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Abstract

Comparative genomics approaches seek to associate molecular evolution with the evolution of
phenotypes across a phylogeny. Many of these methods, including our evolutionary rates-based method,
RERconverge, lack the ability to analyze non-ordinal, multicategorical traits. To address this limitation,
we introduce an expansion to RERconverge that associates shifts in evolutionary rates with the
convergent evolution of multi-categorical traits. The categorical RERconverge expansion includes
methods for performing categorical ancestral state reconstruction, statistical tests for associating relative
evolutionary rates with categorical variables, and a new method for performing phylogeny-aware
permutations, “permulations”, on multi-categorical traits. In addition to demonstrating our new method on
a three-category diet phenotype, we compare its performance to binary RERconverge analyses and two
existing methods for comparative genomic analyses of categorical traits: phylogenetic simulations and a
phylogenetic signal based method. Our results show that our new categorical method outperforms
phylogenetic simulations at identifying genes and enriched pathways significantly associated with the diet
phenotypes and that the categorical ancestral state reconstruction drives an improvement in our ability to
capture diet-related enriched pathways compared to binary RERconverge when implemented without user
input on phenotype evolution. Through investigation of the PIEZO1 gene, we also illustrate how
diet-relevant genes detected by our method can possess convergent patterns of amino acid sequence
change. An additional case study using the binary pair bonding phenotype illustrates how our categorical
expansion can still be applied successfully to binary traits as indicated by our identification of relevant
biological pathways related to male gametes, ovarian follicles, and behavioral response to drugs. The
categorical expansion to RERconverge will provide a strong foundation for applying the comparative
method to categorical traits on larger data sets with more species and more complex trait evolution than
have previously been analyzed.
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Introduction

A fundamental question in biology is identifying the genomic elements underlying complex phenotypes.
One way to address this question is through the lens of convergent evolution, or the process in which
more than one evolutionary lineage independently acquires similar phenotypes. These independent
evolutionary events are natural replicates of phenotype acquisition in which similar genetic changes in
correspondence with similar phenotypic changes may indicate a genotype-phenotype relationship
(Kowalczyk et al. 2019; Li et al. 2010; Partha et al. 2017). RERconverge identifies genes whose
evolutionary rates, the number of amino acid substitutions per unit time, are changing in accordance with
the phenotype (Kowalczyk et al., 2019).

More specifically, the rate of substitution along a branch is quantified as an evolutionary rate and, by
correcting for factors affecting rates at all genes or on all branches of a phylogeny, we can compute
relative evolutionary rates (RERs) that reflect whether a given gene is evolving slower or faster than
expected along a branch of the phylogeny (Kowalczyk et al. 2019). Comparing the distributions of these
RERs across phenotypes enables us to identify regions of the genome showing convergent rate shifts in
association with the phenotype, thus making use of convergent evolution as a tool in comparative
genomic analyses. RERconverge has been used with great success to discover both coding and
non-coding elements related to the evolution of continuous and binary traits including mammalian
lifespan, hairlessness, and marine habitation (Kowalczyk, Chikina, and Clark 2022; Kowalczyk et al.
2020; Chikina, Robinson, and Clark 2016).

Nonetheless, like many phylogenetic software packages, RERconverge was compatible with only binary
or continuous traits, but did not support non-ordinal, multicategorical phenotypes despite their prevalence
in nature e.g circadian rhythm, diet type. Here I present an extension to RERconverge that provides three
major updates enabling the use of the software for analyses of multicategorical traits: (1) it infers the
ancestral history of categorical traits; (2) it provides a “permulation” strategy for categorical traits to
return reliable, phylogeny aware, corrected p-values; and (3) it has options for both parametric and
non-parametric statistical tests to associate RERs with categorical phenotypes, including post hoc
pairwise testing. As a test case, we applied these new methods to a set of categories representing variation
in mammalian diet phenotypes. Applying our new methodology, we found many diet-related pathways
enriched for genes with significant differences in RER distributions across diet categories, highlighting
the potential of this method for genome-wide analyses. This work is described in full detail in our
manuscript, RERconverge Expansion: Using Relative Evolutionary Rates to Study Complex Categorical
Trait Evolution (Redlich et al., 2023) and summarized in this thesis report.

One of the key contributions of the RERconverge extension is the incorporation of maximum likelihood
inference methods for ancestral state reconstruction. Pair bonding, the prolonged preference for a single
mating partner, was previously analyzed with the binary RERconverge method with limited success
(unpublished data). We revisit the pair bonding phenotype using our new methods for ancestral inference
and permulations and demonstrate our ability to capture true signal in the data through the identification
of many relevant biological pathways enriched with genes evolving at different rates in pair bonding
mammals.

https://paperpile.com/c/7dCBCq/yjGeG+s7X9n+r4ltp
https://paperpile.com/c/7dCBCq/yjGeG
https://paperpile.com/c/7dCBCq/Aqz7x+eTvjR+DrM1X
https://paperpile.com/c/7dCBCq/Aqz7x+eTvjR+DrM1X
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Background/Prior work

Changes in selective pressure can frequently be observed as changes in the rate of substitutions along the
branches of a phylogeny due to increased constraint, relaxation of constraint, or positive selection (Yang
2007; Pond, Frost, and Muse 2005). There are a variety of methods that have been developed to detect
convergent evolution at the same individual nucleotides (Hasselmann et al. 2008), individual amino acids
((Rey et al. 2018; Thomas and Hahn 2015; Fukushima and Pollock 2023), regulatory elements (Partha et
al. 2017; Kowalczyk, Chikina, and Clark 2022; Kaplow et al. 2023; Yan et al. 2023; Hu et al. 2019), and
genes (Kosakovsky Pond et al. 2020; Kowalczyk et al. 2019). These methods have been applied to
identify convergent molecular evolution associated with a wide variety of traits in a large number of
clades (Yusuf et al. 2023; Jin et al. 2023; Wang et al. 2020; Espindola-Hernandez, Mueller, and
Kempenaers 2022; Bodawatta et al. 2023).

Categorical Methods

A limitation to most phylogenetic comparative methods is the inability to analyze non-ordinal,
multicategorical traits. Consider, in the simplest case, a three category phenotype. Excluding any one
category to perform a binary analysis may significantly reduce the number of species in the analysis, and
therefore the power to detect genetic elements. Combining categories instead of excluding them presents
potentially arbitrary choices that could have significant impacts on the results. These problems are likely
to arise for any non-ordinal, multicategorical trait. Moreover, it becomes increasingly challenging to
encode a categorical trait as a binary trait as the number of categories increases.

Some methods do exist to specifically study categorical data. Garland et al. (Garland et al. 1993)
introduced the phylogenetic simulations method, which uses an ANOVA test to compare means of a
continuous phenotype across categories and computes p-values empirically from simulations to account
for phylogenetic relationships between species. Multiple phylogenetic packages including phytools
(Revell 2012) and geiger (Pennell et al. 2014) have implemented this phylogenetic ANOVA test. ANOVA
is a parametric test, with much stricter assumptions than the non-parametric alternatives, and phylogenetic
data often do not meet these assumptions. Moreover, the method is technically designed to compare
continuous traits among species grouped into certain categories.

