
Enhancing Graph Neural Networks with

Encoding, Rewiring, and Attention

Tongzhou Liao

CMU-CS-25-109

April 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

Barnabás Póczos Carnegie Mellon University, Chair
Tianqi Chen Carnegie Mellon University

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2025 Tongzhou Liao

This work is partially supported by the NSF Award 2307698.

Keywords: machine learning, deep learning, graph neural networks, graph encoding,
graph rewiring, attention mechanism

Abstract

Graph Neural Networks (GNNs) have become important tools for machine
learning on graph-structured data. In this paper, we explore the synergistic
combination of graph encoding, graph rewiring, and graph attention, by intro-
ducing Graph Attention with Stochastic Structures (GRASS), a novel GNN
architecture. GRASS utilizes relative random walk probabilities (RRWP) en-
coding and a novel decomposed variant (D-RRWP) to efficiently capture struc-
tural information. It rewires the input graph by superimposing a random reg-
ular graph to enhance long-range information propagation. It also employs a
novel additive attention mechanism tailored for graph-structured data. Our
empirical evaluations demonstrate that GRASS achieves state-of-the-art per-
formance on multiple benchmark datasets, including a 20.3% reduction in mean
absolute error on the ZINC dataset.

Acknowledgments

I would like to thank my advisor, Professor Barnabás Póczos, whose men-
torship and steady guidance carried this project from conception to comple-
tion. I am grateful to Professor Yorie Nakahira and the members of Carnegie
Mellon Racing for their advice and resources, which facilitated the initial ex-
plorations that shaped this work. Discussions with Owen Li, Hanke Chen, and
Liangyuan Chen significantly strengthened the ideas and overall presentation.

I also deeply appreciate the valuable counsel provided by Yu Peng, Professor
Zeliha Dilsun Kaynar, and Stephen Pomraning. Finally, my sincere gratitude
goes to Ray Huang, Fumika Kitajima, and my family for their companionship
throughout my studies at Carnegie Mellon University.

vi

Contents

1 Introduction 1

2 Related Work 3

3 Methods 5
3.1 Graph Encoding . 7
3.2 Random Rewiring . 8
3.3 Attention Mechanism . 10
3.4 Interpretations of GRASS . 12

4 Experiments 15
4.1 Benchmarking GRASS . 15
4.2 Ablation Study . 18

5 Conclusion 21
5.1 Limitations . 21
5.2 Reproducibility . 21

Bibliography 23

A Additional Details 29
A.1 Motivations for Superimposing Random Regular Graphs 29
A.2 Results on Heterophilic Graphs . 30
A.3 Additional Ablation Study Results . 31
A.4 Computational Performance . 32
A.5 Experimental Setup . 33

A.5.1 Datasets . 33
A.5.2 Hyperparameters . 33

vii

viii

List of Figures

3.1 The structure of GRASS. 6
3.2 Visualization of the proposed random rewiring technique. 10
3.3 Simplified visualization of the GRASS attention mechanism. 10
3.4 The structure of an attention layer of GRASS. 11

4.1 Visualized ablation study results for the number of added edges per node,
with random regular and non-regular graphs, on ZINC. 19

ix

x

List of Tables

4.1 Performance on GNN Benchmark Datasets. 16
4.2 Performance on LRGB datasets. 17
4.3 Ablation study results for the number of added edges per node, with random

regular and non-regular graphs, on ZINC. 18
4.4 Ablation study results for random rewiring, graph encoding, attention mech-

anism, and minor design decisions on ZINC. 20

A.1 Performance on the roman-empire dataset. 30
A.2 Ablation study results for the number of added edges per node on PascalVOC-

SP. 31
A.3 Ablation study results for graph encoding, graph rewiring, and attention

mechanism on PascalVOC-SP. 31
A.4 Computational performance of GRASS on GNN Benchmark Datasets. . . . 32
A.5 Computational performance of GRASS on LRGB datasets. 32
A.6 Statistics of GNN Benchmark Datasets. 33
A.7 Statistics of LRGB datasets. 33
A.8 Model hyperparameters for experiments on GNN Benchmark Datasets. . . 33
A.9 Model hyperparameters for experiments on LRGB datasets and the roman-

empire dataset. 34

xi

Chapter 1
Introduction

Graph Neural Networks (GNNs) have revolutionized machine learning tasks involving
graph-structured data [Wu+20; Vel23]. Various paradigms within GNNs offer distinct
advantages: message-passing neural networks (MPNNs) effectively leverage local graph
structure [KW16] and are often complemented with graph rewiring techniques to modify
the graph’s topology and facilitate message passing [Top+21]; Graph Transformers (GTs)
incorporate attention mechanisms to capture global dependencies [Yun+19; Ram+22] and
can be enhanced by graph encoding methods that enrich node and edge features with
structural information [Dwi+21; Dwi+23].

The goal of this work is to create a new architecture that can possess the advanta-
geous properties of the methods discussed above. To achieve this goal, we propose Graph
Attention with Stochastic Structures (GRASS), a GNN architecture that synergistically
combines random walk encoding, random rewiring, and introduces a novel additive atten-
tion mechanism designed for graph-structured data. We conduct a series of experiments on
multiple benchmark datasets and perform ablation studies to rigorously assess the contri-
bution of each component in GRASS. Our results show that GRASS achieves competitive
or superior performance compared to existing methods on multiple popular datasets, sug-
gesting that the synergy of random walk encoding, random rewiring, and a graph-tailored
attention mechanism can effectively enhance GNNs.

Our Contributions.
• We propose GRASS, a GNN architecture that integrates random walk encoding,

random rewiring, and a novel additive attention mechanism designed for graphs.

• We analyze these components with respect to desirable properties of a GNN and
provide insights into how they contribute to the model’s performance.

• We provide empirical evidence through experiments and ablation studies that a care-
fully selected combination of these components can lead to improved performance on
multiple benchmark datasets.

This thesis is based on Liao and Póczos [LP24].

1

2

Chapter 2
Related Work

Message-Passing Neural Networks. Message-Passing Neural Networks (MPNNs),
such as Graph Convolutional Networks (GCNs) [KW16], GraphSAGE [HYL17], and Graph
Isomorphism Networks (GIN) [Xu+18], propagate information within local neighborhoods
of a graph. By aligning computation with the structure of the graph, MPNNs offer a strong
inductive bias for graph-structured data [Ma+23].

Graph Rewiring. Graph rewiring techniques modify the topology of graphs to im-
prove their connectivity, often leveraging spectral properties to guide the process [Top+21;
Arn+22]. Rewiring improves MPNNs by alleviating issues in information propagation,
such as underreaching, which occurs when distant nodes cannot communicate [AY20]. In
this work, we explore a form of random rewiring that superimposes a random regular graph
on the input graph.

Graph Transformers. Attention mechanisms [Vas+17] allow GNNs to weigh the im-
portance of neighboring nodes during aggregation [Vel+17]. Graph Transformers (GTs),
such as Graph Transformer Network (GTN) [Yun+19], extend this idea to global attention
across nodes. GTs often inherit attention mechanisms designed for sequences, which may
not be optimal for graphs [CSB24]. Designing attention mechanisms specifically for graph-
structured data is an active area of research, and we aim to contribute to it by proposing
a novel additive attention mechanism.

Graph Encoding. Enhancing node and edge features with graph encodings has been
shown to improve GNN performance, especially for GTs [Dwi+23]. Techniques such as
Laplacian positional encodings (LapPE) [Dwi+21] and relative random walk probabilities
(RRWP) encoding [Ma+23] incorporate structural information into node and edge fea-
tures, enhancing GTs, which otherwise lack a graph inductive bias [Ma+23]. We utilize
RRWP encoding in GRASS, and propose a decomposed variant (D-RRWP) with improved
computational efficiency.

3

Notable Combinations. The General, Powerful, Scalable (GPS) Graph Transformer
[Ram+22] represents a hybrid of MPNN and GT, merging the inductive bias of message
passing with the global perspective of Transformers. Exphormer [Shi+23] combines GTs
and rewiring by adding random edges and supernodes, generalizing BigBird [Zah+20], a
sparse Transformer, to graph-structured data.

Our work builds upon these paradigms by incorporating random walk encoding and ran-
dom rewiring, and we also create a novel additive attention mechanism tailored for graphs.
Although RRWP encoding and random rewiring have been explored separately [Ma+23;
Shi+23], their combination with each other and a graph-tailored attention mechanism is,
to the best of our knowledge, novel. Our experiments show that this architecture not only
matches but often exceeds state-of-the-art performance across a wide range of benchmark
problems.

