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Abstract
Historically, the choice of method for a given statistical problem has been pri-

marily driven by two criteria: a method’s statistical properties, and its computational
properties. But as tools for high-dimensional estimation become ubiquitous, it is
clear that there are other considerations, going beyond pure accuracy and computa-
tional efficiency, that are equally (if not more) important. One such consideration is
a method’s “user-friendliness”— a term we use to encapsulate the various properties
that make a method easy to work with in practice, exemplified by a method being (i)
easy-to-implement, (ii) interpretable, and (iii) computationally cheap. In this thesis,
we present new statistical and computational results for three different user-friendly
methods in various high-dimensional estimation settings.

First, we give conditions for the existence and uniqueness of solutions to the
generalized lasso problem, which is a generalization of the standard lasso problem
that allows the user to easily impose domain-appropriate structure onto the fitted
coefficients. The conditions are very weak, and essentially guarantee uniqueness in
many settings of practical interest, even in high dimensions, which are useful re-
sults from the points-of-view of interpretability as well as prediction. Second, we
consider early-stopped gradient descent (as an estimator), giving a number of re-
sults that tightly couple the risk profile of the iterates generated by gradient descent,
when run on the fundamental problem of least squares regression, to that of ridge
regression — these results are favorable for gradient descent, as it is relatively easy-
to-implement as well as computationally cheap. We also discuss extending the anal-
ysis to give a similar coupling for (the arguably even more user-friendly) stochastic
gradient descent. Finally, we present a new user-friendly, pseudolikelihood-based
method for robust undirected graphical modeling that we call the Multiple Quantile
Graphical Model (MQGM), showing that the MQGM recovers the population-level
conditional independencies, with high probability — this is again a useful result,
from an interpretability standpoint. We also give a highly efficient algorithm, based
on the alternating direction method of multipliers, for fitting the MQGM to high-
dimensional and potentially non-Gaussian data.
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Chapter 1

Introduction

1.1 What is “User-Friendliness”?
In traditional applications of statistics and machine learning, the choice of method is usually
driven by weighing two criteria: a method’s statistical properties, and its computational proper-
ties. On the other hand, the recent explosion of interest in machine learning has shaped modern
statistical practice in ways that challenge this traditional viewpoint. One prominent trend has
been that of non-specialists increasingly being asked to deploy machine learning systems into the
“wild”; as a consequence, these days, there is a growing preference for methods having properties
that appear to lie along a “third axis”, i.e., for methods that are (i) easy-to-implement, (ii) inter-
pretable, and (iii) computationally cheap. In the rest of this thesis document, we will somewhat
informally refer to a method possessing these properties as one that is “user-friendly”.1 Given
the relevance of user-friendly methods to the modern practice of statistics and machine learn-
ing, it seems important to zero in on these user-friendly estimators in particular, and study their
statistical and computational properties; characterizing the various properties of user-friendly
methods can be helpful, as it gives practitioners (as well as statisticians) a more complete picture
of the pros and cons of various methods. In this thesis, we present new statistical and compu-
tational results for three different user-friendly methods for statistical estimation. Before giving
an overview of these results, we work through and discuss several examples of user-friendly
estimators, in order to help make clear the concept for the reader.

1.2 Diving Deeper into User-Friendliness

1.2.1 A Semi-Synthetic Data Example
To clarify the notion of user-friendliness, it may help to see a concrete example. In what follows,
we outline a semi-synthetic data example, describing an approach to estimation that is user-
friendly, as well as several approaches that are evidently much less user-friendly. Here, we con-
sider predicting a response variable, given functional magnetic resonance imaging (fMRI) data

1Giving a formal definition for user-friendliness seems to be a valuable and worthwhile pursuit; however, we
defer doing this in a thorough and comprehensive way, to future work.
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coming from several children diagnosed with attention deficient hyperactive disorder (ADHD)
[10]; we elaborate on the construction of the repsonse in just a moment, but for now we focus on
describing the predictors. Our specific data matrixX ∈ Rn×p contains p = 39 columns, each one
corresponding to a different physical location on the brain. The number of rows in X is given by
n = 703, and this arises from the number of different subjects, as well as the time resolution, at
which the measurements were taken.

There is evidence in the neuroscience literature that some physiological processes are rea-
sonably modeled by a few spatially coherent (nearby) regions of the brain, having comparable
effect sizes [8, 9, 30, 80, 147]. Therefore, thinking of the response y ∈ Rn as modeling attention
span, it makes sense to express

y = a1 · (X2 +X10 +X37) + a2 · (X3 +X5 +X33) + a3 · (X1 +X16 +X35) + ε,

where a1 = a2 = a3 = 10 are just fixed constants, and ε ∈ Rn is standard Gaussian noise. Above,
the groups of columns of X (e.g., {X2, X10, X37}) in the linear combination that drives y, were
found to be spatially nearby after inspecting the data, reflecting the aforementioned principle of
spatial coherence. Put slightly differently, in the above construction, we view the underlying
signal β0 = (a3, a1, a2, 0, 0, . . .) ∈ Rp as locally constant with respect to some underlying graph,
where the vertices of the graph are put into a one-to-one correspondence with the dimensions.
Figure 1.1 illustrates the idea, where we see that nearby coefficients (equivalently, vertices of the
graph) are encouraged to take on similar values.

Figure 1.1: Illustration of the graph associated with the fMRI data example. Here, nearby vertices in
the graph (equivalently, coefficients) are modeled as taking similar values, emphasized by the different
colorings.

1.2.2 Potential Approaches

A first approach to estimation in the above example might be as follows. By analogy to some
approaches for image deblurring [13, 16, 83], where denoising is done by averaging over patches
constructed across an image, we could consider doing a lasso regression on an alternative design
matrix, one that is constructed by forming averages of the columns inX corresponding to nearby
dimensions (patches). This sort of approach might be reasonable when the underlying signal is
suspected to be piecewise constant — but if it is not, then it is not at all clear that this approach
is a suitable one, and remedies are not immediately apparent. However, even in the case of a
piecewise constant signal, this approach requires that the user specify the size of the patches

2



(essentially introducing another tuning parameter); additionally, if many patches are employed,
then this will in general drive up the overall computational cost.

Another more modern approach, emphasizing prediction, is to use a graph neural network
[24, 34, 54, 81]. These methods are powerful, but apparently not so user-friendly — many of the
usual problems with standard neural networks arise here, too: tuning the step size, optimization
algorithm, network architecture, etc. can all be laborious, and training the network itself may be
time-consuming. Arguably, ease-of-implementation is less of an issue these days, with the rise of
widely available software packages for training deep neural networks; but if some customizations
are required, then the implementation may pose its own set of challenges, as well. Along these
lines, we point out that the graph neural network approach also suffers from the same extensibility
issues raised with the first approach described above.

1.2.3 A User-Friendly Approach: The Generalized Lasso

By contrast, consider the generalized lasso estimator [136]: the generalized lasso is a general-
ization of the standard lasso, where the defining optimization problem now involves the usual
squared error loss, plus a penalty given by the `1 norm composed with a linear transformation
Dβ of the coefficients (c.f. the pure `1 norm penalty, as in the standard lasso problem). The
linear transformation D ∈ Rm×p should be interpreted as a kind of penalty matrix, encoding
essentially whatever sort of problem-specific structure the user has in mind. More concretely, the
generalized lasso estimator is defined as a solution to the optimization problem

minimize
β∈Rp

1

2
‖y −Xβ‖2

2 + λ‖Dβ‖1, (1.1)

where y ∈ Rn is the response, X ∈ Rn×p is the data matrix, D ∈ Rm×p is the penalty matrix,
and λ ≥ 0 is a tuning parameter. Much more will be said about the generalized lasso below, but
for now we call out the fused lasso [134] as a simple and well-known special case, to convey
the generality and user-friendliness of the broader generalized lasso framework. The fused lasso,
employed when the underlying signal is suspected to be piecewise constant, is easily recovered
as a special case from the generalized lasso framework, by simply specifying the appropriate
penalty matrix. In this case, we set X = I and

D =


−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · −1 1

 ∈ R(p−1)×p,

which can be seen as the first-order discrete derivative operator, meaning that we expect the
differences Dβ to be sparse. (In general, X may be arbitrary, significantly expanding the scope
of potential applications.) It is also straightforward to additionally encourage pure sparsity in
the coefficients, by concatenating D together with the identity matrix. Finally, it is also worth
repeating that alternative structural assumptions about a given problem may be enforced, by
simply swapping out the current penalty matrix for another one.

3



The generalized lasso has been previously used as a modeling tool in many tasks [1, 67, 89,
133, 147], but we return now to the idea of using it in the context of the fMRI data example
described above. To use the generalized lasso, we must specify a penalty matrix. There are
several possible options, but we pursue here a relatively simple and natural one, known as the
fused lasso on the k-nearest neighbors (k-NN) graph [136]. The construction is as follows: each
row of D is formed by putting a -1 and a 1 in the column positions corresponding to the vertices
that are adjacent in the k-NN graph (for some value of k) built from the physical locations of the
dimensions. The same principle is at work here as with the usual fused lasso, i.e., now the fitted
generalized lasso coefficients will generally obey a piecewise constant structure across many of
the edges of the k-NN graph. Additionally, in what follows, we encourage pure sparsity in the
coefficients in the same way that we mentioned before, i.e., by concatenating the identity matrix,
and the penalty matrix that was just described.

It is worth pointing out that the generalized lasso is apparently much more user-friendly than
either of the approaches described earlier. To be more specific, if we suspected the underlying
signal to be, say, piecewise linear (instead of piecewise constant), then all we would need to do
is change the penalty matrix to the analog of the second-order discrete derivative operator over a
graph; see Wang et al. [142] for details. As mentioned previously, it is not clear how to (easily)
modify either of the previous proposals to account for this sort of structural assumption.

1.2.4 Empirical Results

Having specified y,X , and D, we are now in a position to solve the generalized lasso problem.
As the problem (1.1) is convex, an application of the alternating direction method of multipliers
[15] admits an efficient and reasonably straightforward implementation; see Section 6.4.1 in
Boyd et al. [15], for details. It is also easy to solve the generalized lasso problem with any
number of the freely-available software packages for generic convex optimization (e.g., [46]).

The left panel of Figure 1.2, presents test error curves for both the generalized lasso and the
standard lasso, plotted as a function of their (common) tuning parameter λ. In a little more detail,
the curves were generated by solving the generalized and standard lasso problems over 600 out
of 703 total samples (using the CVX software package [46]), then evaluating the fitted models on
the remaining samples, for each value of λ. As can be seen from the plot, the generalized lasso
test error is better than that of the standard lasso, across many values of λ — indicating that the
presence ofD is helpful. (To be clear, it is likely that the test error curve for the generalized lasso
would have been even lower, had we allowed for different tuning parameter values governing
sparsity in the differences Dβ vs. sparsity in the coefficients β; we did not pursue this here, for
simplicity.)

Inspecting the fitted coefficients is also instructive. Below, we list the nonzero fitted coef-
ficients, grouping them together according to the underlying columns involved in constructing
y (as described earlier), for the fitted generalized lasso model obtaining the best test error (i.e.,
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Figure 1.2: The left panel shows test error curves for both the generalized lasso as well as the standard
lasso, in the fMRI data example, obtained by varying the tuning parameter λ. The right panel shows a
simplified k-nearest neighbors graph, produced by the generalized lasso coefficients yielding the best test
error.

stemming from the tuning parameter λ = 2.6552),

β̂1 = 0.02, β̂16 = β̂35 = 6.53,

β̂2 = β̂10 = β̂37 = 5.10,

β̂3 = β̂5 = β̂33 = 4.74,

β̂6 = −0.01,

β̂11 = −0.01,

β̂14 = −0.01,

β̂17 = −0.01,

β̂22 = −0.05,

β̂23 = −0.01,

β̂24 = −0.01,

β̂25 = −0.01,

β̂26 = 0.01,

β̂28 = 0.01,

β̂29 = −0.01,

β̂30 = −0.01,

β̂32 = 0.04.

The above results reveal that the generalized lasso has recovered much of the underlying structure
in the problem, which can be helpful from the point-of-view of interpretability (and no such
structure was found in the fitted standard lasso models).

Continuing with this line of thought, another useful output of the generalized lasso can be
seen as follows. Starting with the k-NN graph used to construct D, we may remove the edges
connecting unfused vertices (corresponding to fitted coefficients that did not take on the same
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value) in some solution β̂. The result, presented in the right panel of Figure 1.2 (again, using
the solution attaining the best test error), is a pruned and somewhat simplified graph that can be
useful to practitioners.

1.2.5 Discussion

The takeaway message from the preceding discussion should be that the generalized lasso offers
an appealing and user-friendly workflow for applied statistical modeling. Certainly, depending
on the circumstances, there may be alternatives that are entirely appropriate (in the context of
fMRI data, approaches to sparse inverse covariance estimation, as well as the group lasso, both
come to mind, as in, e.g., Guo et al. [49], Hsieh et al. [60], Koanantakool et al. [70]). But the
final message here is that the pros and cons of these alternative methods should be carefully
weighed against the user-friendliness, statistical properties, and computational properties of the
generalized lasso.

1.3 Another User-Friendly Approach: Gradient Descent

As a further illustration, we give a second example of a user-friendly estimator: the iterates
generated by (early-stopping) gradient descent. It may be somewhat unusual to think of gradient
descent as an estimator, as it is often viewed as an optimization algorithm. However, there has
actually been a steady stream of both empirical and theoretical work over the years, suggesting a
relationship between early-stopped gradient descent when applied to least squares regression, and
ridge regression (see, e.g., Friedman and Popescu [40], Raskutti et al. [111], Yao et al. [150]). To
be only slightly more specific for now (with many more details to follow, in subsequent chapters
of this thesis), prior works have indicated a connection between the iterate β(k), obtained after
running gradient descent for some number of iterations k ≥ 0, and the ridge regression estimate
β̂ridge(λ) = (XTX + λI)−1XTy, for a corresponding value of the ridge tuning parameter λ ≥ 0
— in other words, we can think of each iterate of gradient descent as possessing a kind of implicit
`2 regularity.

The reader may ask why we would ever pursue an (indirect) iterative solution, when the ridge
solution can be computed in closed-form? The main reasons are arguably related to computation.
In a high-dimensional setup, the ridge solution may be computed exactly in O(n2p) time. The
basic gradient descent iteration, by contrast, consists of simple matrix-vector products and is
comparatively easy-to-implement as well as computationally cheap (i.e., user-friendly), costing
O(np) per iteration. It is worth mentioning that in large-scale applications, it can make sense to
pursue an indirect method for computing the ridge solution β̂ridge(λ) itself, with gradient descent
and conjugate gradients being two natural approaches (i.e., for a fixed value of λ). Having
said that, and keeping in mind the connection to implicit `2 regularization alluded to above, we
may view running gradient descent for several iterations (on the least squares loss) as actually
generating a suite of estimates, each one possessing a different level of regularization (c.f. the
point estimate given by the ridge solution β̂ridge(λ)). Moreover, moving beyond the squared error
loss and thinking of generalized linear models more broadly, the aforementioned computational
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benefits belonging to a simple method such as gradient descent can be significant (consider, e.g.,
the case of logistic regression).

1.4 Outline

In this thesis document, we present statistical and computational results for three different user-
friendly methods for high-dimensional estimation. To start with, in the second chapter of this
thesis, we give new statistical results for the generalized lasso. An old question important to the
modern practice of statistics, both from the standpoints of interpretability and prediction, is one
related to identifiability: when can we say that the solution to a penalized loss minimization prob-
lem is unique? It turns out that answering this question for the generalized lasso problem is rather
complicated, due to the presence of the (otherwise simple-looking) penalty matrix. Nevertheless,
in Chapter 2, we present sufficient conditions characterizing both the existence and uniqueness
of solutions to the generalized lasso problem. The conditions essentially guarantee uniqueness in
many situations of practical interest, and are much weaker than those, e.g., required to establish
estimation error rates and support recovery in sparse regression problems [79, 109, 141].

In the third chapter of this thesis, we consider early-stopped gradient descent, when applied
to the fundamental problem of least squares regression. Whereas most prior works generally
describe a somewhat coarse relationship between the two methods, we give a number of results
that much more tightly couple the risk profile of the iterates generated by gradient descent to that
of ridge regression.

Finally, in Chapter 4 of this thesis, we present a new user-friendly, pseudolikelihood-based
method [12] for robust undirected graphical modeling, called the Multiple Quantile Graphical
Model (MQGM). In this chapter, we also give statistical theory showing that the MQGM recovers
the population-level conditional independence relationships with high probability. Finally, we
present an algorithm for fitting the MQGM to high-dimensional heavy-tailed data, which is often
an order of magnitude faster than alternatives.

In Chapter 5, we conclude with a brief discussion, but in doing so, we return to some of
the points raised in Chapter 3, and outline how to extend the same ideas to characterize the risk
profile of (the arguably even more user-friendly) stochastic gradient descent.

1.5 Notation

The notation we use in this thesis document is mostly standard. For a matrixA ∈ Rm×n, we write
A+ for its Moore-Penrose pseudoinverse and col(A), row(A), null(A), rank(A) for its column
space, row space, null space, and rank, respectively. We write AJ for the submatrix defined by
the rows of A indexed by a subset J ⊆ {1, . . . ,m}, and use A−J as shorthand for A{1,...,m}\J .
Similarly, for a vector x ∈ Rm, we write xJ for the subvector defined by the components of x
indexed by J , and use x−J as shorthand for x{1,...,m}\J .

For a set S ⊆ Rn, we write span(S) for its linear span, and write aff(S) for its affine span. For
a subspace L ⊆ Rn, we write PL for the (Euclidean) projection operator onto L, and write PL⊥
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for the projection operator onto the orthogonal complement L⊥. For a function f : Rm → Rn,
we write dom(f) for its domain, and ran(f) for its range.
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Chapter 2

The Generalized Lasso

2.1 Introduction
In this chapter, we consider the generalized lasso problem

minimize
β∈Rp

1

2
‖y −Xβ‖2

2 + λ‖Dβ‖1, (2.1)

where y ∈ Rn is a response vector, X ∈ Rn×p is a predictor matrix, D ∈ Rm×p is a penalty
matrix, and λ ≥ 0 is a tuning parameter. As explained in Tibshirani and Taylor [136], the gen-
eralized lasso problem (2.1) encompasses several well-studied problems as special cases, corre-
sponding to different choices ofD, e.g., the lasso [132], the fused lasso [119, 134], trend filtering
[69, 127], the graph fused lasso [55], graph trend filtering [142], Kronecker trend filtering [121],
among others. (For all problems except the lasso problem, the literature is mainly focused on the
so-called “signal approximator” case, where X = I , and the responses have a certain underlying
structure; but the “regression” case, where X is arbitrary, naturally arises whenever the predictor
variables—rather than the responses—have an analogous structure.)

There has been an abundance of theoretical and computational work on the generalized lasso
and its special cases. In the current chapter, we examine sufficient conditions under which the
solution in (2.1) will be unique. While this is simple enough to state, it is a problem of fundamen-
tal importance. The generalized lasso has been used as a modeling tool in numerous application
areas, such as copy number variation analysis [133], sMRI image classification [147], evolution-
ary shift detection on phylogenetic trees, [67], motion-capture tracking [89], and longitudinal
prediction of disease progression [1]. In such applications, the structure of the solution β̂ in
hand (found by using one of many optimization methods applicable to (2.1), a convex quadratic
program) usually carries meaning—this is because D has been carefully chosen so that spar-
sity in Dβ̂ translates into some interesting and domain-appropriate structure for β̂. Of course,
nonuniqueness of the solution in (2.1) would cause complications in interpreting this structure.
(The practitioner would be left wondering: are there other solutions providing compementary, or
even contradictory structures?) Further, beyond interpretation, nonuniqueness of the generalized
lasso solution would clearly cause complications if we are seeking to use this solution to make
predictions (via xT β̂, for a new predictor vector x ∈ Rp), as different solutions would lead to
different predictions (potentially very different ones).
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When p ≤ n and rank(X) = p, there is always a unique solution in (2.1) due to strict
convexity of the squared loss term. Our focus will thus be in deriving sufficient conditions for
uniqueness in the high-dimensional case, where rank(X) < p. It also worth noting that when
null(X) ∩ null(D) 6= {0} problem (2.1) cannot have a unique solution. (If η 6= 0 lies in this
intersection, and β̂ is a solution in (2.1), then so will be β̂ + η.) Therefore, at the very least,
any sufficient condition for uniqueness in (2.1) must include (or imply) the null space condition
null(X) ∩ null(D) = {0}.

In the lasso problem, defined by taking D = I in (2.1), several authors have studied condi-
tions for uniqueness, notably Tibshirani [135], who showed that when the entries of X are drawn
from an arbitrary continuous distribution, the lasso solution is unique almost surely. One of the
main results in this chapter yields this lasso result as a special case; see Theorem 2.1, and Remark
2.5 following the theorem. Moreover, our study of uniqueness leads us to develop intermediate
properties of generalized lasso solutions that may be of interest in their own right—in particular,
when we broaden our focus to a version of (2.1) in which the squared loss is replaced by a gen-
eral loss function, we derive local stability properties of solutions that have potential applications
beyond this work.

In the remainder of this introduction, we describe the implications of our uniqueness results
for various special cases of the generalized lasso, discuss related work, and then cover notation
and an outline of the rest of the chapter.

2.1.1 Uniqueness in Special Cases

The following is an application of Theorem 2.1 to various special cases for the penalty matrix D.
The takeaway is that, for continuously distributed predictors and responses, uniqueness can be
ensured almost surely in various interesting cases of the generalized lasso, provided that n is not
“too small”, meaning that the sample size n is at least the nullity (dimension of the null space)
of D. (Some of the cases presented in the corollary can be folded into others, but we list them
anyway for clarity.)
Corollary 2.1. Fix any λ > 0. Assume the joint distribution of (X, y) is absolutely continuous
with respect to (np + n)-dimensional Lebesgue measure. Then problem (2.1) admits a unique
solution almost surely, in any one of the following cases:

(i) D = I ∈ Rp×p is the identity matrix;
(ii) D ∈ R(p−1)×p is the first difference matrix, i.e., fused lasso penalty matrix (see Section 2.1.1

in Tibshirani and Taylor [136]);
(iii) D ∈ R(p−k−1)×p is the (k+1)st order difference matrix, i.e., kth order trend filtering penalty

matrix (see Section 2.1.2 in Tibshirani and Taylor [136]), and n ≥ k + 1;
(iv) D ∈ Rm×p is the graph fused lasso penalty matrix, defined over a graph with m edges, n

nodes, and r connected components (see Section 2.1.1 in Tibshirani and Taylor [136]), and
n ≥ r;

(v) D ∈ Rm×p is the kth order graph trend filtering penalty matrix, defined over a graph with
m edges, n nodes, and r connected components (see Wang et al. [142]), and n ≥ r;

(vi) D ∈ R(N−k−1)Nd−1d×Nd
is the kth order Kronecker trend filtering penalty matrix, defined

over a d-dimensional grid graph with all equal side lengths N = n1/d (see Sadhanala et al.

10



[121]), and n ≥ (k + 1)d.
Two interesting special cases of the generalized lasso that fall outside the scope of our results

here are additive trend filtering [120] and varying-coefficient models (which can be cast in a gen-
eralized lasso form, see Section 2.2 of Tibshirani and Taylor [136]). In either of these problems,
the predictor matrix X has random elements but obeys a particular structure, thus it is not rea-
sonable to assume that its entries overall follow a continuous distribution, so Theorem 2.1 cannot
be immediately applied. Still, we believe that under weak conditions either problem should have
a unique solution. Sadhanala and Tibshirani [120] give a uniqueness result for additive trend
filtering by reducing this problem to lasso form; but, keeping this problem in generalized lasso
form and carefully investigating an application of Lemma 2.6 (the deterministic result in this
chapter leading to Theorem 2.1) may yield a result with simpler sufficient conditions. This is left
to future work.

Furthermore, by applying Theorem 2.2 to various special cases for D, analogous results
hold (for all cases in Corollary 2.1) when the squared loss is replaced by a generalized linear
model (GLM) loss G as in (2.19). In this setting, the assumption that (X, y) is jointly absolutely
continuous is replaced by the two assumptions that X is absolutely continous, and y /∈ N , where
N is the set defined in (2.41). The set N has Lebesgue measure zero for some common choices
of loss G (see Remark 2.12); but unless we somewhat artificially assume that the distribution
of y|X is continuous (this is artificial because in the two most fundamental GLMs outside of
the Gaussian model, namely the Bernoulli and Poisson models, the entries of y|X are discrete),
the fact that N has Lebesgue measure zero set does not directly imply that the condition y /∈ N
holds almost surely. Still, it seems that y /∈ N should be “likely”—and hence, uniqueness should
be “likely”—in a typical GLM setup, and making this precise is left to future work.

2.1.2 Related Work
Several authors have examined uniqueness of solutions in statistical optimization problems en
route to proving risk or recovery properties of these solutions; see Donoho [31], Dossal [32]
for examples of this in the noiseless lasso problem (and the analogous noiseless `0 penalized
problem); see Nam et al. [97] for an example in the noiseless generalized lasso problem; see
Candes and Plan [19], Fuchs [44], Wainwright [141] for examples in the lasso problem; and
lastly, see Lee et al. [79] for an example in the generalized lasso problem. These results have a
different aim than ours, i.e., their main goal—a risk or recovery guarantee—is more ambitious
than certifying uniqueness alone, and thus the conditions they require are more stringent. Our
work in this chapter is more along the lines of direct uniqueness analysis in the lasso, as was
carried out by Osborne et al. [103], Rosset et al. [117], Schneider and Ewald [122], Tibshirani
[135].

2.1.3 Outline
Here is an outline for what follows. In Section 2.2, we review important preliminary facts about
the generalized lasso. In Section 2.3, we derive sufficient conditions for uniqueness in (2.1),
culminating in Theorem 2.1, our main result on uniqueness in the squared loss case. In Section
2.4, we consider a generalization of problem (2.1) where the squared loss is replaced by a smooth
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and strictly convex function of Xβ; we derive analogs of the important preliminary facts used in
the squared loss case, notably, we generalize a result on the local stability of generalized lasso
solutions due to Tibshirani and Taylor [137]; and we give sufficient conditions for uniqueness,
culminating in Theorem 2.2, our main result in the general loss case. In Section 2.5, we conclude
with a brief discussion.

2.2 Preliminaries

2.2.1 Basic Facts, KKT Conditions, and the Dual
First, we establish some basic properties of the generalized lasso problem (2.1) relating to unique-
ness.
Lemma 2.1. For any y,X,D, and λ ≥ 0, the following holds of the generalized lasso problem
(2.1).

(i) There is either a unique solution, or uncountably many solutions.
(ii) Every solution β̂ gives rise to the same fitted value Xβ̂.

(iii) If λ > 0, then every solution β̂ gives rise to the same penalty value ‖Dβ̂‖1.

Proof. The criterion function in the generalized lasso problem (2.1) is convex and proper, as
well as closed (being continuous on Rp). As both g(β) = ‖y −Xβ‖2

2 and h(β) = λ‖Dβ‖1 are
nonnegative, any directions of recession of the criterion f = g + h are necessarily directions of
recession of both g and h. Hence, we see that all directions of recession of the criterion f must
lie in the common null space null(X) ∩ null(D); but these are directions in which the criterion
is constant. Applying, e.g., Theorem 27.1 in Rockafellar [115] tells us that the criterion attains
its infimum, so there is at least one solution in problem (2.1). Supposing there are two solutions
β̂(1), β̂(2), since the solution set to a convex optimization problem is itself a convex set, we get
that tβ̂(1) + (1− t)β̂(2) is also a solution, for any t ∈ [0, 1]. Thus if there is more than one
solution, then there are uncountably many solutions. This proves part (i).

As for part (ii), let β̂(1), β̂(2) be two solutions in (2.1), with β̂(1) 6= β̂(2). Let f ? denote the opti-
mal criterion value in (2.1). Proceeding by contradiction, suppose that these two solutions do not
yield the same fit, i.e.,Xβ̂(1) 6= Xβ̂(2). Then for any t ∈ (0, 1), the criterion at tβ̂(1) + (1− t)β̂(2)

is

f
(
tβ̂(1) + (1− t)β̂(2)

)
=

1

2

∥∥y − (tXβ̂(1) + (1− t)Xβ̂(2)
)∥∥2

2
+ λ
∥∥D(tβ̂(1) + (1− t)β̂(2)

)∥∥
1

< t
1

2
‖y −Xβ̂(1)‖2

2 + (1− t)1

2
‖y −Xβ̂(2)‖2

2 + λt‖Dβ̂(1)‖1 + (1− t)λ‖Dβ̂(2)‖1

= tf(β̂(1)) + (1− t)f(β̂(2)) = f ?,

where in the second line we used the strict convexity of the function G(z) = ‖y − z‖2
2, along

with the convexity of h(z) = ‖z‖1. That tβ̂(1) + (1− t)β̂(2) obtains a lower criterion than f ? is
a contradiction, and this proves part (ii).
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Lastly, for part (iii), every solution in the generalized lasso problem (2.1) yields the same fit
by part (ii), leading to the same squared loss; and since every solution also obtains the same (op-
timal) criterion value, we conclude that every solution obtains the same penalty value, provided
that λ > 0.

Next, we consider the Karush-Kuhn-Tucker (or KKT) conditions to characterize optimality
of a solution β̂ in problem (2.1). Since there are no contraints, we simply take a subgradient of
the criterion and set it equal to zero. Rearranging gives

XT (y −Xβ̂) = λDT γ̂, (2.2)

where γ̂ ∈ Rm is a subgradient of the `1 norm evaluated at Dβ̂,

γ̂i ∈
{
{sign((Dβ̂)i)} if (Dβ̂)i 6= 0

[−1, 1] if (Dβ̂)i = 0
, for i = 1, . . . ,m. (2.3)

Since the optimal fitXβ̂ is unique by Lemma 2.1, the left-hand side in (2.2) is always unique.
This immediately leads to the next result.
Lemma 2.2. For any y,X,D, and λ > 0, every optimal subgradient γ̂ in problem (2.1) gives
rise to the same value of DT γ̂. Moreover, when D has full row rank, the optimal subgradient γ̂
is itself unique.
Remark 2.1. When D is row rank deficient, the optimal subgradient γ̂ is not necessarily unique,
and thus neither is its associated boundary set (to be defined in the next subsection). This com-
plicates the study of uniqueness of the generalized lasso solution. In contrast, the optimal sub-
gradient in the lasso problem is always unique, and its boundary set—called equicorrelation set
in this case—is too, which makes the study of uniqueness of the lasso solution comparatively
simpler [135].

Lastly, we turn to the dual of problem (2.1). Standard arguments in convex analysis, as given
in Tibshirani and Taylor [136], show that the Lagrangian dual of (2.1) can be written as1

minimize
u∈Rm, v∈Rn

‖y − v‖2
2 subject to XTv = DTu, ‖u‖∞ ≤ λ. (2.4)

Any pair (û, v̂) optimal in the dual (2.4), and solution-subgradient pair (β̂, γ̂) optimal in the
primal (2.1), i.e., satisfying (2.2), (2.3), must satisfy the primal-dual relationships

Xβ̂ = y − v̂, and û = λγ̂. (2.5)

We see that v̂, being a function of the fitXβ̂, is always unique; meanwhile, û, being a function of
the optimal subgradient γ̂, is not. Moreover, the optimality of v̂ in problem (2.4) can be expressed
as

v̂ = PC(y), where C = (XT )−1
(
DTBm

∞(λ)
)
. (2.6)

Here, (XT )−1(S) denotes the preimage of a set S under the linear map XT , DTS denotes the
image of a set S under the linear map DT , Bm

∞(λ) = {u ∈ Rm : ‖u‖∞ ≤ λ} is the `∞ ball of
1The form of the dual problem here may superficially appear different from that in Tibshirani and Taylor [136],

but it is equivalent.
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radius λ in Rm, and PS(·) is the Euclidean projection operator onto a set S. Note thatC as defined
in (2.6) is a convex polyhedron, because the image or preimage of any convex polyhedron under
a linear map is a convex polyhedron. From (2.5) and (2.6), we may hence write the fit as

Xβ̂ = (I − PC)(y), (2.7)

the residual from projecting y onto the convex polyhedron C.
The conclusion in (2.7), it turns out, could have been reached via direction manipulation of

the KKT conditions (2.2), (2.3), as shown in Tibshirani and Taylor [137]. In fact, much of what
can be seen from the dual problem (2.4) can also be derived using appropriate manipulations of
the primal problem (2.1) and its KKT conditions (2.2), (2.3). However, we feel that the dual
perspective, specifically the dual projection in (2.6), offers a simple picture that can be used to
intuitively explain several key results (which might otherwise seem technical and complicated in
nature). We will therefore return to it periodically.