Ribeiro and Borges (Borges et al. 2019; Ribeiro et al. 2023) presented the delta statistic for calculating
phylogenetic signal for categorical traits. One of many applications of the delta statistic is identifying
genetic elements associated with a categorical phenotype. This statistic has been successfully applied to
find genes associated with the evolution of mammalian activity patterns (Borges et al. 2019). However,
we still note a few limitations to this method. Currently, the only option is to calculate p-values by
random permutation of the trait vector. Random permutation represents the null hypothesis that there is no
phylogenetic signal, but this is not a good representation of the null hypothesis that a genetic element is
not associated with a phenotype since we expect even null phenotypes to maintain phylogenetic
relationships (Saputra et al. 2021). Additionally, the delta statistic does not take into account or provide
any information on evolutionary rates, so it cannot be used in the specific context where our goal is to
find genetic elements that are convergently accelerated or conserved.

https://paperpile.com/c/7dCBCq/3ENgb+nnYSg
https://paperpile.com/c/7dCBCq/3ENgb+nnYSg
https://paperpile.com/c/7dCBCq/976lt
https://paperpile.com/c/7dCBCq/a1Va8+2XhVh+63N6m
https://paperpile.com/c/7dCBCq/r4ltp+Aqz7x+eY1Pz+y50To+TTugJ
https://paperpile.com/c/7dCBCq/r4ltp+Aqz7x+eY1Pz+y50To+TTugJ
https://paperpile.com/c/7dCBCq/1x23i+yjGeG
https://paperpile.com/c/7dCBCq/HYOW0+2O9sA+bTo2P+ATSau+7aVIB
https://paperpile.com/c/7dCBCq/HYOW0+2O9sA+bTo2P+ATSau+7aVIB
https://paperpile.com/c/7dCBCq/cWkFy
https://paperpile.com/c/7dCBCq/XQYiE
https://paperpile.com/c/7dCBCq/TCC5X
https://paperpile.com/c/7dCBCq/p6JPr+3siBr
https://paperpile.com/c/7dCBCq/p6JPr
https://paperpile.com/c/7dCBCq/glkai
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Phenotypes

One common way of categorizing mammalian diets is by trophic level: carnivory, herbivory, and
omnivory (Kim et al. 2016). We considered mammals that almost exclusively consume plant matter as
herbivores, mammals that almost exclusively consume vertebrates or invertebrates as carnivores, and
mammals that consume more than one type of food source as omnivores (Redlich et al., 2023).

Lukas, Clutton-Brock 2013 classify pair bonding, or social monogamy, as when a single male and female
share a territory and remain together for greater than one breeding season whether or not they have
offspring (Lukas and Clutton-Brock 2013).

Methods

Continuous time Markov model (CTMM) Ancestral Reconstruction

Categorical RERconverge uses a continuous time markov model of evolution in order to perform
ancestral state reconstruction, a framework that has been commonly applied to categorical traits (Pagel
1994; Pupko et al. 2000; Paradis, Claude, and Strimmer 2004). This is an important step because it allows
RERconverge to associate relative evolutionary rates with the convergent evolution of the phenotype
across the entire phylogeny, not just extant branches. Maximum likelihood estimation is used to infer a
transition rate matrix, Q, from the user supplied phylogeny, rate model, and extant phenotype data. The
phylogeny is the master tree which includes all species in the analysis and has branch lengths representing
average genome-wide evolutionary rates. The transition matrix is inferred using the fit_mk function from
the castor package (Louca and Doebeli 2018), and is used to compute the marginal ancestral likelihoods at
each node. Code for the computation of ancestral likelihoods is heavily based on ace from the package
ape, using the same double pass algorithm but is modified to work with unrooted, non-dichotomous trees
(Paradis, Claude, and Strimmer 2004). Each node is then assigned the state with the maximum marginal
likelihood. Though this is not the same as the assignment of states that maximizes the joint likelihood,
marginal ancestral likelihoods can be computed rapidly even for large phylogenies.

The rate model describes the number and position of free rate parameters in the transition rate matrix. In
order to compare rate models, RERconverge implements a likelihood ratio test which computes the log
likelihood of the fitted transition matrix under each user supplied rate model. Pairwise comparisons are
made between each rate model with its more complex rate models and the likelihood ratio and p-value is
computed for each comparison. If the two rate models are nested (the simpler one is a special case of the
more complex one), then the likelihood ratio is distributed as a chi-squared with degrees of freedom equal
to the difference in the number of free parameters between the simpler and more complex model and the
p-value is determined accordingly (Pagel 1994). Other packages implement a similar test for nested
models including anova in the ape package (Paradis et al., n.d.). However, the likelihood ratio test in
RERconverge works with both nested and non-nested models and will automatically detect whether the
models are nested or not. For non-nested models, Monte Carlo simulations are used to determine an
empirical p-value for the likelihood ratio (Pagel 1994).

For binary phenotypes, the user can choose whether branches are considered foreground based on the
state of possessing the convergent trait or based on the transition from not possessing to gaining the trait.

https://paperpile.com/c/7dCBCq/lbmET
https://paperpile.com/c/7dCBCq/vyJrZ
https://paperpile.com/c/7dCBCq/g5bJK+5rZZh+taFHM
https://paperpile.com/c/7dCBCq/g5bJK+5rZZh+taFHM
https://paperpile.com/c/7dCBCq/4K84J
https://paperpile.com/c/7dCBCq/taFHM
https://paperpile.com/c/7dCBCq/g5bJK
https://paperpile.com/c/7dCBCq/OT0is
https://paperpile.com/c/7dCBCq/g5bJK
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Both methods were tested for hairless species with no large impact found (Kowalczyk, Chikina, and Clark
2022). However, with categorical traits especially when the ancestral trait is unclear, the number of
possible transition types is quadratic with respect to the number of categories. Thus we decided to assign
edges based on state rather than transition. Edges were assigned the state of their descendant nodes such
that all edges leading to extant species are assigned based on the observed phenotype.

In order to handle missing species, RERconverge computes “paths” (Kowalczyk et al. 2019). When
species are missing, certain nodes are no longer necessary so edges will be combined into “composite”
edges and the paths describe what state values to use for these composite edges. Categorical
RERconverge assigns the composite edges the state of the most recent edge in the master tree. This
ensures that composite edges leading to extant species always use the observed state.

Permulations

Permulations is an important part of RERconverge because it allows users to calculate reliable p-values
for the association of genomic elements with convergent traits despite unknown sources of dependence in
the data leading to non-uniform null p-value distributions (Saputra et al. 2021). Permulations generate
permuted phenotype trees that maintain the phylogenetic relationships in the data. For instance, binary
permulations maintain the same number of foreground species and the same structural relationships
between foreground species (Saputra et al. 2021).

Categorical permulations are accomplished slightly differently than binary and continuous permulations
because the simulation step does not use a Brownian motion model. Instead, phenotypes are simulated
from the continuous time markov model that was used to reconstruct the ancestral history of the trait. As
with binary and continuous permulations, the simulation is based on a phylogeny with branch lengths
representing the average genome-wide evolutionary rate along that branch.