4

Chapter 3
Methods

In this chapter, we introduce the design of GRASS. We begin by examining the desirable
qualities of a GNN, which guide our architectural design. Subsequently, we introduce the
components of GRASS by following the order of data processing in our model, and describe
the role of each component in terms of the design goals.

Design Goals. We center our design around what we consider to be the key character-
istics of an effective GNN. We will focus on the processing of nodes (N1–N3) and edges
(E1–E2) of the model.

N1. Permutation Equivariance. Unlike tokens in a sentence or pixels in an image, nodes
in a graph are unordered, and therefore the model should be permutation equivariant
by construction. Since reordering the nodes of a graph does not change the graph,
permuting the nodes of the input graph of a GNN layer should only result in the
same permutation of its output [Vel23]. Formally, let f(X,E,A) be the function com-
puted by a layer, where X ∈ R|V |×nnode represents node features with nnode dimensions,
E ∈ R|V |×|V |×nedge represents edge features with nedge dimensions, and A ∈ {0, 1}|V |×|V |
represents the adjacency matrix (edge weights are considered scalar-valued edge fea-
tures). If the layer is permutation equivariant and (Xout,Eout) = f(Xin,Ein,A), then
(PXout,PEoutP

⊤) = f(PXin,PEinP
⊤,PAP⊤) for an arbitrary permutation matrix

P.

N2. Effective Communication – The model should facilitate long-range communication be-
tween nodes. Numerous real-world tasks require the GNN to capture interactions
between distant nodes [Dwi+22]. However, MPNN layers, which propagate informa-
tion locally, frequently fail in this regard [Ma+23]. A major challenge is underreaching,
where an MPNN with l layers is incapable of supporting communication between two
nodes i, j with distance δ(i, j) > l [AY20]. Another challenge is oversquashing, where
the structure of the graph forces information from a large set of nodes to squeeze
through a small set of nodes to reach its target [Top+21]. A node with a constant-
size feature vector may need to relay information from exponentially many nodes
(with respect to model depth), leading to excessive compression of messages in deep
MPNNs [AY20].

5

Input Graph

Training Loop

(D-)RRWP
Encoding

Original Edge Representation

Added Edge RepresentationA
tte

nt
io

n

A
tte

nt
io

n

A
tte

nt
io

n

…

Po
ol

in
g

(O
pt

io
na

l)

+ (D-)RRWP
Encoding

+ Random
Rewiring

GRASS Attention
Layers

Original Edge
Embedding

(D-)RRWP
Encoding

Distinct Embedding
for Added Edges

Figure 3.1: The structure of GRASS. Prior to training, GRASS precomputes (D-)RRWP
encodings. At each training iteration, it rewires the input graph and adds distinct embed-
dings to added edges.

N3. Selective Aggregation – The model should only aggregate information from relevant
nodes and edges. MPNN layers commonly update node representations by uncondi-
tionally summing or averaging messages from neighboring nodes and edges [Vel23].
In deep models, this can lead to oversmoothing, where the representation of nodes
becomes too similar to be effectively classified in the process of repeated aggrega-
tion [Che+20]. Therefore, when required by the task, nodes should aggregate infor-
mation from relevant neighbors only, instead of doing so unconditionally, in order to
maintain distinguishability of node representations.

E1. Relationship Representation – The model should effectively represent the relationships
between nodes with edges. Edges in graph-structured data often convey meaningful in-
formation about the relationship between the nodes they connect [GC19]. In addition
to the semantic relationships represented by edge features of the input graph, structural
relationships can be represented by edge encodings added by the model [Ram+22]. To
capture the relationships between nodes, edge representations should combine infor-
mation from both edge features and encodings, and undergo deep processing through
multiple layers.

E2. Directionality Preservation – The model should preserve and utilize information carried
by edge directions. Many graphs representing real-world relationships are inherently
directed [Ros+24]. Although edge directionality has been shown to carry important
information for various tasks, many GNN variants require undirected graphs as in-
put, to prevent edge directions from restricting information flow [Ros+24]. It would
be beneficial for the model’s expressivity if edge directionality information could be
preserved without severely limiting communication.

The Structure of GRASS. The high-level structure of GRASS is illustrated in Fig-
ure 3.1. Prior to training, GRASS precomputes the (D-)RRWP encoding of each graph
in the dataset. At each training iteration, GRASS randomly rewires the input graph, ap-
plies node and edge encodings, and passes the graph through multiple attention layers,
producing an output graph with the same structure. For tasks that require a graph-level
representation, such as graph regression and graph classification, pooling is performed on

6

the output graph to obtain a single output vector.

3.1 Graph Encoding

Extracting structural information plays an important role in graph-structured learning
and is crucial for Relationship Representation. To this end, we apply relative random walk
probabilities (RRWP) encoding [Ma+23] to represent structural relationships. In addition,
we propose D-RRWP, a decomposed variant of RRWP that offers improved computational
efficiency.

RRWP Encoding. RRWP encoding has been shown to be an expressive representation
of graph structure both theoretically and practically [Ma+23], serving as a major source
of structural information for the model. To calculate random walk probabilities, we first
obtain the transition matrix T, where Ti,j represents the probability of moving from node
i to node j in a random walk step. It is defined as T = D−1A ∈ [0, 1]|V |×|V |, where
A ∈ {0, 1}|V |×|V | is the adjacency matrix of the input graph G, and D ∈ N|V |×|V | is its
degree matrix, a diagonal matrix. The powers of T are stacked to form the RRWP tensor
P, with Ph,i,j representing the probability that a random walker who starts at node i lands
at node j at the h-th step. Formally, P = [T,T2, ...,Tk] ∈ [0, 1]k×|V |×|V |, where k is the
number of random walk steps. The diagonal elements P:,i,i, where i ∈ VG, are used as
node encodings, similarly to RWSE [Dwi+21]. The rest are used as edge encodings when
the corresponding edge is present in the rewired graph H. All node and edge encodings
undergo batch normalization (BN) [IS15]. Here, W denotes trainable weights, n denotes
the dimensionality of hidden layers, and ∥ denotes concatenation.

xRW
i = Wnode-enc BN(P:,i,i) ∈ Rn , (3.1)

eRWi,j = Wedge-enc BN(P:,i,j ∥P:,j,i) ∈ Rn . (3.2)

Before entering attention layers, RRWP encodings are added to both node features and
edge features, including those of edges added by random rewiring. The node encodings are
additionally accompanied by degree information [Yin+21]. Here, d+(i) and d−(i) denote
the out-degree and in-degree of node i, respectively.

x0
i = xin

i + xRW
i + Wdeg BN(d+(i) ∥ d−(i)) ∈ Rn , (3.3)

e0i,j = eini,j + eRWi,j ∈ Rn . (3.4)

Improving Efficiency. RRWP encodings takeO(k|V ||E|) time to compute andO(k|V |2)
space to store [Ma+23]. On extremely large graphs, this could be computationally pro-
hibitive even when computed once per dataset. We propose D-RRWP, a decomposed
variant of RRWP. Instead of computing the exact random walk probabilities P from the
transition matrix T, we approximate it with its truncated eigendecomposition to reduce
the complexity to O(km(|V |+ |E|)) time and O((k+m)|V |+ k|E|) space, where m ≤ |V |
is the number of eigenpairs used for the approximation.

7

To ensure that the transition matrix is diagonalizable, we replace T with Tsym =

D−
1
2AD−

1
2 , which is always diagonalizable if A is a symmetric adjacency matrix—that

of an undirected graph. Given the degree matrix D, this modification does not result
in a loss of information, because Tsym = D

1
2TD−

1
2 . Since Tsym is diagonalizable, its

truncated eigendecomposition coincides with its truncated singular value decomposition
(SVD), which provides the optimal low-rank approximation of the matrix [EY36].

Let T̃sym = Q̃Λ̃Q̃⊤ be the truncated eigendecomposition of Tsym, where Λ̃ ∈ [−1, 1]m×m

is a diagonal matrix containing the m largest eigenvalues (in magnitude) of Tsym and
Q̃ ∈ R|V |×m hold the corresponding eigenvectors. Decomposing Tsym takes O(m|E|) time
with the Lanczos algorithm [Lan50; LSY98] and requires O(m|V |) space. We approximate
the h-th power of Tsym, i.e. the random walk probabilities Ph,i,j = (Th

sym)i,j, by computing

(T̃h
sym)i,j = (Q̃Λ̃hQ̃⊤)i,j = (Q̃i,:⊙ Q̃j,:) ·diag(Λ̃h). Here, ⊙ denotes the Hadamard product.

