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For my family and loved ones



iv



Abstract
This research explores the discovery of symmetrical realizations of convex-hexagon-

free point placements on 16 points using satisfiability solving techniques. The cen-
tral focus is on identifying point configurations that exhibit 3-, 4-, and 5-fold rota-
tional symmetry. These 16 point configurations correspond to the maximal num-
ber of points that can be placed in the Euclidean plane in general position without
forming any convex hexagons, a central case in the study of the Erdős–Szekeres
conjecture , a foundational problem in combinatorial geometry.

Building on previous work in combinatorial geometry and SAT-based combina-
torial methods, this research extends existing Boolean satisfiability encodings by in-
corporating symmetry constraints and structural conditions specific to the hexagon-
free problem. Using these ideas, new conjunctive normal form formulas are devel-
oped to represent the search space of symmetric hexagon-free point placements.

To interpret and visualize solutions, satisfying assignments to these CNFs are
passed through a point realization tool that reconstructs geometric configurations
from orientation triple data. This enables the conversion of logical encodings into
concrete point placements that can be analyzed and compared. Structural analysis
of these placements includes examining the frequency and distribution of smaller
convex polygons, such as 4-gons and 5-gons, to better understand the local geometric
implications of hexagon avoidance.

The resulting symmetric configurations, especially those with four-fold and five-
fold symmetry, represent some of the first structured, realizable examples of 16-point
hexagon-free sets. These findings contribute new insight into the Erdős–Szekeres
conjecture and offer a stepping stone toward understanding larger generalizations,
such as the existence of 32-point configurations that avoid convex 7-gons.
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Chapter 1

Introduction

This research concerns the search for symmetrical realizations of hexagon-free point placements
on 16 points using SAT solving techniques. In order to understand the objective, it is first neces-
sary to introduce the Erdős–Szekeres conjecture as well as motivate the idea of SAT solving, as
the remaining sections will rely heavily on both.

1.1 The Erdős–Szekeres Conjecture

The Erdős–Szekeres conjecture is a well-known open problem in the field of combinatorial ge-
ometry, originally posed in 1935 by Paul Erdős and George Szekeres in their seminal paper “A
Combinatorial Problem in Geometry” [2]. The conjecture asserts that for every integer k > 3,
there exists a minimal number n = h(k) such that any set of at least n points when placed in
general position in the plane (no three points collinear) must contain a subset of k points that
form the vertices of a convex k-gon.

Erdős and Szekeres proved that such a number n exists for every k and provided an upper
bound on its size. They also conjectured that the exact bound is given by the following equation:

n = 2k−2 + 1 (1.1)

The values of h(3) through h(6) have been verified to match the proposed bound, a simple
case split was used to prove that h(4) = 5 in the original paper. The result for k = 6 was
first shown by a computer proof in the 2006 paper “Computer Solution to the 17-point Erdős–
Szekeres problem” by George Szekeres and Lindsay Peters [6]. Despite extensive work since the
origins of the conjecture, it remains unresolved for general k, and the values of h(7) and above
remain unknown.

From the proof that h(6) = 17 it follows that every placement of 17 points in general position
in the plane contains at least one convex 6-gon. It also follows that 17 is the minimal number of
points such that this is true. A natural second result that follows from these two facts is that there
must exist at least one way to place 16 points in the plane in general position such that no convex
6-gons are formed. These 16-point solutions are the study of this research.

1



1.2 Propositional Logic and SAT Solvers
Propositional logic, also known as Boolean logic, is a formal system in which logical formulas
are constructed from propositional variables using logical connectives such as AND (∧), OR (∨),
NOT (¬), IMPLIES ( =⇒ ), and EQUIVALENT ( ⇐⇒ ). Each propositional variable represents
a statement that can be true or false, and the logic of the connectives defines the overall truth
evaluation of each formula based on its components.

A central problem in propositional logic is the satisfiability problem (SAT), which concerns
whether, given a propositional formula, there exists an assignment of true or false to that for-
mula’s variables such that the entire formula evaluates to true. It is a well-known fact that SAT
is NP-complete; however, SAT solving has emerged as a highly practical tool for a wide range
of applications.

This emergence is in large part due to the ability of diverse problem domains to be repre-
sented as propositional formulas, allowing SAT solving to have applications for many real-world
problems. SAT solvers are specialized tools that are designed to efficiently decide the satis-
fiability of propositional formulas. Most often, these solvers require that their input formulas
be in conjunctive normal form (CNF), which simply means that the formula is structured as a
conjunction of disjunctions of variables.

There are a great number of modern SAT solvers to choose from, each slightly different and
more specialized for different applications. The solver of choice for this research was CaDiCaL,
designed by Armin Biere [1]. CaDiCaL is a type of conflict driven clause learning solver that
works great for general-purpose applications.

1.3 Objective
The objective of this research was to discover symmetrical realizations of hexagon-free point
placements on 16 points using SAT solving techniques. Specifically, the study focuses on identi-
fying configurations exhibiting 3-fold, 4-fold, and 5-fold rotational symmetry, which lend them-
selves naturally to SAT encodings on 16 points. These 16-point configurations represent the
largest possible point placements that can avoid the formation of convex 6-gons, as implied by
the Erdős–Szekeres conjecture.

This research builds on previous work in the field, mainly from two papers. These papers
create the foundation for how to efficiently encode combinatorial geometry instances like this
problem in propositional logic. Building on the base CNFs provided by these papers and through
the addition of new clauses that encode the desired structure and symmetries, new formulas can
be created that encode symmetric 6-gon free point placements on 16 points.

An analysis of the underlying properties and structure of these solutions would be performed
to gain further insight into the Erdős–Szekeres conjecture as well as the solutions themselves. Fi-
nally, leveraging a point realizer designed by Bernardo Subercaseaux [5], satisfying assignments
to these CNF formulas would be converted into realized images.
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Chapter 2

Literature Review

This research builds on a broad body of prior work focused on encoding problems in combinato-
rial geometry, such as the Erdős–Szekeres Conjecture, into SAT frameworks. Among these, two
papers had a particularly direct influence on the present work, “Axioms and Hulls” by Donald
Knuth [4] and “Happy Ending: An Empty Hexagon in Every Set of 30 Points” by Marijn Heule
and Manfred Scheucher [3], as they provide the structural basis for the CNF encodings used in
both the analytical and constructive phases of this thesis.

2.1 CC Systems
In “Axioms and Hulls” [4], Knuth defines a cc system (short for counterclockwise system) as
a combinatorial abstraction used to encode orientation information among triples of points in
the plane. These systems are foundational in SAT encodings of point configuration problems,
including those addressed in this thesis.

2.1.1 Orientation Triples
In the context of planar geometry, an orientation triple captures the relative orientation of three
distinct points. The orientation is considered positive if the points in the triple are encountered in
a counterclockwise manner, and negative if the points in the triple are encountered in a clockwise
manner. These directional relationships can be abstractly represented as propositional variables.
For example, the orientation variable for the triple of points (a, b, c) would be written as:

oa,b,c

For these orientation variables, a true value indicates a counterclockwise turn and a false
value indicates a clockwise turn. This relationship is illustrated in Figure 2.1.

In SAT-based geometric reasoning, orientation triples allow point configurations to be repre-
sented without reference to explicit coordinates. By expressing orientation relationships directly
in Boolean logic, it becomes possible to encode high-level geometric properties, such as convex-
ity, ordering, and certain substructures, into satisfiability problems. This abstraction is crucial for
transforming geometric constraints into CNF formulas and was the main method used for this
research.

3



Figure 2.1: Two examples of orientation triples for points 1, 2, and 3 are illustrated. In the first
case, the orientation of o1,2,3 is counterclockwise and therefore evaluates to true. In the second
case, the orientation is clockwise and consequently evaluates to false.

2.1.2 CC Axioms
Although orientation triples provide a compact and expressive way to encode local relationships
between points, not all combinations of orientation assignments correspond to realizable point
sets in the Euclidean plane. To ensure local logical consistency, Knuth introduces a set of axioms
that describe how orientation values must behave to be more consistent with the underlying
planar geometry.

The first class of axioms enforces cyclic symmetry, ensuring that the orientation of a triple
remains consistent under cyclic permutations. It is encoded as:

op,q,r =⇒ oq,r,p (2.1)

The second class of axioms enforces antisymmetry, ensuring that reversing the order of the
last two points in a triple negates its orientation. It is encoded as:

op,q,r =⇒ ¬op,r,q (2.2)

The third class of axioms enforces nondegeneracy, ensuring that no three distinct points are
collinear. This condition requires that at least one of the two possible orientations for a triple
must hold. It is encoded as:

op,q,r ∨ op,r,q (2.3)

The fourth class of axioms enforces interiority, a condition that ensures consistency between
the orientation of a triangle (p, q, r) and the position of a point t lying within it. It is encoded as:

ot,q,r ∧ op,t,r ∧ op,q,t =⇒ op,q,r (2.4)

The fifth class of axioms enforces transitivity, a condition that ensures the compatibility of
orientation triples across five distinct points. Specifically, if p, q, and r all lie to the left of ts (the
directed line formed by t and s), q lies to the left of tp, and r lies to the left of tq, then it must
follow that r lies to the left of tp. It is encoded as:

ot,s,p ∧ ot,s,q ∧ ot,s,r ∧ ot,p,q ∧ ot,q,r =⇒ ot,p,r (2.5)

4



Together, these five classes of axioms serve to constrain the orientation variables in a manner
that approximates the behavior of realizable point sets in the Euclidean plane. However, they
do not fully encode the complete set of geometric constraints necessary to ensure that every
satisfying assignment corresponds to an actual geometric realization. This limitation arises from
the fact that the realizability of a point set is fundamentally an algebraic condition, rooted in the
sign of the determinant of certain coordinate matrices, which cannot be easily captured within
the confines of propositional logic. Despite this, the axioms do enforce local logical consistency
among the orientation variables, thereby significantly narrowing the search space and guiding
the solver toward solutions that are more likely to correspond to valid realizations.