2.2.2 Implicit Form of Solutions
Fix an arbitrary λ > 0, and let (β̂, γ̂) denote an optimal solution-subgradient pair, i.e., satisfying
(2.2), (2.3). Following Tibshirani and Taylor [136, 137], we define the boundary set to contain
the indices of components of γ̂ that achieve the maximum possible absolute value,

B =
{
i ∈ {1, . . . ,m} : |γ̂i| = 1

}
,

and the boundary signs to be the signs of γ̂ over the boundary set,

s = sign(γ̂B).

Since γ̂ is not necessarily unique, as discussed in the previous subsection, neither are its associ-
ated boundary set and signs B, s. Note that the boundary set contains the active set

A = supp(Dβ̂) =
{
i ∈ {1, . . . ,m} : (Dβ̂)i 6= 0

}
associated with β̂; that B ⊇ A follows directly from the property (2.3) (and strict inclusion is
certainly possible). Restated, this inclusion tells us that β̂ must lie in the null space of D−B, i.e.,

D−Bβ̂ = 0 ⇐⇒ β̂ ∈ null(D−B).

Though it seems very simple, the last display provides an avenue for expressing the general-
ized lasso fit and solutions in terms of B, s, which will be quite useful for establishing sufficient
conditions for uniqueness of the solution. Multiplying both sides of the stationarity condition
(2.2) by Pnull(D−B), the projection matrix onto null(D−B), we have

Pnull(D−B)X
T (y −Xβ̂) = λPnull(D−B)D

T
Bs.

Using β̂ = Pnull(D−B)β̂, and solving for the fit Xβ̂ (see 137 for details or the proof of Lemma
2.17 for the arguments in a more general case) gives

Xβ̂ = XPnull(D−B)(XPnull(D−B))
+
(
y − λ(Pnull(D−B)X

T )+DT
Bs
)
. (2.8)
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Recalling that Xβ̂ is unique from Lemma 2.1, we see that the right-hand side in (2.8) must
agree for all instantiations of the boundary set and signs B, s associated with an optimal sub-
gradient in problem (2.1). Tibshirani and Taylor [137] use this observation and other argu-
ments to establish an important result that we leverage later, on the invariance of the space
Xnull(D−B) = col(XPnull(D−B)) over all boundary sets B of optimal subgradients, stated in
Lemma 2.3 for completeness.

00

C

y

v̂KB,s

Bm
∞(λ)

B, s

(XT )−1 ◦DT

Rn Rm

Figure 2.1: Geometry of the generalized lasso dual problem (2.4). As in (2.6), the dual solution v̂
may be seen as the projection of y onto a set C, and as in (2.7), the primal fit Xβ̂ may be seen as
the residual from this projection. Here, C = (XT )−1(DTBm

∞(λ)), and as Bm
∞(λ) is a polyhedron

(and the image or inverse image of a polyhedron under a linear map is still a polyhedron), C is a
polyhedron as well. This can be used to derive the implicit form (2.8) for Xβ̂, based on the face
of C on which v̂ lies, as explained in Remark 2.2.

Remark 2.2. As an alternative to the derivation based on the KKT conditions described above,
the result (2.8) can be argued directly from the geometry surrounding the dual problem (2.4).
See Figure 2.1 for an accompanying illustration. Given that γ̂ has boundary set and signs
B, s, and û = λγ̂ from (2.5), we see that û must lie on the face of Bm

∞(λ) whose affine span
is EB,s = {u ∈ Rm : uB,s = λs}; this face is colored in black on the right-hand side of
the figure. Since XT v̂ = DT û, this means that v̂ lies on the face of C whose affine span is
KB,s = (XT )−1DTEB,s; this face is colored in black on the left-hand side of the figure, and
its affine span KB,s is drawn as a dotted line. Hence, we may refine our view of v̂ in (2.6),
and in turn, Xβ̂ in (2.7): namely, we may view v̂ as the projection of y onto the affine space
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KB,s (instead of C), and the fit Xβ̂ as the residual from this affine projection. A straightfor-
ward calculation shows that KB,s = λ(Pnull(D−B)X

T )+DT
Bs+ null(Pnull(D−B)X

T ), and another
straightforward calculation shows that the residual from projecting y onto KB,s is (2.8).

From the expression in (2.8) for the fit Xβ̂, we also see that the solution β̂ corresponding to
the optimal subgradient γ̂ and its boundary set and signs B, s must take the form

β̂ = (XPnull(D−B))
+
(
y − λ(Pnull(D−B)X

T )+DT
Bs
)

+ b, (2.9)

for some b ∈ null(XPnull(D−B)). Combining this with b ∈ null(D−B) (following from D−Bβ̂ =
0), we moreover have that b ∈ null(X) ∩ null(D−B). In fact, any such point b ∈ null(X) ∩
null(D−B) yields a generalized lasso solution β̂ in (2.9) provided that

si ·Di

[
(XPnull(D−B))

+
(
y − λ(Pnull(D−B)X

T )+DT
Bs
)

+ b
]
≥ 0, for i ∈ B,

which says that γ̂ appropriately matches the signs of the nonzero components of Dβ̂, thus γ̂
remains a proper subgradient.

We can now begin to inspect conditions for uniqueness of the generalized lasso solution. For a
given boundary set B of an optimal subgradient γ̂, if we know that null(X) ∩ null(D−B) = {0},
then there can only be one solution β̂ corresponding to γ̂ (i.e., such that (β̂, γ̂) jointly satisfy
(2.2), (2.3)), and it is given by the expression in (2.9) with b = 0. Further, if we know that
null(X) ∩ null(D−B) = {0} for all boundary sets B of optimal subgradients, and the space
null(D−B) is invariant over all choices of boundary sets B of optimal subgradients, then the
right-hand side in (2.9) with b = 0 must agree for all proper instantiations of B, s and it gives the
unique generalized lasso solution. We elaborate on this in the next section.

2.2.3 Invariance of the Linear Space Xnull(D−B)

Before diving into the technical details on conditions for uniqueness in the next section, we recall
a key result from Tibshirani and Taylor [137].
Lemma 2.3 (Lemma 10 in 137). Fix any X,D, and λ > 0. There is a set N ⊆ Rn of Lebesgue
measure zero (that depends on X,D, λ), such that for y /∈ N , all boundary sets B associated
with optimal subgradients in the generalized lasso problem (2.1) give rise to the same subspace
Xnull(D−B), i.e., there is a single linear subspace L ⊆ Rn such that L = Xnull(D−B) for all
boundary sets B of optimal subgradients. Moreover, for y /∈ N , L = Xnull(D−A) for all active
sets A associated with generalized lasso solutions.

2.3 Sufficient Conditions for Uniqueness

2.3.1 A Condition on Certain Linear Independencies

We start by formalizing the discussion on uniqueness in the paragraphs proceeding (2.9). As be-
fore, let λ > 0, and let B denote the boundary set associated with an optimal subgradient in (2.1).
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Denote by U(B) ∈ Rp×k(B) a matrix with linearly independent columns that span null(D−B). It
is not hard to see that

null(X) ∩ null(D−B) = {0} ⇐⇒ null
(
XU(B)

)
= {0} ⇐⇒ rank

(
XU(B)

)
= k(B).

Let us assign now such a basis matrix U(B) ∈ Rp×k(B) to each boundary set B corresponding to
an optimal subgradient in (2.1). We claim that there is a unique generalized lasso solution, as
given in (2.9) with b = 0, provided that the following two conditions holds:

rank
(
XU(B)

)
= k(B) for all such boundary sets B, and (2.10)

null(D−B) is invariant across all such boundary sets B. (2.11)

To see this, note that if the space null(D−B) is invariant across all achieved boundary sets B then
so is the matrix Pnull(D−B). This, and the fact that Pnull(D−B)D

T
Bs = Pnull(D−B)D

T γ̂ where DT γ̂
is unique from Lemma 2.2, ensures that the right-hand side in (2.9) with b = 0 agrees no matter
the choice of boundary set and signs B, s.
Remark 2.3. For any subset B ⊆ {1, . . . ,m}, and any matrices U(B), Ũ(B) ∈ Rp×k(B) whose
columns form a basis for null(D−B), it is easy to check that rank(XU(B)) = k(B) ⇐⇒
rank(XŨ(B)) = k(B). Therefore condition (2.10) is well-defined, i.e., it does not depend on
the choice of basis matrix U(B) associated with null(D−B) for each boundary set B.

We now show that, thanks to Lemma 2.3, condition (2.10) (almost everywhere) implies
(2.11), so the former is alone sufficient for uniqueness.
Lemma 2.4. Fix any X,D, and λ > 0. For y /∈ N , where N ⊆ Rn has Lebesgue measure zero
as in Lemma 2.3, condition (2.10) implies (2.11). Hence, for almost every y, condition (2.10) is
itself sufficient to imply uniqueness of the generalized lasso solution.

Proof. Let y /∈ N , and let L be the linear subspace from Lemma 2.3, i.e., L = Xnull(D−B) for
any boundary set B associated with an optimal subgradient in the generalized lasso problem at y.
Now fix a particular boundary set B associated with an optimal subgradient and define the linear
map X : null(D−B) → L by X (u) = Xu. By construction, this map is surjective. Moreover,
assuming (2.10), it is injective, as

XU(B)a = XU(B)b ⇐⇒ XU(B)(a− b) = 0,

and the right-hand side cannot be true unless a = b. Therefore, X is bijective and has a linear
inverse, and we may write null(D−B) = X−1(L). As B was arbitrary, this shows the invariance
of null(D−B) over all proper choices of B, whenever y /∈ N .

From Lemma 2.4, we see that an (almost everywhere) sufficient condition for a unique solu-
tion in (2.1) is that the vectors XUi(B) ∈ Rn, i = 1, . . . , k(B) are linearly independent, for all
instantiations of boundary sets B of optimal subgradients. This may seem a little circular, to give
a condition for uniqueness that itself is expressed in terms of the subgradients of solutions. But
we will not stop at (2.10), and will derive more explicit conditions on y,X,D, and λ > 0 that
imply (2.10) and therefore uniqueness of the solution in (2.1).
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2.3.2 A Refined Condition on Linear Independencies
The next lemma shows that when condition (2.10) fails, there is a specific type of linear de-
pendence among the columns of XU(B), for a boundary set B. The proof is not difficult, but
involves careful manipulations of the KKT conditions (2.2), and we defer it until the supplemen-
tary material.
Lemma 2.5. Fix any X,D, and λ > 0. Let y /∈ N , the set of zero Lebesgue measure as in
Lemma 2.3. Assume that null(X) ∩ null(D) = {0}, and that the generalized lasso solution is
not unique. Then there is a pair of boundary set and signs B, s corresponding to an optimal
subgradient in problem (2.1), such that for any matrix U(B) ∈ Rp×k(B) whose columns form a
basis for null(D−B), the following property holds of Z = XU(B) and s̃ = U(B)TDT

Bs: there
exist indices i1, . . . , ik ∈ {1, . . . , k(B)} with k ≤ n+ 1 and s̃i1 6= 0, such that

Zi2 ∈ span({Zi3 , . . . , Zik}), (2.12)

when s̃i2 = · · · = s̃ik = 0, and

Zi1/s̃i1 ∈ aff({Zij/s̃ij : s̃ij 6= 0, j ≥ 2}) + span({Zij : s̃ij = 0}), (2.13)

when at least one of s̃i2 , . . . , s̃ik is nonzero.
The spaces on the right-hand sides of both (2.12), (2.13) are of dimension at most n− 1. To

see this, note that dim(span({Zi3 , . . . , Zik})) ≤ k − 2 ≤ n− 1, and also

dim
(
aff({Zij/s̃ij : s̃ij 6= 0, j ≥ 2})

)
+ dim

(
span({Zij : s̃ij = 0})

)
≤ |J | − 2 + |J c| = k − 2 ≤ n− 1,

where J = {j ∈ {1, . . . , k} : s̃ij 6= 0}. Hence, because these spaces are at most (n − 1)-
dimensional, neither condition (2.12) nor (2.13) should be “likely” under a continuous distribu-
tion for the predictor variables X . This is made precise in the next subsection.

Before this, we define a deterministic condition onX that ensures special linear dependencies
between the (transformed) columns, as in (2.12), (2.13), never hold.
Definition 1. FixD ∈ Rm×p. We say that a matrixX ∈ Rn×p is inD-general position (orD-GP)
if the following property holds. For each subset B ⊆ {1, . . . ,m} and sign vector s ∈ {−1, 1}|B|,
there is a matrix U(B) ∈ Rp×k(B) whose columns form a basis for null(D−B), such that for
Z = XU(B), s̃ = U(B)TDT

Bs, and all i1, . . . , ik ∈ {1, . . . , k(B)} with s̃i1 6= 0 and k ≤ n+ 1, it
holds that

(i) Zi2 /∈ span({Zi3 , . . . , Zik}), when s̃i2 = · · · = s̃ik = 0;
(ii) Zi1/s̃i1 /∈ aff({Zij/s̃ij : s̃ij 6= 0, j ≥ 2}) + span({Zij : s̃ij = 0}), when at least one of

s̃i2 , . . . , s̃ik is nonzero.
Remark 2.4. Though the definition may appear somewhat complicated, a matrix X being in D-
GP is actually quite a weak condition, and can hold regardless of the (relative) sizes of n, p. We
will show in the next subsection that it holds almost surely under an arbitrary continuous prob-
ability distribution for the entries of X . Further, when X = I , the above definition essentially
reduces2 to the usual notion of general position (refer to, e.g., 135 for this definition).

2We say “essentially” here, because our definition of D-GP with D = I allows for a choice of basis matrix
U(B) for each subset B, whereas the standard notion of generally position would mandate (in the notation of our
definition) that U(B) be given by the columns of I indexed by B.
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When X is in D-GP, we have (by definition) that (2.12), (2.13) cannot hold for any B ⊆
{1, . . . ,m} and s ∈ {−1, 1}|B| (not just boundary sets and signs); therefore, by the contrapositive
of Lemma 2.5, if we additionally have y /∈ N and null(X)∩null(D) = {0}, then the generalized
lasso solution must be unique. To emphasize this, we state it as a lemma.
Lemma 2.6. Fix any X,D, and λ > 0. If y /∈ N , the set of zero Lebesgue measure as in Lemma
2.3, null(X) ∩ null(D) = {0}, and X is in D-GP, then the generalized lasso solution is unique.

2.3.3 Absolutely Continuous Predictor Variables
We give an important result that shows theD-GP condition is met almost surely for continuously
distributed predictors. There are no restrictions on the relative sizes of n, p. The proof of the next
result uses elementary probability arguments and is deferred until the supplementary material.
Lemma 2.7. Fix D ∈ Rm×p, and assume that the entries of X ∈ Rn×p are drawn from a
distribution that is absolutely continuous with respect to (np)-dimensional Lebesgue measure.
Then X is in D-GP almost surely.

We now present a result showing that the base condition null(X) ∩ null(D) = {0} is met
almost surely for continuously distributed predictors, provided that p ≤ n, or p > n and the null
space of D is not too large. Its proof is elementary and found in the supplementary material.
Lemma 2.8. Fix D ∈ Rm×p, and assume that the entries of X ∈ Rn×p are drawn from a
distribution that is absolutely continuous with respect to (np)-dimensional Lebesgue measure. If
either p ≤ n, or p > n and nullity(D) ≤ n, then null(X) ∩ null(D) = {0} almost surely.

Putting together Lemmas 2.6, 2.7, 2.8 gives our main result on the uniqueness of the gener-
alized lasso solution.
Theorem 2.1. Fix any D and λ > 0. Assume the joint distribution of (X, y) is absolutely
continuous with respect to (np+ n)-dimensional Lebesgue measure. If p ≤ n, or else p > n and
nullity(D) ≤ n, then the solution in the generalized lasso problem (2.1) is unique almost surely.
Remark 2.5. If D has full row rank, then by Lemma 2.2 the optimal subgradient γ̂ is unique
and so the boundary set B is also unique. In this case, condition (2.11) is vacuous and condition
(2.10) is sufficient for uniqueness of the generalized lasso solution for every y (i.e., we do not
need to rely on Lemma 2.4, which in turn uses Lemma 2.3, to prove that (2.10) is sufficient for
almost every y). Hence, in this case, the condition in Theorem 2.1 that y|X has an absolutely
continuous distribution is not needed, and (with the other conditions in place) uniqueness holds
for every y, almost surely over X . Under this (slight) sharpening, Theorem 2.1 with D = I
reduces to the result in Lemma 4 of Tibshirani [135].
Remark 2.6. Generally speaking, the condition that nullity(D) ≤ n in Theorem 2.1 (assumed in
the case p > n) is not strong. In many applications of the generalized lasso, the dimension of the
null space of D is small and fixed (i.e., it does not grow with n). For example, recall Corollary
2.1, where the lower bound n in each of the cases reflects the dimension of the null space.

2.3.4 Standardized Predictor Variables
A common preprocessing step, in many applications of penalized modeling such as the gener-
alized lasso, is to standardize the predictors X ∈ Rn×p, meaning, center each column to have
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mean 0, and then scale each column to have norm 1. Here we show that our main uniqueness
results carry over, mutatis mutandis, to the case of standardized predictor variables. All proofs
in this subsection are deferred until the supplementary material.

We begin by studying the case of centering alone. Let M = I − 11T/n ∈ Rn×n be the
centering map, and consider the centered generalized lasso problem

minimize
β∈Rp

1

2
‖y −MXβ‖2

2 + λ‖Dβ‖1. (2.14)

We have the following uniqueness result for centered predictors.
Corollary 2.2. Fix any D and λ > 0. Assume the distribution of (X, y) is absolutely continuous
with respect to (np + n)-dimensional Lebesgue measure. If p ≤ n − 1, or p > n − 1 and
nullity(D) ≤ n− 1, then the solution in the centered generalized lasso problem (2.14) is unique
almost surely.
Remark 2.7. The exact same result as stated in Corollary 2.2 holds for the generalized lasso
problem with intercept

minimize
β0∈R, β∈Rp

1

2
‖y − β01−Xβ‖2

2 + λ‖Dβ‖1. (2.15)

This is because, by minimizing over β0 in problem (2.15), we find that this problem is equivalent
to minimization of

1

2
‖My −MXβ‖2

2 + λ‖Dβ‖1

over β, which is just a generalized lasso problem with response V T
−1y and predictors V T

−1X , where
the notation here is as in the proof of Corollary 2.2.

Next we treat the case of scaling alone. Let WX = diag(‖X1‖2, . . . , ‖Xp‖2) ∈ Rp×p, and
consider the scaled generalized lasso problem

minimize
β∈Rp

1

2
‖y −XW−1

X β‖2
2 + λ‖Dβ‖1. (2.16)

We give a helper lemma, on the distribution of a continuous random vector, post scaling.
Lemma 2.9. Let Z ∈ Rn be a random vector whose distribution is absolutely continuous with
respect to n-dimensional Lebesgue measure. Then, the distribution of Z/‖Z‖2 is absolutely
continuous with respect to (n − 1)-dimensional Hausdorff measure restricted to the (n − 1)-
dimensional unit sphere, Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.

We give a second helper lemma, on the (n− 1)-dimensional Hausdorff measure of an affine
space intersected with the unit sphere Sn−1 (which is important for checking that the scaled
predictor matrix is in D-GP, because here we must check that none of its columns lie in a finite
union of affine spaces).
Lemma 2.10. Let A ⊆ Rn be an arbitrary affine space, with dim(A) ≤ n − 1. Then Sn−1 ∩ A
has (n− 1)-dimensional Hausdorff measure zero.

We present a third helper lemma, which establishes that for absolutely continuous X , the
scaled predictor matrix XW−1

X is in D-GP and satisfies the appropriate null space condition,
almost surely.
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Lemma 2.11. Fix D ∈ Rm×p, and assume that X ∈ Rn×p has entries drawn from a distri-
bution that is absolutely continuous with respect to (np)-dimensional Lebesgue measure. Then
XW−1

X is in D-GP almost surely. Moreover, if p ≤ n, or p > n and nullity(D) ≤ n, then
null(XW−1

X ) ∩ null(D) = {0} almost surely.
Combining Lemmas 2.6, 2.11 gives the following uniqueness result for scaled predictors.

Corollary 2.3. Fix any D and λ > 0. Assume the distribution of (X, y) is absolutely con-
tinuous with respect to (np + n)-dimensional Lebesgue measure. If p ≤ n, or else p > n and
nullity(D) ≤ n, then the solution in the scaled generalized lasso problem (2.16) is unique almost
surely.

Finally, we consider the standardized generalized lasso problem,

minimize
β∈Rp

1

2
‖y −MXW−1

MXβ‖2
2 + λ‖Dβ‖1, (2.17)

where, note, the predictor matrix MXW−1
MX has standardized columns, i.e., each column has

been centered to have mean 0, then scaled to have norm 1. We have the following uniqueness
result.
Corollary 2.4. Fix any D and λ > 0. Assume the distribution of (X, y) is absolutely continuous
with respect to (np + n)-dimensional Lebesgue measure. If p ≤ n − 1, or p > n − 1 and
nullity(D) ≤ n − 1, then the solution in the standardized generalized lasso problem (2.17) is
unique almost surely.

2.4 Smooth, Strictly Convex Loss Functions

2.4.1 Generalized Lasso with a General Loss
We now extend some of the preceding results beyond the case of squared error loss, as considered
previously. In particular, we consider the problem

minimize
β∈Rp

G(Xβ; y) + λ‖Dβ‖1, (2.18)

where we assume, for each y ∈ Rn, that the function G( · ; y) is essentially smooth and essen-
tially strictly convex on Rn. These two conditions together mean that G( · ; y) is a closed proper
convex function, differentiable and strictly convex on the interior of its domain (assumed to be
nonempty), with the norm of its gradient approaching ∞ along any sequence approaching the
boundary of its domain. A function that is essentially smooth and essentially strictly convex is
also called, according to some authors, of Legendre type; see Chapter 26 of Rockafellar [115].
An important special case of a Legendre function is one that is differentiable and strictly convex,
with full domain (all of Rn).

For much of what follows, we will focus on loss functions of the form

G(z; y) = −yT z + ψ(z), (2.19)

for an essentially smooth and essentially strictly convex function ψ on Rn (not depending on
y). This is a weak restriction on G and encompasses, e.g., the cases in which G is the nega-
tive log-likelihood function from a generalized linear model (GLM) for the entries of y|X with
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a canonical link function, where ψ is the cumulant generating function. In the case of, say,
Bernoulli or Poisson models, this is

G(z; y) = −yT z +
n∑
i=1

log(1 + ezi), or G(z; y) = −yT z +
n∑
i=1

ezi ,

respectively. For brevity, we will often write the loss function as G(Xβ), hiding the dependence
on the response vector y.

2.4.2 Basic Facts, KKT Conditions, and the Dual
The next lemma follows from arguments identical to those for Lemma 2.1.
Lemma 2.12. For any y,X,D, λ ≥ 0, and for G essentially smooth and essentially strictly
convex, the following holds of problem (2.18).

(i) There is either zero, one, or uncountably many solutions.
(ii) Every solution β̂ gives rise to the same fitted value Xβ̂.

(iii) If λ > 0, then every solution β̂ gives rise to the same penalty value ‖Dβ̂‖1.
Note the difference between Lemmas 2.12 and 2.1, part (i): for an arbitrary (essentially

smooth and essentially strictly convex) G, the criterion in (2.18) need not attain its infimum,
whereas the criterion in (2.1) always does. This happens because the criterion in (2.18) can have
directions of strict recession (i.e., directions of recession in which the criterion is not constant),
whereas the citerion in (2.1) cannot. Thus in general, problem (2.18) need not have a solution;
this is true even in the most fundamental cases of interest beyond squared loss, e.g., the case of a
Bernoulli negative log-likelihood G. Later in Lemma 2.14, we give a sufficient condition for the
existence of solutions in (2.18).

The KKT conditions for problem (2.18) are

−XT∇G(Xβ̂) = λDT γ̂, (2.20)

where γ̂ ∈ Rm is (as before) a subgradient of the `1 norm evaluated at Dβ̂,

γ̂i ∈
{
{sign((Dβ̂)i)} if (Dβ̂)i 6= 0

[−1, 1] if (Dβ̂)i = 0
, for i = 1, . . . ,m. (2.21)

As in the squared loss case, uniqueness of Xβ̂ by Lemma 2.12, along with (2.20), imply the next
result.
Lemma 2.13. For any y,X,D, λ > 0, and G essentially smooth and essentially strictly convex,
every optimal subgradient γ̂ in problem (2.18) gives rise to the same value ofDT γ̂. Furthermore,
when D has full row rank, the optimal subgradient γ̂ is unique, assuming that problem (2.18)
has a solution in the first place.

Denote by G∗ the conjugate function of G. When G is essentially smooth and essentially
strictly convex, the following facts hold (e.g., see Theorem 26.5 of Rockafellar [115]):
• its conjugate G∗ is also essentially smooth and essentially strictly convex; and
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• the map∇G : int(dom(G))→ int(dom(G∗)) is a homeomorphism with inverse (∇G)−1 =
∇G∗.

The conjugate function is intrinsically tied to duality, directions of recession, and the existence of
solutions. Standard arguments in convex analysis, deferred to the supplementary material, give
the next result.
Lemma 2.14. Fix any y,X,D, and λ ≥ 0. Assume G is essentially smooth and essentially
strictly convex. The Lagrangian dual of problem (2.18) can be written as

minimize
u∈Rm, v∈Ru

G∗(−v) subject to XTv = DTu, ‖u‖∞ ≤ λ, (2.22)

where G∗ is the conjugate of G. Any dual optimal pair (û, v̂) in (2.22), and primal optimal
solution-subgradient pair (β̂, γ̂) in (2.18), i.e., satisfying (2.20), (2.21), assuming they all exist,
must satisfy the primal-dual relationships

∇G(Xβ̂) = −v̂, and û = λγ̂. (2.23)

Lastly, existence of primal and dual solutions is guaranteed under the conditions

0 ∈ int(dom(G)), (2.24)
(−C) ∩ int(ran(∇G)) 6= ∅, (2.25)

where C = (XT )−1(DTBm
∞(λ)). In particular, under (2.24) and C 6= ∅, a solution exists in the

dual problem (2.22), and under (2.24), (2.25), a solution exists in the primal problem (2.18).
Assuming that primal and dual solutions exist, we see from (2.23) in the above lemma that

v̂ must be unique (by uniqueness of Xβ̂, from Lemma 2.12), but û need not be (as γ̂ is not
necessarily unique). Moreover, under condition (2.24), we know that G is differentiable at 0, and
∇G∗(∇G(0)) = 0, hence we may rewrite (2.22) as

minimize
u∈Rm, v∈Rn

DG∗
(
− v,∇G(0)

)
subject to XTv = DTu, ‖u‖∞ ≤ λ, (2.26)

whereDf (x, z) = f(x)−f(z)−〈∇f(z), x−z〉 denotes the Bregman divergence between points
x, z, with respect to a function f . Optimality of v̂ in (2.26) may be expressed as

v̂ = −PG∗

−C
(
∇G(0)

)
, where C = (XT )−1

(
DTBm

∞(λ)
)
. (2.27)

Here, recall (XT )−1(S) denotes the preimage of a set S under the linear map XT , DTS denotes
the image of a set S under the linear map DT , Bm

∞(λ) = {u ∈ Rm : ‖u‖∞ ≤ λ} is the `∞ ball of
radius λ in Rm, and now P f

S (·) is the projection operator onto a set S with respect to the Bregman
divergence of a function f , i.e., P f

S (z) = arg minx∈S Df (x, z). From (2.27) and (2.23), we see
that

Xβ̂ = ∇G∗
(
PG∗

−C
(
∇G(0)

))
. (2.28)

We note the analogy between (2.27), (2.28) and (2.6), (2.7) in the squared loss case; for G(z) =
1
2
‖y−z‖2

2, we have∇G(0) = −y,G∗(z) = 1
2
‖y+z‖2

2−1
2
‖y‖2

2,∇G∗(z) = y+z,−PG∗
−C(∇G(0)) =

PC(y), and so (2.27), (2.28) match (2.6), (2.7), respectively. But when G is non-quadratic, we
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see that the dual solution v̂ and primal fit Xβ̂ are given in terms of a non-Euclidean projection
operator, defined with respect to the Bregman divergence of G∗. See Figure 2.2 for an illustra-
tion. This complicates the study of the primal and dual problems, in comparison to the squared
loss case; still, as we will show in the coming subsections, several key properties of primal and
dual solutions carry over to the current general loss setting.

00

C

−∇G(0)

v̂

KB,s

Bm
∞(λ)

B, s

(XT )−1 ◦DT

Rn Rm

Figure 2.2: Geometry of the dual problem (2.26), for a general loss G. As in (2.27), the dual
solution v̂ may be seen as the Bregman projection of −∇G(0) onto a set C with respect to the
map x 7→ G∗(−x) (where G∗ is the conjugate of G). Shown in the figure are the contours of
this map, around −∇G(0); the point v̂ lies at the intersection of the lowest-level contour and
C. Here, as in the squared loss case, C = (XT )−1(DTBm

∞(λ)), which is a polyhedron. This
realization can be used to derive the implicit form (2.38) for Xβ̂, based on (2.28) and the face
of C on which v̂ lies, as explained in Remark 2.10.

2.4.3 Existence in (Regularized) GLMs

Henceforth, we focus on the case in which G takes the form (2.19). The stationarity condition
(2.20) is

XT
(
y −∇ψ(Xβ̂)

)
= λDT γ̂, (2.29)
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and using the identities G∗(x) = ψ∗(x+ y), PG∗
S (x) = Pψ∗

S+y(x+ y)− y, the dual and primal
projections, (2.27) and (2.28), become

v̂ = y − Pψ∗

y−C
(
∇ψ(0)

)
, and Xβ̂ = ∇ψ∗

(
Pψ∗

y−C
(
∇ψ(0)

))
. (2.30)

As a check, in the squared loss case, we have ψ(z) = 1
2
‖z‖2

2, ∇ψ(0) = 0, ψ∗(z) = 1
2
‖z‖2

2,
∇ψ∗(z) = z, Pψ∗

y−C(∇ψ(0)) = y − PC(y), so (2.30) matches (2.6), (2.7). Finally, the conditions
(2.24), (2.25) that guarantee the existence of primal and dual solutions become

0 ∈ int(dom(ψ)), (2.31)
y ∈ int(ran(∇ψ)) + C, (2.32)

where recall C = (XT )−1(DTBm
∞(λ)).