Computing this approximation for all nodes (i, i), edges (i, j), and random walk steps
1 ≤ h ≤ k requires O(km(|V | + |E|)) time and O(k(|V | + |E|)) space. This is efficient
because raising the diagonal matrix Λ̃ to the powers 1 to k only costs O(km) time and
space. If Tsym were not diagonalizable and we had to use SVD instead, efficient power
computation would no longer be possible.

Since Λ̃h can take at most m linearly independent values as we vary h, increasing k
beyond m does not add additional information to the encoding. Consequently, we fix
k = m in our experiments.

3.2 Random Rewiring

To achieve Effective Communication, GRASS rewires the input graph by superimposing a
random regular graph. We present some motivations for using random regular graphs in-
stead of deterministic or non-regular graphs in Appendix A.1. Shirzad, Velingker, Venkat-
achalam, Sutherland, and Sinop [Shi+23] uses a similar technique in generalizing Big-
Bird [Zah+20] to graphs, and discusses additional motivations. We also demonstrate the
advantage of using random regular graphs with empirical results shown in Figure 4.1 and
Table 4.3. Here, we provide details on random regular graph generation and input graph
rewiring.

Generating Random Regular Graphs. We generate random regular graphs with the
Permutation Model [FKS89] that we describe here and with pseudocode in Algorithm 1.
For a given positive, even parameter r ≥ 2, and for the input graph G = (VG, EG),
we randomly generate a corresponding r-regular graph by independently and uniformly
sampling r

2
random permutations σ1, σ2, ..., σ r

2
from S|VG|, the symmetric group defined

over the nodes of the graph G. Using these random permutations, we construct a random
pseudograph R̃ = (VG, ER̃), where the edge set ER̃ of the graph R̃ is

ER̃ =
⊔

i∈VG, j=1,..., r
2

{{i, σj(i)}} . (3.5)

8

Algorithm 1 The Permutation Model [FKS89]

1: procedure PermutationModel(r, |V |)
2: σ ← 2D array of size (r, |V |)
3: for i← 0 to r − 1 do
4: σ[i, :]← RandPerm(|V |) ▷ Random permutation of integers between 0 and
|V | − 1

5: end for
6: A← Array of size r ∗ |V | ▷ Create an empty adjacency list
7: for j ← 0 to |V | − 1 do
8: for k ← 0 to r − 1 do
9: A[j ∗ r + k]← {j, σ[k, j]} ▷ Add an edge to the adjacency list
10: end for
11: end for
12: A← RemoveSelfLoop(A) ▷ Remove self-loops from the adjacency list
13: A← RemoveMultiEdge(A) ▷ Remove multi-edges from the adjacency list
14: return A
15: end procedure

Here, ⊔ denotes the disjoint union of sets. The resulting graph R̃ is a random regular
pseudograph, and the probability that R̃ is any given regular pseudograph with |VG| nodes
and degree r is uniform [FKS89].

Being a pseudograph, R̃ might not be simple—it might contain self-loops and multi-
edges. Even when |VG| is large, the probability that R̃ is simple—that it does not contain
self-loops or multi-edges—would not be prohibitively small. In particular, it has an asymp-
totically tight lower bound [Ell11]

lim
|VG|→∞

Pr[R̃ is simple] = e
−
(

r2

2
+r

)
. (3.6)

Therefore, if we regenerate R̃ when it is not simple, the expected number of trials required

for us to obtain a simple R̃ is upper-bounded by e
r2

2
+r, which can be kept low by keeping

r low. In practice, GRASS requires the superimposed graph to be simple to avoid passing
duplicate messages. Meanwhile, the regularity of the graph is desired but not strictly
required. Therefore, when R̃ is not simple, we remove self-loops and multi-edges from R̃
to obtain R, which is always simple but not necessarily regular.

Our empirical results presented in Figure 4.1 and Table 4.3 suggest that a small value
of r is often sufficient. In our experiments, we use r ≤ 6.

Rewiring the Input Graph. To rewire the input graph G, GRASS superimposes the
edges of R on G, producing a new graph H = (VG, EG ⊔ ER) that is used as input for
subsequent stages of the model. Since it is possible that EG ∩ ER ̸= ∅, there might be
multi-edges in H, and in these cases, H is not a simple graph. GRASS does not remove
these multi-edges to avoid biasing the distribution of the superimposed random regular
graph.

9

Figure 3.2: Visualization of the proposed
random rewiring technique. Solid lines de-
note existing edges of the input graph, and
dashed lines denote added edges. (a) An
example of the input graph G that has poor
connectivity. (b, c) Two among all possible
instances of the randomly rewired graph H
with r = 2. They have better connectivity
than the input graph.

(b)(a)

Softmax

Figure 3.3: Simplified visualization of the
GRASS attention mechanism. (a) The edge
aggregator extracting node relations to up-
date edge representations. (b) The atten-
tive node aggregator weighted by edge rep-
resentations. For simplicity, attention from a
node to itself, residual connections, and acti-
vation functions are omitted here. Figure 3.4
provides a more detailed visualization.

As illustrated in Figure 3.1, the added edges ER are given a distinct embedding to
distinguish them from the existing edges EG. This aids Selective Aggregation, as it allows
a node to select between its neighbors and a random node. The added edges also receive
(D-)RRWP encodings to enhance Relationship Representation. Although an added edge
(i, j) ∈ ER lacks edge features that represent semantic relationships in the input graph,
the structural relationship between nodes i and j can be represented by the random walk
probabilities P:,i,j given to that edge as its (D-)RRWP encoding.

3.3 Attention Mechanism

Many GTs emulate the structure of Transformers designed for Euclidean data [DB20;
Kre+21; Yin+21; HZS22; Shi+23]. Meanwhile, GRASS uses attentive node aggregators
with attention scores computed by MLP edge aggregators, which is a more tailored atten-
tion mechanism for graph-structured data. Figure 3.3 provides a simple visualization, and
Figure 3.4 illustrates its structure in detail. The GRASS attention mechanism is defined
as follows, where N− denotes in-neighbors, W denotes trainable weights, and ε denotes a
small constant added for numerical stability. For simplicity, biases are not shown in these
equations.

sli,j = dropout(exp(Wl
attn←edgee

l−1
i,j)) ∈ R+n

, (3.7)

al
i,j =

sli,j∑
h∈N−(j)∪{j} s

l
h,j + ε

∈ R+n
, (3.8)

x̃l
j = Wl

tail←tailx
l−1
j +

∑
i∈N−(j)∪{j}

al
i,j ⊙ (Wl

tail←headx
l−1
i + Wl

tail←edgee
l−1
i,j) ∈ Rn , (3.9)

ẽlj,i = Wl
edge←edgee

l−1
i,j + Wl

edge←headx
l−1
i + Wl

edge←tailx
l−1
j ∈ Rn . (3.10)

10

Figure 3.4: The structure of an attention layer of GRASS. Node aggregation is attentive,
with attention weights derived from edge representations. Edge aggregation is done through
an MLP. For simplicity, biases are not shown here.

Attention Weights. This attention mechanism is unique in the way it uses edge rep-
resentations as the medium of attention weights. To achieve Relationship Representation,
edge representations must be updated alongside node representations [Zho+23]. A directed
edge is an ordered pair of nodes, and an undirected edge can be represented by two directed
edges with opposite directions. The orderedness of nodes connected by an edge allows us to
use an MLP as the edge aggregator while preserving Permutation Equivariance. Assuming
that Relationship Representation is satisfied, edge features would already represent node
relationships, which could be used as attention weights ai,j after applying a linear layer
and performing a component-wise softmax over the neighborhood.

Random Edge Removal. To complement the proposed random rewiring technique,
which adds edges but never removes them, GRASS attention randomly removes edges in
computing attention weights with the dropout function in Equation 3.7. The goal is to
reduce the model’s dependence on the presence of particular edges in the graph, facilitating
Selective Aggregation. This can also be seen as a generalization of DropKey [Li+22] to

11

graphs, because it randomly masks the attention matrix prior to the softmax operation,
unlike DropAttention [Zeh+19].