The categorical permulations algorithm employs three steps to ensure that the permulated phenotype
contains the same number of species with each trait value as the original phenotype:

1) Rejection sampling: any simulated phenotype in which there are not the same number of extant species
with each trait value as the original phenotype is rejected.

2) Permutation of internal traits: the simulated values for internal species are ignored. Instead, the
originally inferred internal trait values are permuted and assigned to internal species in the permulated
phenotype. Assignment is weighted by the ancestral likelihoods calculated from the simulated tip values.
This ensures that the initial permutation of internal traits is more optimal than a completely random
shuffle.

3) Re-organize internal traits: a search technique similar to simulated annealing is used to reorganize the
internal states relative to the simulated extant states to improve the likelihood of the permulated
phenotype. This is accomplished through a series of swaps. Pairs of candidate nodes are suggested based
on which internal nodes from step (2) disagree most with the ancestral likelihoods at that node. A swap is
made, and if the swap improves the likelihood of the tree, then the swap is kept. To avoid getting stuck,
the swap is also made with a small probability even if it does not improve the likelihood of the tree. This

https://paperpile.com/c/7dCBCq/Aqz7x
https://paperpile.com/c/7dCBCq/Aqz7x
https://paperpile.com/c/7dCBCq/yjGeG
https://paperpile.com/c/7dCBCq/glkai
https://paperpile.com/c/7dCBCq/glkai
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generates a plausible trait history that exactly matches trait category counts and has a comparable
likelihood to the original simulation.

Algorithmically step 3 is computed as follows: Let be the instantaneous transition rate matrix that was𝑄
fit on the phenotype data. Let be the matrix of ancestral likelihoods where each row is a node and each𝐴
column is a phenotype state. The initial likelihood of the tree after step 2 is computed.

(1)𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  
𝑖 = 1

𝑛𝑢𝑚 𝑒𝑑𝑔𝑒𝑠

∏ (𝑒
𝑄𝑡

𝑖)
𝑥

𝑖
,𝑦

𝑖

where is the length of edge , is the transition probability matrix, is the ancestor on edge , and𝑡
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 𝑖 𝑒
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𝑖 𝑥
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𝑖 𝑦
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is the descendant on edge . For each internal node currently assigned state , ratios are computed for all𝑖 𝑖 𝑦
other states .𝑥

𝑟𝑎𝑡𝑖𝑜
𝑖,𝑥

=
𝐴

𝑖,𝑥

𝐴
𝑖,𝑦

Thus a large ratio indicates that node prefers to be in state over its current state .𝑖 𝑥 𝑦

A ratio, , is selected at random with more weight placed on larger ratios so that poorly assigned nodes𝑟1
are more likely to be swapped. Let where node is currently in state . Then, a second𝑟1 = 𝑟𝑎𝑡𝑖𝑜

𝑖,𝑥
𝑖 𝑦

ratio, , is selected from a list of ratios, , where each node is currently in state . Once again,𝑟2 𝑟𝑎𝑡𝑖𝑜
𝑗,𝑦

 𝑗 𝑥

more weight is placed on larger ratios. A swap in which node is switched to state and node is𝑖 𝑥 𝑗
switched to state is then proposed.𝑦

The likelihood of the tree is recomputed under the swap. If the likelihood improves, then the swap is kept.
If the likelihood does not improve, then the swap is made with probability where𝑢 = 𝑒𝑥𝑝(− 𝑑ℎ/𝑇

𝑘
)

Thus if is large (the swap is very unfavorable), will be small and it𝑑ℎ =  𝑙𝑜𝑔( 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑤𝑎𝑝
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑤𝑎𝑝 ). 𝑑ℎ 𝑢

is less likely to make the swap. represents the “temperature” which is a common feature of simulated𝑇
𝑘

annealing algorithms. The temperature begins high during early iterations and decreases as the iterations
go on. Thus, in the early iterations is larger, and unfavorable swaps are made with a higher probability.𝑢
This allows the algorithm to try more swaps, especially early on, to increase the overall number of
potential state configurations it explores, even if some of those swaps initially decrease the likelihood.
Only allowing swaps that improve the likelihood may cause the trees to get stuck before they reach a
more favorable state assignment.

At the end of each cycle , the new temperature is calculated as where and were chosen𝑘 𝑇
𝑘

=
𝑇

0

1 + α𝑘 𝑇
0

α

semi-arbitrarily and are currently 10 and 0.9 respectively. 100 cycles were run, each with 10 iterations for
a total of 1000 iterations.

In order to determine the effectiveness and importance of each step in the above algorithm, we plotted the
distributions of tree log likelihoods after each step (Fig. 1). After step 2, the log likelihoods decrease
because we replace the simulated internal states with a permutation of the original internal states.
However, after step 3, the completed permulated trees (tan) return to having the same or improved
likelihoods compared to the simulations (blue). Thus, plotting the log likelihood distributions after each
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step demonstrates why step 3 is extremely important for ensuring the overall plausibility of the
permulated phenotypes and thus maintenance of the types of phylogenetic dependencies present in the
original phenotype tree.

Once the permulated phenotypes are generated, the correlation between RERs and each permulated
phenotype is computed for each gene. Empirical p-values are then computed as the number of null effect
sizes more extreme than the observed effect size for that gene. One sided empirical p-values are computed
for the omnibus test and two-sided empirical p-values are computed for the pairwise tests.

Figure 1. In blue are the log likelihoods of the 10,000 simulated trees (after step 1), in gray are the log
likelihoods of the 10,000 permuted trees (after step 2), and in tan are the log likelihoods of the 10,000
finished permulated trees (after step 3).

Categorical Statistical Tests

Relative evolutionary rates are associated with the categorical phenotype in one of two ways. The default
approach is to use a nonparametric Kruskal Wallis test followed by pairwise Dunn tests (Ogle et al. 2023).
There is also an option to use an ANOVA test followed by pairwise Tukey tests (Foundation for Statistical
Computing, n.d.). The Kruskal Wallis test reports the epsilon squared effect size computed as where𝐻

𝑛 − 1  

is the Kruskal Wallis test statistic and is the total number of observations (species), and the𝐻 𝑛
corresponding p-value (King, Rosopa, and Minium 2018). The Dunn test reports the Z statistic for each
pairwise test and the p-value after adjusting for multiple comparisons. The ANOVA test reports the eta
squared effect size computed as , and the corresponding p-value. The𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑒𝑓𝑓𝑒𝑐𝑡

𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

Tukey test reports the difference between each pair of means and the p-value corrected for multiple
comparisons.

https://paperpile.com/c/7dCBCq/mvokJ
https://paperpile.com/c/7dCBCq/zKRw3
https://paperpile.com/c/7dCBCq/zKRw3
https://paperpile.com/c/7dCBCq/60KBd
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Results

Diet Phenotype Ancestral Reconstruction
To test our extension of the RERconverge method to categorical traits, we used the phenotype of diet
(carnivore, omnivore, and herbivore) for 115 mammals, along with gene trees inferred from coding
sequence alignments from these species’ high quality genomes (Hecker and Hiller 2020). The diet
phenotype was annotated using prior literature for those species (Nowak 1999) (Fig. 2).