We take somewhat of a detour from our main goal (establishing uniqueness in (2.18)), and
study the existence conditions (2.31), (2.32). To gather insight, we examine them in detail for
some cases of interest. We begin by looking at unregularized (λ = 0) logistic and Poisson
regression. The proof of the next result is straightforward in all but the logistic regression case,
and is given in the supplementary material.
Lemma 2.15. Fix any y,X . Assume that G is of the form (2.19), where ψ is essentially smooth
and essentially strictly convex, satisfying 0 ∈ int(dom(ψ)). Consider problem (2.18), with
λ = 0. Then the sufficient condition (2.32) for the existence of a solution is equivalent to

y ∈ int(ran(∇ψ)) + null(XT ). (2.33)

For logistic regression, where ψ(z) =
∑n

i=1 log(1 + ezi) and y ∈ {0, 1}n, if we write Yi =
2yi − 1 ∈ {−1, 1}, i = 1, . . . , n, and we denote by xi ∈ Rp, i = 1, . . . , n the rows of X , then
condition (2.33) is equivalent to

there does not exist b 6= 0 such that YixTi b ≥ 0, i = 1, . . . , n. (2.34)

For Poisson regression, where ψ(z) =
∑n

i=1 e
zi and y ∈ Nn (where N = {0, 1, 2, . . .} denotes

the set of natural numbers), condition (2.33) is equivalent to

there exists δ ∈ null(XT ) such that yi + δi > 0, i = 1, . . . , n. (2.35)

Remark 2.8. For the cases of logistic and Poisson regression, the lemma shows that the suffi-
cient condition (2.32) for the existence of a solution (note (2.31) is automatically satisfied, as
dom(ψ) = Rn in these cases) reduces to (2.34) and (2.35), respectively. Interestingly, in both
cases, this recreates a well-known necessary and sufficient condition for the existence of the
maximum likelihood estimate (MLE); see Albert and Anderson [2] for the logistic regression
condition (2.34), and Haberman [51] for the Poisson regression condition (2.35). The former
condition (2.34) is particularly intuitive, and says that the logistic MLE exists if and only if there
is no hyperplane that “quasicompletely” separates the points xi, i = 1, . . . , n into the positive
and negative classes (using the terminology of Albert and Anderson [2]). For a modern take on
this condition, see Candes and Sur [20].
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Now we inspect the regularized case (λ > 0). The proof of the next result is straightforward
and can be found in the supplementary material.
Lemma 2.16. Fix any y,X,D, and λ > 0. Assume that G is of the form (2.19), where we are
either in the logistic case, ψ(z) =

∑n
i=1 log(1 + ezi) and y ∈ {0, 1}n, or in the Poisson case,

ψ(z) =
∑n

i=1 e
zi and y ∈ Nn In either case, a sufficient (but not necessary) condition for (2.32)

to hold, and hence for a solution to exist in problem (2.18), is

null(D) ⊆ null(X). (2.36)

Remark 2.9. We note that, in particular, condition (2.36) always holds when D = I , which
implies that lasso penalized logistic regression and lasso penalized Poisson regression always
have solutions.

2.4.4 Implicit Form of Solutions
Fix an arbitrary λ > 0, and let (β̂, γ̂) denote an optimal solution-subgradient pair, i.e., satisfying
(2.20), (2.21). As before, we define the boundary set and boundary signs in terms of γ̂,

B =
{
i ∈ {1, . . . ,m} : |γ̂i| = 1

}
, and s = sign(γ̂B).

and the active set and active signs in terms of β̂,

A = supp(Dβ̂) =
{
i ∈ {1, . . . ,m} : (Dβ̂)i 6= 0

}
, and r = sign(γ̂A).

By (2.20), we have that A ⊆ B. In general, A, r,B, s are not unique, as neither β̂ nor γ̂ are.
The next lemma gives an implicit form for the fit and solutions in (2.18), with G as in (2.19),

akin to the results (2.8), (2.9) in the squared loss case. Its proof stems directly from the KKT
conditions (2.29); it is somewhat technical and deferred until the supplementary material.
Lemma 2.17. Fix any y,X,D, and λ > 0. Assume that G is of the form (2.19), where ψ is
essentially smooth and essentially strictly convex, and satisfies (2.31), (2.32). Let β̂ be a solution
in problem (2.18), and let γ̂ be a corresponding optimal subgradient, with boundary set and
boundary signs B, s. Define the affine subspace

KB,s = λ(Pnull(D−B)X
T )+DT

Bs+ null(Pnull(D−B)X
T ). (2.37)

Then the unique fit can be expressed as

Xβ̂ = ∇ψ∗
(
Pψ∗

y−KB,s
(
∇ψ(0)

))
, (2.38)

and the solution can be expressed as

β̂ = (XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s
(
∇ψ(0)

))
+ b, (2.39)

for some b ∈ null(X) ∩ null(D−B). Similarly, letting A, r denote the active set and active signs
of β̂, the same expressions hold as in the last two displays with B, s replaced by A, r (i.e., with
the affine subspace of interest now being KA,r = λ(Pnull(D−A)X

T )+DT
Ar + null(Pnull(D−A)X

T )).
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Remark 2.10. The proof of Lemma 2.17 derives the representation (2.38) using technical ma-
nipulation of the KKT conditions. But the same result can be derived using the geometry sur-
rounding the dual problem (2.26). See Figure 2.2 for an accompanying illustration, and Remark
2.2 for a similar geometric argument in the squared loss case. As γ̂ has boundary set and signs
B, s, and û = λγ̂ from (2.23), we see that û must lie on the face of Bm

∞(λ) whose affine span is
EB,s = {u ∈ Rm : uB,s = λs}; and as XT v̂ = DT û, we see that v̂ lies on the face of C whose
affine span isKB,s = (XT )−1DTEB,s, which, it can be checked, can be rewritten explicitly as the
affine subspace in (2.37). Hence, the projection of ∇G(0) onto −C lies on a face whose affine
span is −KB,s, and we can write

−v̂ = PG∗

−KB,s
(
∇G(0)

)
,

i.e., we can simply replace the set −C in (2.27) with −KB,s. When G is of the form (2.19),
repeating the same arguments as before therefore shows that the dual and primal projections in
(2.30) hold with −C replaced by −KB,s, which yields the primal projection result in (2.38) in
the lemma.

Though the form of solutions in (2.39) appears more complicated in form than the form (2.9)
in the squared loss case, we see that one important property has carried over to the general loss
setting, namely, the property that b ∈ null(X) ∩ null(D−B). As before, let us assign to each
boundary set B associated with an optimal subgradient in (2.18) a basis matrix U(B) ∈ Rp×k(B),
whose linearly independent columns that span null(D−B). Then by the same logic as explained
at the beginning of Section 2.3.1, we see that, under the conditions of Lemma 2.17, there is a
unique solution in (2.18), given by (2.39) with b = 0, provided that conditions (2.10), (2.11)
hold.

The arguments in the squared loss case, proceeding the observation of (2.10), (2.11) as a suf-
ficient condition, relied on the invariance of the linear subspace Xnull(D−B) over all boundary
sets B of optimal subgradients in the generalized lasso problem (2.1). This key result was es-
tablished, recall, in Lemma 10 of Tibshirani and Taylor [137], transcribed in our Lemma 2.3 for
convenience. For the general loss setting, no such invariance result exists (as far as we know).
Thus, with uniqueness in mind as the end goal, we take somewhat of a detour and study local
properties of generalized lasso solutions, and invariance of the relevant linear subspaces, over the
next two subsections.

2.4.5 Local Stability

We establish a result on the local stability of the boundary set and boundary signs B, s asso-
ciated with an optimal solution-subgradient pair (β̂, γ̂), i.e., satisfying (2.20), (2.21). This is
a generalization of Lemma 9 in Tibshirani and Taylor [137], which gives the analogous re-
sult for the case of squared loss. We must first introduce some notation. For arbitrary subsets
A ⊆ B ⊆ {1, . . . ,m}, denote

MA,B = P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+. (2.40)
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(By convention, when A = B, we set MA,B = 0.) Define

N =
⋃
A,B,s:
MA,B 6=0

(
KB,s +∇ψ

(
col(XPnull(D−B)) ∩ null(MA,B)

))
. (2.41)

The union above is taken over all subsets A ⊆ B ⊆ {1, . . . ,m} and vectors s ∈ {−1, 1}|B|, such
that MA,B 6= 0; and KB,s,MA,B, are as defined in (2.37), (2.40), respectively. We use somewhat
of an abuse in notation in writing ∇ψ(col(XPnull(D−B)) ∩ null(MA,B)); for an arbitrary triplet
(A,B, s), of course, col(XPnull(D−B)) ∩ null(MA,B) need not be contained in int(dom(ψ)), and
so really, each such term in the above union should be interpreted as ∇ψ(col(XPnull(D−B)) ∩
null(MA,B) ∩ int(dom(ψ))).

Next we present the local stability result. Its proof is lengthy and deferred until the supple-
mentary material.
Lemma 2.18. Fix any X,D, and λ > 0. Fix y /∈ N , where the set N is defined in (2.41).
Assume that G is of the form (2.19), where ψ is essentially smooth and essentially strictly
convex, satisfying (2.31), (2.32). That is, our assumptions on the response are succinctly:
y ∈ N c ∩ (int(ran(∇ψ)) + C). Denote an optimal solution-subgradient pair in problem (2.18)
by (β̂(y), γ̂(y)), our notation here emphasizing the dependence on y, and similarly, denote the
associated boundary set, boundary signs, active set, and active signs by B(y), s(y),A(y), r(y),
respectively. There is a neighborhood U of y such that, for any y′ ∈ U , problem (2.18) has a
solution, and in particular, it has an optimal solution-subgradient pair (β̂(y′), γ̂(y′)) with the
same boundary set B(y′) = B(y), boundary signs s(y′) = s(y), active set A(y′) = A(y), and
active signs r(y′) = r(y).
Remark 2.11. The set N defined in (2.41) is bigger than it needs to be; to be precise, the same
result as in Lemma 2.18 actually holds with N replaced by the smaller set

N ∗ =
⋃
A,B,s:
MA,B 6=0

{
z ∈ Rn : ∇ψ∗

(
Pψ∗

z−KB,s
(
∇ψ(0)

))
∈ null(MA,B)

}
. (2.42)

which can be seen from the proof of Lemma 2.18, as can be N ∗ ⊆ N . However, the definition
of N in (2.41) is more explicit than that of N ∗ in (2.42), so we stick with the former set for
simplicity.
Remark 2.12. For each triplet A,B, s in the definition (2.41) over which the union is defined,
the sets KB,s and col(XPnull(D−B)) ∩ null(MA,B) both have Lebesgue measure zero, as they are
affine spaces of dimension at most n − 1. When ∇ψ : int(dom(ψ)) → int(dom(ψ∗)) is a
C1 diffeomorphism—this is true when ψ is the cumulant generating function for the Bernoulli or
Poisson cases—the image∇ψ(col(XPnull(D−B)) ∩ null(MA,B)) also has Lebesgue measure zero,
for each triplet AB, s, and thus N (being a finite union of measure zero sets) has measure zero.

2.4.6 Invariance of the Linear Space Xnull(D−B)

We leverage the local stability result from the last subsection to establish an invariance of the
linear subspace Xnull(D−B) over all choices of boundary sets B corresponding to an optimal
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subgradient in (2.18). This is a generalization of Lemma 10 in problem Tibshirani and Taylor
[137], which was transcribed in our Lemma 2.3. The proof is again deferred until the supple-
mentary material.
Lemma 2.19. Assume the conditions of Lemma 2.18. Then all boundary sets B associated with
optimal subgradients in problem (2.18) give rise to the same subspace Xnull(D−B), i.e., there is
a single linear subspace L ⊆ Rn such that L = Xnull(D−B) for all boundary sets B of optimal
subgradients. Further, L = Xnull(D−A) for all active setsA associated with solutions in (2.18).

As already mentioned, Lemmas 2.18 and 2.19 extend Lemmas 9 and 10, respectively, of
Tibshirani and Taylor [137] to the case of a general loss function G, taking the generalized
linear model form in (2.19). This represents a significant advance in our understanding of the
local nature of generalized lasso solutions outside of the squared loss case. For example, even
for the special case D = I , that logistic lasso solutions have locally constant active sets, and
that col(XA) is invariant to all choices of active set A, provided y is not in an “exceptional
set” N , seem to be interesting and important findings. These results could be helpful, e.g., in
characterizing the divergence, with respect to y, of the generalized lasso fit in (2.38), an idea that
we leave to future work.

2.4.7 Sufficient Conditions for Uniqueness

We are now able to build on the invariance result in Lemma 2.19, just as we did in the squared
loss case, to derive our main result on uniqueness in the current general loss setting.
Theorem 2.2. Fix any X,D, and λ > 0. Assume that G is of the form (2.19), where ψ is
essentially smooth and essentially strictly convex, and satisfies (2.31). Assume:
(a) null(X) ∩ null(D) = {0}, and X is in D-GP; or
(b) the entries of X are drawn from a distribution that is absolutely continuous on Rnp, and

p ≤ n; or
(c) the entries of X are drawn from a distribution that is absolutely continuous on Rnp, p > n,

and nullity(D) ≤ n.
In case (a), the following holds deterministically, and in cases (b) or (c), it holds with almost
surely with respect to the distribution of X: for any y ∈ N c ∩ (int(ran(∇ψ)) + C), where N is
as defined in (2.41), problem (2.18) has a unique solution.

Proof. Under the conditions of the theorem, Lemma 2.17 shows that any solution in (2.18) must
take the form (2.39). As in the arguments in Section 2.3.1, in the squared loss case, we see that
(2.10), (2.11) are together sufficient for implying uniqueness of the solution in (2.18). More-
over, Lemma 2.19 implies the linear subspace L = Xnull(D−B) is invariant under all choices
of boundary sets B corresponding to optimal subgradients in (2.18); as in the proof of Lemma
2.4 in the squared loss case, such invariance implies that (2.10) is by itself a sufficient condition.
Finally, if (2.10) does not hold, then X cannot be in D-GP, which follows by the applying the
arguments Lemma 2.5 in the squared loss case to the KKT conditions (2.29). This completes
the proof under condition (a). Recall, conditions (b) or (c) simply imply (a) by Lemmas 2.7 and
2.8.
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As explained in Remark 2.12, the set N in (2.41) has Lebesgue measure zero for G as in
(2.19), when ∇ψ is a C1 diffeomorphism, which is true, e.g., for ψ the Bernoulli or Poisson
cumulant generating function. However, in the case that ψ is the Bernoulli cumulant generating
function, and G is the associated negative log-likelihood, it would of course be natural to assume
that the entries of y|X follow a Bernoulli distribution, and under this assumption it is not neces-
sarily true that the event y ∈ N has zero probability. A similar statement holds for the Poisson
case. Thus, it does not seem straightforward to bound the probability that y ∈ N in cases of
fundamental interest, e.g., when the entries of y|X follow a Bernoulli or Poisson model and G is
the associated negative log-likehood, but intuitively y ∈ N seems “unlikely” in these cases. A
careful analysis is left to future work.

2.5 Discussion
In this chapter, we derived sufficient conditions for the generalized lasso problem (2.1) to have a
unique solution, which allow for p > n (in fact, allow for p to be arbitrarily larger than n): as long
as the predictors and response jointly follow a continuous distribution, and the null space of the
penalty matrix has dimension at most n, our main result in Theorem 2.1 shows that the solution is
unique. We have also extended our study to the problem (2.18), where the loss is of generalized
linear model form (2.19), and established an analogous (and more general) uniqueness result in
Theorem 2.2. Along the way, we have also shown some new results on the local stability of
boundary sets and active sets, in Lemma 2.18, and on the invariance of key linear subspaces, in
Lemma 2.19, in the generalized linear model case, which may be of interest in their own right.

An interesting direction for future work is to carefully bound the probability that y ∈ N ,
whereN is as in (2.41), in some typical generalized linear models like the Bernoulli and Poisson
cases. This would give us a more concrete probabillistic statement about uniqueness in such
cases, following from Theorem 2.2. Another interesting direction is to inspect the application
of Theorems 2.1 and 2.2 to additive trend filtering and varying-coefficient models. Lastly, the
local stability result in Lemma 2.18 seems to suggest that a nice expression for the divergence
of the fit (2.38), as a function of y, may be possible (furthermore, Lemma 2.19 suggests that this
expression should be invariant to the choice of boundary set). This may prove useful for various
purposes, e.g., for constructing unbiased risk estimates in penalized generalized linear models.
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Chapter 3

Early-Stopped Gradient Descent for Least
Squares Regression

3.1 Introduction

There is mounting evidence that many simple and popular estimation methods perform a kind
of implicit regularization, meaning that they appear to produce estimates exhibiting a kind of
regularity, even though they do not employ an explicit regularizer. Research interest in implicit
regularization is growing, but the foundations of the idea date back at least 30 years in machine
learning, where early-stopped gradient descent was found to be effective in training neural net-
works [94], and at least 40 years in applied mathematics, where the same idea (here known as
early-stopped Landweber iterations) was found ill-posed linear inverse problems [128]. After a
wave of research on boosting with early stopping [17, 117, 150, 153], more recent work focuses
on the regularity properties of particular algorithms for underdetermined problems in matrix fac-
torization, regression, and classification [47, 48, 145]. More broadly, algorithmic regularization
plays a key role in training deep neural networks, via batch normalization, dropout, and other
techniques.

In this chapter, we focus on early stopping in gradient descent, when applied specifically to
least squares regression. This is a basic problem and we are of course not the only authors to
consider it; there is now a large literature on this topic (see references above, and more to come
when we discuss related work shortly). However, our perspective differs from existing work in a
few important ways: first, we study gradient descent in continuous-time (i.e., with infinitesimal
step sizes), leading to a path of iterates known as gradient flow; second, we examine the regularity
properties along the entire path, not just its convergence point (as is the focus in most of the work
on implicit regularization); and third, we focus on analyzing and comparing the risk of gradient
flow directly, which is arguably what we care about the most, in many applications.

A strength of the continuous-time perspective is that it facilitates the comparison between
early stopping and `2 regularization. While the connection between these two mechanisms has
been studied by many authors (and from many angles), our work provides some of the strongest
evidence for this connection to date.
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Summary of Contributions. Our contributions in this chapter are as follows.
• We prove that, in finite samples, under very weak assumptions on the data model (and with

no assumptions on the feature matrix X), the estimation risk of gradient flow at time t is
no more than 1.69 that of ridge regression at tuning parameter λ = 1/t, for all t ≥ 0.

• We show that the same result holds for in-sample prediction risk.
• We show that the same result is also true for out-of-sample prediction risk, but now in an

average (Bayes) sense, with respect to a spherical prior on the underlying signal β0.
• For Bayes risk, under optimal tuning, our results on estimation, in-sample prediction, and

out-of-sample prediction risks can all be tightened. We prove that the relative risk (mea-
sured in any of these three ways) of optimally-tuned gradient flow to optimally-tuned ridge
is in between 1 and 1.22.

• We derive exact limiting formulae for the risk of gradient flow, in a Marchenko-Pastur
asymptotic model where p/n (the ratio of the feature dimension to sample size) converges
to a positive constant. We compare these to known limiting formulae for ridge regression.

• We support our theoretical results with numerical simulations that show the coupling be-
tween gradient flow and ridge can be extremely tight in practice (even tighter than sug-
gested by theory).

Related Work. Various authors have made connections between `2 regularization and the iter-
ates generated by gradient descent (when applied to different loss functions of interest): Fried-
man and Popescu [40] were among the first make this explicit, and gave supporting numerical
experiments, followed by Ramsay [108], who adopted a continuous-time (gradient flow) view,
as we do. Yao et al. [150] point out that early stopped gradient descent is a spectral filter, just
like `2 regularization. Subsequent work in nonparametric data models (specifically, reproducing
kernel Hilbert space models), studied early-stopped gradient descent from the perspective of risk
bounds, where it is shown to perform comparably to explicit `2 regularization, when each method
is optimally tuned [6, 88, 111, 144]. Other works have focused on the bias-variance trade-off in
early-stopped gradient boosting [17, 153].

After completing this work, we became aware of the interesting recent paper by Suggala et al.
[130], who gave deterministic bounds between gradient flow and ridge regularized estimates, for
problems in which the loss function is strongly convex. Their results are very different from
ours: they apply to a much wider variety of problem settings (not just least squares problems),
and are driven entirely by properties associated with strong convexity; our analysis, specific to
least squares regression, is much more precise, and covers the important high-dimensional case
(in which the strong convexity assumption is violated).

There is also a lot of related work on theory for ridge regression. Recently, Dobriban and
Wager [29] studied ridge regression (and regularized discriminant analysis) in a Marchenko-
Pastur asymptotics model, deriving limiting risk expressions, and the precise form of the limiting
optimal tuning parameter. Dicker [27] gave a similar asymptotic analysis for ridge, but under a
somewhat different problem setup. Hsu et al. [61] established finite-sample concentration bounds
for ridge risk. Low-dimensional theory for ridge dates back much further, see Goldenshluger and
Tsybakov [45] and others. Lastly, we point out an interesting risk inflation result in that is vaguely
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related to ours: Dhillon et al. [26] showed that risk of principal components regression is at most
four times that of ridge, under a natural calibration between these two estimator paths (coupling
the eigenvalue threshold for the sample covariance matrix with the ridge tuning parameter).

Outline. Here is an outline for the rest of the chapter. Section 3.2 covers preliminary material,
on the problem and estimators to be considered. Section 3.3 gives basic results on gradient flow,
and its relationship to ridge regression. Section 3.4 derives expressions for the estimation risk
and prediction risk of gradient flow and ridge. Section 3.5 presents our main results on relative
risk bounds (of gradient flow to ridge). Section 3.6 studies the limiting risk of gradient flow under
standard Marchenko-Pastur asymptotics. Section 3.7 presents numerical examples that support
our theoretical results, and Section 3.8 concludes with a short discussion.

3.2 Preliminaries

3.2.1 Least Squares, Gradient Flow, and Ridge
Let y ∈ Rn and X ∈ Rn×p be a response vector and a matrix of predictors or features, respec-
tively. Consider the standard (linear) least squares problem

minimize
β∈Rp

1

2n
‖y −Xβ‖2

2. (3.1)

Consider gradient descent applied to (3.1), with a constant step size ε > 0, and initialized at
β(0) = 0, which repeats the iterations

β(k) = β(k−1) + ε · X
T

n
(y −Xβ(k−1)), (3.2)

for k = 1, 2, 3, . . .. Letting ε→ 0, we get a continuous-time ordinary differential equation

β̇(t) =
XT

n
(y −Xβ(t)), (3.3)

over time t ≥ 0, subject to an initial condition β(0) = 0. We call (3.3) the gradient flow
differential equation for the least squares problem (3.1).

To see the connection between (3.2) and (3.3), we simply rearrange (3.2) to find that

β(k) − β(k−1)

ε
=
XT

n
(y −Xβ(k−1)),

and setting β(t) = β(k) at time t = kε, we recognize the left-hand side above as the discrete
derivative of β(t) at time t, which approaches its continuous-time derivative as ε→ 0.

In fact, starting from the differential equation (3.3), we can view gradient descent (3.2) as
one of the most basic numerical analysis techniques—the forward Euler method—for discretely
approximating the solution (3.3).
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Now consider the `2 regularized version of (3.1), called ridge regression [56]:

minimize
β∈Rp

1

n
‖y −Xβ‖2

2 + λ‖β‖2
2, (3.4)

where λ > 0 is a tuning parameter. The explicit ridge solution is

β̂ridge(λ) = (XTX + nλI)−1XTy. (3.5)

Though apparently unrelated, the ridge regression solution path and gradient flow path share
striking similarities, and their relationship is our central focus.

3.2.2 The Exact Gradient Flow Solution Path
Thanks to our focus on least squares, the gradient flow differential equation in (3.3) is a rather
special one: it is a continuous-time linear dynamical system, and has a well-known exact solu-
tion.
Lemma 3.1. Fix a response y and predictor matrix X . Then the gradient flow problem (3.3),
subject to β(0) = 0, admits the exact solution

β̂gf(t) = (XTX)+(I − exp(−tXTX/n))XTy, (3.6)

for all t ≥ 0. Here A+ is the Moore-Penrose generalized inverse of a matrix A, and exp(A) =
I + A+ A2/2! + A3/3! + · · · is the matrix exponential.
Proof. This can be verified by differentiating (3.6) and using basic properties of the matrix ex-
ponential.

In continuous-time, early stopping corresponds to taking the estimator β̂gf(t) in (3.6) for any
finite value of t ≥ 0, with smaller t leading to greater regularization. We can already see that
(3.6), like (3.5), applies a type of shrinkage to the least squares solution; their similarities will
become more evident when we express both in spectral form, as we will do shortly in Section
3.3.1.

3.2.3 Discretization Error
In what follows, we will focus on (continuous-time) gradient flow rather than (discrete-time)
gradient descent. Standard results from numerical analysis give uniform bounds between dis-
cretizations like the forward Euler method (gradient descent) and the differential equation path
(gradient flow). In particular, the next result is a direct application of Theorem 212A in Butcher
[18].
Lemma 3.2. For least squares, consider gradient descent (3.2) initialized at β(0) = 0, and gra-
dient flow (3.6), subject to β(0) = 0. For any step size ε < 1/smax where smax is the largest
eigenvalue of XTX/n, and any K ≥ 1,

max
k=1,...,k

|β(k) − β̂gf(kε)| ≤ ε‖XTy‖2

2n
(exp(Kεsmax)− 1).

The results to come can therefore be translated to the discrete-time setting, by taking a small
enough ε and invoking Lemma 3.2, but we omit details for brevity.

34



3.3 Basic Comparisons

3.3.1 Spectral Shrinkage Comparison
To compare the ridge (3.5) and gradient flow (3.6) paths, it helps to rewrite them in terms of the
singular value decomposition of X . Let X =

√
nUS1/2V T be a singular value decomposition,

so that XTX/n = V SV T is an eigendecomposition. Then straightforward algebra brings (3.5),
(3.6), on the scale of fitted values, to

Xβ̂ridge(λ) = US(S + λI)−1UTy, (3.7)

Xβ̂gf(t) = U(I − exp(−tS))UTy. (3.8)

Letting si, i = 1, . . . , p denote the diagonal entries of S, and ui ∈ Rn, i = 1, . . . , p denote the
columns of U , we see that (3.7), (3.8) are both linear smoothers (linear functions of y) of the
form

p∑
i=1

g(si, κ) · uiuTi y,

for a spectral shrinkage map g(·, κ) : [0,∞)→ [0,∞) and parameter κ. This map is gridge(s, λ) =
s/(s + λ) for ridge, and ggf(s, t) = 1− exp(−ts) for gradient flow. We see both apply more
shrinkage for smaller values of s, i.e., lower-variance directions of XTX/n, but do so in appar-
ently different ways.

While these shrinkage maps agree at the extreme ends (i.e., set λ = 0 and t = ∞, or set
λ = ∞ and t = 0), there is no single parametrization for λ as a function of t, say φ(t), that
equates gridge(·, φ(t)) with ggf(·, t), for all t ≥ 0. But the parametrization φ(t) = 1/t gives the
two shrinkage maps grossly similar behaviors: see Figure 3.1 for a visualization. Moreover, as
we will show later in Sections 3.5–3.7, the two shrinkage maps (under the calibration φ(t) = 1/t)
lead to similar risk curves for ridge and gradient flow.
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Figure 3.1: Comparison of ridge and gradient flow spectral shrinkage maps, plotted as heatmaps over
(s, λ) (ridge) and (s, t) (gradient flow) with the calibration λ = 1/t.
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3.3.2 Underlying Regularization Problems
Given our general interest in the connections between gradient descent and ridge regression, it is
natural to wonder if gradient descent iterates can also be expressed as solutions to a sequence of
regularized least squares problems. The following two simple lemmas certify that this is in fact
the case, in both discrete- and continuous-time; their proofs may be found in the supplementary
material.
Lemma 3.3. Fix y,X , and let XTX/n = V SV T be an eigendecomposition. Assume that we
initialize β(0) = 0, and we take the step size in gradient descent to satisfy ε < 1/smax, with smax

denoting the largest eigenvalue of XTX/n. Then, for each k = 1, 2, 3, . . ., the iterate β(k) from
step k in gradient descent (3.2) uniquely solves the optimization problem

minimize
β∈Rp

1

n
‖y −Xβ‖2

2 + βTQkβ,

where Qk = V S((I − εS)−k − I)−1V T .
Lemma 3.4. Fix y,X , and let XTX/n = V SV T be an eigendecomposition. Under the initial
condition β(0) = 0, for all t > 0, the solution β(t) of the gradient flow problem (3.3) uniquely
solves the optimization problem

minimize
β∈Rp

1

n
‖y −Xβ‖2

2 + βTQtβ,

where Qt = V S(exp(tS)− I)−1V T .
Remark 3.1. The optimization problems that underlie gradient descent and gradient flow, in
Lemmas 3.3 and 3.4, respectively, are both quadratically regularized least squares problems. In
agreement with the intuition from the last subsection, we see that in both problems the regular-
izers penalize the lower-variance directions of XTX/n more strongly, and this is relaxed as t
or k grow. The proof of the continuous-time is nearly immediate from (3.8); the proof of the
discrete-time result requires a bit more work. To see the link between the two results, set t = kε,
and note that as k →∞:

((1− ts/k)−k − 1)−1 → (exp(ts)− 1)−1.

3.4 Measures of Risk

3.4.1 Estimation Risk
We take the feature matrix X ∈ Rn×p to be fixed and arbitrary, and consider a generic response
model,

y|β0 ∼ (Xβ0, σ
2I), (3.9)

which we write to mean E(y|β0) = Xβ0, Cov(y|β0) = σ2I , for an underlying coefficient vector
β0 ∈ Rp and error variance σ2 > 0. We consider a spherical prior,

β0 ∼ (0, (r2/p)I) (3.10)
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for some signal strength r2 = E‖β0‖2
2 > 0.

For an estimator β̂ (i.e., measurable function ofX, y), we define its estimation risk (or simply,
risk) as

Risk(β̂; β0) = E
[
‖β̂ − β0‖2

2

∣∣ β0

]
.

We also define its Bayes risk as Risk(β̂) = E‖β̂ − β0‖2
2.

Next we give expressions for the risk and Bayes risk of gradient flow; the derivations are
straightforward and found in the supplementary material. We denote by si, i = 1, . . . , p and vi,
i = 1, . . . , p the eigenvalues and eigenvectors, respectively, of XTX/n.
Lemma 3.5. Under the data model (3.9), for any t ≥ 0, the risk of the gradient flow estimator
(3.6) is

Risk(β̂gf(t); β0) =

p∑
i=1

(
|vTi β0|2 exp(−2tsi) +

σ2

n

(1− exp(−tsi))2

si

)
, (3.11)

and under the prior (3.10), the Bayes risk is

Risk(β̂gf(t)) =
σ2

n

p∑
i=1

(
α exp(−2tsi) +

(1− exp(−tsi))2

si

)
, (3.12)

where α = r2n/(σ2p). Here and henceforth, we take by convention (1 − e−x)2/x = 0 when
x = 0.
Remark 3.2. Compare (3.11) to the risk of ridge regression,

Risk(β̂ridge(λ); β0) =

p∑
i=1

(
|vTi β0|2

λ2

(si + λ)2
+
σ2

n

si
(si + λ)2

)
. (3.13)

and compare (3.12) to the Bayes risk of ridge,

Risk(β̂ridge(λ)) =
σ2

n

p∑
i=1

αλ2 + si
(si + λ)2

, (3.14)

where α = r2n/(σ2p). These ridge results follow from standard calculations, found in many
other papers; for completeness, we give details in the supplementary material.
Remark 3.3. For ridge regression, the Bayes risk (3.14) is minimized at λ∗ = 1/α. There are (at
least) two easy proofs of this fact. For the first, we note the Bayes risk of ridge does not depend
on the distributions of y|β0 and β0 in (3.9) and (3.10) (just on the first two moments); in the
special case that both distributions are normal, we know that β̂ridge(λ∗) is the Bayes estimator,
which achieves the optimal Bayes risk (hence certainly the lowest Bayes risk over the whole
ridge family). For the second proof, following Dicker [27], we rewrite each summand in (3.14)
as

αλ2 + si
(si + λ)2

=
α

si + α
+

s(λα− 1)2

(si + λ)2(si + α)
,

and observe that this is clearly minimized at λ∗ = 1/α.
Remark 3.4. As far as we can tell, deriving the tuning parameter value t∗ minimizing the gra-
dient flow Bayes risk (3.12) is difficult. Nevertheless, as we will show in Section 3.5.3, we can
still obtain interesting bounds on the optimal risk itself, Risk(β̂gf(t∗)).
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3.4.2 Prediction Risk

We now define two predictive notions of risk. Let

x0 ∼ (0,Σ) (3.15)

for a positive semidefinite matrix Σ ∈ Rp×p, and assume x0 is independent of y|β0. We de-
fine in-sample prediction risk and out-of-sample prediction risk (or simply, prediction risk) as,
respectively,

Riskin(β̂; β0) =
1

n
E
[
‖Xβ̂ −Xβ0‖2

2

∣∣ β0

]
,

Riskout(β̂; β0) = E
[
(xT0 β̂ − xT0 β0)2

∣∣ β0

]
,

and their Bayes versions as, respectively, Riskin(β̂) = (1/n)E‖Xβ̂ −Xβ0‖2
2,

Riskout(β̂) = E[(xT0 β̂ − xT0 β0)2].
For space reasons, in the remainder, we will focus on out-of-sample prediction risk, and defer

detailed discussion of in-sample prediction risk to the supplementary material. The next lemma,
proved in the supplement, gives expressions for the prediction risk and Bayes prediction risk of
gradient flow. We denote Σ̂ = XTX/n.
Lemma 3.6. Under (3.9), (3.15), the prediction risk of the gradient flow estimator (3.6) is

Riskout(β̂gf(t); β0) = βT0 exp(−tΣ̂)Σ exp(−tΣ̂)β0 +
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ

]
, (3.16)

and under (3.10), the Bayes prediction risk is

Riskout(β̂gf(t)) =
σ2

n
tr
[
α exp(−2tΣ̂)Σ + Σ̂+(I − exp(−tΣ̂))2Σ

]
. (3.17)

Remark 3.5. Compare (3.16) and (3.17) to the prediction risk and Bayes prediction risk of ridge,
respectively,

Riskout(β̂ridge(λ); β0) = λ2βT0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0 +
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ

]
, (3.18)

Riskout(β̂ridge(λ)) =
σ2

n
tr
[
λ2α(Σ̂ + λI)−2Σ + Σ̂(Σ̂ + λI)−2Σ

]
. (3.19)

These ridge results are standard, and details are given in the supplementary material.
Remark 3.6. The Bayes prediction risk of ridge (3.19) is again minimized at λ∗ = 1/α. This
is not at all clear analytically, but it can be established by specializing to a normal-normal
likelihood-prior pair, where (for fixed x0) we know that xT0 β̂

ridge(λ∗) is the Bayes estimator
for the parameter xT0 β0 (similar to the arguments in Remark 3.3 for the Bayes estimation risk).
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3.5 Relative Risk Bounds

3.5.1 Relative Estimation Risk
We start with a simple but key lemma.
Lemma 3.7. For all x ≥ 0, we have (a) e−x ≤ 1/(1 + x) and (b) 1− e−x ≤ 1.2985x/(1 + x).
Proof. Fact (a) can by shown via Taylor series and (b) by numerically maximizing x 7→ (1 −
e−x)(1 + x)/x.