Edge Flipping. While the proposed attention mechanism naturally achieves Direction-
ality Preservation by aggregating information in the same direction as edges, it can severely
restrict the flow of information, putting it in conflict with Effective Communication. As
a solution, the direction of each edge is switched from one layer to the next: in odd-
numbered layers, the directions match those of the edges in the rewired graph H, while in
even-numbered layers, they are reversed. This enables the model to propagate information
in both directions even when the input graph is directed, improving its expressivity. In
Equation 3.10, we compute ẽlj,i, the updated representation of edge j → i by using el−1i,j ,
the representation of edge i→ j from the previous layer, effectively flipping the edge.

Feed-Forward Network. Similar to Transformers, the output of the attention mech-
anism is passed through an FFN. Here, ϕ denotes a ReLU-like [NH10; RZL17] nonlinear
activation function, which we choose to be Mish [Mis19].

x̂l
i = Wl

node-outϕ(x̃l
i + bl

node-act) + bl
node-out ∈ Rn , (3.11)

êli,j = Wl
edge-outϕ(ẽli,j + bl

edge-act) + bl
edge-out ∈ Rn . (3.12)

Normalization and Residual Connection. We use post-normalization in residual
connections, which has been shown to improve the expressiveness of Transformers [Liu+20].
The residual connection is scaled by a constant α to improve training stability [Wan+22].

xl
i = BN(xl−1

i + αx̂l
i) ∈ Rn , (3.13)

eli,j = BN(el−1i,j + αêli,j) ∈ Rn . (3.14)

Graph Pooling. For graph-level tasks, graph pooling is required at the output of a GNN
to produce a vector representation of each graph, capturing global properties relevant to
the task [Wu+20]. GRASS employs sum pooling—a simple method as expressive as the
Weisfeiler-Lehman graph isomorphism test [LW68]—while many more complicated pooling
methods are not as expressive [BKH21]. Considering the randomness of the added edges,
they are pooled separately from the preexisting edges in the input graph G, because the
pooled output of the randomly added edges may exhibit a different distribution than that
of the preexisting edges. Here, ∥ denotes concatenation.

y =
∑
i∈VG

xL
i

∥∥∥∥∥ ∑
(i,j)∈EG

eLi,j

∥∥∥∥∥ ∑
(i,j)∈ER

eLi,j ∈ R3n . (3.15)

3.4 Interpretations of GRASS

A Message Passing Perspective. GRASS is an MPNN on a noisy graph. In an MPNN,
information is propagated along the edges of the input graph, defined by its adjacency ma-
trix [Vel23]. GRASS can be seen as an MPNN that injects additive and multiplicative

12

noise into the adjacency matrix, through random rewiring and random edge removal, re-
spectively. The adjacency matrix AM followed by message passing is given by

AM = (AG + AR) ·AD , (3.16)

where AG is the adjacency matrix of the input graph G, AR is that of the superimposed
random regular graph R, AD is a random attention mask sampled by the dropout function
in Equation 3.7 (which can also be seen as the adjacency matrix of a random graph), +
denotes element-wise OR, and · denotes element-wise AND. Noise injection is well known
as an effective regularizer [Noh+17], and for graph-structured data, the random removal
of edges has demonstrated regularization effects [Ron+19].

A Graph Transformer Perspective. GRASS is a sparse Graph Transformer. Graph
Transformers allow each node to aggregate information from other nodes through graph
attention mechanisms, with a general definition [Vel23] being

x′j = ϕ

(
xj,

⊕
i∈N (j)

a(xi,xj)ψ(xi)

)
, (3.17)

where ϕ and ψ are neural networks, a is an attention weight function, and
⊕

is a
permutation-invariant aggregator. Many GTs compute attention weights using scaled dot-
product attention [Vas+17], with node features as keys and queries. However, we observe
that edge features in GRASS, which are updated by aggregating information from its head
and tail nodes with an MLP, could be used to directly compute attention weights as a
form of additive attention [BCB14]. Relationship Representation would then be critical for
the attention weights to be meaningful, which GRASS satisfies through expressive edge
encodings and the deep processing of edge features. Many GTs achieve sparsity by integrat-
ing [Ram+22] or generalizing [Shi+23] BigBird’s sparse dot-product attention. Meanwhile,
GRASS achieves sparsity in a graph-native way: attention is always local, so non-adjacent
nodes in the rewired graph would naturally never attend to each other. Seeing GRASS as a
Transformer, its attention mask would be AM as defined in Equation 3.16, which contains
O(r|V |+ |E|) nonzero elements.

13

14

Chapter 4
Experiments

4.1 Benchmarking GRASS

Experimental Setup. To measure the performance of GRASS, we train and evaluate it
on five of the GNN Benchmark Datasets [Dwi+23]: ZINC, MNIST, CIFAR10, CLUSTER,
and PATTERN, as well as four of the Long Range Graph Benchmark (LRGB) [Dwi+22]
datasets: Peptides-func, Peptides-struct, PascalVOC-SP, and COCO-SP. Following the
experimental setup of Rampášek, Galkin, Dwivedi, Luu, Wolf, and Beaini [Ram+22] and
other work that we compare, we configure GRASS to around 100k parameters for MNIST
and CIFAR10, and 500k parameters for all other datasets. Additional information on the
datasets can be found in Appendix A.5.1.

Due to the use of random rewiring, the output of the model is not deterministic. There-
fore, we evaluate the trained model 100 times for ZINC, and 10 times for other datasets,
for each training run. The average performance is reported as the performance of that
run. We use D-RRWP encoding on Peptides-func, PascalVOC-SP and COCO-SP, and
RRWP encoding on other datasets. Models are trained with the Lion optimizer [Che+23].
Hyperparameters can be found in Appendix A.5.2.

Results. As shown in Tables 4.1 and 4.2, GRASS ranks first on ZINC, MNIST, CI-
FAR10, PATTERN, Peptides-struct, PascalVOC-SP, and COCO-SP, while ranking second
on CLUSTER and fifth on Peptides-func, among the models compared. Notably, GRASS
achieves 20.3% lower MAE on ZINC compared to GRIT [Ma+23], the second-best model,
which has O(|V |2) time and space complexity.

15

Table 4.1: Performance on GNN Benchmark Datasets. The performance of GRASS shown
here is the mean ± s.d. of 16 runs on ZINC, and 8 runs on other datasets. The best and
second-best results are highlighted. Performance numbers other than that of GRASS are
adapted from Ma, Lin, Lim, Romero-Soriano, Dokania, Coates, Torr, and Lim [Ma+23],
Shirzad, Velingker, Venkatachalam, Sutherland, and Sinop [Shi+23], and Chen, Schulz,
and Borgwardt [CSB24]. “-” indicates experiments not reported in these works.

Model
ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑
GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
GatedGCN-LSPE 0.090 ± 0.001 - - - -
PNA 0.188 ± 0.004 97.94 ± 0.12 70.35 ± 0.63 - -
DGN 0.168 ± 0.003 - 72.838 ± 0.417 86.680 ± 0.034 -
GSN 0.101 ± 0.010 - - - -
CIN 0.079 ± 0.006 - - - -
CRaW1 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 - -
GIN-AK+ 0.080 ± 0.001 - 72.19 ± 0.13 86.850 ± 0.057 -
SAN 0.139 ± 0.006 - - - 76.691 ± 0.65
Graphormer 0.122 ± 0.006 - - - -
K-Subgraph SAT 0.094 ± 0.008 - - 86.848 ± 0.037 77.856 ± 0.104
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
Graphormer-URPE 0.086 ± 0.007 - - - -
Graphormer-GD 0.081 ± 0.009 - - - -
GPS 0.070 ± 0.004 - 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
Exphormer - 98.55 ± 0.039 74.69 ± 0.125 86.74 ± 0.015 78.07 ± 0.037
GRIT 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
NeuralWalker 0.065 ± 0.001 98.760 ± 0.079 80.027 ± 0.185 86.977 ± 0.012 78.189 ± 0.188
GRASS (ours) 0.047 ± 0.001 98.932 ± 0.076 83.750 ± 0.141 89.177 ± 0.313 79.541 ± 0.173

16

Table 4.2: Performance on LRGB datasets. The performance of GRASS shown here is the
mean ± s.d. of 8 runs. The best and second-best results are highlighted. Performance
numbers other than that of GRASS are adapted from Gutteridge, Dong, Bronstein, and
Di Giovanni [Gut+23], Tönshoff, Ritzert, Rosenbluth, and Grohe [Tön+23], Ma, Lin, Lim,
Romero-Soriano, Dokania, Coates, Torr, and Lim [Ma+23], Shirzad, Velingker, Venkat-
achalam, Sutherland, and Sinop [Shi+23], and Chen, Schulz, and Borgwardt [CSB24]. “-”
indicates experiments not reported in these works. *These models are re-tuned by Tönshoff,
Ritzert, Rosenbluth, and Grohe [Tön+23] to provide stronger baselines.