Figure 2. Example of a categorical trait reconstruction on a subset of mammals included in the full
analyses. A) Categorical trait reconstruction using maximum likelihood applied to a continuous time
Markov model. B) Default binary trait reconstruction with carnivore foreground and herbivore/omnivore
background. Uses an approximate maximum parsimony based approach and assumes trait evolution can
only occur from background to foreground. C) Default binary reconstruction on phylogeny of carnivores
(foreground) and herbivores (background) with omnivores removed. Uses an approximate maximum
parsimony based approach and assumes trait evolution can only occur from background to foreground.

In order to perform the ancestral reconstruction, we first considered three commonly applied rate models.
These are equal rates (ER), symmetric (SYM), and all rates different (ARD) (Paradis, Claude, and
Strimmer 2004) (Fig. 3).

https://paperpile.com/c/7dCBCq/84HfV
https://paperpile.com/c/7dCBCq/TPOGw
https://paperpile.com/c/7dCBCq/taFHM
https://paperpile.com/c/7dCBCq/taFHM
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Figure 3. The circles represent the three categories (states) - carnivore (Carn), herbivore (Herb),
omnivore (Om). The colored arrows represent the transition rates where arrows of the same color
represent transitions with the same rate.

The rate model can have a significant impact on the results of the ancestral trait/state reconstruction; thus,
we compared the fit of each of these three rate models to our observed phenotype data using a likelihood
ratio test, as implemented in the expanded categorical RERconverge (Kowalczyk et al. 2019; Pagel 1994).
The ARD model provided a significantly better fit to the data than the other models (p = 0.00952
compared to ER, p = 0.02354 compared to SYM); thus, this model was used to infer the ancestral states.
Under the ARD model, the ancestral mammal was inferred to be a carnivore, while omnivores and
herbivores were inferred to have evolved independently multiple times. The resulting pattern of evolution
of the three phenotypes on the phylogeny, inferred using the ARD model, included multiple transitions
between categories, suggesting sufficient power to identify diet-associated convergent molecular
evolution. Specifically, this inference included 4 direct transitions between carnivore and herbivore, 12
direct transitions between carnivore and omnivore, and 19 direct transitions between herbivore and
omnivore, where each transition is interpreted as a potential independent convergent event.

Categorical RERconverge analysis results

The ability to detect diet relevant genes with our categoricals methods are highlighted by the RERs of two
genes within the digestive tract development pathway, ITGB4 and ITGA6 (Fig. 4). They encode integrin
subunits which tend to associate to form a heterodimer (O’Leary et al. 2016), and interestingly both show
acceleration among carnivores compared to herbivores (Fig. 4A,B; ITGB4 p = 5.662 x 10-14, adjusted p =
1.0719 x 10-9, permulation p = 0.0; ITGA6 p = 5.74 x 10-5, adjusted p = 0.00407, permulation p = 0.006).
These genes show different patterns relative to omnivores; ITGB4 illustrates that the distributions of
relative evolutionary rates may differ significantly between all three categories while ITGA6 is not
significantly different between carnivores and omnivores.

https://paperpile.com/c/7dCBCq/yjGeG+g5bJK
https://paperpile.com/c/7dCBCq/5fjQE
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Figure 4. Violin plots of the distribution of relative evolutionary rates across each diet category for A)
ITGB4 and B) ITGA6.

In addition to the ability to detect diet relevant genes with different patterns of evolutionary rate shifts
across categories, we demonstrate that detected genes can also show convergent patterns of amino acid
sequence change. We decided to focus on the PIEZO1 gene due to its important role in the digestive
system and significant difference in evolutionary rates across groups as detected by our categorical
RERconverge method (omnibus test adjusted p = 2.7 x 10-4; permulations p = 0.029) (He et al. 2023) (Fig.
5A). PIEZO1 is a mechanosensitive ion channel which opens in response to mechanical forces. The
ensuing influx of cations, especially Ca2+, is involved in many downstream processes including activation
of integrin, ERK1/2-MAPK, and other signaling pathways involved in cell differentiation during digestive
system development (He et al. 2023). Interestingly, integrin genes like those above were among the most
significant genes identified by the categorical RERconverge analysis and both positive regulation of
ERK1/2 cascade (p = 3.87 x 10-5; adjusted p = 0.0027; permulation p = 0.0175) and MAPK cascade (p =
5.64 x 10-4; adjusted p = 0.0188; permulation p = 0.0143) pathways were enriched among the
carnivore-herbivore pairwise results (Fig. 5C). Together, this may imply a candidate role for PIEZO1
mediated cell differentiation during digestive system development in the evolution of diet type, though
more follow up research would be necessary. PIEZO1 has also been implicated in the stimulation of the
inflammatory response in the digestive system, sensory conduction in teeth, the stimulation of bile
secretion through calcium-mediated pathways, iron release in the liver, intestinal motility, and
maintenance of the intestinal epithelium through promotion of apical extrusion (He et al. 2023).

https://paperpile.com/c/7dCBCq/8XJnc
https://paperpile.com/c/7dCBCq/8XJnc
https://paperpile.com/c/7dCBCq/8XJnc


12 Redlich

An analysis of the PIEZO1 alignment identified at least one position with convergent patterns in amino
acid change. A convergent pattern was defined by instances in which the set of amino acids possessed by
the species in one diet category have minimal overlap with the set of amino acids possessed by species in
one or more of the other diet categories. The residue corresponding to residue 1835 in the human PIEZO1
amino acid sequence is glycine in all but two of the 29 carnivore lineages (ignoring lineages with a gap
character). While 8 of the 44 herbivore lineages and 5 of the 23 omnivore lineages also possess a glycine,
this residue is much more variable among herbivores and omnivores with the majority of lineages
possessing alanine, glutamic acid, arginine, threonine, valine, or leucine (Fig. 5A). Furthermore, we
verified that this pattern was independent of clade membership in the phylogeny and truly represented
differences between diet types (Fig. 5D). This suggests that carnivores may be less tolerant to changes in
this position compared to herbivores and omnivores. In human PIEZO1, this residue falls within a
disordered region between two transmembrane domains (Surhone, Tennoe, and Henssonow 2010). It is
also the site of a known, likely benign, missense variant within human populations that changes alanine to
valine (“rs762530150” 2022).

Figure 5. A) Violin plot of relative evolutionary rates of PIEZO1 showing a significant difference in rates
between diet categories. B) Segment of the multiple sequence alignment with the convergent residue
highlighted. Most carnivores possess a glycine whereas there is much more variety at this position in
herbivores and omnivores. C) Fold enrichment and bar code plots of the MAPK cascade and positive

https://paperpile.com/c/7dCBCq/hLeOc
https://paperpile.com/c/7dCBCq/39Sf4
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regulation of ERK1/2 cascade GO pathways which had significant enrichment under the categorical
carnivore-herbivore pairwise test. D) Phylogeny with carnivores (red), herbivores (blue), and omnivores
(black). The identity of the highlighted residue is written next to the species name.