A bound on the relative risk of gradient flow to ridge, under the calibration λ = 1/t, follows
immediately.
Theorem 3.1. Consider the data model (3.9).

(a) For all β0 ∈ Rp, and all t ≥ 0, Risk(β̂gf(t); β0) ≤ 1.6862 · Risk(β̂ridge(1/t); β0).
(b) The inequality in part (a) holds for the Bayes risk with respect to any prior on β0.
(c) The results in parts (a), (b) also hold for in-sample prediction risk.

Proof. For part (a), set λ = 1/t and compare the ith summand in (3.11), call it ai, to that in
(3.13), call it bi. Then

ai = |vTi β0|2 exp(−2tsi) +
σ2

n

(1− exp(−tsi))2

si

≤ |vTi β0|2
1

(1 + tsi)2
+
σ2

n
1.29852 t2si

(1 + tsi)2

≤ 1.6862

(
|vTi β0|2

(1/t)2

(1/t+ si)2
+
σ2

n

si
(1/t+ si)2

)
= 1.6862 bi,

where in the second line, we used Lemma 3.7. Summing over i = 1, . . . , p gives the desired
result.

Part (b) follows by taking an expectation on each side of the inequality in part (a). Part (c)
follows similarly, with details given in the supplementary material.

Remark 3.7. For any t > 0, gradient flow is in fact a unique Bayes estimator, corresponding to
a normal likelihood in (3.9) and normal prior β0 ∼ N(0, (σ2/n)Q−1

t ), where Qt is as in Lemma
3.4. It is therefore admissible. This means the result in part (a) in the theorem (and part (b), for
the same reason) cannot be true for any universal constant strictly less than 1.

3.5.2 Relative Prediction Risk
We extend the two simple inequalities in Lemma 3.7 to matrix exponentials. We use � to denote
the Loewner ordering on positive semidefinite matrices, i.e., we use A � B to mean that B − A
is positive semidefinite.
Lemma 3.8. For allX � 0, we have (a) exp(−2X) � (I+X)−2 and (b)X+(I−exp(−X))2 �
1.6862X(I +X)−2.
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Proof. All matrices in question are simultaneously diagonalizable, so the claims reduce to ones
about eigenvalues, i.e., reduce to checking that e−2x ≤ 1/(1+x)2 and (1−e−x)2/x ≤ 1.6862x/(1+
x)2, for x ≥ 0, and these follow by manipulating the facts in Lemma 3.7.

With just a bit more work, we can bound the relative Bayes prediction risk of gradient flow
to ridge, again under the calibration λ = 1/t.
Theorem 3.2. Consider the data model (3.9), prior (3.10), and (out-of-sample) feature distribu-
tion (3.15). For all t ≥ 0, Riskout(β̂gf(t)) ≤ 1.6862 · Riskout(β̂ridge(1/t)).

Proof. Consider the matrices inside the traces in (3.17) and (3.19). Applying Lemma 3.8, we
have

α exp(−2tΣ̂) + Σ̂+(I − exp(−tΣ̂))2

� α(I + tΣ̂)−2 + 1.6862 t2Σ̂(I + tΣ̂)−2

� 1.6862
(
α(1/t)2(I/t+ Σ̂)−2 + Σ̂(I/t+ Σ̂)−2

)
.

Let A,B be the matrices on the first and last lines in the above display, respectively. As A � B
and Σ � 0, we have tr(AΣ) ≤ tr(BΣ), completing the proof.

Remark 3.8. The Bayes perspective here is critical; the proof breaks down for prediction risk,
at an arbitrary fixed β0, and it is not clear to us whether the result is true for prediction risk in
general.

3.5.3 Relative Risks at Optima

We present one more helpful inequality, and defer its proof to the supplementary material (it is
more technical than the proofs of Lemmas 3.7 and 3.8, but still straightforward).
Lemma 3.9. For allX � 0, it holds that exp(−2X)+X+(I−exp(−X))2 � 1.2147 (I+X)−1.

We now have the following result, on the relative Bayes risk (and Bayes prediction risk), of
gradient descent to ridge regression, when both are optimally tuned.
Theorem 3.3. Consider the data model (3.9), prior (3.10), and (out-of-sample) feature distribu-
tion (3.15).

(a) It holds that

1 ≤ inft≥0 Risk(β̂gf(t))

infλ≥0 Risk(β̂ridge(λ))
≤ 1.2147.

(b) The same result as in part (a) holds for both in-sample and out-of-sample prediction risk.

Proof. For part (a), recall from Remark 3.3 that the optimal ridge tuning parameter is λ∗ = 1/α
and further, in the special case of a normal-normal likelihood-prior pair, we know that β̂ridge(λ∗)
is the Bayes estimator so the Bayes risk of β̂gf(t), for any t ≥ 0, must be at least that of β̂ridge(λ∗).
But because these Bayes risks (3.12), (3.14) do not depend on the form of likelihood and prior
(only on their first two moments), we know that the same must be true in general, which proves
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the lower bound on the risk ratio. For the upper bound, we take t = α, and compare the ith
summand in (3.12), call it ai, to that in (3.14), call it bi. We have

ai = α exp(−2αsi) +
(1− exp(−αsi))2

si

≤ 1.2147
α

1 + αsi
= 1.2147 bi,

where in the second line, we applied Lemma 3.9 (to the case of scalar X). Summing over
i = 1, . . . , p gives the desired result.

Parts (b) follows similarly, with details in the supplementary material.

3.6 Asymptotic Risk Analysis

3.6.1 Marchenko-Pastur Asymptotics

Notice the Bayes risk for gradient flow (3.12) and ridge regression (3.14) depend only on the
predictor matrix X via the eigenvalues of the (uncentered) sample covariance Σ̂ = XTX/n.
Random matrix theory gives us a precise understanding of the behavior of these eigenvalues, in
large samples. The following assumptions are standard ones in random matrix theory (e.g., Bai
and Silverstein [4]). Given a symmetric matrix A ∈ Rp×p, recall that its spectral distribution is
defined as FA(x) = (1/p)

∑p
i=1 1(λi(A) ≤ x), where λi(A), i = 1, . . . , p are the eigenvalues of

A, and 1(·) denotes the 0-1 indicator function.
Assumption 1. A1 The predictor matrix satisfies X = ZΣ1/2, for a random matrix Z ∈ Rn×p of
i.i.d. entries with zero mean and unit variance, and a deterministic positive semidefinite covari-
ance Σ ∈ Rp×p.
Assumption 2. A2 The sample size n and dimension p both diverge, i.e., n, p → ∞, with
p/n→ γ ∈ (0,∞).
Assumption 3. A3 The spectral measure FΣ of the predictor covariance Σ converges weakly as
n, p→∞ to some limiting spectral measure H .

Under the above assumptions, the seminal Marchenko-Pastur theorem describes the weak
limit of the spectral measure FΣ̂ of the sample covariance Σ̂.
Theorem 3.4 (Bai and Silverstein [4], Marchenko and Pastur [90], Silverstein [124]). Assuming
1–3, almost surely, the spectral measure FΣ̂ of Σ̂ converges weakly to a law FH,γ , called the
empirical spectral distribution, that depends only on H, γ.
Remark 3.9. In general, a closed form for the empirical spectral distribution FH,γ is not known,
except in very special cases (e.g., when Σ = I for all n, p). However, numerical methods for
approximating FH,γ have been proposed (see Dobriban [28] and references therein).

3.6.2 Limiting Gradient Flow Risk

The limiting Bayes risk of gradient flow is now immediate from the representation in (3.12).
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Theorem 3.5. Assume 1–3, as well as a data model (3.9) and prior (3.10). Then as n, p → ∞
with p/n→ γ ∈ (0,∞), for each t ≥ 0, the Bayes risk (3.12) of gradient flow converges almost
surely to

σ2γ

∫ [
α0 exp(−2ts) +

(1− exp(−ts))2

s

]
dFH,γ(s), (3.20)

where α0 = r2/(σ2γ), and FH,γ is the empirical spectral distribution from Theorem 3.4.
Proof. Note that we can rewrite the Bayes risk in (3.12) as (σ2p)/n[

∫
αh1(s) dFΣ̂(s) +

∫
h2(s) dFΣ̂(s)],

where we let h1(s) = exp(−2ts), h2(s) = (1−exp(−ts))2/s. Weak convergence of FΣ̂ to FH,γ ,
from Theorem 3.4, implies

∫
h(s) dFΣ̂(s)→

∫
h(s) dFH,γ(s) for all bounded, continuous func-

tions h, which proves the result.

A similar result is available for the limiting Bayes in-sample prediction risk. Studying the the
limiting Bayes (out-of-sample) prediction risk is much more challenging, as (3.17) is not simply a
function of eigenvalues of Σ̂. The proof of the next result, deferred to the supplementary material,
relies on a key fact on the Laplace transform of the map x 7→ exp(xA), and the asymptotic limit
of a certain trace functional involving Σ̂,Σ, from Ledoit and Peche [77].
Theorem 3.6. Under the conditions of Theorem 3.5, also assume E(Z12

ij ) ≤ C1, ‖Σ‖2 ≤ C2, for
all n, p and constants C1, C2 > 0. For each t ≥ 0, the Bayes prediction risk (3.17) of gradient
flow converges almost surely to

σ2γ

[
α0f(2t) + 2

∫ t

0

(f(u)− f(2u)) du

]
, (3.21)

where f is the inverse Laplace transform of the function

θ(x) :=
1

γ

(
1

1− γ + γxm(FH,γ)(−x)
− 1

)
,

and m(FH,γ) is the Stieltjes transform of FH,γ ,

m(FH,γ)(z) =

∫
1

u− z dFH,γ(u). (3.22)

An interesting feature of the results (3.20), (3.21) is that they are asymptotically exact (no
hidden constants).

3.6.3 Asymptotic Risk Comparisons
Under the conditions of Theorem 3.5, for each λ ≥ 0, the Bayes risk (3.14) of ridge regression
converges almost surely to

σ2γ

∫
α0λ

2 + s

(s+ λ)2
dFH,γ. (3.23)

This is simply an application of weak convergence of FΣ̂ to FH,γ (as argued the proof of Theorem
3.5), and can also be found in, e.g., Chapter 3 of Tulino and Verdu [138].
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The limiting Bayes prediction risk is a more difficult calculation. Denote C− = {z ∈ C :
Im(z) < 0}. By Lemma 2 in Ledoit and Peche [77], under the conditions stated in the theorem,
for each z ∈ C−, we have

lim
n,p→∞

1

p
tr
[
(Σ̂ + zI)−1Σ

]
→ θ(z). (3.24)

It is shown in Dobriban and Wager [29] that, under the conditions of Theorem 3.6, for each
λ ≥ 0, the Bayes prediction risk (3.19) of ridge regression converges almost surely to

σ2γ
[
θ(λ) + λ(1− α0λ)θ′(λ)

]
, (3.25)

where θ(λ) is as defined in (3.24). The calculation (3.19) makes use of the Ledoit-Peche re-
sult (3.24), and Vitali’s theorem (to assure the convergence of the derivative of the resolvent
functional in (3.24)).

It is interesting to compare the limiting Bayes prediction risks (3.25) and (3.21). For con-
creteness, we can rewrite the latter as

σ2γ

[
α0L−1(θ)(2t) + 2

∫ t

0

(L−1(θ)(u)− L−1(θ)(2u)) du

]
. (3.26)

We see that (3.25) features θ and its derivative, while (3.26) features the inverse Laplace trans-
form L−1(θ) and its antiderivative.

In fact, a similar structure can be observed by rewriting the limiting risks (3.23) and (3.20).
By simply expanding s = (s+ λ)− λ in the numerator in (3.23), and using the definition of the
Stieltjes transform (3.22), the limiting Bayes risk of ridge becomes

σ2γ
[
m(FH,γ)(−λ)− λ(1− α0λ)m(FH,γ)

′(−λ)
]
. (3.27)

By following arguments similar to the treatment of the variance term in the proof of Theorem
3.6, in Section 6.2.10, the limiting Bayes risk of gradient flow becomes

σ2γ

[
α0L(fH,γ)(2t) + 2

∫ t

0

(L(fH,γ)(u)− L(fH,γ)(2u)) du

]
, (3.28)

where fH,γ = dFH,γ/ds denotes the density of the empirical spectral distribution FH,γ , and
L(fH,γ) its Laplace transform. We see (3.27) features m(FH,λ) and its derivative, and (3.28)
features L(fH,γ) and its antiderivative. But indeed L(L(fH,γ))(λ) = m(FH,λ)(−λ), since we
can (in general) view the Stieltjes transform as an iterated Laplace transform. This creates a
symmetric link between (3.27), (3.28) and (3.25), (3.26), where m(FH,γ)(−λ) in the former
plays the role of θ(λ) in the latter.

3.7 Numerical Examples
We give numerical evidence for our theoretical results: both our relative risk bounds in Section
3.5, and our asymptotic risk expressions in Section 3.6. We generated features via X = Σ1/2Z,
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Figure 3.2: Comparison of Bayes risks for gradient flow and ridge, with Gaussian features, Σ = I ,
n = 500, p = 1000.

for a matrix Z with i.i.d. entries from a distribution G (with mean zero and unit variance), for
three choices of G: standard Gaussian, Student t with 3 degrees of freedom, and Bernoulli with
probability 0.5 (the last two distributions were standardized). We took Σ to have all diagonal
entries equal to 1 and all off-diagonals equal to ρ = 0 (i.e., Σ = I), or ρ = 0.5. For the problem
dimensions, we considered n = 1000, p = 500 and n = 500, p = 1000. For both gradient
flow and ridge, we used a range of 200 tuning parameters equally spaced on the log scale from
2−10 to 210. Lastly, we set σ2 = r2 = 1, where σ2 is the noise variance in (3.9) and r2 is the
prior radius in (3.10). For each configuration of G,Σ, n, p, we computed the Bayes risk and
Bayes prediction risk gradient flow and ridge, as in (3.12), (3.14), (3.17), (3.19). For Σ = I ,
the empirical spectral distribution from Theorem 3.4 has a closed form, and so we computed the
limiting Bayes risk for gradient flow (3.20) via numerical integration (and similarly for ridge,
details in the supplementary material).

Figure 3.2 shows the results for Gaussian features, Σ = I , n = 500, and p = 1000; the
supplementary material shows results for all other cases (the results are grossly similar). The
top plot shows the risk curves when calibrated according to λ = 1/t (as per our theory). Here
we see fairly strong agreement between the two risk curves, especially around their minimums;
the maximum ratio of gradient flow to ridge risks is 1.2164 over the entire path (cf. the upper
bound of 1.6862 from Theorem 3.1), and the ratio of the minimums is 1.0036 (cf. the upper
bound of 1.2147 from Theorem 3.3). The bottom plot shows the risks when parametrized by the
`2 norms of the underlying estimators. We see remarkable agreement over the whole path, with
a maximum ratio of 1.0050. Moreover, in both plots, we can see that the finite-sample (dotted
lines) and asymptotic risk curves (solid lines) are identical, meaning that the convergence in
Theorem 3.5 is very rapid (and similarly for ridge).

3.8 Discussion

In this work, we studied gradient flow (i.e., gradient descent with infinitesimal step sizes) for least
squares, and pointed out a number of connections to ridge regression. We showed that, under
minimal assumptions on the data model, and using a calibration t = 1/λ—where t denotes the
time parameter in gradient flow, and λ the tuning parameter in ridge—the risk of gradient flow
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is no more than 1.69 times that of ridge, for all t ≥ 0. We also showed that the same holds
for prediction risk, in an average (Bayes) sense, with respect to any spherical prior. Though
we did not pursue this, it is clear that these risk couplings could be used to port risk results
from the literature on ridge regression (e.g., Dicker [27], Dobriban and Wager [29], Hsu et al.
[61], Raskutti et al. [111], etc.) to gradient flow.

Our numerical experiments revealed that calibrating the risk curves by the underlying `2

norms of the estimators results in a much tighter coupling; developing theory to explain this
phenomenon is an important challenge left to future work. Other interesting directions are to
analyze the risk of a continuum version of stochastic gradient descent, or to study gradient flow
beyond least squares, e.g., for logistic regression.
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Chapter 4

The Multiple Quantile Graphical Model

4.1 Introduction
In this chapter, we consider modeling the joint distribution P(y1, . . . , yd) of d random variables,
given n independent draws from this distribution y(1), . . . , y(n) ∈ Rd, where possibly d � n.
Later, we generalize this setup and consider modeling the distribution P(y1, . . . , yd|x1, . . . , xp),
given n independent pairs (x(1), y(1)), . . . , (x(n), y(n)) ∈ Rp+d. Our starting point is the neigh-
borhood selection method of [93], which is typically considered in the context of multivariate
Gaussian data, and seen as a tool for covariance selection [25]: when P(y1, . . . , yd) is a multi-
variate Gaussian distribution, it is a well-known fact that yj and yk are conditionally independent
given the remaining variables if and only if the coefficent corresponding to yk is zero in the (lin-
ear) regression of yj on all other variables (e.g., [76]). Therefore, in neighborhood selection we
compute, for each k = 1, . . . , d, a lasso regression — in order to obtain a small set of conditional
dependencies — of yk on the remaining variables, i.e.,

minimize
θk∈Rd

n∑
i=1

(
y

(i)
k −

∑
j 6=k

θkjy
(i)
j

)2

+ λ‖θk‖1, (4.1)

for a tuning parameter λ > 0. This strategy can be seen as a pseudolikelihood approximation
[12],

P(y1, . . . , yd) ≈
d∏

k=1

P(yk|y¬k), (4.2)

where y¬k denotes all variables except yk. Under the multivariate Gaussian model for P(y1, . . . , yd),
the conditional distributions P(yk|y¬k), k = 1, . . . , d here are (univariate) Gaussians, and maxi-
mizing the pseudolikelihood in (4.2) is equivalent to separately maximizing the conditionals, as
is precisely done in (4.1) (with induced sparsity), for k = 1, . . . , d.

Following the pseudolikelihood-based approach traditionally means carrying out three steps:
(i) we write down a suitable family of joint distributions for P(y1, . . . , yd), (ii) we derive the
conditionals P(yk|y¬k), k = 1, . . . , d, and then (iii) we maximize each conditional likelihood
by (freely) fitting the parameters. Neighborhood selection, and a number of related approaches
that came after it (see Section 4.2.1), can be all thought of in this workflow. In many ways,
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step (ii) acts as the bottleneck here, and to derive the conditionals, we are usually limited to a
homoskedastic and parameteric family for the joint distribution.

The approach we take in this work differs somewhat substantially, as we begin by directly
modeling the conditionals in (4.2), without any preconceived model for the joint distribution — in
this sense, it may be seen a type of dependency network [53] for continuous data. We also employ
heteroskedastic, nonparametric models for the conditional distributions, which allows us great
flexibility in learning these conditional relationships. Our method, called the Multiple Quantile
Graphical Model (MQGM), is a marriage of ideas in high-dimensional, nonparametric, multiple
quantile regression with those in the dependency network literature (the latter is typically focused
on discrete, not continuous, data).

An outline for this chapter is as follows. Section 4.2 reviews background material, and Sec-
tion 4.3 develops the MQGM estimator. Section 4.4 studies basic properties of the MQGM,
and establishes a structure recovery result under appropriate regularity conditions, even for het-
eroskedastic, non-Gaussian data. Section 4.5 describes an efficient ADMM algorithm for es-
timation, and Section 4.6 presents empirical examples comparing the MQGM versus common
alternatives. Section 4.7 concludes with a discussion.

4.2 Background

4.2.1 Neighborhood Selection and Related Methods

Neighborhood selection has motivated a number of methods for learning sparse graphical mod-
els. The literature here is vast; we do not claim to give a complete treatment, but just mention
some relevant approaches. Many pseudolikelihood approaches have been proposed, see, e.g.,
[3, 42, 68, 85, 105, 114]. These works exploit the connection between estimating a sparse in-
verse covariance matrix and regression, and they vary in terms of the optimization algorithms
they use and the theoretical guarantees they offer.

In a related but distinct line of research, [5, 41, 118, 151] proposed `1-penalized likeli-
hood estimation in the Gaussian graphical model, a method now generally termed the graph-
ical lasso (GLasso). Following this, several recent papers have extended the GLasso in vari-
ous ways. [39] examined a modification based on the multivariate Student t-distribution, for
robust graphical modeling. [126, 146, 152] considered conditional distributions of the form
P(y1, . . . , yd|x1, . . . , xp). [78] proposed a model for mixed (both continuous and discrete) data
types, generalizing both GLasso and pairwise Markov random fields. [86, 87] used copulas for
learning non-Gaussian graphical models.

A strength of neighborhood-based (i.e., pseudolikelihood-based) approaches lies in their sim-
plicity; because they essentially reduce to a collection of univariate probability models, they are
in a sense much easier to study outside of the typical homoskedastic, Gaussian data setting.
[58, 148, 149] elegantly studied the implications of using univariate exponential family models
for the conditionals in (4.2). Closely related to pseudoliklihood approaches are dependency net-
works [53]. Both frameworks focus on the conditional distributions of one variable given all the
rest; the difference lies in whether or not the model for conditionals stems from first specifying
some family of joint distributions (pseudolikelihood methods), or not (dependency networks).
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Dependency networks have been thoroughly studied for discrete data, e.g., [53, 100]. For con-
tinuous data, [140] proposed modeling the mean in a Gaussian neighborhood regression as a
nonparametric, additive function of the remaining variables, yielding flexible relationships —
this is a type of dependency network for continuous data (though it is not described by the au-
thors in this way). Our method, the MQGM, also deals with continuous data, and is the first to
our knowledge that allows for fully nonparametric conditional distributions, as well as nonpara-
metric contributions of the neighborhood variables, in each local model.

4.2.2 Quantile Regression

In linear regression, we estimate the conditional mean of y|x1, . . . , xp based on data samples.
Similarly, in α-quantile regression [73], we estimate the conditional α-quantile of y|x1, . . . , xp,
formally Qy|x1,...,xp(α) = inf{t : P(y ≤ t|x1, . . . , xp) ≥ α}, for a given α ∈ [0, 1], by solving the
convex optimization problem:

minimize
θ

n∑
i=1

ψα

(
y(i) −

q∑
j=1

θjx
(i)
j

)
,

where ψα(z) = max{αz, (α− 1)z} is the quantile loss (also referred to as the “pinball” or “tilted
absolute” loss). Quantile regression can be useful when the conditional distribution in question is
suspected to be heteroskedastic and/or non-Gaussian, e.g., heavy-tailed, or if we wish to under-
stand properties of the distribution other than the mean, e.g., tail behavior. In multiple quantile
regression, we solve several quantile regression problems simultaneously, each corresponding
to a different quantile level; these problems can be coupled somehow to increase efficiency in
estimation (see details in the next section). Again, the literature on quantile regression is quite
vast (especially that from econometrics), and we only give a short review here. A standard text
is [71]. Nonparametric modeling of quantiles is a natural extension from the (linear) quantile
regression approach outlined above; in the univariate case (one conditioning variable), [74] sug-
gested a method using smoothing splines, and [131] described an approach using kernels. More
recently, [72] studied the multivariate nonparametric case (more than one conditioning variable),
using additive models. In the high-dimensional setting, where p is large, [11, 37, 65] studied `1-
penalized quantile regression and derived estimation and recovery theory for non-(sub-)Gaussian
data. We extend results in [37] to prove structure recovery guarantees for the MQGM (in Section
4.4.3).

4.3 The Multiple Quantile Graphical Model

Many choices can be made with regards to the final form of the MQGM, and to help in un-
derstanding these options, we break down our presentation in parts. First fix some ordered set
A = {α1, . . . , αr} of quantile levels, e.g., A = {0.05, 0.10, . . . , 0.95}. For each variable yk, and
each level α`, we model the α`-conditional quantile given the other variables, using an additive
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expansion of the form:

Qyk|y¬k(α`) = b∗`k +
d∑
j 6=k

f ∗`kj(yj), (4.3)

where b∗`k ∈ R is an intercept term, and f ∗`kj , j = 1, . . . , d are smooth, but not parametric in form.

Generic Functional Form of the MQGM. In its most general form, the MQGM estimator is
defined as a collection of optimization problems, over k = 1, . . . , d and ` = 1, . . . , r:

minimize
b`k, f`kj∈F`kj , j=1,...,d

n∑
i=1

ψα`

(
y

(i)
k −b`k−

∑
j 6=k

f`kj(y
(i)
j )

)
+
∑
j 6=k

(
λ1P1(f`kj)+λ2P2(f`kj)

)ω
. (4.4)

Here λ1, λ2 ≥ 0 are tuning parameters. Also, F`kj , j = 1, . . . , d are spaces of univariate func-
tions, ω > 0 is a fixed exponent, and P1, P2 are sparsity and smoothness penalty functions,
respectively, all to be decided as part of the modeling process. We give three examples below;
several other variants are possible outside of what we describe.

Example 1: Basis Expansion Model. Consider taking F`kj = span{φj1, . . . , φjm}, the span of
m basis functions, e.g., radial basis functions (RBFs) with centers placed at appropriate locations
across the domain of variable j, for each j = 1, . . . , d. This means that each f`kj ∈ F`kj
can be expressed as f`kj(x) = θT`kjφ

j(x), for a coefficient vector θ`kj ∈ Rm, where φj(x) =

(φj1(x), . . . , φjm(x)). Also consider an exponent ω = 1, and the sparsity and smoothness penalties

P1(f`kj) = ‖θ`kj‖2 and P2(f`kj) = ‖θ`kj‖2
2,

respectively, which are group lasso and ridge penalties, respectively. With these choices in place,
the MQGM problem in (4.4) can be rewritten in finite-dimensional form:

minimize
b`k, θ`k=(θ`k1,...,θ`kd)

ψα`

(
Yk − b`k1− Φθ`k

)
+
∑
j 6=k

(
λ1‖θ`kj‖2 + λ2‖θ`kj‖2

2

)
. (4.5)

Above, we used the abbreviation ψα`
(z) =

∑n
i=1 ψα`

(zi) for a vector z = (z1, . . . , zn) ∈ Rn, and
also Yk = (y

(1)
k , . . . , y

(n)
k ) ∈ Rn for the observations along variable k, 1 = (1, . . . , 1) ∈ Rn, and

Φ ∈ Rn×dm for the basis matrix, with blocks of columns Φij = φ(y
(i)
j )T ∈ Rm.

The basis expansion model is simple and tends to works well in practice. For the majority of
the chapter, we will focus on this model; in principle, everything that follows (methodologically,
theoretically, algorithmically) extends to the next two models we describe, as well as many other
variants.

Example 2: Smoothing Splines Model. Now consider taking F`kj = span{gj1, . . . , gjn}, the
span of m = n natural cubic splines with knots at y(1)

j , . . . , y
(n)
j , for j = 1, . . . , d. As before,

we can then write f`kj(x) = θT`kjg
j(x) with coefficients θ`kj ∈ Rn, for f`kj ∈ F`kj . The work of

[92], on high-dimensional additive smoothing splines, suggests a choice of exponent ω = 1/2,
and penalties

P1(f`kj) = ‖Gjθ`kj‖2
2 and P2(f`kj) = θT`kjΩ

jθ`kj,
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for sparsity and smoothness, respectively, where Gj ∈ Rn×n is a spline basis matrix with entries
Gj
ii′ = gji′(y

(i)
j ), and Ωj is the smoothing spline penalty matrix containing integrated products

of pairs of twice differentiated basis functions. The MQGM problem in (4.4) can be translated
into a finite-dimensional form, very similar to what we have done in (4.5), but we omit this for
brevity.

Example 3: RKHS Model. Consider taking F`kj = Hj , a univariate reproducing kernel
Hilbert space (RKHS), with kernel function κj(·, ·). The representer theorem allows us to
express each function f`kj ∈ Hj in terms of the representers of evaluation, i.e., f`kj(x) =∑n

i=1(θ`kj)iκ
j(x, y

(i)
j ), for a coefficient vector θ`kj ∈ Rn. The work of [110], on high-dimensional

additive RKHS modeling, suggests a choice of exponent ω = 1, and sparsity and smoothness
penalties

P1(f`kj) = ‖Kjθ`kj‖2 and P2(f`kj) =
√
θT`kjK

jθ`kj,

respectively, where Kj ∈ Rn×n is the kernel matrix with entries Kj
ii′ = κj(y

(i)
j , y

(i′)
j ). Again, the

MQGM problem in (4.4) can be written in finite-dimensional form, now an SDP, omitted for
brevity.

Structural Constraints. Different kinds of structural constraints can be placed on top of the
MQGM optimization problem in order to guide the estimated component functions to meet par-
ticular shape requirements. An important example are non-crossing constraints (commonplace
in nonparametric, multiple quantile regression [71, 131]): here, we optimize (4.4) jointly over
` = 1, . . . , r, subject to

b`k +
∑
j 6=k

f`kj(y
(i)
j ) ≤ b`′k +

∑
j 6=k

f`′kj(y
(i)
j ), for all α` < α`′ , and i = 1, . . . , n. (4.6)

This ensures that the estimated quantiles obey the proper ordering, at the observations. For
concreteness, we consider the implications for the basis regression model, in Example 1 (similar
statements hold for the other two models). For each ` = 1, . . . , r, denote by F`k(b`k, θ`k) the
criterion in (4.5). Introducing the non-crossing constraints requires coupling (4.5) over ` =
1, . . . , r, so that we now have the following optimization problems, for each target variable k =
1, . . . , d:

minimize
Bk,Θk

r∑
`=1

F`k(b`k, θ`k) subject to (1BT
k + ΦΘk)D

T ≥ 0, (4.7)

where we denote Bk = (b1k, . . . , brk) ∈ Rr, Φ ∈ Rn×dm the basis matrix as before, Θk ∈ Rdm×r

given by column-stacking θ`k ∈ Rdm, ` = 1, . . . , r, and D ∈ R(r−1)×r is the usual discrete
difference operator, i.e.,

D =


−1 1 0 . . . 0

0 −1 1 . . . 0
... . . . . . .
0 0 . . . −1 1

 .
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(The inequality in (4.7) is to be interpreted componentwise.) Computationally, coupling the sub-
problems across ` = 1, . . . , r clearly adds to the overall difficulty of the MQGM, but statistically
this coupling acts as a regularizer, by constraining the parameter space in a useful way, thus
increasing our efficiency in fitting multiple quantile levels from the given data.

