∥−η√QJ(θ̃(t))⊤J(θ(t))Q(t)g(θ(t)) +

√
Qg(θ(t))

∥∥∥
2

≤
∥∥∥∥I − η√QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥
2

≤
∥∥∥∥I − η√QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

(
1− ηq∗λmin

3

)t

R0,

where θ̃(t) is some linear interpolation between θ(t) and θ(t+1). Now we prove that
∥∥∥∥I − η√QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

≤ 1− ηq∗λmin

3
. (E.9)

For any unit vector v ∈ Rn, we have

v⊤(I − η
√
QΘ

√
Q)v = 1− ηv⊤

√
QΘ

√
Qv,

where
∥∥√Qv

∥∥
2
∈ [
√
q∗, 1], so for any η ≤ η∗, v⊤(I − η

√
QΘ
√
Q)v ∈ [0, 1 − ηλminq

∗],
which implies that

∥∥I − η√QΘ
√
Q
∥∥
2
≤ 1− ηλminq

∗. Thus, we have
∥∥∥I − η√QJ(θ̃(t))⊤J(θ(t))

√
Q
∥∥∥
2

≤
∥∥∥I − η√QΘ

√
Q
∥∥∥
2
+ η

∥∥∥√Q(Θ−Θ(0))
√

Q
∥∥∥
2
+ η

∥∥∥√Q(J(θ(0))⊤J(θ(0))− J(θ̃(t))⊤J(θ(t)))
√
Q
∥∥∥
2

≤1− ηλminq
∗ + η

∥∥∥√Q(Θ−Θ(0))
√

Q
∥∥∥
F
+ η

∥∥∥√Q(J(θ(0))⊤J(θ(0))− J(θ̃(t))⊤J(θ(t)))
√
Q
∥∥∥
F

≤1− ηλminq
∗ + η

∥∥Θ−Θ(0)
∥∥
F
+ η

∥∥∥J(θ(0))⊤J(θ(0))− J(θ̃(t))⊤J(θ(t))∥∥∥
F

≤1− ηλminq
∗ +

ηq∗λmin

3
+
ηM2

4
√
d̃

(∥∥θ(t) − θ(0)∥∥
2
+
∥∥∥θ̃(t) − θ(0)∥∥∥

2

)
≤ 1− ηq∗λmin

2
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for all d̃ ≥ max

{
D1, D2,

(
12M2C0

q∗λmin

)4}
. This implies that

∥∥∥∥I − η√QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

≤ 1− ηq∗λmin

2
+

∥∥∥∥η√QJ(θ̃(t))⊤J(θ(t))

(√
Q

(t)
3ϵ −

√
Q

)∥∥∥∥
2

≤ 1− ηq∗λmin

2
+ ηM2

√
3ϵ ≤ 1− ηq∗λmin

3

holds for all ϵ ≤ ϵ0. Thus, Eqn. (E.7) holds for t+ 1.

Now let us return to the proof of Lemma E.2. Choose and fix an ϵ such that ϵ <
min{ϵ0, 13

(
q∗λmin

3λmax+q∗λmin

)2
}, where ϵ0 is given by Theorem E.5. Then, tϵ is also fixed. There

exists D̃ ≥ 0 such that for any d̃ ≥ D̃, with probability at least (1− δ), the inequalities in
Lemmas E.4 and E.5 hold, and

∥∥Θ−Θ(0)
∥∥
F
≤ q∗λmin

3
. This implies that

∥∥Θ(0)
∥∥
2
≤ ∥Θ∥2 +

∥∥Θ−Θ(0)
∥∥
F
≤ λmax +

q∗λmin

3
.

We still denote B = 1 + η∗M2 and C0 = MBtϵR0

B−1
+ 3

√
1+3ϵMBtϵR0

q∗λmin
. Lemma E.5 guarantees

that for all t, we have θ(t) ∈ B(θ(0), C0). Thus, we have∥∥∥I − η√QΘ(0)
√

Q
∥∥∥
2
≤
∥∥∥I − η√QΘ

√
Q
∥∥∥
2
+ η

∥∥∥√Q(Θ−Θ(0))
√

Q
∥∥∥
2

≤ 1− ηλminq
∗ +

ηq∗λmin

3
= 1− 2ηq∗λmin

3
.

It follows that∥∥∥∥I − η√QΘ(0)

√
Q

(t)
3ϵ

∥∥∥∥
2

≤
∥∥∥I − η√QΘ(0)

√
Q
∥∥∥
2
+

∥∥∥∥η√QΘ(0)

(√
Q

(t)
3ϵ −

√
Q

)∥∥∥∥
2

≤ 1− 2ηq∗λmin

3
+ η(λmax +

q∗λmin

3
)
√
3ϵ.

Thus, for all ϵ < 1
3

(
q∗λmin

3λmax+q∗λmin

)2
, we have∥∥∥∥I − η√QΘ(0)

√
Q

(t)
3ϵ

∥∥∥∥
2

≤ 1− ηq∗λmin

3
. (E.10)

The update rule of the GRW for the linearized neural network is:

θ
(t+1)
lin = θ

(t)
lin − ηJ(θ

(0))Q(t)glin(θ
(t)) (E.11)

where we use the subscript “lin” to denote the linearized neural network, and with a
slight abuse of notion denote glin(θ(t)) = g(θ

(t)
lin).

First, let us consider the training dataX . Denote ∆t = glin(θ(t))− g(θ(t)). We have{
glin(θ

(t+1))− glin(θ(t)) = −ηJ(θ(0))⊤J(θ(0))Q(t)glin(θ
(t))

g(θ(t+1))− g(θ(t)) = −ηJ(θ̃(t))⊤J(θ(t))Q(t)g(θ(t))
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where θ̃(t) is some linear interpolation between θ(t) and θ(t+1). Thus, we have

∆t+1 −∆t =η
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]
Q(t)g(θ(t))

− ηJ(θ(0))⊤J(θ(0))Q(t)∆t.

By Lemma E.4, we have∥∥∥J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))∥∥∥
F

≤
∥∥∥∥(J(θ̃(t))− J(θ(0)))⊤ J(θ(t))∥∥∥∥

F

+
∥∥J(θ(0))⊤ (J(θ(t))− J(θ(0)))∥∥

F

≤ 2M2C0d̃
−1/4,

which implies that for all t < tϵ, we have
∥∆t+1∥2
≤
∥∥[I − ηJ(θ(0))⊤J(θ(0))Q(t)

]
∆t

∥∥
2
+
∥∥∥η [J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))]Q(t)g(θ(t))

∥∥∥
2

≤
∥∥I − ηJ(θ(0))⊤J(θ(0))Q(t)

∥∥
F
∥∆t∥2 + η

∥∥∥J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))∥∥∥
F

∥∥g(θ(t))∥∥
2

≤(1 + ηM2) ∥∆t∥2 + 2ηM2C0B
tR0d̃

−1/4

≤B ∥∆t∥2 + 2ηM2C0B
tR0d̃

−1/4.

This implies that
B−(t+1) ∥∆t+1∥2 ≤ B−t ∥∆t∥2 + 2ηM2C0B

−1R0d̃
−1/4.

Since ∆0 = 0, it follows that for all t ≤ tϵ, we have
∥∆t∥2 ≤ 2tηM2C0B

t−1R0d̃
−1/4,

and in particular, we have∥∥∥√Q∆tϵ

∥∥∥
2
≤ ∥∆tϵ∥2 ≤ 2tϵηM

2C0B
tϵ−1R0d̃

−1/4.

For t ≥ tϵ, by Eqn. (E.2), we have√
Q∆t+1 −

√
Q∆t =η

√
Q
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]√
Q

(t)
3ϵ

[√
Qg(θ(t))

]
− η
√

QJ(θ(0))⊤J(θ(0))

√
Q

(t)
3ϵ

[√
Q∆t

]
.