Permulations Results
Previously, binary and continuous permulations was demonstrated to refine pathway enrichment results
by taking nonindependence of gene ranks into account (Saputra et al. 2021). We demonstrate that
categorical permulations has the same ability to refine pathway enrichment results. For example, we
observed that olfactory genes commonly cluster together in rank. As a result, olfactory signaling and
olfactory transduction were two of the most significant pathway enrichment results according to
non-permulated p-values. These had more significant p-values than the starch and sucrose metabolism
pathway from the canonical gene set (Subramanian and Others 2005; Liberzon et al. 2011) which has a
clear relationship to the diet phenotype. After permulations, starch and sucrose metabolism was retained
as the top result (based on permulation p-values), while olfactory signaling and olfactory transduction
were no longer among the top enriched pathways (Fig. 6B).

We also expect categorical permulations to account for non-uniform null distributions. To determine if
this was the case, we plotted histograms and quantile-quantile plots of the parametric and permulation
p-values (Fig. 6A). The categorical pairwise tests all showed a large enrichment for high parametric
p-values of around 1. This enrichment of high p-values is also detected in the permulations and is thus no
longer present among the permulation p-values. This demonstrates that the enrichment of high p-values is
most likely specific to this statistical test and sources of nonindependence in the data rather than
representing a true pattern specific to the diet phenotype.

Notably, the simulation p-values calculated by phylANOVA still have an enrichment of high p-values
near one (Fig. 6A). In fact, this enrichment is even more extreme than that of the categorical pairwise
parametric p-values. PhylANOVA simulates the RERs using a Brownian Motion model, so while this
takes phylogenetic dependence into account, it doesn’t account for other systematic variation such as
nucleotide content or genome quality that can affect the RER values themselves and lead to non-uniform
null distributions. The enrichment of parametric and phylANOVA simulation p-values near 1 and removal
of such enrichment by permulations was observed across all the pairwise tests (Fig. 6A). Thus, unlike
permulations, phylogenetic simulations were not able to correct for this pattern.

Additionally, though the same number of simulations and permulations (10,000) were performed, the
categorical RERconverge pairwise test permulation p-values show more power, which may be because
phylANOVA only uses extant species while RERconverge uses ancestral species as well.

https://paperpile.com/c/7dCBCq/glkai
https://paperpile.com/c/7dCBCq/Z4DeG+VzSgA
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Figure 6. A) Quantile quantile plots and histograms of the, categorical RERconverge raw (parametric)
p-values (red) and permulation p-values (green) and the phylanova simulation p-values (blue). B) Fold
enrichment and barcode plots showing the enrichment of genes in the Kegg starch and sucrose
metabolism pathway (left) and two olfactory pathways (right). Red indicates the results for the observed
phenotype, gray indicates the results for a random selection of seven (out of the 10,000) permulated
phenotypes.
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Pairbonding Results

We obtained pair bonding phenotype annotations from Lukas, Clutton-Brock 2013. We used a phylogeny
of 173 mammals constructed from genomes from the Zoonomia Consortium (Zoonomia Consortium
2020) to run an RERconverge analysis using our new categorical methods on a binary encoding of the
pair bonding phenotype. There were 24 contemporary socially monogamous mammals across multiple
clades and 149 non-pair bonding mammals. We performed ancestral reconstruction using the maximum
likelihood inference methods included in the RERconverge categorical expansion. We inferred 11
independent transitions to pair bonding from a non-pair bonding ancestral mammal, providing statistical
power for the comparative analysis. In order to calculate phylogeny corrected p-values, we performed
10,000 permulations for both the gene correlation results and the biological pathway enrichment results.

To interpret the results at a more functional level, we performed clustering on the enriched pathways from
the mouse genome informatics (MGI) annotations (Liberzon et al. 2011; Subramanian and Others 2005),
resulting in clusters of significant pathways (adjusted p-value < 0.05, permulation p-value < 0.01) that
share common genes and thus similar biological functions. Notably, we identified clusters relating to male
germ cells, ovarian follicles, the pituitary and luteinizing hormone, and drug response (Fig. 7). These
clusters highlight important changes occurring during the convergent evolution of pair bonding, many of
which are supported by experimental results in pair bonding species including changes due to lower
sperm competition, hormones involved in female reproduction, and potential parallels between neural
regions involved in drug responses and partner bonding.

Sperm competition refers to when sperm of two or more males compete to fertilize the oocytes of one
female (van der Horst and Maree 2014). Socially monogamous (pair bonding) species experience much
lower sperm competition because, with the exception of extra-pair mating which generally occurs at low
rates in mammals (Lukas and Clutton-Brock 2013), only one male is mating with a single female. Studies
in diverse species that experience little to no sperm competition, including the Eurasion bullfinch,
bandicoot rat, and naked mole rat, identified slower sperm velocity, retention of immature sperm
morphology, abnormalities in sperm morphology, smaller testis, and lower quality ejaculate (van der
Horst and Maree 2014). Though naked mole rats are eusocial and live in large colonies, the female queen
breeds with only one selected mate, so like socially monogamous species, they experience low sperm
competition (van der Horst and Maree 2014). Immature sperm morphology is a result of not undergoing
the final stages of spermiogenesis (last stage of spermatogenesis) and is consistent with our finding of
significant enrichment of arrest of spermatogenesis (adjusted p-value = 2.55 x 10-5, permulation p-value =
0.0090). We also found significant enrichment of abnormal male germ cell morphology (adjusted p-value
= 2.53 x 10-7, permulation p-value = 0.0035) and abnormal testis size (adjusted p-value = 3.04 x 10-5,
permulation p-value = 0.0079). The studies confirmed that the abnormalities were the result of decreased
sperm competition and were most likely due to energy saving benefits since high quality sperm are
energetically costly (van der Horst and Maree 2014). It has been hypothesized that in response to poorer
sperm quality, females have evolved larger numbers of high quality oocytes that are capable of selecting
for the best quality sperm (van der Horst and Maree 2014). Interestingly, two of the three pathways in the
ovarian follicle cluster were related to ovarian follicle number. Finally, though not a comparative study,
prairie voles, a model organism for studying pair bonding, were found to have increased levels of
luteinizing hormone-releasing hormone (LHRH) and serum levels of luteinizing hormone (LH) in

https://paperpile.com/c/7dCBCq/oT2UR
https://paperpile.com/c/7dCBCq/oT2UR
https://paperpile.com/c/7dCBCq/VzSgA+Z4DeG
https://paperpile.com/c/7dCBCq/1T7h9
https://paperpile.com/c/7dCBCq/vyJrZ
https://paperpile.com/c/7dCBCq/1T7h9
https://paperpile.com/c/7dCBCq/1T7h9
https://paperpile.com/c/7dCBCq/1T7h9
https://paperpile.com/c/7dCBCq/1T7h9
https://paperpile.com/c/7dCBCq/1T7h9
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response to contact with male urine, suggesting that LH may play an important role in activation of
female reproduction in pair bonding mammals (Carter, Getz, and Cohen-Parsons 1986).