For a triplet `, k, j, monotonicity constraints are easy to add, i.e., f`kj(y
(i)
j ) ≤ f`kj(y

(i′)
j ) for

all y(i)
j < y

(i′)
j . Convexity constraints, where we require f`kj to be convex over the observations,

for a particular `, k, j, are also straightforward. Lastly, strong non-crossing constraints, where
we enforce (4.6) but over all inputs z ∈ Rd (not just over the observations) are also possible with
positive basis functions.

Exogenous Variables and Conditional Random Fields. So far, we have considered modeling
the joint distribution P(y1, . . . , yd), corresponding to learning a Markov random field (MRF). It is
not hard to extend our framework to model the conditional distribution P(y1, . . . , yd|x1, . . . , xp)
given some exogenous variables x1, . . . , xp, corresponding to learning a conditional random field
(CRF). To extend the basis regression model, we introduce the additional parameters θx`k ∈ Rp

in (4.5), and the loss now becomes ψα`
(Yk − b`k1T − Φθ`k −Xθx`k), where X ∈ Rn×q is filled

with the exogenous observations x(1), . . . , x(n) ∈ Rq; the other models are changed similarly.

4.4 Basic Properties and Theory

4.4.1 Quantiles and Conditional Independence
In the model (4.3), if a particular variable yj has no contribution, i.e., satisfied f ∗`kj = 0 across
all quantile levels α`, ` = 1, . . . , r, what does this imply about the conditional independence
between yk and yj , given the rest? Outside of the multivariate normal model (where the fea-
ture transformations need only be linear), nothing can be said in generality. But we argue that
conditional independence can be understood in a certain approximate sense (i.e., in a projected
approximation of the data generating model). We begin with a simple lemma. Its proof is ele-
mentary, and given in the supplementary material.
Lemma 4.1. Let U, V,W be random variables, and suppose that all conditional quantiles of
U |V,W do not depend on V , i.e., QU |V,W (α) = QU |W (α) for all α ∈ [0, 1]. Then U and V are
conditionally independent given W .

By the lemma, if we knew that QU |V,W (α) = h(α, U,W ) for a function h, then it would
follow that U, V are conditionally independent given W (n.b., the converse is true, as well). The
MQGM problem in (4.4), with sparsity imposed on the coefficients, essentially aims to achieve
such a representation for the conditional quantiles; of course we cannot use a fully nonparametric
representation of the conditional distribution yk|y¬k and instead we use an r-step approximation
to the conditional cumulative distribution function (CDF) of yk|y¬k (corresponding to estimating
r conditional quantiles), and (say) in the basis regression model, limit the dependence on con-
ditioning variables to be in terms of an additive function of RBFs in yj , j 6= k. Thus, if at the
solution in (4.5) we find that θ̂`kj = 0, ` = 1, . . . , r, we may interpret this to mean that yk and yj
are conditionally independent given the remaining variables, but according to the distribution de-
fined by the projection of yk|y¬k onto the space of models considered in (4.5) (r-step conditional
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CDFs, which are additive expansions in yj , j 6= k). This interpretation is no more tenuous (ar-
guably, less so, as the model space here is much larger) than that needed when applying standard
neighborhood selection to non-Gaussian data.

4.4.2 Gibbs Sampling and the “Joint” Distribution

When specifying a form for the conditional distributions in a pseudolikelihood approximation
as in (4.2), it is natural to ask: what is the corresponding joint distribution? Unfortunately, for
a general collection of conditional distributions, there need not exist a compatible joint distribu-
tion, even when all conditionals are continuous [143]. Still, pseudolikelihood approximations (a
special case of composite likelihood approximations), possess solid theoretical backing, in that
maximizing the pseudolikelihood relates closely to minimizing a certain (expected composite)
Kullback-Leibler divergence, measured to the true conditionals [139]. Recently, [23, 149] made
nice progress in describing specific conditions on conditional distributions that give rise to a valid
joint distribution, though their work was specific to exponential families. A practical answer to
the question of this subsection is to use Gibbs sampling, which attempts to draw samples consis-
tent with the fitted conditionals; this is precisely the observation of [53], who show that Gibbs
sampling from discrete conditionals converges to a unique stationary distribution, although this
distribution may not actually be compatible with the conditionals. The following result estab-
lishes the analogous claim for continuous conditionals; its proof is in the supplementary material.
We demonstrate the practical value of Gibbs sampling through various examples in Section 4.6.
Lemma 4.2. Assume that the conditional distributions P(yk|y¬k), k = 1, . . . , d take only positive
values on their domain. Then, for any given ordering of the variables, Gibbs sampling converges
to a unique stationary distribution that can be reached from any initial point. (This stationary
distribution depends on the ordering.)

4.4.3 Graph Structure Recovery

When log d = O(n2/21), and we assume somewhat standard regularity conditions (listed as A1–
A4 in the supplementary material), we will show that the MQGM estimate recovers the un-
derlying conditional independencies with high probability (interpreted in the projected model
space, as explained in Section 4.4.1). Importantly, we do not require a Gaussian, sub-Gaussian,
or even parametric assumption on the data generating process; instead, we assume i.i.d. draws
y(1), . . . , y(n) ∈ Rd, where the conditional distributions yk|y¬k have quantiles that are specified
by the model in (4.3) for k = 1, . . . , d, ` = 1, . . . , r, and further, each f ∗`kj(x) = θT`kjφ

j(x)∗ for
coefficients θ∗`kj ∈ Rm, j = 1, . . . , d, as in the basis expansion model.

Let E∗ denote the corresponding edge set of conditional dependencies from these neigh-
borhood models, i.e., {k, j} ∈ E∗ ⇐⇒ max`=1,...,r max{‖θ∗`kj‖2, |θ∗`jk‖2} > 0. We define the
estimated edge set Ê in the analogous way, based on the solution in (4.5). Without a loss of
generality, we assume the features have been scaled to satisfy ‖Φj‖ ≤

√
n for j = 1, . . . , dm.

The following is our recovery result; its proof is provided in the supplementary material.
Theorem 4.1. Assume log d = O(n2/21), and conditions A1–A4 in the supplementary material.
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Assume that the tuning parameters λ1, λ2 satisfy

λ1 �
√
mn log(d2mr/δ) log3 n and λ2 = o(n41/42/θ∗max),

where θ∗max = max`,k,j ‖θ∗`kj‖2. Then for n large enough, the MQGM estimate in (4.5) exactly
recovers the underlying conditional dependencies, i.e., Ê = E∗, with probability at least 1− δ.

The theorem shows that the nonzero pattern in the MQGM estimate identifies, with high
probability, the underlying conditional independencies. But to be clear, we emphasize that the
MQGM estimate is not an estimate of the inverse covariance matrix itself (this is also the case
with neighborhood regression, SpaceJam of [140], and many other methods for learning graphi-
cal models).

4.5 Computational Approach
By design, the MQGM problem in (4.5) separates into d subproblems, across k = 1, . . . , d (it
therefore suffices to consider only a single subproblem, so we omit notational dependence on k
for auxiliary variables). While these subproblems are challenging for off-the-shelf solvers (even
for only moderately-sized graphs), the key terms here all admit efficient proximal operators
[104], which makes operator splitting methods like the alternating direction method of multipli-
ers [15] a natural choice. As an illustration, we consider the non-crossing constraints in the basis
regression model below. Reparameterizing so that we may apply ADMM:

minimizeΘk,Bk,V,W,Z ψA(Z) + λ1

∑r
`=1

∑d
j=1 ‖W`j‖2 + λ2

2
‖W‖2

F + I+(V DT )

subject to V = 1BT
k + ΦΘk, W = Θk, Z = Yk1

T − 1BT
k − ΦΘk,

(4.8)

where for brevity ψA(A) =
∑r

`=1

∑d
j=1 ψα`

(A`j), and I+(·) is the indicator function of the space
of elementwise nonnegative matrices. The augmented Lagrangian associated with (4.8) is:

Lρ(Θk, Bk, V,W,Z, UV , UW , UZ) = ψA(Z) + λ1

r∑
`=1

d∑
j=1

‖W`j‖2 +
λ2

2
‖W‖2

F + I+(V DT )

+
ρ

2

(
‖1BT

k + ΦΘk − V + UV ‖2
F + ‖Θk −W + UW‖2

F + ‖Yk1T − 1BT
k − ΦΘk − Z + UZ‖2

F

)
,

(4.9)
where ρ > 0 is the augmented Lagrangian parameter, and UV , UW , UZ are dual variables corre-
sponding to the equality constraints on V,W,Z, respectively. Minimizing (4.9) over V yields:

V ← Piso
(
1BT

k + ΦΘk + UV
)
, (4.10)

where Piso(·) denotes the row-wise projection operator onto the isotonic cone (the space of com-
ponentwise nondecreasing vectors), an O(nr) operation here [64]. Minimizing (4.9) over W`j

yields the update:

W`j ←
(Θk)`j + (UW )`j

1 + λ2/ρ

(
1− λ1/ρ

‖(Θk)`j + (UW )`j‖2

)
+

, (4.11)
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where (·)+ is the positive part operator. This can be seen by deriving the proximal operator of
the function f(x) = λ1‖x‖2 + (λ2/2)‖x‖2

2. Minimizing (4.9) over Z yields the update:

Z ← prox(1/ρ)ψA
(Yk1

T − 1bTk − ΦΘk + UZ), (4.12)

where proxf (·) denotes the proximal operator of a function f . For the multiple quantile loss
function ψA, this is a kind of generalized soft-thresholding. The proof is given in the supplemen-
tary material.
Lemma 4.3. Let P+(·) and P−(·) be the elementwise positive and negative part operators, re-
spectively, and let a = (α1, . . . , αr). Then proxtψA(A) = P+(A− t1aT ) + P−(A− t1aT ).

Finally, differentiation in (4.9) with respect to Bk and Θk yields the simultaneous updates:[
Θk

BT
k

]
← 1

2

[
ΦTΦ + 1

2
I ΦT1

1TΦ 1T1

]−1 (
[I 0]T (W − UW ) + [Φ 1]T (Yk1

T − Z + UZ + V − UV )
)
.

(4.13)

A complete description of our ADMM algorithm for solving the MQGM problem is given in
Algorithm 4.1.

Algorithm 4.1 ADMM for the MQGM

Input: observations y(1), . . . , y(n) ∈ Rd, feature matrix Φ ∈ Rn×dm, quantile levels A, con-
stants λ1, λ2 > 0
Output: fitted coefficients Θ̂ = (θ̂`kj, b̂`k)
for k = 1, . . . , d (in parallel, if possible) do

initialize Θk, Bk, V,W,Z, UV , UW , UZ
repeat

update Θk using (4.13)
update Bk using (4.13)
update V using (4.10)
update W using (4.11)
update Z using (4.12) and Lemma 4.3
update UV , UW , UZ :

UV ← UV + (1BT
k + ΦkΘ− V )

UW ← UW + (Θk −W )

UZ ← UZ + (Yk1
T − 1BT

k − ΦkΘ− Z)

until converged
end for

Gibbs Sampling. Having fit the conditionals yk|y¬k, k = 1, . . . d, we may want to make pre-
dictions or extract joint distributions over subsets of variables. As discussed in Section 4.4.2,
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there is no general analytic form for these joint distributions, but the pseudolikelihood approxi-
mation underlying the MQGM suggests a natural Gibbs sampler. A careful implementation that
respects the additive model in (4.3) yields a highly efficient Gibbs sampler, especially for CRFs;
the supplementary material gives details.

4.6 Empirical Examples

4.6.1 Synthetic Data
We consider synthetic examples, comparing to neighborhood selection (MB), the graphical lasso
(GLasso), SpaceJam [140], the nonparanormal skeptic [87], TIGER [85], and neighborhood
selection using the absolute loss (Laplace).

Ring Example. As a simple but telling example, we drew n = 400 samples from a “ring”
distribution in d = 4 dimensions. We used m = 10 expanded features and r = 20 quantile
levels. Data were generated by first drawing a random angle ν ∼ Uniform(0, 1), then a random
radius R ∼ N (0, 0.1), and finally computing the coordinates y1 = R cos ν, y2 = R sin ν and
y3, y4 ∼ N (0, 1), i.e., y1 and y2 are the only dependent variables here. Figure 4.1 plots samples
(blue) of the coordinates (y1, y2) as well as new samples (red) from the MQGM, MB, GLasso,
and SpaceJam fitted to these same (blue) samples; the samples from the MQGM, obtained by
using our Gibbs sampler (see the supplementary material for further details), appear to closely
match the samples from the underlying ring.

Figure 4.2 shows the conditional independencies recovered by the MQGM, MB, GLasso,
SpaceJam, the nonparanormal skeptic, TIGER, and Laplace, when run on the ring data. We
visualize these independencies by forming a d × d matrix with the cell (j, k) set to white if j, k
are conditionally independent given the others, and black otherwise. Across a range of tuning
parameters for each method, the MQGM is the only one that successfully recovers the underlying
conditional dependencies.

Table 4.1 presents an evaluation of the conditional CDFs given by the MQGM, MB, GLasso,
SpaceJam, TIGER, and Laplace when run on the ring data. For each method, we averaged the to-
tal variation distances and Kolmogorov-Smirnoff statistics between the fitted and true conditional
CDFs across all variables, and then reported the best values obtained across a range of tuning
parameters (further details are given in the supplementary material); the MQGM outperforms all
its competitors, in both metrics.

Larger Examples. To investigate performance at larger scales, we drew n ∈ {50, 100, 300}
samples from a multivariate normal and Student t-distribution (with 3 degrees of freedom), both
in d = 100 dimensions, and parameterized by a random, sparse, diagonally dominant d × d
inverse covariance matrix, following the procedure in [3, 68, 102, 105]. Over the same set of
sample sizes, with d = 100, we also considered an autoregressive setup in which we drew sam-
ples of pairs of adjacent variables from the ring distribution. In all three data settings (normal,
t, and autoregressive), we used m = 10 and r = 20 for the MQGM. To summarize the perfor-
mances, we considered a range of tuning parameters for each method, computed corresponding
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Figure 4.1: Data from the ring distribution (blue) as well as new samples (red) from the MQGM, MB,
GLasso, SpaceJam, TIGER, and Laplace fitted to the same (blue) data; the samples from the MQGM were
obtained by using our Gibbs sampler.

Table 4.1: Total variation (TV) distance and Kolmogorov-Smirnoff (KS) statistic values for the MQGM,
MB, GLasso, SpaceJam, TIGER, and Laplace on the ring data; lower is better, best in bold.

TV KS
MQGM 20.873 0.760
MB 92.298 1.856
GLasso 92.479 1.768
SpaceJam 91.568 1.697
TIGER 88.284 1.450
Laplace 127.406 1.768
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Figure 4.2: Conditional independencies recovered by the MQGM, MB, GLasso, SpaceJam, the non-
paranormal skeptic, TIGER, and Laplace on the ring data; black means conditional dependence. The
MQGM is the only method that successfully recovers the underlying conditional dependencies.

false and true positive rates (in detecting conditional dependencies), and then computed the cor-
responding area under the curve (AUC), following, e.g., [3, 68, 102, 105]. Table 4.2 reports
the median AUCs (across 50 trials) for all three of these examples; the MQGM outperforms all
other methods on the autoregressive example, as well as on the small-n normal and Student t
examples.

4.6.2 Modeling Flu Epidemics
We study n = 937 weekly flu incidence reports from September 28, 1997 through August 30,
2015, across 10 regions in the United States (see the left panel of Figure 4.3), obtained from [21].
We considered d = 20 variables: the first 10 encode the current week’s flu incidence (precisely,
the percentage of doctor’s visits in which flu-like symptoms are presented) in the 10 regions, and
the last 10 encode the same but for the prior week. We set m = 5, r = 99, and also introduced
exogenous variables to encode the week numbers, so p = 1. Thus, learning the MQGM here
corresponds to learning the structure of a spatiotemporal graphical model, and reduces to solving
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Table 4.2: AUC values for the MQGM, MB, GLasso, SpaceJam, the nonparanormal skeptic, TIGER, and
Laplace for the normal, t, and autoregressive data settings; higher is better, best in bold (standard errors
are ≈ 10−4 or smaller).

Normal Student t Autoregressive
n = 50 n = 100 n = 300 n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

MQGM 0.953 0.976 0.988 0.928 0.947 0.981 0.726 0.754 0.955
MB 0.850 0.959 0.994 0.844 0.923 0.988 0.532 0.563 0.725
GLasso 0.908 0.964 0.998 0.691 0.605 0.965 0.541 0.620 0.711
SpaceJam 0.889 0.968 0.997 0.893 0.965 0.993 0.624 0.708 0.854
Nonpara. 0.881 0.962 0.996 0.862 0.942 0.998 0.545 0.590 0.612
TIGER 0.732 0.921 0.996 0.420 0.873 0.989 0.503 0.518 0.718
Laplace 0.803 0.931 0.989 0.800 0.876 0.991 0.530 0.554 0.758

20 multiple quantile regression subproblems, each of dimension (19× 5 + 1)× 99 = 9504. All
subproblems took about 1 minute on a 6 core 3.3 Ghz Core i7 X980 processor.

The left panel of Figure 4.4 plots the wallclock time (seconds) for solving one subproblem
using ADMM versus SCS [101], a cone solver that has been advocated as a reasonable choice
for a class of problems encapsulating (4.4); ADMM outperforms SCS by roughly two orders of
magnitude. The right panel of Figure 4.3 presents the conditional independencies recovered by
the MQGM. Nonzero entries in the upper left 10 × 10 submatrix correspond to dependencies
between the yk variables for k = 1, . . . , 10; e.g., the nonzero (0,2) entry suggests that region
1 and 3’s flu reports are dependent. The lower right 10 × 10 submatrix corresponds to the yk
variables for k = 11, . . . , 20, and the nonzero banded entries suggest that at any region the
previous week’s flu incidence (naturally) influences the next week’s. The left panel of Figure 4.3
visualizes these relationships by drawing an edge between dependent regions; region 6 is highly
connected, suggesting that it is a bellwether for other regions, which is a qualitative observation
also made by the CDC. To draw samples from the fitted distributions, we ran our Gibbs sampler
over the year, generating 1000 total samples, making 5 passes over all coordinates between
each sample, and with a burn-in period of 100 iterations. The right panel of Figure 4.4 plots
samples from the marginal distribution of the percentages of flu reports at region six throughout
the year, revealing the heteroskedastic nature of the data; we also see that flu incidence (naturally)
increases towards the end of the year. Similarly, Figure 4.5 presents samples from the marginal
distributions at other regions (one, five, ten).

4.6.3 Sustainable Energy Application

We evaluate the ability of MQGM to recover the conditional independencies between several
wind farms on the basis of large-scale, hourly wind power measurements; wind power is inter-
mittent, and thus understanding the relationships between wind farms can help farm operators
plan. We obtained hourly wind power measurements from July 1, 2009 through September 14,
2010 at seven wind farms (n = 877, see [3, 59, 146] for details). The primary variables here
encode the hourly wind power at a farm over two days (i.e., 48 hours), thus d = 7 × 48 = 336.
Exogenous variables were used to encode forecasted wind power and direction as well as other
historical measurements, for a total of q = 3417. We set m = 5 and r = 20. Fitting the
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Figure 4.3: Conditional dependencies recovered by the MQGM on the flu data; each of the first ten cells
on the right corresponds to a region of the U.S. on the left, and black means dependence.
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Figure 4.4: Wallclock time (seconds) for solving one subproblem using ADMM versus SCS, on the left.
Samples from the fitted marginal distribution of the weekly flu incidence rates at region six, on the right.
Samples at larger quantiles are shaded lighter; the median is in darker blue.

59



30 40 50 8 18 28
Week

0

1

2

3

4

5

6

7

8

9

%
 o

f 
fl
u
-l

ik
e
 s

y
m

p
to

m
s

Region 1

30 40 50 8 18 28
Week

0

1

2

3

4

5

6

7

8

9

%
 o

f 
fl
u
-l

ik
e
 s

y
m

p
to

m
s

Region 3

30 40 50 8 18 28
Week

0

1

2

3

4

5

6

7

8

9

%
 o

f 
fl
u
-l

ik
e
 s

y
m

p
to

m
s

Region 9

Figure 4.5: Samples from the fitted marginal distributions of the weekly flu incidence rates at several
regions of the U.S.; samples at larger quantile levels shaded lighter, median in darker blue.
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Figure 4.6: Conditional independencies recovered by the MQGM on the wind farms data; each block
corresponds to a wind farm, and black indicates dependence.

MQGM here hence requires solving 48 × 7 = 336 multiple quantile regression subproblems
each of dimension ((336− 1)× 5 + 3417)× 20 = 101, 840. Each subproblem took roughly 87
minutes, comparable to the algorithm of [146].

Figure 4.6 presents the recovered conditional independencies; the nonzero super- and sub-
diagonal entries suggest that at any wind farm, the previous hour’s wind power (naturally) in-
fluences the next hour’s, while the nonzero off-diagonal entries, e.g., in the (4,6) block, uncover
farms that may influence one another. [146], whose method placed fifth in a Kaggle competi-
tion, as well as [3] report similar findings (see the left panels of Figures 7 and 3 in these papers,
respectively).
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4.7 Discussion
We proposed and studied the Multiple Quantile Graphical Model (MQGM). We established the-
oretical and empirical backing to the claim that the MQGM is capable of compactly representing
relationships between heteroskedastic, non-Gaussian variables. We developed efficient algo-
rithms for estimation and sampling in the MQGM. All in all, we believe that our work represents
a step forward in the design of flexible yet tractable graphical models.
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Chapter 5

Conclusion

5.1 Discussion

In this thesis, we presented new statistical and computational results for three different user-
friendly estimators: the generalized lasso (Chapter 2), early-stopped gradient descent (Chapter
3), and the Multiple Quantile Graphical Model (Chapter 4). Taken together, we hope these results
paint a more complete picture of the pros and cons of various methods, and therefore might be
of use to practitioners as well as statisticians.

Each of the chapters in this thesis presented some ideas for follow-up work; some high-level
directions for future investigation are as follows. First and foremost, as discussed in the introduc-
tion, it seems both valuable and worthwhile to give a formal definition of user-friendliness. A first
step might be to make precise what it really means for a method to be “interpretable”, as there is
certainly not widespread agreement on that, at the moment. Perhaps one of the many definitions
(see Lipton [84], Murdoch et al. [95], for a survey) that have been floated is more appropriate
than the others, for the purpose of constructing a broader definition of user-friendliness. Or, per-
haps an entirely new and different definition of interpretability should be proposed. Similarly,
although what it means for a method to be “computationally cheap” is relatively unambiguous,
the same is not exactly true for “easy-to-implement”. Is it enough to characterize how “easy-to-
implement” a method is, by simply counting lines of code? Or, should the “difficulty” of the code
matter? (And if so, then who/what should assess difficulty?) Finally, one might consider expand-
ing the criteria for what it means for a method to be considered user-friendly. In any event, with
a more precise definition of user-friendliness in hand, it might be interesting to formally study
the user-friendliness-statistical-computational trade-offs of various methods.

Another line of inquiry that seems interesting, is to study various user-friendly methods for
inference (whereas most of the work in this thesis focused on user-friendly methods for estima-
tion); there seem to be many possible avenues for investigation here.

Finally, at a high-level, this thesis is concerned with studying what might be referred to as
the “unreasonable effectiveness” of (three) simple methods. Building off the work presented
in Chapter 3, it may be that the continuous-time viewpoint is a broadly useful device, perhaps
simplifying the statistical analysis of other user-friendly methods; therefore, in what follows, and
before concluding the main body of the thesis, we show how to apply some of the continuous-
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time tools developed in Chapter 3 to study another user-friendly method: mini-batch stochastic
gradient descent.

5.2 Mini-Batch Stochastic Gradient Descent for Least Squares
Regression

Consider once again the standard least squares regression problem,

minimize
β∈Rp

1

2n
‖y −Xβ‖2

2. (5.1)

When the number of samples n is large, running (batch) gradient descent may no longer be feasi-
ble due to memory and/or computational constraints. In this case, running mini-batch stochastic
gradient descent on (5.1) can be much more convenient. Initializing β(0) = 0 and using a constant
step size ε > 0, mini-batch stochastic gradient descent is just given by the recursion

β(k) = β(k−1) +
ε

m
·XT
S (yS −XSβ(k−1)), k = 1, 2, 3, . . . . (5.2)

Here, S ⊆ {1, . . . , n} is an index set, called the mini-batch, and is often thought of as being
sampled uniformly at random, either with or without replacement, from {1, . . . , n}; the notation
XS , yS extracts the rows indexed by S from the relevant matrix/vector. Mini-batch stochastic
gradient descent is arguably even more user-friendly than (batch) gradient descent: all we need
to do, is sample one (or more) of the design points, and then take a step in the negative stochastic
gradient direction. This simplicity, in part, helps explain stochastic gradient descent’s popularity
in practice.

As was the case in Chapter 3, our aim now is to briefly outline how one might go about
characterizing the (exact) risk profile of stochastic gradient descent in a relatively simple way,
just as before, and relating it to that of ridge regression. However, as we will hint at below,
it turns out that the stochastic setup is fundamentally different than the non-stochastic setup.
Therefore, this time, in order to make some progress, we will need to make two approximations
before proceeding. The first approximation is that the stochastic gradient descent iteration (5.2)
may be expressed as the batch gradient descent iteration (3.2), plus Gaussian noise, i.e.,

β(k) = β(k−1) + ε · X
T

n
(y −Xβ(k−1)) +

√
ε

m
· √ε · Σ̂1/2Z.

Here, Z follows a multivariate standard normal distribution. The second approximation is that the
covariance matrix of the Gaussian noise in the preceding display is set to the sample covariance
matrix, Σ̂ = (1/n)XTX .

Following these approximations, the last display above can now be seen as the Euler dis-
cretization of the following stochastic process,

dβ(t) = −Σ̂β(t)dt+
1

n
XTydt+

√
ε

m
· Σ̂1/2dW (t),
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under the intial condition that β(0) = 0, where W (t) denotes the usual Brownian motion. This
process has a closed-form solution (which is itself a well-known stochastic process, called the
Ornstein-Uhlenbeck process), given by

β̂sgf(t) = β̂gf(t) +

√
ε

m
· exp(−tΣ̂)

∫ t

0

exp(τ Σ̂)Σ̂1/2dW (τ).

We call the process β̂sgf(t) stochastic gradient flow. Interestingly, the step size ε appears in
both the stochastic differential equation and its solution (c.f. the non-stochastic setup); it is
worth pointing out that prior work [38] has shown it is possible to derive a stochastic differ-
ential equation that is free of the step size, by leveraging the theory of diffusion approximations
[33, 35, 43, 129].

As a sanity check on the above approximations, in Figure 5.1, we present the out-of-sample
predictive risk curves for stochastic gradient flow, as well as for a few other related methods. The
plots reveal some interesting phenomena (some of which have been points of discussion in the
literature).
• Surveying all the plots, we can see that the continuous-time stochastic gradient flow risk

curves appear to reflect the underlying trends present in both the discrete-time stochastic
gradient descent as well as the ridge regression risk curves; this seems to imply that there
is an implicit regularization effect at work, even with stochastic gradient descent (along its
entire optimization path).

• The step size and mini-batch size appear to be linked, in at least a couple of ways. First of
all, the risk curves in the upper right panel, where we used a mini-batch size of m = 50,
are almost identical to the risk curves generated by fixing the mini-batch size at m = 1 and
decreasing the step size by a factor of 50 (these curves are not shown, to reduce clutter).
Second, increasing both the step size as well as the mini-batch size by the same constant
factor had virtually no effect on the risk curves (these figures are also not shown); this effect
has been pointed out in the literature (e.g., Hoffer et al. [57], Nacson et al. [96], Smith et al.
[125]).

• Comparing the first vs. second row of plots, where a step size of 0.0002 vs. 0.0001 was
used, we see that when the step size shrinks (and the mini-batch size grows), the risk
curves for the iterative algorithms tend towards that of (batch) gradient flow, which serves
as a check on the continuous-time modeling approach.

• For all the plots, the mini-batches were formed by sampling with replacement. The risk
curves for sampling without replacement were virtually identical (not shown). Formally
characterizing the risk of stochastic gradient descent under various popular sampling schemes
is an open problem, as far as we can tell (for some relevant work, see HaoChen and Sra
[52], Jain et al. [62, 63], Recht and Re [112], Shamir [123]).

It seems important to understand when the previously mentioned approximations are valid.
Additionally, it would be valuable to perform formal risk comparisons involving stochastic gra-
dient flow and ridge regression, along the lines of what was done in Chapter 3. In terms of
estimation risk, it seems likely that the risk of stochastic gradient flow could be bounded by that
of ridge, plus some unavoidable error due to random sampling. It would be interesting to see if
the same situation holds for prediction risk.
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5.3 Related Work
Before concluding the main body of the thesis, we discuss some work related to the above exten-
sion. Stochastic gradient descent has been the object of rather intense study, in both the statistics
and optimization communities, over the last few decades. See Nemirovski et al. [98], Polyak and
Juditsky [107], Robbins and Monro [113], for examples of earlier work, and Chaturapruek et al.
[22], Jain et al. [62], Lin and Rosasco [82], Neu and Rosasco [99], Pillaud-Vivien et al. [106]
for a (necessarily abridged) sampling of some of the more recent work, related to our approach
here. Therefore, a skeptical reader may (justifiably) wonder what can be gained by adopting
the perspective that was just described? We feel there may be several benefits, which we walk
through now.

The first broad point to be made, is regarding the decision to focus on least squares regression.
Most recent works studying stochastic gradient descent seek to establish error rates for simple
modifications (e.g., iterate averaging [62, 99, 106]) to the “vanilla” stochastic gradient descent
scheme, showing that these rates are optimal in a certain sense, for a broad class of loss functions.
Although valuable, this sort of generality often requires making strong assumptions that are not
likely to hold in practice. On the other hand, our goal here is somewhat more direct: we aim to
characterize the risk properties of the basic (mini-batch) stochastic gradient descent scheme that
is most commonly used in practice, when applied to least squares regression. Focusing on the
special case of least squares seems like it would allow us to conduct a more comprehensive study
of stochastic gradient descent, without commiting to (many of) the strong assumptions that are
currently found in the literature; we elaborate on this, in the next two points.

Looking at the proofs of the results presented in Chapter 3, the main benefits of the continuous-
time approach seem to be that it (i) facilitates the risk comparison to ridge regression, and (ii)
allows for a more precise characterization of the risk of gradient descent than has been found in
previous papers. We might expect the same benefits to transfer over to our study of stochastic
gradient descent. To make the point, observe that, by building on the work done in the proof
of Lemma 3.3, we may express the estimation risk of the (discrete-time batch) gradient descent
iteration as

Risk(β(k); β0) =

p∑
i=1

(
|vTi β0|2(1− εsi)2k +

σ2

n

(1− (1− εsi)k)2

si

)
.

Although the preceding expression is not completely unwieldy, relating the continuous-time risk
found in (3.11) to that of ridge in (3.13) seems to be comparatively straightforward (at least, with
Lemma 3.7 in hand).

Finally, it appears that the continuous-time perspective may help unify the risk analyses of
several popular mini-batching strategies: with replacement, without replacement, and cyclic.
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Figure 5.1: Out-of-sample predictive risk curves for ridge regression, as well as several variants of
gradient descent. The risk curves for discrete and continuous-time stochastic gradient descent actually
show the average risk over 100 trials, while the shaded bands show the 95th and 5th risk percentiles. We
set the step size ε to 0.0002 and 0.0001, respectively, in order to generate the plots found in the first and
second rows. We set the mini-batch size m to 1 and 50 (the former setting representing pure stochastic
gradient descent), respectively, in order to generate the plots found in the first and second columns.
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Chapter 6

Appendix

The supplementary material appearing here and below consists of additional proofs, experiments,
and details that support the work presented in the main body of the thesis above.

6.1 Supplementary Material for The Generalized Lasso

6.1.1 Proof of Lemma 2.5

As the generalized lasso solution is not unique, we know that condition (2.10) cannot hold, and
there existB, s associated with an optimal subgradient in problem (2.1) for which rank(XU(B)) <
k(B), for any U(B) ∈ Rp×k(B) whose linearly independent columns span null(D−B). Thus, fix
an arbitrary choice of basis matrix U(B). Then by construction we have that Zi = XUi(B) ∈ Rn,
i = 1, . . . , k(B) are linearly dependent.