LetA = I − η
√
QJ(θ(0))⊤J(θ(0))

√
Q

(t)
3ϵ = I − η

√
QΘ(0)

√
Q

(t)
3ϵ . Then, we have√

Q∆t+1 = A
√

Q∆t + η
√

Q
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]√
Q

(t)
3ϵ

(√
Qg(θ(t))

)
.

Let γ = 1− ηq∗λmin

3
< 1. Combining the above with Lemma E.5 and Eqn. (E.10), we have∥∥∥√Q∆t+1

∥∥∥
2

≤ ∥A∥2
∥∥∥√Q∆t

∥∥∥
2
+ η

∥∥∥∥√Q
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]√
Q

(t)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥
2

≤ γ
∥∥∥√Q∆t

∥∥∥
2
+ η

∥∥∥J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))∥∥∥
F

√
1 + 3ϵγt−tϵBtϵR0

≤ γ
∥∥∥√Q∆t

∥∥∥
2
+ 2ηM2C0

√
1 + 3ϵγt−tϵBtϵR0d̃

−1/4,
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which implies that

γ−(t+1)
∥∥∥√Q∆t+1

∥∥∥
2
≤ γ−t

∥∥∥√Q∆t

∥∥∥
2
+ 2ηM2C0

√
1 + 3ϵγ−1−tϵBtϵR0d̃

−1/4.

Next, we consider an arbitrary test point x such that ∥x∥2 ≤ 1. Denote δt = f
(t)
lin (x)−

f (t)(x). Then, we have{
f
(t+1)
lin (x)− f (t)

lin (x) = −η∇θf(x; θ
(0))⊤J(θ(0))Q(t)glin(θ

(t));

f (t+1)(x)− f (t)(x) = −η∇θf(x; θ̃
(t))⊤J(θ(t))Q(t)g(θ(t)).

Therefore, we have

δt+1 − δt =η
[
∇θf(x; θ̃

(t))⊤J(θ(t))−∇θf(x; θ
(0))⊤J(θ(0))

]
Q(t)g(θ(t))

− η∇θf(x; θ
(0))⊤J(θ(0))Q(t)∆t.

For t ≤ tϵ, we have

∥δt∥2 ≤η
t−1∑
s=0

∥∥∥[∇θf(x; θ̃
(s))⊤J(θ(s))−∇θf(x; θ

(0))⊤J(θ(0))
]
Q(s)

∥∥∥
2

∥∥g(θ(s))∥∥
2

+ η
t−1∑
s=0

∥∥∇θf(x; θ
(0))⊤J(θ(0))Q(s)

∥∥
2
∥∆s∥2

≤η
t−1∑
s=0

∥∥∥∇θf(x; θ̃
(s))⊤J(θ(s))−∇θf(x; θ

(0))⊤J(θ(0))
∥∥∥
F

∥∥g(θ(s))∥∥
2

+ η
t−1∑
s=0

∥∥∇θf(x; θ
(0))
∥∥
2

∥∥J(θ(0))∥∥
F
∥∆s∥2

≤2ηM2C0d̃
−1/4

t−1∑
s=0

BsR0 + ηM2

t−1∑
s=0

(2sηM2C0B
s−1R0d̃

−1/4).

Hence, there exists a constant C1 such that ∥δtϵ∥2 ≤ C1d̃
−1/4. Then, for t > tϵ, we have

∥δt∥2 − ∥δtϵ∥2 ≤η
t−1∑
s=tϵ

∥∥∥∥[∇θf(x; θ̃
(s))⊤J(θ(s))−∇θf(x; θ

(0))⊤J(θ(0))
]√

Q
(s)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(s))
∥∥∥
2

+ η
t−1∑
s=tϵ

∥∥∥∥∇θf(x; θ
(0))⊤J(θ(0))

√
Q

(s)
3ϵ

∥∥∥∥
2

∥∥∥√Q∆s

∥∥∥
2

≤2ηM2C0d̃
−1/4
√
1 + 3ϵ

t−1∑
s=tϵ

γs−tϵBtϵR0

+ ηM2
√
1 + 3ϵ

t−1∑
s=tϵ

(
2γs−tϵηM2C0B

tϵR0

[
tϵB

−1 +
√
1 + 3ϵγ−1(s− tϵ)

]
d̃−1/4

)
.

Note that∑∞
t=0 tγ

t is finite as long as γ ∈ (0, 1). Therefore, there is a constant C such that
for any t, ∥δt∥2 ≤ Cd̃−1/4 with probability at least (1− δ) for any d̃ ≥ D̃.
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Now, let us finish the proof of Theorem 6.6.
Proof Consider the linearized neural network f (t)

lin (x) defined in Eqn. (6.4). If we view{
∇θf

(0)(xi)
}n
i=1

as inputs and {yi − f (0)(xi) +
〈
θ(0),∇θf

(0)(xi)
〉}n

i=1
as the targets, then

the linearized neural network is a linear model. Thus by Theorem 6.4, we have the fol-
lowing corollary.
Corollary E.6. If ∇θf

(0)(x1), · · · ,∇θf
(0)(xn) are linearly independent, then there exists η0 >

0 such that when f (t)
lin (x) is trained with any GRW method that satisfies Assumption 6.3, θ(t)

converges to a unique θ∗ that does not depend on the sample weights q(t)i .

Let η1 = min{η0, η∗}, where η0 is given by Corollary E.6. Let f (t)
lin (x) and f (t)

linERM(x) be
the linearized neural networks of f (t)(x) and f (t)

ERM(x) (which are two networks trained
with GRW and ERM), respectively. By Lemma E.2, for any δ ∈ (0, 1), there exists D̃ > 0
and a constant C such that with probability at least 1− δ, the following holds:

sup
t≥0

∣∣∣f (t)
lin (x)− f

(t)(x)
∣∣∣ ≤ Cd̃−1/4;

sup
t≥0

∣∣∣f (t)
linERM(x)− f

(t)
ERM(x)

∣∣∣ ≤ Cd̃−1/4.

By Corollary E.6, we have

lim
t→∞

∣∣∣f (t)
lin (x)− f

(t)
linERM(x)

∣∣∣ = 0.

Summing the above yields

lim sup
t→∞

∣∣∣f (t)(x)− f (t)
ERM(x)

∣∣∣ ≤ 2Cd̃−1/4,

as desired.

E.3 Proof of Theorem 6.7
Similar to Theorem 6.6, proving this result needs a slightly different approximation the-
orem. We start with two necessary propositions.
Proposition E.7 ([77], Proposition 1). If σ is Lipschitz and dl →∞ for l = 1, · · · , L sequen-
tially, then for all l = 1, · · · , L, the distribution of a single element of hl converges in probability
to a zero-mean Gaussian process of covariance Σl that is defined recursively by:

Σ1(x, x′) =
1

d0
x⊤x′ + β2;

Σl(x, x′) = Ef [σ(f(x))σ(f(x
′))] + β2,

where f is sampled from a zero-mean Gaussian process of covariance Σ(l−1).

Proposition E.8. For any positive definite symmetric matrix H ∈ Rn×n, denote its largest
and smallest eigenvalues by λmax and λmin. Then, for any positive semi-definite diagonal matrix
Q = diag(q1, · · · , qn),HQ has n eigenvalues that all lie in [mini qi · λmin,maxi qi · λmax].
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Proof H is a positive definite symmetric matrix, so there existsA ∈ Rn×n such thatH =
A⊤A, andA is full-rank. First, any eigenvalue ofAQA⊤ is also an eigenvalue ofA⊤AQ,
because for any eigenvalue λ of AQA⊤ we have some v ̸= 0 such that AQA⊤v = λv.
Multiplying both sides by A⊤ on the left yields A⊤AQ(A⊤v) = λ(A⊤v) which implies
that λ is also an eigenvalue ofA⊤AQ because A⊤v ̸= 0 as λv ̸= 0.