Model
Peptides-func Peptides-struct PascalVOC-SP COCO-SP

AP ↑ MAE ↓ Macro F1 ↑ Macro F1 ↑
GCN* 0.6860 ± 0.0050 0.2460 ± 0.0007 0.2078 ± 0.0031 0.1338 ± 0.0007
GINE* 0.6621 ± 0.0067 0.2473 ± 0.0017 0.2718 ± 0.0054 0.2125 ± 0.0009
GatedGCN* 0.6765 ± 0.0047 0.2477 ± 0.0009 0.3880 ± 0.0040 0.2922 ± 0.0018
DIGL+MPNN 0.6469 ± 0.0019 0.3173 ± 0.0007 0.2824 ± 0.0039 -
DIGL+MPNN+LapPE 0.6830 ± 0.0026 0.2616 ± 0.0018 0.2921 ± 0.0038 -
MixHop-GCN 0.6592 ± 0.0036 0.2921 ± 0.0023 0.2506 ± 0.0133 -
MixHop-GCN+LapPE 0.6843 ± 0.0049 0.2614 ± 0.0023 0.2218 ± 0.0174 -
DRew-GCN 0.6996 ± 0.0076 0.2781 ± 0.0028 0.1848 ± 0.0107 -
DRew-GCN+LapPE 0.7150 ± 0.0044 0.2536 ± 0.0015 0.1851 ± 0.0092 -
DRew-GIN 0.6940 ± 0.0074 0.2799 ± 0.0016 0.2719 ± 0.0043 -
DRew-GIN+LapPE 0.7126 ± 0.0045 0.2606 ± 0.0014 0.2692 ± 0.0059 -
DRew-GatedGCN 0.6733 ± 0.0094 0.2699 ± 0.0018 0.3214 ± 0.0021 -
DRew-GatedGCN+LapPE 0.6977 ± 0.0026 0.2539 ± 0.0007 0.3314 ± 0.0024 -
Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016 0.2694 ± 0.0098 0.2618 ± 0.0031
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3230 ± 0.0039 0.2592 ± 0.0158
GPS+LapPE* 0.6534 ± 0.0091 0.2509 ± 0.0014 0.4440 ± 0.0065 0.3884 ± 0.0055
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3975 ± 0.0037 0.3455 ± 0.0009
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012 - -
NeuralWalker 0.7096 ± 0.0078 0.2463 ± 0.0005 0.4912 ± 0.0042 0.4398 ± 0.0033
GRASS (ours) 0.6737 ± 0.0064 0.2459 ± 0.0007 0.5670 ± 0.0049 0.4752 ± 0.0032

17

Table 4.3: Ablation study results for the number of added edges per node, with random
regular and non-regular graphs, on ZINC. Reported values for ablated models, except peak
VRAM consumption, are the mean ± s.d. over 8 runs. The variance of model performance
due to random rewiring are measured by evaluating the test set 100 times on each trained
model. For comparison, the variance of model performance due to randomness in the
training process is 1.79e-6.

Added Edge per Node 0 3 6 9 12 Fully Connected

MAE ↓
Regular

0.0480 0.0470 0.0484 0.0483
0.0557 ± 0.0019 ± 0.0013 ± 0.0018 ± 0.0012 0.0492

Non-Regular
± 0.0021 0.0488 0.0486 0.0480 0.0475 ± 0.0008

± 0.0015 ± 0.0020 ± 0.0019 ± 0.0021

Variance in MAE
Due to Random
Rewiring

Regular
Deterministic

7.60e-8 1.37e-7 1.67e-7 2.24e-7

Deterministic
± 3.67e-8 ± 1.00e-7 ± 8.51e-8 ± 1.11e-7

Non-Regular
1.20e-7 1.39e-7 1.63e-7 9.94e-8

± 9.23e-8 ± 4.75e-8 ± 1.19e-7 ± 4.47e-8

Training Time
per Epoch (s)

Regular
1.81 1.95 2.02 2.19

1.74 ± 0.10 ± 0.07 ± 0.05 ± 0.05 2.40

Non-Regular
± 0.02 1.75 1.87 2.00 2.20 ± 0.03

± 0.04 ± 0.07 ± 0.03 ± 0.04
Peak VRAM
Consumption (MiB)

Regular
1415

1911 2529 3051 3569
4273

Non-Regular 1889 2489 3009 3511

4.2 Ablation Study

Experimental Setup. We examine the impact of RRWP encoding and D-RRWP encod-
ing by comparing their performance with each other and with LapPE [Dwi+21], a widely
used graph encoding technique. We examine the effects of random rewiring by varying the
number of added edges per node, and superimposing random non-regular graphs instead of
random regular graphs. Furthermore, we assess the effects of the GRASS attention mecha-
nism by replacing it with the attention mechanisms of GAT [Vel+17], GatedGCN [BL17],
and Transformer [Vas+17], while keeping the rest of the model intact. These experi-
ments are conducted on ZINC, a well-known GNN benchmark that represents tasks on
smaller graphs, and PascalVOC-SP, which represents tasks on larger graphs that require
long-range interaction. Detailed results on PascalVOC-SP are presented in Appendix A.3.
Additionally on ZINC, we explore the impact of minor design choices, including random
edge removal, edge flipping, normalization, graph pooling, and the optimizer. Our find-
ings suggest that the combination of (D-)RRWP encoding, random rewiring, and GRASS
attention demonstrates superior effectiveness compared to alternative combinations on the
evaluated datasets.

RandomWalk Encoding. On both ZINC and PascalVOC-SP, switching between RRWP
and D-RRWP results in an insignificant change in performance: 0.64% on ZINC and 0.35%
on PascalVOC-SP. Meanwhile, replacing D-RRWP with RRWP results in a 17.73× larger
preprocessed dataset on PascalVOC-SP. This highlights the viability of D-RRWP as an ef-
ficient replacement of RRWP on certain graphs, but we also notice that D-RRWP does not
perform as well as RRWP on Peptides-struct. Replacing RRWP or D-RRWP with LapPE

18

0 3 6 9 12 Fully Connected
Added Edges per Node

0.
04

2
0.

04
4

0.
04

6
0.

04
8

0.
05

0
0.

05
2

0.
05

4
0.

05
6

M
AE

0.0557

0.0492

0.0480

0.0488

0.0470

0.0486 0.0484

0.0480

0.0483

0.0475

Regular (MAE)
Non-Regular (MAE)
Common (MAE)
Regular (Peak VRAM Consumption)
Non-Regular (Peak VRAM Consumption)
Common (Peak VRAM Consumption)

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
Pe

ak
 V

RA
M

 C
on

su
m

pt
io

n
(M

iB
)

1415

4273

1911
2529

3051
3569

1889
2489

3009
3511

Figure 4.1: Visualized ablation study results for the number of added edges per node, with
random regular and non-regular graphs, on ZINC. Error bars represent one standard error
of the mean. The setup is identical to that described in Table 4.3.

results in a significant degradation of performance on ZINC, but a much smaller degrada-
tion on PascalVOC-SP, indicating that the combination of LapPE with other components
of GRASS is more dataset-dependent and generally not as effective.

Random Rewiring. On both ZINC and PascalVOC-SP, the optimal number of added
edges per node is 6 when using random regular graphs, with any deviation from this value
leading to degraded performance. On ZINC, replacing random regular graphs with non-
regular random graphs requires adding more edges to achieve comparable performance,
which in turn increases runtime and memory consumption. Moreover, fixing the added
edges across epochs rather than resampling them at every epoch results in a 37.2% increase
in MAE. These findings demonstrate that both the regularity and the randomness of the
superimposed graphs are crucial for the model’s efficiency and performance.

GRASS Attention. On both ZINC and PascalVOC-SP, replacing GRASS attention
with alternative attention mechanisms substantially degrades performance, by at least
26.0% on ZINC and 14.7% on PascalVOC-SP. This indicates that GRASS attention, our
novel design, is a vital component for GRASS to achieve its competitive performance.