Note that multiplying both sides of the KKT conditions (2.2) by U(B)T gives

U(B)TXT (y −Xβ̂) = s̃, (6.1)

by definition of s̃. We will first show that the assumptions in the lemma, s̃ 6= 0. To see this, if
s̃ = 0, then at any solution β̂ as in (2.9) associated with B, s,

‖Dβ̂‖1 = ‖DBβ̂‖1 = sTDBβ̂ = 0,

since β̂ ∈ col(U(B)). Uniqueness of the penalty value as in Lemma 2.1 now implies that ‖Dβ̂‖1 =
0 at all generalized lasso solutions (not only those stemming from B, s). Nonuniqueness of the
solution is therefore only possible if null(X) ∩ null(D) 6= {0}, contradicting the setup in the
lemma.

We may now choose i1 ∈ {1, . . . , k(B)} such that s̃i1 6= 0, and i2, . . . , ik ∈ {1, . . . , k(B)}
such that k ≤ n+ 1 and

k∑
j=1

cjZij = 0. (6.2)
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for some c 6= 0. Taking an inner product on both sides with the residual y −Xβ̂, and invoking
the modified KKT conditions (6.1), gives

k∑
j=1

cj s̃ij = 0. (6.3)

There are two cases to consider. If s̃ij = 0 for all j = 2, . . . , k, then we must have c1 = 0, so
from (6.2),

k∑
j=2

cjZij = 0. (6.4)

If instead s̃ij 6= 0 for some j = 2, . . . , k, then define J = {j ∈ {1, . . . , k} : s̃ij 6= 0} (which we
know in the present case has cardinality |J | ≥ 2). Rewrite (6.3) as

c1s̃i1 = −
∑

j∈J\{1}
cj s̃ij ,

and hence rewrite (6.2) as ∑
j∈J

cj s̃ij
Zij
s̃ij

+
∑
j /∈J

cjZij = 0,

or
Zi1
s̃i1

=
−1

c1s̃i1

∑
j∈J\{1}

cj s̃ij
Zij
s̃ij

+
−1

c1s̃i1

∑
j /∈J

cjZij .

or letting aij = −cj s̃ij/(c1s̃i1) for j ∈ J ,

Zi1
s̃i1

=
∑

j∈J\{1}
aij
Zij
s̃ij

+
−1

c1s̃i1

∑
j /∈J

cjZij , where
∑

j∈J\{1}
aij = 1. (6.5)

Reflecting on the two conclusions (6.4), (6.5) from the two cases considered, we can reexpress
these as (2.12), (2.13), respectively, completing the proof.

6.1.2 Proof of Lemma 2.7
Fix an arbitrary B ⊆ {1, . . . ,m} and s ∈ {−1, 1}|B|. Define U(B) ∈ Rp×k(B) whose columns
form a basis for null(D−B) by running Gauss-Jordan elimination on D−B. We may assume
without a loss of generality that this is of the form

U(B) =

[
I
F

]
,

where I ∈ Rk(B)×k(B) is the identity matrix and F ∈ R(p−k(B))×k(B) is a generic dense matrix. (If
need be, then we can always permute the columns of X , i.e., relabel the predictor variables, in
order to obtain such a form.) This allows us to express the columns of Z = XU(B) as

Zi =

p∑
`=1

X`U`i(B) = Xi +

p−k(B)∑
`=1

X`+k(B)F`i, for i = 1, . . . , k(B).
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Importantly, for each i = 1, . . . , k(B), we see that only Zi depends on Xi (i.e., no other Zj , j 6= i
depends on Xi). Select any i1, . . . , ik ∈ {1, . . . , k(B)} with s̃i1 6= 0 and k ≤ n+ 1. Suppose first
that s̃i2 = · · · = s̃ik = 0. Then

Zi2 ∈ span({Zi3 , . . . , Zik}) ⇐⇒ Xi2 ∈ −
p−k(B)∑
`=1

X`+k(B)F`i + span({Zi3 , . . . , Zik}).

Conditioning onXj , j 6= i2, the right-hand side above is just some fixed affine space of dimension
at most n− 1, and so

P
(
Xi2 ∈ −

p−k(B)∑
`=1

X`+k(B)F`i + span({Zi3 , . . . , Zik})
∣∣∣∣Xj, j 6= i2

)
= 0,

owing to the fact that Xi2 |Xj, j 6= i2 has a continuous distribution over Rn. Integrating out over
Xj , j 6= i2 then gives

P
(
Xi2 ∈ −

p−k(B)∑
`=1

X`+k(B)F`i + span({Zi3 , . . . , Zik})
)

= 0,

which proves a violation of case (i) in the definition of D-GP happens with probability zero.
Similar arguments show that a violation of case (ii) in the definition of D-GP happens with
probability zero. Taking a union bound over all possible B, s, i1, . . . , ik, and k shows that any
violation of the defining properties of the D-GP condition happens with probability zero, com-
pleting the proof.

6.1.3 Proof of Lemma 2.8

Checking that null(X) ∩ null(D) = {0} is equivalent to checking that the matrix

M =

[
X
D

]
has linearly independent columns. In the case p ≤ n, the columns of X will be linearly indepen-
dent almost surely (the argument for this is similar to the arguments in the proof of Lemma 2.7),
so the columns of M will be linearly independent almost surely.

Thus assume p > n. Let q = nullity(D), so r = rank(D) = p− q. Pick r columns of D that
are linearly independent; then the corresponding columns of M are linearly independent. It now
suffices to check linear independence of the remaining p− r columns of M . But any n columns
of X will be linearly independent almost surely (again, the argument for this is similar to the
arguments from the proof of Lemma 2.7), so the result is given provided p− r ≤ n, i.e., q ≤ n.
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6.1.4 Proof of Corollary 2.2
Let V = [V1 V−1 ] ∈ Rn×n be an orthogonal matrix, where V1 = 1/

√
n ∈ Rn×1 and V−1 ∈

Rn×(n−1) has columns that span col(M). Note that the centered generalized lasso criterion in
(2.14) can be written as

1

2
‖y −MXβ‖2

2 + λ‖Dβ‖1 =
1

2
‖V T

1 y‖2
2 + ‖V T

−1y − V T
−1Xβ‖2

2 + λ‖Dβ‖1,

hence problem (2.14) is equivalent to a regular (uncentered) generalized lasso problem with
response V T

−1y ∈ Rn−1 and predictor matrix V T
−1X ∈ R(n−1)×p. By straightforward arguments

(using integration and change of variables), (X, y) having a density on Rnp+n implies that
(V T
−1X, V

T
−1y) has a density on R(n−1)p+(n−1). Thus, we can apply Theorem 2.1 to the gener-

alized lasso problem with response V T
−1y and predictor matrix V T

−1X to give the desired result.

6.1.5 Proof of Lemma 2.9
Let σn−1 denote the (n − 1)-dimensional spherical measure, which is just a normalized version
of the (n− 1)-dimensional Hausdorff measureHn−1 on the unit sphere Sn−1, i.e., defined by

σn−1(S) =
Hn−1(S)

Hn−1(Sn−1)
, for S ⊆ Sn−1. (6.6)

Thus, it is sufficient to prove that the distribution ofZ/‖Z‖2 is absolutely continuous with respect
to σn−1. For this, it is helpful to recall that an alternative definition of the (n − 1)-dimensional
spherical measure, for an arbitrary α > 0, is

σn−1(S) =
Ln(coneα(S))

L(Bnα)
, for S ⊆ Sn−1. (6.7)

where Ln denotes n-dimensional Lebesgue measure, Bnα = {x ∈ Rn : ‖x‖2 ≤ α} is the n-
dimensional ball of radius α, and coneα(S) = {tx : x ∈ S, t ∈ [0, α]}. That (6.7) and (6.6)
coincide is due to the fact that any two measures that are uniformly distributed over a separable
metric space must be equal up to a positive constant (see Theorem 3.4 in Mattila [91]), and as
both (6.7) and (6.6) are probability measures on Sn−1, this positive constant must be 1.

Now let S ⊆ Sn−1 be a set of null spherical measure, σn−1(S) = 0. From the represen-
tation for spherical measure in (6.7), we see that Ln(coneα(S)) = 0 for any α > 0. Denoting
cone(S) = {tx : x ∈ S, t ≥ 0}, we have

Ln(cone(S)) = Ln
( ∞⋃
k=1

conek(S)

)
≤

∞∑
k=1

Ln(conek(S)) = 0.

This means that P(Z ∈ cone(S)) = 0, as the distribution of Z is absolutely continuous with
respect to Ln, and moreover P(Z/‖Z‖2 ∈ S) = 0, since Z ∈ cone(S) ⇐⇒ Z ∈ Z/‖Z‖2 ∈ S.
This completes the proof.
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6.1.6 Proof of Lemma 2.10
Denote the n-dimensional unit ball by Bn = {x ∈ Rn : ‖x‖2 ≤ 1}. Note that the relative
boundary of Bn ∩ A is precisely

relbd(Bn ∩ A) = Sn−1 ∩ A.

The boundary of a convex set has Lebesgue measure zero (see Theorem 1 in Lang [75]), and so
we claim Sn−1∩A has (n−1)-dimensional Hausdorff measure zero. To see this, note first that we
can assume without a loss of generality that dim(A) = n−1, else the claim follows immediately.
We can now interpret Bn ∩ A as a set in the ambient space A, which is diffeomorphic—via a
change of basis—to Rn−1. To be more precise, if V ∈ Rn×(n−1) is a matrix whose columns are
orthonormal and span the linear part of A, and a ∈ A is arbitrary, then V T (Bn ∩A− a) ⊆ Rn−1

is a convex set, and by the fact cited above its boundary must have (n−1)-dimensional Lebesgue
measure zero. It can be directly checked that

bd(V T (Bn ∩ A− a)) = V T (relbd(Bn ∩ A)− a) = V T (Sn−1 ∩ A− a).

As the (n − 1)-dimensional Lebesgue measure and (n − 1)-dimensional Hausdorff measure
coincide on Rn−1, we see that V T (Sn−1 ∩ A − a) has (n − 1)-dimensional Hausdorff measure
zero. Lifting this set back to Rn, via the transformation

V V T (Sn−1 ∩ A− a) + a = Sn−1 ∩ A,

we see that Sn−1 ∩A too must have Hausdorff measure zero, the desired result, because the map
x 7→ V x + a is Lipschitz (then apply, e.g., Theorem 1 in Section 2.4.1 of Evans and Gariepy
[36]).

6.1.7 Proof of Lemma 2.11
Let us abbreviate X̃ = XW−1

X for the scaled predictor matrix, whose columns are X̃i = Xi/‖Xi‖2,
i = 1, . . . , p. By similar arguments to those given in the proof of Lemma 2.7, to show X̃ is in
D-GP almost surely, it suffices to show that for each i = 1, . . . , p,

P
(
X̃i ∈ A

∣∣ X̃j, j 6= i
)

= 0,

where A ⊆ Rn is an affine space depending on X̃j , j 6= i. This follows by applying our previous
two lemmas: the distribution of X̃i is absolutely continuous with respect (n − 1)-dimensional
Hausdorff measure on Sn−1, by Lemma 2.9, and Sn−1 ∩ A has (n − 1)-dimensional Hausdorff
measure zero, by Lemma 2.10.

To establish that the null space condition null(X̃) ∩ null(D) = {0} holds almost surely, note
that the proof of Lemma 2.8 really only depends on the fact that any collection of k columns of
X , for k ≤ n, are linearly independent almost surely. It can be directly checked that the scaled
columns of X̃ share this same property, and thus we can repeat the same arguments as in Lemma
2.8 to give the result.
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6.1.8 Proof of Corollary 2.4
Let V = [V1 V−1 ] ∈ Rn×n be as in the proof of Corollary 2.2, and rewrite the criterion in (2.17)
as

1

2
‖y −MXW−1

MXβ‖2
2 + λ‖Dβ‖1 =

1

2
‖V T

1 y‖2
2 + ‖V T

−1y − V T
−1XW

−1
MXβ‖2

2 + λ‖Dβ‖1.

Now for each i = 1, . . . , p, note that ‖V T
−1Xi‖2

2 = XT
i V−1V

T
−1Xi = ‖MXi‖2

2, which means that

V T
−1XWMX = V T

−1XW
−1
V T
−1X

,

precisely the scaled version of V T
−1X . From the second to last display, we see that the stan-

dardized generalized lasso problem (2.17) is the same as a scaled generalized lasso problem
with response V T

−1y and scaled predictor matrix V T
−1XW

−1
V T
−1X

. Under the conditions placed on
y,X , as explained in the proof of Corollary 2.2, the distribution of (V T

−1X, V
T
−1y) is absolutely

continuous. Therefore we can apply Corollary 2.3 to give the result.

6.1.9 Proof of Lemma 2.14
Write h(β) = λ‖Dβ‖1. We may rewrite problem (2.18) as thus

minimize
β∈Rp, z∈Rn

G(z) + h(β) subject to z = Xβ. (6.8)

The Lagrangian of the above problem is

L(β, z, v) = G(z) + h(β) + vT (z −Xβ), (6.9)

and minimizing the Lagrangian over β, z gives the dual problem

maximize
v∈Rn

−G∗(−v)− h∗(XTv), (6.10)

whereG∗ is the conjugate ofG, and h∗ is the conjugate of h. Noting that h(β) = maxη∈DTBm
∞(λ) η

Tβ,
we have

h∗(α) = IDTBm
∞(λ)(α) =

{
0 α ∈ DTBm

∞(λ)

∞ otherwise
,

and hence the dual problem (6.10) is equivalent to the claimed one (2.22).
As G is essentially smooth and essentially strictly convex, the interior of its domain is

nonempty. Since the domain of h is all of Rp, this is enough to ensure that strong duality holds
between (6.8) and (6.10) (see, e.g., Theorem 28.2 of Rockafellar [115]). Moreover, if a solution
β̂, ẑ is attained in (6.8), and a solution v̂ is attained in (6.10), then by minimizing the Lagrangian
L(β, z, v̂) in (6.9) over z and β, we have the relationships

∇G(ẑ) = −v̂, and XT v̂ ∈ ∂h(β̂), (6.11)

respectively, where ∂h(·) is the subdifferential operator of h. The first relationship in (6.11) can
be rewritten as∇G(Xβ̂) = −v̂, matching the first relationship in (2.23). The second relationship
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in (6.11) can be rewritten asDT û ∈ ∂h(β̂), where û ∈ Bm
∞(λ) is such thatXT v̂ = DT û, and thus

we can see that û/λ is simply a relabeling of the subgradient γ̂ of the `1 norm evaluated at Dβ̂,
matching the second relationship in (2.23).

Finally, we address the constraint qualification conditions (2.24), (2.25). When (2.24) holds,
we know that G∗ has no directions of recession, and so if C 6= ∅, then the dual problem (2.22)
has a solution (see, e.g., Theorems 27.1 and 27.3 in Rockafellar [115]), equivalently, problem
(6.10) has a solution. Suppose (2.25) also holds, or equivalently,

(−C) ∩ int(dom(G∗)) 6= ∅,
which follows as int(dom(G∗)) = int(ran(∇G)), due to the fact that the map∇G : int(dom(G))→
int(dom(G∗)) is a homeomorphism. Then we have know further that−v̂ ∈ int(dom(G∗)) by es-
sential smoothness and essential strict convexity ofG∗ (in particular, by the property that ‖∇G∗‖2

diverges along any sequence convering to a boundary point of dom(G∗); see, e.g., Theorem 3.12
in Bauschke and Borwein [7]), so ẑ = ∇G∗(−v̂) is well-defined; by construction it satisfies the
first relationship in (6.11), and minimizes the Lagrangian L(β, z, v̂) over z. The second relation-
ship in (6.11), recall, can be rewritten as DT û ∈ ∂h(β̂); that the Lagrangian L(β, z, v̂) attains its
infimum over β follows from the fact that the map β 7→ h(β)− ûTDβ has no strict directions
of recession (directions of recession in which this map is not constant). We have shown that the
Lagrangian L(β, z, v̂) attains its infimum over β, z. By strong duality, this is enough to ensure
that problem (6.8) has a solution, equivalently, that problem (2.18) has a solution, completing the
proof.

6.1.10 Proof of Lemma 2.15
When λ = 0, note that C = null(XT ), so (2.32) becomes (2.33). For Poisson regression,
the condition (2.35) is an immediate rewriting of (2.33), because int(ran(∇ψ)) = Rn

++, where
R++ = (0,∞) denotes the positive real numbers. For logistic regression, the argument leading
to (2.34) is a little more tricky, and is given below.

Observe that in the logistic case, int(ran(∇ψ)) = (0, 1)n, hence condition (2.33) holds if and
only if there exists a ∈ (0, 1)n such that XT (y − a) = 0, i.e., there exists a′ ∈ (0, 1)n such that
XTDY a

′ = 0, where DY = diag(Y1, . . . , Yn). The latter statement is equivalent to

null(XTDY ) ∩ Rn
++ 6= ∅. (6.12)

We claim that this is actually in turn equivalent to

col(DYX) ∩ Rn
+ = {0}. (6.13)

where R+ = [0,∞) denotes the nonnegative real numbers, which would complete the proof, as
the claimed condition (6.13) is a direct rewriting of (2.34).

Intuitively, to see the equivalence of (6.12) and (6.13), it helps to draw a picture: the two
subspaces col(DYX) and null(XTDY ) are orthocomplements, and if the former only intersects
the nonnegative orthant at 0, then the latter must pass through the negative orthant. This intuition
is formalized by Stiemke’s lemma. This is a theorem of alternatives, and a close relative of
Farkas’ lemma (see, e.g., Theorem 2 in Chapter 1 of Kemp and Kimura [66]); we state it below
for reference.
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Lemma 6.1. Given A ∈ Rn×p, exactly one of the following systems has a solution:
• Ax = 0, x < 0 for some x ∈ Rp;
• ATy ≥ 0 for some y ∈ Rn, y 6= 0.

Applying this lemma to A = XTDY gives the equivalence of (6.12) and (6.13), as desired.

6.1.11 Proof of Lemma 2.16
We prove the result for the logistic case; the result for the Poisson case follows similarly. Recall
that in the logistic case, int(ran(∇ψ)) = (0, 1)n. Given y ∈ {0, 1}n, and arbitrarily small ε > 0,
note that we can always write y = z+ δ, where z ∈ (0, 1)n and δ ∈ Bm

∞(ε). Thus (2.32) holds as
long as

C = (XT )−1
(
DTBm

∞(λ)
)

=
{
u ∈ Rn : XTu = DTv, v ∈ Bm

∞(λ)
}

contains a `∞ ball of arbitrarily small radius centered at the origin. As λ > 0, this holds provided
row(X) ⊆ row(D), i.e., null(D) ⊆ null(X), as claimed.

6.1.12 Proof of Lemma 2.17
We first establish (2.38), (2.39). Multiplying both sides of stationarity condition (2.29) by
Pnull(D−B) yields

Pnull(D−B)X
T
(
y −∇ψ(Xβ̂)

)
= λPnull(D−B)D

T
Bs.

Let us abbreviate M = Pnull(D−B)X
T . After rearranging, the above becomes

M∇ψ(Xβ̂) = M(y − λM+Pnull(D−B)D
T
Bs).

where we have used Pnull(D−B)D
T
Bs = MM+Pnull(D−B)D

T
Bs, which holds as Pnull(D−B)D

T
Bs ∈

col(M), from the second to last display. Moreover, we can simplify the above, usingM+Pnull(D−B) =
M+, to yield

M∇ψ(Xβ̂) = M(y − λM+DT
Bs),

and multiplying both sides by M+,

Prow(M)∇ψ(Xβ̂) = Prow(M)(y − λM+DT
Bs). (6.14)

Lastly, by virtue of the fact that D−Bβ̂ = 0, we have Xβ̂ = XPnull(D−B)β̂ = MT β̂ ∈ row(M),
so

Pnull(M)Xβ̂ = 0. (6.15)

We will now show that (6.14), (6.15) together imply∇ψ(Xβ̂) can be expressed in terms of a
certain Bregman projection onto an affine subspace, with respect to ψ∗. To this end, consider

x̂ = P f
S (a) = arg min

x∈S

(
f(x)− f(a)− 〈∇f(a), x− a〉

)
,

for a function f , point a, and set S. The first-order optimality conditions are〈
∇f(x̂)−∇f(a), z − x̂

〉
≥ 0 for all z ∈ S, and x̂ ∈ S.
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When S is an affine subspace, i.e., S = c+L for a point c and linear subspace L, this reduces to〈
∇f(x̂)−∇f(a), v

〉
= 0 for all v ∈ L, and x̂ ∈ c+ L.

i.e.,
PL∇f(x̂) = PL∇f(a), and PL⊥x̂ = PL⊥c. (6.16)

In other words, x̂ = P f
S (a), for S = c+ L, if and only if (6.16) holds.

Set x̂ = ∇ψ(Xβ̂), f = ψ∗, a = ∇ψ(0), c = y − λM+DT
−Bs, and L = null(M). We see

that (6.14) is equivalent to PL⊥x̂ = PL⊥c. Meanwhile, using (∇ψ)−1 = ∇ψ∗ as guaranteed
by essential smoothness and essential strict convexity of ψ, we see that (6.15) is equivalent to
Pnull(M)∇ψ∗(∇ψ(Xβ̂)) = 0, in turn equivalent to PL∇f(x̂) = PL∇f(a). From the first-order
optimality conditions (6.16), this shows that ∇ψ(Xβ̂) = P f

c+L(a) = Pψ∗

y−KB,s(∇ψ(0)). Using
(∇ψ)−1 = ∇ψ∗, once again, establishes (2.38).

As for (2.39), this follows by simply writing (2.38) as

MT β̂ = ∇ψ∗
(
Pψ∗

y−KB,s
(
∇ψ(0)

))
,

where we have again used Xβ̂ = XPnull(D−B)β̂ = MT β̂. Solving the above linear system for
β̂ gives (2.39), where b ∈ null(MT ) = null(XPnull(D−B)). This constraint together with b ∈
null(D−B) implies b ∈ null(X) ∩ null(D−B), as claimed.

Finally, the results with A, r in place of B, s follow similarly. We begin by multiplying both
sides of (2.29) by Pnull(D−A), and then proceed with the same chain of arguments as above.

6.1.13 Proof of Lemma 2.18
The proof follows a similar general strategy to that of Lemma 9 in Tibshirani and Taylor [137].
We will abbreviate B = B(y), s = s(y), A = A(y), and r = r(y). Consider the representation
for β̂(y) in (2.39) of Lemma 2.17. As the active set is A, we know that

DB\A(XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s
(
∇ψ(0)

))
+DB\Ab = 0,

i.e.,

DB\A(XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s
(
∇ψ(0)

))
= −DB\Ab ∈ DB\A

(
null(X) ∩ null(D−B)

)
,

and so

P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s
(
∇ψ(0)

))
= 0.

Recalling MA,B as defined in (2.40), and abbreviating x̂ = Pψ∗

y−KB,s(∇ψ(0)), we may write this
simply as

∇ψ∗(x̂) ∈ null(MA,B).

Since ∇ψ∗(x̂) = Xβ̂(y), we have ∇ψ∗(x̂) ∈ col(XPnull(D−B)), so combining this with above
display, and using (∇ψ∗)−1 = ∇ψ, gives

x̂ ∈ ∇ψ
(
col(XPnull(D−B)) ∩ null(MA,B)

)
.
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And since x̂ ∈ y −KB,s, with KB,s an affine space, as defined in (2.37), we have y ∈ x̂+KB,s,
which combined with the last display implies

y ∈ KB,s +∇ψ
(
col(XPnull(D−B)) ∩ null(MA,B)

)
.

But as y /∈ N , where the set N is defined in (2.41), we arrive at

MA,B = P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+ = 0,

which means

col
(
DB\A(XPnull(D−B))

+
)
⊆ DB\A

(
null(X) ∩ null(D−B)

)
. (6.17)

This is an important realization that we will return to shortly.
As for the optimal subgradient γ̂(y) corresponding to β̂(y), note that we can write

γ̂B(y) = λs,

γ̂−B(y) =
1

λ
(DT
−B)+

[
XT
(
y − Pψ∗

y−KB,s
(
∇ψ(0)

))
− λDT

Bs
]

+ c, (6.18)

for some c ∈ null(DT
−B). The first expression holds by definition of B, s, and the second is a

result of solving for γ̂−B(y) in the stationarity condition (2.29), after plugging in for the form of
the fit in (2.38).

Now, at a new response y′, consider defining

β̂(y′) = (XPnull(D−B))
+∇ψ∗

(
Pψ∗

y′−KB,s
(
∇ψ(0)

))
+ b′,

γ̂B(y′) = λs,

γ̂−B(y′) =
1

λ
(DT
−B)+

[
XT
(
y′ − Pψ∗

y′−KB,s
(
∇ψ(0)

))
− λDT

Bs
]

+ c,

for some b′ ∈ null(X) ∩ null(D−B) to be specified later, and for the same value of c ∈ null(DT
−B)

as in (6.18). By the same arguments as given at the end of the proof of Lemma 2.14, where we
discussed the constraint qualification conditions (2.24), (2.25), the Bregman projection Pψ∗

y′−KB,s(∇ψ(0))

in the above expressions is well-defined, for any y′, under (2.31). However, this Bregman pro-
jection need not lie in int(dom(ψ∗))—and therefore ∇ψ∗(Pψ∗

y′−KB,s(∇ψ(0))) need not be well-
defined—unless we have the additional condition y′ ∈ int(ran(∇ψ)) + C. Fortunately, under
(2.32), the latter condition on y′ is implied as long as y′ is sufficiently close to y, i.e., there exists
a neighborhood U0 of y such that y′ ∈ int(ran(∇ψ)) + C, provided y′ ∈ U0. By Lemma 2.14,
we see that a solution in (2.18) exists at such a point y′. In what remains, we will show that this
solution and its optimal subgradient obey the form in the above display.

Note that, by construction, the pair (β̂(y′), γ̂(y′)) defined above satisfy the stationarity con-
dition (2.29) at y′, and γ̂(y′) has boundary set and boundary signs B, s. It remains to show that
(β̂(y′), γ̂(y′)) satisfy the subgradient condition (2.21), and that β̂(y′) has active set and active
signs A, r; equivalently, it remains to verify the following three properties, for y′ sufficiently
close to y, and for an appropriate choice of b′:
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(i) ‖γ̂−B(y′)‖∞ < 1;

(ii) supp(Dβ̂(y′)) = A;

(iii) sign(DAβ̂(y′)) = r.
Because γ̂(y) is a subgradient corresponding to β̂(y), and has boundary set and boundary

signs B, s, we know that γ̂−B(y) in (6.18) has `∞ norm strictly less than 1. Thus, by continuity
of

x 7→
∥∥∥∥1

λ
(DT
−B)+

[
XT
(
x− Pψ∗

x−KB,s
(
∇ψ(0)

))
− λDT

Bs
]

+ c

∥∥∥∥
∞

at y, which is implied by continuity of x 7→ Pψ∗

x−KB,s(∇ψ(0)) at y, by Lemma 6.2, we know that
there exists some neighborhood U1 of y such that property (i) holds, provided y′ ∈ U1.

By the important fact established in (6.17), we see that there exists b′ ∈ null(X) ∩ null(D−B)
such that

DB\Ab
′ = −DB\A(XPnull(D−B))

+∇ψ∗
(
Pψ∗

y′−KB,s
(
∇ψ(0)

))
,

which implies that DB\Aβ̂(y′) = 0. To verify properties (ii) and (iii), we must show this choice
of b′ is such that DAβ̂(y′) is nonzero in every coordinate and has signs matching r. Define a map

T (x) = (XPnull(D−B))
+∇ψ∗

(
Pψ∗

x−KB,s
(
∇ψ(0)

))
,

which is continuous at y, again by continuity of x 7→ Pψ∗

x−KB,s(∇ψ(0)) at y, by Lemma 6.2.
Observe that

DAβ̂(y′) = DAT (y′) +DAb
′ = DAT (y′) +DAb+DA(b− b′).

As DAβ̂(y) = DAT (y) +DAb is nonzero in every coordinate and has signs equal to r, by
definition of A, r, and T is continuous at y, there exists a neighborhood U2 of y such that
DAT (y′) +DAb is nonzero in each coordinate with signs matching r, provided y′ ∈ U2. Fur-
thermore, as

‖DA(b− b′)‖∞ ≤ ‖DT‖2,∞‖b− b′‖2,

where ‖DT‖2,∞ denotes the maximum `2 norm of rows of D, we see that DAT (y′) +DAb′ will
be nonzero in each coordinate with the correct signs, provided b′ can be chosen arbitrarily close
to b, subject to the restrictions b′ ∈ null(X) ∩ null(D−B) and DB\Ab′ = −DB\AT (y′).

Such a b′ does indeed exist, by the bounded inverse theorem. Let L = null(X) ∩ null(D−B),
and N = null(DB\A) ∩ L. Consider the linear map DB\A, viewed as a function from L/N (the
quotient of L by N ) to DB\A(L): this is a bijection, and therefore it has a bounded inverse. This
means that there exists some R > 0 such that

‖b− b′‖2 ≤ R
∥∥DB\AT (y′)−DB\AT (y)

∥∥
2
,

for a choice of b′ ∈ null(X) ∩ null(D−B) with DB\Ab′ = −DB\AT (y′). By continuity of T at y,
once again, there exists a neighborhood U3 of y such that the right-hand side above is sufficiently
small, i.e., such that ‖b− b′‖2 is sufficiently small, provided y′ ∈ U3.

Finally, letting U = U0 ∩ U1 ∩ U2 ∩ U3, we see that we have established properties (i), (ii),
and (iii), and hence the desired result, provided y′ ∈ U .
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6.1.14 Continuity result for Bregman projections
Lemma 6.2. Let f, f ∗ be a conjugate pair of Legendre (essentially smooth and essentially strictly
convex) functions on Rn, with 0 ∈ int(dom(f ∗)). Let S ⊆ Rn be a nonempty closed convex set.
Then the Bregman projection map

x 7→ P f
x−S
(
∇f ∗(0)

)
is continuous on all of Rn. Moreover, P f

x−S(∇f ∗(0)) ∈ int(dom(f)) for any x ∈ int(dom(f))+
S.

Proof. As 0 ∈ int(dom(f ∗)), we know that f has no directions of recession (e.g., by Theorems
27.1 and 27.3 in Rockafellar [115]), thus the Bregman projection P f

x−S(∇f ∗(0)) is well-defined
for any x ∈ Rn. Further, for x−S ∈ int(dom(f)), we know that P f

x−S(∇f ∗(0)) ∈ int(dom(f)),
by essential smoothness of f (by the property that ‖∇f‖2 approaches∞ along any sequence that
converges to boundary point of dom(f); e.g., see Theorem 3.12 in Bauschke and Borwein [7]).

It remains to verify continuity of x 7→ P f
x−S(∇f ∗(0)). Write P f

x−S(∇f ∗(0)) = v̂, where v̂ is
the unique solution of

minimize
v∈x−S

f(v),

or equivalently, P f
x−S(∇f ∗(0)) = ŵ + x, where ŵ is the unique solution of

minimize
w∈−S

f(w + x).

It suffices to show continuity of the unique solution in the above problem, as a function of x. This
can be established using results from variational analysis, provided some conditions are met on
the bi-criterion function f0(w, x) = f(w + x). In particular, Corollary 7.43 in Rockafellar and
Wets [116] implies that the unique minimizer in the above problem is continuous in x, provided
f0 is a closed proper convex function that is level-bounded in w locally uniformly in x. By
assumption, f is a closed proper convex function (it is Legendre), and thus so is f0. The level-
boundedness condition can be checked as follows. Fix any α ∈ R and x ∈ Rn. The α-level set
{w : f(w + x) ≤ α} is bounded since x 7→ f(x + w) has no directions of recession (to see
that this implies boundedness of all level sets, e.g., combine Theorem 27.1 and Corollary 8.7.1
of Rockafellar [115]). Meanwhile, for any x′ ∈ Rn,

{w : f(w + x′) ≤ α} = {w : f(w + x) ≤ α}+ x′ − x.

Hence, the α-level set of f0(·, x′) is uniformly bounded for all x′ in a neighborhood of x, as
desired. This completes the proof.