Second, by condition we know that the eigenvalues of A⊤A are all in [λmin, λmax]
where λmin > 0, which implies for any unit vector v, v⊤A⊤Av ∈ [λmin, λmax], which is
equivalent to ∥Av∥2 ∈ [

√
λmin,

√
λmax]. Thus, v⊤A⊤QAv ∈ [λminmini qi, λmaxmaxi qi],

which implies that the eigenvalues ofA⊤QA are all in [λmin mini qi, λmax maxi qi].
Thus, the eigenvalues ofHQ = A⊤AQ are all in [λmin mini qi, λmax maxi qi].

Lemma E.9 (Approximation Theorem for Regularized GRW). For a wide fully-connected
neural network f , denote J(θ) = ∇θf(X; θ) ∈ Rp×n and g(θ) = ∇ŷℓ(f(X; θ),Y ) ∈ Rn.
Given that the loss function ℓ satisfies: ∇θg(θ) = J(θ)U(θ) for any θ, and U (θ) is a positive
semi-definite diagonal matrix whose elements are uniformly bounded, we have: for any GRW that
minimizes the regularized weighted empirical risk Eqn. (6.5) with a sufficiently small learning
rate η, there is: for a sufficiently large d̃, with high probability over random initialization, on any
test point x such that ∥x∥2 ≤ 1, we have

sup
t≥0

∣∣∣f (t)
linreg(x)− f

(t)
reg (x)

∣∣∣ ≤ Cd̃−1/4, (E.12)

where both f (t)
linreg and f

(t)
reg are trained by the same regularized GRW and start from the same initial

point.
Proof Without loss of generality, assume that all elements of U(θ) are in [0, 1] for all θ,
and set η ≤ (µ + λmin + λmax)

−1. If the elements of U (θ) are bounded by [0, C], then we
can set η ≤ (µ+ Cλmin + Cλmax)

−1 and prove the result in the same way.
With L2 penalty, the update rule of the GRW for the neural network is:

θ(t+1) = θ(t) − ηJ(θ(t))Q(t)g(θ(t))− ηµ(θ(t) − θ(0)). (E.13)

And the update rule for the linearized neural network is:

θ
(t+1)
lin = θ

(t)
lin − ηJ(θ

(0))Q(t)g(θ
(t)
lin)− ηµ(θ

(t)
lin − θ

(0)). (E.14)

By Proposition E.7, f(x; θ) converges in probability to a zero-mean Gaussian process.
Thus, for any δ > 0, there exists a constant R0 > 0 such that with probability at least
(1 − δ/3),

∥∥g(θ(0))∥∥
2
< R0. Let M be given by Lemma E.4. Denote A = ηMR0, and let

C0 = 4A
ηµ

be given by Lemma E.4. Note that Lemma E.4 only depends on the network
structure, but does not depend on the update rule, so we can still use the lemma here.
By Lemma E.4, there existsD1 such that for all d̃ ≥ D1, with probability at least (1−δ/3),
Eqn. (E.3) holds.

Similar to the proof of Proposition E.8, we can show that for any θ̃, all the non-zero
eigenvalues of J(θ(0))Q(t)U(θ̃)J(θ(0))⊤ are also eigenvalues of J(θ(0))⊤J(θ(0))Q(t)U(θ̃). This
is because for any eigenvalue λ ̸= 0 such that J(θ(0))Q(t)U(θ̃)J(θ(0))⊤v = λv for some v,
we must have J(θ(0))⊤J(θ(0))Q(t)U(θ̃)(J(θ(0))⊤v) = λ(J(θ(0))⊤v), and J(θ(0))⊤v ̸= 0 since
λv ̸= 0, so λ is also an eigenvalue of J(θ(0))⊤J(θ(0))Q(t)U(θ̃). On the other hand, by
Lemma 6.5, J(θ(0))⊤J(θ(0))Q(t)U(θ̃) converges in probability to ΘQ(t)U(θ̃) whose eigen-
values are all in [0, λmax] by Proposition E.8. Hence, there exists D2 such that for all
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d̃ ≥ D2, with probability at least (1− δ/3), the eigenvalues of J(θ(0))Q(t)U(θ̃)J(θ(0))⊤ are
all in [0, λmax + λmin] for all t.

By union bound, with probability at least 1− δ, all the above “(1− δ/3)” statements
are true. Now we prove that there exists D0 such that for all d̃ ≥ D0, supt≥0

∥∥θ(t) − θ(0)∥∥
2

is bounded with high probability. Denote at = θ(t) − θ(0). By Eqn. (E.13), we have

at+1 =(1− ηµ)at − η[J(θ(t))− J(θ(0))]Q(t)g(θ(t))

− ηJ(θ(0))Q(t)[g(θ(t))− g(θ(0))]− ηJ(θ(0))Q(t)g(θ(0)),

which implies that

∥at+1∥2 ≤
∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))⊤

∥∥∥
2
∥at∥2

+ η
∥∥J(θ(t))− J(θ(0))∥∥

F

∥∥g(θ(t))∥∥
2
+ η

∥∥J(θ(0))∥∥
F

∥∥g(θ(0))∥∥
2
,

(E.15)

where θ̃(t) is some linear interpolation between θ(t) and θ(0). Our choice of η ensures that
ηµ < 1.

Next, we prove by induction that ∥at∥2 < C0. It is true for t = 0. Suppose ∥at∥2 < C0,
and consider at+1. Let us look at the three terms on the right-hand side of Eqn. (E.15).
For the first term, we have∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))⊤

∥∥∥
2

≤ (1− ηµ)
∥∥∥∥I − η

1− ηµ
J(θ(0))Q(t)U(θ̃(t))J(θ(0))⊤

∥∥∥∥
2

+ η
∥∥J(θ(0))∥∥

F

∥∥∥J(θ̃(t))− J(θ(0))∥∥∥
F
.

Since η/(1− ηµ) ≤ (λmin + λmax)
−1 by our choice of η, we have∥∥∥∥I − η

1− ηµ
J(θ(0))Q(t)U(θ̃(t))J(θ(0))⊤

∥∥∥∥
2

≤ 1.

On the other hand, since ∥at∥2 < C0, we have
∥∥J(θ(0))∥∥

F

∥∥∥J(θ̃(t))− J(θ(0))∥∥∥
F
≤ M2

4
√

d̃
C0 by

Eqn. (E.3). Therefore, there exists D3 such that for all d̃ ≥ D3,∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))⊤
∥∥∥
2
≤ 1− ηµ

2
. (E.16)

For the second term, we have∥∥g(θ(t))∥∥
2
≤
∥∥g(θ(t))− g(θ(0))∥∥

2
+
∥∥g(θ(0))∥∥

2

≤
∥∥∥J(θ̃(t))∥∥∥

2

∥∥∥U(θ̃(t))∥∥∥
2

∥∥θ(t) − θ(0)∥∥
2
+R0 ≤MC0 +R0.

(E.17)

For the third term, we have

η
∥∥J(θ(0))∥∥

F

∥∥g(θ(0))∥∥
2
≤ ηMR0 = A.