2.2 An O(n4) Encoding

In “Happy Ending: An Empty Hexagon in Every Set of 30 Points” [3], Heule and Scheucher
introduce a SAT-based approach to forbidding convex 6-gons among point placements utilizing
a novel encoding that improves upon the efficiency of earlier formulations. Central to their
method is the assumption of a fixed ordering of the points 1 through 16 from left to right. This
assumption enables a redefinition of the cc axioms that reduces the number of required clauses
to O(n4), where n is the total number of points, an improvement over the O(n5) axioms found
in Knuth’s earlier work.

In addition to the optimized axiom encoding, their approach leverages auxiliary variables
to forbid the presence of convex k-gons using only O(n4) clauses, a substantial improvement
over the naive O(nk) formulation. Furthermore, preliminary symmetry-breaking constraints are
introduced to reduce redundancies in the search space, further enhancing the efficiency of the
encoding. Together, these techniques contribute to an efficient encoding that will form the basis
of the CNF used during the analysis portion of this work.

2.2.1 O(n4) Signotope Axioms

The encoding developed by Heule and Scheucher to forbid convex 6-gons among point place-
ments utilizes orientation triples to represent the combinatorial geometry problem as a SAT in-
stance. Consequently, new axioms (referred to as signotope axioms) are required to ensure that
every satisfying assignment maintains local logical consistency.

The following describes the method employed to forbid non-realizable patterns. Consider the
set of 4 points (a, b, c, d). Using the assumption that the points are placed in this order from left
to right, the directed lines ab, bc, and cd partition the region in which point d can be placed into 4
subregions. These subregions are illustrated in Figure 2.2. The corresponding orientation triples
for each subregion are also illustrated in Table 2.1. When the orientation triple oa,b,c is positive,
the third orientation variable being true implies that the second is also true. Similarly, the fourth
orientation triple being true implies that the third orientation triple is true. This relationship can
be encoded using the following clauses:

oa,b,c ∧ oa,c,d =⇒ oa,b,d (2.6)
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Figure 2.2: A visual depiction of the four possible subregions in which the point d can lie with
respect to the points a, b, and c. The mirror case in which point b lies above the line ac is not
shown.

oa,b,c ∧ ob,c,d =⇒ oa,c,d (2.7)

The mirror case in which the triple oa,b,c is negative can be represented using the same logic,
just inverted. This relationship can be encoded using the following clauses:

¬oa,b,c ∧ ¬oa,c,d =⇒ ¬oa,b,d (2.8)

¬oa,b,c ∧ ¬ob,c,d =⇒ ¬oa,c,d (2.9)

For every four-element subset of the 16 points, the presence of all four sets of these clauses
helps to ensure local logical consistency and makes each satisfying assignment closer to being
a realizable instance in the plane. There are

(
n
4

)
of these subsets, resulting in a total of O(n4)

clauses added to the CNF.

2.2.2 Forbidding 6-gons

The method used by Heule and Scheucher to forbid the formation of convex 6-gons relies heavily
on the use of auxiliary variables. Specifically, two types of auxiliary variables are introduced:
u-variables, which encode convex polygons whose interior points lie entirely above the line
formed by their endpoints, and v-variables, which encode those whose interior points lie below
this line. These variables are employed in a case split to systematically eliminate all possible
configurations that could result in a convex 6-gon.
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oa,b,c oa,b,d oa,c,d ob,c,d
+ + + +
+ + + -
+ + - -
+ - - -
- - - -
- - - +
- - + +
- + + +

Table 2.1: A table showcasing the corresponding orientation triples for each of the four regions
in Figure 2.2 (the mirror case is shown but not explicitly colored).

U -Variables

As noted above, each u-variable represents a convex polygon whose interior points lie entirely
above the line formed by its endpoints. Each variable includes a superscript denoting the size
of the polygon and a subscript consisting of three points: the left endpoint, the rightmost non-
endpoint, and the right endpoint of the polygon. For example, the variable corresponding to a
convex 4-gon with endpoints a and d, and c as the rightmost non-endpoint, is written as:

u4
a,c,d

In each u-variable, the remaining interior points of the polygon are not explicitly named;
instead, they are implicitly encoded. As a result, each u-variable represents all possible convex
polygons of the specified size that can be formed using the given three defining points. When
using these variables to forbid the formation of all convex k-gons, the specific identities of the
interior points are not relevant; what matters is that the variable collectively encodes all such
formations. An illustration that more clearly conveys the geometric interpretation of a u-variable
is shown in Figure Figure 2.3.

Figure 2.3: A visual representation of the auxiliary variable u4
a,c,d. The points a, c, and d are

explicitly defined while it is assumed that there exists some point b that completes the convex
4-gon.

U -variables are encoded using a recursive approach, with the base case corresponding to
convex polygons of size 4. For each four-element subset of the sixteen points (a, b, c, d), the base
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case is defined by the following implication: If the orientation triples indicate that the points b
and c lie above the line ad, specifically, if oa,b,c and ob,c,d are both false, then a convex 4-gon is
formed and the corresponding u-variable u4

a,c,d is set to true:

¬oa,b,c ∧ ¬ob,c,d =⇒ u4
a,c,d (2.10)

The recursive case builds upon the base case by extending smaller u-variables to larger ones.
For a given set of points (a, b, c, d), the u-variable ux

a,c,d represents a convex polygon of size x
with endpoints a and d, and c as the rightmost non-endpoint. This variable is encoded recursively
in terms of the previously constructed u-variable ux−1

a,b,c. If ux−1
a,b,c is true, this indicates the existence

of a convex polygon of size x−1 with rightmost non-endpoint b and endpoint c. If the orientation
triple ob,c,d is false, placing the point d below the line bc, then the polygon ux−1

a,b,c can be extended
to include a new endpoint d such that all interior points lie above the line ad. This relationship is
encoded by the following implication:

ux−1
a,b,c ∧ ¬ob,c,d =⇒ ux

a,c,d (2.11)

V -Variables

V -variables function analogously to u-variables, with the key distinction that they represent con-
vex polygons whose interior points lie entirely below the line formed by their endpoints. As
with u-variables, each v-variable includes a superscript indicating the size of the polygon, and a
subscript consisting of three points: the left endpoint, the rightmost non-endpoint, and the right
endpoint.

The recursive encoding scheme for v-variables mirrors that of the u-variables, with the ex-
ception that the relevant orientation triples must be true rather than false. In the base case, for
a convex 4-gon formed by points (a, b, c, d), if the orientation triples oa,b,c and ob,c,d are true,
indicating that the points b and c lie below the line ad, then the corresponding v-variable is set to
true:

oa,b,c ∧ ob,c,d =⇒ v4a,c,d (2.12)

In the recursive case, for a given set of points (a, b, c, d), the variable vxa,b,c is defined in terms
of the previously constructed variable vx−1

a,b,c. If vx−1
a,b,c is true, this indicates the existence of a

convex polygon of size x − 1 with rightmost non-endpoint b and endpoint c. If the orientation
triple ob,c,d is true, placing the point d above the line bc, then the polygon vx−1

a,b,c can be extended
to include a new endpoint d such that all interior points lie below the line ad. This relationship
is encoded by the following implication:

vx−1
a,b,c ∧ ob,c,d =⇒ vxa,c,d (2.13)

Forbidding all 6-gons

To eliminate all possible convex 6-gons from a given point configuration, a case-based approach
is employed. Any convex 6-gon must have two endpoints, with the remaining four points lying
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strictly between them. These interior points may be located above or below the line defined by
the endpoints. This results in five distinct cases, based on the distribution of the interior points:
all four above the line, three above and one below, two on each side, one above and three below,
and all four below the line.

Each of these cases is handled using the previously defined u- and v-variables, which rep-
resent convex polygons with interior points strictly above or below the line formed by their
endpoints, respectively. To minimize the number of variables and clauses in the SAT encoding,
only u- and v-variables up to size five are needed. Then, for each four-element subset (a, b, c, d)
drawn from the sixteen points, five sets of clauses are added, one for each case, ensuring that no
satisfying assignment corresponds to a configuration containing a convex 6-gon.

In the first case, all four interior points lie below the line that connects the end points. This
configuration can be ruled out by asserting that there cannot exist a convex 5-gon encoded by
v5a,b,c while the orientation triple ob,c,d is false. This would imply that point d lies above line bc
and a convex 6-gon could be created by extending the convex 5-gon with point d. To forbid this,
the following clauses are added:

¬(v5a,b,c ∧ ¬ob,c,d) (2.14)

In the second case, three interior points lie below the line that connects the end points and one
interior point lies above. This configuration can be ruled out by asserting that there cannot exist
a convex 5-gon encoded by v5a,b,d while the orientation triple oa,c,d is true, as well as asserting
that there cannot exist a convex 5-gon encoded by v5a,c,d while the orientation triple oa,b,d is true.
In the first case, this would imply that a convex 6-gon could be created by extending the convex
5-gon with point c, and in the second case this would imply that a convex 6-gon could be created
by extending the convex 5-gon with point b. To forbid both, the following clauses are added:

¬(v5a,b,d ∧ oa,c,d) (2.15)

¬(v5a,c,d ∧ oa,b,d) (2.16)

In the third case, two interior points lie below the line that connects the end points and two
interior points lie above. This configuration can be ruled out by asserting that there cannot exist
a convex 4-gon encoded by v4a,b,d and a convex 4-gon encoded by u4

a,c,d, as well as by asserting
that there cannot exist a convex 4-gon encoded by v4a,c,d and a convex 4-gon encoded by u4

a,b,d.
In both cases, this would imply that a convex 6-gon could be created by the extremal points that
result from combining the two convex 4-gons. To forbid both, the following clauses are added:

¬(v4a,b,d ∧ u4
a,c,d) (2.17)

¬(v4a,c,d ∧ u4
a,b,d) (2.18)

In the fourth case, one interior point lies below the line that connects the end points and three
interior points lie above. This configuration can be ruled out by asserting that there cannot exist
a convex 5-gon encoded by u5

a,b,d while the orientation triple oa,c,d is false, as well as asserting
that there cannot exist a convex 5-gon encoded by u5

a,c,d while the orientation triple oa,b,d is false.