Minor Design Decisions. None of the minor design decisions, when altered or removed,
results in a significant performance degradation on ZINC: an advantage of at least 15.2% is
maintained compared to GRIT, the second-best model. This verifies that the performance
advantage of GRASS is achieved mainly by the proposed combination of encoding, rewiring,
and attention mechanism.

19

Table 4.4: Ablation study results for random rewiring, graph encoding, attention mech-
anism, and minor design decisions on ZINC. This table shows the performance of each
ablated model as the mean ± s.d. over 8 runs. The implementations of replacement atten-
tion mechanisms are provided by PyTorch Geometric [FL19], and we adjust the head size
to approach 500k parameters. *The maximum number of Laplacian eigenvectors to use
for LapPE on ZINC is 8, which is constrained by the smallest graph in the dataset. For a
fair comparison, we include a setup that pads the LapPE of smaller graphs with zeros to
raise the maximum number of eigenvectors to 32. †The learning rate is adjusted for these
configurations to stabilize training. ‡The batch size, learning rate, betas, and weight decay
factor are adjusted for this configuration to stabilize training.

Setup MAE ↓
GRASS 0.0470 ± 0.0013

Rewire at every epoch → Rewire once before training 0.0645 ± 0.0015
RRWP (32 steps) → D-RRWP (32 eigenpairs, 32 steps) 0.0473 ± 0.0021
RRWP (32 steps) → LapPE (8 eigenvectors)* 0.0829 ± 0.0041
RRWP (32 steps) → Padded LapPE (32 eigenvectors)* 0.0879 ± 0.0067
GRASS attention → GAT attention [Vel+17] 0.0592 ± 0.0023
GRASS attention → GatedGCN attention† [BL17] 0.0651 ± 0.0030
GRASS attention → Transformer attention† [Vas+17] 0.0652 ± 0.0016
No random edge removal 0.0500 ± 0.0018
No edge flipping 0.0470 ± 0.0010
BN → LN [BKH16] 0.0497 ± 0.0009
Sum pooling → Mean pooling 0.0493 ± 0.0024
Lion → AdamW‡ [LH+17] 0.0499 ± 0.0006

20

Chapter 5
Conclusion

We have presented GRASS, a novel GNN architecture that synergistically integrates
(D-)RRWP encoding, random rewiring, and a new graph-tailored additive attention mech-
anism. Our empirical evaluations show that GRASS achieves and often surpasses state-of-
the-art performance across a diverse set of benchmark problems.

5.1 Limitations

Empirical Evaluation of Scalability. GRASS has O(|V | + |E|) time and space com-
plexity, which implies good scalability to large and sparse graphs. While evaluating GRASS
on extremely large graphs could provide additional insights, it is beyond the scope of this
work due to time constraints.

Nondeterministic Output. The output of GRASS is inherently random due to random
rewiring. The relationship between performance variance and the number of randomly
added edges is demonstrated in Table 4.3 and Table A.2. In scenarios that strictly require
deterministic output, the random number generator used for random rewiring needs to be
made deterministic with respect to the input graph. For example, the random number
generator can be seeded with a hash of the input graph.

5.2 Reproducibility

The source code of GRASS is available at https://github.com/grass-gnn/grass.

21

https://github.com/grass-gnn/grass

22

Bibliography
This bibliography contains 62 references.

[Arn+22] Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver.
“DiffWire: Inductive Graph Rewiring via the Lovasz Bound”. In: The First
Learning on Graphs Conference. 2022.

[AY20] Uri Alon and Eran Yahav. “On the bottleneck of graph neural networks and
its practical implications”. In: arXiv preprint arXiv:2006.05205 (2020).

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate”. In: arXiv preprint
arXiv:1409.0473 (2014).

[BF82] Béla Bollobás and W Fernandez de la Vega. “The diameter of random regular
graphs”. In: Combinatorica 2 (1982), pp. 125–134.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normaliza-
tion”. In: arXiv preprint arXiv:1607.06450 (2016).

[BKH21] Jinheon Baek, Minki Kang, and Sung Ju Hwang. “Accurate learning of graph
representations with graph multiset pooling”. In: arXiv preprint arXiv:2102.11533
(2021).

[BL17] Xavier Bresson and Thomas Laurent. “Residual gated graph convnets”. In:
arXiv preprint arXiv:1711.07553 (2017).

[Bla+23] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. “Understand-
ing oversquashing in gnns through the lens of effective resistance”. In: Inter-
national Conference on Machine Learning. PMLR. 2023, pp. 2528–2547.

[Che+20] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. “Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view”. In: Proceedings of the AAAI conference on artificial intelli-
gence. Vol. 34. 04. 2020, pp. 3438–3445.

[Che+23] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao
Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, et al. “Symbolic
discovery of optimization algorithms”. In: arXiv preprint arXiv:2302.06675
(2023).

[CSB24] Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. “Learning Long
Range Dependencies on Graphs via Random Walks”. In: arXiv preprint arXiv:2406.03386
(2024).

23

[Dau+17] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. “Language
modeling with gated convolutional networks”. In: International conference on
machine learning. PMLR. 2017, pp. 933–941.

[DB20] Vijay Prakash Dwivedi and Xavier Bresson. “A generalization of transformer
networks to graphs”. In: arXiv preprint arXiv:2012.09699 (2020).

[Dwi+21] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. “Graph neural networks with learnable structural and
positional representations”. In: arXiv preprint arXiv:2110.07875 (2021).

[Dwi+22] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy
Wolf, Anh Tuan Luu, and Dominique Beaini. “Long range graph benchmark”.
In: Advances in Neural Information Processing Systems 35 (2022), pp. 22326–
22340.

[Dwi+23] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. “Benchmarking graph neural networks”.
In: Journal of Machine Learning Research 24.43 (2023), pp. 1–48.

[Ell+11] Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Jamakovic,
and Robert E Kooij. “Effective graph resistance”. In: Linear algebra and its
applications 435.10 (2011), pp. 2491–2506.

[Ell11] David Ellis. “The expansion of random regular graphs”. In: Lecture Notes,
Lent 34 (2011).

[EY36] Carl Eckart and Gale Young. “The approximation of one matrix by another
of lower rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[FKS89] Joel Friedman, Jeff Kahn, and Endre Szemeredi. “On the second eigenvalue
of random regular graphs”. In: Proceedings of the twenty-first annual ACM
symposium on Theory of computing. 1989, pp. 587–598.

[FL19] Matthias Fey and Jan Eric Lenssen. “Fast graph representation learning with
PyTorch Geometric”. In: arXiv preprint arXiv:1903.02428 (2019).

[GC19] Liyu Gong and Qiang Cheng. “Exploiting edge features for graph neural net-
works”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 9211–9219.

[Gör00] Frank Göring. “Short proof of Menger’s Theorem”. In: Discrete Mathematics
219.1-3 (2000), pp. 295–296.

[Gut+23] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di
Giovanni. “Drew: Dynamically rewired message passing with delay”. In: In-
ternational Conference on Machine Learning. PMLR. 2023, pp. 12252–12267.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs”. In: Advances in neural information processing sys-
tems 30 (2017).

[HZS22] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian.
“Global self-attention as a replacement for graph convolution”. In: Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 2022, pp. 655–665.

24

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International con-
ference on machine learning. pmlr. 2015, pp. 448–456.

[KBM22] Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. “FoSR: First-
order spectral rewiring for addressing oversquashing in GNNs”. In: arXiv
preprint arXiv:2210.11790 (2022).

[Kre+21] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and
Prudencio Tossou. “Rethinking graph transformers with spectral attention”.
In: Advances in Neural Information Processing Systems 34 (2021), pp. 21618–
21629.

[KW16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[Lan50] Cornelius Lanczos. “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators”. In: (1950).

[LH+17] Ilya Loshchilov, Frank Hutter, et al. “Fixing weight decay regularization in
adam”. In: arXiv preprint arXiv:1711.05101 5 (2017).

[Li+22] Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han, Xiangjian Jiang, Tiande
Guo, and Luoqi Liu. “DropKey”. In: arXiv preprint arXiv:2208.02646 (2022).

[Liu+20] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han.
“Understanding the difficulty of training transformers”. In: arXiv preprint
arXiv:2004.08249 (2020).