Thus, we have
∥at+1∥2 ≤

(
1− ηµ

2

)
∥at∥2 +

ηM(MC0 +R0)
4
√
d̃

+ A.
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Thus, there exists D4 such that for all d̃ ≥ D4, ∥at+1∥2 ≤
(
1− ηµ

2

)
∥at∥2 + 2A. This shows

that if ∥at∥2 < C0 is true, then ∥at+1∥2 < C0 will also be true.
In conclusion, for all d̃ ≥ D0 = max{D1, D2, D3, D4},

∥∥θ(t) − θ(0)∥∥
2
< C0 is true for

all t. This also implies that for C1 = MC0 + R0, we have
∥∥g(θ(t))∥∥

2
≤ C1 for all t by

Eqn. (E.17). Similarly, we can prove that ∥θ(t)lin − θ(0)∥2 < C0 for all t.
Second, let ∆t = θ

(t)
lin − θ(t). Then, we have

∆t+1 −∆t = η(J(θ(t))Q(t)g(θ(t))− J(θ(0))Q(t)g(θ
(t)
lin)− µ∆t),

which implies that

∆t+1 =
[
(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))⊤

]
∆t + η(J(θ(t))− J(θ(0)))Q(t)g(θ(t)),

where θ̃(t) is some linear interpolation between θ(t) and θ(t)lin . By Eqn. (E.16), with proba-
bility at least (1− δ) for all d̃ ≥ D0, we have

∥∆t+1∥2 ≤
∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))⊤

∥∥∥
2
∥∆t∥2 + η

∥∥J(θ(t))− J(θ(0))∥∥
F

∥∥g(θ(t))∥∥
2

≤
(
1− ηµ

2

)
∥∆t∥2 + η

M
4
√
d̃
C0C1.

Again, as ∆0 = 0, we can prove by induction that for all t,

∥∆t∥2 <
2MC0C1

µ
d̃−1/4.

For any test point x such that ∥x∥2 ≤ 1, we have∣∣∣f (t)
reg(x)− f

(t)
linreg(x)

∣∣∣ = ∣∣∣f(x; θ(t))− flin(x; θ(t)lin)
∣∣∣

≤
∣∣f(x; θ(t))− flin(x; θ(t))∣∣+ ∣∣∣flin(x; θ(t))− flin(x; θ(t)lin)

∣∣∣
≤
∣∣f(x; θ(t))− flin(x; θ(t))∣∣+ ∥∥∇θf(x; θ

(0))
∥∥
2

∥∥∥θ(t) − θ(t)lin

∥∥∥
2

≤
∣∣f(x; θ(t))− flin(x; θ(t))∣∣+M ∥∆t∥2 .

For the first term, note that{
f(x; θ(t))− f(x; θ(0)) = ∇θf(x; θ̃

(t))(θ(t) − θ(0));
flin(x; θ

(t))− flin(x; θ(0)) = ∇θf(x; θ
(0))(θ(t) − θ(0)),

where θ̃(t) is some linear interpolation between θ(t) and θ(0). Since f(x; θ(0)) = flin(x; θ(0)),∣∣f(x; θ(t))− flin(x; θ(t))∣∣ ≤ ∥∥∥∇θf(x; θ̃
(t))−∇θf(x; θ

(0))
∥∥∥
2

∥∥θ(t) − θ(0)∥∥
2
≤ M

4
√
d̃
C2

0 .

Thus, for all d̃ ≥ D0, with probability at least (1− δ) for all t and all x,∣∣∣f (t)
reg(x)− f

(t)
linreg(x)

∣∣∣ ≤ (MC2
0 +

2M2C0C1

µ

)
d̃−1/4 = O(d̃−1/4),

which proves the lemma.
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Lemma E.10. Suppose there existsM0 > 0 such that
∥∥∇θf

(0)(x)
∥∥
2
≤ M0 for all x within the

unit ball. If the gradients∇θf
(0)(x1), · · · ,∇θf

(0)(xn) are linearly independent, and the empirical
training risk of f (t)

linreg satisfies lim supt→∞ R̂(f
(t)
linreg) < ϵ for some ϵ > 0, then for any x within

the unit ball, we have
lim sup
t→∞

∣∣∣f (t)
linreg(x)− f

(t)
linERM(x)

∣∣∣ = O(
√
ϵ).

Proof First, for all t we have θ(t) − θ(0) ∈ span{∇θf
(0)(x1), · · · ,∇θf

(0)(xn)}. Let θ∗
be the interpolator in span(∇θf

(0)(x1), · · · ,∇θf
(0)(xn)), then the empirical risk of θ is

1
2n

∑n
i=1⟨θ − θ∗,∇θf

(0)(xi)⟩2 = 1
2n

∥∥∇θf
(0)(X)⊤(θ − θ∗)

∥∥2
2
. Thus, there exists T > 0 such

that ∥∥∇θf
(0)(X)⊤(θ(t) − θ∗)

∥∥2
2
≤ 2nϵ for all t ≥ T.

Let the smallest singular value of 1√
n
∇θf

(0)(X) be smin. Then, we have smin > 0. Note
that the column space of ∇θf

(0)(X) is exactly span(∇θf
(0)(x1), · · · ,∇θf

(0)(xn)). Define
H ∈ Rp×n such that its columns form an orthonormal basis of this subspace, then there
exists G ∈ Rn×n such that ∇θf

(0)(X) = HG, and the smallest singular value of 1√
n
G is

also smin. Since θ(t)− θ(0) is also in this subspace, there exists v ∈ Rn such that θ(t)− θ∗ =
Hv. Then we have

√
2nϵ ≥

∥∥G⊤H⊤Hv
∥∥
2
=
∥∥G⊤v

∥∥
2
. Thus, ∥v∥2 ≤

√
2ϵ

smin
, which implies

that ∥∥θ(t) − θ∗∥∥
2
≤
√
2ϵ

smin

.

Wehave already proved in the previous results that if weminimize the unregularized
risk with ERM, then θ always converges to the interpolator θ∗. So for any t ≥ T and any
test point x such that ∥x∥2 ≤ 1, we have

|f (t)
linreg(x)− f

(t)
linERM(x)| = |⟨θ

(t) − θ∗,∇θf
(0)(x)⟩| ≤ M0

√
2ϵ

smin

,

as desired.

Now we prove Theorem 6.7.
Proof Given that R̂(f (t)

linreg) < ϵ for sufficiently large t, Lemma E.9 implies that∣∣∣R̂(f (t)
linreg)− R̂(f

(t)
reg)
∣∣∣ = O(d̃−1/4

√
ϵ+ d̃−1/2).

Thus, for a fixed ϵ, there exists D > 0 such that for all d ≥ D, for sufficiently large t,
R̂(f (t)

reg) < ϵ⇒ R̂(f (t)
linreg) < 2ϵ.

By Lemma E.2 and Lemma E.9, we have
sup
t≥0

∣∣∣f (t)
linERM(x)− f

(t)
ERM(x)

∣∣∣ = O(d̃−1/4);

sup
t≥0

∣∣∣f (t)
linreg(x)− f

(t)
reg(x)

∣∣∣ = O(d̃−1/4).

Combining these with Lemma E.10 yields

lim sup
t→∞

∣∣∣f (t)
reg(x)− f

(t)
ERM(x)

∣∣∣ = O(d̃−1/4 +
√
ϵ).

Letting d̃→∞ leads to the result we need.
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Remark E.11. One might wonder whether ∥∇θf
(0)(x)∥2 will diverge as d̃ → ∞. In fact, in

Lemma E.4, we have proved that there exists a constant M such that with high probability, for
any d̃ there is ∥∇θf

(0)(x)∥2 ≤ M for any x such that ∥x∥2 ≤ 1. Therefore, it is fine to suppose
that there exists such anM0.