9



In the first case, this would imply that a convex 6-gon could be created by extending the convex
5-gon with point c, and in the second case this would imply that a convex 6-gon could be created
by extending the convex 5-gon with point b. To forbid both, the following clauses are added:

¬(u5
a,b,d ∧ ¬oa,c,d) (2.19)

¬(u5
a,c,d ∧ ¬oa,b,d) (2.20)

In the fifth and final case, all four interior points lie above the line that connects the end
points. This configuration can be ruled out by asserting that there cannot exist a convex 5-gon
encoded by u5

a,b,c while the orientation triple ob,c,d is true. This would imply that point d lies
below line bc and a convex 6-gon could be created by extending the convex 5-gon with point d.
To forbid this, the following clauses are added:

¬(u5
a,b,c ∧ ob,c,d) (2.21)

Symmetry Breaking

Heule and Scheucher also introduced symmetry-breaking clauses that take advantage of the fixed
left-to-right ordering of the points. These clauses help reduce the search space without eliminat-
ing any valid satisfying assignments. Specifically, a lemma provided in the original paper shows
that the points labeled 2 through 16 can be assumed, without loss of generality, to appear around
point 1 in counterclockwise order, while still preserving the left-to-right ordering. This additional
constraint can be encoded using the following clauses for all a < b < 16:

o1,a,b (2.22)

Together, the components described above, including the signotope axioms, the recursive
construction of auxiliary u- and v-variables, the exhaustive case-based constraints to eliminate
all convex 6-gons, and the symmetry-breaking clauses, combine to form a CNF formula that
encodes hexagon-free planar point placements in O(n4) clauses. This encoding will serve as a
foundational component in the analysis and experimental investigations presented in the remain-
der of this thesis.
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Chapter 3

Methodology

The core contributions of this thesis can be broadly divided into two main areas: enforcing
structure and enforcing symmetry. The enforcing structure phase aimed to develop a deeper un-
derstanding of the structural properties underlying hexagon-free point placements on 16 points.
This was achieved using a computationally efficient SAT encoding, which prioritized speed and
allowed for a detailed examination of structural patterns that occur in placements with explicitly
layered convex hull formations through the analysis of millions of candidate point placements.

In contrast, the enforcing symmetry phase focused on the concrete construction of point
sets. This part of the work employed a more flexible encoding in combination with a powerful
geometric realization tool. The goal of this phase was to discover explicit coordinate realizations
of hexagon-free symmetric configurations, thus bridging the gap between abstract combinatorial
encodings and concrete geometric embeddings.

3.1 Enforcing Structure
The structural component of this thesis begins by introducing an efficient SAT encoding designed
to represent layered convex hulls within hexagon-free planar point sets on sixteen points. Us-
ing this encoding, the full space of candidate point placements consistent with each convex hull
formation was exhaustively explored. In addition to identifying valid hexagon-free configura-
tions, the internal structure of each candidate was further examined by counting the number of
convex 4- and 5-gons present. This analysis provides insight into the combinatorial geometry
of these configurations and highlights their inherent tendency to suppress higher-order convex
substructures.

3.1.1 General Structure

Simply forbidding all convex 6-gons over a set of 16 points produces solutions that appear nearly
random and are difficult to interpret or analyze. For reference, consider the solution currently dis-
played on Wikipedia for the Erdős–Szekeres conjecture [7], shown in Figure 3.1. By deliberately
introducing structural constraints into the encoding, the search space is not only substantially re-
duced but also restricted to a well-defined and geometrically meaningful subset of configurations.
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To guide this structured exploration, clauses were added to enforce specific layered convex hull
formations with uniform sizes, such as (3, 3, 3, 3, 3, 1), (4, 4, 4, 4), and (5, 5, 5, 1). These forma-
tions naturally introduce both radial and rotational symmetry into the solution space. Observe the
parallels between the rotationally symmetric figures and the layered convex hull figures shown
in Figure 3.2. Additional clauses partition the interior of each convex layer into sectors, also
shown in Figure 3.2, with each sector required to contain an equal number of interior points.
To support exhaustive analysis, the encoding systematically accounts for all possibilities of how
points can be distributed between layers and how they can be placed within each shell relative
to the line formed by the shell’s endpoints, illustrated in Figure 3.3. Together, these structural
constraints expose the deeper geometric restrictions imposed by the forbidding of convex 6-gons
and provide a more focused foundation for analyzing the structural properties of the resulting
configurations.

Figure 3.1: A set of 16 points in general position that avoids the formation of any convex 6-gons.

3.1.2 Analysis

Using each of the encodings, the complete space of candidate point placements consistent with
each convex hull structure was exhaustively explored. This process involved evaluating all pos-
sible combinations of point assignments across the designated convex layers, along with every
feasible orientation of points within each hull: specifically, determining whether each point lies
above or below the central axis of the convex hull.
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Figure 3.2: A visual comparison of point placements exhibiting rotational symmetry and their
corresponding layered structures. The first row shows realizations of 16-point configurations
with 3-fold, 4-fold, and 5-fold rotational symmetry, respectively. The second row reinterprets
these configurations as layered convex hulls, each with layers of equal size corresponding to the
symmetry order. The third row illustrates a sector-based decomposition of each configuration,
where the interior of each layered hull is evenly partitioned into sectors to reflect the imposed
symmetry.
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Figure 3.3: This figure illustrates the first layer configurations for the 3-fold and 4-fold symmetry
cases. In each case, the endpoints (Points 1 and 16) remain fixed due to the sorted ordering of
points, while the interior points are allowed to vary. These interior points can assume any of the
remaining values and may shift in position relative to the central axis, enabling an exhaustive
exploration of structurally distinct configurations.

For each candidate configuration, a distinct CNF encoding was generated, resulting in poten-
tially millions of unique formulas. These encodings were then fed to the SAT solver CaDiCaL.
Due to the efficiency of the encoding, CaDiCaL was able to quickly determine the satisfiability
of each formula. The total number of satisfiable encodings was recorded, along with the total
number of candidate configurations, to calculate a satisfiability ratio for each hull structure.

In addition to satisfiability testing, each satisfying assignment was subjected to a secondary
analysis to investigate the presence of smaller convex polygon formations. This analysis was
carried out using a specialized tool developed by Marijn Heule, designed specifically for CNF
formulas of this kind. For each satisfying assignment, the tool reported the number of convex 4-
and 5-gons present. These values were aggregated across all realizations, and the corresponding
minimum, maximum, and average counts were calculated.

3.1.3 Base CNF

The base CNF encoding used for this phase of the investigation was the O(n4) formulation
developed by Heule and Scheucher, as described in detail in Chapter 2. This encoding was
selected for its computational efficiency, which was critical given the exhaustive nature of the
structural analysis, which required potentially millions of SAT solver instances to be executed
sequentially. Since the focus at this stage was not on producing explicit planar realizations,
the additional ordering constraints imposed by the encoding were not a limitation. In contrast,
these constraints preserved satisfiability while substantially reducing the size of the search space,
enabling more tractable large-scale analysis.
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3.1.4 Layered 3-Gons
The first layered convex hull formation considered was (3, 3, 3, 3, 3, 1), comprising of five nested
convex layers of three points each, arranged around a single central point. To enforce additional
structure, the interior of each convex hull was partitioned into three sectors, with each sector
defined by two adjacent points on the hull and the central point. The distribution of interior
points within these sectors followed a uniform pattern: four points per sector in the outermost
layer, three in the second layer, two in the third, and one in the fourth. To comprehensively
explore the space of candidate point placements, all combinations of point assignments to each
convex layer were examined. Additionally, for each convex hull, the orientation of its middle
point, whether positioned above or below the line formed by the hull’s endpoints, was allowed
to vary.

Convexity

To enforce convexity within each of the three-point convex hull layers, orientation constraints
were encoded based on the relative position of the middle point. Let the convex hull be composed
of three ordered points (a, b, c) with a < b < c. If the middle point b is intended to lie above
the line formed by a and c, convexity is enforced by adding the following clause, illustrated in
Figure 3.4:

Figure 3.4: An illustration of how convexity in the first case is enforced by adding clause ¬oa,b,c.

¬oa,b,c (3.1)

Conversely, if b is intended to lie below the line ac, the opposite orientation clause is added:

oa,b,c (3.2)

Containment

To enforce the containment of the remaining points within each sequential convex hull layer,
orientation clauses are added for each point p that is meant to lie inside a triangular hull formed
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by points (a, b, c). Since point indices are assumed to be ordered from left to right, a < p < c is
assumed as interior placement is otherwise not possible. Within this range, two distinct orderings
must be considered: a < p < b < c and a < b < p < c. For each order, two geometric cases are
handled depending on whether the middle point b lies above or below the line formed by a and c.

If b lies above line ac and p < b the following clauses are added to force p to lie below line
ab and above line ac, illustrated in Figure 3.5:

Figure 3.5: An illustration of how containment in the first case is enforced by adding oa,p,b ∧
¬oa,p,c.

oa,p,b ∧ ¬oa,p,c (3.3)

If b lies above line ac and b < p the following clauses are added to force p to lie below line
bc and above line ac:

ob,p,c ∧ ¬oa,p,c (3.4)

If b lies below line ac and p < b the following clauses are added to force p to lie below line
ac and above line ab:

oa,p,c ∧ ¬oa,p,b (3.5)

If b lies below line ac and b < p the following clauses are added to force p to lie below line
ac and above line bc:

oa,p,c ∧ ¬ob,p,c (3.6)

Sectors

To ensure that within the same convex hull layer, every sector, defined by two adjacent points on
the convex hull and a central point, contains an equal number of interior points, a careful case
analysis was required. Consider a convex hull formed by three ordered points (a, b, c) enclosing
a central point x. This configuration partitions the interior into three sectors, defined by the
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triangles (a, b, x), (a, c, x), and (b, c, x), which we refer to as sectors 1, 2, and 3, respectively. To
ensure that each sector contains exactly m interior points, auxiliary variables were introduced.
For example, the variable s21p indicates whether a point p lies within sector 1 of the second convex
hull layer. In this notation, the superscript denotes the convex hull layer and the subscript denotes
the sector index.