[LP24] Tongzhou Liao and Barnabás Póczos. “Greener GRASS: Enhancing GNNs
with Encoding, Rewiring, and Attention”. In: arXiv preprint arXiv:2407.05649
(2024).

[LSY98] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods. SIAM, 1998.

[LW17] JF Lutzeyer and AT Walden. “Comparing graph spectra of adjacency and
laplacian matrices”. In: arXiv preprint arXiv:1712.03769 (2017).

[LW68] AA Leman and Boris Weisfeiler. “A reduction of a graph to a canonical form
and an algebra arising during this reduction”. In: Nauchno-Technicheskaya
Informatsiya 2.9 (1968), pp. 12–16.

[Ma+23] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Doka-
nia, Mark Coates, Philip Torr, and Ser-Nam Lim. “Graph Inductive Biases in
Transformers without Message Passing”. In: arXiv preprint arXiv:2305.17589
(2023).

[Mis19] Diganta Misra. “Mish: A self regularized non-monotonic activation function”.
In: arXiv preprint arXiv:1908.08681 (2019).

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines”. In: Proceedings of the 27th international conference on
machine learning (ICML-10). 2010, pp. 807–814.

25

[Noh+17] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. “Regular-
izing deep neural networks by noise: Its interpretation and optimization”. In:
Advances in neural information processing systems 30 (2017).

[Pla+23] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Li-
udmila Prokhorenkova. “A critical look at the evaluation of GNNs under het-
erophily: Are we really making progress?” In: arXiv preprint arXiv:2302.11640
(2023).

[Pud15] Doron Puder. “Expansion of random graphs: New proofs, new results”. In:
Inventiones mathematicae 201.3 (2015), pp. 845–908.

[Ram+22] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. “Recipe for a general, powerful, scalable
graph transformer”. In: Advances in Neural Information Processing Systems
35 (2022), pp. 14501–14515.

[Ron+19] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. “Dropedge:
Towards deep graph convolutional networks on node classification”. In: arXiv
preprint arXiv:1907.10903 (2019).

[Ros+24] Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca,
Stephan Günnemann, and Michael M Bronstein. “Edge directionality improves
learning on heterophilic graphs”. In: Learning on Graphs Conference. PMLR.
2024, pp. 25–1.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation
functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[Shi+23] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Suther-
land, and Ali Kemal Sinop. “Exphormer: Sparse transformers for graphs”.
In: International Conference on Machine Learning. PMLR. 2023, pp. 31613–
31632.

[Tön+23] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. “Where
did the gap go? reassessing the long-range graph benchmark”. In: arXiv preprint
arXiv:2309.00367 (2023).

[Top+21] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen
Dong, and Michael M Bronstein. “Understanding over-squashing and bottle-
necks on graphs via curvature”. In: arXiv preprint arXiv:2111.14522 (2021).

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: Advances in neural information processing systems 30 (2017).

[Vel+17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903
(2017).

[Vel23] Petar Veličković. “Everything is connected: Graph neural networks”. In: Cur-
rent Opinion in Structural Biology 79 (2023), p. 102538.

[Wan+22] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and
Furu Wei. “Deepnet: Scaling transformers to 1,000 layers”. In: arXiv preprint
arXiv:2203.00555 (2022).

26

[Wu+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. “A comprehensive survey on graph neural networks”. In: IEEE
transactions on neural networks and learning systems 32.1 (2020), pp. 4–24.

[Xu+18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful
are graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018).

[Yin+21] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. “Do transformers really perform badly for
graph representation?” In: Advances in Neural Information Processing Systems
34 (2021), pp. 28877–28888.

[Yun+19] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo
J Kim. “Graph transformer networks”. In: Advances in neural information
processing systems 32 (2019).

[Zah+20] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie,
Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. “Big bird: Transformers for longer sequences”. In: Advances in
neural information processing systems 33 (2020), pp. 17283–17297.

[Zeh+19] Lin Zehui, Pengfei Liu, Luyao Huang, Junkun Chen, Xipeng Qiu, and Xu-
anjing Huang. “Dropattention: A regularization method for fully-connected
self-attention networks”. In: arXiv preprint arXiv:1907.11065 (2019).

[Zho+23] Yuchen Zhou, Hongtao Huo, Zhiwen Hou, Lingbin Bu, Jingyi Mao, Yifan
Wang, Xiaojun Lv, and Fanliang Bu. “Co-embedding of edges and nodes with
deep graph convolutional neural networks”. In: Scientific Reports 13.1 (2023),
p. 16966.

27

28

Appendix A
Additional Details

A.1 Motivations for Superimposing Random Regular

Graphs

Effects on Diameter. The diameter of a graph upper-bounds the distance between two
nodes, and thus the number of layers for an MPNN to propagate information between
them [AY20]. Superimposing a random regular graph on the input graph can drastically
decrease its diameter. The least integer d that satisfies

(r − 1)d−1 ≥ (2 + ε)r|V | log |V | (A.1)

is the upper bound of the diameter of almost every random r-regular graph with |V |
nodes, where r ≥ 3 and ε > 0 [BF82]. Since adding edges to a graph never increases
its diameter, the diameter d of the rewired graph is asymptotically upper-bounded by
d ∈ O(logr |V |) when r ≥ 3. Subsequently, all nodes would be able to communicate with
each other given O(logr |V |) message passing layers, which could significantly reduce the
risk of underreaching on large graphs. In addition, the diameter of a graph is a trivial
upper bound of its effective resistance [Ell+11], which has been shown to be positively
associated with oversquashing [Bla+23]. Intuitively, it upper bounds the “length” of the
bottleneck through which messages are passed.

Effects on Internally Disjoint Paths. Since oversquashing can be attributed to squeez-
ing too many messages through the fixed-size feature vector of a node [AY20], increasing
the number of internally disjoint paths between two nodes may reduce oversquashing by
allowing information to propagate through more nodes in parallel. Intuitively, it increases
the “width” of the bottleneck. A random r-regular graph with r ≥ 2 almost certainly has
a vertex connectivity of r as |V | → ∞ [Ell11]. Menger’s Theorem then lower-bounds the
number of internally disjoint paths by a graph’s vertex connectivity [Gör00].

Effects on Spectral Gap. Oversquashing has been shown to decrease as the spectral
gap of a graph increases, which is defined as λ1, the smallest positive eigenvalue of the

29

graph’s Laplacian matrix [KBM22]. It has been proven that a random r-regular graph
sampled uniformly from the set of all r-regular graphs with |V | nodes almost certainly has
µ < 2

√
r − 1+1 as |V | → ∞, where µ is the largest absolute value of nontrivial eigenvalues

of its adjacency matrix [Pud15]. Since the graph is r-regular, its i-th adjacency matrix
eigenvalue µi and i-th Laplacian matrix eigenvalue λi satisfy λi = r − µi [LW17], lower-
bounding the spectral gap with λ1 > r − 2

√
r − 1− 1.

A.2 Results on Heterophilic Graphs

Although tackling heterophily is not the main focus of this work, we have benchmarked
GRASS on roman-empire [Pla+23], a heterophilic graph, with results shown in Table A.1.
The experimental setup is identical to that described in Section 4.1, and hyperparameters
can be found in Appendix A.5.2.

Table A.1: Performance on the roman-empire dataset. The performance of GRASS shown
here is the mean ± s.d. of 8 runs. The best and second-best results are highlighted.
Performance numbers other than that of GRASS are adapted from Chen, Schulz, and
Borgwardt [CSB24].

Model
roman-empire

Accuracy ↑
GCN 73.69 ± 0.74
GAT (-sep) 88.75 ± 0.41
GPS 82.00 ± 0.61
NAGphormer 74.34 ± 0.77
Exphormer 89.03 ± 0.37
Polynormer 92.55 ± 0.37
NeuralWalker 92.92 ± 0.36
GRASS (ours) 91.34 ± 0.22

30

A.3 Additional Ablation Study Results

Table A.2: Ablation study results for the number of added edges per node on PascalVOC-
SP. Reported values, except peak VRAM consumption, are the mean ± s.d. over 8 runs.
The experimental setup is identical to that described in Table 4.3. For comparison, the
variance of model performance due to randomness in the training process is 2.36e-5.