6.1.15 Proof of Lemma 2.19
The proof is similar to that of Lemma 10 in Tibshirani and Taylor [137]. Let B, s be the boundary
set and signs of an arbitrary optimal subgradient in γ̂(y) in (2.18), and let A, r be the active set
and active signs of an arbitrary solution in β̂(y) in (2.18). (Note that γ̂(y) need not correspond
to β̂(y); it may be a subgradient corresponding to another solution in (2.18).)
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By (two applications of) Lemma 2.18, there exist neighborhoods U1, U2 of y such that, over
U1, optimal subgradients exist with boundary set and boundary signs B, s, and over U2, solutions
exist with active set and active signs A, r. For any y′ ∈ U = U1 ∩ U2, by Lemma 2.17 and the
uniqueness of the fit from Lemma 2.12, we have

Xβ̂(y) = ∇ψ∗
(
Pψ∗

y−KB,s
(
∇ψ(0)

))
= ∇ψ∗

(
Pψ∗

y−KA,r

(
∇ψ(0)

))
,

and as∇ψ∗ is a homeomorphism,

Pψ∗

y′−KB,s
(
∇ψ(0)

)
= Pψ∗

y′−KA,r

(
∇ψ(0)

)
. (6.19)

We claim that this implies null(Pnull(D−B)X
T ) = null(Pnull(D−A)X

T ).
To see this, take any direction z ∈ null(Pnull(D−B)X

T ), and let ε > 0 be sufficiently small so
that y′ = y + εz ∈ U . From (6.19), we have

Pψ∗

y′−KA,r

(
∇ψ(0)

)
= Pψ∗

y′−KB,s
(
∇ψ(0)

)
= Pψ∗

y−KB,s
(
∇ψ(0)

)
= Pψ∗

y−KA,r

(
∇ψ(0)

)
,

where the second equality used y′ −KB,s = y −KB,s, and the third used the fact that (6.19)
indeed holds at y. Now consider the left-most and right-most expressions above. For these
two projections to match, we must have z ∈ null(Pnull(D−A)X

T ); otherwise, the affine subspaces
y′ −KA,r and y −KA,r would be parallel, in which case clearly the projections cannot coincide.
Hence, we have shown that null(Pnull(D−B)X

T ) ⊆ null(Pnull(D−A)X
T ). The reverse inclusion

follows similarly, establishing the desired claim.
Lastly, asB,Awere arbitrary, the linear subspaceL = null(Pnull(D−B)X

T ) = null(Pnull(D−A)X
T )

must be unchanged for any choice of boundary set B and active setA at y, completing the proof.

6.2 Supplementary Material for Early-Stopped Gradient De-
scent for Least Squares Regression

6.2.1 Proof of Lemma 3.3
Let XTX/n = V SV T be an eigendecomposition of XTX/n. Then we can rewrite the gradient
descent iteration (3.2) as

β(k) = β(k−1) +
ε

n
·XT (y −Xβ(k−1)) = (I − εV SV T )β(k−1) +

ε

n
·XTy.

Rotating by V T , we get
β̃(k) = (I − εS)β̃(k−1) + ỹ,

where we let β̃(j) = V Tβ(j), j = 1, 2, 3, . . . and ỹ = (ε/n)V TXTy. Unraveling the preceding
display, we find that

β̃(k) = (I − εS)kβ̃(0) +
k−1∑
j=0

(I − εS)j ỹ.
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Furthermore applying the assumption that the initial point β(0) = 0 yields

β̃(k) =
k−1∑
j=0

(I − εS)j ỹ = (εS)−1(I − (I − εS)k)ỹ,

with the second equality following after a short inductive argument.
Now notice that β(k) = V β̃(k), since V V T is the projection onto the row space of X , and β(k)

lies in the row space. Rotating back to the original space then gives

β(k) = V (εS)−1(I − (I − εS)k)ỹ =
1

n
V S−1(I − (I − εS)k)V TXTy.

Compare this to the solution of the optimization problem in Lemma 3.3, which is

(XTX + nQk)
−1XTy =

1

n
(V SV T +Qk)

−1XTy.

Equating the last two displays, we see that we must have

V S−1(I − (I − εS)k)V T = (V SV T +Qk)
−1.

Inverting both sides and rearranging, we get

Qk = V S(I − (I − εS)k)−1V T − V SV T ,

and an application of the matrix inversion lemma shows that (I − (I − εS)k)−1 = I + ((I −
εS)−k − I)−1, so

Qk = V S((I − εS)−k − I)−1V T ,

as claimed in the lemma.

6.2.2 Proof of Lemma 3.4
Recall that Lemma 3.1 gives the gradient flow solution at time t, in (3.6). Compare this to the
solution of the optimization problem in Lemma 3.4, which is

(XTX + nQt)
−1XTy.

To equate these two, we see that we must have

(XTX)+(I − exp(−tXTX/n)) = (XTX + nQt)
−1,

i.e., writing XTX/n = V SV T as an eigendecomposition of XTX/n,

V S+(I − exp(−tS))V T = (V SV T +Qt)
−1.

Inverting both sides and rearranging, we find that

Qt = V S(I − exp(−tS))−1V T − V SV T ,

which is as claimed in the lemma.
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6.2.3 Proof of Lemma 3.5
For fixed β0, and any estimator β̂, recall the bias-variance decomposition

Risk(β̂; β0) = ‖E(β̂)− β0‖2
2 + tr[Cov(β̂)].

For the gradient flow estimator in (3.6), we have

E[β̂gf(t)] = (XTX)+(I − exp(−tXTX/n))XTXβ0

= (XTX)+XTX(I − exp(−tXTX/n))β0

= (I − exp(−tXTX/n))β0. (6.20)

In the second line, we used the fact that XTX and (I − exp(−tXTX/n)) are simultaneously
diagonalizable, and so they commute; in the third line, we used the fact that (XTX)+XTX =
X+X is the projection onto the row space of X , and the image of I−exp(−tXTX/n) is already
in the row space. Hence the bias is, abbreviating Σ̂ = XTX/n,

∥∥E[β̂gf(t)]− β0

∥∥2

2
= ‖ exp(−tΣ̂)β0‖2

2 =

p∑
i=1

|vTi β0|2 exp(−2tsi). (6.21)

As for the variance, we have

tr
(
Cov[β̂gf(t)]

)
= σ2tr

[
(XTX)+(I − exp(−tΣ̂))(XTX)(I − exp(−tΣ̂))(XTX)+

]
=
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2

]
=
σ2

n

p∑
i=1

(1− exp(−tsi))2

si
, (6.22)

where in the second line we used the fact that Σ̂+ and (I − exp(−tΣ̂)) are simultaneously di-
agonalizable, and hence commute, and also the fact that Σ̂+Σ̂Σ̂+ = Σ̂+. Putting together (6.21)
and (6.22) proves the result in (3.11).

When β0 follows the prior in (3.10), the variance (6.22) remains unchanged. The expectation
of the bias (6.21) (over β0) is

E
[
βT0 exp(−2tΣ̂)β0

]
= tr

[
E(β0β

T
0 ) exp(−2tΣ̂)

]
=
r2

p

p∑
i=1

exp(−2tsi),

which leads to (3.12), after the appropriate definition of α.

6.2.4 Derivation of (3.13), (3.14)

As in the calculations in the last section, consider for the ridge estimator in (3.5),

E[β̂ridge(λ)] = (XTX + nλI)−1XTXβ0 = (Σ̂ + λI)−1Σ̂β0, (6.23)
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where we have again abbreviated Σ̂ = XTX/n. The bias is thus∥∥E[β̂ridge(λ)]− β0

∥∥2

2
=
∥∥(Σ̂ + λI)−1(Σ̂− I)β0

∥∥2

2

=
∥∥λ(Σ̂ + λI)−1β0

∥∥2

2

=

p∑
i=1

|vTi β0|2
λ2

(si + λ)2
, (6.24)

the second equality following after adding and subtracting λI to the second term in parentheses,
and expanding. For the variance, we compute

tr
(
Cov[βridge(λ)]

)
= σ2tr

[
(XTX + nλI)−1XTX(XTX + nλI)−1

]
=
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2

]
=
σ2

n

p∑
i=1

si
(si + λ)2

, (6.25)

the second equality following by noting that Σ̂ and (Σ̂ + λI)−1 are simultaneously diagonaliz-
able, and therefore commute. Putting together (6.24) and (6.25) proves the result in (3.13). The
Bayes result (3.14) follows by taking an expectation of the bias (6.24) (over β0), just as in the
last section for gradient flow.

6.2.5 Proof of Lemma 3.6

First, observe that for fixed β0, and any estimator β̂,

Riskout(β̂; β0) = E‖β̂ − β0‖2
Σ,

where ‖z‖2
A = zTAz. The bias-variance decomposition for out-of-sample prediction risk is

hence
Riskout(β̂; β0) = ‖E(β̂)− β0‖2

Σ + tr[Cov(β̂)Σ].

For gradient flow, we can compute the bias, from (6.20),∥∥E[β̂gf(t)]− β0

∥∥2

Σ
= ‖ exp(−tΣ̂)β0‖2

Σ = βT0 exp(−tΣ̂)Σ exp(−tΣ̂)β0, (6.26)

and likewise the variance,

tr
(
Cov[βgf(t)]

)
= σ2tr

[
(XTX)+(I − exp(−tΣ̂))(XTX)(I − exp(−tΣ̂))(XTX)+Σ

]
=
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ

]
. (6.27)

Putting together (6.26) and (6.27) proves the result in (3.16). The Bayes result (3.17) follows by
taking an expectation over the bias, as argued previously.
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We note that the in-sample prediction risk is given by the same formulae except with Σ
replaced by Σ̂, which leads to

Riskin(β̂gf(t); β0) = βT0 exp(−tΣ̂)Σ̂ exp(−tΣ̂)β0 +
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ̂

]
=

p∑
i=1

(
|vTi β0|2si exp(−2tsi) +

σ2

n
(1− exp(−tsi))2

)
, (6.28)

and

Riskout(β̂gf(t)) =
σ2

n
tr
[
α exp(−2tΣ̂)Σ̂ + Σ̂+(I − exp(−tΣ̂))2Σ̂

]
=
σ2

n

p∑
i=1

[
αsi exp(−2tsi) + (1− exp(−tsi))2

]
. (6.29)

6.2.6 Derivation of (3.18), (3.19)

For ridge, we can compute the bias, from (6.23),∥∥E[β̂ridge(λ)]− β0

∥∥2

Σ
=
∥∥λ(Σ̂ + λI)−1β0

∥∥2

Σ
= λ2βT0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0, (6.30)

and also the variance,

tr
(
Cov[βridge(λ)]Σ

)
= σ2tr

[
(XTX + nλI)−1XTX(XTX + nλI)−1XTΣ

]
=
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ

]
. (6.31)

Putting together (6.30) and (6.31) proves (3.18), and the Bayes result (3.19) follows by taking an
expectation over the bias, as argued previously.

Again, we note that the in-sample prediction risk expressions is given by replacing Σ replaced
by Σ̂, yielding

Riskin(β̂ridge(λ); β0) = λ2βT0 (Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1β0 +
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ̂

]
=

p∑
i=1

(
|vTi β0|2

λ2si
(si + λ)2

+
σ2

n

s2
i

(si + λ)2

)
, (6.32)

and

Riskin(β̂ridge(λ)) =
σ2

n
tr
[
λ2α(Σ̂ + λI)−2Σ̂ + Σ̂(Σ̂ + λI)−2Σ̂

]
=
σ2

n

p∑
i=1

αλ2si + s2
i

(si + λ)2
. (6.33)

83



6.2.7 Proof of Theorem 3.1, Part (c)
As we can see from comparing (3.11), (3.13) to (6.28), (6.32), the only difference in the latter
in-sample prediction risk expressions is that each summand has been multiplied by si. Therefore
the exact same relative bounds apply termwise, i.e., the arguments for part (a) apply here. The
Bayes result again follows just by taking expectations.

6.2.8 Proof of Lemma 3.9
As in the proof of Lemma 3.8, because all matrices here are simultaneously diagonalizable, the
claim reduces to one about eigenvalues, and it suffices to check that e−2x + (1 − e−x)2/x ≤
1.2147/(1 + x) for all x ≥ 0. Completing the square and simplifying,

e−2x +
(1− e−x)2

x
=

(1 + x)e−2x − 2e−x + 1

x

=
(
√

1 + xe−x − 1√
1+x

)2

x
+

x

1 + x
.

Now observe that, for any constant C > 0,

(
√

1 + xe−x − 1√
1+x

)2

x
+

x

1 + x
≤ (1 + C2)

1

1 + x
(6.34)

⇐⇒ |(1 + x)e−x − 1| ≤ C
√
x

⇐⇒ 1− (1 + x)e−x ≤ C
√
x,

the last line holding because the basic inequality ex ≥ 1 + x implies that e−x ≤ 1/(1 + x), for
x > −1. We see that for the above line to hold, we may take

C = max
x≥0

[
1− (1 + x)e−x

]
/
√
x = 0.4634,

which has been computed by numerical maximization, i.e., we find that the desired inequality
(6.34) holds with (1 + C2) = 1.2147.

6.2.9 Proof of Theorem 3.3, Part (b)
The lower bounds for the in-sample and out-of-sample prediction risks follow by the same argu-
ments as in the estimation risk case (the ridge estimator here is the Bayes estimator in the case
of a normal-normal likelihood-prior pair, and the risks here do not depend on the specific form
of the likelihood and prior).

For the upper bounds, for in-sample prediction risk, we can see from comparing (3.12), (3.14)
to (6.29), (6.33), the only difference in the latter expressions is that each summand has been
multiplied by si, and hence the same relative bounds apply termwise, i.e., the arguments for part
(a) carry over directly here.

And for out-of-sample prediction risk, the matrix inside the trace in (3.17) when t = α is

α exp(−2αΣ̂) + Σ̂+(I − exp(−αΣ̂))2,
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and the matrix inside the trace in (3.19) when λ = 1/α is

1/α(Σ̂ + (1/α)I)−2 + Σ̂(Σ̂ + (1/α)I)−2 = α(αΣ̂ + I)−1.

By Lemma 3.9, we have

α exp(−2αΣ̂) + Σ̂+(I − exp(−αΣ̂))2 � 1.2147α(αΣ̂ + I)−1.

LettingA,B denote the matrices on the left- and right-hand sides above, sinceA � B and Σ � 0,
it holds that tr(AΣ) ≤ tr(BΣ), which gives the desired result.

6.2.10 Proof of Theorem 3.6
It is evident that (3.24) is helpful for understanding the Bayes prediction risk of ridge regression
(3.19), where the resolvent functional tr[(Σ̂ + zI)−1Σ] plays a prominent role.

For the Bayes prediction risk of gradient flow (3.17), the connection is less clear. How-
ever, the Laplace transform is the key link between (3.17) and (3.24). In particular, defining
g(t) = exp(tA), it is a standard fact that its Laplace transform L(g)(z) =

∫
e−tzg(t) dt (mean-

ing elementwise integration) is in fact

L(exp(tA))(z) = (A− zI)−1. (6.35)

Using linearity (and invertibility) of the Laplace transform, this means

exp(−2tΣ̂)Σ = L−1
(
(Σ̂ + zI)−1Σ

)
(2t), (6.36)

Therefore, we have for the bias term in (3.17),

σ2α

n
tr
[

exp(−2tΣ̂)Σ
]

=
σ2α

n
tr
[
L−1

(
(Σ̂ + zI)−1Σ

)
(2t)

]
=
σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t), (6.37)

where in the second line we again used linearity of the (inverse) Laplace transform. In what
follows, we will show that we can commute the limit as n, p → ∞ with the inverse Laplace
transform in (6.37), allowing us to apply the Ledoit-Peche result (3.24), to derive an explicit
form for the limiting bias. We first give a more explicit representation for the inverse Laplace
transform in terms of a line integral in the complex plane

σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t) =

σ2pα

n

1

2πi

∫ a+i∞

a−i∞
tr
[
p−1(Σ̂ + zI)−1Σ

]
exp(2tz) dz,

where i =
√
−1, and a ∈ R is chosen so that the line [a − i∞, a + i∞] lies to the right of all

singularities of the map z 7→ tr[p−1(Σ̂+zI)−1Σ]. Thus, we may fix any a > 0, and reparametrize
the integral above as

σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t) =

σ2pα

n

1

2π

∫ ∞
−∞

tr
[
p−1
(
Σ̂ + (a+ ib)I

)−1
Σ
]

exp(2t(a+ ib)) db

=
σ2pα

n

1

π

∫ 0

−∞
Re
(

tr
[
p−1
(
Σ̂ + (a+ ib)I

)−1
Σ
]

exp(2t(a+ ib))
)
db.

(6.38)
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The second line can be explained as follows. A straightforward calculation, given in Lemma 6.3,
shows that the function hn,p(z) = tr[p−1

(
Σ̂ + zI

)−1
Σ] exp(2tz) satisfies hn,p(z) = hn,p(z); an-

other short calculation, deferred to Lemma 6.4, shows that for any function with such a property,
its integral over a vertical line in the complex plane reduces to the integral of twice its real part,
over the line segment below the real axis. Now, noting that the integrand above satisfies

|hn,p(z)| ≤ ‖(Σ̂ + zI)−1‖2‖Σ‖2 ≤ C2/a,

for all z ∈ [a− i∞, a+ i∞], we can take limits in (6.38) and apply the dominated convergence
theorem, to yield that almost surely,

lim
n,p→∞

σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t)

= σ2γα0
1

π

∫ 0

−∞
lim

n,p→∞
Re
(

tr
[
p−1
(
Σ̂ + (a+ ib)I

)−1
Σ
]

exp(2t(a+ ib))
)
db

= σ2γα0
1

π

∫ 0

−∞
Re
(
θ(a+ ib) exp(2t(a+ ib))

)
db

= σ2γα0
1

2π

∫ ∞
−∞

θ(a+ ib) exp(2t(a+ ib)) db

= σ2γα0L−1(θ)(2t). (6.39)

In the second equality, we used the Ledoit-Peche result (3.24), which applies because a+ib ∈ C−
for b in the range of integration. In the third and fourth equalities, we essentially reversed the
arguments leading to (6.37), but with h(z) = θ(z) exp(2tz) in place of hn,p (note that h must
also satisfy h(z) = h(z), as it is the pointwise limit of hn,p, which has this same property).

As for the variance term in (3.17), consider differentiating with respect to t, to yield

d

dt

σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ

]
=

2σ2

n
tr
[
Σ̂+Σ̂(I − exp(−tΣ̂)) exp(−tΣ̂)Σ

]
=

2σ2

n
tr
[
(I − exp(−tΣ̂)) exp(−tΣ̂)Σ

]
,

with the second line following because the column space of I − exp(−tΣ̂) matches that of Σ̂.
The fundamental theorem of calculus then implies that the variance equals

2σ2

n

∫ t

0

tr
[
(exp(−uΣ̂)− exp(−2uΣ̂))Σ

]
du =

2σ2p

n

∫ t

0

[
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(u)− L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2u)

]
du,

where the equality is due to inverting the Laplace transform fact (6.35), as done in (6.36) for the
bias. The same arugments for the bias now carry over here, to imply

lim
n,p→∞

2σ2

n

∫ t

0

[
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(u)− L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2u)

]
du =

2σ2γ

∫ t

0

(
L−1(θ)(u)− L−1(θ)(2u)

)
du. (6.40)

Putting together (6.39) and (6.40) completes the proof.
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6.2.11 Supporting Lemmas
Lemma 6.3. For any real matrices A,B � 0 and t ≥ 0, define

f(z) = tr
[
(A+ zI)−1B

]
exp(2tz),

over z ∈ C+ = {z ∈ C : Im(z) > 0}. Then f(z) = f(z).

Proof. First note that exp(2tz) = exp(2tz) by Euler’s formula. As the conjugate of a product
is the product of conjugates, it suffices to show that tr[(A+ zI)−1B] = tr[(A+ zI)−1B]. To
this end, denote Cz = (A+ zI)−1, and denote by C∗z its adjoint (conjugate transpose). Note that
tr(CzB) = tr(C∗zB); we will show that C∗z = Cz, which would then imply the desired result.
Equivalent to C∗z = Cz is 〈Czx, y〉 = 〈x,Czy〉 for all complex vectors x, y (where 〈·, ·〉 denotes
the standard inner product). Observe

〈Czx, y〉 = 〈Czx, (A+ zI)Czy〉
= 〈(A+ zI)∗Czx, Czy〉
= 〈(A+ zI)Czx, Czy〉
= 〈x,Czy〉,

which completes the proof.

Lemma 6.4. If f : C→ C satisfies f(z) = f(z), then for any a ∈ R,∫ ∞
−∞

f(a+ ib) db = 2

∫ 0

−∞
Re(f(a+ ib)) db.

Proof. The property f(z) = f(z) means that Re(f(a−ib)) = Re(f(a+ib)), and Im(f(a−ib)) =
−Im(f(a+ ib)). Thus∫ ∞

−∞
f(a+ ib) db =

∫ ∞
−∞

Re(f(a+ ib)) db+ i

∫ ∞
−∞

Im(f(a+ ib)) db

= 2

∫ 0

−∞
Re(f(a+ ib)) db+ 0,

which completes the proof.

6.2.12 Additional Numerical Results
Here we show the complete set of numerical results comparing gradient flow and ridge regres-
sion. The setup is as described in Section 4.6. Figure 6.1 shows the results for Gaussian features
in the low-dimensional case (n = 1000, p = 500). The first row shows the estimation risk when
Σ = I , with the left plot using λ = 1/t calibration, and the right plot using `2 norm calibration
(details on this calibration explained below). The second row shows the estimation risk when
Σ has all off-diagonals equal to ρ = 0.5. The third row shows the prediction risk for the same
Σ (n.b., the prediction risk when Σ = I is the same as the estimation risk, so it is redundant to
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show both). The conclusions throughout are similar to that made in Section 4.6. Calibration by
`2 norm gives extremely good agreement: the maximum ratio of gradient flow to ridge risk (over
the entire path, in any of the three rows) is 1.0367. Calibration by λ = 1/t is still quite good, but
markedly worse: the maximum ratio of gradient flow to ridge risk (again over the entire path, in
any of the three rows) is 1.4158.

Figures 6.2 shows analogous results for Gaussian features in the high-dimensional case (n =
500, p = 1000). Figures 6.3–6.6 show the results for Student t and Bernoulli features. The
results are similar throughout: the maximum ratio of gradient flow to ridge risk, under `2 norm
calibration (over the entire path, in any setting), is 1.0371; the maximum ratio, under λ = 1/t
calibration (over the entire path, in any setting), is 1.4154. (One noticeable, but unremarkable
difference between the settings is that the finite-sample risks seem to be converging slower to
their asymptotic analogs in the case of t features. This is likely due to the fact that the tails here
are very fat—they are as fat as possible for the t family, subject to the second moment being
finite.)

It helps to give further details for a few of the calculations. For `2 norm calibration, note that
we can compute the expected squared `2 norm of the ridge and gradient flow estimators under
the data model (3.9) and prior (3.10):

E‖β̂ridge(λ)‖2
2 =

1

n

(
tr
[
α(Σ̂ + λI)−2Σ̂2

]
+ tr

[
(Σ̂ + λI)−2Σ̂

])
=

1

n

p∑
i=1

αs2
i + si

(si + λ)2
,

E‖β̂gf(t)‖2
2 =

1

n

(
tr
[
α(I − exp(−tΣ̂))2

]
+ tr

[
(I − exp(−tΣ̂))2Σ̂+

])
=

1

n

p∑
i=1

(
α(1− exp(−tsi))2 +

(1− exp(−tsi))2

si

)
.

We thus calibrate according to the square root of the quantities above (this is what is plotted on
the x-axis in the left columns of all the figures). The above expressions have the following limits
under the asymptotic model studied in Theorem 3.5:

E‖β̂ridge(λ)‖2
2 → γ

∫
α0s

2 + s

(s+ λ)2
dFH,γ(s),

E‖β̂gf(t)‖2
2 → γ

∫ (
α0(1− exp(−ts))2 +

(1− exp(−ts))2

s

)
dFH,γ(s).

Furthermore, we note that when Σ = I , the empirical spectral distribution from Theorem 3.4
abbreviated as Fγ , sometimes called the Marchenko-Pastur (MP) law and has a closed form. For
γ ≤ 1, its density is

dFγ(s)

ds
=

1

2πγs

√
(b− s)(s− a),

and is supported on [a, b], where a = (1−√γ)2 and b = (1 +
√
γ)2. For γ > 1, the MP law

Fγ has an additional point mass at zero of probability 1 − 1/γ. This allows us to evaluate the
integrals in (3.20), (3.23) via numerical integration, to compute limiting risks for gradient flow
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and ridge regression. (It also allows us to compute the integrals in the second to last display, to
calibrate according to limiting `2 norms.)

6.3 Supplementary Material for The Multiple Quantile Graph-
ical Model

6.3.1 Proof of Lemma 4.1

If the conditional quantiles satisfy QU |V,W (α) = QU |W (α) for all α ∈ [0, 1], then the conditional
CDF must obey the same property, i.e., FU |V,W (t) = FU |W (t) for all t in the support of U . This is
simply because any CDF may be expressed in terms of its corresponding quantile function (i.e.,
inverse CDF), as in

FU |V,W (t) = sup{α ∈ [0, 1] : QU |V,W (α) ≤ t},
and the right-hand side does not depend on V , so neither can the left-hand side. But this precisely
implies that the distribution of U |V,W equals that of U |W , i.e., U and V are conditionally
independent given W . We note that the converse of the statement in the lemma is true as well,
by just reversing all the arguments here.

6.3.2 Proof of Lemma 4.2

This result can be seen as a generalization of Theorem 3 in [53].
First, we define an iteration of Gibbs sampling to be a single pass through all the variables

(without a loss of generality, we take this order to be y1, . . . , yd). Now, consider a particular
iteration of Gibbs sampling; let ỹ1, . . . , ỹd be the values assigned to the variables on the previous
iteration. Then the transition kernel for our Gibbs sampler is given by

P(y1, . . . , yd|ỹ1, . . . , ỹd) = P(yd|yd−1, . . . , y1, ỹ1, . . . , ỹd)P(yd−1, . . . , y1|ỹ1, . . . , ỹd) (6.41)
= P(yd|yd−1, . . . , y1)P(yd−1, . . . , y1|ỹ1, . . . , ỹd) (6.42)
= P(yd|yd−1, . . . , y1)P(yd−1|yd−2, . . . y1, ỹd) · · ·P(y1|ỹ2, . . . , ỹd),

(6.43)

where (6.41) follows by the definition of conditional probability, (6.42) by conditional indepen-
dence, and (6.43) by repeated applications of these tools. Since each conditional distribution
is assumed to be (strictly) positive, we have that the transition kernel is also positive, which in
turn implies [14, page 544] that the induced Markov chain is ergodic with a unique stationary
distribution that can be reached from any initial point.

6.3.3 Statement and Discussion of Regularity Conditions for Theorem 4.1

For each k = 1, . . . , r, ` = 1, . . . , r, let us define the “effective” (independent) error terms
ε`ki = y

(i)
k − b∗`k −

∑
j 6=k φ(y

(i)
j )T θ∗`kj , over i = 1, . . . , n. Denote by Fε`k the conditional CDF of
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Figure 6.1: Gaussian features, with n = 1000 and p = 500.
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Figure 6.2: Gaussian features, with n = 500 and p = 1000.
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Figure 6.3: Student t features, with n = 1000 and p = 500.
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Figure 6.4: Student t features, with n = 500 and p = 1000.
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Figure 6.5: Bernoulli features, with n = 1000 and p = 500.
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Figure 6.6: Bernoulli features, with n = 500 and p = 1000.
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ε`ki|y(i)
¬k, i = 1, . . . , n, which by construction satisfies Fε`k(0) = α`. Also define the underlying

support
S`k =

{
j ∈ {1, . . . , d} : θ∗`kj 6= 0

}
.

Here we take a moment to explain a somewhat subtle indexing issue with the columns of the
feature matrix Φ ∈ Rn×dm. For a single fixed index j = 1, . . . , d, we will extract an appropriate
block of columns of Φ ∈ Rn×dm, corresponding to the basis expansion of variable j, by writing
Φj . More precisely, we use Φj to denote the block of m columns

[Φ(j−1)m+1,Φ(j−1)m+2, . . . ,Φjm]. (6.44)

We do this because it simplifies notation considerably. (Occasionally, to be transparent, we will
use the more exhaustive notation on the right-hand side in (6.44), but this is to be treated as an
exception, and the default is to use the concise notation as in Φj .) The same rule will be used for
subsets of indices among 1, . . . , d, so that ΦS`k

denotes the appropriate block of m|S`k| columns
corresponding to the basis expansions of the variables in S`k.

For all k = 1, . . . , d, ` = 1, . . . , r, we will assume the following regularity conditions.

A1. Groupwise irrepresentability: for j ∈ Sc`k, we require that ‖ΦT
j ΦS`k

‖F < λ1/(6fε`k(0)γ),
where S`k = {j ∈ {1, . . . , dm} : θ∗`kj 6= 0}, fε`k is the density of Fε`k , and γ > 0 is a
quantity prescribed by Lemma 6.3.5.

A2. Distributional smoothness: we assume that |Fε`k(x)− Fε`k(0)− xfε`k(0)| ≤ C1x
2 for all

|x| ≤ C2, where C1, C2 > 0 are constants.

A3. Correlation restriction: we assume that C3 ≤ (fε`k(0)/n)λmin(ΦT
S`k

ΦS`k
) ≤ C4 for con-

stants C3, C4 > 0, where λmin(A) denotes the minimum eigenvalue of A.

A4. Basis and support size restrictions: we assume that m = O(n1/9) and s = O(n1/21),
where s = |S`k|. We also assume, with probability tending to one, that Φmax = Ω(1) and
Φmax = o(n1/21/ log1/2 n), where we write Φmax to denote the maximum absolute entry of
the basis matrix Φ.

Next, we provide some intuition for these conditions.

Condition A1. Fix some j ∈ Sc`k. For notational convenience, we let

A = ΦT
j ΦS`k

∈ Rm×sm.

Observe that each entry of A can be expressed as

Aip = nρi,p‖Φ(j−1)m+i‖2‖Φp‖2, (6.45)

for i = 1, . . . ,m, p denoting an index into the basis expansion of the columns ΦS`k
, and ρi,p de-

noting the sample correlation coefficient for the columns Φi and Φp. Since ‖Ap‖F ≤
√
m‖Ap‖∞,

we have that
max
i,p

ρi,p <
λ1

6n2fε`k(0)
√
m

is sufficient for condition A1; here, we have also used the column scaling assumption ‖Φp‖2 ≤√
n.
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So, roughly speaking, bounded correlation between each pair of columns in the submatrices
Φj and ΦS`k

is enough for condition A1 to hold; note that this is trivially satisfied when ΦT
i Φp =

0, for i = 1, . . . ,m, and p as defined above. Condition A1 is therefore similar to, e.g., the mutual
incoherence condition of [141] for the lasso, which is given by∥∥∥ΦT

ScΦS

(
ΦT
SΦS

)−1
∥∥∥
∞
≤ 1− γ̃ ⇐⇒ max

j∈Sc

∥∥∥(ΦT
SΦS

)−1
ΦT
SΦj

∥∥∥
1
≤ 1− γ̃,

where again ΦS extracts the appropriate block of columns of Φ, ‖ · ‖∞ here denotes the `∞
operator norm (maximum `1 norm of a row), ‖ · ‖1 here denotes the elementwise `1 norm, and
γ̃ ∈ (0, 1] is a constant. This condition can be seen as requiring bounded correlation between
each column in the submatrix ΦSc and all columns in the submatrix ΦS .

Condition A2. This condition is similar to requiring that fε`k(x) be Lipschitz, over some x in
a neighborhood of 0. We can show that the Laplace distribution, e.g., satisfies this condition.

The density and distribution functions for the Laplace distribution with location zero and unit
scale are given by

fε`k(x) = (1/2) exp(−|x|)
and

Fε`k(x) =

{
1− (1/2) exp(−x) if x ≥ 0

(1/2) exp(x) if x < 0,

respectively.
Now, suppose 0 ≤ x ≤ C2. Then we can express condition A2 as

|fε`k(x)− fε`k(0)− xfε`k(0)| ≤ C1x
2 ⇐⇒ −2C1x

2 ≤ exp(−x) + x− 1 ≤ 2C1x
2.