Focusing on sector 1 of the first convex layer, defined by the triangle (a, b, x), s11p must
determine whether a point p lies within this triangle. It can be assumed that a is the leftmost of
the three convex hull points, resulting in a < b, a < x, and a < p in the order from left to right.
The relative orders among p, x, and b yield six distinct permutations:

1. a < p < x < b
2. a < p < b < x
3. a < x < p < b
4. a < x < b < p
5. a < b < p < x
6. a < b < x < p

Among these, cases 4 and 6 can be eliminated immediately, as they place point p to the right
of both b and x, making it impossible for p to lie within the triangle (a, b, x). For the remaining
valid orderings, the orientations of the point p with respect to the boundary lines are used to
determine whether p lies within the sector. Assume first that the point b lies below the line ac. In
case 1, the inclusion of p in sector 1 can be characterized by the following logic:

s11p ⇐⇒ (oa,p,x ∧ ¬op,x,b) (3.7)

If instead b lies above the line ac, the orientation conditions are reversed, as illustrated in
Figure 3.6:

Figure 3.6: An illustration of how the auxiliary variable for point p lying in sector 1 can be
enforced with respect to the lines ax and bx.

s11p ⇐⇒ (¬oa,p,x ∧ op,x,b) (3.8)
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The expressions for the other valid cases follow similar logic and are not explicitly shown.
To ensure that no more than m points are assigned to any sector, a cardinality constraint is
encoded using the auxiliary variables. Specifically, for each subset of m + 1 candidate points
{p1, p2, . . . , pm+1}, the following clause is added to prevent all of them from being assigned to
the same sector: (

¬s11p1 ∨ ¬s11p2 ∨ · · · ∨ ¬s11pm+1

)
(3.9)

This enforces that at least one of the m+1 points does not lie in sector 1. The same approach
is applied to all sectors in every convex hull layer. For brevity, the full enumeration of all the
case distinctions and clauses is omitted.

Results and Discussion

In total, 14,080 candidate point placements were consistent with this formation. Of these, 4,984
were satisfiable, resulting in a satisfiability ratio of 35%.

Figure 3.7: The number of convex 4-gons plotted on the x axis vs the number of convex 5-gons
plotted on the y axis in the (3, 3, 3, 3, 3, 1) case. Each single data point represents one of the
4,984 satisfiable instances.

Among the three layered convex hull formations examined, the layered 3-gon configuration
yielded the fewest total candidate point placements, with 14,080 possibilities. This reduction in
search space is expected, as each convex hull in this formation includes only one central point
whose orientation must be explicitly constrained, resulting in fewer combinations to evaluate.
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Figure 3.8: The number of convex 4-gons (blue) and convex 5-gons (orange) for each satisfying
assignment in the (3, 3, 3, 3, 3, 1) case. The x axis sorts the instances from left to right. The
leftmost possible instance in this case is shell 1 = [1,2,16], shell 2 = [3,4,15], shell 3 = [5,6,14],
shell 4 = [7,8,13], shell 5 = [9,10,12], and center point = 11. The rightmost possible instance in
this case is shell shell 1 = [1,15,16], shell 2 = [2,13,14], shell 3 = [3,11,12], shell 4 = [4,9,10],
shell 5 = [5,7,8], and center point = 6. The y axis represents the counts of each of the different
amounts of the specified convex substructures in each satisfiable instance.

Of these 14,080 candidates, 4,984 were found to be satisfiable by the SAT solver, corre-
sponding to a satisfiability ratio of approximately 35%. This relatively high ratio suggests that
a significant proportion of the candidate placements are geometrically valid under the imposed
symmetry and convexity constraints. One possible explanation for this observation is that 3-
gon layers, having the smallest size among the three formations, are less likely to form convex
6-gons, which aligns with the goal of identifying 6-gon-free configurations.

When examining the occurrence of convex 4-gons and 5-gons, Figure 3.7 indicates that there
is no clear trend or correlation between their quantities—points appear relatively evenly scat-
tered throughout the space. In contrast, Figure 3.8 reveals a consistent pattern: the number of
convex 4-gons and 5-gons remains relatively stable across the satisfiable instances, averaging
approximately 750 4-gons and 300 5-gons. This suggests a structural regularity within the real-
izable configurations that may be a byproduct of the underlying rotational symmetry and layered
construction.

3.1.5 Layered 4-Gons
The second layered convex hull formation considered was (4, 4, 4, 4), comprising of four nested
convex layers of four points each. To enforce additional structure, the interior of each convex
hull was partitioned into four sectors, with each sector defined by the intersecting diagonal lines
of opposite points on the hull. The distribution of interior points within these sectors followed a
uniform pattern: three points per sector in the outermost layer, two in the second layer, and one in
the third. To comprehensively explore the space of candidate point placements, all combinations

19



of point assignments to each convex layer were examined. Additionally, for each convex hull,
the orientations of its two middle points, whether positioned above or below the line formed by
the hull’s endpoints, were allowed to vary.

Convexity

To enforce convexity for each of the four-point convex hull layers, orientation constraints were
encoded based on the relative position of the two middle points. Let the convex hull be composed
of four ordered points (a, b, c, d) with a < b < c < d. If the middle points b and c are intended
to lie above the line formed by a and d, convexity is enforced by adding the following clauses:

¬oa,b,c ∧ ¬ob,c,d (3.10)

If b is intended to lie above the line ad and c is intended to lie below the line ad, convexity is
enforced by adding the following clauses and is depicted in Figure 3.9:

Figure 3.9: An illustration of how convexity is enforced in the case where b lies above the line
ad and c lies below it using the clauses ¬oa,b,d ∧ oa,c,d.

¬oa,b,d ∧ oa,c,d (3.11)

The remaining two cases are just mirror images of the first two and can be encoded using the
opposite orientation triples.

Containment

To enforce the containment of the remaining points within each sequential convex hull layer,
orientation clauses are added for each point p that is meant to lie inside the convex hull formed by
the points (a, b, c, d). Since point indices are assumed to be ordered from left to right, a < p < d
is assumed as interior placement is otherwise not possible. Within this range, three distinct
orderings must be considered: p < b < c, b < p < c, and b < c < p. For each ordering, each
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geometric case is handled depending on whether the middle points b and c lie above or below the
line formed by a and d.

The first three convexity cases are characterized by the intermediate points b and c lying
above the line formed by the points a and d. In these configurations, to ensure that a point p
lies within the convex quadrilateral, it must also lie above the line ad. This condition is encoded
using the following clause:

¬oa,p,d (3.12)

The specific segment for which point p must lie below to remain within the bounds of the
convex hull depends on its relative ordering with respect to points b and c:

• If p < b, then p must lie below the line segment ab. This is enforced by the clause:

oa,p,b (3.13)

• If b < p < c, then p must lie below the line segment bc. This is enforced by the clause:

ob,p,c (3.14)

• If p > c, then p must lie below the line segment cd. This is enforced by the clause:

oc,p,d (3.15)

The second group of three convexity cases is characterized by the intermediate point b lying
above the line formed by the points a and d, and the point c lying below it.

• If p < b, then p must lie below the line segment ab and above the line segment ac. This is
enforced with the following clauses and depicted in Figure 3.10:

Figure 3.10: An illustration of how containment is enforced in the case where b lies above the
line ad, c lies below it, and p < b using the clauses oa,p,b ∧ ¬oa,p,c.

oa,p,b ∧ ¬oa,p,c (3.16)

• If b < p < c, then p must lie below the line segment bd and above the line segment ac.
This is enforced with the clauses:

ob,p,d ∧ ¬oa,p,c (3.17)
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• If c < p, then p must lie below the line segment bd and above the line segment cd. This is
enforced with the clauses:

ob,p,d ∧ ¬oc,p,d (3.18)

The remaining two sets of cases are just mirror images of the first two sets and can be encoded
using the opposite orientation triples.

Sectors

To ensure that within the same convex hull layer, each sector contains an equal number of interior
points, a careful case analysis was required. Each sector is defined by its orientation with respect
to the diagonal lines formed by the first and third vertices versus the second and fourth vertices
of the convex hull. The method used to enforce an equal distribution of points across sectors
mirrors the approach taken in the layered 3-gon construction. As before, this requires a detailed
case split based on the relative ordering and orientation of the underlying points.

Consider a convex hull formed by four ordered points (a, b, c, d). The interior of this hull is
partitioned into four sectors, each determined by its position relative to the diagonals defined by
the lines ac and bd. As in the 3-gon case, a case split is needed based on whether the central
points b and c lie above or below the baseline ad. Furthermore, the relative ordering of the
interior point p with respect to b and c must be considered. Auxiliary variables of the form s11p
are once again utilized to represent whether the point p is contained within sector 1 of the first
convex hull layer.

Consider the case where points b and c both lie above the line ad. In this scenario, without
loss of generality, we define sector 1 as the region above the line ac and below the line bd. Two
subcases must be considered: the first is when a < p < b, and the second is when b < p < c.
Note that the configurations p < a and b < c < p are excluded, since a is assumed to be the
leftmost point of the convex hull, and a point p to the right of both b and c cannot lie within the
defined sector 1.

In the first case, where p < b, the following logic is added to equate s11p with p lying above
the line ac and below the line bd, illustrated in Figure 3.11:

Figure 3.11: An illustration of how the auxiliary variable for point p lying in sector 1 can be
enforced with respect to the lines ac and bd.

s11p ⇐⇒ (¬oa,p,c ∧ ¬op,b,d) (3.19)

22



In the second case, where b < p < c, the definition becomes:

s11p ⇐⇒ (¬oa,p,c ∧ ob,p,d) (3.20)

For brevity, not all possible case splits are shown explicitly, but each follows the same struc-
ture to determine the sector membership across all convex hull layers. Once all auxiliary vari-
ables have been defined, the same cardinality constraint used for the 3-gon case is applied to
ensure that no more than m points are assigned to any given sector.

Results and Discussion

In total, 561,600 candidate point placements were consistent with this formation. Of these,
112,142 were satisfiable, resulting in a satisfiability ratio of 20%.

Figure 3.12: The number of convex 4-gons plotted on the x axis vs the number of convex 5-gons
plotted on the y axis in the (4, 4, 4, 4) case. Each single data point represents one of the 112,142
satisfiable instances.