We also identified pathways related to drug response, which may be related to the importance of reward
and motivation pathways in the evolution of pair bonding since pair bonding mammals must learn a
preference for their mating partner. While I could not find a direct study comparing the neural
mechanisms involved in pair bonding to those involved in response to drugs, there is a study comparing
the neural response to cocaine vs. maternal nurturing in postpartum rats (Mattson and Morrell 2005). This
is relevant because there are strong parallels in neural circuitry between mother-infant bonding and pair
bonding which suggest the evolution of prolonged social bonds between mating partners built upon these
same maternal-infant bonding mechanisms (Numan and Young 2016). The study found that a learned
preference for cocaine or preference for pups resulted in increased activity compared to controls in the
same, motivational processing-related brain regions including the prefrontal cortex, basal-lateral
amygdala, and medial preoptic area, though at different levels between the cocaine and pup groups and
most likely in only partially overlapping or non-overlapping sub populations of neurons within these brain
regions (Mattson and Morrell 2005). Among the significantly enriched drug response pathways, we
identified abnormal behavioral response to cocaine (adjusted p-value = 0.0151, permulation p-value =
0.0002). This suggests that similar mechanisms may be involved in processing maternal rewards and drug
response rewards, and further that these may be similar to the reward processing mechanisms essential for
formation of pair bonds.

While the studies mentioned identified crucial neural, endocrine, and morphological traits in pair bonding
species, they did not identify the genes or genetic mechanisms involved. Our compelling pathway
enrichment results are evidence that the association of protein coding regions with the evolution of pair
bonding captured true signal in the data, and by looking at top ranked genes in these pathways, we can
begin to improve our genetic understanding of the evolution of pair bonding. (See Future Work).

https://paperpile.com/c/7dCBCq/6kpyz
https://paperpile.com/c/7dCBCq/LIoxZ
https://paperpile.com/c/7dCBCq/iGKDX
https://paperpile.com/c/7dCBCq/LIoxZ
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Figure 7. Clusters of pathways significantly enriched for genes associated with the evolution of pair
bonding. Individual nodes on the right represent significantly enriched pathways that did not cluster.

Comparison with prior work

In addition to our new categorical RERconverge method we performed two types of binary RERconverge
pairwise analyses (Kowalczyk et al. 2019), a categorical phylANOVA analysis using the RERs computed
by RERconverge, and a delta statistic analysis (Borges et al. 2019) (Table 1). All of these methods were
tested on the same set of 19,137 gene trees based on the reference phylogeny of 115 mammals whose
phenotypes we could clearly assign (Hecker and Hiller 2020).

Overview of Methods Compared

Method Works with
discordant trees

Includes pairwise
comparisons

P-values
included (in
package/GitHub
available code)?

Approximate
Runtime1,2 (mins)

Categorical
RERconverge

No Yes Yes, parametric
and permulations

RER computation:
70
Analysis: 0.15
Permulations: 86

Total: 155

Pairwise Binary
RERconverge
(method I)

No N/A Yes, parametric
and permulations

RER computation:
70
Analysis: 0.15
Permulations4:
~210

Total: ~ 280

Pairwise Binary
RERconverge
(method II)

No N/A Yes, parametric
and permulations

RER computation:
120
Analysis: 0.75
Permulations5:
~360

Total: ~ 480

phylANOVA +
base
RERconverge
(phylogenetic

No3 Yes Yes, simulations
only

RER computation:
70
Analysis: 114

https://paperpile.com/c/7dCBCq/yjGeG
https://paperpile.com/c/7dCBCq/p6JPr
https://paperpile.com/c/7dCBCq/84HfV
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simulations with
Relative
Evolutionary
Rates)3

Total: 184

Delta statistic of
phylogenetic
signal

Yes No No Total: 103

Table 1. Comparison of the methods.
1. Includes time to run 500 permulations or 500 simulations with phylANOVA. Note: for this paper

we ran 10,000 permulations/simulations. Does not include the time to perform a pathway
enrichment analysis. Does not include the time to estimate trees from the MSA since this is
universal to all the methods. The runtime for pairwise binary RERconverge method I was
determined using all species with herbivores as foreground and the runtime for pairwise binary
RERconverge method II was determined using carnivores/herbivores with carnivore foreground.
Note that runtimes for permulations can vary depending on the specific structure of the
phenotype.

2. Runtime is for 19,137 genes and a phylogeny with 115 species
3. The base RERconverge package was used to estimate relative evolutionary rates, these were then

associated with the phenotype data using phylANOVA. While phylANOVA itself works with
discordant trees, computing relative evolutionary rates with RERconverge does not work with
discordant trees.

4. The runtime was 70 minutes for the binary phenotype with herbivore foreground. To determine
the total runtime for all three tests (one for each category as foreground), this was multiplied by 3
to obtain ~210 minutes. This is approximate since each run of permulations varies depending on
the structure of the phenotype.

5. The runtime was 60 minutes for the binary phenotype with carnivore foreground and herbivore
background (omnivores removed). To determine the total runtime for all six tests, this was
multiplied by 6 to obtain ~360 minutes. This is approximate since each run of permulations varies
depending on the structure of the phenotype.

Comparison of ancestral reconstruction results

One important factor distinguishing these methods was the use or assignment of internal branches.
PhylANOVA only includes extant species; by default binary RERconverge uses an approximate
maximum parsimony approach to infer ancestral states; and based on our analysis above, we chose to
apply categorical RERconverge using maximum likelihood with a continuous time Markov model
(CTMM) (Pagel 1994; Pupko et al. 2000; Paradis, Claude, and Strimmer 2004) with an ARD rate model
to infer ancestral states.

The default inference of ancestral states with the approximate maximum parsimony approach used for
binary traits in RERconverge is heavily dependent on the choice of foreground. In the default mode, the
trait is assumed to evolve only from background to foreground; hence, the method steps back through the

https://paperpile.com/c/7dCBCq/g5bJK+5rZZh+taFHM
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tree and assigns ancestral branches of foreground species to the foreground until all the descendants are
no longer part of the foreground. As a result, this approach is also sensitive to excluding species. The
impact of removing omnivores on the assignment of branches to the foreground using this method is
illustrated on a subset of the full tree (Fig. 2B vs. Fig. 2C). When omnivores are removed, the common
ancestor of the African hunting dog and Pacific walrus is assigned to the carnivore foreground. However,
when omnivores are included, this ancestor is not assigned to the carnivore foreground because the lesser
panda is an omnivore and thus not part of the foreground. The categorical reconstruction on the full tree
predicts this ancestor is a carnivore, but regardless of the right classification, we take away from this
observation the sensitivity of the default binary reconstruction to species presence or absence when
choosing how to represent a multicategorical trait as multiple pairwise binary comparisons. The CTMM
ancestral reconstruction is not dependent on a choice of foreground, as the ancestral state(s) versus the
convergent state(s) are effectively inferred by the maximum likelihood assignment of states. Categorical
trait reconstruction infers a carnivorous mammalian ancestor while the default binary reconstructions do
not infer as many carnivorous internal branches (Fig. 2A). The exact extent of the effect of different
inferred ancestral states on the gene and pathway enrichment results is most likely phenotype- and
phylogeny-specific.

Comparison of gene results across methods

Association statistics between the evolution of the diet phenotype and RERs were computed for the three
methods that use relative evolutionary rates: categorical RERconverge, pairwise binary RERconverge,
and phylANOVA with RERs computed from RERconverge. The delta statistic method did not provide an
approach for computing p-values so it was excluded from these analysis-wide gene result comparisons.
10,000 permulations were used to obtain permulation p-values for the binary and categorical
RERconverge analyses. Similarly, 10,000 simulations were used to obtain simulation p-values for the
phylANOVA analysis.