E.4 Proof of Theorem 6.8
Proof First, we show that θ̂MM is unique. Suppose both θ1 and θ2 maximizemini yi ·⟨θ,xi⟩
and ∥θ1∥2 = ∥θ2∥2 = 1. If θ1 ̸= θ2, then we define θ = (θ1 + θ2)/2 and θ0 = θ/∥θ∥2.
Obviously, ∥θ∥2 < 1, and for all i ∈ [n] there is yi⟨θ,xi⟩ = (yi⟨θ1,xi⟩ + yi⟨θ2,xi⟩)/2.
Thus, we have yi⟨θ0,xi⟩ > min {yi⟨θ1,xi⟩, yi⟨θ2,xi⟩}, which implies that mini yi⟨θ0,xi⟩ >
min {mini yi⟨θ1,xi⟩,mini yi⟨θ2,xi⟩}, which contradicts the fact that θ1, θ2 are max-margin
classifiers.

Without loss of generality, let (x1, y1), · · · , (xm, ym) be the samples with the smallest
margin for u, that is argmini yi⟨u,xi⟩ = {1, · · · ,m}. Denote γ = mini yi⟨u,xi⟩; then, γ >
0 since the training error converges to zero. Note that for the logistic loss, if yi⟨θ,xi⟩ <
yj⟨θ,xj⟩, then for any M > 0, there exists an RM > 0 such that for all R ≥ RM , there
is ∇θℓ(⟨Rθ,xi⟩,yi)

∇θℓ(⟨Rθ,xj⟩,yj) > M . Since the training error converges to zero, we have
∥∥θ(t)∥∥

2
→ ∞.

So when t is sufficiently large, the impact of (xj, yj) on θ(t) for j > m is an infinitesimal
compared to j ≤ m since lim inft→∞ q

(t)
j > 0. Thus, we must have u ∈ span{x1, · · · ,xm}.

Let u = α1y1x1 + · · ·+ αmymxm. Now we show that αi ≥ 0 for all i = 1, · · · ,m. For a
sufficiently large t, there is θ(t+1)−θ(t) ≈ η

∑m
i=1

q
(t)
i exp(yi·⟨θ(t),xi⟩)
1+exp(yi·⟨θ(t),xi⟩)

yixi. Since
∥∥θ(t)∥∥→∞, for

all i ∈ [m] we have αi ∝ limT→∞
∑T

t=T0

q
(t)
i exp(yi·⟨θ(t),xi⟩)
1+exp(yi·⟨θ(t),xi⟩)

:= limT→∞ αi(T ), where T0 is suf-
ficiently large. Here the notion αi ∝ limT→∞ αi(T )means that limT→∞

αi(T )
αj(T )

= αi

αj
for any

pair of i, j and αj ̸= 0. Note that each term in the sum is non-negative. This implies that
α1, · · · , αm have the same sign. Meanwhile,∑m

i=1 αiγ =
∑m

i=1 αiyi · ⟨u,xi⟩ = ⟨u,u⟩ > 0.
Thus αi ≥ 0 for all i ∈ [m] and at least one is positive. Now suppose u ̸= θ̂MM,
which means that γ is smaller than the margin of θ̂MM. Then, for all i = 1, · · · ,m,
there is yi · ⟨u,xi⟩ < yi · ⟨θ̂MM,xi⟩. This implies that ⟨u,u⟩ =

∑m
i=1 αiyi · ⟨u,xi⟩ <∑m

i=1 αiyi · ⟨θ̂MM,xi⟩ = ⟨θ̂MM,u⟩, which is a contradiction. Thus, u = θ̂MM.

E.5 Proof of Theorem 6.10
Proof Denote the largest and smallest eigenvalues of X⊤X by λmax and λmin, and by
condition we have λmin > 0. Let ϵ = min{ q∗

3
, (q

∗λmin)2

192λmax 2}. Then, similar to the proof in
Appendix E.1, there exists tϵ such that for all t ≥ tϵ and all i, q(t)i ∈ (qi− ϵ, qi + ϵ). Denote
Q = diag(q1, · · · , qn), then for all t ≥ tϵ, Q(t) := Q

(t)
ϵ =

√
Q

√
Q

(t)
3ϵ , where we use the

subscript ϵ to indicate that
∥∥∥Q(t)

ϵ −Q
∥∥∥
2
< ϵ.

First, we prove that F (θ) is L-smooth if ∥xi∥2 ≤ 1 for all i. The gradient of F is

∇F (θ) =
n∑

i=1

qi∇ŷℓ(⟨θ,xi⟩, yi)xi.
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Since ℓ(ŷ, y) is L-smooth in ŷ, for any θ1, θ2 and any i, we have

ℓ(⟨θ2,xi⟩, yi)− ℓ(⟨θ1,xi⟩, yi)

≤ ∇ŷℓ(⟨θ1,xi⟩, yi) · (⟨θ2,xi⟩ − ⟨θ1,xi⟩) +
L

2
(⟨θ2,xi⟩ − ⟨θ1,xi⟩)2

= ⟨∇ŷℓ(⟨θ1,xi⟩, yi) · xi, θ2 − θ1⟩+
L

2
(⟨θ2 − θ1,xi⟩)2

≤ ⟨∇ŷℓ(⟨θ1,xi⟩, yi) · xi, θ2 − θ1⟩+
L

2
∥θ2 − θ1∥22 .

Thus, we have

F (θ2)− F (θ1) =
n∑

i=1

qi [ℓ(⟨θ2,xi⟩, yi)− ℓ(⟨θ1,xi⟩, yi)]

≤
n∑

i=1

qi⟨∇ŷℓ(⟨θ1,xi⟩, yi) · xi, θ2 − θ1⟩+
L

2

n∑
i=1

qi ∥θ2 − θ1∥22

=⟨∇F (θ1), θ2 − θ1⟩+
L

2
∥θ2 − θ1∥22 ,

which implies that F (θ) is L-smooth.
Denote g̃(θ) = ∇ŷℓ(f(X; θ),Y ) ∈ Rn, then ∇F (θ(t)) = XQg̃(θ(t)), and the update

rule is
θ(t+1) = θ(t) − ηXQ(t)g̃(θ(t)). (E.18)

So by Definition 6.9, we have

F (θ(t+1)) ≤ F (θ(t))− η⟨XQg̃(θ(t)),XQ(t)g̃(θ(t))⟩+ η2L

2

∥∥XQ(t)g̃(θ(t))
∥∥2
2
. (E.19)

Let η1 = q∗λmin

2L(1+3ϵ)λmax . Similar to the proof in Appendix E.1, we can prove that for all
η ≤ η1, and for all t ≥ tϵ, we have

F (θ(t+1)) ≤ F (θ(t))− ηq∗λmin

2

∥∥∥√Qg̃(θ(t))
∥∥∥2
2
+
η2L

2

∥∥∥∥X√Q
(t)
3ϵ

∥∥∥∥2
2

∥∥∥√Qg̃(θ(t))
∥∥∥2
2

≤ F (θ(t))− ηq∗λmin

2

∥∥∥√Qg̃(θ(t))
∥∥∥2
2
+
η2L

2
∥X∥22 (1 + 3ϵ)

∥∥∥√Qg̃(θ(t))
∥∥∥2
2

≤ F (θ(t))− ηq∗λmin

4

∥∥∥√Qg̃(θ(t))
∥∥∥2
2

≤ F (θ(t))− ηq∗2λmin

4

∥∥g̃(θ(t))∥∥2
2
.