The layered 4-gon formation yielded the second-highest number of candidate point place-
ments, totaling 561,600. This increase is expected, as each convex layer now consists of four
points, resulting in two internal points per layer that must be considered during orientation cas-
ing. Despite the larger search space, 112,142 of these candidate configurations were found to be
satisfiable, producing a satisfiability ratio of approximately 20%.

While this ratio represents a decline from the 35% observed in the 3-gon case, it nonetheless
constitutes a significant fraction of the total candidates. This reduction in realizability aligns
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Figure 3.13: The number of convex 4-gons (blue) and convex 5-gons (orange) for each satisfying
assignment in the (4, 4, 4, 4) case. The x axis sorts the instances from left to right. The leftmost
possible instance in this case is shell 1 = [1,2,3,16], shell 2 = [4,5,6,15], shell 3 = [7,8,9,14], and
shell 4 = [10,11,12,13]. The rightmost possible instance in this case is shell 1 = [1,14,15,16],
shell 2 = [2,11,12,13], shell 3 = [3,8,9,10], and shell 4 = [4,5,6,7]. The y axis represents the
counts of each of the different amounts of the specified convex substructures in each satisfiable
instance.

with the increased likelihood of encountering convex 6-gons: layered convex 4-gons are only
two points away from forming a convex 6-gon, making the avoidance of such configurations
more difficult under the imposed constraints.

The relationship between convex 4-gons and convex 5-gons becomes more evident in this
formation. Figure 3.12 reveals a roughly linear distribution, beginning with a broad base and
narrowing as the counts of both types of polygons increase. This pattern indicates that config-
urations with more convex 5-gons tend to also contain proportionally more convex 4-gons—a
natural consequence of the fact that every convex 5-gon contains multiple convex 4-gon subsets.

As in the 3-gon case, Figure 3.13 displays a consistent and well-formed structure, with so-
lutions tending to contain around 850 convex 4-gons and 400 convex 5-gons. These counts are
notably higher than those found in the 3-gon configuration, which is consistent with the lower
satisfiability ratio: fewer configurations can be satisfied, but those that are tend to be denser in
convex substructures.

3.1.6 Layered 5-Gons

The final layered convex hull formation considered was (5, 5, 5, 1), comprising of three nested
convex layers of five points each, arranged around a single central point. To enforce additional
structure, the interior of each convex hull was partitioned into five sectors, with each sector
defined by two adjacent points on the hull and the central point. The distribution of interior
points within these sectors followed a uniform pattern: two points per sector in the outermost
layer, and one point per sector in the second layer. To comprehensively explore the space of

24



candidate point placements, all combinations of point assignments to each convex layer were
examined. Additionally, for each convex hull, the orientation of its middle three points, whether
positioned above or below the line formed by the hull’s endpoints, was allowed to vary.

Convexity

To enforce convexity for each of the five-point convex hull layers, orientation constraints were
encoded based on the relative position of the three middle points. Let the convex hull be com-
posed of five ordered points (a, b, c, d, e) with a < b < c < d < e. If the middle points b, c,
and d are intended to lie above the line formed by a and e, convexity is enforced by adding the
following clauses:

¬oa,b,c ∧ ¬ob,c,d ∧ ¬oc,d,e (3.21)

If b and c are intended to lie above the line ae and d is intended to lie below the line ae,
convexity is enforced by adding the following clauses:

¬oa,b,c ∧ ¬ob,c,e ∧ oa,d,e (3.22)

If b and d are intended to lie above the line ae and c is intended to lie below the line ae,
convexity is enforced by adding the following clauses and this is illustrated in Figure 3.14:

Figure 3.14: An illustration of how convexity is enforced in the case where points b and d lie
above the line ae and point c lies below it using the clauses ¬oa,b,d ∧ ¬ob,d,e ∧ oa,c,e.

¬oa,b,d ∧ ¬ob,d,e ∧ oa,c,e (3.23)

If c and d are intended to lie above the line ae and b is intended to lie below the line ae,
convexity is enforced by adding the following clauses:

¬oa,c,d ∧ ¬oc,d,e ∧ oa,b,e (3.24)
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The remaining four cases are just mirror images of the first four and can be encoded using
the opposite orientation triples.

Containment

To enforce the containment of the remaining points within each sequential convex hull layer,
orientation clauses are added for each point p that is meant to lie inside the convex hull formed
by the points (a, b, c, d, e). Since point indices are assumed to be ordered from left to right,
a < p < e is assumed as interior placement is otherwise not possible. Within this range, four
distinct orderings must be considered: p < b < c < d, b < p < c < d, b < c < p < d, and
b < c < d < p. For each ordering, each geometric case is handled depending on whether the
middle points b, c, and d lie above or below the line formed by a and e.

Since this process closely parallels the methods used for the 3- and 4-gon constructions, only
the first representative case is detailed here. In this case, the points b, c, and d all lie above the
line ae, and the point p satisfies p < b. To restrict p to lie within the convex hull, it must be
bounded above and below by the relevant line segments that define its region within the hull.
Specifically, in this configuration, the point p must be below the line ab and above the line ae.
This constraint is encoded as and is illustrated in Figure 3.15:

Figure 3.15: An illustration of how containment is enforced when points b, c, and d lie above the
line ae and p < b using the clauses oa,p,b ∧ ¬oa,p,e.

oa,p,b ∧ ¬oa,p,e (3.25)

Sectors

As in 3- and 4-gon constructions, ensuring that each sector within a convex hull layer contains an
equal number of interior points requires a careful case analysis. Consider a convex hull formed
by five ordered points (a, b, c, d, e) that enclose a central point x. In the case where points b, c,
and d all lie above the line ae, this configuration partitions the interior into five sectors, defined
by the triangles (a, b, x), (b, c, x), (c, d, x), (d, e, x), and (a, e, x), which we refer to as sectors 1
through 5, respectively.
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To enforce the constraint that each sector contains exactly m interior points, auxiliary vari-
ables of the form s11p are introduced. The method for assigning these variables follows the same
logic established in the 3- and 4-gon constructions.

Within the context described, four subcases arise depending on the relative position of the
point p with respect to b, c and d. The first subcase occurs when p < b. In this situation, to
indicate that p is within sector 1, the following equivalence is used to encode p lying above the
line ax and below the line bx and is illustrated in Figure 3.16:

Figure 3.16: An illustration of how the auxiliary variable for point p lying in sector 1 is enforced
with respect to lines ax and bx.

s11p ⇐⇒ (¬oa,p,x ∧ ¬op,b,x) (3.26)

For brevity, and because this procedure mirrors the approach already described in the 3-gon
and 4-gon cases, the remaining subcases are not shown. Once all auxiliary variables have been
defined, the same cardinality constraint used for the 3- and 4-gon cases is applied to ensure that
no more than m points are assigned to any given sector.

Results and Discussion

In total, 1,677,312 candidate point placements were consistent with this formation. Of these,
9,806 were satisfiable, resulting in a satisfiability ratio of 0.58%.

The layered 5-gon formation produced the highest number of candidate point placements by
a considerable margin, totaling 1,677,312 configurations. This result is expected, as each convex
layer now contains five points, yielding three interior points per layer whose orientations must be
individually cased. The increased degrees of freedom naturally lead to a combinatorial explosion
in the number of possible placements.

However, this richness in candidate configurations is met with a dramatic drop in realizability.
Only 9,806 of these candidates were found to be satisfiable by the SAT solver, resulting in a
satisfiability ratio of merely 0.58%. This stark decrease from the 35% and 20% observed in the
3-gon and 4-gon formations, respectively, is theoretically sound: when convex layers of size 5
are enforced, the addition of even a single point can complete a convex 6-gon. Avoiding such
completions under rigid rotational symmetry and layering constraints significantly restricts the
solution space.
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Figure 3.17: The number of convex 4-gons plotted on the x axis vs the number of convex 5-gons
plotted on the y axis in the (5, 5, 5, 1) case. Each single data point represents one of the 9,806
satisfiable instances.

Figure 3.18: The number of convex 4-gons (blue) and convex 5-gons (orange) for each satisfying
assignment in the (5, 5, 5, 1) case. The x axis sorts the instances from left to right. The leftmost
possible instance in this case is shell 1 = [1,2,3,4,16], shell 2 = [5,6,7,8,15], shell 3 = [6,7,8,9,14],
and center point = 13. The rightmost possible instance in this case is shell 1 = [1,13,14,15,16],
shell 2 = [2,9,10,11,12], shell 3 = [3,5,6,7,8], and center point = 4. The y axis represents the
counts of each of the different amounts of the specified convex substructures in each satisfiable
instance.
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The structure of the satisfiable instances reveals further insight. In Figure 3.17, plotting the
number of convex 4-gons against the number of convex 5-gons, the relationship becomes tightly
linear. This suggests that realizable configurations exhibit a very specific structural rigidity—one
in which the presence of convex 5-gons strongly dictates the count of convex 4-gons, likely due
to the hierarchical nature of their containment.

In contrast, Figure 3.18 deviates from the uniformity observed in the previous formations.
Instead of the consistent shapes seen for the 3-gon and 4-gon cases, a wave-like or rippled pattern
emerges. This unexpected structure invites further exploration and could be indicative of subtle
underlying constraints or periodic behaviors within the realizable 5-gon configurations. The
average polygon counts are also the highest of the three, with approximately 1,000 convex 4-
gons and over 500 convex 5-gons per solution. These elevated figures are consistent with the
greater number of points per hull and further underscore the dense combinatorial environment in
which these configurations reside.

This irregular yet pronounced structure in the results opens new directions for future work,
particularly in understanding the nature of these ripples and what they reveal about the geometry
and symmetry of near-critical configurations.

3.2 Enforcing Symmetry
The enforcing symmetry component of this thesis begins by introducing a more flexible, albeit
computationally less efficient, SAT encoding designed to capture rotational symmetry within
hexagon-free planar point sets on sixteen points. This encoding allows for the precise specifi-
cation of rotationally symmetric configurations. The resulting CNF formulas were then evalu-
ated using a SAT solver, and satisfiable instances were subsequently passed to a realization tool
specifically designed for orientation-triple-based encodings. This tool generated explicit coor-
dinate placements of planar point sets that satisfied both the imposed symmetry and geometric
constraints.