Quantile-quantile plots of the permulation and simulation p-values were made to determine which
comparisons are driving the identification of significant genes and assess the signal across the different
methods (Fig. 8A-D). PhylANOVA was significantly underpowered, with far fewer significant p-values
in the QQ plots compared to all other methods (Fig. 8A-D, gray), although the same number of
permulations and simulations were performed (Fig. 8A-D, gray). This lack of power in PhyloANOVA
could be due to lack of information on internal branches, an important feature included in RERconverge.
In addition, it may also be due to differences in the phylogenetic simulations. In the ANOVA approach,
RERs are treated as a continuously valued phenotype and simulated with a Brownian Motion model
(Garland et al. 1993; Revell 2012). In contrast, the RERconverge approach allows for the use of
phylogenetic permulations of the diet phenotypes (Saputra et al. 2021), and these permulations which
have been shown to better correct for the tree structure. The categorical RERconverge update, which
features methods to include internal branches and perform permulations, offers a significant improvement
upon existing methods for comparing relative evolutionary rates across categories of species.

The binary and pairwise comparisons that measure differences between carnivores and herbivores tend to
have the greatest signal, suggesting genetic differences between carnivores and herbivores are driving the

https://paperpile.com/c/7dCBCq/cWkFy+XQYiE
https://paperpile.com/c/7dCBCq/glkai
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results (Fig. 8A-C, indicated by +). For instance, among the herbivore and omnivore comparisons, the
binary comparison between herbivores in the foreground and carnivores/omnivores in the background has
the strongest signal (Fig. 8C, indicated +). In contrast, both binary comparisons between herbivores and
omnivores with carnivores removed do not show strong signal (Fig. 8C, pink and purple). Furthermore,
the comparison between omnivores in the foreground and carnivores/herbivores in the background does
not exhibit strong signal (Fig. 8C, open green circle). Thus, the key feature related to strong signal
appears to be the separation of carnivores and herbivores between the foreground and background.

However, the exception to the trend of carnivore vs. herbivore as the most significant comparison is
within the carnivore-omnivore signal comparison, where carnivore vs. omnivore have the most signal
(Fig. 8B).The curves for these comparisons depart from the unity line early on, suggesting that the greater
signal may be the result of binary permulations under-correcting for false positives due to failing to fully
correct for the phylogenetic structure in the data rather than these methods being more powerful. The
effect of removing all species of one category is often to have more full clades inferred together as
foreground with fewer convergent gains or losses of the trait (Fig.2). This makes it more difficult to
correct for phylogenetic relatedness driving the signal, especially since we used a relaxed version of
binary permulations that does not enforce the permulated trees to exactly match the original phenotype
tree in the structure of the relationships between foreground branches. Such differences in the inferred
ancestral states due to removing herbivores may be contributing to a deceptively high degree of signal
among these methods in other ways as well. These findings are consistent with our observations that
internal branch assignments can have a large impact on genes’ significance.
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Figure 8. Quantile quantile (QQ) plots of the permulation or simulation p-values for the results of
categorical RERconverge, phylANOVA, and pairwise binary RERconverge. A-C) A + symbol is used to
denote any comparison in which carnivores and herbivores are separated between the foreground and
background. C) An open circle symbol denotes the analysis in which carnivores and herbivores together
form the background and omnivores form the foreground.

To further explore the impact of internal branches, we focus on RERs of two genes evolving significantly
slower or faster among carnivores than omnivores according to the binary methods, but showing no
significant rate shift according to the categorical method (Fig. 9). In both cases, whether a rate shift is
observed or not is driven by differences in the RER distributions of the internal branches. MADCAM1 is
significantly accelerated in omnivores according to the binary analysis with carnivore foreground (p =
4.987 x 10-7, adjusted p = 0.0005558, permulation p = 0.0067), however this is not the case in the
categorical pairwise test (p = 0.16 , adjusted p = 1, permulation p = 0.2161). Separating the relative
evolutionary rates by extant vs. internal species, we see that in the categorical reconstruction, the RERs of
carnivores are driven upwards due to the presence of internal branches with larger RERs assigned as
carnivores (Fig. 9). PHB2 is significantly accelerated in carnivores according to the binary analysis with
omnivore foreground (p = 9.226 x 10-5, adjusted p = 0.01139, permulation p-value = 0.0) but not in the
categorical pairwise test (p = 0.3461, adjusted p = 1, permulation p = 0.0776). The signal for this gene in
the binary analysis is being driven by a group of internal branches with negative RERs. These internal
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branches are not assigned as omnivores in the categorical reconstruction. When this group is no longer
present, there is no significant difference in RERs between carnivores and omnivores (Fig. 9).

Figure 9. Each violin plot compares the distribution of RERs between carnivores and omnivores for
MADCAM1 (top row) and PHB2 (bottom row). In green, on the left, is the distribution of RERs for
extant branches and in orange, on the right, is the distribution of RERs for internal branches. The left
column shows the RERs from the binary analyses of carnivores vs. omnivores with either carnivore
foreground (top) or omnivore foreground (bottom). The right column contains the RERs from the
categorical analysis.

Comparison of pathway enrichment results across methods

Effects of the ancestral reconstruction extend beyond the gene level results to the pathway enrichment
results as well. One GO pathway for which we may expect to see significant enrichment is digestive tract
development. Carnivores have been shown to have shortened digestive tracts (Kim et al. 2016) and we
would expect the digestive tract to specialize to a species’ diet. Digestive tract development was
significantly enriched in the categorical pairwise test between carnivores and herbivores (adjusted p =
0.044, permulation p = 0.0011) (Fig. 10A, blue line). The four different binary pairwise analyses between
carnivores and herbivores are also shown. Enrichment is lower among these four methods compared to
the categorical method. Notably, the two methods with herbivore foreground (Fig. 10A, purple and

https://paperpile.com/c/7dCBCq/lbmET
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green) have greater enrichment than the method with carnivore foreground. This is consistent with the
categorical ancestral reconstruction inferring more carnivorous ancestral species than herbivores so these
binary ancestral reconstructions are more similar to the categorical ancestral reconstruction. This
suggested that the ancestral reconstruction was playing an important part in the enrichment of this
pathway.