This implies that F (θ(t)) is monotonically non-increasing. Since F (θ) ≥ 0, F (θ(t)) must
converge as t → ∞, and we need to prove that it converges to 0. Suppose that F (θ(t))
does not converge to 0, then there exists a constant C > 0 such that F (θ(t)) ≥ 2C for all t.
On the other hand, it is easy to see that there exists θ∗ such that ℓ(⟨θ∗,xi⟩, yi) < C for all
i. The above inequality also implies that

∥∥g̃(θ(t))∥∥
2
→ 0 as t→∞ because we must have

F (θ(t))− F (θ(t+1))→ 0.
Note that by Eqn. (E.18), we have∥∥θ(t+1) − θ∗

∥∥2
2
=
∥∥θ(t) − θ∗∥∥2

2
+ 2η⟨XQ(t)g̃(θ(t)), θ∗ − θ(t)⟩+ η2

∥∥XQ(t)g̃(θ(t))
∥∥2
2
.
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Define Ft(θ) =
∑n

i=1 q
(t)
i ℓ(⟨θ,xi⟩, yi). Ft is convex because ℓ is convex and q

(t)
i are non-

negative, and ∇Ft(θ
(t)) = XQ(t)g̃(θ(t)). Convexity guarantees that Ft(y) ≥ Ft(x) +

⟨∇Ft(x),y − x⟩, so for all twe have

⟨XQ(t)g̃(θ(t)), θ∗ − θ(t)⟩ ≤ Ft(θ
∗)− Ft(θ

(t)) ≤ Ft(θ
∗)− 2

3
F (θ(t)) ≤ C − 4C

3
= −C

3
,

because q(t)i ≥ qi − ϵ ≥ 2
3
qi and

∑n
i=1 q

(t)
i = 1. Since

∥∥g̃(θ(t))∥∥
2
→ 0, there exists T > 0

such that for all t ≥ T and all η ≤ η0,∥∥θ(t+1) − θ∗
∥∥2
2
≤
∥∥θ(t) − θ∗∥∥2

2
− ηC

3
,

which means that
∥∥θ(t) − θ∗∥∥2

2
→ −∞ because ηC

3
is a positive constant. This is a contra-

diction! Thus, F (θ(t))must converge to 0, which is result (i).
(i) immediately implies (ii) because ℓ is strictly decreasing to 0 by the condition.
Now let us prove (iii). First of all, the uniqueness of θR can be easily proved from

the convexity of F (θ). The condition implies that yi⟨θR,xi⟩ > 0, i.e. θR must classify
all training samples correctly. If there are two different minimizers θR and θ′R in whose
norm is at mostR, then consider θ′′R = 1

2
(θR+θ

′
R). By the convexity of F , we know that θ′′R

must also be aminimizer, and ∥θ′′R∥2 < R. Thus, F ( R
∥θ′′R∥2 θ

′′
R) < F (θ′′R) and ∥ R

∥θ′′R∥2 θ
′′
R∥2 = R,

which contradicts with the fact that θ′′R is a minimizer.
To prove the rest of (iii), look at Eqn. (E.19). On one hand, for all t ≥ tϵ, we have∣∣⟨XQ(t)g̃(θ(t)),X(Q(t) −Q)g̃(θ(t))⟩

∣∣ ≤ λmax
√
3ϵ
∥∥∥√Q(t)g̃(θ(t))

∥∥∥2
2
.

Since we chose ϵ = min{ q∗
3
, (q

∗λmin)2

192λmax 2}, this inequality implies that
∥∥∇Ft(θ

(t))
∥∥2
2
=
∥∥XQ(t)g̃(θ(t))

∥∥2
2
≥ λmin

∥∥Q(t)g̃(θ(t))
∥∥2
2
≥ λmin(q∗ − ϵ)

∥∥∥√Q(t)g̃(θ(t))
∥∥∥2
2

≥ λminq∗

2

∥∥∥√Q(t)g̃(θ(t))
∥∥∥2
2
≥ 4

∣∣⟨XQ(t)g̃(θ(t)),X(Q(t) −Q)g̃(θ(t))⟩
∣∣ .

On the other hand, if η ≤ η2 =
1
2L
, then we have

η2L

2

∥∥XQ(t)g̃(θ(t))
∥∥2
2
≤ η

4

∥∥∇Ft(θ
(t))
∥∥2
2
.

Combining the above with Eqn. (E.19), we get

F (θ(t+1))− F (θ(t)) ≤ −η
2

∥∥∇Ft(θ
(t))
∥∥2
2
.

Denote u = limR→∞
θR

∥θR∥2 . Similar to Lemma 9 in [79], we can prove that: for any α > 0,
there exists a constant ρ(α) > 0 such that for any θ subject to ∥θ∥2 ≥ ρ(α), the following
holds for all t:

Ft((1 + α)∥θ∥2u) ≤ Ft(θ).

Let tα ≥ tϵ satisfy that for all t ≥ tα, ∥θ(t)∥2 ≥ max{ρ(α), 1}. By the convexity of Ft, for
all t ≥ tα, we have

⟨∇Ft(θ
(t)), θ(t) − (1 + α)∥θ(t)∥2u⟩ ≥ Ft(θ

(t))− Ft((1 + α)∥θ(t)∥2u) ≥ 0. (E.20)
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Thus, we have

⟨θ(t+1) − θ(t),u⟩ = ⟨−η∇Ft(θ
(t)),u⟩

≥ ⟨−η∇Ft(θ
(t)), θ(t)⟩ 1

(1 + α)∥θ(t)∥2

= ⟨θ(t+1) − θ(t), θ(t)⟩ 1

(1 + α)∥θ(t)∥2

=

(
1

2

∥∥θ(t+1)
∥∥2
2
− 1

2

∥∥θ(t)∥∥2
2
− 1

2

∥∥θ(t+1) − θ(t)
∥∥2
2

)
1

(1 + α)∥θ(t)∥2
.

(E.21)

By 1
2
(∥θ(t+1)∥2−∥θ(t)∥2)2 ≥ 0, we have (1

2

∥∥θ(t+1)
∥∥2
2
− 1

2

∥∥θ(t)∥∥2
2
)/∥θ(t)∥2 ≥

∥∥θ(t+1)
∥∥
2
−
∥∥θ(t)∥∥

2
.

Moreover, by Eqn. (E.20), we have∥∥θ(t+1) − θ(t)
∥∥2
2

2(1 + α)∥θ(t)∥2
≤
∥∥θ(t+1) − θ(t)

∥∥2
2

2
=
η2
∥∥∇Ft(θ

(t))
∥∥2
2

2
≤ η

(
F (θ(t))− F (θ(t+1))

)
.

Summing up Eqn. (E.21) from t = tα to t− 1 yields

⟨θ(t)−θ(tα),u⟩ ≥
∥∥θ(t)∥∥

2
−
∥∥θ(tα)∥∥

2

1 + α
+η
(
F (θ(t))− F (θ(tα))

)
≥
∥∥θ(t)∥∥

2
−
∥∥θ(tα)∥∥

2

1 + α
−ηF (θ(tα)),

which implies that〈
θ(t)

∥θ(t)∥2
,u

〉
≥ 1

1 + α
+

1

∥θ(t)∥2

(
⟨θ(tα),u⟩ − ∥θ

(tα)∥2
1 + α

− ηF (θ(tα))
)
.

Since limt→∞ ∥θ(t)∥2 =∞, we have

lim inf
t→∞

〈
θ(t)

∥θ(t)∥2
,u

〉
≥ 1

1 + α
.

Since α is arbitrary, we must have limt→∞
θ(t)

∥θ(t)∥
2

= u as long as η ≤ min{η1, η2}.

E.6 Analysis of the Logistic Loss
Here, we show that the logistic loss satisfies all the conditions in Theorem 6.10, and
limR→∞

θR
R

= θ̂MM.
First, for the logistic loss we have∇2

ŷℓ(ŷ, y) =
y2

eyŷ+e−yŷ+2
≤ maxi

y2i
4
, so ℓ is smooth.