3.2.1 General Structure
This section extends the methodology introduced in the structural component of the thesis. As
in the previous phase, specific layered convex hull configurations with uniform sizes, such as
(3, 3, 3, 3, 3, 1), (4, 4, 4, 4), and (5, 5, 5, 1) were selected as target structures. In addition to the
layered convex hull clauses, the previously defined sector-based constraints were incorporated to
ensure that the points are evenly distributed radially. Building upon the earlier structure clauses,
this stage also introduces new constraints that explicitly enforce rotational symmetry of orders
3, 4, and 5. Together, these structural and symmetry constraints serve a dual purpose: they
narrow the search space, thereby greatly enhancing the efficiency of the realization tool, and they
promote the emergence of highly regular, symmetric geometric configurations.

In contrast to the exhaustive search strategy employed earlier, this phase adopts a more inten-
tional construction. Each point is carefully placed in the plane to satisfy the required rotational
mappings. The resulting encodings, shaped by the interplay between structural and symmetry-
enforcing clauses, yield solutions that visually spiral outward from a central origin in evenly
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spaced, symmetric branches. This striking pinwheel-shaped pattern is the conceptual and visual
basis for the title of the thesis.

3.2.2 Base CNF

The base CNF encoding used to restrict the formation of convex 6-gons in this section adopts
a different approach from previous constructions by eliminating the requirement that points be
sorted from left to right. This modification provides greater flexibility, enabling explicit place-
ment of points into specific convex layers without enforcing global ordering. To ensure that
each satisfying assignment corresponds to a valid geometric realization, the encoding relies on
the Knuth CC axioms introduced in Chapter 1. These axioms are inherently order-independent,
making them well-suited for this generalized point placement strategy.

To prevent the formation of convex 6-gons, a new approach is employed based on the fol-
lowing geometric insight: a set of six points forms a convex 6-gon if and only if every 4-point
subset of the six forms a convex 4-gon. In other words, the overall 6-gon is convex precisely
when all of its 4-point subsets are convex; conversely, the presence of a single concave 4-point
subset implies that the 6-gon itself must be concave. This observation follows from the fact that
a concave 4-gon necessarily contains an interior point that does not lie on its convex hull. If such
a point exists, it cannot lie on the convex hull of the full 6-point configuration either, thereby
ruling out the possibility of a convex 6-gon. Figure 3.19 illustrates this property, and it will be
used to encode the avoidance of 6 gons by ensuring that, for every 6-point subset, at least one of
its 4-point subsets is concave.

Figure 3.19: An illustration of a set of six points where the four element subset (3, 4, 5, 6) is
concave, thus preventing the point 6 from lying on the overall convex hull.

To encode this convexity logic using orientation triples, auxiliary variables of the form ca,b,c,d
are introduced. Each such variable represents whether the four points a, b, c, d form a convex
4-gon, evaluating to true if the configuration is convex, and false otherwise. These variables are
instantiated by analyzing the orientation of each 3-point subset of the 4-point set.
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It is a well-known fact that a 4-point set in general position forms a convex quadrilateral if
and only if an even number of its orientation triples are positively oriented. Although this equiv-
alence can be verified through exhaustive case analysis (there are sixteen possible orientation
assignments), it is not proven here explicitly. This insight allows us to define the truth value of
ca,b,c,d using logical equivalences that reflect the parity of the positive orientations.

For instance, in one case where the number of positively oriented triples is even, the convexity
variable is defined as follows:

(oa,b,c ∧ ¬oa,b,d ∧ oa,c,d ∧ ¬ob,c,d) ⇐⇒ ca,b,c,d (3.27)

Conversely, in a case where the number of positive orientations is odd, the variable reflects a
non-convex configuration:

(oa,b,c ∧ oa,b,d ∧ ¬oa,c,d ∧ ob,c,d) ⇐⇒ ¬ca,b,c,d (3.28)

Clauses like these are constructed to cover all possible parity patterns, ensuring that each
instance of ca,b,c,d correctly encodes the convexity status of its corresponding 4-point subset.

Once each convexity auxiliary variable has been initialized, a simple cardinality constraint is
used to enforce that, for every subset of six points (a, b, c, d, e, f), at least one subset of size four
in concave:

(¬ca,b,c,d ∨ ¬ca,b,d,e ∨ ... ∨ ¬cc,d,e,f ) (3.29)

3.2.3 Realization
To obtain explicit realizations of rotationally symmetric point sets that are free of convex 6-
gons, the satisfiability of the corresponding logical encodings under each of the three forms of
rotational symmetry was evaluated using a SAT solver.

To extract concrete geometric realizations from these abstract encodings, a realization tool
developed by Bernardo Subercaseaux [5] was employed. This solver accepts a set of orientation
triples and performs local search to iteratively adjust point placements in order to eliminate con-
flicts and achieve a valid geometric embedding. In collaboration with the author of the tool, the
solver was extended to support partial fixing of point positions during execution. This enhance-
ment enabled a guided search process in which layers of points could be anchored incrementally.
By fixing subsets of points according to previously successful placements, the solver could focus
on resolving the remaining conflicts while preserving the intended rotational symmetry. This
iterative strategy proved essential for discovering structured and symmetric configurations that
aligned with the desired combinatorial constraints.

3.2.4 3-Fold Symmetry
Similarly to the analysis phase, the first class of structures considered in this section consists of
layered convex hull formations of size (3, 3, 3, 3, 3, 1), comprising five nested convex layers of
three points each, arranged symmetrically around a single central point. However, unlike the
previous phase, the points constituting each layer are now explicitly defined: The first convex
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layer consists of points 1, 2, and 3; the second layer consists of points 4, 5, and 6; and so on,
with the central point explicitly assigned as point 16.

Under this encoding, the sector constraints are no longer required to enforce an equal dis-
tribution of points. Instead, each sector is associated with a specific and predetermined set of
points. This simplification significantly reduces the complexity of the construction, as the need
for extensive case analysis is eliminated: the sector boundaries and the points they must contain
are fixed in advance.

To extend this encoding beyond the structured hull configurations used in the analysis por-
tion, additional clauses are introduced to explicitly enforce 3-fold rotational symmetry on the
point placement. Since the identities of all points are now fixed, the mapping of each point under
a rotation of 120◦ is also explicitly known. This enables the orientation triples to be equated
across each rotational instance, thereby ensuring that the underlying geometric structure remains
consistently oriented under every rotation. These symmetry-preserving constraints play a cru-
cial role in maintaining uniformity across the realization and are central to the pinwheel-like
configurations studied in this section.

Convexity

To enforce convexity within each of the three-point convex hull layers, a single clause is intro-
duced per layer. In order to maintain consistent rotational symmetry across layers, we assume,
without loss of generality, that the points in each layer appear in counterclockwise order. Under
this assumption, convexity can be encoded by asserting that the corresponding orientation triple
for each layer is positive. Specifically, the following conjunction of orientation literals is added:

o1,2,3 ∧ o4,5,6 ∧ o7,8,9 ∧ o10,11,12 ∧ o13,14,15 (3.30)

Figure 3.20: An illustration of the first convex layer for the 3-fold symmetry case, and the corre-
sponding clause o1,2,3 causing it to be counterclockwise.

The illustration for the first layer is shown in Figure 3.20. These clauses ensure that each
trio of points forms a counterclockwise triangle, thereby preserving both the convexity and the
layered symmetry necessary for the intended geometric hierarchy.
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Containment

To enforce the containment of points within each successive convex hull layer, orientation clauses
are added for every point p that is intended to lie strictly inside the triangle formed by a given
convex hull (a, b, c). For the first convex layer, this involves ensuring that all points labeled 4
through 16 lie within the triangle defined by points (1, 2, 3).

This is achieved by requiring that each such point p lies on the internal side of all three
edges of the triangle. Since the points (1, 2, 3) are assumed to be ordered counterclockwise,
the containment corresponds to the requirement that p lies to the left of the directed edges 12,
23, and 31. This condition is encoded by asserting that the corresponding orientation triples are
positive. This is illustrated in Figure 3.21. Specifically, for all p ∈ {4, 5, . . . , 16}, the following
conjunction is added:

Figure 3.21: An illustration of the clauses necessary to enforce that point p is contained within
the first layer convex hull.

o1,2,p ∧ o2,3,p ∧ o3,1,p (3.31)

The same logic is applied recursively to ensure that each subsequent convex layer contains
all remaining points that have not yet been assigned to an outer hull. In each case, the orientation
conditions are tailored to the specific triangle that defines that layer.

Sectors

As in the analysis phase, the convex hull layers are subdivided into sectors to facilitate an even
radial distribution of points around the central point. In this section, where each convex hull
consists of three points, the interior region of each convex layer is partitioned into three distinct
sectors. Each sector is defined by a triangle formed by two adjacent points on the convex hull
together with the central point. For the first layer, this results in three sectors defined by the tri-
angles (1, 2, 16), (2, 3, 16), and (3, 1, 16), which are treated as Sectors 1 through 3, respectively.
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To create a consistent and well-defined mapping between the convex hull vertices and their
corresponding sectors, we enforce the following assignment: The first point of each hull is asso-
ciated with Sector 1, the second point with Sector 2, and the third point with Sector 3. For the
hull (1, 2, 3), this yields the following desired sector assignments for the inner points:

Sector 1: 4, 7, 10, 13
Sector 2: 5, 8, 11, 14
Sector 3: 6, 9, 12, 15

To enforce that a point p lies within its designated sector, orientation constraints are imposed
relative to the triangle defining that sector. Specifically, a point is constrained to lie between the
two directed boundary edges of the sector triangle. For Sector 1, defined by the triangle (1, 2, 16),
a point must lie below the line formed by points 1 and 16 and above the line formed by points 2
and 16, which is encoded as shown below and illustrated in Figure 3.22

¬o1,16,p ∧ o2,16,p (3.32)

Figure 3.22: An illustration of the clauses necessary to enforce that point p is contained in the
sector below the line formed by points 1 and 16 and above the line formed by points 2 and 16.