Added Edge per Node 0 3 6 9 12

Macro F1 ↑ 0.4430 0.5606 0.5670 0.5612 0.5619
± 0.0105 ± 0.0102 ± 0.0049 ± 0.0056 ± 0.0075

Variance in Macro F1
Due to Random Rewiring

Deterministic
3.40e-6 2.86e-6 2.27e-6 2.54e-6

± 2.12e-6 ± 8.51e-7 ± 9.32e-7 ± 1.37e-6
Training Time
per Epoch (s)

15.66 29.55 42.96 56.31 69.87
± 0.07 ± 0.16 ± 0.09 ± 0.16 ± 0.28

Peak VRAM (MiB) 8525 14191 19893 25591 31231

Table A.3: Ablation study results for graph encoding, graph rewiring, and attention mech-
anism on PascalVOC-SP. This table shows the performance of each ablated model as the
mean ± s.d. over 4 runs. The experimental setup is identical to that described in Table 4.4.
*Using RRWP encoding with 128 random walk steps would result in out-of-memory during
preprocessing. With D-RRWP (128 eigenpairs, 128 steps), the preprocessed dataset has
size 6.40 GiB, while with RRWP (32 steps), the preprocessed dataset has size 113.46 GiB,
which is 17.73× larger.

Setup Macro F1 ↑
GRASS 0.5670 ± 0.0049

D-RRWP (128 eigenpairs, 128 steps) → RRWP (32 steps)* 0.5690 ± 0.0045
D-RRWP (128 eigenpairs, 128 steps) → LapPE (128 eigenvectors) 0.5387 ± 0.0070
Random regular rewiring → Random non-regular rewiring 0.5622 ± 0.0081
GRASS attention → GAT attention [Vel+17] 0.4663 ± 0.0079
GRASS attention → GatedGCN attention† [BL17] 0.4414 ± 0.0075
GRASS attention → Transformer attention† [Vas+17] 0.4835 ± 0.0062

31

A.4 Computational Performance

Table A.4: Computational performance of GRASS on GNN Benchmark Datasets. Training
time per epoch is the wall-clock time taken to complete a single training epoch, shown as
the mean ± s.d. over 30 epochs. Preprocessing time is the wall-clock time taken to load,
preprocess, and store the whole dataset prior to training. Specifications of the hardware
used to run these experiments are also shown here.

Dataset ZINC MNIST CIFAR10 PATTERN CLUSTER
Training Time per Epoch (s) 1.87 ± 0.07 11.83 ± 0.21 15.56 ± 0.10 33.58 ± 0.05 25.34 ± 0.03
Preprocessing Time 25s 1m 1s 1m 32s 33s 27s
Model Compilation Yes
Activation Checkpointing No
CPU AMD Ryzen 9 9950X
GPU NVIDIA RTX A6000 Ada

Table A.5: Computational performance of GRASS on LRGB datasets. Training time
per epoch is shown as the mean ± s.d. over 30 epochs for Peptides-func and Peptides-
struct, and over 10 epochs for PascalVOC-SP and COCO-SP. The definition of statistics
are identical to that described in Table A.4.

Dataset Peptides-func Peptides-struct PascalVOC-SP COCO-SP
Training Time per Epoch (s) 6.19 ± 0.30 5.90 ± 0.03 42.96 ± 0.09 539.50 ± 0.32
Preprocessing Time 1m 10s 1m 32s 3m 58s 19m 49s
Model Compilation Yes Yes
Activation Checkpointing No Yes
CPU AMD Ryzen 9 9950X
GPU NVIDIA RTX A6000 Ada

32

A.5 Experimental Setup

A.5.1 Datasets

Table A.6: Statistics of GNN Benchmark Datasets, adapted from Rampášek, Galkin,
Dwivedi, Luu, Wolf, and Beaini [Ram+22].

Dataset # Graphs Avg. # Nodes Avg. # Edges Directionality Task Metric
ZINC 12000 23.2 24.9 Undirected Graph Regression MAE ↓
MNIST 70000 70.6 564.5 Directed Graph Classification Accuracy ↑
CIFAR10 60000 117.6 941.1 Directed Graph Classification Accuracy ↑
PATTERN 14000 118.9 3039.3 Undirected Node Classification Accuracy ↑
CLUSTER 12000 117.2 2150.9 Undirected Node Classification Accuracy ↑

Table A.7: Statistics of LRGB datasets, adapted from Dwivedi, Rampášek, Galkin, Parviz,
Wolf, Luu, and Beaini [Dwi+22].

Dataset # Graphs Avg. # Nodes Avg. # Edges Avg. Short. Path Avg. Diameter Task Metric
Peptides-func 15535 150.94 307.30 20.89 ± 9.79 56.99 ± 28.72 Graph Classification AP ↑
Peptides-struct 15535 150.94 307.30 20.89 ± 9.79 56.99 ± 28.72 Graph Regression MAE ↓
PascalVOC-SP 11355 479.40 2710.48 10.74 ± 0.51 27.62 ± 2.13 Node Classification Macro F1 ↑
COCO-SP 123286 476.88 2693.67 10.66 ± 0.55 27.39 ± 2.14 Node Classification Macro F1 ↑

A.5.2 Hyperparameters

Table A.8: Model hyperparameters for experiments on GNN Benchmark Datasets. Hidden
layers of the task head, if any, use the GLU activation function [Dau+17].

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
Parameters 496545 103690 103738 495298 495558
Attention Layers 49 15 15 53 53
Attention Layer Dim. 32 24 24 32 32
Task Head Hidden Dim. 192 144 144 N/A (Linear) N/A (Linear)
Epochs 2000 200 400 500 50
Warmup Epoch Ratio 0.1 0.05 0.1 0.1 0.1
Batch Size 200 200 200 200 200
Initial Learning Rate 1e-7 1e-7 1e-7 1e-7 1e-7
Peak Learning Rate 5e-4 1e-3 1e-3 1e-3 1e-3
Final Learning Rate 1e-7 1e-7 1e-7 3e-4 1e-7
Betas (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98)
Weight Decay Factor 0.5 0.3 0.3 3.0 0.3
Label Smoothing Factor N/A (Regression) 0.1 0.1 0.1 0.1
Residual Connection Scale α 0.2 0.4 0.4 0.2 0.2
Random Walk Encoding Type RRWP RRWP RRWP RRWP RRWP
(D-)RRWP Random Walk Length 32 24 24 32 32
Random Regular Graph Degree 6 6 6 6 6
Random Edge Removal Rate 0.1 0.1 0.1 0.5 0.5

33

Table A.9: Model hyperparameters for experiments on LRGB datasets and the roman-
empire dataset. Hidden layers of the task head, if any, use the GLU activation function
[Dau+17]. *This dataset consists of a single graph.

Model Peptides-func Peptides-struct PascalVOC-SP COCO-SP roman-empire
Parameters 500074 498315 501493 499377 2075730
Attention Layers 48 48 53 53 24
Attention Layer Dim. 32 32 32 32 96
Task Head Hidden Dim. 192 192 N/A (Linear) N/A (Linear) N/A (Linear)
Epochs 500 500 500 100 4000
Warmup Epoch Ratio 0.1 0.1 0.1 0.1 0.1
Batch Size 200 200 200 200 1*

Initial Learning Rate 1e-7 1e-7 1e-7 1e-7 1e-7
Peak Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
Final Learning Rate 1e-7 1e-7 1e-7 1e-7 1e-7
Betas (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98) (0.95, 0.98)
Weight Decay Factor 0.3 3.0 1.0 0.3 1.0
Label Smoothing Factor 0.1 N/A (Regression) 0.1 0.1 0.1
Residual Connection Scale α 0.2 0.2 0.2 0.2 0.3
Random Walk Encoding Type D-RRWP RRWP D-RRWP D-RRWP D-RRWP
(D-)RRWP Random Walk Length 128 64 128 64 256
Random Regular Graph Degree 3 3 6 6 3
Random Edge Removal Rate 0.1 0.1 0.1 0.1 0.5

34

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Graph Encoding
	3.2 Random Rewiring
	3.3 Attention Mechanism
	3.4 Interpretations of GRASS

	4 Experiments
	4.1 Benchmarking GRASS
	4.2 Ablation Study

	5 Conclusion
	5.1 Limitations
	5.2 Reproducibility

	Bibliography
	A Additional Details
	A.1 Motivations for Superimposing Random Regular Graphs
	A.2 Results on Heterophilic Graphs
	A.3 Additional Ablation Study Results
	A.4 Computational Performance
	A.5 Experimental Setup
	A.5.1 Datasets
	A.5.2 Hyperparameters