Second, let us analyze limR→∞
θR
R
. For the logistic loss, it is easy to show that for any

θ̂′ ̸= θ̂MM, there exists an R(θ̂′) > 0 and an δ(θ̂′) > 0 such that F (R · θ) > F (R · θ̂MM) for
all R ≥ R(θ̂′) and θ ∈ B(θ̂′, δ(θ̂′)). Let S = {θ : ∥θ∥2 = 1}. For any ϵ > 0, S − B(θ̂MM, ϵ)
is a compact set. And for any θ ∈ S − B(θ̂MM, ϵ), there exist R(θ) and δ(θ) as defined
above. Thus, there must exist θ1, · · · , θm ∈ S − B(θ̂MM, ϵ) such that S − B(θ̂MM, ϵ) ⊆
∪mi=1B(θi, δ(θi)). Let R(ϵ) = max{R(θ1), · · · , R(θm)}, then for all R ≥ R(ϵ) and all θ ∈
S −B(θ̂MM, ϵ), F (R · θ) > F (R · θ̂MM), which means that θR

R
∈ B(θ̂MM, ϵ) for all R ≥ R(ϵ).

Therefore, limR→∞
θR
R

exists and is equal to θ̂MM.
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E.7 Proof of Theorem 6.11
Proof LetM0 be the bound of

∥∥∇θf
(0)(x)

∥∥
2
. We first consider the regularized linearized

neural network f (t)
linreg. By Proposition E.7, f (0)(x) is sampled from a zero-mean Gaussian

process, so there exists a constant M > 0 such that |f (0)(xi)| < M for all i with high
probability. Define

F (θ) =
n∑

i=1

qiℓ(⟨θ,∇θf
(0)(xi)⟩+ f (0)(xi), yi).

Denote θ̃R = argminθ{F (R ·θ) : ∥θ∥2 ≤ 1}. when the linearized neural network is trained
by GRW satisfying Assumption 6.3 with regularization, since this is convex optimization
and the objective function is smooth, we can prove that with a sufficiently small learning
rate, as t→∞, θ(t) → R·θ̃R+θ(0) whereR = limt→∞ ∥θ(t)−θ(0)∥2 (which is theminimizer).
And define

γ = min
i=1,··· ,n

yi · ⟨θ̂MM,∇θf
(0)(xi)⟩.

First, we derive the lower bound ofR. By Lemma E.9, with a sufficiently large d̃, with
high probability R̂(f (t)

reg) < ϵ implies R̂(f (t)
linreg) < 2ϵ. By the convexity of ℓ, we have

2ϵ >
1

n

n∑
i=1

ℓ(⟨Rθ̃R, xi⟩+ f (0)(xi), yi) ≥ log

(
1 + exp

(
− 1

n

n∑
i=1

(⟨Rθ̃R,xi⟩+ f (0)(xi))yi

))

≥ log

(
1 + exp

(
− 1

n

n∑
i=1

R⟨θ̃R, xi⟩yi −M

))
,

which implies that R = Ω(− log 2ϵ) for all ϵ ∈ (0, 1
4
).

Denote δ = ∥θ̂MM − θ̃R∥2. Let θ′ = θ̂MM+θ̃R
2

, then we can see that ∥θ′∥2 =
√

1− δ2

4
. Let

θ̃′ = θ′

∥θ′∥2 . By the definition of θ̂MM, there exists j such that yj · ⟨θ̃′,∇θf
(0)(xj)⟩ ≤ γ, which

implies that

yj ·

〈
θ̂MM + θ̃R

2

1√
1− δ2

4

,∇θf
(0)(xj)

〉
≤ γ.

Thus, we have

yj · ⟨θ̃R,∇θf
(0)(xj)⟩ ≤ 2

√
1− δ2

4
γ − yj · ⟨θ̂MM,∇θf

(0)(xj)⟩

≤

(
2

√
1− δ2

4
− 1

)
γ

≤
(
2(1− δ2

8
)− 1

)
γ (since

√
1− x ≤ 1− x

2
)

= (1− δ2

4
)γ.

On the other hand, we have
qj log(1 + exp(−yj · ⟨R · θ̃R,∇θf

(0)(xj)⟩ −M)) ≤ F (R · θ̃R)
≤ F (R · θ̂MM) ≤ log(1 + exp(−Rγ +M)),
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which implies that

q∗ log

(
1 + exp

(
−(1− δ2

4
)Rγ −M

))
≤ log(1 + exp(−Rγ +M)).

Thus, we have

1+exp(−Rγ+M) ≥
(
1 + exp

(
−(1− δ2

4
)Rγ −M

))q∗

≥ 1+q∗ exp

(
−(1− δ2

4
)Rγ −M

)
,

which is equivalent to

−Rγ +M ≥ −(1− δ2

4
)Rγ −M + log(q∗).

From this, we conclude that

δ = O(R−1/2) = O((− log 2ϵ)−1/2).

So for any test point x such that
∥∥∇θf

(0)(x)
∥∥ ≤M0, we have∣∣∣〈θ̂MM − θ̃R,∇θf

(0)(x)
〉∣∣∣ ≤ δM0 = O((− log 2ϵ)−1/2).

Combining this with Lemma E.9, with high probability, we have

lim sup
t→∞

|R · fMM(x)− f (t)
reg(x)| = O(R · (− log 2ϵ)−1/2 + d̃−1/4).

Hence, there exists a constant C > 0 such that: As d̃ → ∞, with high probability,
for all ϵ ∈ (0, 1

4
), if |fMM(x)| > C · (− log 2ϵ)−1/2, then f (t)

reg(x) will have the same sign as
fMM(x) for a sufficiently large t. Note that this C only depends on n, q∗, γ,M andM0, so
it is a constant independent of ϵ.

E.8 Proof of Proposition 6.16
Proof We have

RDβ ,ρ,ϵ(θ;Ptrain) = inf
P ′

{
RDβ ,ρ(θ;P

′) : ∃P̃ ′ s.t. Ptrain = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′,η

{
cβ(ρ)EP ′ [(ℓ(θ;Z)− η)β∗

+ ]
1
β∗ + η

}
= inf

η

{
cβ(ρ) inf

P ′
{[
∫
R+

P ′((ℓ(θ;Z)− η)β∗
+ > u)du]

1
β∗ }+ η

}
.

(E.22)

Since Ptrain = (1− ϵ)P ′ + ϵP̃ ′, for all ℓ0 ∈ R, we have

P ′(ℓ(θ;Z) ≤ ℓ0) ≤ min

{
1,

1

1− ϵ
Ptrain(ℓ(θ;Z) ≤ ℓ0)

}
,

and we can show that there exists a P ∗ = P ′ that attains the equality for all ℓ0. This is
because Ptrain(ℓ(θ; z)) is a continuous function of z for any fixed θ since both ℓ and Ptrain
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are continuous, so there exists an ℓ∗ such that Ptrain(ℓ(θ;Z) > ℓ∗) = ϵ. Hence, we can
define

P ∗(z) =

{
1

1−ϵ
Ptrain(z) , ℓ(θ; z) ≤ ℓ∗;

0 , ℓ(θ; z) > ℓ∗.

For this P ∗, we have ∫X×Y P
∗(z)dz = 1

1−ϵ

∫
ℓ(θ;z)<ℓ∗

Ptrain(z)dz = 1
1−ϵ

Ptrain(ℓ(θ;Z) < ℓ∗) = 1

because Ptrain(ℓ(θ;Z) = ℓ∗) = 0, which means that P ∗ is a proper probability density
function.