For Sector 2, defined by (2, 3, 16), the encoding becomes:

¬o2,16,p ∧ o3,16,p (3.33)

And for Sector 3, defined by (3, 1, 16), the encoding becomes:

¬o3,16,p ∧ o1,16,p (3.34)

These constraints are applied in the same manner across all convex hull layers, ensuring that
each point lies within its designated sector. This consistent enforcement preserves the intended
rotational symmetry and radial organization throughout the layered structure of the hulls.

Symmetry

To enforce 3-fold rotational symmetry over the orientation triples, the encoding introduces clauses
that equate each orientation triple with its image under a 120◦ rotation. Since the structure and
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placement of the points are fixed, this rotational mapping is deterministic and can be computed
explicitly.

Each orientation triple oa,b,c is mapped to a corresponding triple oa′,b′,c′ , which results from
applying a 120◦ counterclockwise rotation to each of the points involved. The mapping from a
point p to its rotated image p′ is defined based on the radial sector structure established earlier
and is illustrated in Figure 3.23:

Figure 3.23: An illustration of the mapping of points in the 3-fold symmetry case. 1 7→ 2, 2 7→ 3,
3 7→ 1, etc.

• If p = 16, the central point remains fixed under rotation, so p′ = 16.
• Otherwise, each point in a sector is mapped to the next point in the same convex hull layer

under 3-fold rotation. This mapping follows a cyclic increment, so each third point will
wrap around the first point in the same layer (e.g. 1 7→ 2, 2 7→ 3, 3 7→ 1, etc.).

For each orientation triple, clauses are added to enforce equivalence between the original
triple and its rotated counterpart. Specifically, given variables oa,b,c and oa′,b′,c′ , the following
biimplication is encoded:

oa,b,c ⇐⇒ oa′,b′,c′ (3.35)

This logic ensures that the relative orientation of any three points remains consistent across
all 120◦ rotations. When applied to all orientation triples over the point set, these constraints
collectively guarantee that the entire configuration exhibits global 3-fold rotational symmetry.

Results and Discussion

Unfortunately, no realizations exhibiting 3-fold rotational symmetry were found among the 16-
point configurations explored. Even under a relaxed encoding—where only the sector variables
for the first convex layer were initialized—the SAT solver consistently returned unsatisfiable.
This outcome appears to stem directly from the constraints introduced by the rotational symmetry
clauses. While the encoding was successful in isolating point configurations that satisfied the
structural criteria, the additional symmetry requirements imposed by the 3-fold rotation proved
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too restrictive to permit a viable geometric realization. This suggests that 3-fold symmetry,
when combined with the structural framework used in this study, imposes conditions that are
incompatible with the avoidance of convex 6-gons within this point limit.

3.2.5 4-Fold Symmetry
The second class of structures considered in this section consists of layered convex hull forma-
tions of size (4, 4, 4, 4), consisting of four nested convex layers with four points each. The points
in each layer are also now explicitly defined: the first convex layer consists of points 1, 2, 3, and
4; the second layer consists of points 5, 6, 7, and 8; and so on for the remaining layers.

Similarly to the 3-fold symmetric case, each sector is associated with a specific and prede-
termined subset of points, eliminating the need for the involved case split. Clauses analogous
to those used in the 3-fold case are utilized to explicitly enforce 4-fold rotational symmetry on
the point placement. By computing and equating orientation triples under the corresponding 90◦

rotation mappings provided by the sectors, the encoding ensures that the configuration maintains
its symmetry across all four rotational axes.

Convexity

To enforce convexity within each of the four-point convex hull layers, a group of four clauses
is introduced per layer. In order to maintain consistent rotational symmetry across layers, we
assume, without loss of generality, that the points in each layer appear in counterclockwise or-
der. Under this assumption, convexity can be encoded by asserting that the orientation triples
corresponding to consecutive triples of points within each layer are positive. Specifically, for the
first layer, the following conjunction of orientation literals is added and the corresponding logic
is depicted in Figure 3.24:

Figure 3.24: An illustration of the logic needed to enforce convexity over the first layer in the
4-fold symmetry case.
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o1,2,3 ∧ o2,3,4 ∧ o3,4,1 ∧ o4,1,2 (3.36)

The same approach is applied to layers 2 through 4. This guarantees that each set of four
points forms a counterclockwise quadrilateral, thereby preserving both the convexity and the
layered symmetry required for the desired geometric structure.

Containment

To enforce the containment of points within each successive convex hull layer of size four, we
add orientation clauses for every point p that is intended to lie strictly inside the quadrilateral
formed by four counterclockwise ordered points (a, b, c, d).

For the first convex hull layer, defined by points 1, 2, 3, and 4, we require that all points
labeled 5 through 16 lie within this shell. This is encoded by adding four positive orientation
literals for each point p, one for each boundary edge, and is depicted in Figure 3.25:

Figure 3.25: An illustration of the logic needed to enforce the containment of each point p on the
interior side of each line segment of the hull.

o1,2,p ∧ o2,3,p ∧ o3,4,p ∧ o4,1,p (3.37)

These four conditions ensure that point p lies within the convex 4-gon by being on the interior
side of every edge. The same logic is recursively applied to each inner layer of four points. For
each such layer, the boundary edges are defined by iterating cyclically through the four points in
counterclockwise order, and the same set of orientation constraints is imposed on each point that
must lie within the layer.
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Sectors

As in previous sections, the convex hull layers are subdivided into sectors to facilitate a uniform
radial distribution of interior points across the geometric structure. In this setting, where each
convex hull consists of four vertices, the interior region of each convex layer is partitioned into
four distinct sectors. These sectors are defined by the relative position of a point with respect to
the two diagonals of the convex hull, formed by connecting opposite vertices.

For the first convex hull layer, composed of points (1, 2, 3, 4), the diagonals 13 and 24 serve
as the reference lines for partitioning the interior into each sector. Each sector corresponds to
one of the four possible combinations of the orientation of a point, above or below, with respect
to each diagonal. Specifically, the four sectors for the first layer are defined as follows:

Sector 1: above 13 and above 24
Sector 2: above 13 and below 24
Sector 3: below 13 and above 24
Sector 4: below 13 and below 24

To create a consistent and well-defined mapping between the convex hull vertices and their
corresponding sectors, we enforce the following assignment: The first point of each hull is asso-
ciated with Sector 1, the second point with Sector 2, the third point with Sector 3, and the fourth
point with Sector 4. For the hull (1, 2, 3, 4), this yields the following desired sector assignments
for the inner points:

Sector 1: 5, 9, 13
Sector 2: 6, 10, 14
Sector 3: 7, 11, 15
Sector 4: 8, 12, 16

To enforce that a point p lies within its designated sector, orientation constraints are imposed
relative to the diagonal boundaries defining that sector. For Sector 1, a point must lie above the
lines formed by points 1 and 3 and points 2 and 4, which is depicted in Figure 3.26 and encoded
as

o1,3,p ∧ o2,4,p (3.38)

For Sector 2, the encoding becomes:

o1,3,p ∧ ¬o2,4,p (3.39)

For Sector 3, the encoding becomes:

¬o1,3,p ∧ o2,4,p (3.40)

And for Sector 4, the encoding becomes:

¬o1,3,p ∧ ¬o2,4,p (3.41)

These constraints are applied in the same manner across all convex hull layers, ensuring that
each point lies within its designated sector. This consistent enforcement preserves the intended
rotational symmetry and radial organization throughout the layered structure of the hulls.
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Figure 3.26: An illustration of the logic needed to enforce that point p lies in the sector above
the lines 13 and 24.

Symmetry

To enforce 4-fold rotational symmetry over the orientation triples, the encoding introduces clauses
that equate each orientation triple with its image under a 90◦ rotation. Since the structure and
placement of the points are fixed, this rotational mapping is deterministic and can be computed
explicitly.

Each orientation triple oa,b,c is mapped to a corresponding triple oa′,b′,c′ , which results from
applying a 90◦ counterclockwise rotation to each of the points involved. The mapping from a
point p to its rotated image p′ is defined based on the radial sector structure established earlier:
Each point in a sector is mapped to the next point in the same convex hull layer under 4-fold
rotation. This mapping follows a cyclic increment, so each fourth point will wrap around the
first point in the same layer (e.g. 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1, etc.) This mapping is shown in
Figure 3.27.

Just like in the 3-fold case, for each orientation triple, clauses are added to enforce equiva-
lence between the original triple and its rotated counterpart. Specifically, given variables oa,b,c
and oa′,b′,c′ , the following biimplication is encoded:

oa,b,c ⇐⇒ oa′,b′,c′ (3.42)

This logic ensures that the relative orientation of any three points remains consistent across
all 90◦ rotations. When applied to all orientation triples over the point set, these constraints
collectively guarantee that the entire configuration exhibits global 4-fold rotational symmetry.

Results and Discussion

In contrast to the 3-fold case, full 4-fold rotational symmetry was successfully achieved. An
explicit realization satisfying all structural and symmetry constraints was produced, marking
the first known 16-point configuration that avoids convex 6-gons while maintaining complete
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Figure 3.27: An illustration depicting the mapping of points in the 4-fold symmetry case, 1 7→ 2,
2 7→ 3, 3 7→ 4, 4 7→ 1, etc.

Figure 3.28: A 16 point realization exhibiting 4-fold symmetry.
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4-fold rotational symmetry. The resulting point arrangement, shown in Figure 3.28, exhibits a
distinctive pinwheel-like structure, a natural consequence of the sector constraints which guide
the inner points into spiral-like branches emanating from the center. This visually compelling
formation not only satisfies the geometric and combinatorial constraints but also highlights the
power of encoding sector variables to induce symmetry in highly constrained environments. The
coordinates of this realization are listed below:

Point 1: (−30.000000, 0.000000)
Point 2: (0.000000, −30.000000)
Point 3: (30.000000, 0.000000)
Point 4: (0.000000, 30.000000)
Point 5: (−16.000000, −3.100000)
Point 6: (3.100000, −16.000000)
Point 7: (16.000000, 3.100000)
Point 8: (−3.100000, 16.000000)
Point 9: (−9.000000, −5.000000)
Point 10: (5.000000, −9.000000)
Point 11: (9.000000, 5.000000)
Point 12: (−5.000000, 9.000000)
Point 13: (−1.700000, −1.000000)
Point 14: (1.000000, −1.700000)
Point 15: (1.700000, 1.000000)
Point 16: (−1.000000, 1.700000)

This solution stands as a significant benchmark for symmetric extremal configurations, and
opens up new avenues for further exploration of symmetry-enforced constraints in geometric
Ramsey-type problems.