To specifically test the effect of the ancestral reconstruction method relative to different statistical tests
employed, we used the CTMC ancestral reconstruction method to infer the ancestral states for each of the
four binary phenotypes. We then performed the rest of the binary analysis in the same way as before (Fig.
10B). Note that the two binary methods in which omnivores were removed (red and purple lines) now had
the same assignment of ancestral states because the reconstruction is no longer dependent on foreground
choice. Using the new ancestral reconstruction caused the enrichment of digestive tract development
genes to improve, reaching nearly the same level as the categorical pairwise test. Thus, we infer the
differences in enrichment were being driven almost entirely by the ancestral reconstruction. Using the
more sophisticated ancestral reconstruction resulted in improved enrichment for a pathway which we
would expect to be enriched, suggesting that capturing more complex patterns of evolution and using
more reliable reconstructions is beneficial at the pathway enrichment level as well. The new ancestral
reconstruction also appears more robust to removing species from the analysis because in the results from
the new reconstruction, the red and purple lines, in which omnivores were removed, are much more
similar to the orange and green lines respectively, in which omnivores were not removed, compared to the
old reconstruction (Fig. 10B vs. Fig. 10A).
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Figure 10. Fold enrichment and barcode plots for the digestive tract development pathway. A) The
categorical carnivore-herbivore pairwise test (blue) is compared to the four different original binary
analyses which compared carnivores to herbivores. B) The categorical carnivore-herbivore pairwise test
(blue) is compared to the four binary RERconverge analyses in which the new ancestral state
reconstruction (ASR) method, maximum likelihood applied to a continuous time Markov model, has been
used in place of the original maximum parsimony approach.

Comparison to Delta Statistic

Having interpreted the updated RERconverge results, we next conducted a comparison of our method to
the delta statistic. Based on its clear diet relevance and strong enrichment, we conducted the comparison
on the genes within the abnormal digestion pathway (Fig. 11). We found significant enrichment of the
categorical omnibus test and the delta statistic results but none of the pairwise or binary analyses (Fig. 11,
blue, orange; categorical omnibus p = 6.668 x 10-5, adjusted p = 0.1015, permulation p = 9 x 10-4; delta
statistic p = 0.0002565, adjusted p = 0.05586). This lack of enrichment remained even when performed
with the CTMC ancestral reconstruction as was done with the digestive tract development pathway (Fig.
10). This suggests that the categorical test is capturing effects across multiple pairwise comparisons which
alone aren’t sufficient to detect enrichment for this pathway.
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Figure 11. Fold enrichment and barcode plots for the abnormal digestion pathway. All three plots contain
the categorical omnibus curve (blue, bold), delta statistic curve (orange), and phylANOVA omnibus curve
(green). A) In addition to the omnibus methods, the methods comparing carnivores to herbivores are
included. B) In addition to the omnibus methods, the methods comparing carnivores to omnivores are
included. C) In addition to the omnibus methods, the methods comparing herbivores to omnivores are
included. In A-C, the same color is used for corresponding methods. Where the corresponding methods
may differ in which specific categories are being compared, the category names are underlined in the
legend.

The delta statistic method is markedly different from the other methods in this analysis in that it does not
use evolutionary rates. More details on how the delta statistic is calculated are given in the delta statistic
paper (Borges et al. 2019; Ribeiro et al. 2023)). In order to determine if the delta statistic and categorical
RERconverge identified similar or different signatures of convergent evolution, we first compared both
methods on the abnormal digestion pathway, which was significantly enriched according to both. The
most significant genes in the abnormal digestion pathway identified by the delta statistic were for the
most part different from those identified by omnibus categorical RERconverge (Fig. 12A). Though there’s
no clear relationship between the delta statistic and the omnibus results, patterns emerge when the results
are broken down into their pairwise comparisons. The most significant delta statistic genes tended to be
those which were evolving slower in carnivores compared to omnivores or herbivores as indicated by
negative statistics (Fig. 12A). Genes in the pathway which were ranked least significant according to the

https://paperpile.com/c/7dCBCq/p6JPr+3siBr
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delta statistic, but which exhibited a rate shift, tended to be those evolving faster in carnivores compared
to herbivores or omnivores (Fig. 12A).

To determine if this trend persists across all genes in the analysis, not just those within the abnormal
digestion pathway, we plotted the fold enrichment of the top 200 delta statistic genes among the
categorical RERconverge tests (Fig. 12B). The general results indeed recapitulate what we observed
within the abnormal digestion pathway. Genes with greater phylogenetic signal for the diet phenotype
tend to evolve slower in carnivores compared to herbivores (Fig. 12B, green). To a lesser extent, the same
trend is observed for carnivores compared to omnivores (Fig. 12B, blue) and herbivores compared to
omnivores (Fig. 12B, pink). There is no enrichment of the top delta statistic genes among the omnibus
results (Fig. 12B, yellow), indicating that overall the two methods are identifying different, though
potentially complementary, top genes associated with this diet phenotype.

This trend may be the consequence of the delta statistic using reconstruction certainty to identify
phylogenetic signal. Reconstruction certainty, among many factors, depends on inferred phylogeny
branch lengths which are related to evolutionary rates. We may expect a phylogeny’s ancestral history to
be inferred with greater or less certainty when the branch lengths also exhibit a certain pattern as a result
of allowing more or less change along the branches in order to give rise to the observed phenotype
structure. In this case, slower evolutionary rates among carnivores may improve the certainty of inferring
carnivorous ancestors corresponding to what we’d expect from our maximum likelihood reconstruction
on the master tree, leading to higher delta statistics. However, it is unclear to what extent these patterns
reflect the real biology or methodological uncertainty in the inferred branch lengths, gene tree structure,
and ancestral likelihoods.

We interpret this to mean that the delta statistic is sometimes able to recognize features distinct from those
captured by the evolutionary rates in RERconverge, however that the delta statistic may be more likely to
fail to detect phylogenetic signal for certain genes depending on their patterns of convergent evolutionary
rate shifts.
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Figure 12. A) Bar plots of the statistic used to calculate enrichments for the top 15 most significant genes
in the abnormal digestion pathway (right) and 15 least significant genes in the abnormal digestion
pathway (left) as ranked by the delta statistic. For the delta statistic method, the statistic is delta, the
measure of phylogenetic signal. For the RERconverge methods, the statistic is the signed log p-value. B)
The fold enrichment and barcode plots among the RERconverge omnibus and pairwise tests of the top
200 genes ranked by the delta statistic of phylogenetic signal.

Future work

We submitted our work on the categorical expansion to RERconverge and its application to the diet
phenotype to Molecular Biology and Evolution as a manuscript titled, RERconverge Expansion: Using
Relative Evolutionary Rates to Study Complex Categorical Trait Evolution where it is currently under
review. One important direction for future work is to continue investigating the pair bonding phenotype.
We identified many relevant enriched biological pathways, so next steps would include analyzing the top
ranking genes identified by RERconverge to improve our understanding of the genetic mechanisms
underlying the evolution of pair bonding. For instance, we could apply tools from the HyPhy package to
determine the types of selective pressure faced by the genes identified by the RERconverge analysis
(Wirthlin et al. 2024).

https://paperpile.com/c/7dCBCq/YGR5
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We also believe that, in addition to protein coding genes, gene regulatory elements may play an important
role in the evolution of pair bonding. Enhancers are gene regulatory elements that, when active, can
influence gene expression levels. We can use the Tissue-Aware Conservation Toolkit (TACIT), a machine
learning method developed in the Pfenning lab, to associate machine learning predictions of enhancer
activity with a convergent phenotype (Kaplow et al. 2023). Currently, I am running the
prediction-phenotype association step of the TACIT pipeline to identify enhancers that are related to pair
bonding. If we are able to find such enhancers, we will also compare them to our protein coding
RERconverge results to determine whether there are genes undergoing both coding sequence and
regulatory changes.
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