Let v = u
1
β∗ . PluggingP ∗(ℓ(θ;Z) ≤ ℓ0) = min

{
1, 1

1−ϵ
Ptrain(ℓ(θ;Z) ≤ ℓ0)

} into Eqn. (E.22)
produces

RDβ ,ρ,ϵ(θ;Ptrain) = inf
η

{
cβ(ρ)

[∫
R+

[1− P ∗((ℓ(θ;Z)− η)β∗
+ ≤ vβ∗)]dvβ∗

] 1
β∗

+ η

}

= inf
η

{
cβ(ρ)

[∫
R+

[1− 1

1− ϵ
Ptrain(ℓ(θ;Z) ≤ η + v)]+dv

β∗

] 1
β∗

+ η

}

= inf
η

cβ(ρ)
[∫ (ℓ∗−η)+

0

1

1− ϵ
[(1− ϵ)− Ptrain(ℓ(θ;Z) ≤ η + v)]+dv

β∗

] 1
β∗

+ η

 .

On the other hand, we have
EPtrain

[(ℓ− η)β∗
+ | PZ′∼Ptrain

(ℓ(θ;Z ′) > ℓ(θ;Z)) ≥ ϵ]

=
1

1− ϵ

∫ ℓ∗

0

(u− η)β∗
+ d(Ptrain(ℓ ≤ u))

=
1

1− ϵ

{[
(u− η)β∗

+ Ptrain(ℓ ≤ u)
]ℓ∗
0
−
∫ ℓ∗

0

Ptrain(ℓ ≤ u)d((u− η)β∗
+ )

}
=

1

1− ϵ

{
(ℓ∗ − η)β∗

+ (1− ϵ)−
∫ ℓ∗

0

Ptrain(ℓ ≤ u)d((u− η)β∗
+ )

}
=

1

1− ϵ

{∫ (ℓ∗−η)+

0

(1− ϵ)dvβ∗ −
∫ (ℓ∗−η)+

0

Ptrain(ℓ ≤ η + w)dwβ∗

}
,

where w = (u− η)+. This completes the proof.

Remark E.12. We can prove a similar dual formula even if Ptrain is not continuous. For any
Ptrain, there exists an ℓ∗ such that Ptrain(ℓ(θ;Z) > ℓ∗) ≤ ϵ and Ptrain(ℓ(θ;Z) < ℓ∗) ≤ 1 − ϵ. If
Ptrain(ℓ(θ;Z) = ℓ∗) = 0, then we still define P ∗ the same as in the above proof. If Ptrain(ℓ(θ;Z) =
ℓ∗) > 0, then we define

P ∗(z) =


1

1−ϵ
Ptrain(z) , ℓ(θ; z) < ℓ∗;[

1− 1
1−ϵ

Ptrain(ℓ(θ;Z) < ℓ∗)
]
/Ptrain(ℓ(θ;Z) = ℓ∗) , ℓ(θ; z) = ℓ∗;

0 , ℓ(θ; z) > ℓ∗,

with which the dual formula becomes

RDβ ,ρ,ϵ(θ;Ptrain)

= inf
η
{cβ(ρ)(

Ptrain(ℓ < ℓ∗)

1− ϵ
EZ [(ℓ(θ;Z)− η)β∗

+ | PZ′(ℓ(θ;Z ′) > ℓ(θ;Z)) > ϵ]

+
1− Ptrain(ℓ < ℓ∗)

1− ϵ
(ℓ∗ − η)β∗

+ )
1
β∗ + η}.
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E.9 Proof of Theorem 6.17
The proof relies on the following key technical lemma.
Lemma E.13. For any distributions P, P ′, non-negative loss function l(·, Z) and 1 ≤ β∗ < 2k,
such that EP [l(θ, Z)

2k] <∞, we have

EP [(ℓ− η)β∗
+ ]

1
β∗ ≤

EP ′ [(ℓ− η)β∗
+ ]

1
β∗ + EP [(l(θ, Z)− η)2k+ ]

1
2kTV(P, P ′)(

1
β∗

− 1
2k)β

− 1
2k

∗ ·
(

2k

2k − β∗

) 1
β∗

Proof By the definition of the total variationdistance, wehaveP (ℓ(θ;Z) > u)−P ′(ℓ(θ;Z ′) >

u) ≤ TV(P, P ′) for all u ≥ 0. Let s2k := E[(ℓ − η)2k+ ]
1
2k . By Markov’s inequality and the

non-negativity of ℓ, we have

P (ℓ− η > u) ≤
E[(ℓ− η)2k+ ]

u2k
:= (

s2k
u

)2k for all η ≥ 0. (E.23)

Using integration by parts, we have

EP [(ℓ− η)β∗
+ ] =

∫ ∞

η

β∗(t− η)(β∗−1)P (ℓ ≥ t)dt =

∫ ∞

0

β∗u
(β∗−1)P (ℓ− η ≥ u)du.

This implies that

EP [(ℓ− η)β∗
+ ]− EP ′ [(ℓ− η)β∗

+ ] =

∫ ∞

0

β∗u
(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du

=

(∫ M

0

+

∫ ∞

M

)(
β∗u

(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du
)
.

Here,M is a positive parameter whose value will be determined later. For the first inte-
gral, we have∫ M

0

β∗u
(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du ≤

∫ M

0

β∗u
(β∗−1)TV(P, P ′)du

=Mβ∗TV(P, P ′).

For the second integral, by Eqn. (E.23), we have∫ ∞

M

β∗u
(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du ≤

∫ ∞

M

β∗u
(β∗−1)P (ℓ− η ≥ u)du

≤
∫ ∞

M

β∗u
(β∗−1)

(s2k
u

)2k
=

s2k2k
2k − β∗

· 1

M2k−β∗
.

Therefore, by settingM = s2k(TV(P, P ′)β∗)
−1/2k which minimizes the sum of two terms,

we have
EP [(ℓ− η)β∗

+ ]− EP ′ [(ℓ− η)β∗
+ ] ≤

inf
M>0

(
Mβ∗TV(P, P ′) +

s2k2k
2k − β∗

· 1

M2k−β∗

)
= sβ∗

2kTV(P, P ′)1−
β∗
2k β

−β∗
2k

∗ · 2k

2k − β∗
.
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Using the inequality (A+B)
1
β∗ ≤ A

1
β∗ +B

1
β∗ when β∗ ≥ 1, we have

EP [(ℓ− η)β∗
+ ]

1
β∗ ≤ EP ′ [(ℓ− η)β∗

+ ]
1
β∗ + s2kTV(P, P ′)(

1
β∗

− 1
2k)β

− 1
2k

∗ ·
(

2k

2k − β∗

) 1
β∗
,

as desired.

Now we prove Theorem 6.17.
Proof By Lemma E.13, for any P ′ such that TV(P, P ′) ≤ ϵ

1−ϵ
, we have

CVaRα(θ;P )− CVaRα(θ;P
′) ≤ 2α−1σ

√
ϵ

1− ϵ
.

By Corollary 6.13, if Rmax(θ;P ) > 3α−1σ
√

ϵ
1−ϵ

, then CVaRα(θ;P ) > 3α−1σ
√

ϵ
1−ϵ

, which
implies that

CVaRα(θ;P
′)

Rmax(θ;P )
≥ CVaRα(θ;P

′)

CVaRα(θ;P )
= 1− δ

CVaRα(θ;P )
≥ 1−

2α−1σ
√

ϵ
1−ϵ

3α−1σ
√

ϵ
1−ϵ

=
1

3

holds for any P ′ such that TV(P, P ′) ≤ ϵ
1−ϵ

. By Lemma 6.15, taking the infimum over P ′

yields the first inequality of Eqn. (6.10). And by Corollary 6.13, we have Dχ2,ρ(θ;P
′) ≥

CVaRα(θ;P
′) for all θ and P ′. This combinedwith the above inequality yields the second

inequality of Eqn. (6.10).
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