3.2.6 5-Fold Symmetry
The third and final class of structures considered in this section consists of layered convex hull
formations of size (5, 5, 5, 1), consisting of three nested convex layers with five points each,
arranged around a single central point. The points in each layer are also now explicitly defined:
the first convex layer consists of points 1, 2, 3, 4 and 5; the second layer consists of points 6, 7, 8, 9
and 10; and so on for the remaining layers.

Similarly to the 3− and 4-fold symmetric cases, each sector is associated with a specific
and predetermined subset of points, eliminating the need for the involved case split. Clauses
analogous to those used in the 3- and 4-fold case are utilized to explicitly enforce 5-fold rota-
tional symmetry on the point placement. By computing and equating orientation triples under
the corresponding 72◦ rotation mappings provided by the sectors, the encoding ensures that the
configuration maintains its symmetry across all five rotational axes.

Convexity

To enforce convexity within each of the five-point convex hull layers, a group of five clauses is
introduced per layer. In order to maintain consistent rotational symmetry across layers, we as-
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sume, without loss of generality, that the points in each layer appear in counterclockwise order.
Under this assumption, convexity can be encoded by asserting that the orientation triples corre-
sponding to consecutive triples of points within each layer are positive. Specifically, for the first
layer, the following conjunction of orientation literals is added and is depicted in Figure 3.29:

Figure 3.29: A depiction of the clauses necessary to enforce counterclockwise convexity in the
5-fold symmetry case.

o1,2,3 ∧ o2,3,4 ∧ o3,4,5 ∧ o4,5,1 ∧ o5,1,2 (3.43)

The same approach is applied to layers 2 and 3. This guarantees that each set of five points
forms a counterclockwise 5-gon, thereby preserving both the convexity and the layered symmetry
required for the desired geometric structure.

Containment

To enforce the containment of points within each successive convex hull layer of size five, we
add orientation clauses for every point p that is intended to lie strictly inside the 5-gon formed
by five counterclockwise ordered points (a, b, c, d, e).

For the first convex hull layer, defined by points 1, 2, 3, 4 and 5, we require that all points
labeled 6 through 16 lie within this shell. This is encoded by adding five positive orientation
literals for each point p, one for each boundary edge and is depicted in Figure 3.30:

o1,2,p ∧ o2,3,p ∧ o3,4,p ∧ o4,5,p ∧ o5,1,p (3.44)

These five conditions ensure that point p lies within the convex 5-gon by being on the interior
side of every edge. The same logic is recursively applied to each inner layer of five points. For
each such layer, the boundary edges are defined by iterating cyclically through the five points in
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Figure 3.30: A depiction of the clauses necessary to enforce that point p is on the interior side of
each of the boundary line segments of the first convex hull

counterclockwise order, and the same set of orientation constraints is imposed on each point that
must lie within the layer.

Sectors

As in the previous phases, the convex hull layers are subdivided into sectors to facilitate an even
radial distribution of points around the central point. In this section, where each convex hull
consists of five points, the interior region of each convex layer is partitioned into five distinct
sectors. Each sector is defined by a triangle formed by two adjacent points on the convex hull
together with the central point. For the first layer, this results in five sectors defined by the
triangles (1, 2, 16), (2, 3, 16), (3, 4, 16), (4, 5, 16), and (5, 1, 16), which are treated as Sectors 1
through 5, respectively.

To create a consistent and well-defined mapping between the convex hull vertices and their
corresponding sectors, we enforce the following assignment: The first point of each hull is asso-
ciated with Sector 1, the second point with Sector 2, and the third point with Sector 3, etc. For
the hull (1, 2, 3, 4, 5), this yields the following desired sector assignments for the inner points:

Sector 1: 6, 11
Sector 2: 7, 12
Sector 3: 8, 13
Sector 4: 9, 14
Sector 5: 10, 15

To enforce that a point p lies within its designated sector, orientation constraints are imposed
relative to the triangle defining that sector. Specifically, a point is constrained to lie between the
two directed boundary edges of the sector triangle. For Sector 1, defined by the triangle (1, 2, 16),
a point must lie below the line formed by points 1 and 16 and above the line formed by points 2
and 16, this is depicted in Figure 3.31 and is encoded as
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Figure 3.31: A depiction of the point p being restricted to lie in the first sector of the first layer
in the 5-fold symmetry case.

¬o1,16,p ∧ o2,16,p (3.45)

The logic is similar for the remaining sectors. These constraints are applied in the same
manner across all convex hull layers, ensuring that each point lies within its designated sector.
This consistent enforcement preserves the intended rotational symmetry and radial organization
throughout the layered structure of the hulls.

Symmetry

To enforce 5-fold rotational symmetry over the orientation triples, the encoding introduces clauses
that equate each orientation triple with its image under a 72◦ rotation. Since the structure and
placement of the points are fixed, this rotational mapping is deterministic and can be computed
explicitly.

Each orientation triple oa,b,c is mapped to a corresponding triple oa′,b′,c′ , which results from
applying a 72◦ counterclockwise rotation to each of the points involved. The mapping from a
point p to its rotated image p′ is defined based on the radial sector structure established earlier:
Each point in a sector is mapped to the next point in the same convex hull layer under 5-fold
rotation. This mapping is depicted in Figure 3.32 and follows a cyclic increment, so each fifth
point will wrap around the first point in the same layer (e.g. 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5,
5 7→ 1, etc.).

Just like in the 3- and 4-fold cases, for each orientation triple, clauses are added to enforce
equivalence between the original triple and its rotated counterpart. Specifically, given variables
oa,b,c and oa′,b′,c′ , the following biimplication is encoded:

oa,b,c ⇐⇒ oa′,b′,c′ (3.46)
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Figure 3.32: A depiction of the mapping of the points in the first layer of the 5-fold symmetry
case, 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1, etc.

This logic ensures that the relative orientation of any three points remains consistent across
all 72◦ rotations. When applied to all orientation triples over the point set, these constraints
collectively guarantee that the entire configuration exhibits global 5-fold rotational symmetry.

Results and Discussion

5-fold rotational symmetry was also found to be realizable, a particularly surprising result given
the remarkably low satisfiability ratio observed in the layered 5-gon architecture, as discussed
earlier. Despite the scarcity of satisfying configurations among the candidate placements, an
explicit realization was discovered that satisfies the symmetry constraints, and is shown in Fig-
ure 3.33. As with the 4-fold symmetric case, the resulting structure exhibits a pinwheel-like
form—an emergent consequence of the sector-enforcing constraints embedded in the SAT en-
coding. This formation not only reinforces the viability of the layered convex hull approach but
also provides the first known instance of a 6-gon-free configuration on 16 points that admits full
5-fold rotational symmetry. The coordinates of the realization are provided below:
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Figure 3.33: A 16 point realization exhibiting 5-fold symmetry.

Point 1: (−19.876200, 6.159400)
Point 2: (−12.000000, −17.000000)
Point 3: (12.459800, −16.666000)
Point 4: (19.700600, 6.699900)
Point 5: (−0.284100, 20.806700)
Point 6: (−15.000000, 2.000000)
Point 7: (−6.537400, −13.647800)
Point 8: (10.959700, −10.434800)
Point 9: (13.310800, 7.198700)
Point 10: (−2.733100, 14.883900)
Point 11: (−13.000000, 0.000000)
Point 12: (−4.017200, −12.363700)
Point 13: (10.517200, −7.641200)
Point 14: (10.517200, 7.641200)
Point 15: (−4.017200, 12.363700)
Point 16: (0.000000, 0.000000)
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Chapter 4

Conclusion

In conclusion, both phases of this research achieved their intended objectives. The first phase
focused on the structural analysis of candidate point placements by leveraging a generalized
SAT-based encoding to exhaustively explore configurations consistent with various layered con-
vex hull constructions. This approach enabled a comprehensive enumeration and evaluation of
possible formations under each structural setting. The second phase centered on the realization
of these configurations, with the goal of identifying explicit point placements that exhibit full
rotational symmetry.

The structural analysis yielded meaningful insights into the relationship between convex hull
layering and the presence of forbidden convex substructures, such as 6-gons. Meanwhile, the
realization phase produced two novel and fully symmetric point sets, each corresponding to dis-
tinct layered architectures. These realizations not only demonstrate the feasibility of imposing
rotational symmetry on such configurations but also contribute new examples to the landscape of
extremal geometry. Together, the findings underscore the effectiveness of combining combinato-
rial encoding with geometric realization techniques in tackling long-standing open problems in
discrete geometry.

4.1 Future Work

This research opens several promising avenues for future investigation, particularly concerning
other instances of the Erdős–Szekeres Conjecture. The next outstanding case involves the con-
jectured extremal bound for convex 7-gon avoidance, which posits that no set of 33 points can be
constructed without containing a convex 7-gon. While this remains unproven, constructions of
32-point sets avoiding all convex 7-gons have been established. Initial efforts within this project
aimed to identify a fully 4-fold symmetric realization of such a placement. While satisfying as-
signments consistent with 4-fold symmetry were found in this initial attempt, realizations with
no more than 24 points (corresponding to six layers of size four) have been produced.

Future research could pursue alternative strategies to achieve this result. One promising
direction involves partitioning the point set into smaller substructures and attempting to stitch
together partial realizations. Another possibility is the development or adaptation of realization
tools specifically tailored to handle these large-scale geometric formulas and constraints with
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multiple satisfying assignments more efficiently. Advances in these areas may make it possible
to fully resolve the 7-gon case with symmetry constraints and potentially discover a recursive
general construction that can be used to resolve the Erdős-Szekeres Conjecture itself.
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