For the first inequality, since 1 − x ≤ exp(−x), it is sufficient to check that 0 ≤ C1x
2,

which is true for C1 > 0 and all x. For the second inequality, by differentiating and again using
1− x ≤ exp(−x), we have that the function

2C1x
2 − exp(−x)− x+ 1 (6.46)

is nondecreasing in x ≥ 0; thus, it is sufficient to check that this function is nonnegative for
x = 0, which is true.

Now, suppose −C2 ≤ x < 0. Then we can express condition A2 as

|fε`k(x)− fε`k(0)− xfε`k(0)| ≤ C1x
2 ⇐⇒ −2C1x

2 ≤ exp(x)− x− 1 ≤ 2C1x
2.

By symmetry with the preceding case, the first inequality here holds. The second inequality
here also holds, since exp(x)− 2C1x

2 − x− 1 is continuous and increasing in x < 0; taking the
limit as x ↑ 0 gives that this function is nonpositive as required.

Condition A3. This condition is a generalization of the minimum eigenvalue condition of
[141], i.e., cmin ≤ λmin

(
(1/n)ΦT

SΦS

)
, for some constant cmin > 0, and where we write ΦS to

extract the appropriate block of columns of Φ.
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Condition A4. This condition allows the number of basis functions m in the expansion to
grow with n, at a polynomial rate (with fractional exponent). This is roughly in line with stan-
dard nonparametric regression; e.g., when estimating a continuous differentiable function via a
spline expansion, one typically takes the number of basis functions m to scale as n1/3, and the
more derivatives that are assumed, the smaller the fractional exponent [50]. The condition also
restricts, for any given variable, the number of variables s that contribute to its neighborhood
model to be polynomial in n (with a smaller fractional exponent).

Finally, the condition assumes that the entries of the basis matrix Φ (i.e., the matrix of trans-
formed variables) to be at least of constant order, and at most of polynomial order (with small
fractional exponent), with n. We note that this implicitly places a restriction on the tails of distri-
bution governing the data y(i)

j , i = 1, . . . , n, j = 1, . . . , d. However, the restriction is not a strong
one, because it allows the maximum to grow polynomially large with n (whereas a logarithmic
growth would be expected, e.g., for normal data). Furthermore, it is possible to trade off the
restrictions on m, s, Φmax, and d (presented in the statement of the theorem), making each of
these restrictions more or less stringent, if required.

6.3.4 Proof of Theorem 4.1

The general strategy that we use here for support recovery is inspired by that in [37], for `1-
penalized quantile regression.

Fix some k = 1, . . . , d and ` = 1, . . . , r. We consider the conditional distribution yk|y¬k,
whose α`-quantile is assumed to satisfy (4.3). Hence, to be perfectly clear, all expectations
and probability statements in what follows are to be interpreted with respect to the observations
y

(i)
k , i = 1, . . . , n conditional on y(i)

j , i = 1, . . . , n, for j 6= k (and thus we can treat the feature
matrix Φ as fixed throughout). In the setting assumed by the theorem, the conditional quantile
model in (4.3) is, more explicitly,

Qyk|y¬k(α`) = b∗`k +
d∑
j 6=k

(θ∗`kj)
Tφj(yj),

for some unknown parameters b∗`k and θ∗`kj , j = 1, . . . , d. For simplicity, in this proof, we
will drop the intercept term completely both from the model (denoted b∗`k) and the optimization
problem in (4.4) (here denoted b`k) that defines the estimator in question. Including the intercept
is not at all difficult, and it just requires some extra bookkeeping at various places. Recall that
we define

S`k =
{
j ∈ {1, . . . , d} : θ∗`kj 6= 0

}
,

and analogously define
Ŝ`k =

{
j ∈ {1, . . . , d} : θ̂`kj 6= 0

}
,

where θ̂`k = (θ̂`k1, . . . , θ̂`kd) ∈ Rdm is the solution in (4.5).
We will show that, with probability at least 1−δ/(dr), it holds that S`k = Ŝ`k. A union bound

(over all choices k = 1, . . . , d and ` = 1, . . . , r) will then tell us that E∗ = Ê with probability at
least 1− δ, completing the proof.
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To certify that S`k = Ŝ`k, we will show that the unique solution in (4.5) is given by

θ̂`k(S`k) = θ̃`k(S`k), θ̂`k(Sc
`k) = 0, (6.47)

where θ̃`k(S`k) solves the “restricted” optimization problem:

minimize
θ`k(S`k)

ψα`

(
Yk − ΦS`k

θ`k(S`k)

)
+ λ1

∑
j∈S`k

‖θ`kj‖2 +
λ2

2
‖θ`k(S`k)‖2

2. (6.48)

Now, to prove that θ̂`k as defined above in (6.47) indeed the solution in (4.5), we need to
check that it satisfies the KKT conditions for (4.5), namely

ΦT
S`k
v`

(
Yk − ΦS`k

θ̃`k(S`k)

)
− λ2θ̃`k(S`k) = λ1u`k(S`k), (6.49)

ΦT
Sc
`k
v`

(
Yk − ΦS`k

θ̃`k(S`k)

)
= λ1u`k(Sc

`k), (6.50)

where v`(Yk − ΦS`k
θ̃`k(S`k)) ∈ Rn is a subgradient of ψα`

(·) at Yk − ΦS`k
θ̃`k(S`k), i.e.,[

v`

(
Yk − ΦS`k

θ̃`k(S`k)

)]
i

= α` − I−
(
y

(i)
k − Φi(S`k)θ̃`k(S`k)

)
, i = 1, . . . , n

where I−(·) is the indicator function of the nonpositive real line, and where each u`kj ∈ Rm is a
subgradient of ‖ · ‖2 at θ̃`kj , i.e.,

u`kj ∈
{
{θ̃`kj/‖θ̃`kj‖2} if θ`kj 6= 0

{x ∈ Rm : ‖x‖2 ≤ 1} if θ`kj = 0,

for j = 1, . . . , d. Note that, since θ̃`k(S`k) is optimal for the restricted problem (6.48), we know
that there exists a collection of subgradients u`k(S`k) to satisfy (6.49), from the KKT conditions
for (6.48) itself.

It remains to satisfy (6.50), and for this, we can use u`kj = ΦT
j v`(Yk − ΦS`k

θ̃`k(S`k)) as a valid
choice of subgradient, for each j ∈ Sc`k, provided that∥∥∥ΦT

j v`

(
Yk − ΦS`k

θ̃`k(S`k)

)∥∥∥
2
< λ1, for j ∈ Sc`k. (6.51)

Define zj(ϑ) = ΦT
j v`(Yk − ΦS`k

ϑ), for j ∈ Sc`k, and define a ball

B∗ =
{
ϑ ∈ Rsm : ‖ϑ− θ∗`k(S`k)‖2 ≤ γ

}
,

where we write s = |S`k|. To show (6.51), then, it suffices to show that

θ̃`k(S`k) ∈ B∗︸ ︷︷ ︸
E1

, and max
j∈Sc

`k

sup
ϑ∈B∗

‖zj(ϑ)‖2 < λ1︸ ︷︷ ︸
E2

. (6.52)

In Lemma 6.5, given in Section 6.3.5, it is shown that the event E1 defined above occurs with
probability at least 1− δ/(2dr), with a choice of radius

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,
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for a constant C > 0. Below we show that E2 occurs with probability at least 1 − δ/(2dr), as
well.

For j = 1, . . . , d, let us expand

zj(ϑ) = ΦT
j v`(ε`k)︸ ︷︷ ︸

∆j
1

+ ΦT
j E
[
v`

(
Yk − ΦS`k

ϑ
)
− v`(ε`k)

]
︸ ︷︷ ︸

∆j
2

+

ΦT
j

(
v`

(
Yk − ΦS`k

ϑ)− v`(ε`k
)
− E

[
v`(Yk − ΦS`k

ϑ)− v`(ε`k)
])

︸ ︷︷ ︸
∆j

3

, (6.53)

where ε`k = (ε`k1, . . . , ε`kn) ∈ Rn is a vector of the effective error terms, which recall, is defined
by ε`k = Yk − Φθ∗`k. Therefore, to show that the event E2 in (6.52) holds, we can show that for
each p = 1, 2, 3,

max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
p‖2 <

λ1

3
.

Further, to show that E2 holds with probability at least 1− δ/(2dr), we can show that the above
holds for p = 1, 3 each with probability at least 1 − δ/(4dr), as the statement for p = 2 is
deterministic. We now bound the terms ∆j

1,∆
j
2,∆

j
3 one by one.

Bounding ‖∆j
1‖2. Fix j ∈ Sc`k, and write

ΦT
j v`(ε`k) =

( n∑
i=1

Φi,(j−1)m+1v`(ε`ki), . . . ,
n∑
i=1

Φi,jmv`(ε`ki)

)
,

where, as a reminder that the above quantity is a vector, we have returned momentarily to the
more exhaustive notation for indexing the columns of Φ, as in the right-hand side of (6.44).

Straightforward calculations reveal that, for each i = 1, . . . , n, and p = 1, . . . ,m,

EΦi,(j−1)m+pv`(ε`ki) = 0, and − |Φi,(j−1)m+p| ≤ Φi,(j−1)m+pv`(ε`ki) ≤ |Φi,(j−1)m+p|.

Hence,

P
(
‖ΦT

j v`(ε`ki)‖2 ≥
√
mt
)
≤ P

(∣∣∣∣ n∑
i=1

Φi,(j−1)m+pv`(ε`ki)

∣∣∣∣ ≥ t, some p = 1, . . . ,m

)
≤

m∑
p=1

2 exp

(
− t2

2
∑n

i=1 Φ2
i,(j−1)m+p

)
≤ 2m exp

(
− t2

2n

)
.

Above, the first inequality used the simple fact that ‖x‖2 ≤
√
m‖x‖∞ for x ∈ Rm; the second

used Hoeffding’s bound and the union bound; and the third used our assumption that the columns
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of Φ have norm at most
√
n. Therefore, taking t = λ1/(3

√
m), we see that, by the above and the

union bound,

P
(

max
j∈Sc

`k

‖∆j
1‖2 <

λ1

3

)
≥ 1− 2dm exp

(
− λ2

1

18mn

)
.

By choosing λ1 = C ′
√

18mn log(8d2mr/δ) for a constant C ′ > 0, we see that the probability
in question is at least 1− δ/(4dr), as desired.

Bounding ‖∆j
2‖2. Recall that Fε`k(·) is used to denote the CDF of the effective error distri-

bution, and fε`k(·) is used for its its density. By construction, Fε`k(0) = α`. Direct calculation,
using the definition of v`(·), shows that, for any ϑ ∈ B∗, and each i = 1, . . . , n,

E
[
v`(ε`k)− v`

(
Yk − ΦS`k

ϑ
)]

= Fε`k

(
ΦS`k

(
ϑ− θ∗`k(S`k)

))
− Fε`k(0),

where we apply Fε`k componentwise, and so

ΦT
j E
[
v`(ε`k)− v`

(
Yk − ΦS`k

ϑ
)]

= fε`k(0)ΦT
j ΦS`k

(
ϑ− θ∗`k(S`k)

)
+ ∆j

4

with ∆j
4 ∈ Rm being the appropriate remainder term, i.e.,

[
∆j

4

]
t

=
n∑
i=1

Φit

[
Fε`k

(
Φi(S`k)

(
ϑ− θ∗`k(S`k)

))
− Fε`k(0)− fε`k(0)Φi(S`k)

(
ϑ− θ∗`k(S`k)

)]
,

for t = j(m− 1) + 1, . . . , jm.
Now, we have that∥∥fε`k(0)ΦT

j ΦS`k

(
ϑ− θ∗`k(S`k)

)∥∥
2
≤ fε`k(0)

∥∥ΦT
j ΦS`k

∥∥
F

∥∥ϑ− θ∗`k(S`k)

∥∥
2
≤ λ1

6
,

where we have used ‖ϑ− θ∗`k(S`k)‖2 ≤ γ and the groupwise irrepresentability condition in A1.
We also have the following two facts, which we will use momentarily:

Φ3
maxnsγ

2 = o(λ1) (6.54)
√
sΦmaxγ → 0. (6.55)

Note that (6.54) can be obtained as follows. Since (1/2)(x+ y)2 ≤ x2 + y2 for x, y ∈ R, we can
plug in

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

and check that both terms on the right-hand side of

Φ3
maxns

λ1

(
λ2

1s
2m

n2
+
s log n

n

)
=

Φ3
maxs

3λ1m

n
+

Φ3
maxs

2 log n

λ1

tend to zero. For the first term on the right-hand side, it is enough to show that

Φ6
maxs

6m3 log(d2mr)(log3 n)/n→ 0,
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where we have plugged in λ1 = C ′
√
mn log(d2mr/δ) log3 n. Using the assumptions in condi-

tion A4, we get that log(d2mr) = O(log d+ logm) = O(n2/21), and furthermore that

Φ6
maxs

6m3 log(d2mr)(log3 n)/n = o

(
n1/3 · n2/21 · n6/21 · n6/21

log3 n

)
log3 n

n
→ 0,

as required. A similar calculation shows that the second term on the right-hand side also tends
to zero, i.e., Φ3

maxs
2(log n)/λ1 → 0, which establishes (6.54). Lastly, (6.55) follows since its

left-hand side is dominated by the left-hand side of (6.54).
So, we now compute

‖∆j
4‖2 ≤

√
mmax

t

n∑
i=1

∣∣∣∣Φit

[
Fε`k

(
Φi(S`k)

(
ϑ− θ∗`k(S`k)

))
−

Fε`k(0)− fε`k(0)Φi(S`k)

(
ϑ− θ∗`k(S`k)

)]∣∣∣∣
≤ C1Φmax

√
m

n∑
i=1

(
Φi(S`k)

(
ϑ− θ∗`k(S`k)

))2

≤ C1Φmax

√
m

n∑
i=1

‖Φi(S`k)‖2
2‖ϑ− θ∗`k(S`k)‖2

2

≤ C1Φ3
max

√
mnsγ2

= o(λ1).

Here the first inequality follows from the fact that ‖x‖2 ≤
√
m‖x‖∞ for x ∈ Rm, and the trian-

gle inequality; the second follows from the distributional smoothness condition in A2, which is
applicable since (6.55) holds; the third uses Cauchy-Schwarz; the fourth uses our column norm
assumption on Φ, and ‖ϑ− θ∗`k(S`k)‖2 ≤ γ; the last uses (6.54). As ‖∆j

4‖2 = o(λ1), it will cer-
tainly be strictly less than λ1/6 for n large enough. We have hence shown, noting that none of
our above arguments have depended on the particular choice of j = 1, . . . , d or ϑ ∈ B∗,

max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
2‖2 <

λ1

3
.

Bounding ‖∆j
3‖2. For this part, we can use the end of the proof of Lemma 2 in [37], which

uses classic entropy-based techniques to establish a bound very similar to that which we are
seeking. By carefully looking at the conditions required for this lemma, we see that under the
distributional smoothness condition in A2, condition A3, and also√

n log(dm) = o(λ1)

nΦmaxγ
2 = o(λ1)

(1 + γΦ2
maxs

3/2) log2 n = o(λ2
1/n),
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all following directly from condition A4 by calculations similar to the ones we used when bound-
ing ‖∆j

2‖, we have

P
(

max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
3‖2 ≥

λ1

3

)
≤ P

(
max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
3‖∞ ≥

λ1

3
√
m

)
;

the probability on the right-hand side can be made arbitrarily small for large n, by the arguments
at the end of Lemma 2 in [37], and hence clearly smaller than the desired δ/(4dr) level.

Putting it together. Returning to the logic in (6.51), (6.52), (6.53), we have shown that
the subgradient condition in (6.51) holds with probability at least 1 − (δ/(2dr) + δ/(4dr) +
δ/(4dr)) = 1 − δ/(dr). Taking a union bound over k = 1, . . . , d and ` = 1, . . . , r, which were
considered fixed at the start of our analysis, gives the result stated in the theorem.

6.3.5 Statement and Proof of Lemma 6.5
We show that with probability at least 1 − δ/(2dr), it holds that θ̃`k(S`k) ∈ B∗, where θ̃`k(S`k) is
the solution to the restricted problem (6.48), for some fixed k = 1, . . . , d and ` = 1, . . . , r, and
B∗ is a ball defined in the proof of Theorem 4.1 in Section 6.3.4. This fact is used a few times in
the proof of Theorem 4.1.
Lemma 6.5. Fix some k = 1, . . . , d and ` = 1, . . . , r. Define the ball

B∗ = {ϑ ∈ Rsm : ‖ϑ− θ∗`k(S`k)‖2 ≤ γ}

centered at the underlying coefficients θ∗`k(S`k) with radius

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

for some constant C > 0. Then, with probability at least 1− δ/(2dr), it holds that θ̃`k(S`k) ∈ B∗,
where θ̃`k(S`k) is the solution to the restricted problem (6.48).

Proof. We will follow the strategy for the proof of Theorem 1 in [37] closely. We begin by
considering the ball

B = {ϑ ∈ Rsm : ‖ϑ− θ∗`k(S`k)‖2 ≤ R}
with center θ∗`k(S`k) and radius R. We also introduce some useful notational shorthand, and write
the quantile loss term in the restricted problem (6.48) as

L`k(ϑ) = ψα`
(Yk − ΦS`k

ϑ) .

Below, we show that a particular function of R serves as an upper bound for the quantity
E[L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))], where the expectation here is taken over draws of the data, and
ϑ̃`k(S`k) is a particular point in B that we define in a moment. This in turn implies, with proba-
bility at least 1− δ/(2dr), that θ̃`k(S`k) ∈ B∗, as claimed.
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First, we define ϑ̃`k(S`k) more precisely: it is a point on the line segment between the solution
to the restricted problem θ̃`k(S`k) and the underlying coefficients θ∗`k(S`k), i.e.,

ϑ̃`k(S`k) = βθ̃`k(S`k) + (1− β)θ∗`k(S`k),

for a particular choice

β =
R

R + ‖θ̃`k(S`k) − θ∗`k(S`k)‖2

,

which guarantees that ϑ̃`k(S`k) ∈ B even if θ̃`k(S`k) /∈ B , as we establish next. Observe that we
always have

‖θ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ R + ‖θ̃`k(S`k) − θ∗`k(S`k)‖2

⇐⇒ R
‖θ̃`k(S`k) − θ∗`k(S`k)‖2

R + ‖θ̃`k(S`k) − θ∗`k(S`k)‖2

≤ R

⇐⇒ β‖θ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ R

⇐⇒ ‖βθ̃`k(S`k) − βθ∗`k(S`k) + θ∗`k(S`k) − θ∗`k(S`k)‖2 ≤ R

⇐⇒ ‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ R,

as claimed. The second line here follows by rearranging and multiplying through by R; the
third by using the definition of β above; the fourth by adding and subtracting the underlying
coefficients; and the fifth by using the definition of ϑ̃`k(S`k).

Now, the beginning of the proof of Theorem 1 in [37] establishes, for any ϑ̃`k(S`k) ∈ B, for
some constant C5 > 0, and using condition A3, that

E
[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
≥ C5n‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2

2, (6.56)

and so, by direct calculation, since

‖ϑ̃`k(S`k)− θ∗`k(S`k)‖2 ≤ R ⇐⇒ β‖θ̃`k(S`k)− θ∗`k(S`k)‖2 ≤ R ⇐⇒ ‖θ̃`k(S`k)− θ∗`k(S`k)‖2 ≤ R/2,
(6.57)

it suffices to obtain a suitable upper bound for E[L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))], in order to get the
result in the statement of the lemma. To this end, we introduce one more piece of shorthand, and
denote the objective for the restricted problem (6.48) as J`k(ϑ).
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We proceed with the following chain of (in)equalities:

E
[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
= E

[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
+ J`k(ϑ̃`k(S`k))− J`k(ϑ̃`k(S`k)) +

J`k(θ
∗
`k(S`k))− J`k(θ∗`k(S`k)) (6.58)

= L`k(θ
∗
`k(S`k))− EL`k(θ∗`k(S`k))− L`k(ϑ̃`k(S`k)) + EL`k(ϑ̃`k(S`k))︸ ︷︷ ︸

∆(θ∗
`k(S`k)

,ϑ̃`k(S`k))

+

J`k(ϑ̃`k(S`k))− J`k(θ∗`k(S`k)) + λ1

∑
j∈S`k

‖θ∗`kj‖2 − λ1

∑
j∈S`k

‖ϑ̃`kj‖2

− (λ2/2)‖ϑ̃`k(S`k)‖2
2 + (λ2/2)‖θ∗`k(S`k)‖2

2 (6.59)

≤ ∆(θ∗`k(S`k), ϑ̃`k(S`k)) + J`k(ϑ̃`k(S`k))− J`k(θ∗`k(S`k)) + λ1

∑
j∈S`k

‖θ∗`kj − ϑ̃`kj‖2 + o(1) (6.60)

≤ ∆(θ∗`k(S`k), ϑ̃`k(S`k)) + J`k(ϑ̃`k(S`k))− J`k(θ∗`k(S`k)) + λ1sR
√
m+ o(1) (6.61)

≤ ∆(θ∗`k(S`k), ϑ̃`k(S`k)) + 2λ1sR
√
m (6.62)

≤ sup
ϑ̃`k(S`k)∈B

|∆(θ∗`k(S`k), ϑ̃`k(S`k))|+ 2λ1sR
√
m. (6.63)

Here, (6.58) follows by adding and subtracting like terms, and (6.59) by rearranging (6.58). In
(6.60) we use the triangle inequality and the following argument to show that the terms involving
λ2 are o(1). Under the assumption that λ2 = o(n41/42/θ∗max), combined with the restriction that
s = o(n1/21), we have λ2 = o(n/(

√
sθ∗max)). Therefore, under our choice of R = 1/n (as

specified below), we have
λ2

√
sθ∗maxR→ 0.

This in turn is used to argue that

−(λ2/2)‖ϑ̃`k(S`k)‖2
2 + (λ2/2)‖θ∗`k(S`k)‖2

2 = (λ2/2)‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2
2

− λ2‖ϑ̃`k(S`k)‖2
2 + λ2ϑ̃

T
`k(S`k)θ

∗
`k(S`k)

≤ (λ2/2)R2 − λ2‖ϑ̃`k(S`k)‖2(‖ϑ̃`k(S`k)‖2 − ‖θ∗`k(S`k)‖2)

≤ (λ2/2)R2 + λ2‖ϑ̃`k(S`k)‖2R

≤ (λ2/2)R2 + λ2‖θ∗`k(S`k)‖2R

≤ (λ2/2)R2 + λ2

√
sθ∗maxR→ 0.

In the second to last line, we have applied ‖ϑ̃`k(S`k)‖2 ≤ ‖θ∗`k(S`k)‖2, as, outside of this case, the
term in question −(λ2/2)‖ϑ̃`k(S`k)‖2

2 + (λ2/2)‖θ∗`k(S`k)‖2
2 would be negative, anyway.

Continuing on, (6.61) holds because ‖θ∗`k(S`k) − ϑ̃`k(S`k)‖2 ≤ R implies ‖θ∗`kj − ϑ̃`kj‖2 ≤ R.
Finally, (6.62) follows because of the following argument. Since J`k is convex, we can use the
definition of ϑ̃`k(S`k) and get

J`k(ϑ̃`k(S`k)) ≤ βJ`k(θ̃`k(S`k))+(1−β)J`k(θ
∗
`k(S`k)) = J`k(θ

∗
`k(S`k))+β(J`k(θ̃

∗
`k(S`k))−J`k(θ∗`k(S`k)));
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notice that the last term here is nonpositive, since θ̃`k(S`k) is the solution to the restricted problem
(6.48), and thus we have that

J`k(ϑ̃`k(S`k)) ≤ J`k(θ
∗
`k(S`k)),

which lets us move from (6.61) to (6.62).

Lemma 1 in [37] states, with probability at least 1 − δ, where δ = exp(−C6s log n) and
C6 > 0 is some constant, that

sup
ϑ̃`k(S`k)∈B

|∆(θ∗`k(S`k), ϑ̃`k(S`k))| ≤ 6R
√
sn log n,

so from (6.63), with probability at least 1− δ, we see that

E
[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
≤ 6R

√
sn log n+ 2λ1sR

√
m

and, using (6.56), that

n‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2
2 ≤ C ′

(
R
√
sn log n+ λ1sR

√
m
)
,

for some constant C ′ > 0.

Plugging in R = 1/n, dividing through by n, and using the fact that the square root function
is subadditive, we get, with probability at least 1− δ, that

‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ C ′
(

(s log n)1/4

n3/4
+

(λ1s)
1/2m1/4

n

)
≤ C ′

(√
s log n

n
+
λ1s
√
m

n

)
.

Finally, we complete the proof by applying (6.57), in order to get that

‖θ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ γ,

where we have defined

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

and C > 0 is some constant, with probability at least 1− δ/(2dr), for large enough n.

6.3.6 Proof of Lemma 4.3
The prox operator proxλψA(A) is separable in the entries of its minimizer X , so we focus on
minimizing over Xij the expression

max{αjXij, (αj − 1)Xij}+ (1/(2λ)) (Xij − Aij)2

= αj max{0, Xij}+ (1− αj) max{0,−Xij}+ (1/(2λ)) (Xij − Aij)2 . (6.64)

Suppose Xij > 0. Then differentiating (6.64) gives Xij = Aij −λαj and the sufficient condition
Aij > λαj . Similarly, assuming Xij < 0 gives Xij = Aij + λ(1 − αj) when Aij < λ(αj − 1).
Otherwise, we can take Xij = 0. Putting these cases together gives the result.
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6.3.7 Additional Details on Gibbs Sampling
In the MQGM, there is no analytic solution for parameters like the mean, median, or quantiles
of these marginal and conditional distributions, but the pseudolikelihood approximation makes
for a very efficient Gibbs sampling procedure, which we highlight in this section. As it is rele-
vant to the computational aspects of the approach, in this subsection we will make explicit the
conditional random field, where yk depends on both y¬k and fixed input features x.

First, note that since we are representing the distribution of yk|y¬k, x via its inverse CDF, to
sample from from this conditional distribution we can simply generate a random α ∼ Uniform(0, 1).
We then compute

Q̂yk|y¬k(α`) = φ(y)T θ`k + xT θx`k

Q̂yk|y¬k(α`+1) = φ(y)T θ(`+1)k + xT θx(`+1)k

for some pair α` ≤ α ≤ α`+1 and set yk to be a linear interpolation of the two values

yk ← Q̂yk|y¬k(α`) +

(
Q̂yk|y¬k(α`+1)− Q̂yk|y¬k(α`)

)
(α− α`)

α`+1 − α`
.

This highlights the desirability of having a range of non-uniformly spaced α terms that reach
values close to zero and one as otherwise we may not be able to find a pair of α’s that lower and
upper bound our random sample α. However, in the case that we model a sufficient quantity of α,
a reasonable approximation (albeit one that will not sample from the extreme tails) is also simply
to pick a random α` ∈ A and use just the corresponding column θ`k to generate the random
sample.

Computationally, there are a few simple but key points involved in making the sampling ef-
ficient. First, when sampling from a conditional distribution, we can precompute xTΘx

k for each
k, and use these terms as a constant offset. Second, we maintain a “running” feature vector
φ(y) ∈ Rdm, i.e., the concatenation of features corresponding to each coordinate φ(yk). Each
time we sample a new coordinate yk, we generate just the new features in the φ(yk) block, leav-
ing the remaining features untouched. Finally, since the Θk terms are sparse, the inner product
φ(y)T θ`k will only contain a few nonzeros terms in the sum, and will be computed more effi-
ciently if the Θk are stored as a sparse matrices.

6.3.8 Additional Details on the Evaluation of Fitted Conditional CDFs
Here, we elaborate on the evaluation of each method’s conditional CDFs that we first presented
in Section 4.6.1. For simplicity, we describe everything that follows in terms of the conditional
CDF y1|y2 only, with everything being extended in the obvious way to other conditionals. (We
omit the nonparanormal skeptic from our evaluation as it is not clear how to sample from its
conditionals, due to the nature of a particular transformation that it uses.)

First, we carried out the following steps in order to compute the true (empirical) conditional
CDF.

1. We drew n = 400 samples from the ring distribution, by following the procedure described
in Section 4.6.1; these observations are plotted across the top row of Figure 6.7.
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2. We then partitioned the y2 samples into five equally-sized bins, and computed the true
empirical conditional CDF of y1 given each bin of y2 values.

Next, we carried out the following steps in order to compute the estimated (empirical) condi-
tional CDFs, for each method.

3. We fitted each method to the samples obtained in step (1) above.

4. Then, for each method, we drew a sample of y1 given each y2 sample, using the method’s
conditional distribution; these conditionals are plotted across the second through fifth rows
of Figure 6.7 (for representative values of λ1).
Operationally, we drew samples from each method’s conditionals in the following ways.
• MQGM: we used the Gibbs sampler described in Section 6.3.7.

• MB: we drew y1 ∼ N (θ̂T1 y
(i)
2 , σ̂2

1|2), where θ̂1 is the fitted lasso regression coefficient

of y1 on y2; y(i)
2 for i = 1, . . . , n is the ith observation of y2 obtained in step (1) above;

and σ̂2
1|2 = Var(Y1 − Y2θ̂1) denotes the sample variance of the underlying error term

Y1 − Y2θ̂1 with Yi = (y
(1)
i , . . . , y

(n)
i ) ∈ Rn collecting all observations along variable

i.
• SpaceJam: we drew y1 ∼ N (θ̂T1 φ(y

(i)
2 ), σ̂2

1|2), where φ is a suitable basis function,
and θ̂1 as well as σ̂2

1|2 are defined in ways analogous to the neighborhood selection
setup.

• GLasso: we drew y1 ∼ N (µ̂1|2, σ̂2
1|2), where

µ̂1|2 = µ̂1 + Σ̂12Σ̂−1
22 (y

(i)
2 − µ̂2)

σ̂2
1|2 = Σ̂11 − Σ̂12Σ̂−1

22 Σ̂21

with µ̂i denoting the sample mean of Yi, and Σ̂ denoting the estimate of the covariance
matrix given by GLasso (subscripts select blocks of this matrix).

5. Finally, we partitioned the y2 samples into five equally-sized bins (just as when computing
the true conditional CDF), and computed the estimated empirical conditional CDF of y1

given each bin of y2 values.

Having computed the true as well as estimated conditional CDFs, we measured the goodness
of fit of each method’s conditional CDFs to the true conditional CDFs, by computing the total
variation (TV) distance, i.e.,

(1/2)

q∑
i=1

∣∣∣F̂methodj
y1|y2 (z(i)|ζ)− F̂ true

y1|y2(z
(i)|ζ)

∣∣∣ ,
as well as the (scaled) Kolmogorov-Smirnoff (KS) statistic, i.e.,

max
i=1,...,q

∣∣∣F̂methodj
y1|y2 (z(i)|ζ)− F̂ true

y1|y2(z
(i)|ζ)

∣∣∣ .
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Here, F̂ true
y1|y2(z

(i)|ζ) is the true empirical conditional CDF of y1|y2, evaluated at y1 = z(i) and
given y2 = ζ , and F̂methodj

y1|y2 (z(i)|ζ) is a particular method’s (“methodj” above) estimated empirical
conditional CDF, evaluated at y1 = z(i) and given y2 = ζ . For each method, we averaged these
TV and KS values across the method’s conditional CDFs. Table 4.1 reports the best (across a
range of tuning parameters) of these averaged TV and KS values.
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Figure 6.7: Conditional distributions for MQGM, MB, GLasso, and SpaceJam, fitted to samples from
the ring distribution (TIGER and Laplace’s conditionals both look similar to MB’s). First row: samples
from the ring distribution, where each plot highlights the samples falling into a particular shaded bin on
the y2 axis. Second through fifth rows: conditional distributions of y1 given y2 for each method, where
each plot conditions on the appropriate y2 bin as highlighted in the first row. The MQGM’s conditional
distributions are intuitive, appearing bimodal for bin 3, and more peaked for bins 1 and 5. MB, GLasso,
and SpaceJam’s densities appear (roughly) Gaussian, as expected.
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